Sample records for loop current frontal

  1. Manipulation of the extrastriate frontal loop can resolve visual disability in blindsight patients.

    PubMed

    Badgaiyan, Rajendra D

    2012-12-01

    Patients with blindsight are not consciously aware of visual stimuli in the affected field of vision but retain nonconscious perception. This disability can be resolved if nonconsciously perceived information can be brought to their conscious awareness. It can be accomplished by manipulating neural network of visual awareness. To understand this network, we studied the pattern of cortical activity elicited during processing of visual stimuli with or without conscious awareness. The analysis indicated that a re-entrant signaling loop between the area V3A (located in the extrastriate cortex) and the frontal cortex is critical for processing conscious awareness. The loop is activated by visual signals relayed in the primary visual cortex, which is damaged in blindsight patients. Because of the damage, V3A-frontal loop is not activated and the signals are not processed for conscious awareness. These patients however continue to receive visual signals through the lateral geniculate nucleus. Since these signals do not activate the V3A-frontal loop, the stimuli are not consciously perceived. If visual input from the lateral geniculate nucleus is appropriately manipulated and made to activate the V3A-frontal loop, blindsight patients can regain conscious vision. Published by Elsevier Ltd.

  2. Left and right basal ganglia and frontal activity during language generation: contributions to lexical, semantic, and phonological processes.

    PubMed

    Crosson, Bruce; Benefield, Hope; Cato, M Allison; Sadek, Joseph R; Moore, Anna Bacon; Wierenga, Christina E; Gopinath, Kaundinya; Soltysik, David; Bauer, Russell M; Auerbach, Edward J; Gökçay, Didem; Leonard, Christiana M; Briggs, Richard W

    2003-11-01

    fMRI was used to determine the frontal, basal ganglia, and thalamic structures engaged by three facets of language generation: lexical status of generated items, the use of semantic vs. phonological information during language generation, and rate of generation. During fMRI, 21 neurologically normal subjects performed four tasks: generation of nonsense syllables given beginning and ending consonant blends, generation of words given a rhyming word, generation of words given a semantic category at a fast rate (matched to the rate of nonsense syllable generation), and generation of words given a semantic category at a slow rate (matched to the rate of generating of rhyming words). Components of a left pre-SMA-dorsal caudate nucleus-ventral anterior thalamic loop were active during word generation from rhyming or category cues but not during nonsense syllable generation. Findings indicate that this loop is involved in retrieving words from pre-existing lexical stores. Relatively diffuse activity in the right basal ganglia (caudate nucleus and putamen) also was found during word-generation tasks but not during nonsense syllable generation. Given the relative absence of right frontal activity during the word generation tasks, we suggest that the right basal ganglia activity serves to suppress right frontal activity, preventing right frontal structures from interfering with language production. Current findings establish roles for the left and the right basal ganglia in word generation. Hypotheses are discussed for future research to help refine our understanding of basal ganglia functions in language generation.

  3. Developmental Alterations of Frontal-Striatal-Thalamic Connectivity in Obsessive-Compulsive Disorder

    ERIC Educational Resources Information Center

    Fitzgerald, Kate Dimond; Welsh, Robert C.; Stern, Emily R.; Angstadt, Mike; Hanna, Gregory L.; Abelson, James L.; Taylor, Stephan F.

    2011-01-01

    Objective: Pediatric obsessive-compulsive disorder is characterized by abnormalities of frontal-striatal-thalamic circuitry that appear near illness onset and persist over its course. Distinct frontal-striatal-thalamic loops through cortical centers for cognitive control (anterior cingulate cortex) and emotion processing (ventral medial frontal…

  4. The Dual-Loop Model and the Human Mirror Neuron System: an Exploratory Combined fMRI and DTI Study of the Inferior Frontal Gyrus.

    PubMed

    Hamzei, Farsin; Vry, Magnus-Sebastian; Saur, Dorothee; Glauche, Volkmar; Hoeren, Markus; Mader, Irina; Weiller, Cornelius; Rijntjes, Michel

    2016-05-01

    The inferior frontal gyrus (IFG) is active during both goal-directed action and while observing the same motor act, leading to the idea that also the meaning of a motor act (action understanding) is represented in this "mirror neuron system" (MNS). However, in the dual-loop model, based on dorsal and ventral visual streams, the MNS is thought to be a function of the dorsal steam, projecting to pars opercularis (BA44) of IFG, while recent studies suggest that conceptual meaning and semantic analysis are a function of ventral connections, projecting mainly to pars triangularis (BA45) of IFG. To resolve this discrepancy, we investigated action observation (AO) and imitation (IMI) using fMRI in a large group of subjects. A grasping task (GR) assessed the contribution from movement without AO. We analyzed connections of the MNS-related areas within IFG with postrolandic areas with the use of activation-based DTI. We found that action observation with imitation are mainly a function of the dorsal stream centered on dorsal part of BA44, but also involve BA45, which is dorsally and ventrally connected to the same postrolandic regions. The current finding suggests that BA45 is the crucial part where the MNS and the dual-loop system interact. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. A 32-Channel Combined RF and B0 Shim Array for 3T Brain Imaging

    PubMed Central

    Stockmann, Jason P.; Witzel, Thomas; Keil, Boris; Polimeni, Jonathan R.; Mareyam, Azma; LaPierre, Cristen; Setsompop, Kawin; Wald, Lawrence L.

    2016-01-01

    Purpose We add user-controllable direct currents (DC) to the individual elements of a 32-channel radio-frequency (RF) receive array to provide B0 shimming ability while preserving the array’s reception sensitivity and parallel imaging performance. Methods Shim performance using constrained DC current (±2.5A) is simulated for brain arrays ranging from 8 to 128 elements. A 32-channel 3-tesla brain array is realized using inductive chokes to bridge the tuning capacitors on each RF loop. The RF and B0 shimming performance is assessed in bench and imaging measurements. Results The addition of DC currents to the 32-channel RF array is achieved with minimal disruption of the RF performance and/or negative side effects such as conductor heating or mechanical torques. The shimming results agree well with simulations and show performance superior to third-order spherical harmonic (SH) shimming. Imaging tests show the ability to reduce the standard frontal lobe susceptibility-induced fields and improve echo planar imaging geometric distortion. The simulation of 64- and 128-channel brain arrays suggest that even further shimming improvement is possible (equivalent to up to 6th-order SH shim coils). Conclusion Including user-controlled shim currents on the loops of a conventional highly parallel brain array coil is feasible with modest current levels and produces improved B0 shimming performance over standard second-order SH shimming. PMID:25689977

  6. Dopamine D4 Receptor Gene Associated with the Frontal-Striatal-Cerebellar Loop in Children with ADHD: A Resting-State fMRI Study.

    PubMed

    Qian, Andan; Wang, Xin; Liu, Huiru; Tao, Jiejie; Zhou, Jiejie; Ye, Qiong; Li, Jiance; Yang, Chuang; Cheng, Jingliang; Zhao, Ke; Wang, Meihao

    2018-06-01

    Attention deficit hyperactivity disorder (ADHD) is a common childhood neuropsychiatric disorder that has been linked to the dopaminergic system. This study aimed to investigate the effects of regulation of the dopamine D4 receptor (DRD4) on functional brain activity during the resting state in ADHD children using the methods of regional homogeneity (ReHo) and functional connectivity (FC). Resting-state functional magnetic resonance imaging data were analyzed in 49 children with ADHD. All participants were classified as either carriers of the DRD4 4-repeat/4-repeat (4R/4R) allele (n = 30) or the DRD4 2-repeat (2R) allele (n = 19). The results showed that participants with the DRD4 2R allele had decreased ReHo bilaterally in the posterior lobes of the cerebellum, while ReHo was increased in the left angular gyrus. Compared with participants carrying the DRD4 4R/4R allele, those with the DRD4 2R allele showed decreased FC to the left angular gyrus in the left striatum, right inferior frontal gyrus, and bilateral lobes of the cerebellum. The increased FC regions included the left superior frontal gyrus, medial frontal gyrus, and rectus gyrus. These data suggest that the DRD4 polymorphisms are associated with localized brain activity and specific functional connections, including abnormality in the frontal-striatal-cerebellar loop. Our study not only enhances the understanding of the correlation between the cerebellar lobes and ADHD, but also provides an imaging basis for explaining the neural mechanisms underlying ADHD in children.

  7. Frontostriatal connectivity in children during working memory and the effects of prenatal methamphetamine, alcohol, and polydrug exposure.

    PubMed

    Roussotte, Florence F; Rudie, Jeffrey D; Smith, Lynne; O'Connor, Mary J; Bookheimer, Susan Y; Narr, Katherine L; Sowell, Elizabeth R

    2012-01-01

    Various abnormalities in frontal and striatal regions have been reported in children with prenatal alcohol and/or methamphetamine exposure. In a recent fMRI study, we observed a correlation between accuracy on a working-memory task and functional activation in the putamen in children with prenatal methamphetamine and polydrug exposure. Because the putamen is part of the corticostriatal motor loop whereas the caudate is involved in the executive loop, we hypothesized that a loss of segregation between distinct corticostriatal networks may occur in these participants. The current study was designed to test this hypothesis using functional connectivity MRI. We examined 50 children ranging in age from 7 to 15, including 19 with prenatal methamphetamine exposure (15 of whom had concomitant prenatal alcohol exposure), 13 with prenatal exposure to alcohol but not methamphetamine, and 18 unexposed controls. We measured the coupling between blood oxygenation level dependent (BOLD) fluctuations during a working-memory task in four striatal seed regions and those in the rest of the brain. We found that the putamen seeds showed increased connectivity with frontal brain regions involved in executive functions while the caudate seeds showed decreased connectivity with some of these regions in both groups of exposed subjects compared to controls. These findings suggest that localized brain abnormalities resulting from prenatal exposure to alcohol and/or methamphetamine lead to a partial rewiring of corticostriatal networks. These results represent important progress in the field, and could have substantial clinical significance in helping devise more targeted treatments and remediation strategies designed to better serve the needs of this population. Copyright © 2012 S. Karger AG, Basel.

  8. Physical connectivity between Pulley Ridge and Dry Tortugas coral reefs under the influence of the Loop Current/Florida Current system

    NASA Astrophysics Data System (ADS)

    Kourafalou, V. H.; Androulidakis, Y. S.; Kang, H.; Smith, R. H.; Valle-Levinson, A.

    2018-07-01

    The Pulley Ridge and Dry Tortugas coral reefs are among the most pristine, but also fragile, marine ecosystems of the continental United States. Understanding connectivity processes between them and with surrounding shelf and deep areas is fundamental for their management. This study focuses on the physical processes related to the connectivity of these reefs. Unprecedented in situ time series were used at these specific reef locations, together with satellite observations and numerical simulations, to investigate the dynamics controlling local circulation on the Southwestern Florida Shelf (SWFS) under oceanic influence. The approach of the Loop Current and Florida Current (LC/FC) system to the SWFS slope can induce 0.5 to 1 m/s offshore flows impacting the Pulley Ridge and Dry Tortugas reefs. On the other hand, when the LC/FC system retreats from the slope, onshore flows can carry open-sea waters over the coral reefs. Local formation of cyclonic eddies is possible near the Dry Tortugas reefs in the LC approach case and passage of upstream LC Frontal Eddies is possible in the LC retreat case. Offshore currents ∼1 m/s over the SWFS slope were also found during periods of anticyclonic LC Eddy separation. A novel finding is the shedding and northward propagation of mesoscale anticyclonic eddies from the core of the LC along the West Florida Shelf. Eddy shedding may have a broader effect on the dynamics of the shelf around the study reef areas. Long periods of LC/FC domination over these coral reefs (reaching several weeks to months) are characterized by strong (∼1 m/s) along-shelf currents and continuous upwelling processes, which may weaken the slope stratification and bring colder, deeper waters over the shelf-break and toward the shallower shelf region.

  9. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele.

    PubMed

    Anders, Silke; Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand

    2012-04-01

    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia-cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can compensate for progressive dopaminergic nerve degeneration in carriers of a single mutant Parkin or PINK1 gene, who show a mild but significant reduction of dopamine metabolism in the basal ganglia in the complete absence of clinical motor signs. However, it is currently unknown whether similar compensatory mechanisms are effective in non-motor basal ganglia-cortical gating loops. Here, we ask whether asymptomatic Parkin mutation carriers show altered patterns of brain activity during processing of facial gestures, and whether this might compensate for latent facial emotion recognition deficits. Current theories in social neuroscience assume that execution and perception of facial gestures are linked by a special class of visuomotor neurons ('mirror neurons') in the ventrolateral premotor cortex/pars opercularis of the inferior frontal gyrus (Brodmann area 44/6). We hypothesized that asymptomatic Parkin mutation carriers would show increased activity in this area during processing of affective facial gestures, replicating the compensatory motor effects that have previously been observed in these individuals. Additionally, Parkin mutation carriers might show altered activity in other basal ganglia-cortical gating loops. Eight asymptomatic heterozygous Parkin mutation carriers and eight matched controls underwent functional magnetic resonance imaging and a subsequent facial emotion recognition task. As predicted, Parkin mutation carriers showed significantly stronger activity in the right ventrolateral premotor cortex during execution and perception of affective facial gestures than healthy controls. Furthermore, Parkin mutation carriers showed a slightly reduced ability to recognize facial emotions that was least severe in individuals who showed the strongest increase of ventrolateral premotor activity. In addition, Parkin mutation carriers showed a significantly weaker than normal increase of activity in the left lateral orbitofrontal cortex (inferior frontal gyrus pars orbitalis, Brodmann area 47), which was unrelated to facial emotion recognition ability. These findings are consistent with the hypothesis that compensatory activity in the ventrolateral premotor cortex during processing of affective facial gestures can reduce impairments in facial emotion recognition in subclinical Parkin mutation carriers. A breakdown of this compensatory mechanism might lead to the impairment of facial expressivity and facial emotion recognition observed in manifest Parkinson's disease.

  10. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele

    PubMed Central

    Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand

    2012-01-01

    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia–cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can compensate for progressive dopaminergic nerve degeneration in carriers of a single mutant Parkin or PINK1 gene, who show a mild but significant reduction of dopamine metabolism in the basal ganglia in the complete absence of clinical motor signs. However, it is currently unknown whether similar compensatory mechanisms are effective in non-motor basal ganglia–cortical gating loops. Here, we ask whether asymptomatic Parkin mutation carriers show altered patterns of brain activity during processing of facial gestures, and whether this might compensate for latent facial emotion recognition deficits. Current theories in social neuroscience assume that execution and perception of facial gestures are linked by a special class of visuomotor neurons (‘mirror neurons’) in the ventrolateral premotor cortex/pars opercularis of the inferior frontal gyrus (Brodmann area 44/6). We hypothesized that asymptomatic Parkin mutation carriers would show increased activity in this area during processing of affective facial gestures, replicating the compensatory motor effects that have previously been observed in these individuals. Additionally, Parkin mutation carriers might show altered activity in other basal ganglia–cortical gating loops. Eight asymptomatic heterozygous Parkin mutation carriers and eight matched controls underwent functional magnetic resonance imaging and a subsequent facial emotion recognition task. As predicted, Parkin mutation carriers showed significantly stronger activity in the right ventrolateral premotor cortex during execution and perception of affective facial gestures than healthy controls. Furthermore, Parkin mutation carriers showed a slightly reduced ability to recognize facial emotions that was least severe in individuals who showed the strongest increase of ventrolateral premotor activity. In addition, Parkin mutation carriers showed a significantly weaker than normal increase of activity in the left lateral orbitofrontal cortex (inferior frontal gyrus pars orbitalis, Brodmann area 47), which was unrelated to facial emotion recognition ability. These findings are consistent with the hypothesis that compensatory activity in the ventrolateral premotor cortex during processing of affective facial gestures can reduce impairments in facial emotion recognition in subclinical Parkin mutation carriers. A breakdown of this compensatory mechanism might lead to the impairment of facial expressivity and facial emotion recognition observed in manifest Parkinson's disease. PMID:22434215

  11. Regulatory behavior and frontal activity: Considering the role of revised-BIS in relative right frontal asymmetry.

    PubMed

    Gable, Philip A; Neal, Lauren B; Threadgill, A Hunter

    2018-01-01

    Essential to human behavior are three core personality systems: approach, avoidance, and a regulatory system governing the two motivational systems. Decades of research has linked approach motivation with greater relative left frontal-cortical asymmetry. Other research has linked avoidance motivation with greater relative right frontal-cortical asymmetry. However, past work linking withdrawal motivation with greater relative right frontal asymmetry has been mixed. The current article reviews evidence suggesting that activation of the regulatory system (revised Behavioral Inhibition System [r-BIS]) may be more strongly related to greater relative right frontal asymmetry than withdrawal motivation. Specifically, research suggests that greater activation of the r-BIS is associated with greater relative right frontal activity, and reduced r-BIS activation is associated with reduced right frontal activity (greater relative left frontal activity). We review evidence examining trait and state frontal activity using EEG, source localization, lesion studies, neuronal stimulation, and fMRI supporting the idea that r-BIS may be the core personality system related to greater relative right frontal activity. In addition, the current review seeks to disentangle avoidance motivation and r-BIS as substrates of relative right frontal asymmetry. © 2017 Society for Psychophysiological Research.

  12. Sex differences in frontal lobe connectivity in adults with autism spectrum conditions.

    PubMed

    Zeestraten, E A; Gudbrandsen, M C; Daly, E; de Schotten, M T; Catani, M; Dell'Acqua, F; Lai, M-C; Ruigrok, A N V; Lombardo, M V; Chakrabarti, B; Baron-Cohen, S; Ecker, C; Murphy, D G M; Craig, M C

    2017-04-11

    Autism spectrum conditions (ASC) are more prevalent in males than females. The biological basis of this difference remains unclear. It has been postulated that one of the primary causes of ASC is a partial disconnection of the frontal lobe from higher-order association areas during development (that is, a frontal 'disconnection syndrome'). Therefore, in the current study we investigated whether frontal connectivity differs between males and females with ASC. We recruited 98 adults with a confirmed high-functioning ASC diagnosis (61 males: aged 18-41 years; 37 females: aged 18-37 years) and 115 neurotypical controls (61 males: aged 18-45 years; 54 females: aged 18-52 years). Current ASC symptoms were evaluated using the Autism Diagnostic Observation Schedule (ADOS). Diffusion tensor imaging was performed and fractional anisotropy (FA) maps were created. Mean FA values were determined for five frontal fiber bundles and two non-frontal fiber tracts. Between-group differences in mean tract FA, as well as sex-by-diagnosis interactions were assessed. Additional analyses including ADOS scores informed us on the influence of current ASC symptom severity on frontal connectivity. We found that males with ASC had higher scores of current symptom severity than females, and had significantly lower mean FA values for all but one tract compared to controls. No differences were found between females with or without ASC. Significant sex-by-diagnosis effects were limited to the frontal tracts. Taking current ASC symptom severity scores into account did not alter the findings, although the observed power for these analyses varied. We suggest these findings of frontal connectivity abnormalities in males with ASC, but not in females with ASC, have the potential to inform us on some of the sex differences reported in the behavioral phenotype of ASC.

  13. Sedimentology of latero-frontal moraines and fans on the west coast of South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Evans, David J. A.; Shulmeister, James; Hyatt, Olivia

    2010-12-01

    Exposures through the LGM latero-frontal moraine loops at sites along the west coast of South Island, New Zealand reveal a depositional environment that was dominated by the progradation of steep fronted, debris flow-fed fans, manifest in crudely stratified to massive diamictons, arranged in sub-horizontal to steeply dipping clinoforms and containing discontinuous bodies of variably sorted, stratified sediment (LFA 1). The fans were constructed by debris-covered glaciers advancing over outwash plains, as recorded by well stratified and horizontally bedded gravels, sands and diamicts (LFA 0). The ice-contact slopes of the fans are offlapped by retreat phase deposits in the form of glacilacustrine depo-centres (LFA 2), which record the existence of moraine-dammed lakes. Interdigitation of lake rhythmites and subaerial to subaqueous sediment gravity flow deposits documents intense debris-flow activity on unstable moraine/fan surfaces. Glacier readvances in all catchments are documented by glacitectonic disturbance and localized hydrofracturing of LFA 2, followed by the emplacement of schist-dominated debris flow-fed fans (LFA 3) inside and over the top of the earlier latero-frontal moraine/fan loops. Contorted and disturbed bedding in LFA 3 reflects its partial deposition in supraglacial positions. Clast lithologies in LFAs 1 and 3 reveal that two distinct transport pathways operated during moraine construction, with an early period of latero-frontal fan construction involving mixed lithologies and a later period of ice-contact/supraglacial fan construction dominated by schist lithologies from the mountains. These two periods of deposition were separated by a period of moraine abandonment and paraglacial reworking of ice-contact slopes to produce LFA 2. The occurrence of LFA 3 at all sites indicates that the glacier readvance phase responsible for its deposition was not localized or glacier-specific, and involved the transfer of large volumes of schist, possibly due to rock slope failures, onto glacier surfaces. The absence of any sediment that could be unequivocally classified as subglacial till reflects the dominance of debris flow and glacifluvial processes in latero-frontal moraine construction in this hyper-humid west coast setting.

  14. Transcription and replication: breaking the rules of the road causes genomic instability.

    PubMed

    Poveda, Ana Maria; Le Clech, Mikael; Pasero, Philippe

    2010-01-01

    Replication and transcription machineries progress at high speed on the same DNA template, which inevitably causes traffic accidents. Problems are not only caused by frontal collisions between polymerases, but also by cotranscriptional R-loops. These RNA-DNA hybrids induce genomic instability by blocking fork progression and could be implicated in the development of cancer.

  15. Is the frontal dysexecutive syndrome due to a working memory deficit? Evidence from patients with stroke.

    PubMed

    Roussel, Martine; Dujardin, Kathy; Hénon, Hilde; Godefroy, Olivier

    2012-07-01

    Although frontal dysexecutive disorders are frequently considered to be due to working memory deficit, this has not been systematically examined and very little evidence is available for impairment of working memory in frontal damage. The objective of this study was to examine the components of working memory, their anatomy and the relations with executive functions in patients with stroke involving the frontal or posterior cortex. The study population consisted of 29 patients (frontal: n=17; posterior: n=12) and 29 matched controls. Phonological loop (letter and word spans, phonological store; rehearsal process), visuospatial sketchpad (visuospatial span) and the central executive (working memory span, dual task and updating process) were examined. The group comparison analysis showed impairment in the frontal group of: (i) verbal spans (P<0.03); (ii) with a deficit of the rehearsal process (P=0.006); (iii) visuospatial span (P=0.04); (iv) working memory span (P=0.001) that disappeared after controlling for verbal span and (v) running memory (P=0.05) unrelated to updating conditions. The clinical anatomical correlation study showed that impairment of the central executive depended on frontal and posterior lesion. Cognitive dysexecutive disorders were observed in 11/20 patients with central executive deficit and an inverse dissociation was observed in two patients. Receiver operating characteristic curve analysis indicated that cognitive dysexecutive disorders had the highest ability to discriminate frontal lesions (area under curve=0.844, 95% confidence interval: 0.74-0.95; P=0.0001; central executive impairment: area under curve=0.732, 95% confidence interval: 0.57-0.82; P=0.006). This study reveals that frontal lesions induce mild impairment of short-term memory associated with a deficit of the rehearsal process supporting the role of the frontal lobe in this process; the central executive depends on lesions in the frontal lobe and posterior regions accounting for its low frequency and the negative results of group studies. Finally, the frontal dysexecutive syndrome cannot be attributed to central executive impairment, although it may contribute to some dysexecutive disorders.

  16. Jealousy increased by induced relative left frontal cortical activity.

    PubMed

    Kelley, Nicholas J; Eastwick, Paul W; Harmon-Jones, Eddie; Schmeichel, Brandon J

    2015-10-01

    Asymmetric frontal cortical activity may be one key to the process linking social exclusion to jealous feelings. The current research examined the causal role of asymmetric frontal brain activity in modulating jealousy in response to social exclusion. Transcranial direct-current stimulation (tDCS) over the frontal cortex to manipulate asymmetric frontal cortical activity was combined with a modified version of the Cyberball paradigm designed to induce jealousy. After receiving 15 min of tDCS, participants were excluded by a desired partner and reported how jealous they felt. Among individuals who were excluded, tDCS to increase relative left frontal cortical activity caused greater levels of self-reported jealousy compared to tDCS to increase relative right frontal cortical activity or sham stimulation. Limitations concerning the specificity of this effect and implications for the role of the asymmetric prefrontal cortical activity in motivated behaviors are discussed. (c) 2015 APA, all rights reserved).

  17. Automatic Activation of Phonological Templates for Native but Not Nonnative Phonemes: An Investigation of the Temporal Dynamics of Mu Activation

    ERIC Educational Resources Information Center

    Santos-Oliveira, Daniela Cristina

    2017-01-01

    Models of speech perception suggest a dorsal stream connecting the temporal and inferior parietal lobe with the inferior frontal gyrus. This stream is thought to involve an auditory motor loop that translates acoustic information into motor/articulatory commands and is further influenced by decision making processes that involve maintenance of…

  18. Ageostrophic Frontal Processes Controlling Phytoplankton Production in the Catalano-Balearic Sea (Western Mediterranean)

    PubMed Central

    Oguz, Temel; Macias, Diego; Tintore, Joaquin

    2015-01-01

    Buoyancy-induced unstable boundary currents and the accompanying retrograde density fronts are often the sites of pronounced mesoscale activity, ageostrophic frontal processes, and associated high biological production in marginal seas. Biophysical model simulations of the Catalano-Balearic Sea (Western Mediterranean) illustrated that the unstable and nonlinear southward frontal boundary current along the Spanish coast resulted in a strain-driven frontogenesis mechanism. High upwelling velocities of up to 80 m d-1 injected nutrients into the photic layer and promoted enhanced production on the less dense, onshore side of the front characterized by negative relative vorticity. Additional down-front wind stress and heat flux (cooling) intensified boundary current instabilities and thus ageostrophic cross-frontal circulation and augmented production. Specifically, entrainment of nutrients by relatively strong buoyancy-induced vertical mixing gave rise to a more widespread phytoplankton biomass distribution within the onshore side of the front. Mesoscale cyclonic eddies contributed to production through an eddy pumping mechanism, but it was less effective and more limited regionally than the frontal processes. The model was configured for the Catalano-Balearic Sea, but the mechanisms and model findings apply to other marginal seas with similar unstable frontal boundary current systems. PMID:26065688

  19. Prevalence and Length of the Anterior Loop of the Inferior Alveolar Nerve in Iranians.

    PubMed

    Moghddam, Maryam Rastegar; Davoudmanesh, Zeinab; Azizi, Nasim; Rakhshan, Vahid; Shariati, Mahsa

    2017-10-01

    The anterior loop of the inferior alveolar nerve is a sensitive anatomical feature that should be taken into account during installation of dental implants anterior to the mental foramen. This study was conducted to explore the controversy regarding prevalence and length. A total of 452 mandible quadrants of 234 patients (age: 50.1 ± 13.3 years, 113 males, 121 females) were studied using cone-beam computerized tomography. After reconstructing axial, frontal, and sagittal slices, the region between the most anterior point on the mental foramen and the most anterior part of the mandibular nerve was inspected for signs of anterior loop presence. If positive, the length of the anterior loop was measured in mm as the distance between the anterior border of mental foramen and the anterior border of the loop. Prevalence and length of the anterior loop were compared statistically between sexes and age groups. The anterior loop was observed in 106 quadrants (23.5% of 451 quadrants) of 95 patients (40.6% of 234 patients), of whom 11 had bilateral anterior loops. Prevalences were similar in males (41%) and females (39%, chi-square P =.791). The mean anterior loop length was 2.77 ± 1.56 mm (95% CI: 2.5-3.1 mm), without significant sex (regression beta = -0.159, P = .134) or age (beta = -0.059, P = .578) differences. The anterior loop might exist in about 40% of patients, regardless of their gender. The mean safe anterior distance from the anterior loop is about 3 mm + (2.5-3.1 mm) = 5.5-6.1 mm, regardless of age.

  20. On the Loop Current Penetration into the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Weisberg, Robert H.; Liu, Yonggang

    2017-12-01

    The Gulf of Mexico Loop Current generally intrudes some distance into the Gulf of Mexico before shedding an anticyclonic eddy and retreating back to its more direct entry to exit pathway. The control of this aperiodic process remains only partially known. Here we describe the evolution of the Loop Current throughout the era of satellite altimetry, and offer a mechanistic hypothesis on Loop Current intrusion. As a complement to the known effects of Loop Current forcing on the west Florida shelf circulation, we argue that the west Florida shelf, in turn, impacts the Loop Current evolution. A Self-Organizing Map analysis shows that anomalous northward penetrations of the Loop Current into the Gulf of Mexico occur when the eastern side of Loop Current is positioned west from the southwest corner of the west Florida shelf, whereas the more direct inflow to outflow route occurs when the eastern side of the Loop Current comes in contact with the southwest corner of the west Florida shelf. In essence, we argue that the west Florida shelf anchors the Loop Current in its direct path configuration and that farther northward penetration into the Gulf of Mexico occurs when such anchoring is released. To test of this hypothesis heuristically, we estimate that the dissipation and buoyancy work due to known Loop Current forcing of the west Florida shelf circulation (when in contact with the southwest corner) may exceed the pressure work required for the Loop Current to advance against the ambient Gulf of Mexico fluid.Plain Language SummaryThe Gulf of Mexico Loop Current may intrude far into the Gulf of Mexico or take a more direct entry to exit pathway. Such Loop Current behaviors are described using remote observations by satellites, and a heuristic hypothesis on the control of Loop Current intrusion is presented. We argue that energy dissipation and buoyancy work by the west Florida shelf circulation, when the Loop Current contacts the southwest corner of the west Florida shelf, may exceed the work against the ambient fluid that is required to move the Loop Current farther into the Gulf of Mexico. When this occurs the Loop Current may become anchored to the west Florida shelf.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li class="active"><span>1</span></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_1 --> <div id="page_2" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="21"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25916920','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25916920"><span>[Local brain activity in different motor subtypes of Parkinson's disease with fMRI].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hou, Ya'nan; Zhang, Jiarong; Chen, Biao; Wu, Tao</p> <p>2015-02-17</p> <p>To explore the changes of local brain activity in motor subtypes of Parkinson's disease (PD) with functional magnetic resonance imaging (fMRI). A total of 60 idiopathic PD and 30 age- and gender-matched normal controls were examined with resting-state fMRI from January 2013 to March 2014. All subjects gave their written informed consent for the study. The amplitude of low-frequency fluctuation (ALFF) was calculated to measure local brain activity. The PD patients were divided into two groups of tremor dominant (TD) and postural instability/gait difficulty (PIGD) (n = 30 each). All subjects gave their written in formed consent for the study.One-way ANOVA and post-hoc t-test were performed to detect the differences of local brain activity between PD and normal subjects. And the correlations were examined between ALFF, scores and levodopa dose. Compared with normal subjects, the TD group showed increased activity in bilateral cerebellums (-37, -47, -38), thalamus (-18, -17,0), pons (-3, -23, -37) and left precentral gyrus (-41, -30, 46) versus decreased activity in bilateral frontal lobes (-13, 69, 6), temporal lobes (-42, 18, -21), left insula (-32, 22, 2) and left anterior cingulated (-7, 32, -5). The PIGD group showed increased activity in right postcentral gyrus (63, -18, 39) and decreased activity in bilateral putamens (-24, 12, 3), pre-supplementary motor area (10, 10, 58), frontal lobes (15, -15, 57), temporal lobes (-39, 18, -3) and left insula (-29, 20, 11). Compared with PIGD, the TD group showed increased activity in temporal lobes, but decreased activity in frontal lobes. Additionally, ALFF in bilateral cerebellums and frontal lobes was positively correlated with TD scores while ALFF in left precentral gyrus, bilateral putamens and temporal lobes negatively correlated with TD scores. ALFF in bilateral frontal lobes and left temporal lobe was positively correlated with PIGD scores.However, in right postcentral gyrus and bilateral putamens, ALFF was negatively correlated with PIGD scores. The levodopa dose was positively correlated with frontal lobes and temporal lobe in TD and cerebellums and inferior parietal lobule in PIGD. A specific pattern of intrinsic activity in TD and PIGD may provide insights into neurophysiological mechanisms of PD motor subtypes. The changes of brain activity in TD are caused by the interaction between cerebello-thalamo-cortical circuit and basal ganglia loop while the changes in PIGD result largely from damaged basal ganglia loop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JNEng..11b4001W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JNEng..11b4001W"><span>Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain-computer interface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Widge, Alik S.; Moritz, Chet T.</p> <p>2014-04-01</p> <p>Objective. There is great interest in closed-loop neurostimulators that sense and respond to a patient's brain state. Such systems may have value for neurological and psychiatric illnesses where symptoms have high intraday variability. Animal models of closed-loop stimulators would aid preclinical testing. We therefore sought to demonstrate that rodents can directly control a closed-loop limbic neurostimulator via a brain-computer interface (BCI). Approach. We trained rats to use an auditory BCI controlled by single units in prefrontal cortex (PFC). The BCI controlled electrical stimulation in the medial forebrain bundle, a limbic structure involved in reward-seeking. Rigorous offline analyses were performed to confirm volitional control of the neurostimulator. Main results. All animals successfully learned to use the BCI and neurostimulator, with closed-loop control of this challenging task demonstrated at 80% of PFC recording locations. Analysis across sessions and animals confirmed statistically robust BCI control and specific, rapid modulation of PFC activity. Significance. Our results provide a preliminary demonstration of a method for emotion-regulating closed-loop neurostimulation. They further suggest that activity in PFC can be used to control a BCI without pre-training on a predicate task. This offers the potential for BCI-based treatments in refractory neurological and mental illness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3304483','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3304483"><span>When anger leads to aggression: induction of relative left frontal cortical activity with transcranial direct current stimulation increases the anger–aggression relationship</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hortensius, Ruud; Schutter, Dennis J. L. G.</p> <p>2012-01-01</p> <p>The relationship between anger and aggression is imperfect. Based on work on the neuroscience of anger, we predicted that anger associated with greater relative left frontal cortical activation would be more likely to result in aggression. To test this hypothesis, we combined transcranial direct current stimulation (tDCS) over the frontal cortex with interpersonal provocation. Participants received insulting feedback after 15 min of tDCS and were able to aggress by administering noise blasts to the insulting participant. Individuals who received tDCS to increase relative left frontal cortical activity behaved more aggressively when they were angry. No relation between anger and aggression was observed in the increase relative right frontal cortical activity or sham condition. These results concur with the motivational direction model of frontal asymmetry, in which left frontal activity is associated with anger. We propose that anger with approach motivational tendencies is more likely to result in aggression. PMID:21421731</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27242486','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27242486"><span>Evaluation of an Adaptive Game that Uses EEG Measures Validated during the Design Process as Inputs to a Biocybernetic Loop.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ewing, Kate C; Fairclough, Stephen H; Gilleade, Kiel</p> <p>2016-01-01</p> <p>Biocybernetic adaptation is a form of physiological computing whereby real-time data streaming from the brain and body is used by a negative control loop to adapt the user interface. This article describes the development of an adaptive game system that is designed to maximize player engagement by utilizing changes in real-time electroencephalography (EEG) to adjust the level of game demand. The research consists of four main stages: (1) the development of a conceptual framework upon which to model the interaction between person and system; (2) the validation of the psychophysiological inference underpinning the loop; (3) the construction of a working prototype; and (4) an evaluation of the adaptive game. Two studies are reported. The first demonstrates the sensitivity of EEG power in the (frontal) theta and (parietal) alpha bands to changing levels of game demand. These variables were then reformulated within the working biocybernetic control loop designed to maximize player engagement. The second study evaluated the performance of an adaptive game of Tetris with respect to system behavior and user experience. Important issues for the design and evaluation of closed-loop interfaces are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4870503','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4870503"><span>Evaluation of an Adaptive Game that Uses EEG Measures Validated during the Design Process as Inputs to a Biocybernetic Loop</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ewing, Kate C.; Fairclough, Stephen H.; Gilleade, Kiel</p> <p>2016-01-01</p> <p>Biocybernetic adaptation is a form of physiological computing whereby real-time data streaming from the brain and body is used by a negative control loop to adapt the user interface. This article describes the development of an adaptive game system that is designed to maximize player engagement by utilizing changes in real-time electroencephalography (EEG) to adjust the level of game demand. The research consists of four main stages: (1) the development of a conceptual framework upon which to model the interaction between person and system; (2) the validation of the psychophysiological inference underpinning the loop; (3) the construction of a working prototype; and (4) an evaluation of the adaptive game. Two studies are reported. The first demonstrates the sensitivity of EEG power in the (frontal) theta and (parietal) alpha bands to changing levels of game demand. These variables were then reformulated within the working biocybernetic control loop designed to maximize player engagement. The second study evaluated the performance of an adaptive game of Tetris with respect to system behavior and user experience. Important issues for the design and evaluation of closed-loop interfaces are discussed. PMID:27242486</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1468096','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1468096"><span>Imaging basal ganglia function</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>BROOKS, DAVID J.</p> <p>2000-01-01</p> <p>In this review, the value of functional imaging for providing insight into the role of the basal ganglia in motor control is reviewed. Brain activation findings in normal subjects and Parkinson's disease patients are examined and evidence supporting the existence for functionally independent distributed basal ganglia-frontal loops is presented. It is argued that the basal ganglia probably act to focus and filter cortical output, optimising the running of motor programs. PMID:10923986</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017A%26A...607A..53W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017A%26A...607A..53W"><span>Current systems of coronal loops in 3D MHD simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Warnecke, J.; Chen, F.; Bingert, S.; Peter, H.</p> <p>2017-11-01</p> <p>Aims: We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down and where they might be justified. Methods: We analyze a three-dimensional (3D) magnetohydrodynamic (MHD) model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux and the horizontal motions at the surface a coronal loop forms self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. Results: We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. This is caused by the inclination of the loop together with the footpoint motion. Around the loop, the currents form a complex non-force-free helical structure. This is directly related to a bipolar current structure at the loop footpoints at the base of the corona and a local reduction of the background magnetic field (I.e., outside the loop) caused by the plasma flow into and along the loop. Furthermore, the locally reduced magnetic pressure in the loop allows the loop to sustain a higher density, which is crucial for the emission in extreme UV. The action of the flow on the magnetic field hosting the loop turns out to also be responsible for the observed squashing of the loop. Conclusions: The complex magnetic field and current system surrounding it can only be modeled in 3D MHD models where the magnetic field has to balance the plasma pressure. A one-dimensional coronal loop model or a force-free extrapolation cannot capture the current system and the complex interaction of the plasma and the magnetic field in the coronal loop, despite the fact that the loop is under low-β conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18535172','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18535172"><span>Current management of the cognitive dysfunction in Parkinson's disease: how far have we come?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vale, Salvador</p> <p>2008-08-01</p> <p>Parkinson's disease (PD) clinical features comprise both motor and nonmotor manifestations. Among the nonmotor complications, dementia is the most important. Approximately 40% of PD patients are affected by cognitive impairment. Remarkably, in addition to age, dementia is an independent predictor of mortality, whereas age at onset of PD and severity of neurological symptoms are not. In this review, I summarize the current knowledge of the pathogenesis of the PD cognitive impairment in relation to the therapies presently accessible and those that could become strategic in the near future. It is hypothesized that patients with PD show two components of cognitive dysfunction (CD): a generalized profile of subcortical dementia (PDsCD), and an overlapped pattern suggesting specific prefrontal damage with CD (PDpFCD). PDsCD is associated with structural neocortical/subcortical changes in the brain (in frontal, parietal, limbic, and temporal lobes, as well as in midbrain structures). In PDpFCD cognitive deficits comprise impairments in neuropsychological tests sensitive for frontal lobe function (discrete elements of episodic and working memory for instance), which are considered to be the consequence of dysfunction in neuronal loops connecting the prefrontal cortex and basal ganglia. Drugs reviewed for targeting PDsCD include: cholinesterase inhibitors, agents with mixed cholinergic and dopaminergic properties, antiglutamatergic drugs, mixed antiglutamatergic/dopaminergic agents; antioxidants and enhancers of mitochondrial functions, and anti-COX-2, as well as other anti-inflammatory mediators. Preliminary studies with vehicles that may target PDpFCD include piribedil, tolcapone, amantadine, and farampator. Additional agents (citicoline and neuroimmuniphilines, among others) will be outlined. A brief overview on neuroprotection and promising new biological advances in PD (deep brain stimulation, stem cells, gene therapy) also will be summarized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27879933','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27879933"><span>Short-term Influences on Suspended Particulate Matter Distribution in the Northern Gulf of Mexico: Satellite and Model Observations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>D'Sa, Eurico J; Ko, Dong S</p> <p>2008-07-15</p> <p>Energetic meteorological events such as frontal passages and hurricanes often impact coastal regions in the northern Gulf of Mexico that influence geochemical processes in the region. Satellite remote sensing data such as winds from QuikSCAT, suspended particulate matter (SPM) concentrations derived from SeaWiFS and the outputs (sea level and surface ocean currents) of a nested navy coastal ocean model (NCOM) were combined to assess the effects of frontal passages between 23-28 March 2005 on the physical properties and the SPM characteristics in the northern Gulf of Mexico. Typical changes in wind speed and direction associated with frontal passages were observed in the latest 12.5 km wind product from QuikSCAT with easterly winds before the frontal passage undergoing systematic shifts in direction and speed and turning northerly, northwesterly during a weak and a strong front on 23 and 27 March, respectively. A quantitative comparison of model sea level results with tide gauge observations suggest better correlations near the delta than in the western part of the Gulf with elevated sea levels along the coast before the frontal passage and a large drop in sea level following the frontal passage on 27 March. Model results of surface currents suggested strong response to wind forcing with westward and onshore currents before the frontal passage reversing into eastward, southeastward direction over a six day period from 23 to 28 March 2005. Surface SPM distribution derived from SeaWiFS ocean color data for two clear days on 23 and 28 March 2005 indicated SPM plumes to be oriented with the current field with increasing concentrations in nearshore waters due to resuspension and discharge from the rivers and bays and its seaward transport following the frontal passage. The backscattering spectral slope γ, a parameter sensitive to particle size distribution also indicated lower γ values (larger particles) in nearshore waters that decreased offshore (smaller particles). The use of both satellite and model results revealed the strong interactions between physical processes and the surface particulate field in response to the frontal passage in a large riverdominated coastal margin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22299905-inverse-spin-hall-effect-closed-loop-circuit','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22299905-inverse-spin-hall-effect-closed-loop-circuit"><span>Inverse spin Hall effect in a closed loop circuit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Omori, Y.; Auvray, F.; Wakamura, T.</p> <p></p> <p>We present measurements of inverse spin Hall effects (ISHEs), in which the conversion of a spin current into a charge current via the ISHE is detected not as a voltage in a standard open circuit but directly as the charge current generated in a closed loop. The method is applied to the ISHEs of Bi-doped Cu and Pt. The derived expression of ISHE for the loop structure can relate the charge current flowing into the loop to the spin Hall angle of the SHE material and the resistance of the loop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27917146','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27917146"><span>A Unified Theoretical Framework for Cognitive Sequencing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Savalia, Tejas; Shukla, Anuj; Bapi, Raju S</p> <p>2016-01-01</p> <p>The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit vs. explicit and goal-directed vs. habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus, attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops basal ganglia-frontal cortex and hippocampus-frontal cortex loops mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI) on developing awareness in implicit learning tasks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5114455','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5114455"><span>A Unified Theoretical Framework for Cognitive Sequencing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Savalia, Tejas; Shukla, Anuj; Bapi, Raju S.</p> <p>2016-01-01</p> <p>The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit vs. explicit and goal-directed vs. habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus, attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops basal ganglia-frontal cortex and hippocampus-frontal cortex loops mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI) on developing awareness in implicit learning tasks. PMID:27917146</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27852016','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27852016"><span>[Neuroanatomy of Frontal Association Cortex].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Takada, Masahiko</p> <p>2016-11-01</p> <p>The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870032763&hterms=disruption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddisruption','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870032763&hterms=disruption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddisruption"><span>Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Illing, R. M. E.; Hundhausen, A. J.</p> <p>1986-01-01</p> <p>The coronal mass ejection of August 18, 1980 is analyzed using images from the coronagraph on the Solar Maximum Mission (SMM) satellite. The event occurred at the site of a large coronal helmet streamer and evolved into the three-part structure of a bright frontal shell, followed by a relatively dark space surrounding a bright filamentary core as seen in many mass ejections of the SMM epoch. The bright core can be identified as material from a prominence whose eruption was observed from the ground. The mass of the frontal shell is equal to that of the coronal helmet streamer, indicating that the shell is the coronal material previously in the helmet streamer, displaced and set into motion by the erupting prominence and surrounding cavity. The mass ejected in the bright core (or prominences) is estimated to be 50 percent larger than the 'coronal' material in the front loop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1511515K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1511515K"><span>Transport and fate of river waters under flood conditions and rim current influence: the Mississippi River test case</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kourafalou, Villy; Androulidakis, Yannis</p> <p>2013-04-01</p> <p>Large river plumes are a major supplier of freshwater, sediments and nutrients in coastal and shelf seas. Novel processes controlling the transport and fate of riverine waters (and associated materials) will be presented, under flood conditions and in the presence of complex topography, ambient shelf circulation and slope processes, controlled by the interaction with rim currents. The Mississippi River (MR) freshwater outflow is chosen as a test case, as a major circulation forcing mechanism for the Northern Gulf of Mexico and a unique river plume for the intense interactions with a large scale ocean current, namely the Loop Current branch of the Gulf Stream, and associated eddy field. The largest MR outflow in history (45,000 m3/sec in 2011) is compared with the second largest outflow in the last 8 years (41,000 m3/sec in 2008). Realistically forced simulations, based on the Hybrid Coordinate Ocean Model (HYCOM) with careful treatment of river plume dynamics and nested to a data assimilated, basin-wide model, reveal the synergistic effect of enhanced discharge, winds, stratification of ambient shelf waters and offshore circulation over the transport of plume waters. The investigation targets a broader understanding of the dynamics of large scale river plumes in general, and of the MR plume in particular. In addition, in situ observations from ship surveys and satellite chl-a data showed that the mathematical simulations with high temporal resolution river outflow input may reproduce adequately the buoyant waters spreading over the Northern Gulf of Mexico shelf and offshore areas. The fate of the river plume is strongly determined and affected by deep basin processes. The strong impacts of the Loop Current system (and its frontal eddies) on river plume evolution are of particular importance under conditions of increased offshore spreading, which is presumed under large discharge rates and can cause loss of riverine materials to the basin interior. Flood conditions can increase both downstream (westward) and upstream (eastward) spreading. The high outflow rates enhance the anticyclonic bulge, strengthen the downstream coastal current toward the western Louisiana-Texas shelf. The substantial eastward spreading over the eastern Mississippi-Alabama-Florida shelf was highly correlated with the Loop Current northward extension. On the contrary, cyclonic eddies east of the Delta effectively block the offshore eastward spreading of the plume and may keep the river waters away from the eastern shelf. We show that the proximity of eddies to the shelf break is a sufficient condition for shelf-to-offshore interaction, which is facilitated by the steep bottom topography near the Delta.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.3964S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.3964S"><span>Characterizing frontal eddies along the East Australian Current from HF radar observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schaeffer, Amandine; Gramoulle, A.; Roughan, M.; Mantovanelli, A.</p> <p>2017-05-01</p> <p>The East Australian Current (EAC) dominates the ocean circulation along south-eastern Australia, however, little is known about the submesoscale frontal instabilities associated with this western boundary current. One year of surface current measurements from HF radars, in conjunction with mooring and satellite observations, highlight the occurrence and propagation of meanders and frontal eddies along the inshore edge of the EAC. Eddies were systematically identified using the geometry of the high spatial resolution (˜1.5 km) surface currents, and tracked every hour. Cyclonic eddies were observed irregularly, on average every 7 days, with inshore radius ˜10 km. Among various forms of structures, frontal eddies associated with EAC meanders were characterized by poleward advection speeds of ˜0.3-0.4 m/s, migrating as far as 500 km south, based on satellite imagery. Flow field kinematics show that cyclonic eddies have high Rossby numbers (0.6-1.9) and enhance particle dispersion. Patches of intensified surface divergence at the leading edge of the structures are expected to generate vertical uplift. This is confirmed by subsurface measurements showing temperature uplift of up to 55 m over 24 h and rough estimates of vertical velocities of 10s of meters per day. While frontal eddies propagate through the radar domain independently of local wind stress, upfront wind can influence their stalling and growth, and can also generate large cold core eddies through intense shear. Such coherent structures are a major mechanism for the transport and entrainment of nutrient rich coastal or deep waters, influencing physical and biological dynamics, and connectivity over large distances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4811762','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4811762"><span>Cascade of neural processing orchestrates cognitive control in human frontal cortex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tang, Hanlin; Yu, Hsiang-Yu; Chou, Chien-Chen; Crone, Nathan E; Madsen, Joseph R; Anderson, William S; Kreiman, Gabriel</p> <p>2016-01-01</p> <p>Rapid and flexible interpretation of conflicting sensory inputs in the context of current goals is a critical component of cognitive control that is orchestrated by frontal cortex. The relative roles of distinct subregions within frontal cortex are poorly understood. To examine the dynamics underlying cognitive control across frontal regions, we took advantage of the spatiotemporal resolution of intracranial recordings in epilepsy patients while subjects resolved color-word conflict. We observed differential activity preceding the behavioral responses to conflict trials throughout frontal cortex; this activity was correlated with behavioral reaction times. These signals emerged first in anterior cingulate cortex (ACC) before dorsolateral prefrontal cortex (dlPFC), followed by medial frontal cortex (mFC) and then by orbitofrontal cortex (OFC). These results disassociate the frontal subregions based on their dynamics, and suggest a temporal hierarchy for cognitive control in human cortex. DOI: http://dx.doi.org/10.7554/eLife.12352.001 PMID:26888070</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3324529','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3324529"><span>Distribution and Habitat Associations of Billfish and Swordfish Larvae across Mesoscale Features in the Gulf of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rooker, Jay R.; Simms, Jeff R.; Wells, R. J. David; Holt, Scott A.; Holt, G. Joan; Graves, John E.; Furey, Nathan B.</p> <p>2012-01-01</p> <p>Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM) over a three-year period (2006–2008) to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus), blue marlin (Makaira nigricans), white marlin (Kajikia albida), and swordfish (Xiphias gladius). Sailfish were the dominant billfish collected in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m−2) were significantly higher than the three other species: blue marlin (9.62 larvae 1000 m−2), white marlin (5.44 larvae 1000 m−2), and swordfish (4.67 larvae 1000 m−2). The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current velocity, water depth, and Sargassum biomass) were deemed to be influential variables in generalized additive models (GAMs). Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e., Deepwater Horizon oil spill) on the Atlantic billfish and swordfish populations. PMID:22509277</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22509277','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22509277"><span>Distribution and habitat associations of billfish and swordfish larvae across mesoscale features in the Gulf of Mexico.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rooker, Jay R; Simms, Jeff R; Wells, R J David; Holt, Scott A; Holt, G Joan; Graves, John E; Furey, Nathan B</p> <p>2012-01-01</p> <p>Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM) over a three-year period (2006-2008) to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus), blue marlin (Makaira nigricans), white marlin (Kajikia albida), and swordfish (Xiphias gladius). Sailfish were the dominant billfish collected in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m(-2)) were significantly higher than the three other species: blue marlin (9.62 larvae 1000 m(-2)), white marlin (5.44 larvae 1000 m(-2)), and swordfish (4.67 larvae 1000 m(-2)). The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current velocity, water depth, and Sargassum biomass) were deemed to be influential variables in generalized additive models (GAMs). Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e., Deepwater Horizon oil spill) on the Atlantic billfish and swordfish populations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950050320&hterms=high+current+electron+beam&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dhigh%2Bcurrent%2Belectron%2Bbeam','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950050320&hterms=high+current+electron+beam&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dhigh%2Bcurrent%2Belectron%2Bbeam"><span>Coalescence of two current loops with a kink instability simulated by a three-dimensional electromagnetic particle code</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nishikawa, K.-I.; Sakai, J.-I.; Zhao, Jie; Neubert, T.; Buneman, Oscar</p> <p>1994-01-01</p> <p>We have studied the dynamics of a coalescence of current loops using three-dimensional electromagnetic (EM) particle simulation code. Our focus is the investigation of such kinetic processes as energy trasnfer, heating particles, and electromagnetic emissions associated with a current loop coalescence which cannot be studied by MHD simulations. First, the two loops undergo a pinching oscillation due to a pressure imbalance between the inside and outside of the current loop. During the pinching oscillation, a kinetic kink instability is excited and electrons in the loops are heated perpendicularly to an ambient magnetic field. Next, the two current loops collide and coalesce, while at the same time a helical structure grows further. Subsequently, the perturbed current, which is due to these helically bunched electrons, can drive a whistler instability. It should be noted in this case that the whistler wave is excited by the kinetic kink instability and not a beam instability. After the coalescence of two helical loops, tilting motions can be observed in the direction of left-hand rotation, and the helical structure will relax resulting in strong plasma heating mostly in the direction perpendicular to the ambient magnetic field. It is also shown that high-frequency electromagnetic waves can be emitted from the region where the two loops coalesce and propagate strongly in the direction of the electron drift velocity. These processes may be important in understanding heating mechansims for coronal loops as well as radio wave emission mechanisms from active regions of solar plasmas.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24073695','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24073695"><span>Bi-frontal direct current stimulation affects delay discounting choices.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hecht, David; Walsh, Vincent; Lavidor, Michal</p> <p>2013-01-01</p> <p>In delay discounting tasks, participants decide between receiving a certain amount of money now or a larger sum sometime in the future. This study investigated the effects of transcranial direct current stimulation on delay discounting. Participants made delay discounting choices while receiving a bi-frontal stimulation of right-hemisphere anodal/left-hemisphere cathodal, left-hemisphere anodal/right-hemisphere cathodal, and sham stimulation, in three separate sessions. When the difference between the alternatives was 10% or more, participants generally preferred to wait for the larger sum. Nevertheless, there were more choices of smaller "immediate" gains, instead of the larger delayed options, when the left dorsolateral prefrontal cortex (DLPFC) was facilitated and the right DLPFC inhibited, compared to the sham stimulation. These observations indicate the significant role of the prefrontal cortex in delay discounting choices, and demonstrate that increased left frontal activation combined with decreased right frontal activation can alter decision-making by intensifying a tendency to choose immediate gains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29050384','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29050384"><span>Stimulating thought: a functional MRI study of transcranial direct current stimulation in schizophrenia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Orlov, Natasza D; O'Daly, Owen; Tracy, Derek K; Daniju, Yusuf; Hodsoll, John; Valdearenas, Lorena; Rothwell, John; Shergill, Sukhi S</p> <p>2017-09-01</p> <p>Individuals with schizophrenia typically suffer a range of cognitive deficits, including prominent deficits in working memory and executive function. These difficulties are strongly predictive of functional outcomes, but there is a paucity of effective therapeutic interventions targeting these deficits. Transcranial direct current stimulation is a novel neuromodulatory technique with emerging evidence of potential pro-cognitive effects; however, there is limited understanding of its mechanism. This was a double-blind randomized sham controlled pilot study of transcranial direct current stimulation on a working memory (n-back) and executive function (Stroop) task in 28 individuals with schizophrenia using functional magnetic resonance imaging. Study participants received 30 min of real or sham transcranial direct current stimulation applied to the left frontal cortex. The 'real' and 'sham' groups did not differ in online working memory task performance, but the transcranial direct current stimulation group demonstrated significant improvement in performance at 24 h post-transcranial direct current stimulation. Transcranial direct current stimulation was associated with increased activation in the medial frontal cortex beneath the anode; showing a positive correlation with consolidated working memory performance 24 h post-stimulation. There was reduced activation in the left cerebellum in the transcranial direct current stimulation group, with no change in the middle frontal gyrus or parietal cortices. Improved performance on the executive function task was associated with reduced activity in the anterior cingulate cortex. Transcranial direct current stimulation modulated functional activation in local task-related regions, and in more distal nodes in the network. Transcranial direct current stimulation offers a potential novel approach to altering frontal cortical activity and exerting pro-cognitive effects in schizophrenia. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.2926N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.2926N"><span>Nonlocal impacts of the Loop Current on cross-slope near-bottom flow in the northeastern Gulf of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nguyen, Thanh-Tam; Morey, Steven L.; Dukhovskoy, Dmitry S.; Chassignet, Eric P.</p> <p>2015-04-01</p> <p>Cross-slope near-bottom motions near De Soto Canyon in the northeastern Gulf of Mexico are analyzed from a multidecadal ocean model simulation to characterize upwelling and downwelling, important mechanisms for exchange between the deep ocean and shelf in the vicinity of the 2010 BP Macondo well oil spill. Across the continental slope, large-scale depression and offshore movement of isopycnals (downwelling) occur more frequently when the Loop Current impinges upon the West Florida Shelf slope farther south. Upwelling and onshore movement of isopycnals occurs with roughly the same likelihood regardless of Loop Current impingement on the slope. The remote influence of Loop Current on the De Soto Canyon region downwelling is a consequence of a high-pressure anomaly that extends along the continental slope emanating from the location of Loop Current impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5756047','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/5756047"><span>Beam current sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Kuchnir, M.; Mills, F.E.</p> <p>1984-09-28</p> <p>A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866344','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866344"><span>Beam current sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Kuchnir, Moyses; Mills, Frederick E.</p> <p>1987-01-01</p> <p>A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1055718','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1055718"><span>Methods, systems and apparatus for controlling operation of two alternating current (AC) machines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA</p> <p>2012-06-05</p> <p>A system is provided for controlling two alternating current (AC) machines via a five-phase PWM inverter module. The system comprises a first control loop, a second control loop, and a current command adjustment module. The current command adjustment module operates in conjunction with the first control loop and the second control loop to continuously adjust current command signals that control the first AC machine and the second AC machine such that they share the input voltage available to them without compromising the target mechanical output power of either machine. This way, even when the phase voltage available to either one of the machines decreases, that machine outputs its target mechanical output power.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO14E2864E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO14E2864E"><span>In Situ Observations of the Brazil-Malvinas Confluence in March 2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Emelianov, M. V.; Pelegrí, J. L.; Isern-Fontanet, J.; Orue, D.; Ramirez, S.; Salvador, J.; Saraceno, M.; Valla, D.</p> <p>2016-02-01</p> <p>The Brazil-Malvinas Confluence (BMC) is the area where the Brazil and Malvinas Currents meet, respectively carrying waters of subtropical and subantarctic origin (Fig.1). As a result, the BMC plays a very important role in the meridional transfer of mass, heat, and salt, hence controlling the intensity of the returning limb of the Atlantic Meridional Overturning Circulation (AMOC). In this communication we describe the oceanographic conditions in the BMC region during March 2015, as sampled from the R/V Hespérides in the frame of the Spanish project "Tipping Corners in the AMOC" (CTM2011-28867). During the cruise we performed 66 hydrographic stations, and released 8 drifters and 9 floats (2 floats were recovered at the end of the cruise), in what turned out to be a high-resolution sampling of the frontal encountering of the Malvina and Brazil Currents and the resulting mesoscale and small-scale structures. The observations characterize the frontal collision of the two currents, each of them with speeds in excess of 1 m/s. This clashing creates a complex frontal system with very high horizontal gradients of physical and biochemical variables, certainly among the most intense open-ocean frontal systems in the world (e.g. cross-frontal gradients of temperature up to 1°C per kilometer). The frontal system is distinguished by thermohaline intrusions, eddies, filaments, and an offshore surface jet with speeds in excess of 2 m/s. Fig. 1. (Left) BMC with a schematic of the surface circulation pattern (Combes and Matano, J. Geophys. Res., 119, 731-756, 2014). (Right) Detail of the BMC for 20 March 2015, with the sea level altimetry (in color) and surface geostrophic velocity fields (vectors); the study area is located within the area bounded by the green dots.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27590266','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27590266"><span>The medial frontal cortex contributes to but does not organize rat exploratory behavior.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Blankenship, Philip A; Stuebing, Sarah L; Winter, Shawn S; Cheatwood, Joseph L; Benson, James D; Whishaw, Ian Q; Wallace, Douglas G</p> <p>2016-11-12</p> <p>Animals use multiple strategies to maintain spatial orientation. Dead reckoning is a form of spatial navigation that depends on self-movement cue processing. During dead reckoning, the generation of self-movement cues from a starting position to an animal's current position allow for the estimation of direction and distance to the position movement originated. A network of brain structures has been implicated in dead reckoning. Recent work has provided evidence that the medial frontal cortex may contribute to dead reckoning in this network of brain structures. The current study investigated the organization of rat exploratory behavior subsequent to medial frontal cortex aspiration lesions under light and dark conditions. Disruptions in exploratory behavior associated with medial frontal lesions were consistent with impaired motor coordination, response inhibition, or egocentric reference frame. These processes are necessary for spatial orientation; however, they are not sufficient for self-movement cue processing. Therefore it is possible that the medial frontal cortex provides processing resources that support dead reckoning in other brain structures but does not of itself compute the kinematic details of dead reckoning. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SoPh..292..141Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SoPh..292..141Z"><span>Acceleration and Storage of Energetic Electrons in Magnetic Loops in the Course of Electric Current Oscillations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zaitsev, V. V.; Stepanov, A. V.</p> <p>2017-10-01</p> <p>A mechanism of electron acceleration and storage of energetic particles in solar and stellar coronal magnetic loops, based on oscillations of the electric current, is considered. The magnetic loop is presented as an electric circuit with the electric current generated by convective motions in the photosphere. Eigenoscillations of the electric current in a loop induce an electric field directed along the loop axis. It is shown that the sudden reductions that occur in the course of type IV continuum and pulsating type III observed in various frequency bands (25 - 180 MHz, 110 - 600 MHz, 0.7 - 3.0 GHz) in solar flares provide evidence for acceleration and storage of the energetic electrons in coronal magnetic loops. We estimate the energization rate and the energy of accelerated electrons and present examples of the storage of energetic electrons in loops in the course of flares on the Sun or on ultracool stars. We also discuss the efficiency of the suggested mechanism as compared with the electron acceleration during the five-minute photospheric oscillations and with the acceleration driven by the magnetic Rayleigh-Taylor instability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100022058','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100022058"><span>Low Speed and High Speed Correlation of SMART Active Flap Rotor Loads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kottapalli, Sesi B. R.</p> <p>2010-01-01</p> <p>Measured, open loop and closed loop data from the SMART rotor test in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with CAMRAD II calculations. One open loop high-speed case and four closed loop cases are considered. The closed loop cases include three high-speed cases and one low-speed case. Two of these high-speed cases include a 2 deg flap deflection at 5P case and a test maximum-airspeed case. This study follows a recent, open loop correlation effort that used a simple correction factor for the airfoil pitching moment Mach number. Compared to the earlier effort, the current open loop study considers more fundamental corrections based on advancing blade aerodynamic conditions. The airfoil tables themselves have been studied. Selected modifications to the HH-06 section flap airfoil pitching moment table are implemented. For the closed loop condition, the effect of the flap actuator is modeled by increased flap hinge stiffness. Overall, the open loop correlation is reasonable, thus confirming the basic correctness of the current semi-empirical modifications; the closed loop correlation is also reasonable considering that the current flap model is a first generation model. Detailed correlation results are given in the paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27072331','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27072331"><span>The Influence of Frontal Lobe Tumors and Surgical Treatment on Advanced Cognitive Functions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fang, Shengyu; Wang, Yinyan; Jiang, Tao</p> <p>2016-07-01</p> <p>Brain cognitive functions affect patient quality of life. The frontal lobe plays a crucial role in advanced cognitive functions, including executive function, meta-cognition, decision-making, memory, emotion, and language. Therefore, frontal tumors can lead to serious cognitive impairments. Currently, neurosurgical treatment is the primary method to treat brain tumors; however, the effects of the surgical treatments are difficult to predict or control. The treatment may both resolve the effects of the tumor to improve cognitive function or cause permanent disabilities resulting from damage to healthy functional brain tissue. Previous studies have focused on the influence of frontal lesions and surgical treatments on patient cognitive function. Here, we review cognitive impairment caused by frontal lobe brain tumors. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985ITAES..21...21L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985ITAES..21...21L"><span>Optimal design strategy of switching converters employing current injected control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, F. C.; Fang, Z. D.; Lee, T. H.</p> <p>1985-01-01</p> <p>This paper analyzes a buck/boost regulator employing current-injected control (CIC). It reveals the complex interactions between the dc loop and the current-injected loop and underlines the fundamental principle that governs the loop gain determination. Three commonly used compensation techniques are compared. The integral and lead/lag compensation are shown to be most desirable for performance optimization and stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970024858','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970024858"><span>A Conversion of Wheatstone Bridge to Current-Loop Signal Conditioning for Strain Gages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, Karl F.</p> <p>1995-01-01</p> <p>Current loop circuitry replaced Wheatstone bridge circuitry to signal-condition strain gage transducers in more than 350 data channels for two different test programs at NASA Dryden Flight Research Center. The uncorrected test data from current loop circuitry had a lower noise level than data from comparable Wheatstone bridge circuitry, were linear with respect to gage-resistance change, and were uninfluenced by varying lead-wire resistance. The current loop channels were easier for the technicians to set up, verify, and operate than equivalent Wheatstone bridge channels. Design choices and circuit details are presented in this paper in addition to operational experience.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970026974','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970026974"><span>A Limited In-Flight Evaluation of the Constant Current Loop Strain Measurement Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Olney, Candida D.; Collura, Joseph V.</p> <p>1997-01-01</p> <p>For many years, the Wheatstone bridge has been used successfully to measure electrical resistance and changes in that resistance. However, the inherent problem of varying lead wire resistance can cause errors when the Wheatstone bridge is used to measure strain in a flight environment. The constant current loop signal-conditioning card was developed to overcome that difficulty. This paper describes a limited evaluation of the constant current loop strain measurement method as used in the F-16XL ship 2 Supersonic Laminar Flow Control flight project. Several identical strain gages were installed in close proximity on a shock fence which was mounted under the left wing of the F- 1 6XL ship 2. Two strain gage bridges were configured using the constant current loop, and two were configured using the Wheatstone bridge circuitry. Flight data comparing the output from the constant current loop configured gages to that of the Wheatstone bridges with respect to signal output, error, and noise are given. Results indicate that the constant current loop strain measurement method enables an increased output, unaffected by lead wire resistance variations, to be obtained from strain gages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860014611','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860014611"><span>Current Scientific Issues in Large Scale Atmospheric Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miller, T. L. (Compiler)</p> <p>1986-01-01</p> <p>Topics in large scale atmospheric dynamics are discussed. Aspects of atmospheric blocking, the influence of transient baroclinic eddies on planetary-scale waves, cyclogenesis, the effects of orography on planetary scale flow, small scale frontal structure, and simulations of gravity waves in frontal zones are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27133731','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27133731"><span>The relation of hedonic hunger and restrained eating to lateralized frontal activation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Winter, S R; Feig, E H; Kounios, J; Erickson, B; Berkowitz, S; Lowe, M R</p> <p>2016-09-01</p> <p>Asymmetrical alpha activation in the prefrontal cortex (frontal asymmetry) in electroencephalography (EEG) has been related to eating behavior. Prior studies linked dietary restraint with right frontal asymmetry [1] and disinhibition with left frontal asymmetry [2]. The current study simultaneously assessed restrained eating and hedonic hunger (drive for food reward in the absence of hunger) in relation to frontal asymmetry. Resting-state EEG and measures of restrained eating (Revised Restraint Scale; RRS) and hedonic hunger (Power of Food Scale; PFS) were assessed in 61 non-obese adults. Individually, hedonic hunger predicted left asymmetry. However, PFS and RRS were correlated (r=0.48, p<0.05) and there was a significant interaction between PFS and RRS on frontal asymmetry, p<0.01. Results indicated that those high in hedonic hunger exhibited left asymmetry irrespective of RRS scores; among those low in PFS, only those high in RRS showed right asymmetry. Results were consistent with literature linking avoidant behaviors (restraint) with right-frontal asymmetry and approach behaviors (binge eating) with left-frontal asymmetry. It appears that a strong drive toward palatable foods predominates at a neural level even when restraint is high. Findings suggest that lateralized frontal activity is an indicator of motivation both to consume and to avoid consuming highly palatable foods. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5435490','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5435490"><span>Survey of Current Practice Patterns in the Management of Frontal Sinus Fractures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Choi, Kevin J.; Chang, Bora; Woodard, Charles R.; Powers, David B.; Marcus, Jeffrey R.; Puscas, Liana</p> <p>2017-01-01</p> <p>The management of frontal sinus fractures has evolved in the endoscopic era. The development of functional endoscopic sinus surgery (FESS) has been incorporated into management algorithms proposed by otolaryngologists, but the extent of its influence on plastic surgeons and oral and maxillofacial surgeons is heretofore unknown. A cross-sectional survey was performed to assess the practice pattern variations in frontal sinus fracture management across multiple surgical disciplines. A total of 298 surveys were reviewed. 33.5% were facial plastic surgeons with otolaryngology training, 25.8% general otolaryngologists, 25.5% plastic surgeons, and 15.1% oral and maxillofacial surgeons. 74.8% of respondents practiced in an academic setting. 61.7% felt endoscopic sinus surgery changed their management of frontal sinus fractures. 91.8% of respondents favored observation for uncomplicated, nondisplaced frontal sinus outflow tract fractures. 36.4% favored observation and 35.9% favored endoscopic sinus surgery for uncomplicated, displaced frontal sinus outflow tract fractures. For complicated, displaced frontal sinus outflow tract fractures, obliteration was more frequently favored by plastic surgeons and oral and maxillofacial surgeons than those with otolaryngology training. The utility of FESS in managing frontal sinus fractures appears to be recognized across multiple surgical disciplines. PMID:28523084</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870009329','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870009329"><span>Eddy currents in a conducting sphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bergman, John; Hestenes, David</p> <p>1986-01-01</p> <p>This report analyzes the eddy current induced in a solid conducting sphere by a sinusoidal current in a circular loop. Analytical expressions for the eddy currents are derived as a power series in the vectorial displacement of the center of the sphere from the axis of the loop. These are used for first order calculations of the power dissipated in the sphere and the force and torque exerted on the sphere by the electromagnetic field of the loop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030064032','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030064032"><span>Frontal Polymerization in Microgravity Summary of Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pojman, John A.</p> <p>2002-01-01</p> <p>The project began with frontal polymerization (FP). We studied many aspects of FP on the ground and performed two successful weeks of flying on the KC-135. The project evolved into the current flight investigation, Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS), as we recognized that an essential question could best be studied using a non-frontal approach. We present detailed results from our ground-based work on FP, KC-135 results and the background, justification and numerical work for the TIPMPS project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996SoPh..167..203E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996SoPh..167..203E"><span>Non-inductive current driven by Alfvén waves in solar coronal loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elfimov, A. G.; de Azevedo, C. A.; de Assis, A. S.</p> <p>1996-08-01</p> <p>It has been shown that Alfvén waves can drive non-inductive current in solar coronal loops via collisional or collisionless damping. Assuming that all the coronal-loop density of dissipated wave power (W= 10-3 erg cm-3 s-1), which is necessary to keep the plasma hot, is due to Alfvén wave electron heating, we have estimated the axial current density driven by Alfvén waves to be <jz> ≈ 103 105 statA cm-2. This current can indeed support the quasi-stationary equilibrium and stability of coronal loops and create the poloidal magnetic field up to B θ≈1-5 G.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26409695','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26409695"><span>Examining cognitive emotion regulation in frontal lobe patients: The mediating role of response inhibition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Falquez, Rosalux; Dinu-Biringer, Ramona; Stopsack, Malte; Arens, Elisabeth A; Wick, Wolfgang; Barnow, Sven</p> <p>2015-01-01</p> <p>Previous investigations have demonstrated the relationship between inhibitory deficits and maladaptive emotion regulation. Although several neuropsychological studies show that frontal lobe damage can lead to extreme inhibition impairments, there have been no investigations regarding the influence of frontal lobe damage and related inhibition impairments on the use of maladaptive strategies. The goal of the current study was to examine the impact of executive functions impairments due to frontal lobe damage on cognitive emotion regulation. Fifteen patients with frontal lobe damage were compared to twenty-two healthy controls on their reported use of maladaptive strategies. The effect of behavioral inhibition deficits among the frontal lobe damage group was examined. Patients reflected a heightened use of maladaptive strategies compared to healthy controls, significantly mediated by Go/NoGo task errors, which are an indicator for response inhibition deficits. Results suggest that a heightened use of maladaptive strategies by patients relies to a strong extent on their impaired impulse control, highlighting the complex interplay between executive functions and emotional regulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4786257','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4786257"><span>Frontal Lobe Contusion in Mice Chronically Impairs Prefrontal-Dependent Behavior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rosi, Susanna</p> <p>2016-01-01</p> <p>Traumatic brain injury (TBI) is a major cause of chronic disability in the world. Moderate to severe TBI often results in damage to the frontal lobe region and leads to cognitive, emotional, and social behavioral sequelae that negatively affect quality of life. More specifically, TBI patients often develop persistent deficits in social behavior, anxiety, and executive functions such as attention, mental flexibility, and task switching. These deficits are intrinsically associated with prefrontal cortex (PFC) functionality. Currently, there is a lack of analogous, behaviorally characterized TBI models for investigating frontal lobe injuries despite the prevalence of focal contusions to the frontal lobe in TBI patients. We used the controlled cortical impact (CCI) model in mice to generate a frontal lobe contusion and studied behavioral changes associated with PFC function. We found that unilateral frontal lobe contusion in mice produced long-term impairments to social recognition and reversal learning while having only a minor effect on anxiety and completely sparing rule shifting and hippocampal-dependent behavior. PMID:26964036</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5108366','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5108366"><span>Maternal Frontal EEG Asymmetry and Chronic Stressors Moderate the Link between Child Conduct Problems and Maternal Negativity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, Nan; Bell, Martha Ann; Deater-Deckard, Kirby</p> <p>2016-01-01</p> <p>Frontal EEG asymmetry is associated with individual differences in positive/negative emotionality and approach/avoidance tendencies. The current study examined the moderating role of maternal resting frontal EEG asymmetry on the link between child behavior problems and maternal harsh parenting, within the context of differing degrees of chronic family stressors (father unemployment, single parenthood, caring for multiple children, and household chaos). The sample included 121 mother-child pairs. Results showed that stressors and frontal EEG asymmetry together moderated the link. Child problem behaviors were moderately associated with greater maternal negativity for mothers with right frontal asymmetry, or mothers who experienced more stressors. However, no association existed between child behavior problems and maternal negativity for mothers with few stressors and left frontal asymmetry. The findings implicate transactions between household stress and a psychophysiological indicator of maternal emotional reactivity and mothers’ approach/avoidance tendencies, in the etiology of parental negativity toward challenging child behaviors. PMID:27853348</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994SPIE.2270..152A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994SPIE.2270..152A"><span>Practical applications of current loop signal conditioning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, Karl F.</p> <p>1994-10-01</p> <p>This paper describes a variety of practical application circuits based on the current loop signal conditioning paradigm. Equations defining the circuit response are also provided. The constant current loop is a fundamental signal conditioning circuit concept that can be implemented in a variety of configurations for resistance-based transducers, such as strain gages and resistance temperature devices. The circuit features signal conditioning outputs which are unaffected by extremely large variations in lead wire resistance, direct current frequency response, and inherent linearity with respect to resistance change. Sensitivity of this circuit is double that of a Wheatstone bridge circuit. Electrical output is zero for resistance change equals zero. The same excitation and output sense wires can serve multiple transducers. More application arrangements are possible with constant current loop signal conditioning than with the Wheatstone bridge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950012320','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950012320"><span>Current loop signal conditioning: Practical applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, Karl F.</p> <p>1995-01-01</p> <p>This paper describes a variety of practical application circuits based on the current loop signal conditioning paradigm. Equations defining the circuit response are also provided. The constant current loop is a fundamental signal conditioning circuit concept that can be implemented in a variety of configurations for resistance-based transducers, such as strain gages and resistance temperature detectors. The circuit features signal conditioning outputs which are unaffected by extremely large variations in lead wire resistance, direct current frequency response, and inherent linearity with respect to resistance change. Sensitivity of this circuit is double that of a Wheatstone bridge circuit. Electrical output is zero for resistance change equals zero. The same excitation and output sense wires can serve multiple transducers. More application arrangements are possible with constant current loop signal conditioning than with the Wheatstone bridge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NewA...61...30B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NewA...61...30B"><span>On the nature of fast sausage waves in coronal loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bahari, Karam</p> <p>2018-05-01</p> <p>The effect of the parameters of coronal loops on the nature of fast sausage waves are investigated. To do this three models of the coronal loop considered, a simple loop model, a current-carrying loop model and a model with radially structured density called "Inner μ" profile. For all the models the Magnetohydrodynamic (MHD) equations solved analytically in the linear approximation and the restoring forces of oscillations obtained. The ratio of the magnetic tension force to the pressure gradient force obtained as a function of the distance from the axis of the loop. In the simple loop model for all values of the loop parameters the fast sausages wave have a mixed nature of Alfvénic and fast MHD waves, in the current-carrying loop model with thick annulus and low density contrast the fast sausage waves can be considered as purely Alfvénic wave in the core region of the loop, and in the "Inner μ" profile for each set of the parameters of the loop the wave can be considered as a purely Alfvénic wave in some regions of the loop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4532949','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4532949"><span>Neurobiological Indicators of Disinhibition in Posttraumatic Stress Disorder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sadeh, Naomi; Spielberg, Jeffrey M.; Miller, Mark W.; Milberg, William P.; Salat, David H.; Amick, Melissa M.; Fortier, Catherine B.; McGlinchey, Regina E.</p> <p>2015-01-01</p> <p>Deficits in impulse control are increasingly recognized in association with posttraumatic stress disorder (PTSD). To further our understanding of the neurobiology of PTSD-related disinhibition, we examined alterations in brain morphology and network connectivity associated with response inhibition failures and PTSD severity. The sample consisted of 189 trauma-exposed Operation Enduring Freedom/Operation Iraqi Freedom veterans (89% male, ages 19–62) presenting with a range of current PTSD severity. Disinhibition was measured using commission errors on a Go/No-Go task with emotional stimuli, and PTSD was assessed using a measure of current symptom severity. Whole-brain vertex-wise analyses of cortical thickness revealed two clusters associated with PTSD-related disinhibition (Monte Carlo cluster corrected p< .05). The first cluster included portions of right inferior and middle frontal gyri and frontal pole. The second cluster spanned portions of left medial orbital frontal, rostral anterior cingulate, and superior frontal gyrus. In both clusters, commission errors were associated with reduced cortical thickness at higher (but not lower) levels of PTSD symptoms. Resting-state fMRI analyses revealed alterations in the functional connectivity of the right frontal cluster. Together, study findings suggest that reductions in cortical thickness in regions involved in flexible decision-making, emotion regulation, and response inhibition contribute to impulse control deficits in PTSD. Further, aberrant coupling between frontal regions and networks involved in selective attention, memory/learning, and response preparation suggest disruptions in functional connectivity may also play a role. PMID:25959594</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25959594','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25959594"><span>Neurobiological indicators of disinhibition in posttraumatic stress disorder.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sadeh, Naomi; Spielberg, Jeffrey M; Miller, Mark W; Milberg, William P; Salat, David H; Amick, Melissa M; Fortier, Catherine B; McGlinchey, Regina E</p> <p>2015-08-01</p> <p>Deficits in impulse control are increasingly recognized in association with posttraumatic stress disorder (PTSD). To our further understanding of the neurobiology of PTSD-related disinhibition, we examined alterations in brain morphology and network connectivity associated with response inhibition failures and PTSD severity. The sample consisted of 189 trauma-exposed Operation Enduring Freedom/Operation Iraqi Freedom veterans (89% male, ages 19-62) presenting with a range of current PTSD severity. Disinhibition was measured using commission errors on a Go/No-Go (GNG) task with emotional stimuli, and PTSD was assessed using a measure of current symptom severity. Whole-brain vertex-wise analyses of cortical thickness revealed two clusters associated with PTSD-related disinhibition (Monte Carlo cluster corrected P < 0.05). The first cluster included portions of right inferior and middle frontal gyri and frontal pole. The second cluster spanned portions of left medial orbital frontal, rostral anterior cingulate, and superior frontal gyrus. In both clusters, commission errors were associated with reduced cortical thickness at higher (but not lower) levels of PTSD symptoms. Resting-state functional magnetic resonance imaging analyses revealed alterations in the functional connectivity of the right frontal cluster. Together, study findings suggest that reductions in cortical thickness in regions involved in flexible decision-making, emotion regulation, and response inhibition contribute to impulse control deficits in PTSD. Furthermore, aberrant coupling between frontal regions and networks involved in selective attention, memory/learning, and response preparation suggest disruptions in functional connectivity may also play a role. © 2015 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5441234','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5441234"><span>Medial prefrontal aberrations in major depressive disorder revealed by cytoarchitectonically informed voxel-based morphometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bludau, Sebastian; Bzdok, Danilo; Gruber, Oliver; Kohn, Nils; Riedl, Valentin; Sorg, Christian; Palomero-Gallagher, Nicola; Müller, Veronika I.; Hoffstaedter, Felix; Amunts, Katrin; Eickhoff, Simon B.</p> <p>2017-01-01</p> <p>Objective The heterogeneous human frontal pole has been identified as a node in the dysfunctional network of major depressive disorder. The contribution of the medial (socio-affective) versus lateral (cognitive) frontal pole to major depression pathogenesis is currently unclear. The present study performs morphometric comparison of the microstructurally informed subdivisions of human frontal pole between depressed patients and controls using both uni- and multivariate statistics. Methods Multi-site voxel- and region-based morphometric MRI analysis of 73 depressed patients and 73 matched controls without psychiatric history. Frontal pole volume was first compared between depressed patients and controls by subdivision-wise classical morphometric analysis. In a second approach, frontal pole volume was compared by subdivision-naive multivariate searchlight analysis based on support vector machines. Results Subdivision-wise morphometric analysis found a significantly smaller medial frontal pole in depressed patients with a negative correlation of disease severity and duration. Histologically uninformed multivariate voxel-wise statistics provided converging evidence for structural aberrations specific to the microstructurally defined medial area of the frontal pole in depressed patients. Conclusions Across disparate methods, we demonstrated subregion specificity in the left medial frontal pole volume in depressed patients. Indeed, the frontal pole was shown to structurally and functionally connect to other key regions in major depression pathology like the anterior cingulate cortex and the amygdala via the uncinate fasciculus. Present and previous findings consolidate the left medial portion of the frontal pole as particularly altered in major depression. PMID:26621569</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860036818&hterms=high+current+electron+beam&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dhigh%2Bcurrent%2Belectron%2Bbeam','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860036818&hterms=high+current+electron+beam&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dhigh%2Bcurrent%2Belectron%2Bbeam"><span>The structure of high-temperature solar flare plasma in non-thermal flare models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Emslie, A. G.</p> <p>1985-01-01</p> <p>Analytic differential emission measure distributions have been derived for coronal plasma in flare loops heated both by collisions of high-energy suprathermal electrons with background plasma, and by ohmic heating by the beam-normalizing return current. For low densities, reverse current heating predominates, while for higher densities collisional heating predominates. There is thus a minimum peak temperature in an electron-heated loop. In contrast to previous approximate analyses, it is found that a stable reverse current can dominate the heating rate in a flare loop, especially in the low corona. Two 'scaling laws' are found which relate the peak temperature in the loop to the suprathermal electron flux. These laws are testable observationally and constitute a new diagnostic procedure for examining modes of energy transport in flaring loops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26509121','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26509121"><span>Factoring the brain signatures of anesthesia concentration and level of arousal across individuals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barttfeld, Pablo; Bekinschtein, Tristan A; Salles, Alejo; Stamatakis, Emmanuel A; Adapa, Ram; Menon, David K; Sigman, Mariano</p> <p>2015-01-01</p> <p>Combining resting-state functional magnetic resonance imaging (fMRI) connectivity and behavioral analysis during sedation, we factored out general effects of the anesthetic drug propofol and a specific index of conscious report, participants' level of responsiveness. The factorial analysis shows that increasing concentration of propofol in blood specifically decreases the connectivity strength of fronto-parietal cortical loops. In contrast, loss of responsiveness is indexed by a functional disconnection between the thalamus and the frontal cortex, balanced by an increase in connectivity strength of the thalamus to the occipital and temporal regions of the cortex.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4588413','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4588413"><span>Factoring the brain signatures of anesthesia concentration and level of arousal across individuals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Barttfeld, Pablo; Bekinschtein, Tristan A.; Salles, Alejo; Stamatakis, Emmanuel A.; Adapa, Ram; Menon, David K.; Sigman, Mariano</p> <p>2015-01-01</p> <p>Combining resting-state functional magnetic resonance imaging (fMRI) connectivity and behavioral analysis during sedation, we factored out general effects of the anesthetic drug propofol and a specific index of conscious report, participants’ level of responsiveness. The factorial analysis shows that increasing concentration of propofol in blood specifically decreases the connectivity strength of fronto-parietal cortical loops. In contrast, loss of responsiveness is indexed by a functional disconnection between the thalamus and the frontal cortex, balanced by an increase in connectivity strength of the thalamus to the occipital and temporal regions of the cortex. PMID:26509121</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=sound+AND+kelly+AND+c&id=EJ945216','ERIC'); return false;" href="https://eric.ed.gov/?q=sound+AND+kelly+AND+c&id=EJ945216"><span>Inferior Frontal Sensitivity to Common Speech Sounds Is Amplified by Increasing Word Intelligibility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Vaden, Kenneth I., Jr.; Kuchinsky, Stefanie E.; Keren, Noam I.; Harris, Kelly C.; Ahlstrom, Jayne B.; Dubno, Judy R.; Eckert, Mark A.</p> <p>2011-01-01</p> <p>The left inferior frontal gyrus (LIFG) exhibits increased responsiveness when people listen to words composed of speech sounds that frequently co-occur in the English language (Vaden, Piquado, & Hickok, 2011), termed high phonotactic frequency (Vitevitch & Luce, 1998). The current experiment aimed to further characterize the relation of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PMB....55.1041M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PMB....55.1041M"><span>Comparison of SAR and induced current densities in adults and children exposed to electromagnetic fields from electronic article surveillance devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martínez-Búrdalo, M.; Sanchis, A.; Martín, A.; Villar, R.</p> <p>2010-02-01</p> <p>Electronic article surveillance (EAS) devices are widely used in most stores as anti-theft systems. In this work, the compliance with international guidelines in the human exposure to these devices is analysed by using the finite-difference time-domain (FDTD) method. Two sets of high resolution numerical phantoms of different size (REMCOM/Hershey and Virtual Family), simulating adult and child bodies, are exposed to a 10 MHz pass-by panel-type EAS consisting of two overlapping current-carrying coils. Two different relative positions between the EAS and the body (frontal and lateral exposures), which imply the exposure of different parts of the body at different distances, have been considered. In all cases, induced current densities in tissues of the central nervous system and specific absorption rates (SARs) are calculated to be compared with the limits from the guidelines. Results show that induced current densities are lower in the case of adult models as compared with those of children in both lateral and frontal exposures. Maximum SAR values calculated in lateral exposure are significantly lower than those calculated in frontal exposure, where the EAS-body distance is shorter. Nevertheless, in all studied cases, with an EAS driving current of 4 A rms, maximum induced current and SAR values are below basic restrictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20090190','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20090190"><span>Comparison of SAR and induced current densities in adults and children exposed to electromagnetic fields from electronic article surveillance devices.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martínez-Búrdalo, M; Sanchis, A; Martín, A; Villar, R</p> <p>2010-02-21</p> <p>Electronic article surveillance (EAS) devices are widely used in most stores as anti-theft systems. In this work, the compliance with international guidelines in the human exposure to these devices is analysed by using the finite-difference time-domain (FDTD) method. Two sets of high resolution numerical phantoms of different size (REMCOM/Hershey and Virtual Family), simulating adult and child bodies, are exposed to a 10 MHz pass-by panel-type EAS consisting of two overlapping current-carrying coils. Two different relative positions between the EAS and the body (frontal and lateral exposures), which imply the exposure of different parts of the body at different distances, have been considered. In all cases, induced current densities in tissues of the central nervous system and specific absorption rates (SARs) are calculated to be compared with the limits from the guidelines. Results show that induced current densities are lower in the case of adult models as compared with those of children in both lateral and frontal exposures. Maximum SAR values calculated in lateral exposure are significantly lower than those calculated in frontal exposure, where the EAS-body distance is shorter. Nevertheless, in all studied cases, with an EAS driving current of 4 A rms, maximum induced current and SAR values are below basic restrictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9792619','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9792619"><span>Repeated exposure to delta 9-tetrahydrocannabinol reduces prefrontal cortical dopamine metabolism in the rat.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jentsch, J D; Verrico, C D; Le, D; Roth, R H</p> <p>1998-05-01</p> <p>Long-term abuse of marijuana by humans can induce profound behavioral deficits characterized by cognitive and memory impairments. In particular, deficits on tasks dependent on frontal lobe function have been reported in cannabis abusers. In the current study, we examined whether long-term exposure to delta9-tetrahydrocannabinol, the active ingredient in marijuana, altered the neurochemistry of the frontal cortex in rats. Two weeks administration of delta9-tetrahydrocannabinol reduced dopamine transmission in the medial prefrontal cortex, while dopamine metabolism in striatal regions was unaffected. These data are consistent with earlier findings of dopaminergic regulation of frontal cortical cognition. Thus, cognitive deficits in heavy abusers of cannabis may be subserved by drug-induced alterations in frontal cortical dopamine transmission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJC...78..261O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJC...78..261O"><span>Charged string loops in Reissner-Nordström black hole background</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oteev, Tursinbay; Kološ, Martin; Stuchlík, Zdeněk</p> <p>2018-03-01</p> <p>We study the motion of current carrying charged string loops in the Reissner-Nordström black hole background combining the gravitational and electromagnetic field. Introducing new electromagnetic interaction between central charge and charged string loop makes the string loop equations of motion to be non-integrable even in the flat spacetime limit, but it can be governed by an effective potential even in the black hole background. We classify different types of the string loop trajectories using effective potential approach, and we compare the innermost stable string loop positions with loci of the charged particle innermost stable orbits. We examine string loop small oscillations around minima of the string loop effective potential, and we plot radial profiles of the string loop oscillation frequencies for both the radial and vertical modes. We construct charged string loop quasi-periodic oscillations model and we compare it with observed data from microquasars GRO 1655-40, XTE 1550-564, and GRS 1915+105. We also study the acceleration of current carrying string loops along the vertical axis and the string loop ejection from RN black hole neighbourhood, taking also into account the electromagnetic interaction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA13155.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA13155.html"><span>Birth of a Loop Current Eddy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-05-24</p> <p>The northern portion of the Gulf of Mexico Loop Current, shown in red, appears about to detach a large ring of current, creating a separate eddy. An eddy is a large, warm, clockwise-spinning vortex of water -- the ocean version of a cyclone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21868390','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21868390"><span>Changes in regional and temporal patterns of activity associated with aging during the performance of a lexical set-shifting task.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martins, Ruben; Simard, France; Provost, Jean-Sebastien; Monchi, Oury</p> <p>2012-06-01</p> <p>Some older individuals seem to use compensatory mechanisms to maintain high-level performance when submitted to cognitive tasks. However, whether and how these mechanisms affect fronto-striatal activity has never been explored. The purpose of this study was to investigate how aging affects brain patterns during the performance of a lexical analog of the Wisconsin Card Sorting Task, which has been shown to strongly depend on fronto-striatal activity. In the present study, both younger and older individuals revealed significant fronto-striatal loop activity associated with planning and execution of set-shifts, though age-related striatal activity reduction was observed. Most importantly, while the younger group showed the involvement of a "cognitive loop" during the receiving negative feedback period (which indicates that a set-shift will be required to perform the following trial) and the involvement of a "motor loop" during the matching after negative feedback period (when the set-shift must be performed), older participants showed significant activation of both loops during the matching after negative feedback period only. These findings are in agreement with the "load-shift" model postulated by Velanova et al. (Velanova K, Lustig C, Jacoby LL, Buckner RL. 2007. Evidence for frontally mediated controlled processing differences in older adults. Cereb Cortex. 17:1033-1046.) and indicate that the model is not limited to memory retrieval but also applies to executive processes relying on fronto-striatal regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM31A2473S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM31A2473S"><span>Comparison between electric dipole and magnetic loop antennas for emitting whistler modes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stenzel, R.; Urrutia, J. M.</p> <p>2016-12-01</p> <p>In a large uniform and unbounded laboratory plasma low frequency whistler modes are excited from an electric dipole and a magnetic loop. The excited waves are measured with a magnetic probe which resolves the three field components in 3D space and time. This yields the group velocity and energy density, from which one obtains the emitted power. The same rf generator is used for both antennas and the radiated power is measured under identical plasma conditions. The magnetic loop radiates 8000 times more power than the electric dipole. The reason is that the loop antenna carries a large conduction current while the electric dipole current is a much smaller displacement current through the sheath. The current, hence magnetic field excites whistlers, not the dipole electric field. Incidentally, a dipole antenna does not launch plane waves but m = 1 helicon modes. The findings suggest that active wave injections into the magnetosphere should be done with magnetic antennas. Two parallel dipoles connected at the free end could serve as an elongated loop.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24587566','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24587566"><span>Associations between subjective sleep quality and brain volume in Gulf War veterans.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chao, Linda L; Mohlenhoff, Brian S; Weiner, Michael W; Neylan, Thomas C</p> <p>2014-03-01</p> <p>To investigate whether subjective sleep quality is associated with brain volume independent of comorbid psychiatric conditions. Cross-sectional. Department of Veterans Affairs (VA) Medical Center. One hundred forty-four Gulf War Veterans (mean age 45 years; range: 31-70 years; 14% female). None. Total cortical, lobar gray matter, and hippocampal volumes were quantified from 1.5 Tesla magnetic resonance images using Freesurfer version 4.5. Subjective sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI). Multiple linear regressions were used to determine the association of sleep quality with total and regional brain volumes. The global PSQI score was positively correlated with lifetime and current posttraumatic stress disorder (PTSD) and current depressive symptoms (P < 0.001) and was higher in veterans with Gulf War Illness, trauma exposure, and those using psychotropic medication (P ≤ 0.03). After adjusting for these comorbid variables, age, intracranial volume, and multiple comparisons, global PSQI was inversely associated with total cortical and frontal gray matter volume (adjusted P ≤ 0.03). Within the frontal lobe, total PSQI was inversely associated with the superior and middle frontal, orbitofrontal, anterior cingulate, and frontal pole volumes (adjusted P ≤ 0.02). Examination of the 3-factor structure of the PSQI revealed that the associations were driven by perceived sleep quality. Poorer subjective sleep quality was associated with reduced total cortical and regional frontal lobe volumes independent of comorbid psychiatric conditions. Future work will be needed to examine if effective treatment of disturbed sleep leads to improved structural and functional integrity of the frontal lobes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA115560','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA115560"><span>Development of a Microprocessor-Based Asynchronous Data Communications Line Tester.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-12-01</p> <p>either RS232 or 20 mA current loop 13. Current loop optically isolated 14. Current loop selectable for either active or pasive mode 15. Address...Executin Invoking the execution of the software is therefore a matter of power-up and reset. The software will wait for a response from the console (any key...SIO has two channels as previously mentioned. Addressing the SIO then is a matter of addressing these two channels. The port addrecses are user defined</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28207197','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28207197"><span>Changing the surgical dogma in frontal sinus trauma: transnasal endoscopic repair.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grayson, Jessica W; Jeyarajan, Hari; Illing, Elisa A; Cho, Do-Yeon; Riley, Kristen O; Woodworth, Bradford A</p> <p>2017-05-01</p> <p>Management of frontal sinus trauma includes coronal or direct open approaches through skin incisions to either ablate or obliterate the frontal sinus for posterior table fractures and openly reduce/internally fixate fractured anterior tables. The objective of this prospective case-series study was to evaluate outcomes of frontal sinus anterior and posterior table trauma using endoscopic techniques. Prospective evaluation of patients undergoing surgery for frontal sinus fractures was performed. Data were collected regarding demographics, etiology, technique, operative site, length involving the posterior table, size of skull base defects, complications, and clinical follow-up. Forty-six patients (average age, 42 years) with frontal sinus fractures were treated using endoscopic techniques from 2008 to 2016. Mean follow-up was 26 (range, 0.5 to 79) months. Patients were treated primarily with a Draf IIb frontal sinusotomies. Draf III was used in 8 patients. Average fracture defect (length vs width) was 17.1 × 9.1 mm, and the average length involving the posterior table was 13.1 mm. Skull base defects were covered with either nasoseptal flaps or free tissue grafts. One individual required Draf IIb revision, but all sinuses were patent on final examination and all closed reductions of anterior table defects resulted in cosmetically acceptable outcomes. Frontal sinus trauma has traditionally been treated using open approaches. Our findings show that endoscopic management should become part of the management algorithm for frontal sinus trauma, which challenges current surgical dogma regarding mandatory open approaches. © 2017 ARS-AAOA, LLC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29657115','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29657115"><span>Novelty-Sensitive Dopaminergic Neurons in the Human Substantia Nigra Predict Success of Declarative Memory Formation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kamiński, Jan; Mamelak, Adam N; Birch, Kurtis; Mosher, Clayton P; Tagliati, Michele; Rutishauser, Ueli</p> <p>2018-05-07</p> <p>The encoding of information into long-term declarative memory is facilitated by dopamine. This process depends on hippocampal novelty signals, but it remains unknown how midbrain dopaminergic neurons are modulated by declarative-memory-based information. We recorded individual substantia nigra (SN) neurons and cortical field potentials in human patients performing a recognition memory task. We found that 25% of SN neurons were modulated by stimulus novelty. Extracellular waveform shape and anatomical location indicated that these memory-selective neurons were putatively dopaminergic. The responses of memory-selective neurons appeared 527 ms after stimulus onset, changed after a single trial, and were indicative of recognition accuracy. SN neurons phase locked to frontal cortical theta-frequency oscillations, and the extent of this coordination predicted successful memory formation. These data reveal that dopaminergic neurons in the human SN are modulated by memory signals and demonstrate a progression of information flow in the hippocampal-basal ganglia-frontal cortex loop for memory encoding. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15541071','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15541071"><span>A functional MRI study of working memory task in euthymic bipolar disorder: evidence for task-specific dysfunction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Monks, Paul J; Thompson, Jill M; Bullmore, Edward T; Suckling, John; Brammer, Michael J; Williams, Steve C R; Simmons, Andrew; Giles, Nicola; Lloyd, Adrian J; Harrison, C Louise; Seal, Marc; Murray, Robin M; Ferrier, I Nicol; Young, Allan H; Curtis, Vivienne A</p> <p>2004-12-01</p> <p>Even when euthymic bipolar disorder patients can have persistent deficits in working memory, but the neural basis of this deficit remains unclear. We undertook an functional magnetic resonance imaging investigation of euthymic bipolar disorder patients performing two working memory paradigms; the two-back and Sternberg tasks, selected to examine the central executive and the phonological loop respectively. We hypothesized that neuronal dysfunction would be specific to the network underlying the executive rather than the phonological loop component of working memory. Twelve right-handed euthymic bipolar I males receiving lithium carbonate monotherapy were matched with 12 controls. The two-back task comprised a single working memory load contrasted with baseline vigilance condition. The Sternberg paradigm used a parametric design incorporating variable working memory load with fixed delay between presentation of an array of items to be remembered and a target item. Functional activation data were acquired during performance of the tasks and were analysed to produce brain activation maps representing significant group differences in activation (ANOVA). Load-response curves were derived from the Sternberg task data set. There were no significant between-group differences (t-test) in performance of the two-back task, or in 2 x 5 group by memory load ANOVA for the performance data from Sternberg task. In the two-back task, compared with controls bipolar disorder patients showed reductions in bilateral frontal, temporal and parietal activation, and increased activations with the left precentral, right medial frontal and left supramarginal gyri. No between-group differences were observed in the Sternberg task at any working memory load. Our findings support the notion that, in euthymic bipolar disorder, failure to engage fronto-executive function underpins the core neuropsychological deficits. Blackwell Munksgaard, 2004</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG13A..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG13A..03K"><span>Multiple states and hysteresis in a two-layer loop current type system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuehl, J.; Sheremet, V.</p> <p>2017-12-01</p> <p>Rotating table experiments are considered of a two-layer loop current type or gap-leaping system. Such experiments are representative of oceanic regions including the Kuroshio current crossing the Luzon Strait, the Gulf of Mexico Loop Current, the Northeast Chanel of the Gulf of Maine where Scotian shelf water leaps directly from Browns bank to Georges Bank and more. Systems such as these are known to admit two dominant states: leaping across the gap or penetrating into the gap forming a loop current. Which state the system will assume and when transitions between states will occur are open problems. We show that such systems admit multiple steady states with hysteresis when the strength of the current is varied. When the state of the system is viewed in a parameter space representing inertia and vorticity constraint, the system is found to be characterized by a cusp topology of solutions. The existence of such dynamics in two-layer quasi-geostrophic systems has significant implications for oceanographic predictability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000APS..DPPUO1006B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000APS..DPPUO1006B"><span>Bursting reconnection of the two co-rotating current loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bulanov, Sergei; Sokolov, Igor; Sakai, Jun-Ichi</p> <p>2000-10-01</p> <p>Two parallel plasma filaments carrying electric current (current loops) are considered. The Ampere force induces the filaments' coalescence, which is accompanied by the reconnection of the poloidal magnetic field. Initially the loops rotate along the axii of symmetry. Each of the two loops would be in equilibrium in the absence of the other one. The dynamics of the reconnection is numerically simulated using high-resolution numerical scheme for low-resistive magneto-hydrodynamics. The results of numerical simulation are presented in the form of computer movies. The results show that the rotation strongly modifies the reconnection process, resulting in quasi-periodic (bursting) appearance and disappearance of a current sheet. Fast sliding motion of the plasma along the current sheet is a significant element of the complicated structure of reconnection (current-vortex sheet). The magnetic surfaces in the overal flow are strongly rippled by slow magnetosonic perturbations, so that the specific spiral structures form. This should result in the particle transport enhancement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18296071','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18296071"><span>Deficits in learning and memory: parahippocampal hyperactivity and frontocortical hypoactivity in cannabis users.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nestor, Liam; Roberts, Gloria; Garavan, Hugh; Hester, Robert</p> <p>2008-04-15</p> <p>The consumption of cannabis has been linked to impairments in human learning and memory, as well as aspects of executive functioning. Cannabis-related impairments in learning and memory in chronic cannabis users, it has been argued, are caused by the effects of cannabis on hippocampal functioning. The current study involved two experiments. Experiment 1 compared 35 current users of cannabis and 38 well-matched controls on a face-name task, previously shown to activate the hippocampal region. Based on the results of experiment 1, experiment 2 used fMRI and a modified version of the face-name task, to examine cortical and (para)hippocampal activity during learning and recall in 14 current users of cannabis and 14 controls. Results of experiment 1 showed that cannabis users were significantly worse with respect to learning, short and long-term memory performance. Experiment 2 showed that despite non-significant differences in learning and memory performance, cannabis users had significantly lower levels of BOLD activity in the right superior temporal gyrus, right superior frontal gyrus, right middle frontal gyrus and left superior frontal gyrus compared to controls during learning. Results also showed that cannabis users had significantly higher BOLD activity in the right parahippocampal gyrus during learning. Hypoactivity in frontal and temporal cortices, and relative hyperactivity in the parahippocampus identify functional deficits and compensatory processes in cannabis users.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.acog.org/~/media/For%20Patients/faq110.pdf','NIH-MEDLINEPLUS'); return false;" href="https://www.acog.org/~/media/For%20Patients/faq110.pdf"><span>Loop Electrosurgical Excision Procedure (LEEP)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>... that acts like a scalpel (surgical knife). An electric current is passed through the loop, which cuts ... A procedure in which an instrument works with electric current to destroy tissue. Local Anesthesia: The use ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ITEIS.129.2194I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ITEIS.129.2194I"><span>Reliable Control Using Disturbance Observer and Equivalent Transfer Function for Position Servo System in Current Feedback Loop Failure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ishikawa, Kaoru; Nakamura, Taro; Osumi, Hisashi</p> <p></p> <p>A reliable control method is proposed for multiple loop control system. After a feedback loop failure, such as case of the sensor break down, the control system becomes unstable and has a big fluctuation even if it has a disturbance observer. To cope with this problem, the proposed method uses an equivalent transfer function (ETF) as active redundancy compensation after the loop failure. The ETF is designed so that it does not change the transfer function of the whole system before and after the loop failure. In this paper, the characteristic of reliable control system that uses an ETF and a disturbance observer is examined by the experiment that uses the DC servo motor for the current feedback loop failure in the position servo system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080012287','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080012287"><span>Current collector for AMTEC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Williams, Roger M. (Inventor)</p> <p>1989-01-01</p> <p>An electrode having higher power output is formed of an open mesh current collector such as expanded nickel covering an electrode film applied to a tube of beta-alumina solid electrolyte (BASE). A plurality of cross-members such as spaced, parallel loops of molybdenum metal wire surround the BASE tube. The loops are electrically connected by a bus wire. As the AMTEC cell is heated, the grid of expanded nickel expands more than the BASE tube and the surrounding loop of wire and become diffusion welded to the electrode film and to the wire loops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26900737','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26900737"><span>Pathological Joking or Witzelsucht Revisited.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Granadillo, Elias D; Mendez, Mario F</p> <p>2016-01-01</p> <p>Humor, or the perception or elicitation of mirth and funniness, is distinguishable from laughter and can be differentially disturbed by neuropsychiatric disease. The authors describe two patients with constant joking, or Witzelsucht, in the absence of pseudobulbar affect and review the literature on pathological humor. These patients had involvement of frontal structures, impaired appreciation of nonsimple humor, and a compulsion for disinhibited joking. Current neuroscience suggests that impaired humor integration from right lateral frontal injury and disinhibition from orbitofrontal damage results in disinhibited humor, preferentially activating limbic and subcortical reward centers. Additional frontal-subcortical circuit dysfunction may promote pathological joking as a compulsion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5798973','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5798973"><span>PATHOLOGICAL JOKING OR WITZELSUCHT REVISITED</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Granadillo, Elias; Mendez, Mario F.</p> <p>2018-01-01</p> <p>Humor, or the perception or elicitation of mirth and funniness, is distinguishable from laughter and can be differentially disturbed by neuropsychiatric disease. We present two patients with constant joking, or Witzelsucht, in the absence of pseudobulbar affect and review the literature on pathological humor. These patients had involvement of frontal structures, impaired appreciation of non-simple humor, and a compulsion for disinhibited joking. Current neuroscience suggests impaired humor integration from right lateral frontal injury and disinhibition from orbitofrontal damage results in disinhibited humor preferentially activating limbic and subcortical reward centers. Additional frontal-subcortical circuit dysfunction may promote pathological joking as a compulsion. PMID:26900737</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870052720&hterms=XRP&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DXRP','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870052720&hterms=XRP&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DXRP"><span>Solar burst precursors and energy build-up at microwave wavelengths</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lang, Kenneth R.; Wilson, Robert F.</p> <p>1986-01-01</p> <p>We summarize high-resolution microwave observations (VLA) of heating and magnetic triggering in coronal loops. Magnetic changes that precede solar eruptions on time scales of tens of minutes involve primarily emerging coronal loops and the interaction of two or more loops. Thermal cyclotron lines have been detected in coronal loops, suggesting the presence of hot current sheets that enhance emission from relatively thin layers of enhanced temperature and constant magnetic field. These current sheets may play a role in the excitation of solar bursts. A filament-associated source with a high brightness temperature and steep radiation spectrum occurs above a region of apparently weak photospheric field. This source might be attributed to currents that enhance coronal magnetic fields. Compact (phi=5 sec) transient sources with lifetimes of 30 to 60 minutes have also been detected in regions of apparently weak photospheric field. We conclude by comparing VLA observations of coronal loops with simultaneous SMM-XRP observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986AdSpR...6R..97L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986AdSpR...6R..97L"><span>Solar burst precursors and energy build-up at microwave wavelengths</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lang, Kenneth R.; Wilson, Robert F.</p> <p></p> <p>We summarize high-resolution microwave observations (VLA) of heating and magnetic triggering in coronal loops. Magnetic changes that precede solar eruptions on time scales of tens of minutes involve primarily emerging coronal loops and the interaction of two or more loops. Thermal cyclotron lines have been detected in coronal loops, suggesting the presence of hot current sheets that enhance emission from relatively thin layers of enhanced temperature and constant magnetic field. These current sheets may play a role in the excitation of solar bursts. A filament-associated source with a high brightness temperature and steep radiation spectrum occurs above a region of apparently weak photospheric field. This source might be attributed to currents that enhance coronal magnetic fields. Compact (phi=5 sec) transient sources with lifetimes of 30 to 60 minutes have also been detected in regions of apparently weak photospheric field. We conclude by comparing VLA observations of coronal loops with simultaneous SMM-XRP observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950033353&hterms=Electric+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DElectric%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950033353&hterms=Electric+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DElectric%2Bcurrent"><span>Loop heating by D.C. electric current and electromagnetic wave emissions simulated by 3-D EM particle zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.</p> <p>1994-01-01</p> <p>We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2839483','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2839483"><span>Selective tuning of the right inferior frontal gyrus during target detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hampshire, Adam; Thompson, Russell; Duncan, John; Owen, Adrian M.</p> <p>2010-01-01</p> <p>In the human brain, a network of frontal and parietal regions is commonly recruited during tasks that demand the deliberate, focused control of thought and action. Previously, using a simple target detection task, we reported striking differences in the selectivity of the BOLD response in anatomically distinct subregions of this network. In particular, it was observed that the right inferior frontal gyrus (IFG) followed a tightly tuned function, selectively responding only to the current target object. Here, we examine this functional specialization further, using adapted versions of our original task. Our results demonstrate that the response of the right IFG to targets is a strong and replicable phenomenon. It occurs under increased attentional load, when targets and distractors are equally frequent, and when controlling for inhibitory processes. These findings support the hypothesis that the right IFG responds selectively to those items that are of the most relevance to the currently intended task schema. PMID:19246331</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19472417','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19472417"><span>Shielded dual-loop resonator for arterial spin labeling at the neck.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hetzer, Stefan; Mildner, Toralf; Driesel, Wolfgang; Weder, Manfred; Möller, Harald E</p> <p>2009-06-01</p> <p>To construct a dual-loop coil for continuous arterial spin labeling (CASL) at the human neck and characterize it using computer simulations and magnetic resonance experiments. The labeling coil was designed as a perpendicular pair of shielded-loop resonators made from coaxial cable to obtain balanced circular loops with minimal electrical interaction with the lossy tissue. Three different excitation modes depending on the phase shift, Deltapsi, of the currents driving the two circular loops were investigated including a "Maxwell mode" (Deltapsi = 0 degrees ; ie, opposite current directions in both loops), a "quadrature mode" (Deltapsi = 90 degrees ), and a "Helmholtz mode" (Deltapsi = 180 degrees ; ie, identical current directions in both loops). Simulations of the radiofrequency field distribution indicated a high inversion efficiency at the locations of the carotid and vertebral arteries. With a 7-mm-thick polypropylene insulation, a sufficient distance from tissue was achieved to guarantee robust performance at a local specific absorption rate (SAR) well below legal safety limits. Application in healthy volunteers at 3 T yielded quantitative maps of gray matter perfusion with low intersubject variability. The coil permits robust labeling with low SAR and minimal sensitivity to different loading conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10962736','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10962736"><span>[Localization of attention related cortical structures by evoked potentials].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Szelenberger, W</p> <p>2000-01-01</p> <p>Attention is an ambiguous concept, difficult to direct implementation in neurophysiological studies. The paper presents application of the Continuous Attention Test (CAT) items as stimuli in event related potential (ERP) studies on attention. Stimuli with high demand of attention result in enlarged N1 component in occipital derivations. Spatial analysis revealed increased positivity in frontal derivations. Three-dimensional image of cortical current density by means of Low Resolution Electromagnetic Tomography (LORETA) revealed sources of N1 component in occipital, parietal and postero-temporal derivations with the maximal current value at 17 Brodmann area. After target stimuli increase of current density in frontal derivations was observed, with the maximal value in the left 9 Brodmann area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MPLB...3050200L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MPLB...3050200L"><span>Simulating the frontal instability of lock-exchange density currents with dissipative particle dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Yanggui; Geng, Xingguo; Wang, Heping; Zhuang, Xin; Ouyang, Jie</p> <p>2016-06-01</p> <p>The frontal instability of lock-exchange density currents is numerically investigated using dissipative particle dynamics (DPD) at the mesoscopic particle level. For modeling two-phase flow, the “color” repulsion model is adopted to describe binary fluids according to Rothman-Keller method. The present DPD simulation can reproduce the flow phenomena of lock-exchange density currents, including the lobe-and-cleft instability that appears at the head, as well as the formation of coherent billow structures at the interface behind the head due to the growth of Kelvin-Helmholtz instability. Furthermore, through the DPD simulation, some small-scale characteristics can be observed, which are difficult to be captured in macroscopic simulation and experiment.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23634645','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23634645"><span>CE verbal episodic memory impairment in schizophrenia: a comparison with frontal lobe lesion patients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Christensen, Bruce K; Patrick, Regan E; Stuss, Donald T; Gillingham, Susan; Zipursky, Robert B</p> <p>2013-01-01</p> <p>Schizophrenia (SCZ)-related verbal memory impairment is hypothesized to be mediated, in part, by frontal lobe (FTL) dysfunction. However, little research has contrasted the performance of SCZ patients with that of patients exhibiting circumscribed frontal lesions. The current study compared verbal episodic memory in patients with SCZ and focal FTL lesions (left frontal, LF; right frontal, RF; and bi-frontal, BF) on a four-trial list learning task consisting of three lists of varying semantic organizational structure. Each dependent variable was examined at two levels: scores collapsed across all four trials and learning scores (i.e., trial 4-trial 1). Performance deficits were observed in each patient group across most dependent measures at both levels. Regarding patient group differences, SCZ patients outperformed LF/BF patients (i.e., either learning scores or scores collapsed across trial) on free recall, primacy, primary memory, secondary memory, and subjective organization, whereas they only outperformed RF patients on the semantically blocked list on recency and primary memory. Collectively, these results indicate that the pattern of memory performance is largely similar between patients with SCZ and those with RF lesions. These data support tentative arguments that verbal episodic memory deficits in SCZ may be mediated by frontal dysfunction in the right hemisphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940019356','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940019356"><span>Measuring electrically charged particle fluxes in space using a fiber optic loop sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1992-01-01</p> <p>The purpose of this program was to demonstrate the potential of a fiber optic loop sensor for the measurement of electrically charged particle fluxes in space. The key elements of the sensor are a multiple turn loop of low birefringence, single mode fiber, with a laser diode light source, and a low noise optical receiver. The optical receiver is designed to be shot noise limited, with this being the limiting sensitivity factor for the sensor. The sensing element is the fiber optic loop. Under a magnetic field from an electric current flowing along the axis of the loop, there is a non-vanishing line integral along the fiber optic loop. This causes a net birefringence producing two states of polarization whose phase difference is correlated to magnetic field strength and thus, current in the optical receiver electronic processing. The objectives in this program were to develop a prototype laser diode powered fiber optic sensor. The performance specification of a minimum detectable current density of 1 (mu)amp/sq m-(radical)Hz, should be at the shot noise limit of the detection electronics. OPTRA has successfully built and tested a 3.2 m diameter loop with 137 turns of low birefringence optical fiber and achieved a minimum detectable current density of 5.4 x 10(exp-5) amps/(radical)Hz. If laboratory space considerations were not an issue, with the length of optical fiber available to us, we would have achieved a minimum detectable current density of 4 x 10(exp -7) amps/(radical)Hz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27747812','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27747812"><span>Frontal lobe regulation of blood glucose levels: support for the limited capacity model in hostile violence-prone men.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Walters, Robert P; Harrison, Patti Kelly; Campbell, Ransom W; Harrison, David W</p> <p>2016-12-01</p> <p>Hostile men have reliably displayed an exaggerated sympathetic stress response across multiple experimental settings, with cardiovascular reactivity for blood pressure and heart rate concurrent with lateralized right frontal lobe stress (Trajanoski et al., in Diabetes Care 19(12):1412-1415, 1996; see Heilman et al., in J Neurol Neurosurg Psychiatry 38(1):69-72, 1975). The current experiment examined frontal lobe regulatory control of glucose in high and low hostile men with concurrent left frontal lobe (Control Oral Word Association Test [verbal]) or right frontal lobe (Ruff Figural Fluency Test [nonverbal]) stress. A significant interaction was found for Group × Condition, F (1,22) = 4.16, p ≤ .05 with glucose levels (mg/dl) of high hostile men significantly elevated as a function of the right frontal stressor (M = 101.37, SD = 13.75) when compared to the verbal stressor (M = 95.79, SD = 11.20). Glucose levels in the low hostile group remained stable for both types of stress. High hostile men made significantly more errors on the right frontal but not the left frontal stressor (M = 17.18, SD = 19.88) when compared to the low hostile men (M = 5.81, SD = 4.33). These findings support our existing frontal capacity model of hostility (Iribarren et al., in J Am Med Assoc 17(19):2546-2551, 2000; McCrimmon et al., in Physiol Behav 67(1):35-39, 1999; Brunner et al., in Diabetes Care 21(4):585-590, 1998), extending the role of the right frontal lobe to regulatory control over glucose mobilization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28854201','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28854201"><span>Association of whale sharks (Rhincodon typus) with thermo-biological frontal systems of the eastern tropical Pacific.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ryan, John P; Green, Jonathan R; Espinoza, Eduardo; Hearn, Alex R</p> <p>2017-01-01</p> <p>Satellite tracking of 27 whale sharks in the eastern tropical Pacific, examined in relation to environmental data, indicates preferential occupancy of thermo-biological frontal systems. In these systems, thermal gradients are caused by wind-forced circulation and mixing, and biological gradients are caused by associated nutrient enrichment and enhanced primary productivity. Two of the frontal systems result from upwelling, driven by divergence in the current systems along the equator and the west coast of South America; the third results from wind jet dynamics off Central America. All whale sharks were tagged near Darwin Island, Galápagos, within the equatorial Pacific upwelling system. Occupancy of frontal habitat is pronounced in synoptic patterns of shark locations in relation to serpentine, temporally varying thermal fronts across a zonal expanse > 4000 km. 80% of shark positions in northern equatorial upwelling habitat and 100% of positions in eastern boundary upwelling habitat were located within the upwelling front. Analysis of equatorial shark locations relative to thermal gradients reveals occupancy of a transition point in environmental stability. Equatorial subsurface tag data show residence in shallow, warm (>22°C) water 94% of the time. Surface zonal current speeds for all equatorial tracking explain only 16% of the variance in shark zonal movement speeds, indicating that passive drifting is not a primary determinant of movement patterns. Movement from equatorial to eastern boundary frontal zones occurred during boreal winter, when equatorial upwelling weakens seasonally. Off Peru sharks tracked upwelling frontal positions within ~100-350 km from the coast. Off Central America, the largest tagged shark (12.8 m TL) occupied an oceanic front along the periphery of the Panama wind jet. Seasonal movement from waning equatorial upwelling to productive eastern boundary habitat is consistent with underlying trophic dynamics. Persistent shallow residence in thermo-biological frontal zones suggests the role of physical-biological interactions that concentrate food resources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5576648','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5576648"><span>Association of whale sharks (Rhincodon typus) with thermo-biological frontal systems of the eastern tropical Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Green, Jonathan R.; Espinoza, Eduardo; Hearn, Alex R.</p> <p>2017-01-01</p> <p>Satellite tracking of 27 whale sharks in the eastern tropical Pacific, examined in relation to environmental data, indicates preferential occupancy of thermo-biological frontal systems. In these systems, thermal gradients are caused by wind-forced circulation and mixing, and biological gradients are caused by associated nutrient enrichment and enhanced primary productivity. Two of the frontal systems result from upwelling, driven by divergence in the current systems along the equator and the west coast of South America; the third results from wind jet dynamics off Central America. All whale sharks were tagged near Darwin Island, Galápagos, within the equatorial Pacific upwelling system. Occupancy of frontal habitat is pronounced in synoptic patterns of shark locations in relation to serpentine, temporally varying thermal fronts across a zonal expanse > 4000 km. 80% of shark positions in northern equatorial upwelling habitat and 100% of positions in eastern boundary upwelling habitat were located within the upwelling front. Analysis of equatorial shark locations relative to thermal gradients reveals occupancy of a transition point in environmental stability. Equatorial subsurface tag data show residence in shallow, warm (>22°C) water 94% of the time. Surface zonal current speeds for all equatorial tracking explain only 16% of the variance in shark zonal movement speeds, indicating that passive drifting is not a primary determinant of movement patterns. Movement from equatorial to eastern boundary frontal zones occurred during boreal winter, when equatorial upwelling weakens seasonally. Off Peru sharks tracked upwelling frontal positions within ~100–350 km from the coast. Off Central America, the largest tagged shark (12.8 m TL) occupied an oceanic front along the periphery of the Panama wind jet. Seasonal movement from waning equatorial upwelling to productive eastern boundary habitat is consistent with underlying trophic dynamics. Persistent shallow residence in thermo-biological frontal zones suggests the role of physical-biological interactions that concentrate food resources. PMID:28854201</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA951904','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA951904"><span>High Frequency Aircraft Antennas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1968-05-03</p> <p>is ob- tained if the current on the loop is assunned to be a superposition of two oppositely directed uniform traveling -wave currents of equal...effect will be to slow down the traveling wave currents on the loop and thus make the loop appear larger in size. Equations (6), (7), and (IÜ...18C/NDT + 1 NTRAN3=ü L»0 CALL LINSEG<NWIRE.L»X.Y.Z.5I . SALP ,CAB.SAB) N = L NN=N+1 WR|TE(6«11) IF(N-100) 4 1,41.500 41 CONTINUE Jl = l J2</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17614635','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17614635"><span>Simple system for locating ground loops.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bellan, P M</p> <p>2007-06-01</p> <p>A simple low-cost system for rapid identification of the cables causing ground loops in complex instrumentation configurations is described. The system consists of an exciter module that generates a 100 kHz ground loop current and a detector module that determines which cable conducts this test current. Both the exciter and detector are magnetically coupled to the ground circuit so there is no physical contact to the instrumentation system under test.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4605545','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4605545"><span>Neurocognitive architecture of working memory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Eriksson, Johan; Vogel, Edward K.; Lansner, Anders; Bergström, Fredrik; Nyberg, Lars</p> <p>2015-01-01</p> <p>The crucial role of working memory for temporary information processing and guidance of complex behavior has been recognized for many decades. There is emerging consensus that working memory maintenance results from the interactions among long-term memory representations and basic processes, including attention, that are instantiated as reentrant loops between frontal and posterior cortical areas, as well as subcortical structures. The nature of such interactions can account for capacity limitations, lifespan changes, and restricted transfer after working-memory training. Recent data and models indicate that working memory may also be based on synaptic plasticity, and that working memory can operate on non-consciously perceived information. PMID:26447571</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28228081','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28228081"><span>The Neurobiology and Psychiatric Perspective of Vaginismus: Linking the Pharmacological and Psycho-Social Interventions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kadir, Zuri Shahidii; Sidi, Hatta; Kumar, Jaya; Das, Srijit; Midin, Marhani; Baharuddin, Najwa</p> <p>2018-01-01</p> <p>Vaginismus is an involuntary muscle contraction of the outer third of vaginal barrel causing sexual penetration almost impossible. It is generally classified under sexual pain disorder (SPD). In Diagnostic and Statistical Manual, 5th edition (DSM-5), it is classified under the new rubric of Genito-Pelvic Pain/Sexual Penetration Disorder. This fear-avoidance condition poses an ongoing significant challenge to the medical and health professionals due to the very demanding needs in health care despite its unpredictable prognosis. The etiology of vaginismus is complex: through multiple biopsycho- social processes, involving bidirectional connections between pelvic-genital (local) and higher mental function (central regulation). It has robust neural and psychological-cognitive loop feedback involvement. The internal neural circuit involves an inter-play of at least two-pathway systems, i.e. both "quick threat assessment" of occipital-limbic-occipital-prefrontal-pelvic-genital; and the chronic pain pathways through the genito-spinothalamic-parietal-pre-frontal system, respectively. In this review, a neurobiology root of vaginismus is deliberated with the central role of an emotional-regulating amygdala, and other neural loop, i.e. hippocampus and neo-cortex in the core psychopathology of fear, disgust, and sexual avoidance. Many therapists view vaginismus as a neglected art-and-science which demands a better and deeper understanding on the clinico-pathological correlation to enhance an effective model for the bio-psycho-social treatment. As vaginismus has a strong presentation in psychopathology, i.e. fear of penetration, phobic avoidance, disgust, and anticipatory anxiety, we highlighted a practical psychiatric approach to the clinical management of vaginismus, based on the current core knowledge in the perspective of neuroscience. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29558241','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29558241"><span>Frontal lesions predict response to prism adaptation treatment in spatial neglect: A randomised controlled study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goedert, Kelly M; Chen, Peii; Foundas, Anne L; Barrett, A M</p> <p>2018-03-20</p> <p>Spatial neglect commonly follows right hemisphere stroke. It is defined as impaired contralesional stimulus detection, response, or action, causing functional disability. While prism adaptation treatment is highly promising to promote functional recovery of spatial neglect, not all individuals respond. Consistent with a primary effect of prism adaptation on spatial movements, we previously demonstrated that functional improvement after prism adaptation treatment is linked to frontal lobe lesions. However, that study was a treatment-only study with no randomised control group. The current study randomised individuals with spatial neglect to receive 10 days of prism adaptation treatment or to receive only standard care (control group). Replicating our earlier results, we found that the presence of frontal lesions moderated response to prism adaptation treatment: among prism-treated patients, only those with frontal lesions demonstrated functional improvements in their neglect symptoms. Conversely, among individuals in the standard care control group, the presence of frontal lesions did not modify recovery. These results suggest that further research is needed on how frontal lesions may predict response to prism adaptation treatment. Additionally, the results help elucidate the neural network involved in spatial movement and could be used to aid decisions about treatment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5103739','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5103739"><span>Complete prefrontal lobe isolation surgery for recurrent epilepsy: A case report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yin, Shaoya; Jin, Weipeng; Li, Qingyun; Feng, Mei; Feng, Keke; Shao, Hui; Zhang, Xueqing; Wang, Shimin</p> <p>2016-01-01</p> <p>Epileptogenic focus resection is less effective for the treatment of frontal lobe epilepsy compared with temporal lobe epilepsy. However, there is currently a lack of effective therapeutic options for patients with frontal lobe epilepsy who are unsuitable for epileptogenic focus resection (such patients with epileptogenic foci in one frontal lobe in which the precise epileptic foci cannot be determined), or who experience recurrent epilepsy following epileptogenic focus resection. The present study reports a patient with frontal lobe epilepsy who underwent successful frontal lobe isolation surgery following a previous unsuccessful epileptogenic focus resection surgery. To ensure complete isolation of the prefrontal lobe, the surgery included division of the anterior commissure and the anterior part of the corpus callosum. The patient was followed-up for 16 months. Although the follow-up electroencephalogram presented a number of sharp waves on the affected side, the patient did not experience any seizures. The results suggest that prefrontal lobe isolation is an effective method of treating frontal lobe epilepsy, as division of the anterior commissure and the anterior part of the corpus callosum ensures disconnection of the prefrontal lobe from other regions of the brain. PMID:27882111</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15634619','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15634619"><span>Frontal lobe epilepsy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kellinghaus, Christoph; Lüders, Hans O</p> <p>2004-12-01</p> <p>Frontal lobe epilepsy accounts for only 10-20% of the patients in surgical series, but the incidence in non-surgical patient cohorts seems to be much higher. The typical clinical presentation of the seizures includes contralateral clonic movements, uni- or bilateral tonic motor activity as well as complex automatism. The yield of surface EEG may be limited due to the difficulty in detection of mesial or basal foci, and the patient may be misdiagnosed as having non-epileptic events. In addition, in patients with mesial frontal foci the epileptiform discharges may be mislateralized ("paradoxical lateralization"). Therefore, epilepsy surgery has been commonly considered as less promising in patients with frontal lobe epilepsy. However, the advent of sophisticated neuroimaging techniques, particularly MRI with epilepsy-specific sequences, has made it possible to delineate the epileptogenic lesion and detect a specific etiology, in an increasing number of patients. Thus, the success rate of epilepsy surgery in frontal lobe epilepsy is currently comparable to temporal lobe epilepsy, if the candidates are carefully selected. Patients with frontal lobe epilepsy who do not respond to anticonvulsive medication, and who are not eligible for epilepsy surgery may benefit from alternative approaches such as electrical brain stimulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3268053','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3268053"><span>Speech Presentation Cues Moderate Frontal EEG Asymmetry in Socially Withdrawn Young Adults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cole, Claire; Zapp, Daniel J.; Nelson, S. Katherine; Pérez-Edgar, Koraly</p> <p>2011-01-01</p> <p>Socially withdrawn individuals display solitary behavior across wide contexts with both unfamiliar and familiar peers. This tendency to withdraw may be driven by either past or anticipated negative social encounters. In addition, socially withdrawn individuals often exhibit right frontal electroencephalogram (EEG) asymmetry at baseline and when under stress. In the current study we examined shifts in frontal EEG activity in young adults (N=41) at baseline, as they viewed either an anxiety-provoking or a benign speech video, and as they subsequently prepared for their own speech. Results indicated that right frontal EEG activity increased, relative to the left, only for socially withdrawn participants exposed to the anxious video. These results suggest that contextual affective cues may prime an individual’s response to stress, particularly if they illustrate or substantiate an anticipated negative event. PMID:22169714</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS43C1296N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS43C1296N"><span>Upwelling and downwelling induced by mesoscale circulation in the DeSoto Canyon region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nguyen, T. T.; Chassignet, E.; Morey, S. L.; Dukhovskoy, D. S.</p> <p>2014-12-01</p> <p>Ocean dynamics are complex over irregular topography areas, and the northeastern Gulf of Mexico, specifically the DeSoto Canyon region, is a challenge for modelers and oceanographers. Vertical movement of waters, especially upwelling, is observed to take place over the canyon's head and along the coast; however, it is not well understood. We focus on upwelling/downwelling processes induced by the Loop Current and its associated eddy field using multi-decadal Hybrid Coordinate Ocean Model simulations. The Loop Current, part of the Gulf Stream, can develop northward into the Gulf through the Yucatan Channel and exit through the Florida Straits. It can reach the continental slope of the study domain and directly depress the isopycnals. Cyclonic eddies in front of the Loop Current also induce upwelling underneath. On the other hand, the Loop Current sometimes impinges on the West Florida Shelf and generates a high pressure disturbance, which travels northward along the shelf into the study region. Consequently, large-scale downwelling occurs across the continental slopes. Our analysis of sea surface height shows that the Loop Current pressure disturbance tends to propagate along the shallow isobaths of 100 to 300 m in the topographic wave direction from south of the West Florida Shelf to the Mississippi Delta. In addition, after shedding a large anticyclonic eddy, the Loop Current retracts southward and can touch the southeastern corner of the West Florida Shelf. This can result in a higher pressure disturbance, and therefore stronger large-scale downwelling in the DeSoto Canyon region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28610848','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28610848"><span>Modulating phonemic fluency performance in healthy subjects with transcranial magnetic stimulation over the left or right lateral frontal cortex.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smirni, Daniela; Turriziani, Patrizia; Mangano, Giuseppa Renata; Bracco, Martina; Oliveri, Massimiliano; Cipolotti, Lisa</p> <p>2017-07-28</p> <p>A growing body of evidence have suggested that non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), can improve the performance of aphasic patients in language tasks. For example, application of inhibitory rTMS or tDCs over the right frontal lobe of dysphasic patients resulted in improved naming abilities. Several studies have also reported that in healthy controls (HC) tDCS application over the left prefrontal cortex (PFC) improve performance in naming and semantic fluency tasks. The aim of this study was to investigate in HC, for the first time, the effects of inhibitory repetitive TMS (rTMS) over left and right lateral frontal cortex (BA 47) on two phonemic fluency tasks (FAS or FPL). 44 right-handed HCs were administered rTMS or sham over the left or right lateral frontal cortex in two separate testing sessions, with a 24h interval, followed by the two phonemic fluency tasks. To account for possible practice effects, an additional 22 HCs were tested on only the phonemic fluency task across two sessions with no stimulation. We found that rTMS-inhibition over the left lateral frontal cortex significantly worsened phonemic fluency performance when compared to sham. In contrast, rTMS-inhibition over the right lateral frontal cortex significantly improved phonemic fluency performance when compared to sham. These results were not accounted for practice effects. We speculated that rTMS over the right lateral frontal cortex may induce plastic neural changes to the left lateral frontal cortex by suppressing interhemispheric inhibitory interactions. This resulted in an increased excitability (disinhibition) of the contralateral unstimulated left lateral frontal cortex, consequently enhancing phonemic fluency performance. Conversely, application of rTMS over the left lateral frontal cortex may induce a temporary, virtual lesion, with effects similar to those reported in left frontal patients. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22421274','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22421274"><span>Upward gaze and head deviation with frontal eye field stimulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kaiboriboon, Kitti; Lüders, Hans O; Miller, Jonathan P; Leigh, R John</p> <p>2012-03-01</p> <p>Using electrical stimulation to the deep, most caudal part of the right frontal eye field (FEF), we demonstrate a novel pattern of vertical (upward) eye movement that was previously only thought possible by stimulating both frontal eye fields simultaneously. If stimulation was started when the subject looked laterally, the initial eye movement was back to the midline, followed by upward deviation. Our finding challenges current view of topological organisation in the human FEF and may have general implications for concepts of topological organisation of the motor cortex, since sustained stimulation also induced upward head movements as a component of the vertical gaze shift. [Published with video sequences].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9145E..59T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9145E..59T"><span>Two-motor direct drive control for elevation axis of telescope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, T.; Tan, Y.; Ren, G.</p> <p>2014-07-01</p> <p>Two-motor application has become a very attractive filed in important field which high performance is permitted to achieve of position, speed, and acceleration. In the elevation axis of telescope control system, two-motor direct drive is proposed to enhance the high performance of tracking control system. Although there are several dominant strengths such as low size of motors and high torsional structural dynamics, the synchronization control of two motors is a very difficult and important. In this paper, a multi-loop control technique base master-slave current control is used to synchronize two motors, including current control loop, speed control loop and position control loop. First, the direct drive function of two motors is modeled. Compared of single motor direct control system, the resonance frequency of two motor control systems is same; while the anti-resonance frequency of two motors control system is 1.414 times than those of sing motor system. Because of rigid coupling for direct drive, the speed of two motor of the system is same, and the synchronization of torque for motors is critical. The current master-slave control technique is effective to synchronize the torque, which the current loop of the master motors is tracked the other slave motor. The speed feedback into the input of current loop of the master motors. The experiments test the performance of the two motors drive system. The random tracking error is 0.0119" for the line trajectory of 0.01°/s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9685E..0LY','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9685E..0LY"><span>High precision locating control system based on VCM for Talbot lithography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song</p> <p>2016-10-01</p> <p>Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6984461-solar-burst-precursors-energy-buildup-microwave-wavelengths','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6984461-solar-burst-precursors-energy-buildup-microwave-wavelengths"><span>Solar-burst precursors and energy buildup at microwave wavelengths</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lang, K.R.; Willson, R.F.</p> <p></p> <p>High-resolution microwave observations (VLA) of heating and magnetic triggering in coronal loops are summarized. Magnetic changes that precede solar eruptions on time scales of tens of minutes involve primarily emerging coronal loops and the interaction of two or more loops. Thermal cyclotron lines were detected in coronal loops, suggesting the presence of hot current sheets that enhance emission from relatively thin layers of enhanced temperature and constant magnetic field. These current sheets may play a role in the excitation of solar bursts. A filament-associated source with a high brightness temperature and steep radiation spectrum occurs above a region of apparentlymore » weak photospheric field. This source might be attributed to currents that enhance coronal magnetic fields. Compact (phi=5 sec) transient sources with lifetimes of 30 to 60 minutes were also detected in regions of apparently weak photospheric field. VLA observations of coronal loops are compared with simultaneous SMM-XRP observations in conclusion.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018DSRI..134...80N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018DSRI..134...80N"><span>Mesopelagic fish assemblages across oceanic fronts: A comparison of three frontal systems in the southern California Current Ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Netburn, Amanda N.; Koslow, J. Anthony</p> <p>2018-04-01</p> <p>With strong horizontal gradients in physical properties, oceanic frontal regions can lead to disproportionately high biological productivity. We examined cross-frontal changes in mesopelagic fish assemblages at three separate frontal systems in the southern California Current Ecosystem (CCE) as part of the CCE Long Term Ecological Research program: the A-Front sampled in October 2008, the C-Front in June/July 2011, and the E-Front in July/August 2012. We analyzed the differential effects of front-associated regions on density and species composition of adult migratory and non-migratory fishes and larvae, and the larval to adult ratio (as a possible index of a population growth potential) for migratory and non-migratory species. The fronts did not have a strong effect on densities of any subset of the mesopelagic fish assemblage. The species composition of the vertical migratory fishes (and their larvae) was typically altered across fronts, with different assemblages present on either side of each front. The migratory assemblages at the fronts themselves were indistinguishable from those at the more productive side of the frontal system. In contrast, the assemblage composition of the non-migratory fishes was indistinguishable between regions across all three of the fronts. The differences between the Northern and Southern assemblages at the A-Front were primarily based on biogeographic provinces, while the assemblages at the E-Front were largely distinguishable by their oceanic or coastal-upwelling zone associations. These results generally confirm those of previous studies on frontal systems in the California Current Ecosystem and elsewhere. The ratio of larvae to adults, a potential index of population growth potential, was altered across two of the fronts for migratory species, elevated on the colder side of the A-Front and the warmer side of the E-Front. This finding suggests that fronts may be regions of enhanced reproduction. The larvae to adult ratio was indistinguishable for non-migratory species at all three frontal systems. The non-migratory component of the community was little influenced by the presence of a front, apparently because the regions of strongest horizontal spatial gradients were too shallow to be experienced directly. We speculate that there was no change in larval community composition and population growth index at the most dynamic frontal system (C-Front) compared to the other fronts surveyed because the frontal feature was short-lived relative to the time scale for population growth of the fish. However, the difference in results of the C-Front may also be due to a change in methodology used in this study. If mesoscale features such as fronts increase in frequency off the California coast in the future as predicted, they have the potential to alter population growth potential and restructure mesopelagic fish assemblages, which are dominated by migratory species.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012NuPhB.856..228B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012NuPhB.856..228B"><span>The singular behavior of one-loop massive QCD amplitudes with one external soft gluon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bierenbaum, Isabella; Czakon, Michał; Mitov, Alexander</p> <p>2012-03-01</p> <p>We calculate the one-loop correction to the soft-gluon current with massive fermions. This current is process independent and controls the singular behavior of one-loop massive QCD amplitudes in the limit when one external gluon becomes soft. The result derived in this work is the last missing process-independent ingredient needed for numerical evaluation of observables with massive fermions at hadron colliders at the next-to-next-to-leading order.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140002333','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140002333"><span>Simple Analytic Expressions for the Magnetic Field of a Circular Current Loop</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Simpson, James C.; Lane, John E.; Immer, Christopher D.; Youngquist, Robert C.</p> <p>2001-01-01</p> <p>Analytic expressions for the magnetic induction (magnetic flux density, B) of a simple planar circular current loop have been published in Cartesian and cylindrical coordinates [1,2], and are also known implicitly in spherical coordinates [3]. In this paper, we present explicit analytic expressions for B and its spatial derivatives in Cartesian, cylindrical, and spherical coordinates for a filamentary current loop. These results were obtained with extensive use of Mathematica "TM" and are exact throughout all space outside of the conductor. The field expressions reduce to the well-known limiting cases and satisfy V · B = 0 and V x B = 0 outside the conductor. These results are general and applicable to any model using filamentary circular current loops. Solenoids of arbitrary size may be easily modeled by approximating the total magnetic induction as the sum of those for the individual loops. The inclusion of the spatial derivatives expands their utility to magnetohydrodynamics where the derivatives are required. The equations can be coded into any high-level programming language. It is necessary to numerically evaluate complete elliptic integrals of the first and second kind, but this capability is now available with most programming packages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUSMOS34A..06J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUSMOS34A..06J"><span>Connectivity of the South Florida Coral Reef Ecosystem to Upstream Waters of the Western Caribbean and Gulf of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Birbriezca, L. C.; Vasquez-Yeomans, L.; Cordero, E. S.</p> <p>2008-05-01</p> <p>The coastal waters of south Florida, including the coral reefs of NOAA's Florida Keys National Marine Sanctuary (FKNMS), are directly connected by means of strong ocean currents with upstream waters of the western Caribbean Sea and the Gulf of Mexico. The Caribbean Current and the Loop Current provide a rapid conduit for transport from Mexican and Belizean coral reefs, located off the eastern shore of the Yucatan Peninsula, to nearshore regions of northern Cuba, Florida, and the Bahamas. Interdisciplinary cruise data collected in August 2002, March 2006 and January 2007 aboard the NOAA Ship Gordon Gunter, in combination with satellite-tracked surface drifter trajectories and remote sensing imagery, clearly show the highly variable and dynamic nature of the regional current regimes and provide a means of quantifying the potential pathways and transport rates of the coastal waters and their biological and chemical constituents from one region to another. Results from these cruises and ancillary data show that the study areas are connected with rapid transport time scales, and that frontal eddies and gyres play an important role in establishing the time and length scales of this connectivity. Such direct physical connectivity between the coral reef biota of these geographically separated spawning grounds via ocean currents may have an important influence on the degree of biological connectivity between regional larval populations. Initial analyses of ichthyoplankton surveys and inshore collections along the Yucatan mesoamerican reef suggest large scale variability in both local recruitment and large scale spatial distribution. Despite strong northward flowing currents, inshore collections indicate that local recruitment in some areas is strongly influenced by small scale circulation patterns. However, the distribution of spawning aggregations along the Yucatan coast suggests a larger role for the Caribbean Current. Determining the interactions between the larger scale circulation patterns and the smaller scale biological processes is a key research objective for understanding the observed regional population connections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAG...149..105S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAG...149..105S"><span>Simulation and analysis of the effect of ungrounded rectangular loop distributed parameters on TEM response</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Zongyang; Liu, Lihua; Xiao, Pan; Geng, Zhi; Liu, Fubo; Fang, Guangyou</p> <p>2018-02-01</p> <p>An ungrounded loop in the shallow subsurface transient electromagnetic surveys has been studied as the transmission line model for early turn-off stage, which can accurately explicate the early turn-off current waveform inconsistency along the loop. In this paper, the Gauss-Legendre numerical integration method is proposed for the first time to simulate and analyze the transient electromagnetic (TEM) response considering the different early turn-off current waveforms along the loop. During the simulation, these integral node positions along the loop are firstly determined by solving these zero points of Legendre polynomial, then the turn-off current of each node position is simulated by using the transfer function of the transmission line. Finally, the total TEM response is calculated by using the Gauss-Legendre integral formula. In addition, the comparison and analysis between the results affected by the distributed parameters and that generated by lumped parameters are presented. It is found that the TEM responses agree well with each other after current is thoroughly switched off, while the transient responses in turn-off stage are completely different. It means that the position dependence of the early turn-off current should be introduced into the forward model during the early response data interpretation of the shallow TEM detection of the ungrounded loop. Furthermore, the TEM response simulations at four geometric symmetry points are made. It shows that early responses of different geometric symmetry points are also inconsistent. The research on the influence of turn-off current position dependence on the early response of geometric symmetry point is of great significance to guide the layout of the survey lines and the transmitter location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/539759','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/539759"><span>Restoration of frontal contour with methyl methacrylate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schultz, R C</p> <p>1979-10-01</p> <p>Of the various materials currently available for reconstruction of bony frontal deformities, bone cement (methyl methacrylate) has been judged to be superior in its simplicity, reliability, and aesthetic potential. It is uniquely suited to reconstruction of irregular defects of the forehead. Its biological characteristics, advantages, and hazards are presented along with the techniques of its use. Clinical examples illustrate the results obtained with minimal preparation, surgical time, and morbidity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26946090','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26946090"><span>The role of left inferior frontal cortex during audiovisual speech perception in infants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Altvater-Mackensen, Nicole; Grossmann, Tobias</p> <p>2016-06-01</p> <p>In the first year of life, infants' speech perception attunes to their native language. While the behavioral changes associated with native language attunement are fairly well mapped, the underlying mechanisms and neural processes are still only poorly understood. Using fNIRS and eye tracking, the current study investigated 6-month-old infants' processing of audiovisual speech that contained matching or mismatching auditory and visual speech cues. Our results revealed that infants' speech-sensitive brain responses in inferior frontal brain regions were lateralized to the left hemisphere. Critically, our results further revealed that speech-sensitive left inferior frontal regions showed enhanced responses to matching when compared to mismatching audiovisual speech, and that infants with a preference to look at the speaker's mouth showed an enhanced left inferior frontal response to speech compared to infants with a preference to look at the speaker's eyes. These results suggest that left inferior frontal regions play a crucial role in associating information from different modalities during native language attunement, fostering the formation of multimodal phonological categories. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4032512','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4032512"><span>Meridional displacement of the Antarctic Circumpolar Current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gille, Sarah T.</p> <p>2014-01-01</p> <p>Observed long-term warming trends in the Southern Ocean have been interpreted as a sign of increased poleward eddy heat transport or of a poleward displacement of the entire Antarctic Circumpolar Current (ACC) frontal system. The two-decade-long record from satellite altimetry is an important source of information for evaluating the mechanisms governing these trends. While several recent studies have used sea surface height contours to index ACC frontal displacements, here altimeter data are instead used to track the latitude of mean ACC transport. Altimetric height contours indicate a poleward trend, regardless of whether they are associated with ACC fronts. The zonally averaged transport latitude index shows no long-term trend, implying that ACC meridional shifts determined from sea surface height might be associated with large-scale changes in sea surface height more than with localized shifts in frontal positions. The transport latitude index is weakly sensitive to the Southern Annular Mode, but is uncorrelated with El Niño/Southern Oscillation. PMID:24891396</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CSR...123....9K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CSR...123....9K"><span>Generation of periodic intrusions at Suruga Bay when the Kuroshio follows a large meandering path</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Katsumata, Takaaki</p> <p>2016-07-01</p> <p>We measured the vertical profiles of currents at the eastern mouth of the Suruga Bay using a moored acoustic Doppler current profiler (ADCP). Currents vertical profiles were found to be mostly barotropic in structure when intrusions occurred at the eastern mouth of the bay. Warm-water intrusions at the Suruga Bay and sea level elevations at the bay and at islands on the Izu Ridge located off the bay have the same period of 26 days. The temporal variation in the sea levels occurs in response to Kuroshio frontal waves, and the two phases are consistent. The sea level rise propagates from Hachijo Island to the Suruga Bay via Miyake Island and Kozu Island, i.e., from off the Suruga Bay to in or near the bay. The perturbation of the sea level along the Izu Ridge occurs as waves with a period of 26 days, a wavelength of 500 km, and a phase speed of 23 cm/sec. The propagated waves and those of the Kuroshio frontal waves have the same features. This means that the periodic inflows at the eastern mouth of the Suruga Bay are caused by the passage of Kuroshio frontal waves off the bay.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38..274S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38..274S"><span>Fronts and Thermohaline Structure of the Brazil Current Confluence System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Severov, Dimitri</p> <p></p> <p>and Thermohaline Structure of the Brazil Current Confluence System (BCCS) are stud-ied from climatic data, "Marathon Exp. Leg.8, 1984"data, and two Sea surface temperature (SST) data bases: "Meteor satellite"(1989-1994) and "ds277-Reynolds" (1981-2000).The South Atlantic Central Water (SACW) is divided in two main types: tropical (TW) and subtropical water (ST). Water masses, fronts, inter-frontal and frontal zones are analysed and classified: a) the water masses: Tropical Low-Salinity Water, Tropical Surface Water, Tropical Tropospheric Water, Subtropical Low-Salinity Water, Subtropical Surface Water, Subtropical Tropospheric Water. T,S characteristics of intermediate, deep and bottom water defined by different authors are confirmed and completed; b) the Inter-frontal Zones: Tropical/Brazil Current Zone, Sub-tropical Zone and Subantarctic Zone; c) the Frontal Zones: Subtropical, Subantarctic and Polar, and d) the Fronts: Subtropical Front of the Brazil Current, Principal Subtropical Front, North Subtropical Front, Subtropical Surface Front, South Subtropical Front, Subantarctic Surface Front, Subantarctic Front and Polar Front. Several stable T-S relationships are found below the friction layer and at the Fronts. The maximum gradient of the oceanographic characteris-tics occurs at the Brazil Current Front, which can be any of the subtropical fronts, depending on season. Minimum mean depth of the pycnocline coincides with the fronts of the BCCS, indicating the paths of low-salinity shelf waters into the open ocean. D. N. Severov (a) , V. Pshennikov (b) and A.V. Remeslo (c) a -Sección Oceanologé Facultad de Ciencia, Universidad de la Republica, Igué 4225, 11400 ıa, a Montevideo, Uruguay. Tel. (598-2) 525-8618, Fax (598-2) 525-8617, mail: dima@fcien.edu.uy b -Instituto de Física, Facultad de Ciencias, Universidad de la Republica, Igué 4225, 11400 Mon-a tevideo, Uruguay, mail: seva@fisica.edu.uy c -Atlantic Research Inst. For Fisheries Oceanology (Atlant/NIRO), Kaliningrad, Russia</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27771559','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27771559"><span>A neural mechanism of cognitive control for resolving conflict between abstract task rules.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sheu, Yi-Shin; Courtney, Susan M</p> <p>2016-12-01</p> <p>Conflict between multiple sensory stimuli or potential motor responses is thought to be resolved via bias signals from prefrontal cortex (PFC). However, population codes in the PFC also represent abstract information, such as task rules. How is conflict between active abstract representations resolved? We used functional neuroimaging to investigate the mechanism responsible for resolving conflict between abstract representations of task rules. Participants performed two different tasks based on a cue. We manipulated the degree of conflict at the task-rule level by training participants to associate the color and shape dimensions of the cue with either the same task rule (congruent cues) or different ones (incongruent cues). Phonological and semantic tasks were used in which performance depended on learned, abstract representations of information, rather than sensory features of the target stimulus or on any habituated stimulus-response associations. In addition, these tasks activate distinct regions that allowed us to measure magnitude of conflict between tasks. We found that incongruent cues were associated with increased activity in several cognitive control areas, including the inferior frontal gyrus, inferior parietal lobule, insula, and subcortical regions. Conflict between abstract representations appears to be resolved by rule-specific activity in the inferior frontal gyrus that is correlated with enhanced activity related to the relevant information. Furthermore, multi-voxel pattern analysis of the activity in the inferior frontal gyrus was shown to carry information about both the currently relevant rule (semantic/phonological) and the currently relevant cue context (color/shape). Similar to models of attentional selection of conflicting sensory or motor representations, the current findings indicate part of the frontal cortex provides a bias signal, representing task rules, that enhances task-relevant information. However, the frontal cortex can also be the target of these bias signals in order to enhance abstract representations that are independent of particular stimuli or motor responses. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5127732','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5127732"><span>A neural mechanism of cognitive control for resolving conflict between abstract task rules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sheu, Yi-Shin; Courtney, Susan M.</p> <p>2016-01-01</p> <p>Conflict between multiple sensory stimuli or potential motor responses is thought to be resolved via bias signals from prefrontal cortex. However, population codes in the prefrontal cortex also represent abstract information, such as task rules. How is conflict between active abstract representations resolved? We used functional neuroimaging to investigate the mechanism responsible for resolving conflict between abstract representations of task rules. Participants performed two different tasks based on a cue. We manipulated the degree of conflict at the task-rule level by training participants to associate the color and shape dimensions of the cue with either the same task rule (congruent cues) or different ones (incongruent cues). Phonological and semantic tasks were used in which performance depended on learned, abstract representations of information, rather than sensory features of the target stimulus or on any habituated stimulus-response associations. In addition, these tasks activate distinct regions that allowed us to measure magnitude of conflict between tasks. We found that incongruent cues were associated with increased activity in several cognitive control areas, including the inferior frontal gyrus, inferior parietal lobule, insula, and subcortical regions. Conflict between abstract representations appears to be resolved by rule-specific activity in the inferior frontal gyrus that is correlated with enhanced activity related to the relevant information. Furthermore, multivoxel pattern analysis of the activity in the inferior frontal gyrus was shown to carry information about both the currently relevant rule (semantic/phonological) and the currently relevant cue context (color/shape). Similar to models of attentional selection of conflicting sensory or motor representations, the current findings indicate part of the frontal cortex provides a bias signal, representing task rules, that enhances task-relevant information. However, the frontal cortex can also be the target of these bias signals in order to enhance abstract representations that are independent of particular stimuli or motor responses. PMID:27771559</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2944406','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2944406"><span>Modality Specific Cerebro-Cerebellar Activations in Verbal Working Memory: An fMRI Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kirschen, Matthew P.; Chen, S. H. Annabel; Desmond, John E.</p> <p>2010-01-01</p> <p>Verbal working memory (VWM) engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters) and modality (auditory and visual) dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44), insular, cingulate (BA 32), and bilateral inferior parietal/supramarginal (BA 40) regions, as well as in bilateral superior (HVI) and right inferior (HVIII) cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI) cerebellum, bilateral occipital (BA19) and left parietal (BA7/40) cortex while auditory presentation showed robust activations predominately in bilateral temporal regions (BA21/22). In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load. PMID:20714061</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27001844','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27001844"><span>Direction of information flow in large-scale resting-state networks is frequency-dependent.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hillebrand, Arjan; Tewarie, Prejaas; van Dellen, Edwin; Yu, Meichen; Carbo, Ellen W S; Douw, Linda; Gouw, Alida A; van Straaten, Elisabeth C W; Stam, Cornelis J</p> <p>2016-04-05</p> <p>Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-to-posterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequency-dependent reentry loops that are dominated by flow from parieto-occipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20714061','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20714061"><span>Modality specific cerebro-cerebellar activations in verbal working memory: an fMRI study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kirschen, Matthew P; Chen, S H Annabel; Desmond, John E</p> <p>2010-01-01</p> <p>Verbal working memory (VWM) engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters) and modality (auditory and visual) dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44), insular, cingulate (BA 32), and bilateral inferior parietal/supramarginal (BA 40) regions, as well as in bilateral superior (HVI) and right inferior (HVIII) cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI) cerebellum, bilateral occipital (BA19) and left parietal (BA7/40) cortex while auditory presentation showed robust activations predominantly in bilateral temporal regions (BA21/22). In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS51A2016W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS51A2016W"><span>Climatology and variability of SST frontal activity in Eastern Pacific Ocean over the past decade</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Y.; Yuan, Y.</p> <p>2016-12-01</p> <p>Distribution of sea surface temperature (SST) fronts are derived from high-resolution MODIS dataset in Eastern Pacific Ocean from 2003 to 2015. Daily distribution of frontal activities shows detailed feature and movement of front and the discontinuity of the track of front cause by cloud coverage. Monthly frontal probability is calculated to investigate corresponding climatology and variability. Frontal probability is generally higher along the coast and decreasing offshore. The frontal activity could extend few hundreds of kilometers near the major capes and central Pacific Ocean. SST gradient associated with front is changing over different latitude with stronger gradient near the mid-latitude and under major topographic effects near tropics. Corresponding results from empirical orthogonal functions (EOF) shows major variability of SST front is found in mid-latitude and central Pacific Ocean. The temporal variability captures a strong interannual and annual variability in those regions, while Intraannual variability are found more important at small scale near major capes and topographic features. The frontal variability is highly impacted by wind stress, upwelling, air-sea interaction, current, topography, eddy activity, El Nino along with other factors. And front plays an importance role in influencing the distribution of nutrients, the activity of fisheries and the development of ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900000318&hterms=Permanent+magnet+motors&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DPermanent%2Bmagnet%2Bmotors','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900000318&hterms=Permanent+magnet+motors&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DPermanent%2Bmagnet%2Bmotors"><span>Circuit Regulates Speed Of dc Motor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weaver, Charles; Padden, Robin; Brown, Floyd A., Jr.</p> <p>1990-01-01</p> <p>Driving circuit regulates speed of small dc permanent-magnet motor in tape recorder. Two nested feedback loops maintain speed within 1 percent of constant value. Inner loop provides coarse regulation, while outer loop removes most of variation in speed that remains in the presence of regulation by the inner loop. Compares speed of motor with commanded speed and adjusts current supplied to motor accordingly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16497116','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16497116"><span>Neural correlate of spatial presence in an arousing and noninteractive virtual reality: an EEG and psychophysiology study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baumgartner, Thomas; Valko, Lilian; Esslen, Michaela; Jäncke, Lutz</p> <p>2006-02-01</p> <p>Using electroencephalography (EEG), psychophysiology, and psychometric measures, this is the first study which investigated the neurophysiological underpinnings of spatial presence. Spatial presence is considered a sense of being physically situated within a spatial environment portrayed by a medium (e.g., television, virtual reality). Twelve healthy children and 11 healthy adolescents were watching different virtual roller coaster scenarios. During a control session, the roller coaster cab drove through a horizontal roundabout track. The following realistic roller coaster rides consisted of spectacular ups, downs, and loops. Low-resolution brain electromagnetic tomography (LORETA) and event-related desynchronization (ERD) were used to analyze the EEG data. As expected, we found that, compared to the control condition, experiencing a virtual roller coaster ride evoked in both groups strong SP experiences, increased electrodermal reactions, and activations in parietal brain areas known to be involved in spatial navigation. In addition, brain areas that receive homeostatic afferents from somatic and visceral sensations of the body were strongly activated. Most interesting, children (as compared to adolescents) reported higher spatial presence experiences and demonstrated a different frontal activation pattern. While adolescents showed increased activation in prefrontal areas known to be involved in the control of executive functions, children demonstrated a decreased activity in these brain regions. Interestingly, recent neuroanatomical and neurophysiological studies have shown that the frontal brain continues to develop to adult status well into adolescence. Thus, the result of our study implies that the increased spatial presence experience in children may result from the not fully developed control functions of the frontal cortex.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28642166','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28642166"><span>Frontal Alpha Oscillations and Attentional Control: A Virtual Reality Neurofeedback Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Berger, Anna M; Davelaar, Eddy J</p> <p>2018-05-15</p> <p>Two competing views about alpha oscillations suggest that cortical alpha reflect either cortical inactivity or cortical processing efficiency. We investigated the role of alpha oscillations in attentional control, as measured with a Stroop task. We used neurofeedback to train 22 participants to increase their level of alpha amplitude. Based on the conflict/control loop theory, we selected to train prefrontal alpha and focus on the Gratton effect as an index of deployment of attentional control. We expected an increase or a decrease in the Gratton effect with increase in neural learning depending on whether frontal alpha oscillations reflect cortical idling or enhanced processing efficiency, respectively. In order to induce variability in neural learning beyond natural occurring individual differences, we provided half of the participants with feedback on alpha amplitude in a 3-dimensional (3D) virtual reality environment and the other half received feedback in a 2D environment. Our results showed variable neural learning rates, with larger rates in the 3D compared to the 2D group, corroborating prior evidence of individual differences in EEG-based learning and the influence of a virtual environment. Regression analyses revealed a significant association between the learning rate and changes on deployment of attentional control, with larger learning rates being associated with larger decreases in the Gratton effect. This association was not modulated by feedback medium. The study supports the view of frontal alpha oscillations being associated with efficient neurocognitive processing and demonstrates the utility of neurofeedback training in addressing theoretical questions in the non-neurofeedback literature. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26951244','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26951244"><span>Loop Diuretics in the Treatment of Hypertension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Malha, Line; Mann, Samuel J</p> <p>2016-04-01</p> <p>Loop diuretics are not recommended in current hypertension guidelines largely due to the lack of outcome data. Nevertheless, they have been shown to lower blood pressure and to offer potential advantages over thiazide-type diuretics. Torsemide offers advantages of longer duration of action and once daily dosing (vs. furosemide and bumetanide) and more reliable bioavailability (vs. furosemide). Studies show that the previously employed high doses of thiazide-type diuretics lower BP more than furosemide. Loop diuretics appear to have a preferable side effect profile (less hyponatremia, hypokalemia, and possibly less glucose intolerance). Studies comparing efficacy and side effect profiles of loop diuretics with the lower, currently widely prescribed, thiazide doses are needed. Research is needed to fill gaps in knowledge and common misconceptions about loop diuretic use in hypertension and to determine their rightful place in the antihypertensive arsenal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23062585','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23062585"><span>Further characterisation of the functional neuroanatomy associated with prosodic emotion decoding.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mitchell, Rachel L C</p> <p>2013-06-01</p> <p>Current models of prosodic emotion comprehension propose a three stage cognition mediated by temporal lobe auditory regions through to inferior and orbitofrontal regions. Cumulative evidence suggests that its mediation may be more flexible though, with a facility to respond in a graded manner based on the need for executive control. The location of this fine-tuning system is unclear, as is its similarity to the cognitive control system. In the current study, need for executive control was manipulated in a block-design functional MRI study by systematically altering the proportion of incongruent trials across time, i.e., trials for which participants identified prosodic emotions in the face of conflicting lexico-semantic emotion cues. Resultant Blood Oxygenation Level Dependent contrast data were analysed according to standard procedures using Statistical Parametric Mapping v8 (Ashburner et al., 2009). In the parametric analyses, superior (medial) frontal gyrus activity increased linearly with increased need for executive control. In the separate analyses of each level of incongruity, results suggested that the baseline prosodic emotion comprehension system was sufficient to deal with low proportions of incongruent trials, whereas a more widespread frontal lobe network was required for higher proportions. These results suggest an executive control system for prosodic emotion comprehension exists which has the capability to recruit superior (medial) frontal gyrus in a graded manner and other frontal regions once demand exceeds a certain threshold. The need to revise current models of prosodic emotion comprehension and add a fourth processing stage are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950037893&hterms=missing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmissing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950037893&hterms=missing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmissing"><span>More missing stellar opacity?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stothers, Richard B.; Chin, Chao-Wen</p> <p>1994-01-01</p> <p>Observational data for Population I stars have shown that blue loops on the Hertzsprung-Russell (H-R) diagram form for stellar masses as low as approximately 4 solar mass. However, current state-of-the-art stellar models, unlike the older ones that were based on smaller opacities, fail to loop out of the red-giant region during core helium burning for masses less than 7 solar mass. A possible explanation is that the currently used Livermore opacities need to be further increased, by at least 70%, at temperatures characteristic of the base of the outer convection zone, around 1 x 10(exp 6) K. Indeed, no other suggested remedy seems to yield a blue loop at the lowest observed loop luminosities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=short+AND+circuit&pg=5&id=EJ877696','ERIC'); return false;" href="https://eric.ed.gov/?q=short+AND+circuit&pg=5&id=EJ877696"><span>Theoretical Exploration of the Neural Bases of Behavioural Disinhibition, Apathy and Executive Dysfunction in Preclinical Alzheimer's Disease in People with Down's Syndrome: Potential Involvement of Multiple Frontal-Subcortical Neuronal Circuits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ball, S. L.; Holland, A. J.; Watson, P. C.; Huppert, F. A.</p> <p>2010-01-01</p> <p>Background: Recent research has suggested a specific impairment in frontal-lobe functioning in the preclinical stages of Alzheimer's disease (AD) in people with Down's syndrome (DS), characterised by prominent changes in personality or behaviour. The aim of the current paper is to explore whether particular kinds of change (namely executive…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MsT..........4V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MsT..........4V"><span>Energy Conversion Loop: A Testbed for Nuclear Hybrid Energy Systems Use in Biomass Pyrolysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Verner, Kelley M.</p> <p></p> <p>Nuclear hybrid energy systems are a possible solution for contemporary energy challenges. Nuclear energy produces electricity without greenhouse gas emissions. However, nuclear power production is not as flexible as electrical grids demand and renewables create highly variable electricity. Nuclear hybrid energy systems are able to address both of these problems. Wasted heat can be used in processes such as desalination, hydrogen production, or biofuel production. This research explores the possible uses of nuclear process heat in bio-oil production via biomass pyrolysis. The energy conversion loop is a testbed designed and built to mimic the heat from a nuclear reactor. Small scale biomass pyrolysis experiments were performed and compared to results from the energy conversion loop tests to determine future pyrolysis experimentation with the energy conversion loop. Further improvements must be made to the energy conversion loop before more complex experiments may be performed. The current conditions produced by the energy conversion loop are not conducive for current biomass pyrolysis experimentation.tion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28622530','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28622530"><span>Brain network dynamics in the human articulatory loop.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nishida, Masaaki; Korzeniewska, Anna; Crone, Nathan E; Toyoda, Goichiro; Nakai, Yasuo; Ofen, Noa; Brown, Erik C; Asano, Eishi</p> <p>2017-08-01</p> <p>The articulatory loop is a fundamental component of language function, involved in the short-term buffer of auditory information followed by its vocal reproduction. We characterized the network dynamics of the human articulatory loop, using invasive recording and stimulation. We measured high-gamma activity 70-110 Hz recorded intracranially when patients with epilepsy either only listened to, or listened to and then reproduced two successive tones by humming. We also conducted network analyses, and analyzed behavioral responses to cortical stimulation. Presentation of the initial tone elicited high-gamma augmentation bilaterally in the superior-temporal gyrus (STG) within 40ms, and in the precentral and inferior-frontal gyri (PCG and IFG) within 160ms after sound onset. During presentation of the second tone, high-gamma augmentation was reduced in STG but enhanced in IFG. The task requiring tone reproduction further enhanced high-gamma augmentation in PCG during and after sound presentation. Event-related causality (ERC) analysis revealed dominant flows within STG immediately after sound onset, followed by reciprocal interactions involving PCG and IFG. Measurement of cortico-cortical evoked-potentials (CCEPs) confirmed connectivity between distant high-gamma sites in the articulatory loop. High-frequency stimulation of precentral high-gamma sites in either hemisphere induced speech arrest, inability to control vocalization, or forced vocalization. Vocalization of tones was accompanied by high-gamma augmentation over larger extents of PCG. Bilateral PCG rapidly and directly receives feed-forward signals from STG, and may promptly initiate motor planning including sub-vocal rehearsal for short-term buffering of auditory stimuli. Enhanced high-gamma augmentation in IFG during presentation of the second tone may reflect high-order processing of the tone sequence. The articulatory loop employs sustained reciprocal propagation of neural activity across a network of cortical sites with strong neurophysiological connectivity. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ISTSP...8..802C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ISTSP...8..802C"><span>Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training With Memory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, Junil; Love, David J.; Bidigare, Patrick</p> <p>2014-10-01</p> <p>The concept of deploying a large number of antennas at the base station, often called massive multiple-input multiple-output (MIMO), has drawn considerable interest because of its potential ability to revolutionize current wireless communication systems. Most literature on massive MIMO systems assumes time division duplexing (TDD), although frequency division duplexing (FDD) dominates current cellular systems. Due to the large number of transmit antennas at the base station, currently standardized approaches would require a large percentage of the precious downlink and uplink resources in FDD massive MIMO be used for training signal transmissions and channel state information (CSI) feedback. To reduce the overhead of the downlink training phase, we propose practical open-loop and closed-loop training frameworks in this paper. We assume the base station and the user share a common set of training signals in advance. In open-loop training, the base station transmits training signals in a round-robin manner, and the user successively estimates the current channel using long-term channel statistics such as temporal and spatial correlations and previous channel estimates. In closed-loop training, the user feeds back the best training signal to be sent in the future based on channel prediction and the previously received training signals. With a small amount of feedback from the user to the base station, closed-loop training offers better performance in the data communication phase, especially when the signal-to-noise ratio is low, the number of transmit antennas is large, or prior channel estimates are not accurate at the beginning of the communication setup, all of which would be mostly beneficial for massive MIMO systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4993788','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4993788"><span>Executive Dysfunctions: The Role in Attention Deficit Hyperactivity and Post-traumatic Stress Neuropsychiatric Disorders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Martínez, Lía; Prada, Edward; Satler, Corina; Tavares, Maria C. H.; Tomaz, Carlos</p> <p>2016-01-01</p> <p>Executive functions (EFs) is an umbrella term for various cognitive processes controlled by a complex neural activity, which allow the production of different types of behaviors seeking to achieve specific objectives, one of them being inhibitory control. There is a wide consensus that clinical and behavioral alterations associated with EF, such as inhibitory control, are present in various neuropsychiatric disorders. This paper reviews the research literature on the relationship between executive dysfunction, frontal-subcortical neural circuit changes, and the psychopathological processes associated with attention deficit hyperactivity disorder (ADHD) and post-traumatic stress disorder (PTSD). A revision on the role of frontal-subcortical neural circuits and their presumable abnormal functioning and the high frequency of neuropsychiatric symptoms could explain the difficulties with putting effector mechanisms into action, giving individuals the necessary tools to act efficiently in their environment. Although, neuronal substrate data about ADHD and PTSD has been reported in the literature, it is isolated. Therefore, this review highlights the overlapping of neural substrates in the symptomatology of ADHD and PTSD disorders concerning EFs, especially in the inhibitory component. Thus, the changes related to impaired EF that accompany disorders like ADHD and PTSD could be explained by disturbances that have a direct or indirect impact on the functioning of these loops. Initially, the theoretical model of EF according to current neuropsychology will be presented, focusing on the inhibitory component. In a second stage, this component will be analyzed for each of the disorders of interest, considering the clinical aspects, the etiology and the neurobiological basis. Additionally, commonalities between the two neuropsychiatric conditions will be taken into consideration from the perspectives of cognitive and emotional inhibition. Finally, the implications and future prospects for research and interventions in the area will be outlined, with the intention of contributing scientific reference information that encompasses the knowledge and understanding of executive dysfunction and its relationship with these treated disorders. PMID:27602003</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18606291','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18606291"><span>The influence of damage distribution on serious brain injury in occupants in frontal motor vehicle crashes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Coimbra, Raul; Conroy, Carol; Hoyt, David B; Pacyna, Sharon; May, MarSue; Erwin, Steve; Tominaga, Gail; Kennedy, Frank; Sise, Michael; Velky, Tom</p> <p>2008-07-01</p> <p>In spite of improvements in motor vehicle safety systems and crashworthiness, motor vehicle crashes remain one of the leading causes of brain injury. The purpose of this study was to determine if the damage distribution across the frontal plane affected brain injury severity of occupants in frontal impacts. Occupants in "head on" frontal impacts with a Principal Direction of Force (PDOF) equal to 11, 12, or 1o'clock who sustained serious brain injury were identified using the Crash Injury Research Engineering Network (CIREN) database. Impacts were further classified based on the damage distribution across the frontal plane as distributed, offset, and extreme offset (corner). Overall, there was no significant difference for brain injury severity (based on Glasgow Coma Scale<9, or brain injury AIS>2) comparing occupants in the different impact categories. For occupants in distributed frontal impacts, safety belt use was protective (odds ratio (OR)=0.61) and intrusion at the occupant's seat position was four times more likely to result in severe (Glasgow Coma Scale (GCS)<9) brain injury (OR=4.35). For occupants in offset frontal impacts, again safety belt use was protective against severe brain injury (OR=0.25). Possibly due to the small number of brain-injured occupants in corner impacts, safety belts did not significantly protect against increased brain injury severity during corner impacts. This study supports the importance of safety belt use to decrease brain injury severity for occupants in distributed and offset frontal crashes. It also illustrates how studying "real world" crashes may provide useful information on occupant injuries under impact circumstances not currently covered by crash testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1231669-livermore-compiler-analysis-loop-suite','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1231669-livermore-compiler-analysis-loop-suite"><span>Livermore Compiler Analysis Loop Suite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hornung, R. D.</p> <p>2013-03-01</p> <p>LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermoremore » Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhPl...24k3504L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhPl...24k3504L"><span>Spatial-temporal evolution of self-organized loop-patterns on a water surface and a diffuse discharge in the gap</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Xuechen; Geng, Jinling; Jia, Pengying; Zhang, Panpan; Zhang, Qi; Li, Yaru</p> <p>2017-11-01</p> <p>Excited by an alternating current voltage, a patterned discharge and a diffuse discharge are generated in a needle to liquid configuration. Using an intensified charge-coupled device (ICCD), temporal evolution of the discharge between the two electrodes is investigated for the diffuse mode and the patterned mode, respectively. For the diffuse mode, the positive discharge is in a glow regime, and the negative discharge is in a Townsend discharge regime. For the patterned mode, the discharge always belongs to the Townsend discharge regime. Moreover, in the patterned mode, various patterns including the single loop, single loop with the surrounding corona, triple loops, and concentric loops with a central spot are observed on the water surface with the increasing positive peak-value of the applied voltage (Upp). Temporally resolved images of the loop-patterns are captured on the water surface. From the electrical measurements and the ICCD imaging, it is found that the loop pattern emerges after the discharge bridges the two electrodes. Then, it begins to evolve and finally degenerates with the decrease in the discharge current. The pattern does not disappear until the discharge quenches. Formation of the loop-patterns is attributed to the role of negative ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27143601','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27143601"><span>Modulation of Total Sleep Time by Transcranial Direct Current Stimulation (tDCS).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Frase, Lukas; Piosczyk, Hannah; Zittel, Sulamith; Jahn, Friederike; Selhausen, Peter; Krone, Lukas; Feige, Bernd; Mainberger, Florian; Maier, Jonathan G; Kuhn, Marion; Klöppel, Stefan; Normann, Claus; Sterr, Annette; Spiegelhalder, Kai; Riemann, Dieter; Nitsche, Michael A; Nissen, Christoph</p> <p>2016-09-01</p> <p>Arousal and sleep are fundamental physiological processes, and their modulation is of high clinical significance. This study tested the hypothesis that total sleep time (TST) in humans can be modulated by the non-invasive brain stimulation technique transcranial direct current stimulation (tDCS) targeting a 'top-down' cortico-thalamic pathway of sleep-wake regulation. Nineteen healthy participants underwent a within-subject, repeated-measures protocol across five nights in the sleep laboratory with polysomnographic monitoring (adaptation, baseline, three experimental nights). tDCS was delivered via bi-frontal target electrodes and bi-parietal return electrodes before sleep (anodal 'activation', cathodal 'deactivation', and sham stimulation). Bi-frontal anodal stimulation significantly decreased TST, compared with cathodal and sham stimulation. This effect was location specific. Bi-frontal cathodal stimulation did not significantly increase TST, potentially due to ceiling effects in good sleepers. Exploratory resting-state EEG analyses before and after the tDCS protocols were consistent with the notion of increased cortical arousal after anodal stimulation and decreased cortical arousal after cathodal stimulation. The study provides proof-of-concept that TST can be decreased by non-invasive bi-frontal anodal tDCS in healthy humans. Further elucidating the 'top-down' pathway of sleep-wake regulation is expected to increase knowledge on the fundamentals of sleep-wake regulation and to contribute to the development of novel treatments for clinical conditions of disturbed arousal and sleep.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4987856','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4987856"><span>Modulation of Total Sleep Time by Transcranial Direct Current Stimulation (tDCS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Frase, Lukas; Piosczyk, Hannah; Zittel, Sulamith; Jahn, Friederike; Selhausen, Peter; Krone, Lukas; Feige, Bernd; Mainberger, Florian; Maier, Jonathan G; Kuhn, Marion; Klöppel, Stefan; Normann, Claus; Sterr, Annette; Spiegelhalder, Kai; Riemann, Dieter; Nitsche, Michael A; Nissen, Christoph</p> <p>2016-01-01</p> <p>Arousal and sleep are fundamental physiological processes, and their modulation is of high clinical significance. This study tested the hypothesis that total sleep time (TST) in humans can be modulated by the non-invasive brain stimulation technique transcranial direct current stimulation (tDCS) targeting a ‘top-down' cortico-thalamic pathway of sleep-wake regulation. Nineteen healthy participants underwent a within-subject, repeated-measures protocol across five nights in the sleep laboratory with polysomnographic monitoring (adaptation, baseline, three experimental nights). tDCS was delivered via bi-frontal target electrodes and bi-parietal return electrodes before sleep (anodal ‘activation', cathodal ‘deactivation', and sham stimulation). Bi-frontal anodal stimulation significantly decreased TST, compared with cathodal and sham stimulation. This effect was location specific. Bi-frontal cathodal stimulation did not significantly increase TST, potentially due to ceiling effects in good sleepers. Exploratory resting-state EEG analyses before and after the tDCS protocols were consistent with the notion of increased cortical arousal after anodal stimulation and decreased cortical arousal after cathodal stimulation. The study provides proof-of-concept that TST can be decreased by non-invasive bi-frontal anodal tDCS in healthy humans. Further elucidating the ‘top-down' pathway of sleep-wake regulation is expected to increase knowledge on the fundamentals of sleep-wake regulation and to contribute to the development of novel treatments for clinical conditions of disturbed arousal and sleep. PMID:27143601</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740013187','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740013187"><span>High speed shutter. [electrically actuated ribbon loop for shuttering optical or fluid passageways</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcclenahan, J. O. (Inventor)</p> <p>1974-01-01</p> <p>A shutter element is described which is formed by a loop of an electrically conductive ribbon disposed adjacent to the end of a passageway to be shuttered. The shuttered end of the passageway is cut at an acute angle. The two leg portions of the ribbon loop are closely spaced to each other and disposed in a plane parallel to the axis of the passageway. A pulse of high current is switched through the loop to cause the current flowing in opposite directions through adjacent leg portions of the ribbon. This produces a magnetically induced pressure on one of the legs of the ribbon forcing the leg over the end of the passageway in gas tight sealing engagement, and thereby blocking passageway.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1014172','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1014172"><span>Robotic guarded motion system and method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Bruemmer, David J.</p> <p>2010-02-23</p> <p>A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for repeating, on each iteration through an event timing loop, the acts of defining an event horizon, detecting a range to obstacles around the robot, and testing for an event horizon intrusion. Defining the event horizon includes determining a distance from the robot that is proportional to a current velocity of the robot and testing for the event horizon intrusion includes determining if any range to the obstacles is within the event horizon. Finally, on each iteration through the event timing loop, the method includes reducing the current velocity of the robot in proportion to a loop period of the event timing loop if the event horizon intrusion occurs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4274981','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4274981"><span>Planning Following Stroke: A Relational Complexity Approach Using the Tower of London</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Andrews, Glenda; Halford, Graeme S.; Chappell, Mark; Maujean, Annick; Shum, David H. K.</p> <p>2014-01-01</p> <p>Planning on the 4-disk version of the Tower of London (TOL4) was examined in stroke patients and unimpaired controls. Overall TOL4 solution scores indicated impaired planning in the frontal stroke but not non-frontal stroke patients. Consistent with the claim that processing the relations between current states, intermediate states, and goal states is a key process in planning, the domain-general relational complexity metric was a good indicator of the experienced difficulty of TOL4 problems. The relational complexity metric shared variance with task-specific metrics of moves to solution and search depth. Frontal stroke patients showed impaired planning compared to controls on problems at all three complexity levels, but at only two of the three levels of moves to solution, search depth and goal ambiguity. Non-frontal stroke patients showed impaired planning only on the most difficult quaternary-relational and high search depth problems. An independent measure of relational processing (viz., Latin square task) predicted TOL4 solution scores after controlling for stroke status and location, and executive processing (Trail Making Test). The findings suggest that planning involves a domain-general capacity for relational processing that depends on the frontal brain regions. PMID:25566042</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25372789','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25372789"><span>Fueling plankton production by a meandering frontal jet: a case study for the Alboran Sea (Western Mediterranean).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oguz, Temel; Macias, Diego; Garcia-Lafuente, Jesus; Pascual, Ananda; Tintore, Joaquin</p> <p>2014-01-01</p> <p>A three dimensional biophysical model was employed to illustrate the biological impacts of a meandering frontal jet, in terms of efficiency and persistency of the autotrophic frontal production, in marginal and semi-enclosed seas. We used the Alboran Sea of the Western Mediterranean as a case study. Here, a frontal jet with a width of 15-20 km, characterized by the relatively low density Atlantic water mass, flows eastward within the upper 100 m as a marked meandering current around the western and the eastern anticyclonic gyres prior to its attachment to the North African shelf/slope topography of the Algerian basin. Its inherent nonlinearity leads to the development of a strong ageostrophic cross-frontal circulation that supplies nutrients into the nutrient-starved euphotic layer and stimulates phytoplankton growth along the jet. Biological production is larger in the western part of the basin and decreases eastwards with the gradual weakening of the jet. The higher production at the subsurface levels suggests that the Alboran Sea is likely more productive than predicted by the satellite chlorophyll data. The Mediterranean water mass away from the jet and the interiors of the western and eastern anticyclonic gyres remain unproductive.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3145658','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3145658"><span>Prefrontal Asymmetry and Parent-Rated Temperament in Infants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>LoBue, Vanessa; Coan, James A.; Thrasher, Cat; DeLoache, Judy S.</p> <p>2011-01-01</p> <p>Indicators of temperament appear early in infancy and remain relatively stable over time. Despite a great deal of interest in biological indices of temperament, most studies of infant temperament rely on parental reports or behavioral tasks. Thus, the extent to which commonly used temperament measures relate to potential biological indicators of infant temperament is still relatively unknown. The current experiment examines the relationship between a common parental report measure of temperament – the Infant Behavior Questionnaire – Revised (IBQ-R) – and measures of frontal EEG asymmetry in infants. We examined associations between the subscales of the IBQ-R and frontal EEG asymmetry scores recorded during a combined series of neutral attentional and putatively emotional recording conditions in infants between 7 and 9 months of age. We predicted that approach-related subscales of the IBQ-R (e.g., Approach, Soothability) would be related to greater left prefrontal asymmetry, while withdrawal-related subscales (e.g., Distress to Limitations, Fear, Falling Reactivity, Perceptual Sensitivity) would be related to greater right prefrontal asymmetry. In the mid- and lateral-frontal regions, Approach, Distress to Limitations, Fear, Soothability, and Perceptual Sensitivity were generally associated with greater left frontal activation (rs≥.23, ps<0.05), while only Falling Reactivity was associated with greater right frontal activation (rs≤−.44, ps<0.05). Results suggest that variability in frontal EEG asymmetry is robustly associated with parental report measures of temperament in infancy. PMID:21829482</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA609752','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA609752"><span>Colored Dissolved Organic Matter Dynamics in the Northern Gulf of Mexico from Ocean Color and Numerical Model Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-07-01</p> <p>Various factors such as winds , river discharges, and detached eddies from the Loop Current can contribute to the generation of currents over the...component of transport over the inner shelf is produced by wind (40–48%), with river discharge (28–33%) and Loop Current (LC) eddies (19–33...accounting for the rest (Oey, 1995). Two seasonal current patterns that depend on wind characteristics are distinguishable over the shelf (Cho, Reid, and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...40a2066Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...40a2066Z"><span>Study of a control strategy for grid side converter in doubly- fed wind power system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, D. J.; Tan, Z. L.; Yuan, F.; Wang, Q. Y.; Ding, M.</p> <p>2016-08-01</p> <p>The grid side converter is an important part of the excitation system of doubly-fed asynchronous generator used in wind power system. As a three-phase voltage source PWM converter, it can not only transfer slip power in the form of active power, but also adjust the reactive power of the grid. This paper proposed a control approach for improving its performance. In this control approach, the dc voltage is regulated by a sliding mode variable structure control scheme and current by a variable structure controller based on the input output linearization. The theoretical bases of the sliding mode variable structure control were introduced, and the stability proof was presented. Switching function of the system has been deduced, sliding mode voltage controller model has been established, and the output of the outer voltage loop is the instruction of the inner current loop. Affine nonlinear model of two input two output equations on d-q axis for current has been established its meeting conditions of exact linearization were proved. In order to improve the anti-jamming capability of the system, a variable structure control was added in the current controller, the control law was deduced. The dual-loop control with sliding mode control in outer voltage loop and linearization variable structure control in inner current loop was proposed. Simulation results demonstrate the effectiveness of the proposed control strategy even during the dc reference voltage and system load variation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2718547','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2718547"><span>Mapping interference resolution across task domains: A shared control process in left inferior frontal gyrus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nelson, James K.; Reuter-Lorenz, Patricia A.; Persson, Jonas; Sylvester, Ching-Yune C.; Jonides, John</p> <p>2009-01-01</p> <p>Work in functional neuroimaging has mapped interference resolution processing onto left inferior frontal regions for both verbal working memory and a variety of semantic processing tasks. The proximity of the identified regions from these different tasks suggests the existence of a common, domain-general interference resolution mechanism. The current research specifically tests this idea in a within-subject design using fMRI to assess the activation associated with variable selection requirements in a semantic retrieval task (verb generation) and a verbal working memory task with a trial-specific proactive interference manipulation (recent-probes). High interference trials on both tasks were associated with activity in the midventrolateral region of the left inferior frontal gyrus, and the regions activated in each task strongly overlapped. The results indicate that an elemental component of executive control associated with interference resolution during retrieval from working memory and from semantic memory can be mapped to a common portion of the left inferior frontal gyrus. PMID:19111526</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993CSR....13..109M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993CSR....13..109M"><span>Radar observation of an along-front jet and transverse flow convergence associated with a North Sea front</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matthews, J. P.; Fox, A. D.; Prandle, D.</p> <p>1993-01-01</p> <p>This paper describes the first synoptic mapping of surface currents across a strong and stable tidal mixing front by HF radar. The radar deployment took place along the coast of northeast England during August and early September 1988 in parallel with extensive ship based CTD density and ADCP (Acoustic Doppler Current Profiler) measurements which provided data in the vertical plane to complement those of the HF radar. We describe two main results. Firstly, during a spring-tide period of strengthening inshore density gradients, an along-front jet with speeds of up to 14 cm s -1 was detected in the long term IIF radar residual field. The location and spatial form of this jet correspond with estimates of geostrophic currents derived from the measured density field. Secondly, a transverse "double-sided" surface flow convergence centred close to the frontal boundary and of net magnitude 4 cm s -1 accompanied the large along-front jet. Such a weaker cross-frontal component has been anticipated on theoretical grounds but never previously observed in this detailed fashion. The experiment underlines the power of a synergistic approach, based on HF remote sensing radar and ADCP, for the study of frontal circulation in coastal zones.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21641943','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21641943"><span>LORETA analysis of three-dimensional distribution of δ band activity in schizophrenia: relation to negative symptoms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Itoh, Toru; Sumiyoshi, Tomiki; Higuchi, Yuko; Suzuki, Michio; Kawasaki, Yasuhiro</p> <p>2011-08-01</p> <p>We sought to determine if altered electroencephalography (EEG) activities, such as delta band activity, in specific brain regions are associated with psychotic symptoms. Data were obtained from 17 neuroleptic-naive patients with schizophrenia and age- and sex-matched 17 healthy control subjects. Low Resolution Brain Electromagnetic Tomography (LORETA) was used to generate current source density images of delta, theta, alpha, and beta activities. Localization of the difference in EEG activity between the two groups was assessed by voxel-by-voxel non-paired t-test of the LORETA images. Spearman's correlation coefficient was obtained to relate LORETA values of EEG current density in brain regions showing a significant between-group difference and psychopathology scores. Delta band activity, represented by LORETA current density, was greater for patients in the following areas; the left inferior temporal gyrus, right middle frontal gyrus, right superior frontal gyrus, right inferior frontal gyrus, and right parahippocampal gyrus. LORETA values for delta band activity in the above five brain regions were negatively correlated with negative, but not positive symptoms. The results of this study suggest the role for electrophysiological changes in some of the brain regions, e.g. prefrontal cortex, in the manifestation of negative symptoms. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26311604','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26311604"><span>Neuroanatomical correlates of personality in chimpanzees (Pan troglodytes): Associations between personality and frontal cortex.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Latzman, Robert D; Hecht, Lisa K; Freeman, Hani D; Schapiro, Steven J; Hopkins, William D</p> <p>2015-12-01</p> <p>Converging empirical data suggests that a set of largely consistent personality traits exist in both human and nonhuman primates; despite these similarities, almost nothing is known concerning the neurobiological basis of these traits in nonhuman primates. The current study examined associations between chimpanzee personality traits and the grey matter volume and asymmetry of various frontal cortex regions in 107 captive chimpanzees. Chimpanzees rated as higher on Openness and Extraversion had greater bilateral grey matter volumes in the anterior cingulate cortex. Further, chimpanzee rated as higher on Dominance had larger grey volumes in the left anterior cingulate cortex and right Prefrontal Cortex (PFC). Finally, apes rated higher on Reactivity/Unpredictability had higher grey matter volumes in the right mesial PFC. All associations survived after applying False Discovery Rate (FDR) thresholds. Results are discussed in terms of current neuroscientific models of personality which suggest that the frontal cortex, and asymmetries in this region, play an important role in the neurobiological foundation of broad dispositional traits. Copyright © 2015 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSME24F0773N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSME24F0773N"><span>The effects of variable front persistence and intensity on mesopelagic fish communities: a comparison of three fronts in the California Current Ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Netburn, A. N.; Koslow, J. A.</p> <p>2016-02-01</p> <p>Although the strong physical gradients at fronts are primarily realized in the epipelagic, the biological impacts of frontal ecosystems can extend into mesopelagic waters. In 2008, Lara-Lopez et al. (2012) observed a significant shift in total biomass and community composition of migrating mesopelagic fishes at a strong persistent front off of the Pt. Conception area of the southern California Current Ecosystem. Through the California Current Ecosystem Long-Term Ecological Research Program, two additional intensive sampling cruises have been conducted on frontal systems in the general region. In 2011 and 2012, paired day and night midwater Matsuda-Oozeki-Hu trawls were conducted at stations located on either side of the fronts and at the fronts themselves, a suite of concurrent observations of the physical environment measured, and lower trophic levels sampled. Using satellite imagery, we estimate front duration of each of the 2008, 2011, and 2012 fronts, and investigate changes to the relative abundance and community composition across these systems, comparing the resolved patterns in 2011 and 2012 to those published from 2008. Results of this work will help address the questions: (1) What are the timescales required for front presence to impact mesopelagic fish communities? (2) Do different types of frontal systems (e.g., an eddy front vs. a "classic" front) result in different patterns of mesopelagic fish abundance and community composition? These answers will provide insight into the mechanisms of accumulation of fishes at fronts. As many mesopelagic fishes are important forage species for oceanic predators, understanding their response to the high productivity frontal systems is key to understanding ecosystem-wide impacts of fronts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996JGR...10114201P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996JGR...10114201P"><span>The Barents Sea Polar Front in summer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parsons, A. Rost; Bourke, Robert H.; Muench, Robin D.; Chiu, Ching-Sang; Lynch, James F.; Miller, James H.; Plueddemann, Albert J.; Pawlowicz, Richard</p> <p>1996-06-01</p> <p>In August 1992 a combined physical oceanography and acoustic tomography experiment was conducted to describe the Barents Sea Polar Front (BSPF) and investigate its impact on the regional oceanography. The study area was an 80 × 70 km grid east of Bear Island where the front exhibits topographic trapping along the northern slope of the Bear Island Trough. Conductivity-temperature-depth, current meter, and acoustic Doppler current profiler (ADCP) data, combined with tomographic cross sections, presented a highly resolved picture of the front in August. All hydrographic measurements were dominated by tidal signals, with the strongest signatures associated with the M2 and S2 semidiurnal species. Mean currents in the warm saline water to the south of the front, derived from a current meter mooring and ADCP data, were directed to the southwest and may be associated with a barotropic recirculation of Norwegian Atlantic Water (NAW) within the Bear Island Trough. The geostrophic component of the velocity was well correlated with the measured southwestward mean surface layer flow north of the front. The frontal structure was retrograde, as the frontal isopleths sloped opposite to the bathymetry. The surface signature of the front was dominated by salinity gradients associated with the confluence of Atlantic and Arctic water masses, both warmed by insolation to a depth of about 20 m. The surface manifestation of the front varied laterally on the order of 10 km associated with tidal oscillations. Below the mixed layer, temperature and salinity variations were compensating, defining a nearly barotropic front. The horizontal scale of the front in this region was ˜3 km or less. At middepth beneath the frontal interface, tomographic cross sections indicated a high-frequency (˜16 cpd) upslope motion of filaments of NAW origin. The summertime BSPF was confirmed to have many of the general characteristics of a shelf-slope frontal system [Mooers et al., 1978] as well as a topographic-circulatory front [Federov, 1983].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAG...138..172D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAG...138..172D"><span>Design and verification of wide-band, simultaneous, multi-frequency, tuning circuits for large moment transmitter loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dvorak, Steven L.; Sternberg, Ben K.; Feng, Wanjie</p> <p>2017-03-01</p> <p>In this paper we discuss the design and verification of wide-band, multi-frequency, tuning circuits for large-moment Transmitter (TX) loops. Since these multi-frequency, tuned-TX loops allow for the simultaneous transmission of multiple frequencies at high-current levels, they are ideally suited for frequency-domain geophysical systems that collect data while moving, such as helicopter mounted systems. Furthermore, since multi-frequency tuners use the same TX loop for all frequencies, instead of using separate tuned-TX loops for each frequency, they allow for the use of larger moment TX loops. In this paper we discuss the design and simulation of one- and three-frequency tuned TX loops and then present measurement results for a three-frequency, tuned-TX loop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866461','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866461"><span>Monitoring transients in low inductance circuits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Guilford, Richard P.; Rosborough, John R.</p> <p>1987-01-01</p> <p>A pair of flat cable transmission lines are monitored for transient current spikes by using a probe connected to a current transformer by a pickup loop and monitoring the output of the current transformer. The approach utilizes a U-shaped pickup probe wherein the pair of flat cable transmission lines are received between the legs of the U-shaped probe. The U-shaped probe is preferably formed of a flat coil conductor adhered to one side of a flexible substrate. On the other side of the flexible substrate there is a copper foil shield. The copper foil shield is connected to one end of the flat conductor coil and connected to one leg of the pickup loop which passes through the current transformer. The other end of the flat conductor coil is connected to the other leg of the pickup loop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5342907','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5342907"><span>Reduced Perfusion in Broca’s Area in Developmental Stuttering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Desai, Jay; Huo, Yuankai; Wang, Zhishun; Bansal, Ravi; Williams, Steven C. R.; Lythgoe, David; Zelaya, Fernando O.; Peterson, Bradley S.</p> <p>2016-01-01</p> <p>Objective To study resting cerebral blood flow in children and adults with developmental stuttering. Methods We acquired pulsed arterial spin labeling magnetic resonance imaging data in 26 participants with stuttering and 36 healthy, fluent controls. While covarying for age, sex, and IQ, we compared perfusion values voxel-wise across diagnostic groups and assessed correlations of perfusion with stuttering severity within the stuttering group and with measures of motor speed in both groups. Results We detected lower regional Cerebral Blood Flow (rCBF) at rest in the stuttering group compared to healthy controls in Broca’s area bilaterally and the superior frontal gyrus. rCBF values in Broca’s area bilaterally correlated inversely with the severity of stuttering and extended posteriorly into other portions of the language loop. We also found increased rCBF in cerebellar nuclei and parietal cortex in the stuttering group compared to healthy controls. Findings were unchanged in child-only analyses and when excluding participants with comorbid illnesses or those taking medication. Conclusions rCBF is reduced in Broca’s region in persons who stutter. More severe stuttering is associated with even greater reductions in rCBF to Broca’s region, additive to the underlying putative trait reduction in rCBF relative to control values. Moreover, a greater abnormality in rCBF in the posterior language loop is associated with more severe symptoms, suggesting that a common pathophysiology throughout the language loop likely contributes to stuttering severity. PMID:28035724</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28035724','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28035724"><span>Reduced perfusion in Broca's area in developmental stuttering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Desai, Jay; Huo, Yuankai; Wang, Zhishun; Bansal, Ravi; Williams, Steven C R; Lythgoe, David; Zelaya, Fernando O; Peterson, Bradley S</p> <p>2017-04-01</p> <p>To study resting cerebral blood flow in children and adults with developmental stuttering. We acquired pulsed arterial spin labeling magnetic resonance imaging data in 26 participants with stuttering and 36 healthy, fluent controls. While covarying for age, sex, and IQ, we compared perfusion values voxel-wise across diagnostic groups and assessed correlations of perfusion with stuttering severity within the stuttering group and with measures of motor speed in both groups. We detected lower regional Cerebral Blood Flow (rCBF) at rest in the stuttering group compared with healthy controls in Broca's area bilaterally and the superior frontal gyrus. rCBF values in Broca's area bilaterally correlated inversely with the severity of stuttering and extended posteriorly into other portions of the language loop. We also found increased rCBF in cerebellar nuclei and parietal cortex in the stuttering group compared with healthy controls. Findings were unchanged in child-only analyses and when excluding participants with comorbid illnesses or those taking medication. rCBF is reduced in Broca's region in persons who stutter. More severe stuttering is associated with even greater reductions in rCBF to Broca's region, additive to the underlying putative trait reduction in rCBF relative to control values. Moreover, a greater abnormality in rCBF in the posterior language loop is associated with more severe symptoms, suggesting that a common pathophysiology throughout the language loop likely contributes to stuttering severity. Hum Brain Mapp 38:1865-1874, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED428832.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED428832.pdf"><span>Looping: Supporting Student Learning through Long-Term Relationships.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Northeast and Islands Regional Educational Lab. at Brown Univ., Providence, RI.</p> <p></p> <p>Looping refers to the increasingly common practice of keeping groups of students together for two or more years with the same teacher. This booklet, first in a series of "Themes in Education" provides information on the educational practice of looping and includes selected current references on the topic. The booklet outlines the history of this…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987PhDT........46H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987PhDT........46H"><span>Digital control of a direct current converter for a hybrid vehicle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hernandez, Juan Manuel</p> <p></p> <p>The nonlinear feedback loops permitting the large signal control of pulse width modulators in direct current converters are discussed. A digital feedback loop on a converter controlling the coupling of a direct current machine is described. It is used in the propulsion of a hybrid vehicle (thermal-electric) with regenerative braking. The protection of the power switches is also studied. An active protection of the MOST bipolar transistor association is proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960000877','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960000877"><span>Observational and numerical studies of extreme frontal scale contraction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koch, Steven E.</p> <p>1995-01-01</p> <p>The general objective of this effort is to increase understanding of how frontal scale contraction processes may create and sustain intense mesoscale precipitation along intensifying cold fronts. The five-part project (an expansion of the originally proposed two-part project) employed conventional meteorological data, special mesoscale data, remote sensing measurements, and various numerical models. First an idealized hydrostatic modeling study of the scale contraction effects of differential cloud cover on low-level frontal structure and dynamics was completed and published in a peer-reviewed journal. The second objective was to complete and publish the results from a three dimensional numerical model simulation of a cold front in which differential sensible heating related to cloud coverage patterns was apparently crucial in the formation of a severe frontal squall line. The third objective was to use a nonhydrostatic model to examine the nonlinear interactions between the transverse circulation arising from inhomogeneous cloud cover, the adiabatic frontal circulation related to semi-geostrophic forcing, and diabatic effects related to precipitation processes, in the development of a density current-like microstructure at the leading edge of cold fronts. Although the development of a frontal model that could be used to initialize such a primitive equation model was begun, we decided to focus our efforts instead on a project that could be successfully completed in this short time, due to the lack of prospects for continued NASA funding beyond this first year (our proposal was not accepted for future funding). Thus, a fourth task was added, which was to use the nonhydrostatic model to test tentative hypotheses developed from the most detailed observations ever obtained on a density current (primarily sodar and wind profiler data). These simulations were successfully completed, the findings were reported at a scientific conference, and the results have recently been submitted to a peer-reviewed journal. The fifth objective was to complete the analysis of data collected during the Cooperative Oklahoma Profiler Studies (COPS-91) field project, which was supported by NASA. The analysis of the mesoscale surface and sounding data, Doppler radar imagery, and other remote sensing data from multi frequency wind profiler, microwave radiometer, and the Radio Acoustic Sounding System has been completed. This study is a unique investigation of processes that caused the contraction of a cold front to a microscale zone exhibiting an undular bore-like structure. Results were reported at a scientific conference and are being prepared for publication. In summary, considerable progress has been achieved under NASA funding in furthering our understanding of frontal scale contraction and density current - gravity wave interaction processes, and in utilizing models and remotely sensed data in such studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770030138&hterms=time+keeper&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dtime%2Bkeeper','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770030138&hterms=time+keeper&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dtime%2Bkeeper"><span>Compensated control loops for a 30-cm ion thruster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Robson, R. R.</p> <p>1976-01-01</p> <p>The vaporizer dynamic control characteristics of a 30-cm diameter mercury ion thruster were determined by operating the thruster in an open loop steady state mode and then introducing a small sinusoidal signal on the main, cathode, or neutralizer vaporizer current and observing the response of the beam current, discharge voltage, and neutralizer keeper voltage, respectively. This was done over a range of frequencies and operating conditions. From these data, Bode plots for gain and phase were made and mathematical models were obtained. The Bode plots and mathematical models were analyzed for stability and appropriate compensation networks determined. The compensated control loops were incorporated into a power processor and operated with a thruster. The time responses of the compensated loops to changes in set points and recovery from arc conditions are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SMaS...27a5005C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SMaS...27a5005C"><span>A dual-loop adaptive control for minimizing time response delay in real-time structural vibration control with magnetorheological (MR) devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Xi; Li, Yancheng; Li, Jianchun; Gu, Xiaoyu</p> <p>2018-01-01</p> <p>Time delay is a challenge issue faced by the real-time control application of the magnetorheological (MR) devices. Not to deal with it properly may jeopardize the effectiveness of the control, even lead to instability of the control system or catastrophic failure. This paper proposes a dual-loop adaptive control to address the response time delay associated with MR devices. In the proposed dual-loop control, the inner loop is designed to compensate the time delay of MR device induced by the PWM current driver. While the outer loop control can be any structural control algorithm with aims to reducing structural responses of a building during extreme loadings. Here an adaptive control strategy is adopted. To verify the proposed dual-loop control, a smart base isolation system employing magnetorheological elastomer base isolators is used as an example to illustrate the control effect. Numerical study is then conducted using a 5 -storey shear building model equipped with smart base isolation system. The result shows that with the implementation of the inner loop, the control current can instantly follow the control command which reduce the possibility of instability caused by the time delay. Comparative studies are conducted between three control strategies, i.e. dual-loop control, Lyapunov’s direct method based control and optimal passive base isolation control. The results of the study have demonstrated that the proposed dual-loop control strategy can achieve much better performance than the other two control strategies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4481217','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4481217"><span>Inhibition of Cav3.2 T-type Calcium Channels by Its Intracellular I-II Loop*</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Monteil, Arnaud; Chausson, Patrick; Boutourlinsky, Katia; Mezghrani, Alexandre; Huc-Brandt, Sylvaine; Blesneac, Iulia; Bidaud, Isabelle; Lemmers, Céline; Leresche, Nathalie; Lambert, Régis C.; Lory, Philippe</p> <p>2015-01-01</p> <p>Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser423–Pro542) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels. PMID:25931121</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880017111','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880017111"><span>Antimisting kerosene: Low temperature degradation and blending</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yavrouian, A.; Parikh, P.; Sarohia, V.</p> <p>1988-01-01</p> <p>The inline filtration characteristics of freshly blended and degraded antimisting fuels (AMK) at low temperature are examined. A needle valve degrader was modified to include partial recirculation of degraded fuel and heat addition in the bypass loop. A pressure drop across the needle valve of up to 4,000 psi was used. The pressure drop across a 325 mesh filter screen placed inline with the degrader and directly downstream of the needle valve was measured as a function of time for different values of pressure drop across the needle valve. A volume flux of 1 gpm/sq in was employed based on the frontal area of the screen. It was found that, at ambient temperatures, freshly blended AMK fuel could be degraded using a single pass degradation at 4,000 psi pressure drop across the needle valve to give acceptable filterability performance. At fuel temperatures below -20 C, degradation becomes increasingly difficult and a single pass technique results in unacceptable filtration performance. Recirculation of a fraction of the degraded fuel and heat addition in the bypass loop improved low temperature degradation performance. The problem is addressed of blending the AMK additive with Jet A at various base fuel temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26523521','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26523521"><span>Understanding the role of speech production in reading: Evidence for a print-to-speech neural network using graphical analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cummine, Jacqueline; Cribben, Ivor; Luu, Connie; Kim, Esther; Bahktiari, Reyhaneh; Georgiou, George; Boliek, Carol A</p> <p>2016-05-01</p> <p>The neural circuitry associated with language processing is complex and dynamic. Graphical models are useful for studying complex neural networks as this method provides information about unique connectivity between regions within the context of the entire network of interest. Here, the authors explored the neural networks during covert reading to determine the role of feedforward and feedback loops in covert speech production. Brain activity of skilled adult readers was assessed in real word and pseudoword reading tasks with functional MRI (fMRI). The authors provide evidence for activity coherence in the feedforward system (inferior frontal gyrus-supplementary motor area) during real word reading and in the feedback system (supramarginal gyrus-precentral gyrus) during pseudoword reading. Graphical models provided evidence of an extensive, highly connected, neural network when individuals read real words that relied on coordination of the feedforward system. In contrast, when individuals read pseudowords the authors found a limited/restricted network that relied on coordination of the feedback system. Together, these results underscore the importance of considering multiple pathways and articulatory loops during language tasks and provide evidence for a print-to-speech neural network. (PsycINFO Database Record (c) 2016 APA, all rights reserved).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5880940','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5880940"><span>A Brain for Speech. Evolutionary Continuity in Primate and Human Auditory-Vocal Processing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Aboitiz, Francisco</p> <p>2018-01-01</p> <p>In this review article, I propose a continuous evolution from the auditory-vocal apparatus and its mechanisms of neural control in non-human primates, to the peripheral organs and the neural control of human speech. Although there is an overall conservatism both in peripheral systems and in central neural circuits, a few changes were critical for the expansion of vocal plasticity and the elaboration of proto-speech in early humans. Two of the most relevant changes were the acquisition of direct cortical control of the vocal fold musculature and the consolidation of an auditory-vocal articulatory circuit, encompassing auditory areas in the temporoparietal junction and prefrontal and motor areas in the frontal cortex. This articulatory loop, also referred to as the phonological loop, enhanced vocal working memory capacity, enabling early humans to learn increasingly complex utterances. The auditory-vocal circuit became progressively coupled to multimodal systems conveying information about objects and events, which gradually led to the acquisition of modern speech. Gestural communication accompanies the development of vocal communication since very early in human evolution, and although both systems co-evolved tightly in the beginning, at some point speech became the main channel of communication. PMID:29636657</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26696298','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26696298"><span>The Neural Basis of Vocal Pitch Imitation in Humans.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Belyk, Michel; Pfordresher, Peter Q; Liotti, Mario; Brown, Steven</p> <p>2016-04-01</p> <p>Vocal imitation is a phenotype that is unique to humans among all primate species, and so an understanding of its neural basis is critical in explaining the emergence of both speech and song in human evolution. Two principal neural models of vocal imitation have emerged from a consideration of nonhuman animals. One hypothesis suggests that putative mirror neurons in the inferior frontal gyrus pars opercularis of Broca's area may be important for imitation. An alternative hypothesis derived from the study of songbirds suggests that the corticostriate motor pathway performs sensorimotor processes that are specific to vocal imitation. Using fMRI with a sparse event-related sampling design, we investigated the neural basis of vocal imitation in humans by comparing imitative vocal production of pitch sequences with both nonimitative vocal production and pitch discrimination. The strongest difference between these tasks was found in the putamen bilaterally, providing a striking parallel to the role of the analogous region in songbirds. Other areas preferentially activated during imitation included the orofacial motor cortex, Rolandic operculum, and SMA, which together outline the corticostriate motor loop. No differences were seen in the inferior frontal gyrus. The corticostriate system thus appears to be the central pathway for vocal imitation in humans, as predicted from an analogy with songbirds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28235722','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28235722"><span>Current trend in drug delivery considerations for subcutaneous insulin depots to treat diabetes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>P V, Jayakrishnapillai; Nair, Shantikumar V; Kamalasanan, Kaladhar</p> <p>2017-05-01</p> <p>Diabetes mellitus (DM) is a metabolic disorder due to irregularities in glucose metabolism, as a result of insulin disregulation. Chronic DM (Type 1) is treated by daily insulin injections by subcutaneous route. Daily injections cause serious patient non-compliance and medication non-adherence. Insulin Depots (ID) are parenteral formulations designed to release the insulin over a specified period of time, to control the plasma blood glucose level for intended duration. Physiologically, pancreas produces and secretes insulin in basal and pulsatile mode into the blood. Delivery systems mimicking basal release profiles are known as open-loop systems and current marketed products are open-loop systems. Future trend in open-loop systems is to reduce the number of injections per week by enhancing duration of action, by modifying the depot properties. The next generation technologies are closed-loop systems that mimic the pulsatile mode of delivery by pancreas. In closed-loop systems insulin will be released in response to plasma glucose. This review focuses on future trend in open-loop systems; by understanding (a) the secretion of insulin from pancreas, (b) the insulin regulation normal and in DM, (c) insulin depots and (d) the recent progress in open-loop depot technology particularly with respect to nanosystems. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvD..97i6009C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvD..97i6009C"><span>Explicit calculation of the two-loop corrections to the chiral magnetic effect with the NJL model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chu, Kit-fai; Huang, Peng-hui; Liu, Hui</p> <p>2018-05-01</p> <p>The chiral magnetic effect (CME) is usually believed to not receive higher-order corrections due to the nonrenormalization of the AVV triangle diagram in the framework of quantum field theory. However, the CME-relevant triangle, which is obtained by expanding the current-current correlation, requires zero momentum on the axial vertex and is not equivalent to the general AVV triangle when taking the zero-momentum limit owing to the infrared problem on the axial vertex. Therefore, it is still significant to check if there exists perturbative higher-order corrections to the current-current correlation. In this paper, we explicitly calculate the two-loop corrections of CME within the Nambu-Jona-Lasinio model with a Chern-Simons term, which ensures a consistent μ5 . The result shows the two-loop corrections to the CME conductivity are zero, which confirms the nonrenomalization of CME conductivity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvB..93k5144D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvB..93k5144D"><span>Coexistence of ΘI I-loop-current order with checkerboard d -wave CDW/PDW order in a hot-spot model for cuprate superconductors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Carvalho, Vanuildo S.; Pépin, Catherine; Freire, Hermann</p> <p>2016-03-01</p> <p>We investigate the strong influence of the ΘI I-loop-current order on both unidirectional and bidirectional d -wave charge-density-wave/pair-density-wave (CDW/PDW) composite orders along axial momenta (±Q0,0 ) and (0 ,±Q0) that emerge in an effective hot-spot model departing from the three-band Emery model relevant to the phenomenology of the cuprate superconductors. This study is motivated by the compelling evidence that the ΘI I-loop-current order described by this model may explain groundbreaking experiments such as spin-polarized neutron scattering performed in these materials. Here, we demonstrate, within a saddle-point approximation, that the ΘI I-loop-current order clearly coexists with bidirectional (i.e., checkerboard) d -wave CDW and PDW orders along axial momenta, but is visibly detrimental to the unidirectional (i.e., stripe) case. This result has potentially far-reaching implications for the physics of the cuprates and agrees well with very recent x-ray experiments on YBCO that indicate that at higher dopings the CDW order has indeed a tendency to be bidirectional.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29373114','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29373114"><span>The influence of pre-existing rib fractures on Global Human Body Models Consortium thorax response in frontal and oblique impact.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zaseck, Lauren Wood; Chen, Cong; Hu, Jingwen; Reed, Matthew P; Rupp, Jonathan</p> <p>2018-03-01</p> <p>Many post-mortem human subjects (PMHS) considered for use in biomechanical impact tests have pre-existing rib fractures (PERFs), usually resulting from cardiopulmonary resuscitation. These specimens are typically excluded from impact studies with the assumption that the fractures will alter the thoracic response to loading. We previously used the Global Human Body Models Consortium 50th percentile whole-body finite element model (GHBMC M50-O) to demonstrate that up to three lateral or bilateral PERFs do not meaningfully influence the response of the GHBMC thorax to lateral loading. This current study used the GHBMC M50-O to explore the influence of PERFs on thorax response in frontal and oblique loading. Up to six PERFs were simulated on the anterior or lateral rib regions, and the model was subjected to frontal or oblique cylindrical impactor, frontal seatbelt, or frontal seatbelt + airbag loading. Changes in thorax force-compression responses due to PERFs were generally minor, with the greatest alterations seen in models with six PERFs on one side of the ribcage. The observed changes, however, were small relative to mid-size male corridors for the loading conditions simulated. PERFs altered rib strain patterns, but the changes did not translate to changes in global thoracic response. Within the limits of model fidelity, the results suggest that PMHS with up to six PERFs may be appropriate for use in frontal or oblique impact testing. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4612649','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4612649"><span>Reappraisal writing relieves social anxiety and may be accompanied by changes in frontal alpha asymmetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Fen; Wang, Changming; Yin, Qin; Wang, Kui; Li, Dongdong; Mao, Mengchai; Zhu, Chaozhe; Huang, Yuxia</p> <p>2015-01-01</p> <p>It is widely reported that expressive writing can improve mental and physical health. However, to date, the neural correlates of expressive writing have not been reported. The current study examined the neural electrical correlates of expressive writing in a reappraisal approach. Three groups of participants were required to give a public speech. Before speaking, the reappraisal writing group was asked to write about the current stressful task in a reappraisal manner. The irrelevant writing group was asked to write about their weekly plan, and the non-writing group did not write anything. It was found that following the experimental writing manipulation, both reappraisal and irrelevant writing conditions decreased self-reported anxiety levels. But when re-exposed to the stressful situation, participants in the irrelevant writing group showed increased anxiety levels, while anxiety levels remained lower in the reappraisal group. During the experimental writing manipulation period, participants in the reappraisal group had lower frontal alpha asymmetry scores than those in the irrelevant writing group. However, following re-exposure to stress, participants in the reappraisal group showed higher frontal alpha asymmetry scores than those in the irrelevant writing group. Self-reported anxiety and frontal alpha asymmetry of the non-writing condition did not change significantly across these different stages. It is noteworthy that expressive writing in a reappraisal style seems not to be a fast-acting treatment but may instead take effect in the long run. PMID:26539146</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2987854','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2987854"><span>The impact of stroke on emotional intelligence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2010-01-01</p> <p>Background Emotional intelligence (EI) is important for personal, social and career success and has been linked to the frontal anterior cingulate, insula and amygdala regions. Aim To ascertain which stroke lesion sites impair emotional intelligence and relation to current frontal assessment measurements. Methods One hundred consecutive, non aphasic, independently functioning patients post stroke were evaluated with the Bar-On emotional intelligence test, "known as the Emotional Quotient Inventory (EQ-i)" and frontal tests that included the Wisconsin Card Sorting Test (WCST) and Frontal Systems Behavioral Inventory (FRSBE) for correlational validity. The results of a screening, bedside frontal network syndrome test (FNS) and NIHSS to document neurological deficit were also recorded. Lesion location was determined by the Cerefy digital, coxial brain atlas. Results After exclusions (n = 8), patients tested (n = 92, mean age 50.1, CI: 52.9, 47.3 years) revealed that EQ-i scores were correlated (negatively) with all FRSBE T sub-scores (apathy, disinhibition, executive, total), with self-reported scores correlating better than family reported scores. Regression analysis revealed age and FRSBE total scores as the most influential variables. The WCST error percentage T score did not correlate with the EQ-i scores. Based on ANOVA, there were significant differences among the lesion sites with the lowest mean EQ-i scores associated with temporal (71.5) and frontal (87.3) lesions followed by subtentorial (91.7), subcortical gray (92.6) and white (95.2) matter, and the highest scores associated with parieto-occipital lesions (113.1). Conclusions 1) Stroke impairs EI and is associated with apathy, disinhibition and executive functioning. 2) EI is associated with frontal, temporal, subcortical and subtentorial stroke syndromes. PMID:21029468</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29031545','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29031545"><span>Social modeling of eating mediated by mirror neuron activity: A causal model moderated by frontal asymmetry and BMI.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McGeown, Laura; Davis, Ron</p> <p>2018-02-15</p> <p>The social modeling of eating effect refers to the consistently demonstrated phenomenon that individuals tend to match their quantity of food intake to their eating companion. The current study sought to explore whether activity within the mirror neuron system (MNS) mediates the social modeling of eating effect as a function of EEG frontal asymmetry and body mass index (BMI). Under the guise of rating empathy, 93 female undergraduates viewed a female video confederate "incidentally" consume either a low or high intake of chips while electroencephalogram (EEG) activity was recorded. Subsequent ad libitum chip consumption was quantified. A first- and second-stage dual moderation model revealed that frontal asymmetry and BMI moderated an indirect effect of model consumption on participants' food consumption as mediated by MNS activity at electrode site C3, a 3 b 3 =-0.718, SE=0.365, 95% CI [-1.632, -0.161]. Left frontal asymmetry was associated with greater mu activity and a positive association between model and participant chip consumption, while right frontal asymmetry was associated with less mu activity and a negative association between model and participant consumption. Across all levels of frontal asymmetry, the effect was only significant among those with a BMI at the 50th percentile or lower. Thus, among leaner individuals, the MNS was demonstrated to mediate social modeling of eating, as moderated by frontal asymmetry. These findings are integrated within the normative account of social modeling of eating. It is proposed that the normative framework may benefit from consideration of both conscious and unconscious operation of intake norms. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27101223','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27101223"><span>Executive functioning of complicated-mild to moderate traumatic brain injury patients with frontal contusions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ghawami, Heshmatollah; Sadeghi, Sadegh; Raghibi, Mahvash; Rahimi-Movaghar, Vafa</p> <p>2017-01-01</p> <p>Executive dysfunctions are among the most prevalent neurobehavioral sequelae of traumatic brain injuries (TBIs). Using culturally validated tests from the Delis-Kaplan Executive Function System (D-KEFS: Trail Making, Verbal Fluency, Design Fluency, Sorting, Twenty Questions, and Tower) and the Behavioural Assessment of the Dysexecutive Syndrome (BADS: Rule Shift Cards, Key Search, and Modified Six Elements), the current study was the first to examine executive functioning in a group of Iranian TBI patients with focal frontal contusions. Compared with a demographically matched normative sample, the frontal contusion patients showed substantial impairments, with very large effect sizes (p ≤ .003, 1.56 < d < 3.12), on all the executive measures. Controlling for respective lower-level/fundamental conditions, the differences on the highest-level executive (cognitive switching) conditions were still significant. The frontal patients also committed more errors. Patients with lateral prefrontal (LPFC) contusions were qualitatively worst. For example, only the LPFC patients committed perseverative repetition errors. Altogether, our results support the notion that the frontal lobes, specifically the lateral prefrontal regions, play a critical role in cognitive executive functioning, over and above the contributions of respective lower-level cognitive abilities. The results provide clinical evidence for validity of the cross-culturally adapted versions of the tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4927218','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4927218"><span>Rhinogenic intracranial complication with postoperative frontal sinus pyocele and inverted papilloma in the nasal cavity: A case report and literature review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kawada, Michitsugu; Yokoi, Hidenori; Maruyama, Keisuke; Matsumoto, Yuma; Yamanaka, Hidetaka; Ikeda, Tetsuya; Shiokawa, Yoshiaki; Saito, Koichiro</p> <p>2016-01-01</p> <p>We report a patient who had rhinogenic intracranial complication with postoperative frontal sinus pyocele and inverted papilloma in the nasal cavity. A 72-year-old woman had undergone surgery for frontal sinusitis via external incision at another hospital 13 years previously. Left-sided hemiparesis appeared in the patient and gradually worsened. Five days later, she exhibited disorientation, abnormal behavior, poor articulation, and difficulty in standing. Therefore, she was taken to the neurosurgery department by ambulance. An extensive frontal sinus pyocele was suspected, and a cerebral abscess and edema of the frontal lobe were observed on magnetic resonance imaging. After antibiotics, steroid and glycerol were administered for a few weeks; disorientation and left hemiparesis improved. Next, craniotomy for complete removal of the brain abscess by neurosurgeons and endoscopic endonasal surgery by otolaryngologists were carried out at the same surgery. From the analysis of the pathological mucosa sample taken from the right ethomoidal sinus during surgery, an inverted papilloma was diagnosed. The patient completely recovered and is currently receiving follow-up examination. Regarding rhinogenic intracranial complications, ascertaining clinical condition in order to determine the need for either immediate radical surgery, or for curative surgery after waiting for improvement of the overall body condition by conservative management, is still needed. PMID:27489711</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4221033','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4221033"><span>Fueling Plankton Production by a Meandering Frontal Jet: A Case Study for the Alboran Sea (Western Mediterranean)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Oguz, Temel; Macias, Diego; Garcia-Lafuente, Jesus; Pascual, Ananda; Tintore, Joaquin</p> <p>2014-01-01</p> <p>A three dimensional biophysical model was employed to illustrate the biological impacts of a meandering frontal jet, in terms of efficiency and persistency of the autotrophic frontal production, in marginal and semi-enclosed seas. We used the Alboran Sea of the Western Mediterranean as a case study. Here, a frontal jet with a width of 15–20 km, characterized by the relatively low density Atlantic water mass, flows eastward within the upper 100 m as a marked meandering current around the western and the eastern anticyclonic gyres prior to its attachment to the North African shelf/slope topography of the Algerian basin. Its inherent nonlinearity leads to the development of a strong ageostrophic cross-frontal circulation that supplies nutrients into the nutrient-starved euphotic layer and stimulates phytoplankton growth along the jet. Biological production is larger in the western part of the basin and decreases eastwards with the gradual weakening of the jet. The higher production at the subsurface levels suggests that the Alboran Sea is likely more productive than predicted by the satellite chlorophyll data. The Mediterranean water mass away from the jet and the interiors of the western and eastern anticyclonic gyres remain unproductive. PMID:25372789</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/488896-new-mathematical-model-control-three-phase-ac-dc-voltage-source-converter','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/488896-new-mathematical-model-control-three-phase-ac-dc-voltage-source-converter"><span>A new mathematical model and control of a three-phase AC-DC voltage source converter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Blasko, V.; Kaura, V.</p> <p>1997-01-01</p> <p>A new mathematical model of the power circuit of a three-phase voltage source converter (VSC) was developed in the stationary and synchronous reference frames. The mathematical model was then used to analyze and synthesize the voltage and current control loops for the VSC. Analytical expressions were derived for calculating the gains and time constants of the current and voltage regulators. The mathematical model was used to control a 140-kW regenerative VSC. The synchronous reference frame model was used to define feedforward signals in the current regulators to eliminate the cross coupling between the d and q phases. It allowed themore » reduction of the current control loop to first-order plants and improved their tracking capability. The bandwidths of the current and voltage-control loops were found to be approximately 20 and 60 times (respectively) smaller than the sampling frequency. All control algorithms were implemented in a digital-signal processor. All results of the analysis were experimentally verified.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10617E..04X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10617E..04X"><span>Efficient dynamic coherence transfer relying on offset locking using optical phase-locked loop</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xie, Weilin; Dong, Yi; Bretenaker, Fabien; Shi, Hongxiao; Zhou, Qian; Xia, Zongyang; Qin, Jie; Zhang, Lin; Lin, Xi; Hu, Weisheng</p> <p>2018-01-01</p> <p>We design and experimentally demonstrate a highly efficient coherence transfer based on composite optical phaselocked loop comprising multiple feedback servo loops. The heterodyne offset-locking is achieved by conducting an acousto-optic frequency shifter in combination with the current tuning and the temperature controlling of the semiconductor laser. The adaptation of the composite optical phase-locked loop enables the tight coherence transfer from a frequency comb to a semiconductor laser in a fully dynamic manner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993inin.symp..465A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993inin.symp..465A"><span>The constant current loop - A new paradigm for resistance signal conditioning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, Karl F.</p> <p></p> <p>A practical single constant current loop circuit for the signal conditioning of variable-resistance transducers has been synthesized, analyzed, and demonstrated. The strain gage and the resistance temperature device are examples of variable-resistance sensors. Lead wires connect variable-resistance sensors to remotely located signal-conditioning hardware. The presence of lead wires in the conventional Wheatstone bridge signal-conditioning circuit introduces undesired effects that reduce the quality of the data from the remote sensors. A practical approach is presented for suppressing essentially all lead wire resistance effects while indicating only the change in resistance value. An adaptation of the current loop circuit is presented that simultaneously provides an output signal voltage directly proportional to transducer resistance change and provides temperature information that is unaffected by transducer and lead wire resistance variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930070383&hterms=voltage+resistance&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dvoltage%2Bresistance','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930070383&hterms=voltage+resistance&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dvoltage%2Bresistance"><span>The constant current loop - A new paradigm for resistance signal conditioning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, Karl F.</p> <p>1993-01-01</p> <p>A practical single constant current loop circuit for the signal conditioning of variable-resistance transducers has been synthesized, analyzed, and demonstrated. The strain gage and the resistance temperature device are examples of variable-resistance sensors. Lead wires connect variable-resistance sensors to remotely located signal-conditioning hardware. The presence of lead wires in the conventional Wheatstone bridge signal-conditioning circuit introduces undesired effects that reduce the quality of the data from the remote sensors. A practical approach is presented for suppressing essentially all lead wire resistance effects while indicating only the change in resistance value. An adaptation of the current loop circuit is presented that simultaneously provides an output signal voltage directly proportional to transducer resistance change and provides temperature information that is unaffected by transducer and lead wire resistance variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvD..97b3022C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvD..97b3022C"><span>Superconducting cosmic string loops as sources for fast radio bursts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, Xiao-Feng; Yu, Yun-Wei</p> <p>2018-01-01</p> <p>The cusp burst radiation of superconducting cosmic string (SCS) loops is thought to be a possible origin of observed fast radio bursts with the model-predicted radiation spectrum and the redshift- and energy-dependent event rate, we fit the observational redshift and energy distributions of 21 Parkes fast radio bursts and constrain the model parameters. It is found that the model can basically be consistent with the observations, if the current on the SCS loops has a present value of ˜1016μ179 /10 esu s-1 and evolves with redshift as an empirical power law ˜(1 +z )-1.3 , where μ17=μ /1017 g cm-1 is the string tension. This current evolution may provide a clue to probe the evolution of the cosmic magnetic fields and the gathering of the SCS loops to galaxy clusters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5393185','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5393185"><span>Advancing viral RNA structure prediction: measuring the thermodynamics of pyrimidine-rich internal loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Phan, Andy; Mailey, Katherine; Saeki, Jessica; Gu, Xiaobo</p> <p>2017-01-01</p> <p>Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased toward small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with >6 nucleotides (nt) that occur frequently in viral RNA. This article presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Uracil and protonated cytosine base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with >6 nt are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2 × 2 have been measured. These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites. PMID:28213527</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA609700','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA609700"><span>Colored Dissolved Organic Matter Dynamics in the Northern Gulf of Mexico from Ocean Color and Numerical Model Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-12-18</p> <p>model simula- tions. Various factors such as winds , river discharges, and detached eddies from the Loop Current can contribute to the generation of...indicate that a large component of transport over the inner shelf is produced by wind (40–48%), with river discharge (28–33%) and Loop Current (LC...eddies (19–33%) accounting for the rest (Oey, 1995). Two seasonal current patterns that depend on wind characteristics are distinguishable over the shelf</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25725863','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25725863"><span>Constant-current control method of multi-function electromagnetic transmitter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun</p> <p>2015-02-01</p> <p>Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015RScI...86b4501X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015RScI...86b4501X"><span>Constant-current control method of multi-function electromagnetic transmitter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun</p> <p>2015-02-01</p> <p>Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH31B2569Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH31B2569Y"><span>Fine flow structures in the transition region small-scale loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, L.; Peter, H.; He, J.; Wei, Y.</p> <p>2016-12-01</p> <p>The observation and model have suggested that the transition region EUV emission from the quiet sun region is contributed by very small scale loops which have not been resolved. Recently, the observation from IRIS has revealed that this kind of small scale loops. Based on the high resolution spectral and imaging observation from IRIS, much more detail work needs to be done to reveal the fine flow features in this kind of loop to help us understand the loop heating. Here, we present a detail statistical study of the spatial and temporal evolution of Si IV line profiles of small scale loops and report the spectral features: there is a transition from blue (red) wing enhancement dominant to red (blue) wing enhancement dominant along the cross-section of the loop, which is independent of time. This feature appears as the loop appear and disappear as the loop un-visible. This is probably the signature of helical flow along the loop. The result suggests that the brightening of this kind of loop is probably due to the current dissipation heating in the twisted magnetic field flux tube.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1177652-formation-prismatic-loops-from-c15-laves-phase-interstitial-clusters-body-centered-cubic-iron','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1177652-formation-prismatic-loops-from-c15-laves-phase-interstitial-clusters-body-centered-cubic-iron"><span>Formation of prismatic loops from C15 Laves phase interstitial clusters in body-centered cubic iron</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Yongfeng; Bai, Xian-Ming; Tonks, Michael R.</p> <p>2015-03-01</p> <p>This Letter reports the transition of C15 phase self-interstitial clusters to loops in body-centered-cubic Iron. Molecular dynamics simulations are performed to evaluate the relative stabilities of difference interstitial cluster configurations including C15 phase structure and <100> and <111>/2 loops. Within a certain size range, C15 cluster are found more stable than loops, and the relative stabilities are reversed beyond that range. In accordance to the crossover in relative stabilities, C15 clusters may grow by absorbing individual interstitials at small sizes and transitions into loops eventually. The transition takes place by nucleation and reaction of <111>/2 loop segments. These observations explainmore » the absence of C15 phase interstitial clusters predicted by density-functional-theory calculations in previous experimental observations. More importantly, the current results provide a new formation mechanism of <100> loops which requires no interaction of loops.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........45W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........45W"><span>Analytical Solutions to Backreaction on Cosmic Strings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wachter, Jeremy M.</p> <p>2017-08-01</p> <p>We present analytical studies of gravitational and electromagnetic backreaction on cosmic strings. For oscillating loops of cosmic string, we present a general argument for how kinks must change; additionally, we apply this general argument to the geometrically simple case of the Garfinkle-Vachaspati loop. Our results suggest that the formation of cusps on loops is delayed, and so we should expect fewer cuspy signatures to be seen in gravitational wave observations. Electromagnetic backreaction we show to reduce currents on a string at least as rapidly as necessary to avoid a paradox, and currents induced on a superconducting straight string will be asymptotically reduced to zero.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70185160','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70185160"><span>West Florida shelf circulation and temperature budget for the 1999 spring transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>He, Ruoying; Weisberg, Robert H.</p> <p>2002-01-01</p> <p>Mid-latitude continental shelves undergo a spring transition as the net surface heat flux changes from cooling to warming. Using in situ data and a numerical circulation model we investigate the circulation and temperature budget on the West Florida Continental Shelf (WFS) for the spring transition of 1999. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind and heat flux fields and by river inflows. Based on agreements between the modeled and observed fields we use the model to draw inferences on how the surface momentum and heat fluxes affect the seasonal and synoptic scale variability. We account for a strong southeastward current at mid-shelf by the baroclinic response to combined wind and buoyancy forcing, and we show how this local forcing leads to annually occurring cold and low salinity tongues. Through term-by-term analyses of the temperature budget we describe the WFS temperature evolution in spring. Heat flux largely controls the seasonal transition, whereas ocean circulation largely controls the synoptic scale variability. These two processes, however, are closely linked. Bottom topography and coastline geometry are important in generating regions of convergence and divergence. Rivers contribute to the local hydrography and are important ecologically. Along with upwelling, river inflows facilitate frontal aggregation of nutrients and the spring formation of a high concentration chlorophyll plume near the shelf break (the so-called ‘Green River’) coinciding with the cold, low salinity tongues. These features originate by local, shelf-wide forcing; the Loop Current is not an essential ingredient.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986BoLMe..36..101G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986BoLMe..36..101G"><span>Boundary-layer effects on cold fronts at a coastline</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garratt, J. R.</p> <p>1986-07-01</p> <p>The present note discusses one physical mechanism which may contribute to cold air channelling, manifest as a frontal bulge on a surface-analysis chart, in the coastal region of Victoria in southeast Australia. This involves the modification of boundary-layer air in both offshore (prefrontal) and onshore (postfrontal) flow, and the effect on cross-frontal thermal contrast. The problem is discussed in terms of a north-south-oriented cold front behaving as an atmospheric gravity current, propagating along an east-west-oriented coastline, in the presence of a prefrontal offshore stream.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol6/pdf/CFR-2013-title49-vol6-sec563-9.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol6/pdf/CFR-2013-title49-vol6-sec563-9.pdf"><span>49 CFR 563.9 - Data capture.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... frontal air bag deployment crash, capture and record the current deployment data. In a side or side curtain/tube air bag deployment crash, where lateral delta-V is recorded by the EDR, capture and record the current deployment data. The memory for the air bag deployment event must be locked to prevent any...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol6/pdf/CFR-2014-title49-vol6-sec563-9.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol6/pdf/CFR-2014-title49-vol6-sec563-9.pdf"><span>49 CFR 563.9 - Data capture.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... frontal air bag deployment crash, capture and record the current deployment data. In a side or side curtain/tube air bag deployment crash, where lateral delta-V is recorded by the EDR, capture and record the current deployment data. The memory for the air bag deployment event must be locked to prevent any...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title49-vol6/pdf/CFR-2012-title49-vol6-sec563-9.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title49-vol6/pdf/CFR-2012-title49-vol6-sec563-9.pdf"><span>49 CFR 563.9 - Data capture.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... frontal air bag deployment crash, capture and record the current deployment data. In a side or side curtain/tube air bag deployment crash, where lateral delta-V is recorded by the EDR, capture and record the current deployment data. The memory for the air bag deployment event must be locked to prevent any...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29468778','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29468778"><span>Behavioral preference in sequential decision-making and its association with anxiety.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Dandan; Gu, Ruolei</p> <p>2018-06-01</p> <p>In daily life, people often make consecutive decisions before the ultimate goal is reached (i.e., sequential decision-making). However, this kind of decision-making has been largely overlooked in the literature. The current study investigated whether behavioral preference would change during sequential decisions, and the neural processes underlying the potential changes. For this purpose, we revised the classic balloon analogue risk task and recorded the electroencephalograph (EEG) signals associated with each step of decision-making. Independent component analysis performed on EEG data revealed that four EEG components elicited by periodic feedback in the current step predicted participants' decisions (gamble vs. no gamble) in the next step. In order of time sequence, these components were: bilateral occipital alpha rhythm, bilateral frontal theta rhythm, middle frontal theta rhythm, and bilateral sensorimotor mu rhythm. According to the information flows between these EEG oscillations, we proposed a brain model that describes the temporal dynamics of sequential decision-making. Finally, we found that the tendency to gamble (as well as the power intensity of bilateral frontal theta rhythms) was sensitive to the individual level of trait anxiety in certain steps, which may help understand the role of emotion in decision-making. © 2018 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/16252','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/16252"><span>Louisiana offshore terminal authority environmental monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2002-09-01</p> <p>The current Louisiana Offshore Oil Port (LOOP) monitoring program includes seasonal monitoring of aquatic and marine resources, sediment composition, and water quality on a five-year cycle. These data provide an update to the existing long-term LOOP ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/14110','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/14110"><span>Verification of Radar Vehicle Detection Equipment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1999-03-01</p> <p>Currently, inductive loops are used to count traffic at the 52 permanent sites located in South Dakota. Because they are located within the pavement, the loops are susceptible to being destroyed during maintenance projects. When they are destroyed, i...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750000037','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750000037"><span>Fill-in binary loop pulse-torque quantizer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lory, C. B.</p> <p>1975-01-01</p> <p>Fill-in binary (FIB) loop provides constant heating of torque generator, an advantage of binary current switching. At the same time, it avoids mode-related dead zone and data delay of binary, an advantage of ternary quantization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599888-comparison-electric-dipole-magnetic-loop-antennas-exciting-whistler-modes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599888-comparison-electric-dipole-magnetic-loop-antennas-exciting-whistler-modes"><span>Comparison of electric dipole and magnetic loop antennas for exciting whistler modes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stenzel, R. L.; Urrutia, J. M.</p> <p>2016-08-15</p> <p>The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B{sub 0}. The other antenna is an elongated loop with dipole moment parallel to B{sub 0}. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that ofmore » the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4064992','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4064992"><span>Mismatch Negativity in Recent-Onset and Chronic Schizophrenia: A Current Source Density Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fulham, W. Ross; Michie, Patricia T.; Ward, Philip B.; Rasser, Paul E.; Todd, Juanita; Johnston, Patrick J.; Thompson, Paul M.; Schall, Ulrich</p> <p>2014-01-01</p> <p>Mismatch negativity (MMN) is a component of the event-related potential elicited by deviant auditory stimuli. It is presumed to index pre-attentive monitoring of changes in the auditory environment. MMN amplitude is smaller in groups of individuals with schizophrenia compared to healthy controls. We compared duration-deviant MMN in 16 recent-onset and 19 chronic schizophrenia patients versus age- and sex-matched controls. Reduced frontal MMN was found in both patient groups, involved reduced hemispheric asymmetry, and was correlated with Global Assessment of Functioning (GAF) and negative symptom ratings. A cortically-constrained LORETA analysis, incorporating anatomical data from each individual's MRI, was performed to generate a current source density model of the MMN response over time. This model suggested MMN generation within a temporal, parietal and frontal network, which was right hemisphere dominant only in controls. An exploratory analysis revealed reduced CSD in patients in superior and middle temporal cortex, inferior and superior parietal cortex, precuneus, anterior cingulate, and superior and middle frontal cortex. A region of interest (ROI) analysis was performed. For the early phase of the MMN, patients had reduced bilateral temporal and parietal response and no lateralisation in frontal ROIs. For late MMN, patients had reduced bilateral parietal response and no lateralisation in temporal ROIs. In patients, correlations revealed a link between GAF and the MMN response in parietal cortex. In controls, the frontal response onset was 17 ms later than the temporal and parietal response. In patients, onset latency of the MMN response was delayed in secondary, but not primary, auditory cortex. However amplitude reductions were observed in both primary and secondary auditory cortex. These latency delays may indicate relatively intact information processing upstream of the primary auditory cortex, but impaired primary auditory cortex or cortico-cortical or thalamo-cortical communication with higher auditory cortices as a core deficit in schizophrenia. PMID:24949859</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27521721','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27521721"><span>Is there a creative functional paradoxical facilitation in juvenile myoclonic epilepsy?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Senf, Philine; Scheuren, Lena; Holtkamp, Martin</p> <p>2016-09-01</p> <p>In patients with juvenile myoclonic epilepsy (JME), a specific personality profile suggestive of frontal lobe dysfunctions has been described. From a neurobiological point of view, the frontal lobe seems to be crucial for creative processes, although the exact role remains unclear. The theory of creative paradoxical functional facilitation (PFF) assumes that disinhibited frontal lobe function can enhance creative abilities. The aim of the current study was to explore our hypothesis that JME is associated with higher artistic creativity based on the theory of PFF. We assessed 25 patients with JME aged 18 to 40years in regard to neuropsychological creativity testing. Results were compared with those of 25 age-, sex-, and level of education-matched healthy control subjects (HC) and patients with temporal lobe epilepsy (TLE). Creative abilities were assessed using two validated and standardized tests: 1) nonverbal: the incomplete figure task of Torrance Test of Creative Thinking and 2) verbal: verbal creativity test. Additionally, a basic assessment of fluid intelligence (test for problem solving) and frontal lobe function (trail-making test) was administered to all participants. Verbal creativity was impaired in both groups with epilepsy compared with that in HC (specific score: JME vs. HC, p=0.008; TLE vs. HC, p=0.003). In regard to nonverbal creative abilities, both groups with epilepsy exhibited fair performance. Level of fluid intelligence was even in all groups (p=0.433). Only patients with JME showed deficits in the frontal lobe test of psychomotor speed (time in seconds: 67.7 JME vs. 54.6 TLE vs. 52.8 HC; p=0.045). Overall, our study did not reveal increased creativity in JME. The current findings provide insights into creative abilities in two different epilepsy syndromes. Knowledge on specific neuropsychological strengths or deficits in patients with epilepsy may be useful for treatment or counseling. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26232267','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26232267"><span>Effective connectivity in the neural network underlying coarse-to-fine categorization of visual scenes. A dynamic causal modeling study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kauffmann, Louise; Chauvin, Alan; Pichat, Cédric; Peyrin, Carole</p> <p>2015-10-01</p> <p>According to current models of visual perception scenes are processed in terms of spatial frequencies following a predominantly coarse-to-fine processing sequence. Low spatial frequencies (LSF) reach high-order areas rapidly in order to activate plausible interpretations of the visual input. This triggers top-down facilitation that guides subsequent processing of high spatial frequencies (HSF) in lower-level areas such as the inferotemporal and occipital cortices. However, dynamic interactions underlying top-down influences on the occipital cortex have never been systematically investigated. The present fMRI study aimed to further explore the neural bases and effective connectivity underlying coarse-to-fine processing of scenes, particularly the role of the occipital cortex. We used sequences of six filtered scenes as stimuli depicting coarse-to-fine or fine-to-coarse processing of scenes. Participants performed a categorization task on these stimuli (indoor vs. outdoor). Firstly, we showed that coarse-to-fine (compared to fine-to-coarse) sequences elicited stronger activation in the inferior frontal gyrus (in the orbitofrontal cortex), the inferotemporal cortex (in the fusiform and parahippocampal gyri), and the occipital cortex (in the cuneus). Dynamic causal modeling (DCM) was then used to infer effective connectivity between these regions. DCM results revealed that coarse-to-fine processing resulted in increased connectivity from the occipital cortex to the inferior frontal gyrus and from the inferior frontal gyrus to the inferotemporal cortex. Critically, we also observed an increase in connectivity strength from the inferior frontal gyrus to the occipital cortex, suggesting that top-down influences from frontal areas may guide processing of incoming signals. The present results support current models of visual perception and refine them by emphasizing the role of the occipital cortex as a cortical site for feedback projections in the neural network underlying coarse-to-fine processing of scenes. Copyright © 2015 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHEP...06..030G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHEP...06..030G"><span>Spinning AdS loop diagrams: two point functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giombi, Simone; Sleight, Charlotte; Taronna, Massimo</p> <p>2018-06-01</p> <p>We develop a systematic approach to evaluating AdS loop amplitudes with spinning legs based on the spectral (or "split") representation of bulk-to-bulk propagators, which re-expresses loop diagrams in terms of spectral integrals and higher-point tree diagrams. In this work we focus on 2pt one-loop Witten diagrams involving totally symmetric fields of arbitrary mass and integer spin. As an application of this framework, we study the contribution to the anomalous dimension of higher-spin currents generated by bubble diagrams in higher-spin gauge theories on AdS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3986592','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3986592"><span>The impact of frontal and cerebellar lesions on decision making: evidence from the Iowa Gambling Task</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cardoso, Caroline de Oliveira; Branco, Laura Damiani; Cotrena, Charles; Kristensen, Christian Haag; Schneider Bakos, Daniela Di Giorge; Fonseca, Rochele Paz</p> <p>2014-01-01</p> <p>Although the frontal lobes have traditionally been considered the neural substrates of executive functioning (EF), recent studies have suggested that other structures, such as the cerebellum, may be associated with these abilities. The role of the cerebellum has only been sparsely investigated in connection with decision making (DM), an important component of EF, and the few results obtained on this front have been inconclusive. The current study sought to investigate the role of the cerebellum in DM by comparing the performance of patients with cerebellar strokes, frontal-damaged patients, and a healthy control group on the Iowa Gambling Task (IGT). A total of nine cerebellar-damaged adults participated in the study, as well as nine individuals with frontal strokes and 18 control individuals. Patients were administered a version of the IGT adapted to the population of Southern Brazil. There was a marginal difference in mean IGT net scores between the two clinical groups, although both displayed impaired performance as compared to the control group. Overall, the DM ability of patients with cerebellar damage proved to be more preserved than that of individuals with frontal lobe strokes, but less preserved than that of the control group. These data suggested that, while the frontal lobes may be the most important brain structures for DM, the cerebellum might also play an active role in this cognitive function. Future studies assessing participants with lesions in different cerebellar regions and hemispheres will prove invaluable for the understanding of the neural structures involved in DM, and make significant contributions to the globalist-localizationist debate in DM neuroscience. PMID:24782697</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29493041','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29493041"><span>Sleep deprivation compromises resting-state emotional regulatory processes: An EEG study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Jinxiao; Lau, Esther Yuet Ying; Hsiao, Janet H</p> <p>2018-03-01</p> <p>Resting-state spontaneous neural activities consume far more biological energy than stimulus-induced activities, suggesting their significance. However, existing studies of sleep loss and emotional functioning have focused on how sleep deprivation modulates stimulus-induced emotional neural activities. The current study aimed to investigate the impacts of sleep deprivation on the brain network of emotional functioning using electroencephalogram during a resting state. Two established resting-state electroencephalogram indexes (i.e. frontal alpha asymmetry and frontal theta/beta ratio) were used to reflect the functioning of the emotion regulatory neural network. Participants completed an 8-min resting-state electroencephalogram recording after a well-rested night or 24 hr sleep deprivation. The Sleep Deprivation group had a heightened ratio of the power density in theta band to beta band (theta/beta ratio) in the frontal area than the Sleep Control group, suggesting an effective approach with reduced frontal cortical regulation of subcortical drive after sleep deprivation. There was also marginally more left-lateralized frontal alpha power (left frontal alpha asymmetry) in the Sleep Deprivation group compared with the Sleep Control group. Besides, higher theta/beta ratio and more left alpha lateralization were correlated with higher sleepiness and lower vigilance. The results converged in suggesting compromised emotional regulatory processes during resting state after sleep deprivation. Our work provided the first resting-state neural evidence for compromised emotional functioning after sleep loss, highlighting the significance of examining resting-state neural activities within the affective brain network as a default functional mode in investigating the sleep-emotion relationship. © 2018 European Sleep Research Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800029733&hterms=1601&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2526%25231601','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800029733&hterms=1601&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2526%25231601"><span>A matrix solution for the simulation of magnetic fields with ideal current loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stankiewicz, N.</p> <p>1979-01-01</p> <p>A matrix formulation is presented for describing axisymmetric magnetic field data with ideal current loops. A computer program written in APL is used to invert the matrix and hence to solve for the coil strengths which are used to represent the field data. Examples are given of the coil representation for (1) measured magnetic data, (2) refocusing fields, and (3) PPM focusing fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97o5130K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97o5130K"><span>Orbital loop currents in iron-based superconductors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klug, Markus; Kang, Jian; Fernandes, Rafael M.; Schmalian, Jörg</p> <p>2018-04-01</p> <p>We show that the antiferromagnetic state commonly observed in the phase diagrams of the iron-based superconductors necessarily triggers loop currents characterized by charge transfer between different Fe 3 d orbitals. This effect is rooted on the glide-plane symmetry of these materials and on the existence of an atomic spin-orbit coupling that couples states at the X and Y points of the 1-Fe Brillouin zone. In the particular case in which the magnetic moments are aligned parallel to the magnetic ordering vector direction, which is the moment configuration most commonly found in the iron-based superconductors, these loop currents involve the dx y orbital and either the dy z orbital (if the moments point along the y axis) or the dx z orbitals (if the moments point along the x axis). We show that the two main manifestations of the orbital loop currents are the emergence of magnetic moments in the pnictide/chalcogen site and an orbital-selective band splitting in the magnetically ordered state, both of which could be detected experimentally. Our results highlight the unique intertwining between orbital and spin degrees of freedom in the iron-based superconductors, and reveal the emergence of an unusual correlated phase that may impact the normal state and superconducting properties of these materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9682E..14M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9682E..14M"><span>Study on rejection characteristic of current loop to the base disturbance of optical communication system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mao, Yao; Deng, Chao; Liu, Qiong; Cao, Zheng</p> <p>2016-10-01</p> <p>As laser has narrow transmitting beam and small divergence angle, the LOS (Line of Sight) stabilization of optical communication system is a primary precondition of laser communication links. Compound axis control is usually adopted in LOS stabilization of optical communication system, in which coarse tracking and fine tracking are included. Rejection against high frequency disturbance mainly depends on fine tracking LOS stabilization platform. Limited by different factors such as mechanical characteristic of the stabilization platform and bandwidth/noise of the sensor, the control bandwidth of LOS stabilization platform is restricted so that effective rejection of high frequency disturbance cannot be achieved as it mainly depends on the isolation characteristic of the platform itself. It is proposed by this paper that current loop may reject the effect of back-EMF. By adopting the method of electric control, high frequency isolation characteristic of the platform can be improved. The improvement effect is similar to increasing passive vibration reduction devices. Adopting the double closed loop control structure of velocity and current with the combining of the rejection effect of back-EMF caused by current loop is equivalent to reducing back-EMF coefficient, which can enhance the isolation ability of the LOS stabilization platform to high frequency disturbance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28213527','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28213527"><span>Advancing viral RNA structure prediction: measuring the thermodynamics of pyrimidine-rich internal loops.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Phan, Andy; Mailey, Katherine; Saeki, Jessica; Gu, Xiaobo; Schroeder, Susan J</p> <p>2017-05-01</p> <p>Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased toward small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with >6 nucleotides (nt) that occur frequently in viral RNA. This article presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Uracil and protonated cytosine base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with >6 nt are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2 × 2 have been measured. These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites. © 2017 Phan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29356975','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29356975"><span>Electrophysiological and behavioral effects of frontal transcranial direct current stimulation on cognitive fatigue in multiple sclerosis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fiene, Marina; Rufener, Katharina S; Kuehne, Maria; Matzke, Mike; Heinze, Hans-Jochen; Zaehle, Tino</p> <p>2018-03-01</p> <p>Fatigue is one of the most common and debilitating symptoms affecting patients with multiple sclerosis (MS). Sustained cognitive effort induces cognitive fatigue, operationalized as subjective exhaustion and fatigue-related objective alertness decrements with time-on-task. During prolonged cognitive testing, MS patients show increased simple reaction times (RT) accompanied by lower amplitudes and prolonged latencies of the P300 event-related potential. Previous studies suggested a major role of structural and functional abnormalities in the frontal cortex including a frontal hypo-activation in fatigue pathogenesis. In the present study we investigated the neuromodulatory effect of transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) on objective measures of fatigue-related decrements in cognitive performance in MS patients. P300 during an auditory oddball task and simple reaction times in an alertness test were recorded at baseline, during and after stimulation. Compared to sham, anodal tDCS caused an increase in P300 amplitude that persisted after the end of stimulation and eliminated the fatigue-related increase in RT over the course of a testing session. Our findings demonstrate that anodal tDCS over the left DLPFC can counteract performance decrements associated with fatigue thereby leading to an improvement in the patient's ability to cope with sustained cognitive demands. This provides causal evidence for the functional relevance of the left DLPFC in fatigue pathophysiology. The results indicate that tDCS-induced modulations of frontal activity can be an effective therapeutic option for the treatment of fatigue-related declines in cognitive performance in MS patients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26106934','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26106934"><span>Combination decongestion therapy in hospitalized heart failure: loop diuretics, mineralocorticoid receptor antagonists and vasopressin antagonists.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vaduganathan, Muthiah; Mentz, Robert J; Greene, Stephen J; Senni, Michele; Sato, Naoki; Nodari, Savina; Butler, Javed; Gheorghiade, Mihai</p> <p>2015-01-01</p> <p>Congestion is the most common reason for admissions and readmissions for heart failure (HF). The vast majority of hospitalized HF patients appear to respond readily to loop diuretics, but available data suggest that a significant proportion are being discharged with persistent evidence of congestion. Although novel therapies targeting congestion should continue to be developed, currently available agents may be utilized more optimally to facilitate complete decongestion. The combination of loop diuretics, natriuretic doses of mineralocorticoid receptor antagonists and vasopressin antagonists represents a regimen of currently available therapies that affects early and persistent decongestion, while limiting the associated risks of electrolyte disturbances, hemodynamic fluctuations, renal dysfunction and mortality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012OptLT..44...63W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012OptLT..44...63W"><span>A digital intensity stabilization system for HeNe laser</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, Zhimeng; Lu, Guangfeng; Yang, Kaiyong; Long, Xingwu; Huang, Yun</p> <p>2012-02-01</p> <p>A digital intensity stabilization system for HeNe laser is developed. Based on a switching power IC to design laser power supply and a general purpose microcontroller to realize digital PID control, the system constructs a closed loop to stabilize the laser intensity by regulating its discharge current. The laser tube is made of glass ceramics and its integrated structure is steady enough to eliminate intensity fluctuations at high frequency and attenuates all intensity fluctuations, and this makes it easy to tune the control loop. The control loop between discharge current and photodiode voltage eliminates the long-term drifts. The intensity stability of the HeNe laser with this system is 0.014% over 12 h.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22479152','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22479152"><span>Reasoning, learning, and creativity: frontal lobe function and human decision-making.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Collins, Anne; Koechlin, Etienne</p> <p>2012-01-01</p> <p>The frontal lobes subserve decision-making and executive control--that is, the selection and coordination of goal-directed behaviors. Current models of frontal executive function, however, do not explain human decision-making in everyday environments featuring uncertain, changing, and especially open-ended situations. Here, we propose a computational model of human executive function that clarifies this issue. Using behavioral experiments, we show that unlike others, the proposed model predicts human decisions and their variations across individuals in naturalistic situations. The model reveals that for driving action, the human frontal function monitors up to three/four concurrent behavioral strategies and infers online their ability to predict action outcomes: whenever one appears more reliable than unreliable, this strategy is chosen to guide the selection and learning of actions that maximize rewards. Otherwise, a new behavioral strategy is tentatively formed, partly from those stored in long-term memory, then probed, and if competitive confirmed to subsequently drive action. Thus, the human executive function has a monitoring capacity limited to three or four behavioral strategies. This limitation is compensated by the binary structure of executive control that in ambiguous and unknown situations promotes the exploration and creation of new behavioral strategies. The results support a model of human frontal function that integrates reasoning, learning, and creative abilities in the service of decision-making and adaptive behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27094176','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27094176"><span>Reduced functional connectivity to the frontal cortex during processing of social cues in autism spectrum disorder.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoffmann, Elgin; Brück, Carolin; Kreifelts, Benjamin; Ethofer, Thomas; Wildgruber, Dirk</p> <p>2016-08-01</p> <p>People diagnosed with autism spectrum disorder (ASD) characteristically present with severe difficulties in interpreting every-day social signals. Currently it is assumed that these difficulties might have neurobiological correlates in alterations in activation as well as in connectivity in and between regions of the social perception network suggested to govern the processing of social cues. In this study, we conducted functional magnetic resonance imaging (fMRI)-based activation and connectivity analyses focusing on face-, voice-, and audiovisual-processing brain regions as the most important subareas of the social perception network. Results revealed alterations in connectivity among regions involved in the processing of social stimuli in ASD subjects compared to typically developed (TD) controls-specifically, a reduced connectivity between the left temporal voice area (TVA) and the superior and medial frontal gyrus. Alterations in connectivity, moreover, were correlated with the severity of autistic traits: correlation analysis indicated that the connectivity between the left TVA and the limbic lobe, anterior cingulate and the medial frontal gyrus as well as between the right TVA and the frontal lobe, anterior cingulate, limbic lobe and the caudate decreased with increasing symptom severity. As these frontal regions are understood to play an important role in interpreting and mentalizing social signals, the observed underconnectivity might be construed as playing a role in social impairments in ASD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3313946','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3313946"><span>Reasoning, Learning, and Creativity: Frontal Lobe Function and Human Decision-Making</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Collins, Anne; Koechlin, Etienne</p> <p>2012-01-01</p> <p>The frontal lobes subserve decision-making and executive control—that is, the selection and coordination of goal-directed behaviors. Current models of frontal executive function, however, do not explain human decision-making in everyday environments featuring uncertain, changing, and especially open-ended situations. Here, we propose a computational model of human executive function that clarifies this issue. Using behavioral experiments, we show that unlike others, the proposed model predicts human decisions and their variations across individuals in naturalistic situations. The model reveals that for driving action, the human frontal function monitors up to three/four concurrent behavioral strategies and infers online their ability to predict action outcomes: whenever one appears more reliable than unreliable, this strategy is chosen to guide the selection and learning of actions that maximize rewards. Otherwise, a new behavioral strategy is tentatively formed, partly from those stored in long-term memory, then probed, and if competitive confirmed to subsequently drive action. Thus, the human executive function has a monitoring capacity limited to three or four behavioral strategies. This limitation is compensated by the binary structure of executive control that in ambiguous and unknown situations promotes the exploration and creation of new behavioral strategies. The results support a model of human frontal function that integrates reasoning, learning, and creative abilities in the service of decision-making and adaptive behavior. PMID:22479152</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25575881','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25575881"><span>Functional connectivity pattern during rest within the episodic memory network in association with episodic memory performance in bipolar disorder.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oertel-Knöchel, Viola; Reinke, Britta; Matura, Silke; Prvulovic, David; Linden, David E J; van de Ven, Vincent</p> <p>2015-02-28</p> <p>In this study, we sought to examine the intrinsic functional organization of the episodic memory network during rest in bipolar disorder (BD). The previous work suggests that deficits in intrinsic functional connectivity may account for impaired memory performance. We hypothesized that regions involved in episodic memory processing would reveal aberrant functional connectivity in patients with bipolar disorder. We examined 21 patients with BD and 21 healthy matched controls who underwent functional magnetic resonance imaging (fMRI) during a resting condition. We did a seed-based functional connectivity analysis (SBA), using the regions of the episodic memory network that showed a significantly different activation pattern during task-related fMRI as seeds. The functional connectivity scores (FC) were further correlated with episodic memory task performance. Our results revealed decreased FC scores within frontal areas and between frontal and temporal/hippocampal/limbic regions in BD patients in comparison with controls. We observed higher FC in BD patients compared with controls between frontal and limbic regions. The decrease in fronto-frontal functional connectivity in BD patients showed a significant positive association with episodic memory performance. The association between task-independent dysfunctional frontal-limbic FC and episodic memory performance may be relevant for current pathophysiological models of the disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3923298','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3923298"><span>Cognitive-motor interactions of the basal ganglia in development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Leisman, Gerry; Braun-Benjamin, Orit; Melillo, Robert</p> <p>2014-01-01</p> <p>Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes. The basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human reasoning and adaptive function. The basal ganglia are key elements in the control of reward-based learning, sequencing, discrete elements that constitute a complete motor act, and cognitive function. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. We know that the relation between the basal ganglia and the cerebral cortical region allows for connections organized into discrete circuits. Rather than serving as a means for widespread cortical areas to gain access to the motor system, these loops reciprocally interconnect a large and diverse set of cerebral cortical areas with the basal ganglia. Neuronal activity within the basal ganglia associated with motor areas of the cerebral cortex is highly correlated with parameters of movement. Neuronal activity within the basal ganglia and cerebellar loops associated with the prefrontal cortex is related to the aspects of cognitive function. Thus, individual loops appear to be involved in distinct behavioral functions. Damage to the basal ganglia of circuits with motor areas of the cortex leads to motor symptoms, whereas damage to the subcortical components of circuits with non-motor areas of the cortex causes higher-order deficits. In this report, we review some of the anatomic, physiologic, and behavioral findings that have contributed to a reappraisal of function concerning the basal ganglia and cerebellar loops with the cerebral cortex and apply it in clinical applications to attention deficit/hyperactivity disorder (ADHD) with biomechanics and a discussion of retention of primitive reflexes being highly associated with the condition. PMID:24592214</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4915935','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4915935"><span>Anomalous basal ganglia connectivity and obsessive–compulsive behaviour in patients with Prader Willi syndrome</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pujol, Jesus; Blanco-Hinojo, Laura; Esteba-Castillo, Susanna; Caixàs, Assumpta; Harrison, Ben J.; Bueno, Marta; Deus, Joan; Rigla, Mercedes; Macià, Dídac; Llorente-Onaindia, Jone; Novell-Alsina, Ramón</p> <p>2016-01-01</p> <p>Background Prader Willi syndrome is a genetic disorder with a behavioural expression characterized by the presence of obsessive–compulsive phenomena ranging from elaborate obsessive eating behaviour to repetitive skin picking. Obsessive–compulsive disorder (OCD) has been recently associated with abnormal functional coupling between the frontal cortex and basal ganglia. We have tested the potential association of functional connectivity anomalies in basal ganglia circuits with obsessive–compulsive behaviour in patients with Prader Willi syndrome. Methods We analyzed resting-state functional MRI in adult patients and healthy controls. Whole-brain functional connectivity maps were generated for the dorsal and ventral aspects of the caudate nucleus and putamen. A selected obsessive–compulsive behaviour assessment included typical OCD compulsions, self picking and obsessive eating behaviour. Results We included 24 adults with Prader Willi syndrome and 29 controls in our study. Patients with Prader Willi syndrome showed abnormal functional connectivity between the prefrontal cortex and basal ganglia and within subcortical structures that correlated with the presence and severity of obsessive–compulsive behaviours. In addition, abnormally heightened functional connectivity was identified in the primary sensorimotor cortex–putamen loop, which was strongly associated with self picking. Finally, obsessive eating behaviour correlated with abnormal functional connectivity both within the basal ganglia loops and between the striatum and the hypothalamus and the amygdala. Limitations Limitations of the study include the difficulty in evaluating the nature of content of obsessions in patients with Prader Willi Syndrome and the risk of excessive head motion artifact on brain imaging. Conclusion Patients with Prader Willi syndrome showed broad functional connectivity anomalies combining prefrontal loop alterations characteristic of OCD with 1) enhanced coupling in the primary sensorimotor loop that correlated with the most impulsive aspects of the behaviour and 2) reduced coupling of the ventral striatum with limbic structures for basic internal homeostasis that correlated with the obsession to eat. PMID:26645739</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010IJC....83.2294C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010IJC....83.2294C"><span>Closed-loop analysis and control of a non-inverting buck-boost converter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Zengshi; Hu, Jiangang; Gao, Wenzhong</p> <p>2010-11-01</p> <p>In this article, a cascade controller is designed and analysed for a non-inverting buck-boost converter. The fast inner current loop uses sliding mode control. The slow outer voltage loop uses the proportional-integral (PI) control. Stability analysis and selection of PI gains are based on the nonlinear closed-loop error dynamics incorporating both the inner and outer loop controllers. The closed-loop system is proven to have a nonminimum phase structure. The voltage transient due to step changes of input voltage or resistance is predictable. The operating range of the reference voltage is discussed. The controller is validated by a simulation circuit. The simulation results show that the reference output voltage is well-tracked under system uncertainties or disturbances, confirming the validity of the proposed controller.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SoPh..290.3559Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SoPh..290.3559Z"><span>Particle Acceleration and Plasma Heating in the Chromosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zaitsev, V. V.; Stepanov, A. V.</p> <p>2015-12-01</p> <p>We propose a new mechanism of electron acceleration and plasma heating in the solar chromosphere, based on the magnetic Rayleigh-Taylor instability. The instability develops at the chromospheric footpoints of a flare loop and deforms the local magnetic field. As a result, the electric current in the loop varies, and a resulting inductive electric field appears. A pulse of the induced electric field, together with the pulse of the electric current, propagates along the loop with the Alfvén velocity and begins to accelerate electrons up to an energy of about 1 MeV. Accelerated particles are thermalized in the dense layers of the chromosphere with the plasma density n ≈10^{14} - 10^{15} cm^{-3}, heating them to a temperature of about several million degrees. Joule dissipation of the electric current pulse heats the chromosphere at heights that correspond to densities n ≤10^{11} - 10^{13} cm^{-3}. Observations with the New Solar Telescope at Big Bear Solar Observatory indicate that chromospheric footpoints of coronal loops might be heated to coronal temperatures and that hot plasma might be injected upwards, which brightens ultra-fine loops from the photosphere to the base of the corona. Thereby, recent observations of the Sun and the model we propose stimulate a déjà vu - they are reminiscent of the concept of the chromospheric flare.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100039400','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100039400"><span>Differential Resonant Ring YIG Tuned Oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parrott, Ronald A.</p> <p>2010-01-01</p> <p>A differential SiGe oscillator circuit uses a resonant ring-oscillator topology in order to electronically tune the oscillator over multi-octave bandwidths. The oscillator s tuning is extremely linear, because the oscillator s frequency depends on the magnetic tuning of a YIG sphere, whose resonant frequency is equal to a fundamental constant times the DC magnetic field. This extremely simple circuit topology uses two coupling loops connecting a differential pair of SiGe bipolar transistors into a feedback configuration using a YIG tuned filter creating a closed-loop ring oscillator. SiGe device technology is used for this oscillator in order to keep the transistor s 1/f noise to an absolute minimum in order to achieve minimum RF phase noise. The single-end resonant ring oscillator currently has an advantage in fewer parts, but when the oscillation frequency is greater than 16 GHz, the package s parasitic behavior couples energy to the sphere and causes holes and poor phase noise performance. This is because the coupling to the YIG is extremely low, so that the oscillator operates at near the unloaded Q. With the differential resonant ring oscillator, the oscillation currents are just in the YIG coupling mechanisms. The phase noise is even better, and the physical size can be reduced to permit monolithic microwave integrated circuit oscillators. This invention is a YIG tuned oscillator circuit making use of a differential topology to simultaneously achieve an extremely broadband electronic tuning range and ultra-low phase noise. As a natural result of its differential circuit topology, all reactive elements, such as tuning stubs, which limit tuning bandwidth by contributing excessive open loop phase shift, have been eliminated. The differential oscillator s open-loop phase shift is associated with completely non-dispersive circuit elements such as the physical angle of the coupling loops, a differential loop crossover, and the high-frequency phase shift of the n-p-n transistors. At the input of the oscillator s feedback loop is a pair of differentially connected n-p-n SiGe transistors that provides extremely high gain, and because they are bulk-effect devices, extremely low 1/f noise (leading to ultralow RF phase noise). The 1/f corner frequency for n-p-n SiGe transistors is approximately 500 Hz. The RF energy from the transistor s collector output is connected directly to the top-coupling loop (the excitation loop) of a single-sphere YIG tuned filter. A uniform magnetic field to bias the YIG must be at a right angle to any vector associated with an RF current in a coupling loop in order for the precession to interact with the RF currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28165168','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28165168"><span>Blooming Knit Flowers: Loop-Linked Soft Morphing Structures for Soft Robotics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Han, Min-Woo; Ahn, Sung-Hoon</p> <p>2017-04-01</p> <p>A loop-linked structure, which is capable of morphing in various modes, including volumetric transformation, is developed based on knitting methods. Morphing flowers (a lily-like, a daffodil-like, gamopetalous, and a calla-like flower) are fabricated using loop patterning, and their blooming motion is demonstrated by controlling a current that selectively actuates the flowers petals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23175676','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23175676"><span>Influence of trait behavioral inhibition and behavioral approach motivation systems on the LPP and frontal asymmetry to anger pictures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gable, Philip A; Poole, Bryan D</p> <p>2014-02-01</p> <p>Behavioral approach and avoidance are fundamental to the experience of emotion and motivation, but the motivational system associated with anger is not well established. Some theories posit that approach motivational processes underlie anger, whereas others posit that avoidance motivational processes underlie anger. The current experiment sought to address whether traits related to behavioral approach or avoidance influence responses to anger stimuli using multiple measures: ERP, electroencephalographic (EEG) α-asymmetry and self-report. After completing the behavioral inhibition system/behavioral approach system (BIS/BAS) scales, participants viewed anger pictures and neutral pictures. BAS predicted larger late positive potentials (LPPs) to anger pictures, but not to neutral pictures. In addition, BAS predicted greater left-frontal asymmetry to anger pictures. Moreover, larger LPPs to anger pictures related to greater left-frontal EEG asymmetry during anger pictures. These results suggest that trait approach motivation relates to neurophysiological responses of anger.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3907932','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3907932"><span>Influence of trait behavioral inhibition and behavioral approach motivation systems on the LPP and frontal asymmetry to anger pictures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Poole, Bryan D.</p> <p>2014-01-01</p> <p>Behavioral approach and avoidance are fundamental to the experience of emotion and motivation, but the motivational system associated with anger is not well established. Some theories posit that approach motivational processes underlie anger, whereas others posit that avoidance motivational processes underlie anger. The current experiment sought to address whether traits related to behavioral approach or avoidance influence responses to anger stimuli using multiple measures: ERP, electroencephalographic (EEG) α-asymmetry and self-report. After completing the behavioral inhibition system/behavioral approach system (BIS/BAS) scales, participants viewed anger pictures and neutral pictures. BAS predicted larger late positive potentials (LPPs) to anger pictures, but not to neutral pictures. In addition, BAS predicted greater left-frontal asymmetry to anger pictures. Moreover, larger LPPs to anger pictures related to greater left-frontal EEG asymmetry during anger pictures. These results suggest that trait approach motivation relates to neurophysiological responses of anger. PMID:23175676</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16130636','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16130636"><span>Considerations for the head-injured air-evacuated patient: a case report of frontal sinus fracture and review of the literature.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Helling, Eric; McKinlay, Alex J</p> <p>2005-07-01</p> <p>Head and neck injuries are not uncommon in combat environments and may be increasing due to survivable injuries from the use of kevlar helmets and body armor. With the current capability of rapid evacuation from the battlefield, acutely injured patients with frontal sinus injuries may undergo further barometric challenges. Proper care during transport can prevent the occurrence of secondary injury (increased intracranial pressure, tension pneumocephalus) that would complicate the patient's management at the next level of care. Management principles (importance of low-level flight/pressurized cabin, preflight use of decongestants, avoidance of valsalva, and ability to manage complications either procedurally or by landing) are reviewed. In addition, we propose a simple mechanism for pressure equilibration of a compromised frontal sinus during air evacuation using an angiocatheter placed through the wound before closure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22597764-time-dependent-density-functional-theory-simulation-local-currents-pristine-single-defect-zigzag-graphene-nanoribbons','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22597764-time-dependent-density-functional-theory-simulation-local-currents-pristine-single-defect-zigzag-graphene-nanoribbons"><span>Time-dependent density-functional theory simulation of local currents in pristine and single-defect zigzag graphene nanoribbons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>He, Shenglai, E-mail: shenglai.he@vanderbilt.edu; Russakoff, Arthur; Li, Yonghui</p> <p>2016-07-21</p> <p>The spatial current distribution in H-terminated zigzag graphene nanoribbons (ZGNRs) under electrical bias is investigated using time-dependent density-functional theory solved on a real-space grid. A projected complex absorbing potential is used to minimize the effect of reflection at simulation cell boundary. The calculations show that the current flows mainly along the edge atoms in the hydrogen terminated pristine ZGNRs. When a vacancy is introduced to the ZGNRs, loop currents emerge at the ribbon edge due to electrons hopping between carbon atoms of the same sublattice. The loop currents hinder the flow of the edge current, explaining the poor electric conductancemore » observed in recent experiments.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016034','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016034"><span>Modern configuration of the southwest Florida carbonate slope: Development by shelf margin progradation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brooks, G.R.; Holmes, C.W.</p> <p>1990-01-01</p> <p>Depositional patterns and sedimentary processes influencing modern southwest Florida carbonate slope development have been identified based upon slope morphology, seismic facies and surface sediment characteristics. Three slope-parallel zones have been identified: (1) an upper slope progradational zone (100-500 m) characterized by seaward-trending progradational clinoforms and sediments rich in shelf-derived carbonate material, (2) a lower gullied slope zone (500-800 m) characterized by numerous gullies formed by the downslope transport of gravity flows, and (3) a base-of-slope zone (> 800 m) characterized by thin, lens-shaped gravity flow deposits and irregular topography interpreted to be the result of bottom currents and slope failure along the basal extensions of gullies. Modern slope development is interpreted to have been controlled by the offshelf transport of shallow-water material from the adjacent west Florida shelf, deposition of this material along a seaward advancing sediment front, and intermittent bypassing of the lower slope by sediments transported in the form of gravity flows via gullies. Sediments are transported offshelf by a combination of tides and the Loop Current, augmented by the passage of storm frontal systems. Winter storm fronts produce cold, dense, sediment-laden water that cascades offshelf beneath the strong, eastward flowing Florida Current. Sediments are eventually deposited in a relatively low energy transition zone between the Florida Current on the surface and a deep westward flowing counter current. The influence of the Florida Current is evident in the easternmost part of the study area as eastward prograding sediments form a sediment drift that is progressively burying the Pourtales Terrace. The modern southwest Florida slope has seismic reflection and sedimentological characteristics in common with slopes bordering both the non-rimmed west Florida margin and the rimmed platform of the northern Bahamas, and shows many similarities to the progradational Miocene section along the west Florida slope. As with rimmed platform slopes, development of non-rimmed platform slopes can be complex and controlled by a combination of processes that result in a variety of configurations. Consequently, the distinction between the two slope types based solely upon seismic and sedimentological characteristics may not be readily discernible. ?? 1990.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866420','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866420"><span>Closed-loop pulsed helium ionization detector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ramsey, Roswitha S.; Todd, Richard A.</p> <p>1987-01-01</p> <p>A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6898014','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6898014"><span>Stabilizing windings for tilting and shifting modes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jardin, S.C.; Christensen, U.R.</p> <p>1982-02-26</p> <p>This invention provides simple, inexpensive, independent and passive, conducting loops for stabilizing a plasma ring having externally produced equilibrium fields on opposite sides of the plasma ring and internal plasma currents that interact to tilt and/or shift the plasma ring relative to the externally produced equilibrium field so as to produce unstable tilting and/or shifting modes in the plasma ring. More particularly this invention provides first and second passive conducting loops for containing first and second induced currents in first and second directions corresponding to the amplitude and directions of the unstable tilting and/or shifting modes in the plasma ring.more » To this end, the induced currents provide additional magnetic fields for producing restoring forces and/or restoring torques for counteracting the tilting and/or shifting modes when the conducting loops are held fixed in stationary positions relative to the externally produced equilibrium fields on opposite sides of the plasma ring.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4536380','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4536380"><span>Source analysis of electrophysiological correlates of beat induction as sensory-guided action</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Todd, Neil P. M.; Lee, Christopher S.</p> <p>2015-01-01</p> <p>In this paper we present a reanalysis of electrophysiological data originally collected to test a sensory-motor theory of beat induction (Todd et al., 2002; Todd and Seiss, 2004; Todd and Lee, 2015). The reanalysis is conducted in the light of more recent findings and in particular the demonstration that auditory evoked potentials contain a vestibular dependency. At the core of the analysis is a model which predicts brain dipole source current activity over time in temporal and frontal lobe areas during passive listening to a rhythm, or active synchronization, where it dissociates the frontal activity into distinct sources which can be identified as respectively pre-motor and motor in origin. The model successfully captures the main features of the rhythm in showing that the metrical structure is manifest in an increase in source current activity during strong compared to weak beats. In addition the outcomes of modeling suggest that: (1) activity in both temporal and frontal areas contribute to the metrical percept and that this activity is distributed over time; (2) transient, time-locked activity associated with anticipated beats is increased when a temporal expectation is confirmed following a previous violation, such as a syncopation; (3) two distinct processes are involved in auditory cortex, corresponding to tangential and radial (possibly vestibular dependent) current sources. We discuss the implications of these outcomes for the insights they give into the origin of metrical structure and the power of syncopation to induce movement and create a sense of groove. PMID:26321991</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27474965','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27474965"><span>Closed-loop adaptation of neurofeedback based on mental effort facilitates reinforcement learning of brain self-regulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bauer, Robert; Fels, Meike; Royter, Vladislav; Raco, Valerio; Gharabaghi, Alireza</p> <p>2016-09-01</p> <p>Considering self-rated mental effort during neurofeedback may improve training of brain self-regulation. Twenty-one healthy, right-handed subjects performed kinesthetic motor imagery of opening their left hand, while threshold-based classification of beta-band desynchronization resulted in proprioceptive robotic feedback. The experiment consisted of two blocks in a cross-over design. The participants rated their perceived mental effort nine times per block. In the adaptive block, the threshold was adjusted on the basis of these ratings whereas adjustments were carried out at random in the other block. Electroencephalography was used to examine the cortical activation patterns during the training sessions. The perceived mental effort was correlated with the difficulty threshold of neurofeedback training. Adaptive threshold-setting reduced mental effort and increased the classification accuracy and positive predictive value. This was paralleled by an inter-hemispheric cortical activation pattern in low frequency bands connecting the right frontal and left parietal areas. Optimal balance of mental effort was achieved at thresholds significantly higher than maximum classification accuracy. Rating of mental effort is a feasible approach for effective threshold-adaptation during neurofeedback training. Closed-loop adaptation of the neurofeedback difficulty level facilitates reinforcement learning of brain self-regulation. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/897980','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/897980"><span>Atomistic modeling of shock-induced void collapse in copper</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Davila, L P; Erhart, P; Bringa, E M</p> <p>2005-03-09</p> <p>Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26009612','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26009612"><span>Occipital MEG Activity in the Early Time Range (<300 ms) Predicts Graded Changes in Perceptual Consciousness.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Andersen, Lau M; Pedersen, Michael N; Sandberg, Kristian; Overgaard, Morten</p> <p>2016-06-01</p> <p>Two electrophysiological components have been extensively investigated as candidate neural correlates of perceptual consciousness: An early, occipitally realized component occurring 130-320 ms after stimulus onset and a late, frontally realized component occurring 320-510 ms after stimulus onset. Recent studies have suggested that the late component may not be uniquely related to perceptual consciousness, but also to sensory expectations, task associations, and selective attention. We conducted a magnetoencephalographic study; using multivariate analysis, we compared classification accuracies when decoding perceptual consciousness from the 2 components using sources from occipital and frontal lobes. We found that occipital sources during the early time range were significantly more accurate in decoding perceptual consciousness than frontal sources during both the early and late time ranges. These results are the first of its kind where the predictive values of the 2 components are quantitatively compared, and they provide further evidence for the primary importance of occipital sources in realizing perceptual consciousness. The results have important consequences for current theories of perceptual consciousness, especially theories emphasizing the role of frontal sources. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17705904','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17705904"><span>Emotion and resilience: a multilevel investigation of hemispheric electroencephalogram asymmetry and emotion regulation in maltreated and nonmaltreated children.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Curtis, W John; Cicchetti, Dante</p> <p>2007-01-01</p> <p>The current study was a multilevel investigation of resilience, emotion regulation, and hemispheric electroencephalogram (EEG) asymmetry in a sample of maltreated and nonmaltreated school age children. It was predicted that the positive emotionality and increased emotion regulatory ability associated with resilient functioning would be associated with relatively greater left frontal EEG activity. The study also investigated differences in pathways to resilience between maltreated and nonmaltreated children. The findings indicated that EEG asymmetry across central cortical regions distinguished between resilient and nonresilient children, with greater left hemisphere activity characterizing those who were resilient. In addition, nonmaltreated children showed greater left hemisphere EEG activity across parietal cortical regions. There was also a significant interaction between resilience, maltreatment status, and gender for asymmetry at anterior frontal electrodes, where nonmaltreated resilient females had greater relative left frontal activity compared to more right frontal activity exhibited by resilient maltreated females. An observational measure of emotion regulation significantly contributed to the prediction of resilience in the maltreated and nonmaltreated children, but EEG asymmetry in central cortical regions independently predicted resilience only in the maltreated group. The findings are discussed in terms of their meaning for the development of resilient functioning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5036854','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5036854"><span>The Involvement of Occipital and Inferior Frontal Cortex in the Phonological Learning of Chinese Characters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Deng, Yuan; Chou, Tai-li; Ding, Guo-sheng; Peng, Dan-ling; Booth, James R.</p> <p>2016-01-01</p> <p>Neural changes related to the learning of the pronunciation of Chinese characters in English speakers were examined using fMRI. We examined the item-specific learning effects for trained characters and the generalization of phonetic knowledge to novel transfer characters that shared a phonetic radical (part of a character that gives a clue to the whole character’s pronunciation) with trained characters. Behavioral results showed that shared phonetic information improved performance for transfer characters. Neuroimaging results for trained characters over learning found increased activation in the right lingual gyrus, and greater activation enhancement in the left inferior frontal gyrus (Brodmann’s area 44) was correlated with higher accuracy improvement. Moreover, greater activation for transfer characters in these two regions at the late stage of training was correlated with better knowledge of the phonetic radical in a delayed recall test. The current study suggests that the right lingual gyrus and the left inferior frontal gyrus are crucial for the learning of Chinese characters and the generalization of that knowledge to novel characters. Left inferior frontal gyrus is likely involved in phonological segmentation, whereas right lingual gyrus may subserve processing visual–orthographic information. PMID:20807053</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27254393','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27254393"><span>Lag-length effect on repetition priming of famous and unfamiliar faces: evidence from N250r and N400.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nie, Aiqing; Li, Minye; Ye, Jingheng</p> <p>2016-07-06</p> <p>Previous event-related potentials research has reliably identified two repetition priming components in faces, the N250r and the N400, which are believed to reflect, respectively, the accessing to the stored structural representations and the semantic retrieval. However, the effect of lags longer than immediate repetition and shorter than 3 min on the two components has not been described as yet, and the interaction between lag length and familiarity is unclear. The current experiment aims to address these issues. In this experiment, famous and unfamiliar faces were represented after short, medium, or long lags, and participants were required to decide whether each face was known or not. The data showed that the frontal N250r, rather than the temporal counterpart, persisted to the medium lag case for famous faces; for unfamiliar faces, no N250r was observed. The frontal N400 was more regulated by lag length than the centroparietal counterpart. These results suggest that the frontal N250r and the frontal N400 are affected by the lag length; moreover, the former is more sensitive to the pre-experimental familiarity of faces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020080741','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020080741"><span>The Structure of A Pacific Narrow Cold Frontal Rainband</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jorgensen, David P.; Pu, Zhaoxia; Persson, Ola; Tao, Wei-Kuo; Starr, David OC. (Technical Monitor)</p> <p>2002-01-01</p> <p>A NOAA P-3 instrumented aircraft observed an intense, fast-moving narrow cold frontal Farmhand as it approached the Pacific Northwest coast on 19 February 2001 during the Pacific Coastal Jets Experiment. Pseudo-dual-Doppler analyses performed on the airborne Doppler radar data while the frontal system was well offshore indicated that a narrow ribbon of very high radar reflectively convective cores characterized the Farmhand at low levels with echo tops to approximately 4-5 km. The NCFR exhibited gaps in its narrow ribbon of high reflectively, probably as a result of hydrodynamic instability all no its advancing cold pool leading edge. In contrast to some earlier studies of cold frontal rainbands, density current theory described well the motion of the overall front. The character of the updraft structure associated with the heavy rainfall at its leading edge varied across the gap region. The vertical shear of the cross-frontal low-level ambient flow exerted a strong influence on the updraft character, consistent with theoretical arguments developed for squall lines describing the balance of vorticity at the leading edge. In short regions south of the gaps the vertical wind shear was strongest with the updrafts and rain shafts more intense, narrower, and more erect or even downshear tilted. North of the gaps the wind shear weakened with less intense Dihedrals which tilted upshear with a broader band of rainfall. Simulations using a nonhydrostatic mesoscale nested grid model are used to investigate the gap regions, particularly the balance of cold pool induced to pre-frontal ambient shears at the leading edge. Observations confirm the model results that the updraft character depends on the balance of vorticity at the leading edge. Downshear-tilted updrafts imply that convection south of the gap regions would weaken with time relative to the frontal segments north of the gaps since inflow air would be affected by passage through the heavy rain region before ascent, suggesting a mechanism for gap filling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1366522','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1366522"><span>Multiple Loops of the Dihydropyridine Receptor Pore Subunit Are Required for Full-Scale Excitation-Contraction Coupling in Skeletal Muscle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Carbonneau, Leah; Bhattacharya, Dipankar; Sheridan, David C.; Coronado, Roberto</p> <p>2005-01-01</p> <p>Understanding which cytosolic domains of the dihydropyridine receptor participate in excitation-contraction (EC) coupling is critical to validate current structural models. Here we quantified the contribution to skeletal-type EC coupling of the α1S (CaV1.1) II-III loop when alone or in combination with the rest of the cytosolic domains of α1S. Chimeras consisting of α1C (CaV1.2) with α1S substitutions at each of the interrepeat loops (I-II, II-III, and III-IV loops) and N- and C-terminal domains were evaluated in dysgenic (α1S-null) myotubes for phenotypic expression of skeletal-type EC coupling. Myotubes were voltage-clamped, and Ca2+ transients were measured by confocal line-scan imaging of fluo-4 fluorescence. In agreement with previous results, the α1C/α1S II-III loop chimera, but none of the other single-loop chimeras, recovered a sigmoidal fluorescence-voltage curve indicative of skeletal-type EC coupling. To quantify Ca2+ transients in the absence of inward Ca2+ current, but without changing the external solution, a mutation, E736K, was introduced into the P-loop of repeat II of α1C. The Ca2+ transients expressed by the α1C(E736K)/α1S II-III loop chimera were ∼70% smaller than those expressed by the Ca2+-conducting α1C/α1S II-III variant. The low skeletal-type EC coupling expressed by the α1C/α1S II-III loop chimera was confirmed in the Ca2+-conducting α1C/α1S II-III loop variant using Cd2+ (10−4 M) as the Ca2+ current blocker. In contrast to the behavior of the II-III loop chimera, Ca2+ transients expressed by an α1C/α1S chimera carrying all tested skeletal α1S domains (all α1S interrepeat loops, N- and C-terminus) were similar in shape and amplitude to wild-type α1S, and did not change in the presence of the E736K mutation or in the presence of 10−4 M Cd2+. Controls indicated that similar dihydropyridine receptor charge movements were expressed by the non-Ca2+ permeant α1S(E1014K) variant, the α1C(E736K)/α1S II-III loop chimera, and the α1C(E736K)/α1S chimera carrying all tested α1S domains. The data indicate that the functional recovery produced by the α1S II-III loop is incomplete and that multiple cytosolic domains of α1S are necessary for a quantitative recovery of the EC-coupling phenotype of skeletal myotubes. Thus, despite the importance of the II-III loop there may be other critical determinants in α1S that influence the efficiency of EC coupling. PMID:15849247</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1413964-top-quark-loops-muon-anomalous-magnetic-moment','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1413964-top-quark-loops-muon-anomalous-magnetic-moment"><span>Top-quark loops and the muon anomalous magnetic moment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Czarnecki, Andrzej; Marciano, William J.</p> <p>2017-12-07</p> <p>The current status of electroweak radiative corrections to the muon anomalous magnetic moment is discussed. Asymptotic expansions for some important electroweak two-loop top quark triangle diagrams are illustrated and extended to higher order. Results are compared with the more general integral representation solution for generic fermion triangle loops coupled to pseudoscalar and scalar bosons of arbitrary mass. Furthermore, excellent agreement is found for a broader than expected range of mass parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1038554','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1038554"><span>Closed Loop Control of Oxygen Delivery and Oxygen Generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-08-01</p> <p>AFRL-SA-WP-SR-2017-0024 Closed Loop Control of Oxygen Delivery and Oxygen Generation Dr. Jay Johannigman1, Richard Branson1...for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO...TITLE AND SUBTITLE Closed Loop Control of Oxygen Delivery and Oxygen Generation 5a. CONTRACT NUMBER FA8650-10-2-6140 5b. GRANT NUMBER</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA608693','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA608693"><span>Experimental Investigation of DC-Bias Related Core Losses in a Boost Inductor (Postprint)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-08-01</p> <p>dc bias-flux conditions. These dc bias conditions result in distorted hysteresis loops , increased core losses, and have been shown to be independent...These dc bias conditions result in dis- torted hysteresis loops , increased core losses, and have been shown to be independent of core material. The...controllable converter load currents, this topology is ideal to study dc-related losses. Inductor core hysteresis loop characterization was accomplished</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26192954','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26192954"><span>The Field Relevance of NHTSA's Oblique Research Moving Deformable Barrier Tests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prasad, Priya; Dalmotas, Dainius; German, Alan</p> <p>2014-11-01</p> <p>A small overlap frontal crash test has been recently introduced by the Insurance Institute for Highway Safety in its frontal rating scheme. Another small overlap frontal crash test is under development by the National Highway Traffic Safety Administration (NHTSA). Whereas the IIHS test is conducted against a fixed rigid barrier, the NHTSA test is conducted with a moving deformable barrier that overlaps 35% of the vehicle being tested and the angle between the longitudinal axis of the barrier and the longitudinal axis of the test vehicle is 15 degrees. The field relevance of the IIHS test has been the subject of a paper by Prasad et al. (2014). The current study is aimed at examining the field relevance of the NHTSA test. The field relevance is indicated by the frequency of occurrence of real world crashes that are simulated by the test conditions, the proportion of serious-to-fatal real world injuries explained by the test condition, and rates of serious injury to the head, chest and other body regions in the real world crashes resembling the test condition. The database examined for real world crashes is NASS. Results of the study indicate that 1.4% of all frontal 11-to-1 o'clock crashes are simulated by the test conditions that account for 2.4% to 4.5% of all frontal serious-to-fatal (MAIS3+F) injuries. Injury rates of the head and the chest are substantially lower in far-side than in near-side frontal impacts. Crash test ATD rotational responses of the head in the tests overpredict the real world risk of serious-to-fatal brain injuries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3305887','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3305887"><span>Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lockhart, Samuel N.; Mayda, Adriane B. V.; Roach, Alexandra E.; Fletcher, Evan; Carmichael, Owen; Maillard, Pauline; Schwarz, Christopher G.; Yonelinas, Andrew P.; Ranganath, Charan; DeCarli, Charles</p> <p>2011-01-01</p> <p>Previous neuroimaging research indicates that white matter injury and integrity, measured respectively by white matter hyperintensities (WMH) and fractional anisotropy (FA) obtained from diffusion tensor imaging (DTI), differ with aging and cerebrovascular disease (CVD) and are associated with episodic memory deficits in cognitively normal older adults. However, knowledge about tract-specific relationships between WMH, FA, and episodic memory in aging remains limited. We hypothesized that white matter connections between frontal cortex and subcortical structures as well as connections between frontal and temporo-parietal cortex would be most affected. In the current study, we examined relationships between WMH, FA and episodic memory in 15 young adults, 13 elders with minimal WMH and 15 elders with extensive WMH, using an episodic recognition memory test for object-color associations. Voxel-based statistics were used to identify voxel clusters where white matter measures were specifically associated with variations in episodic memory performance, and white matter tracts intersecting these clusters were analyzed to examine white matter-memory relationships. White matter injury and integrity measures were significantly associated with episodic memory in extensive regions of white matter, located predominantly in frontal, parietal, and subcortical regions. Template based tractography indicated that white matter injury, as measured by WMH, in the uncinate and inferior longitudinal fasciculi were significantly negatively associated with episodic memory performance. Other tracts such as thalamo-frontal projections, superior longitudinal fasciculus, and dorsal cingulum bundle demonstrated strong negative associations as well. The results suggest that white matter injury to multiple pathways, including connections of frontal and temporal cortex and frontal-subcortical white matter tracts, plays a critical role in memory differences seen in older individuals. PMID:22438841</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC41A1078M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC41A1078M"><span>The Role of Secondary Frontal Waves in Causing Missed or False Alarm Flood Forecasts During Landfalling Atmospheric Rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, A.; Ralph, F. M.; Lavers, D. A.; Kalansky, J.; Kawzenuk, B.</p> <p>2015-12-01</p> <p>The previous ten years has seen an explosion in research devoted to the Atmospheric River (AR) phenomena, features of the midlatitude circulation responsible for large horizontal water vapor transport. Upon landfall, ARs can be associated with 30-50% of annual precipitation in some regions, while also causing the largest flooding events in places such as coastal California. Little discussed is the role secondary frontal waves play in modulating precipitation during a landfalling AR. Secondary frontal waves develop along an existing cold front in response to baroclinic frontogenesis, often coinciding with a strong upper-tropospheric jet. If the secondary wave develops along a front associated with a landfalling AR, the resulting precipitation may be much greater or much less than originally forecasted - especially in regions where orographic uplift of horizontally transported water vapor is responsible for a large portion of precipitation. In this study, we present several cases of secondary frontal waves that have occurred in conjunction with a landfalling AR on the US West Coast. We put the impact of these cases in historical perspective using quantitative precipitation forecasts, satellite data, reanalyses, and estimates of damage related to flooding. We also discuss the dynamical mechanisms behind secondary frontal wave development and relate these mechanisms to the high spatiotemporal variability in precipitation observed during ARs with secondary frontal waves. Finally, we demonstrate that even at lead times less than 24 hours, current quantitative precipitation forecasting methods have difficulty accurately predicting the rainfall in the area near the secondary wave landfall, in some cases leading to missed or false alarm flood warnings, and suggest methods which may improve quantitative precipitation forecasts for this type of system in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18555060','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18555060"><span>A preliminary study: novelty seeking, frontal executive function, and dopamine receptor (D2) TaqI A gene polymorphism in patients with methamphetamine dependence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Han, Doug Hyun; Yoon, Sujung J; Sung, Young Hoon; Lee, Young Sik; Kee, Baik Seok; Lyoo, In Kyoon; Renshaw, Perry F; Cho, Soo Churl</p> <p>2008-01-01</p> <p>Dopamine receptor polymorphisms have been associated with specific patterns of novelty seeking (NS) temperamental nature and frontal executive function. In addition, carriers of dopamine receptor type 2 (DRD2)-TaqI A1 have been hypothesized to be potentially vulnerable to addictive behaviors. In the present study, the association between dopamine D2 polymorphisms, NS, and frontal executive function was studied. Thirty-seven methamphetamine (MA)-dependent subjects and 40 healthy comparison subjects participated in the current study. The severity of addiction, NS temperament, and frontal executive functions were measured using the Addiction Severity Index, the NS subscale in the Temperament and Character Inventory, and the Wisconsin Card Sorting Test, respectively. All subjects were genotyped with regard to DRD2-TaqI polymorphisms. The prevalence of DRD2-TaqI A1 allele polymorphisms was greater in the MA-abuser group than in the comparison group. Patients with MA dependence also had higher NS characteristics and high scores in total trials, errors, and perseverative errors of the Wisconsin Card Sorting Test than comparison subjects. Within patients with MA dependence, the subgroup of DRD2-TaqI A1 carrier had greater NS scores relative to those without, whereas there was only a trend level of lower frontal executive function in the first subgroup. In the present study, the MA-dependent patients with DRD2-TaqI A1 allele had significantly greater NS scores and lower frontal executive function with a trend level than those without. These preliminary results suggest that MA-dependent patients may have the possibility of genetic and biogenic vulnerability to MA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24564464','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24564464"><span>The role of right prefrontal and medial cortex in response inhibition: interfering with action restraint and action cancellation using transcranial magnetic brain stimulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dambacher, Franziska; Sack, Alexander T; Lobbestael, Jill; Arntz, Arnoud; Brugmann, Suzanne; Schuhmann, Teresa</p> <p>2014-08-01</p> <p>The ability of inhibiting impulsive urges is paramount for human behavior. Such successful response inhibition has consistently been associated with activity in pFC. The current study aims to unravel the differential involvement of different areas within right pFC for successful action restraint versus action cancellation. These two conceptually different aspects of action inhibition were measured with a go/no-go task (action restraint) and a stop signal task (action cancellation). Localization of relevant prefrontal activation was based on fMRI data. Significant task-related activation during successful action restraint was localized for each participant individually in right anterior insula (rAI), right superior frontal gyrus, and pre-SMA. Activation during successful action cancellation was localized in rAI, right middle frontal gyrus, and pre-SMA. Subsequently, fMRI-guided continuous thetaburst stimulation was applied to these regions. Results showed that the disruption of neural activity in rAI reduced both the ability to restrain (go/no-go) and cancel (stop signal) responses. In contrast, continuous thetaburst stimulation-induced disruption of the right superior frontal gyrus specifically impaired the ability to restrain from responding (go/no-go), while leaving the ability for action cancellation largely intact. Stimulation applied to right middle frontal gyrus and pre-SMA did not affect inhibitory processing in neither of the two tasks. These findings provide a more comprehensive perspective on the role of pFC in inhibition and cognitive control. The results emphasize the role of inferior frontal regions for global inhibition, whereas superior frontal regions seem to be specifically relevant for successful action restraint.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26484382','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26484382"><span>Increased subcortical neural activity among HIV+ individuals during a lexical retrieval task.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thames, April D; Sayegh, Philip; Terashima, Kevin; Foley, Jessica M; Cho, Andrew; Arentoft, Alyssa; Hinkin, Charles H; Bookheimer, Susan Y</p> <p>2016-08-01</p> <p>Deficits in lexical retrieval, present in approximately 40% of HIV+ patients, are thought to reflect disruptions to frontal-striatal functions and may worsen with immunosuppression. Coupling frontal-striatal tasks such as lexical retrieval with functional neuroimaging may help delineate the pathophysiologic mechanisms underlying HIV-associated neurological dysfunction. We examined whether HIV infection confers brain functional changes during lexical access and retrieval. It was expected that HIV+ individuals would demonstrate greater brain activity in frontal-subcortical regions despite minimal differences between groups on neuropsychological testing. Within the HIV+ sample, we examined associations between indices of immunosuppression (recent and nadir CD4+ count) and task-related signal change in frontostriatal structures. Method16 HIV+ participants and 12 HIV- controls underwent fMRI while engaged in phonemic/letter and semantic fluency tasks. Participants also completed standardized measures of verbal fluency HIV status groups performed similarly on phonemic and semantic fluency tasks prior to being scanned. fMRI results demonstrated activation differences during the phonemic fluency task as a function of HIV status, with HIV+ individuals demonstrating significantly greater activation in BG structures than HIV- individuals. There were no significant differences in frontal brain activation between HIV status groups during the phonemic fluency task, nor were there significant brain activation differences during the semantic fluency task. Within the HIV+ group, current CD4+ count, though not nadir, was positively correlated with increased activity in the inferior frontal gyrus and basal ganglia. During phonemic fluency performance, HIV+ patients recruit subcortical structures to a greater degree than HIV- controls despite similar task performances suggesting that fMRI may be sensitive to neurocompromise before overt cognitive declines can be detected. Among HIV+ individuals, reduced activity in the frontal-subcortical structures was associated with lower CD4+ count. Copyright © 2015 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28045857','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28045857"><span>Quantitative EEG After Brain Stimulation and Cognitive Training in Alzheimer Disease.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gandelman-Marton, Revital; Aichenbaum, Sergio; Dobronevsky, Evgenya; Khaigrekht, Michael; Rabey, Jose M</p> <p>2017-01-01</p> <p>Medications are the currently accepted symptomatic treatment of Alzheimer disease (AD), but their impact on delaying the progression of cognitive deficits and functional impairment is limited. The authors aimed to explore long-term electrophysiological effects of repetitive transcranial magnetic stimulation interlaced with cognitive training on quantitative electroencephalography (EEG) in patients with AD. Quantitative EEG was assessed on non-repetitive transcranial magnetic stimulation interlaced with cognitive training treatment days before treatment and after each treatment phase in seven patients with mild AD. After 4.5 months (54 sessions) of treatment, a significant increase of delta activity over the temporal region was found compared with pretreatment values. Nonsignificant increases of the log EEG power were found for alpha band over the frontal and temporal regions, beta band over the frontal region, theta band over the frontal, temporal, and parieto-occipital regions, and delta band over the frontal and parieto-occipital regions. Nonsignificant decreases were found for alpha over the parieto-occipital region, and for beta over the temporal and parieto-occipital regions. A positive correlation was found between log alpha power over the frontal and temporal regions at 6 weeks and Mini-Mental State Examination (MMSE) scores at 6 weeks and 4.5 months, and between log alpha power over the parieto-occipital regions and MMSE scores at 6 weeks. A negative correlation was found between log alpha power over the frontal and temporal regions at 6 weeks and baseline Alzheimer's Disease Assessment Scale-cognitive subscale scores. Repetitive transcranial magnetic stimulation interlaced with cognitive training has long-term effects on quantitative EEG in patients with mild AD. Further research on the quantitative EEG long-term effects of transcranial magnetic stimulation interlaced with cognitive training is required to confirm the authors' data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20935334-stochastic-gravitational-wave-background-from-light-cosmic-strings','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20935334-stochastic-gravitational-wave-background-from-light-cosmic-strings"><span>Stochastic gravitational wave background from light cosmic strings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>DePies, Matthew R.; Hogan, Craig J.</p> <p>2007-06-15</p> <p>Spectra of the stochastic gravitational wave backgrounds from cosmic strings are calculated and compared with present and future experimental limits. Motivated by theoretical expectations of light cosmic strings in superstring cosmology, improvements in experimental sensitivity, and recent demonstrations of large, stable loop formation from a primordial network, this study explores a new range of string parameters with masses lighter than previously investigated. A standard 'one-scale' model for string loop formation is assumed. Background spectra are calculated numerically for dimensionless string tensions G{mu}/c{sup 2} between 10{sup -7} and 10{sup -18}, and initial loop sizes as a fraction of the Hubble radiusmore » {alpha} from 0.1 to 10{sup -6}. The spectra show a low frequency power-law tail, a broad spectral peak due to loops decaying at the present epoch (including frequencies higher than their fundamental mode, and radiation associated with cusps), and a flat (constant energy density) spectrum at high frequencies due to radiation from loops that decayed during the radiation-dominated era. The string spectrum is distinctive and unlike any other known source. The peak of the spectrum for light strings appears at high frequencies, significantly affecting predicted signals. The spectra of the cosmic string backgrounds are compared with current millisecond pulsar limits and Laser Interferometer Space Antenna (LISA) sensitivity curves. For models with large stable loops ({alpha}=0.1), current pulsar-timing limits exclude G{mu}/c{sup 2}>10{sup -9}, a much tighter limit on string tension than achievable with other techniques, and within the range of current models based on brane inflation. LISA may detect a background from strings as light as G{mu}/c{sup 2}{approx_equal}10{sup -16}, corresponding to field theory strings formed at roughly 10{sup 11} GeV.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29180006','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29180006"><span>Modulation of electric brain responses evoked by pitch deviants through transcranial direct current stimulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Royal, Isabelle; Zendel, Benjamin Rich; Desjardins, Marie-Ève; Robitaille, Nicolas; Peretz, Isabelle</p> <p>2018-01-31</p> <p>Congenital amusia is a neurodevelopmental disorder, characterized by a difficulty detecting pitch deviation that is related to abnormal electrical brain responses. Abnormalities found along the right fronto-temporal pathway between the inferior frontal gyrus (IFG) and the auditory cortex (AC) are the likely neural mechanism responsible for amusia. To investigate the causal role of these regions during the detection of pitch deviants, we applied cathodal (inhibitory) transcranial direct current stimulation (tDCS) over right frontal and right temporal regions during separate testing sessions. We recorded participants' electrical brain activity (EEG) before and after tDCS stimulation while they performed a pitch change detection task. Relative to a sham condition, there was a decrease in P3 amplitude after cathodal stimulation over both frontal and temporal regions compared to pre-stimulation baseline. This decrease was associated with small pitch deviations (6.25 cents), but not large pitch deviations (200 cents). Overall, this demonstrates that using tDCS to disrupt regions around the IFG and AC can induce temporary changes in evoked brain activity when processing pitch deviants. These electrophysiological changes are similar to those observed in amusia and provide causal support for the connection between P3 and fronto-temporal brain regions. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4532A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4532A"><span>New turbidity current model based on high-resolution monitoring of the longest flow ever measured</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Azpiroz, Maria; Cartigny, Matthieu; Talling, Peter; Parsons, Daniel; Simmons, Steve; Clare, Michael; Sumner, Esther; Pope, Ed</p> <p>2016-04-01</p> <p>Turbidity currents transport large amounts of sediment from shallow waters towards deep ocean basins. Little is known about these flows, despite their potential hazard for damaging expensive and strategically important seafloor infrastructure. So far turbidity currents have been profiled in only 6 deep ocean locations worldwide. Our current knowledge of these flows is therefore mainly based on scaled-down experimental and computationally-limited numerical modelling. Here we present results from the monitoring of a one-week long turbidity current in the Congo Canyon that had a discharge close to that of the Mississippi River. Measurements taken every 5 seconds give the most detailed image yet of a turbidity current deep-water over an unprecedented duration. Our analysis reveals a different flow structure than that presented in previous models. Classical models display a thick front of the flow followed by a thinner and faster flow, which gives way to a short and quasi-steady body. Instead, we observe a thin frontal cell that outruns a thicker (~80 m), long and slower quasi-steady flow. In contrast to the previous model, where the thinner faster flow feeds sediment into the head, the Congo Canyon turbidity current shows a frontal cell that feeds sediment into, and at the same time outruns, the succeeding quasi-steady flow. As a result of the faster moving frontal cell, the flow should continuously stretch and grow in length while propagating down the system. Within the quasi-steady body, the flow switches between what appears to be two stable flow modes. One mode exhibits a fast and thin velocity profile whose maximum is a low distance from the seabed and resembles Froude-supercritical flow conditions, while the other mode is similar to Froude-subcritical flow conditions as the flow is thicker and slower. These first observations provide new insights into the behaviour of deep water long duration flows that differ from traditional models and provide an exciting chance to explore the full range of turbidity current behaviour in nature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29394325','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29394325"><span>Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chesters, Jennifer; Möttönen, Riikka; Watkins, Kate E</p> <p>2018-04-01</p> <p>See Crinion (doi:10.1093/brain/awy075) for a scientific commentary on this article.Stuttering is a neurodevelopmental condition affecting 5% of children, and persisting in 1% of adults. Promoting lasting fluency improvement in adults who stutter is a particular challenge. Novel interventions to improve outcomes are of value, therefore. Previous work in patients with acquired motor and language disorders reported enhanced benefits of behavioural therapies when paired with transcranial direct current stimulation. Here, we report the results of the first trial investigating whether transcranial direct current stimulation can improve speech fluency in adults who stutter. We predicted that applying anodal stimulation to the left inferior frontal cortex during speech production with temporary fluency inducers would result in longer-lasting fluency improvements. Thirty male adults who stutter completed a randomized, double-blind, controlled trial of anodal transcranial direct current stimulation over left inferior frontal cortex. Fifteen participants received 20 min of 1-mA stimulation on five consecutive days while speech fluency was temporarily induced using choral and metronome-timed speech. The other 15 participants received the same speech fluency intervention with sham stimulation. Speech fluency during reading and conversation was assessed at baseline, before and after the stimulation on each day of the 5-day intervention, and at 1 and 6 weeks after the end of the intervention. Anodal stimulation combined with speech fluency training significantly reduced the percentage of disfluent speech measured 1 week after the intervention compared with fluency intervention alone. At 6 weeks after the intervention, this improvement was maintained during reading but not during conversation. Outcome scores at both post-intervention time points on a clinical assessment tool (the Stuttering Severity Instrument, version 4) also showed significant improvement in the group receiving transcranial direct current stimulation compared with the sham group, in whom fluency was unchanged from baseline. We conclude that transcranial direct current stimulation combined with behavioural fluency intervention can improve fluency in adults who stutter. Transcranial direct current stimulation thereby offers a potentially useful adjunct to future speech therapy interventions for this population, for whom fluency therapy outcomes are currently limited.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9157E..0QY','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9157E..0QY"><span>Highly sensitive current sensor based on an optical microfiber loop resonator incorporating low index polymer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoon, Min-Seok; Han, Young-Geun</p> <p>2014-05-01</p> <p>A highly sensitive current sensor based on an optical microfiber loop resonator (MLR) incorporating low index polymer is proposed and experimentally demonstrated. The microfiber with a waist diameter of 1 μm is wrapped around the nicrhrome wire with low index polymer coating and the optical MLR is realized. The use of the microfiber and low index polymer with high thermal property can effectively improve the current sensitivity of the proposed MLR-based sensing probe to be 437.9 pm/A2, which is ~10 times higher than the previous result.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7266869','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7266869"><span>Automated measurement system employing eddy currents to adjust probe position and determine metal hardness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Prince, J.M.; Dodson, M.G.; Lechelt, W.M.</p> <p>1989-07-18</p> <p>A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis. 14 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867048','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867048"><span>Automated measurement system employing eddy currents to adjust probe position and determine metal hardness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Prince, James M.; Dodson, Michael G.; Lechelt, Wayne M.</p> <p>1989-01-01</p> <p>A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PhRvE..55.2588G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PhRvE..55.2588G"><span>Markovian modeling of classical thermal noise in two inductively coupled wire loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gillespie, Daniel T.</p> <p>1997-03-01</p> <p>Continuous Markov process theory is used to model classical thermal noise in two wire loops of resistances R1 and R2 , self-inductances L1 and L2 , and absolute temperature T, which are coupled through their mutual inductance M. It is shown that even though the currents I1 (t) and I2 (t) in the two loops become progressively noisier as M increases from 0 toward its upper bound (L1 L2 )1/2 , the fluctuation-dissipation, Nyquist, and conductance formulas all remain unchanged. But changes do occur in the spectral density functions of the currents Ii (t). Exact formulas for those functions are developed, and two special cases are examined in detail. (i) In the identical loop case (R1 =R2 =R and L1 =L2 =L), the M=0 'knee' at frequency R/2πL in the spectral density function of Ii (t), below which that function has slope 0 and above which it has slope -2, is found to split when M>0 into two knees at frequencies R/[2π(L+/-M)]. The noise remains white, but surprisingly slightly suppressed, at frequencies below R/[2π(L+M)], and it remains 1/f2 at frequencies above R/[2π(L-M)]. In between the two knee frequencies a rough '1/f-type' noise behavior is exhibited. The sum and difference currents I+/- (t)≡I1 (t)+/-I2 (t) are found to behave like thermal currents in two uncoupled loops with resistances R, self-inductances (L+/-M), and temperatures 2T. In the limit M-->L, I+ (t) approaches the thermal current in a loop of resistance R and self-inductance L at temperature T, while I- (t) approaches (4kT/R)1/2 times Gaussian white noise. (ii) In the weakly coupled highly dissimilar loop case (R1 <<R2 , L1 =L2 =L, and M<<L), I2 (t) is found, to a first approximation, not to be affected by the presence of loop 1. But the spectral density function of I1 (t) is found to be enhanced for frequencies ν<<R2 /2πL by the approximate factor (1+αν2 ), where α=(2πM)2 /R1 R2 . A concomitant enhancement, by an approximate factor of (1+2M2 R2 /L2 R1 )1/2 , is found in the high-frequency amplitude noise of I1 (t). An algorithm for numerically simulating I1 (t) and I2 (t) that is exact for all parameter values is presented, and simulation results that clarify and corroborate the theoretical findings are exhibited.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4410555','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4410555"><span>Shock heating in numerical simulations of kink-unstable coronal loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bareford, M. R.; Hood, A. W.</p> <p>2015-01-01</p> <p>An analysis of the importance of shock heating within coronal magnetic fields has hitherto been a neglected area of study. We present new results obtained from nonlinear magnetohydrodynamic simulations of straight coronal loops. This work shows how the energy released from the magnetic field, following an ideal instability, can be converted into thermal energy, thereby heating the solar corona. Fast dissipation of magnetic energy is necessary for coronal heating and this requirement is compatible with the time scales associated with ideal instabilities. Therefore, we choose an initial loop configuration that is susceptible to the fast-growing kink, an instability that is likely to be created by convectively driven vortices, occurring where the loop field intersects the photosphere (i.e. the loop footpoints). The large-scale deformation of the field caused by the kinking creates the conditions for the formation of strong current sheets and magnetic reconnection, which have previously been considered as sites of heating, under the assumption of an enhanced resistivity. However, our simulations indicate that slow mode shocks are the primary heating mechanism, since, as well as creating current sheets, magnetic reconnection also generates plasma flows that are faster than the slow magnetoacoustic wave speed. PMID:25897092</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Ge%26Ae..57..859Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Ge%26Ae..57..859Z"><span>Modification of "Pressed" Atmospheres in Active Regions of Ultracool Stars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.</p> <p>2017-12-01</p> <p>Ultracool stars usually have active regions, which is confirmed by their high-power radiofrequency emission modulated by the star axial rotation. The interpretation of this emission is commonly based on the electron cyclotron maser mechanism realized in the active regions. A plasma mechanism of radiofrequency emission is not considered, because ultracool star atmospheres are tightly "pressed" against the star surface, and the plasma frequency is much lower than the electron gyrofrequency ( f L ≪ f B) at the coronal levels. This paper explores active regions of ultracool stars for the possible existence of a system of coronal magnetic loops carrying electric current generated by photospheric convection. It is shown that current dissipation induces a temperature increase inside the loops to about 107 K, which causes an increase in the scale of height of the inhomogeneous atmosphere and, at the coronal levels, effectuates condition f L ≫ f B, at which the plasma mechanism of radiofrequency emission prevails over the electron cyclotron maser mechanism. The magnetic loop parameters, intensity of electric currents generated by the photospheric convection, and efficiency of plasma heating inside the magnetic loops are evaluated on the example of the brown dwarf TVLM513-46546. The scale of the height of the modified atmosphere, which appears to be comparable to the star radius, is calculated; it is shown that the soft X-ray flow created by the hot modified atmosphere inside a coronal magnetic loop is about equal to that observed for brown dwarf TVLM513-46546.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24255675','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24255675"><span>Association between obesity and ECG variables in children and adolescents: A cross-sectional study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Guo-Zhe; Li, Yang; Zhou, Xing-Hu; Guo, Xiao-Fan; Zhang, Xin-Gang; Zheng, Li-Qiang; Li, Yuan; Jiao, Yun-DI; Sun, Ying-Xian</p> <p>2013-12-01</p> <p>Obesity exhibits a wide variety of electrocardiogram (ECG) abnormalities in adults, which often lead to cardiovascular events. However, there is currently no evidence of an association between obesity and ECG variables in children and adolescents. The present study aimed to explore the associations between obesity and ECG intervals and axes in children and adolescents. A cross-sectional observational study of 5,556 students aged 5-18 years was performed. Anthropometric data, blood pressure and standard 12-lead ECGs were collected for each participant. ECG variables were measured manually based on the temporal alignment of simultaneous 12 leads using a CV200 ECG Work Station. Overweight and obese groups demonstrated significantly longer PR intervals, wider QRS durations and leftward shifts of frontal P-wave, QRS and T-wave axes, while the obese group also demonstrated significantly higher heart rates, compared with normal weight groups within normotensive or hypertensive subjects (P<0.05). Abdominal obesity was also associated with longer PR intervals, wider QRS duration and a leftward shift of frontal ECG axes compared with normal waist circumference (WC) within normotensive or hypertensive subjects (P<0.05). Gender was a possible factor affecting the ECG variables. Furthermore, the ECG variables, including PR interval, QRS duration and frontal P-wave, QRS and T-wave axes, were significantly linearly correlated with body mass index, WC and waist-to-height ratio adjusted for age, gender, ethnicity and blood pressure. However, there was no significant association between obesity and the corrected QT interval (P>0.05). The results of the current study indicate that in children and adolescents, general and abdominal obesity is associated with longer PR intervals, wider QRS duration and a leftward shift of frontal P-wave, QRS and T-wave axes, independent of age, gender, ethnicity and blood pressure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA502085','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA502085"><span>Project to Study Soil Electromagnetic Properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-09-30</p> <p>transmitter loops (these may be one and the same physical loop or any combinations of loops) and w is angular frequency. M is the magnetic flux that...space, and w is angular frequency used by the sensor. In this case sensor response is frequency-dependent, even if the layer variables are real and...Consider a transmitter current in a single turn coil with angular frequency wand amplitude I. This produces a receiver voltage V (a complex phasor) in the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA214409','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA214409"><span>AGARD (Advisory Group for Aerospace Research & Development) Index of Publications, 1986-1988</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1989-08-01</p> <p>measurements are used in forming the navigation and the baro-inertial loop as well The system communicates with equations to solve for the user position...processing techniques in the tracking ROBERT P. DENARO and G JEFFREY GEIER In AGARD, The loops . and later in the navigation processing ot the Kalman...avionics investigations to predict the dynamic structural response of flexible assessment. The current status of real time, pilot-in-the- loop flight</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26825443','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26825443"><span>Modulation of frontal effective connectivity during speech.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Holland, Rachel; Leff, Alex P; Penny, William D; Rothwell, John C; Crinion, Jenny</p> <p>2016-10-15</p> <p>Noninvasive neurostimulation methods such as transcranial direct current stimulation (tDCS) can elicit long-lasting, polarity-dependent changes in neocortical excitability. In a previous concurrent tDCS-fMRI study of overt picture naming, we reported significant behavioural and regionally specific neural facilitation effects in left inferior frontal cortex (IFC) with anodal tDCS applied to left frontal cortex (Holland et al., 2011). Although distributed connectivity effects of anodal tDCS have been modelled at rest, the mechanism by which 'on-line' tDCS may modulate neuronal connectivity during a task-state remains unclear. Here, we used Dynamic Causal Modelling (DCM) to determine: (i) how neural connectivity within the frontal speech network is modulated during anodal tDCS; and, (ii) how individual variability in behavioural response to anodal tDCS relates to changes in effective connectivity strength. Results showed that compared to sham, anodal tDCS elicited stronger feedback from inferior frontal sulcus (IFS) to ventral premotor (VPM) accompanied by weaker self-connections within VPM, consistent with processes of neuronal adaptation. During anodal tDCS individual variability in the feedforward connection strength from IFS to VPM positively correlated with the degree of facilitation in naming behaviour. These results provide an essential step towards understanding the mechanism of 'online' tDCS paired with a cognitive task. They also identify left IFS as a 'top-down' hub and driver for speech change. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4681457','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4681457"><span>Proton magnetic resonance spectroscopy (MRS) in on-line game addiction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Han, Doug Hyun; Lee, Young Sik; Shi, Xianfeng; Renshaw, Perry F.</p> <p>2015-01-01</p> <p>Recent brain imaging studies suggested that both the frontal and temporal cortices are important candidate areas for mediating the symptoms of internet addiction. We hypothesized that deficits of prefrontal and temporal cortical function in patients with on-line game addiction (PGA) would be reflected in decreased levels of N-acetyl aspartate (NAA) and cytosolic, choline containing compound (Cho). Seventy three young PGA and 38 age and sex matched healthy control subjects were recruited in the study. Structural MR and 1H MRS data were acquired using a 3.0 T MRI scanner. Voxels were sequentially placed in right frontal cortex and right medial temporal cortices. In the right frontal cortex, the levels of NAA in PGA were lower than those in healthy controls. In the medial temporal cortex, the levels of Cho in PGA participants were lower than those observed in healthy controls. The Young Internet Addiction Scale (YIAS) scores and perseverative responses in PGA were negatively correlated with the level of NAA in right frontal cortex. The Beck Depressive Inventory (BDI) scores in the PGA cohort were negatively correlated with Cho levels in the right temporal lobe. To the best of our knowledge, this is the first MRS study of individuals with on-line game addiction. Although, the subjects with on-line game addiction in the current study were free from psychiatric co-morbidity, patients with on-line game addiction appear to share characteristics with ADHD and MDD in terms of neurochemical changes in frontal and temporal cortices. PMID:25088284</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12733822','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12733822"><span>Modulation of intracellular Ca2+ via L-type calcium channels in heart cells by the autoantibody directed against the second extracellular loop of the alpha1-adrenoceptors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bkaily, Ghassan; El-Bizri, Nesrine; Bui, Michel; Sukarieh, Rami; Jacques, Danielle; Fu, Michael L X</p> <p>2003-03-01</p> <p>The effects of methoxamine, a selective alpha1-adrenergic receptor agonist, and the autoantibody directed against the second extracellular loop of alpha1-adrenoceptors were studied on intracellular free Ca2+ levels using confocal microscopy and ionic currents using the whole-cell patch clamp technique in single cells of 10-day-old embryonic chick and 20-week-old fetal human hearts. We observed that like methoxamine, the autoantibody directed against the second extracellular loop of alpha1-adrenoreceptors significantly increased the L-type calcium current (I(Ca(L))) but had no effect on the T-type calcium current (I(Ca(T))), the delayed outward potassium current, or the fast sodium current. This effect of the autoantibody was prevented by a prestimulation of the receptors with methoxamine and vice versa. Moreover, treating the cells with prazosin, a selective alpha1-adrenergic receptor antagonist blocked the methoxamine and the autoantibody-induced increase in I(Ca(L)), respectively. In absence of prazosin, both methoxamine and the autoantibody showed a substantial enhancement in the frequency of cell contraction and that of the concomitant cytosolic and nuclear free Ca2+ variations. The subsequent addition of nifedipine, a specific L-type Ca2+ channel blocker, reversed not only the methoxamine or the autoantibody-induced effect but also completely abolished cell contraction. These results demonstrated that functional alpha1-adrenoceptors exist in both 10-day-old embryonic chick and 20-week-old human fetal hearts and that the autoantibody directed against the second extracellular loop of this type of receptors plays an important role in stimulating their activity via activation of L-type calcium channels. This loop seems to have a functional significance by being the target of alpha1-receptor agonists like methoxamine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940022285','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940022285"><span>Space Station evolution study oxygen loop closure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wood, M. G.; Delong, D.</p> <p>1993-01-01</p> <p>In the current Space Station Freedom (SSF) Permanently Manned Configuration (PMC), physical scars for closing the oxygen loop by the addition of oxygen generation and carbon dioxide reduction hardware are not included. During station restructuring, the capability for oxygen loop closure was deferred to the B-modules. As such, the ability to close the oxygen loop in the U.S. Laboratory module (LAB A) and the Habitation A module (HAB A) is contingent on the presence of the B modules. To base oxygen loop closure of SSF on the funding of the B-modules may not be desirable. Therefore, this study was requested to evaluate the necessary hooks and scars in the A-modules to facilitate closure of the oxygen loop at or subsequent to PMC. The study defines the scars for oxygen loop closure with impacts to cost, weight and volume and assesses the effects of byproduct venting. In addition, the recommended scenarios for closure with regard to topology and packaging are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000023185','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000023185"><span>Investigation of Inner Loop Flight Control Strategies for High-Speed Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Newman, Brett; Kassem, Ayman</p> <p>1999-01-01</p> <p>This report describes the activities and findings conducted under contract NAS1-19858 with NASA Langley Research Center. Subject matter is the investigation of suitable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Techniques considered in this body of work are primarily conventional-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include 1) current aeroelastic vehicle modeling procedures require further emphasis and refinement, 2) traditional and nontraditional inner loop flight control strategies employing a single feedback loop do not appear sufficient for highly flexible HSCT class vehicles, 3) inner loop flight control systems will, in all likelihood, require multiple interacting feedback loops, and 4) Ref. H HSCT configuration presents major challenges to designing acceptable closed-loop flight dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvB..96u4504C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvB..96u4504C"><span>No evidence for orbital loop currents in charge-ordered YBa2Cu3O6 +x from polarized neutron diffraction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Croft, T. P.; Blackburn, E.; Kulda, J.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Hayden, S. M.</p> <p>2017-12-01</p> <p>It has been proposed that the pseudogap state of underdoped cuprate superconductors may be due to a transition to a phase which has circulating currents within each unit cell. Here, we use polarized neutron diffraction to search for the corresponding orbital moments in two samples of underdoped YBa2Cu3O6 +x with doping levels p =0.104 and 0.123. In contrast to some other reports using polarized neutrons, but in agreement with nuclear magnetic resonance and muon spin rotation measurements, we find no evidence for the appearance of magnetic order below 300 K. Thus, our experiment suggests that such order is not an intrinsic property of high-quality cuprate superconductor single crystals. Our results provide an upper bound for a possible orbital loop moment which depends on the pattern of currents within the unit cell. For example, for the CC-θI I pattern proposed by Varma, we find that the ordered moment per current loop is less than 0.013 μB for p =0.104 .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920028665&hterms=stroke&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dstroke','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920028665&hterms=stroke&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dstroke"><span>Vibration suppression using a proofmass actuator operating in stroke/force saturation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lindner, D. K.; Celano, T. P.; Ide, E. N.</p> <p>1991-01-01</p> <p>The design of the control-loop structure for a feedback control system which contains a proofmass actuator for suppressing vibration is discussed. The loop structure is composed of inner control loops, which determine the frequency of the actuator and which are directly related to the actuator and the outer loops which add damping to the structure. When the frequency response of the actuator is matched to the stroke/force saturation curve, the actuator is most effective in the vibration suppression loops, and, since the stroke/force saturation curve is characterized by the stroke length, the mass of the proofmass, and the maximum current delivered by the motor electronics, the size of the actuator can be easily determined. The results of the loop-structure model calculations are verified by examining linear DC motors as proofmass actuators for the Mast in NASA's Control of Flexible Structures program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4333055','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4333055"><span>Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Iosefson, Ohad; Nager, Andrew R.; Baker, Tania A.; Sauer, Robert T.</p> <p>2014-01-01</p> <p>Hexameric AAA+ unfoldases of ATP-dependent proteases and protein-remodeling machines use conserved loops that line the axial pore to apply force to substrates during the mechanical processes of protein unfolding and translocation. Whether loops from multiple subunits act independently or coordinately in these processes is a critical aspect of mechanism but is currently unknown for any AAA+ machine. By studying covalently linked hexamers of the E. coli ClpX unfoldase bearing different numbers and configurations of wild-type and mutant pore loops, we show that loops function synergistically, with the number of wild-type loops required for efficient degradation depending upon the stability of the protein substrate. Our results support a mechanism in which a power stroke initiated in one subunit of the ClpX hexamer results in the concurrent movement of all six pore loops, which coordinately grip and apply force to the substrate. PMID:25599533</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14507437','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14507437"><span>Low-resolution electromagnetic tomography (LORETA) of cerebral activity in chronic depressive disorder.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lubar, Joel F; Congedo, Marco; Askew, John H</p> <p>2003-09-01</p> <p>In this study we compared the current density power and power asymmetry in 15 right-handed, medication-free chronically depressed females (of the unipolar type) and age-matched non-clinical female controls. We used frequency domain LORETA (Low-Resolution Electromagnetic Tomography). In the interhemispheric asymmetry analysis, compared with the control group, the depression group exhibited a left-to-right Alpha2 (10-12 Hz) current density dominance in the left postcentral gyrus. The pattern of left-to-right dominance included frontal (especially medial and middle frontal gyri) and temporal locations. The between groups comparison of spectral power revealed decreased activity in the right middle temporal gyrus in the depressed group. The decrease emerged in the whole frequency spectrum analyzed (2-32 Hz), although it reached significance in the Delta (2-3.5 Hz) band only. These findings are discussed in terms of the existing literature on affect using EEG, PET and SPECT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25653616','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25653616"><span>Emotion recognition in early Parkinson's disease patients undergoing deep brain stimulation or dopaminergic therapy: a comparison to healthy participants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McIntosh, Lindsey G; Mannava, Sishir; Camalier, Corrie R; Folley, Bradley S; Albritton, Aaron; Konrad, Peter E; Charles, David; Park, Sohee; Neimat, Joseph S</p> <p>2014-01-01</p> <p>Parkinson's disease (PD) is traditionally regarded as a neurodegenerative movement disorder, however, nigrostriatal dopaminergic degeneration is also thought to disrupt non-motor loops connecting basal ganglia to areas in frontal cortex involved in cognition and emotion processing. PD patients are impaired on tests of emotion recognition, but it is difficult to disentangle this deficit from the more general cognitive dysfunction that frequently accompanies disease progression. Testing for emotion recognition deficits early in the disease course, prior to cognitive decline, better assesses the sensitivity of these non-motor corticobasal ganglia-thalamocortical loops involved in emotion processing to early degenerative change in basal ganglia circuits. In addition, contrasting this with a group of healthy aging individuals demonstrates changes in emotion processing specific to the degeneration of basal ganglia circuitry in PD. Early PD patients (EPD) were recruited from a randomized clinical trial testing the safety and tolerability of deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) in early-staged PD. EPD patients were previously randomized to receive optimal drug therapy only (ODT), or drug therapy plus STN-DBS (ODT + DBS). Matched healthy elderly controls (HEC) and young controls (HYC) also participated in this study. Participants completed two control tasks and three emotion recognition tests that varied in stimulus domain. EPD patients were impaired on all emotion recognition tasks compared to HEC. Neither therapy type (ODT or ODT + DBS) nor therapy state (ON/OFF) altered emotion recognition performance in this study. Finally, HEC were impaired on vocal emotion recognition relative to HYC, suggesting a decline related to healthy aging. This study supports the existence of impaired emotion recognition early in the PD course, implicating an early disruption of fronto-striatal loops mediating emotional function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22375109','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22375109"><span>Functional connectivity studies of patients with auditory verbal hallucinations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoffman, Ralph E; Hampson, Michelle</p> <p>2011-12-02</p> <p>Functional connectivity (FC) studies of brain mechanisms leading to auditory verbal hallucinations (AVHs) utilizing functional magnetic resonance imaging (fMRI) data are reviewed. Initial FC studies utilized fMRI data collected during performance of various tasks, which suggested frontotemporal disconnection and/or source-monitoring disturbances. Later FC studies have utilized resting (no-task) fMRI data. These studies have produced a mixed picture of disconnection and hyperconnectivity involving different pathways associated with AVHs. Results of our most recent FC study of AVHs are reviewed in detail. This study suggests that the core mechanism producing AVHs involves not a single pathway, but a more complex functional loop. Components of this loop include Wernicke's area and its right homologue, the left inferior frontal cortex, and the putamen. It is noteworthy that the putamen appears to play a critical role in the generation of spontaneous language, and in determining whether auditory stimuli are registered consciously as percepts. Excessive functional coordination linking this region with the Wernicke's seed region in patients with schizophrenia could, therefore, generate an overabundance of potentially conscious language representations. In our model, intact FC in the other two legs of corticostriatal loop (Wernicke's with left IFG, and left IFG with putamen) appeared to allow hyperconnectivity linking the putamen and Wernicke's area (common to schizophrenia overall) to be expressed as conscious hallucinations of speech. Recommendations for future studies are discussed, including inclusion of multiple methodologies applied to the same subjects in order to compare and contrast different mechanistic hypotheses, utilizing EEG to better parse time-course of neural synchronization leading to AVHs, and ascertaining experiential subtypes of AVHs that may reflect distinct mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29576874','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29576874"><span>Self-government of complex reading and writing brains informed by cingulo-opercular network for adaptive control and working memory components for language learning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Richards, Todd L; Abbott, Robert D; Yagle, Kevin; Peterson, Dan; Raskind, Wendy; Berninger, Virginia W</p> <p>2017-01-01</p> <p>To understand mental self-government of the developing reading and writing brain, correlations of clustering coefficients on fMRI reading or writing tasks with BASC 2 Adaptivity ratings (time 1 only) or working memory components (time 1 before and time 2 after instruction previously shown to improve achievement and change magnitude of fMRI connectivity) were investigated in 39 students in grades 4 to 9 who varied along a continuum of reading and writing skills. A Philips 3T scanner measured connectivity during six leveled fMRI reading tasks (subword-letters and sounds, word-word-specific spellings or affixed words, syntax comprehension-with and without homonym foils or with and without affix foils, and text comprehension) and three fMRI writing tasks-writing next letter in alphabet, adding missing letter in word spelling, and planning for composing. The Brain Connectivity Toolbox generated clustering coefficients based on the cingulo-opercular (CO) network; after controlling for multiple comparisons and movement, significant fMRI connectivity clustering coefficients for CO were identified in 8 brain regions bilaterally (cingulate gyrus, superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus, superior temporal gyrus, insula, cingulum-cingulate gyrus, and cingulum-hippocampus). BASC2 Parent Ratings for Adaptivity were correlated with CO clustering coefficients on three reading tasks (letter-sound, word affix judgments and sentence comprehension) and one writing task (writing next letter in alphabet). Before instruction, each behavioral working memory measure (phonology, orthography, morphology, and syntax coding, phonological and orthographic loops for integrating internal language and output codes, and supervisory focused and switching attention) correlated significantly with at least one CO clustering coefficient. After instruction, the patterning of correlations changed with new correlations emerging. Results show that the reading and writing brain's mental government, supported by both CO Adaptive Control and multiple working memory components, had changed in response to instruction during middle childhood/early adolescence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA206628','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA206628"><span>Computer Algorithms and Architectures for Three-Dimensional Eddy-Current Nondestructive Evaluation. Volume 2. Chapters 1-5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1989-01-20</p> <p>j(, i’j)d~d 25’ I// .=(z_ .V_ ~ .)Fov(q_ .r-irlz’ ff )( .rl)4Z i/ (25) The sensor is a single filament loop . If the source ring remains stationary...while the sensor loop is moved around, then the electric fields do not change as the sensor loop isI moved. In this case, F0. is a function of 4 and...my) ,,(2,y) = Fo,(=,Y)0𔃼(,Y) 5 On the other hand, if the source ring and the sensor loop always move together (and are concentric), then q = z and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22971666','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22971666"><span>Modified loop technique in three dogs with mitral regurgitation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aoki, Takuma; Fujii, Yoko; Sunahara, Hiroshi; Takano, Hiroshi; Wakao, Yoshito</p> <p>2013-01-31</p> <p>Mitral valvuloplasty (MVP) is used in dogs with refractory mitral regurgitation (MR); however, it is difficult to tie the artificial chord, i.e., the expanded polytetrafluoroethylene suture, at the planned height of the mitral valve, because of the slippery nature of the knot. The loop technique has resolved these difficulties in humans. Premanufactured loops (length, 8.0-15.0 mm with 1.0-mm increments) were used in the new modified loop technique. In the current study, cardiac murmurs disappeared, and the MR markedly improved or completely disappeared approximately 3 months after surgery in 3 dogs. Therefore, this new technique might be effective in dogs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22039106-self-organization-reconnecting-plasmas-marginal-collisionality-solar-corona','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22039106-self-organization-reconnecting-plasmas-marginal-collisionality-solar-corona"><span>SELF-ORGANIZATION OF RECONNECTING PLASMAS TO MARGINAL COLLISIONALITY IN THE SOLAR CORONA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Imada, S.; Zweibel, E. G.</p> <p></p> <p>We explore the suggestions by Uzdensky and Cassak et al. that coronal loops heated by magnetic reconnection should self-organize to a state of marginal collisionality. We discuss their model of coronal loop dynamics with a one-dimensional hydrodynamic calculation. We assume that many current sheets are present, with a distribution of thicknesses, but that only current sheets thinner than the ion skin depth can rapidly reconnect. This assumption naturally causes a density-dependent heating rate which is actively regulated by the plasma. We report nine numerical simulation results of coronal loop hydrodynamics in which the absolute values of the heating rates aremore » different but their density dependences are the same. We find two regimes of behavior, depending on the amplitude of the heating rate. In the case that the amplitude of heating is below a threshold value, the loop is in stable equilibrium. Typically, the upper and less dense part of a coronal loop is collisionlessly heated and conductively cooled. When the amplitude of heating is above the threshold, the conductive flux to the lower atmosphere required to balance collisionless heating drives an evaporative flow which quenches fast reconnection, ultimately cooling and draining the loop until the cycle begins again. The key elements of this cycle are gravity and the density dependence of the heating function. Some additional factors are present, including pressure-driven flows from the loop top, which carry a large enthalpy flux and play an important role in reducing the density. We find that on average the density of the system is close to the marginally collisionless value.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5663819','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5663819"><span>Visuo‐manual tracking: does intermittent control with aperiodic sampling explain linear power and non‐linear remnant without sensorimotor noise?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gawthrop, Peter J.; Lakie, Martin; Loram, Ian D.</p> <p>2017-01-01</p> <p>Key points A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non‐linearly related to the input, attributed to sensorimotor noise.Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200–500 ms periods of irresponsiveness to sensory input making the control process intrinsically non‐linear.This evidence calls for re‐examination of the extent to which random sensorimotor noise is required to explain the non‐linear remnant.This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds.Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. Abstract The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non‐linear remnant resulting from random sensorimotor noise from multiple sources, and non‐linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non‐linear remnant using noise or non‐linear transformations? (ii) Can non‐linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi‐sine disturbance. Joystick power was analysed using three models, continuous‐linear‐control (CC), continuous‐linear‐control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77–87% vs. 8–48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo‐manual tracking. PMID:28833126</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25492418','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25492418"><span>Current state and future perspectives of loop-mediated isothermal amplification (LAMP)-based diagnosis of filamentous fungi and yeasts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Niessen, Ludwig</p> <p>2015-01-01</p> <p>Loop-mediated isothermal amplification is a rather novel method of enzymatic deoxyribonucleic acid amplification which can be applied for the diagnosis of viruses, bacteria, and fungi. Although firmly established in viral and bacterial diagnosis, the technology has only recently been applied to a noteworthy number of species in the filamentous fungi and yeasts. The current review gives an overview of the literature so far published on the topic by discussing the different groups of fungal organisms to which the method has been applied. Moreover, the method is described in detail as well as the different possibilities available for signal detection and quantification and sample preparation. Future perspective of loop-mediated isothermal amplification-based assays is discussed in the light of applicability for fungal diagnostics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3388276','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3388276"><span>The dual loop model: its relation to language and other modalities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rijntjes, Michel; Weiller, Cornelius; Bormann, Tobias; Musso, Mariacristina</p> <p>2012-01-01</p> <p>The current neurobiological consensus of a general dual loop system scaffolding human and primate brains gives evidence that the dorsal and ventral connections subserve similar functions, independent of the modality and species. However, most current commentators agree that although bees dance and chimpanzees grunt, these systems of communication differ qualitatively from human language. So why is language unique to humans? We discuss anatomical differences between humans and other animals, the meaning of lesion studies in patients, the role of inner speech, and compare functional imaging studies in language with other modalities in respect to the dual loop model. These aspects might be helpful for understanding what kind of biological system the language faculty is, and how it relates to other systems in our own species and others. PMID:22783188</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA623248','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA623248"><span>Augmenting Visual Search Performance with Transcranial Direct Current Stimulation (tDCS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-03-01</p> <p>AFRL-RH-WP-TR-2015-0013 Augmenting Visual Search Performance with transcranial Direct Current Stimulation ( tDCS ) Justin Nelson...Stimulation ( tDCS ) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Justin Nelson‡, Dr. R. Andy McKinley...evaluate a form of non-invasive brain stimulation known as transcranial direct current stimulation ( tDCS ) over the left frontal eye field (LFEF) region</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910000344&hterms=heat+pumps&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dheat%2Bpumps','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910000344&hterms=heat+pumps&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dheat%2Bpumps"><span>TEM Pump With External Heat Source And Sink</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nesmith, Bill J.</p> <p>1991-01-01</p> <p>Proposed thermoelectric/electromagnetic (TEM) pump driven by external source of heat and by two or more heat pipe radiator heat sink(s). Thermoelectrics generate electrical current to circulate liquid metal in secondary loop of two-fluid-loop system. Intended for use with space and terrestrial dual loop liquid metal nuclear reactors. Applications include spacecraft on long missions or terrestrial beacons or scientific instruments having to operate in remote areas for long times. Design modified to include multiple radiators, converters, and ducts, as dictated by particular application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27093817','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27093817"><span>[The treatment principles of frontal sinus tract after the frontal approach craniotomy].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Huanxin; Li, Haiyan; Liu, Gang</p> <p>2015-12-01</p> <p>To investigate the causes, clinical manifestation and treatment principles of frontal sinus tract after the frontal approach craniotomy. The clinic data of 13 patients with frontal skin sinus tract after the frontal approach craniotomy were retrospectively analyzed. All of them were described in the clinical record to have undergone frontal sinus mucosa pushing down or shaving and bone wax filling in the frontal sinus during the surgery, of whom 3 cases had history of frontal abscess incision drainage. All patients were performed endoscopic frontal sinus surgery and forehead skin sinus tract excision and suture. All of the patients successfully recovered after one-stage operation, and the frontal skin sinus tract was healed. The frontal approach craniotomy with postoperative frontal sinus tract was related with the improper use of bone wax tamponade and sealing of frontal sinus. The treatment principles were to remove bone wax, remove inflammatory granulation tissue around the sinus tract, and to open frontal sinus and promote frontal sinus drainage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850009014','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850009014"><span>Capillary Pump Loop (CPL) heat pipe development status report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1982-01-01</p> <p>The capillary pump loop (CPL) was re-introduced as a potential candidate for the management of large heat loads. It is currently being evaluated for application in the thermal management of large space structures. Test efforts were conducted to establish the feasibility of the CPL heat pipe design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7112940','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7112940"><span>The pigeon's distant visual acuity as a function of viewing angle.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Uhlrich, D J; Blough, P M; Blough, D S</p> <p>1982-01-01</p> <p>Distant visual acuity was determined for several viewing angles in two restrained White Carneaux pigeons. The behavioral technique was a classical conditioning procedure that paired presentation of sinusoidal gratings with shock. A conditioned heart rate acceleration during the grating presentation indicated resolution of the grating. The bird's acuity was fairly uniform across a large range of their lateral visual field; performance decreased slightly for posterior stimulus placement and sharply for frontal placements. The data suggest that foveal viewing is relatively less advantageous for acuity in pigeons than in humans. The data are also consistent with the current view that pigeons are myopic in frontal vision.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPTO6010S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPTO6010S"><span>Developing the Polynomial Expressions for Fields in the ITER Tokamak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharma, Stephen</p> <p>2017-10-01</p> <p>The two most important problems to be solved in the development of working nuclear fusion power plants are: sustained partial ignition and turbulence. These two phenomena are the subject of research and investigation through the development of analytic functions and computational models. Ansatz development through Gaussian wave-function approximations, dielectric quark models, field solutions using new elliptic functions, and better descriptions of the polynomials of the superconducting current loops are the critical theoretical developments that need to be improved. Euler-Lagrange equations of motion in addition to geodesic formulations generate the particle model which should correspond to the Dirac dispersive scattering coefficient calculations and the fluid plasma model. Feynman-Hellman formalism and Heaviside step functional forms are introduced to the fusion equations to produce simple expressions for the kinetic energy and loop currents. Conclusively, a polynomial description of the current loops, the Biot-Savart field, and the Lagrangian must be uncovered before there can be an adequate computational and iterative model of the thermonuclear plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPY11034S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPY11034S"><span>Expressions for Fields in the ITER Tokamak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharma, Stephen</p> <p>2017-10-01</p> <p>The two most important problems to be solved in the development of working nuclear fusion power plants are: sustained partial ignition and turbulence. These two phenomenon are the subject of research and investigation through the development of analytic functions and computational models. Ansatz development through Gaussian wave-function approximations, dielectric quark models, field solutions using new elliptic functions, and better descriptions of the polynomials of the superconducting current loops are the critical theoretical developments that need to be improved. Euler-Lagrange equations of motion in addition to geodesic formulations generate the particle model which should correspond to the Dirac dispersive scattering coefficient calculations and the fluid plasma model. Feynman-Hellman formalism and Heaviside step functional forms are introduced to the fusion equations to produce simple expressions for the kinetic energy and loop currents. Conclusively, a polynomial description of the current loops, the Biot-Savart field, and the Lagrangian must be uncovered before there can be an adequate computational and iterative model of the thermonuclear plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1164889','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1164889"><span>The baryon vector current in the combined chiral and 1/Nc expansions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Flores-Mendieta, Ruben; Goity, Jose L</p> <p>2014-12-01</p> <p>The baryon vector current is computed at one-loop order in large-Nc baryon chiral perturbation theory, where Nc is the number of colors. Loop graphs with octet and decuplet intermediate states are systematically incorporated into the analysis and the effects of the decuplet-octet mass difference and SU(3) flavor symmetry breaking are accounted for. There are large-Nc cancellations between different one-loop graphs as a consequence of the large-Nc spin-flavor symmetry of QCD baryons. The results are compared against the available experimental data through several fits in order to extract information about the unknown parameters. The large-Nc baryon chiral perturbation theory predictions aremore » in very good agreement both with the expectations from the 1/Nc expansion and with the experimental data. The effect of SU(3) flavor symmetry breaking for the |Delta S|=1 vector current form factors f1(0) results in a reduction by a few percent with respect to the corresponding SU(3) symmetric values.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6422221-rf-assisted-current-startup-fed','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6422221-rf-assisted-current-startup-fed"><span>Rf-assisted current startup in FED</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Borowski, S.K.; Peng, Y.K.M.; Kammash, T.</p> <p>1981-01-01</p> <p>Auxiliary rf heating of electrons before and during the current rise phase in FED is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating (ECRH) power at approximately 90 GHz is used to create a small volume of high conductivity plasma near the upper hybrid resonance (UHR) region. This plasma conditioning permits a small radius (a/sub o/ approximately 0.2-0.4 m) current channel to be established with a relatively low initial loop voltage (<25 V). During the subsequent plasma expansionmore » and current ramp phase, additional rf power is introduced to reduce volt-second consumption due to plasma resistance. The physics models used for analyzing the UHR heating and current rise phases are also discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015RScI...86l4702B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015RScI...86l4702B"><span>Design of a 9-loop quasi-exponential waveform generator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Banerjee, Partha; Shukla, Rohit; Shyam, Anurag</p> <p>2015-12-01</p> <p>We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26724051','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26724051"><span>Design of a 9-loop quasi-exponential waveform generator.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Banerjee, Partha; Shukla, Rohit; Shyam, Anurag</p> <p>2015-12-01</p> <p>We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1237076-nuclear-axial-currents-chiral-effective-field-theory','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1237076-nuclear-axial-currents-chiral-effective-field-theory"><span>Nuclear axial currents in chiral effective field theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Baroni, Alessandro; Girlanda, Luca; Pastore, Saori; ...</p> <p>2016-01-11</p> <p>Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory and accounts for cancellations between the contributions of irreducible diagrams and the contributions owing to nonstatic corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. As a result, a complete set of contact terms for the axial charge up to the relevant order in the power countingmore » is constructed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.2416T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.2416T"><span>The frontal structure in Drake Passage based on the data of the section in January 2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tarakanov, Roman</p> <p>2014-05-01</p> <p>The frontal structure in the region of Drake Passage is investigated on the basis of data of Absolute Dynamic Topography (ADT) of French agency CLS (DT-Global-MADT-Upd product, http://aviso.oceanobs.com), and CTD- and SADCP-measurements along the hydrophysical section carried out across the passage from Smith Isl. (just to the east of the Hero F.Z.) to the Cape Horn onboard R/V "Akademik Ioffe" in January 2010. The investigation was similar to the analysis performed on the basis of data of the section carried out two weeks earlier onboard the same vessel south of Africa. Fine-jet structure of the ACC was detected in Drake Passage as well as to the south of Africa where twelve ACC jets were found. Eleven jets of the Antarctic Circumpolar Current (ACC) were revealed in Drake Passage. These were five jets of the Subantarctic Current (the band of Subantarctic Front), four jets of the South Polar Current (the band of Polar Front), and two jets of the South Antarctic Current (the band of Southern ACC Front). Two jets of the South Antarctic Current were joined in a single "super-jet" according to the velocity measurements in the section. The others were manifested by the local velocity maxima in the surface layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhPro..65..149K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhPro..65..149K"><span>Current Bypassing Properties by Thermal Switch for PCS Application on NMR/MRI HTS Magnets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, S. B.; Takahashi, M.; Saito, R.; Park, Y. J.; Lee, M. W.; Oh, Y. K.; Ann, H. S.</p> <p></p> <p>We develop the compact NMR/MRI device using high temperature superconducting (HTS) wires with the persistent current mode operating. So, the joint techniques between 2G wires are very important issue and many studies have been carried out. Recently, the Kbigdot JOINS, Inc. has developed successfully the high performance superconducting joints between 2G wires by partial melting diffusion and oxygenation annealing process [1]. In this study, the current bypassing properties in a loop-shaped 2G wire are measured experimentally to develop the permanent current switch (PSC). The current bypassing properties of loop-shaped test coil wound with 2G wire (GdBCO) are evaluated by measured the self-magnetic field due to bypassed current by Hall sensors. The strain gauge was used as heater for persistent current switch, and thermal properties against various thermal inputs were investigated experimentally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1185478','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1185478"><span>Discriminating Projections for Estimating Face Age in Wild Images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tokola, Ryan A; Bolme, David S; Ricanek, Karl</p> <p>2014-01-01</p> <p>We introduce a novel approach to estimating the age of a human from a single uncontrolled image. Current face age estimation algorithms work well in highly controlled images, and some are robust to changes in illumination, but it is usually assumed that images are close to frontal. This bias is clearly seen in the datasets that are commonly used to evaluate age estimation, which either entirely or mostly consist of frontal images. Using pose-specific projections, our algorithm maps image features into a pose-insensitive latent space that is discriminative with respect to age. Age estimation is then performed using a multi-classmore » SVM. We show that our approach outperforms other published results on the Images of Groups dataset, which is the only age-related dataset with a non-trivial number of off-axis face images, and that we are competitive with recent age estimation algorithms on the mostly-frontal FG-NET dataset. We also experimentally demonstrate that our feature projections introduce insensitivity to pose.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26124116','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26124116"><span>Synchronizing theta oscillations with direct-current stimulation strengthens adaptive control in the human brain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reinhart, Robert M G; Zhu, Julia; Park, Sohee; Woodman, Geoffrey F</p> <p>2015-07-28</p> <p>Executive control and flexible adjustment of behavior following errors are essential to adaptive functioning. Loss of adaptive control may be a biomarker of a wide range of neuropsychiatric disorders, particularly in the schizophrenia spectrum. Here, we provide support for the view that oscillatory activity in the frontal cortex underlies adaptive adjustments in cognitive processing following errors. Compared with healthy subjects, patients with schizophrenia exhibited low frequency oscillations with abnormal temporal structure and an absence of synchrony over medial-frontal and lateral-prefrontal cortex following errors. To demonstrate that these abnormal oscillations were the origin of the impaired adaptive control in patients with schizophrenia, we applied noninvasive dc electrical stimulation over the medial-frontal cortex. This noninvasive stimulation descrambled the phase of the low-frequency neural oscillations that synchronize activity across cortical regions. Following stimulation, the behavioral index of adaptive control was improved such that patients were indistinguishable from healthy control subjects. These results provide unique causal evidence for theories of executive control and cortical dysconnectivity in schizophrenia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22255261','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22255261"><span>Learning of spatial relationships between observed and imitated actions allows invariant inverse computation in the frontal mirror neuron system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oh, Hyuk; Gentili, Rodolphe J; Reggia, James A; Contreras-Vidal, José L</p> <p>2011-01-01</p> <p>It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator's frontal mirror neuron system can be trained to provide the motor plans for the imitated actions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5476843','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5476843"><span>Non-invasive Prefrontal/Frontal Brain Stimulation Is Not Effective in Modulating Food Reappraisal Abilities or Calorie Consumption in Obese Females</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Grundeis, Felicitas; Brand, Cristin; Kumar, Saurabh; Rullmann, Michael; Mehnert, Jan; Pleger, Burkhard</p> <p>2017-01-01</p> <p>Background/Objectives: Previous studies suggest that non-invasive transcranial direct current stimulation (tDCS) applied to the prefrontal cortex modulates food choices and calorie intake in obese humans. Participants/Methods: In the present fully randomized, placebo-controlled, within-subject and double-blinded study, we applied single sessions of anodal, cathodal, and sham tDCS to the left dorsolateral prefrontal cortex (DLPFC) and contralateral frontal operculum in 25 hungry obese women and investigated possible influences on food reappraisal abilities as well as calorie intake. We hypothesized that tDCS, (i) improves the ability to regulate the desire for visually presented foods and, (ii) reduces their consumption. Results: We could not confirm an effect of anodal or cathodal tDCS, neither on the ability to modulate the desire for visually presented foods, nor on calorie consumption. Conclusions: The present findings do not support the notion of prefrontal/frontal tDCS as a promising treatment option for obesity. PMID:28676735</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26051816','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26051816"><span>Frontal alpha asymmetry as a pathway to behavioural withdrawal in depression: Research findings and issues.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jesulola, Emmanuel; Sharpley, Christopher F; Bitsika, Vicki; Agnew, Linda L; Wilson, Peter</p> <p>2015-10-01</p> <p>Depression has been described as a process of behavioural withdrawal from overwhelming aversive stressors, and which manifests itself in the diagnostic symptomatology for Major Depressive Disorder (MDD). The underlying neurobiological pathways to that behavioural withdrawal are suggested to include greater activation in the right vs the left frontal lobes, described as frontal EEG asymmetry. However, despite a previous meta-analysis that provided overall support for this EEG asymmetry hypothesis, inconsistencies and several methodological confounds exist. The current review examines the literature on this issue, identifies inconsistencies in findings and discusses several key research issues that require addressing for this field to move towards a defensible theoretical model of depression and EEG asymmetry. In particular, the position of EEG asymmetry in the brain, measurement of severity and symptoms profiles of depression, and the effects of gender are considered as potential avenues to more accurately define the specific nature of the depression-EEG asymmetry association. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012MsT..........1A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012MsT..........1A"><span>Conceptual design of a thermalhydraulic loop for multiple test geometries at supercritical conditions named Supercritical Phenomena Experimental Test Apparatus (SPETA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adenariwo, Adepoju</p> <p></p> <p>The efficiency of nuclear reactors can be improved by increasing the operating pressure of current nuclear reactors. Current CANDU-type nuclear reactors use heavy water as coolant at an outlet pressure of up to 11.5 MPa. Conceptual SuperCritical Water Reactors (SCWRs) will operate at a higher coolant outlet pressure of 25 MPa. Supercritical water technology has been used in advanced coal plants and its application proves promising to be employed in nuclear reactors. To better understand how supercritical water technology can be applied in nuclear power plants, supercritical water loops are used to study the heat transfer phenomena as it applies to CANDU-type reactors. A conceptual design of a loop known as the Supercritical Phenomena Experimental Apparatus (SPETA) has been done. This loop has been designed to fit in a 9 m by 2 m by 2.8 m enclosure that will be installed at the University of Ontario Institute of Technology Energy Research Laboratory. The loop include components to safely start up and shut down various test sections, produce a heat source to the test section, and to remove reject heat. It is expected that loop will be able to investigate the behaviour of supercritical water in various geometries including bare tubes, annulus tubes, and multi-element-type bundles. The experimental geometries are designed to match the fluid properties of Canadian SCWR fuel channel designs so that they are representative of a practical application of supercritical water technology in nuclear plants. This loop will investigate various test section orientations which are the horizontal, vertical, and inclined to investigate buoyancy effects. Frictional pressure drop effects and satisfactory methods of estimating hydraulic resistances in supercritical fluid shall also be estimated with the loop. Operating limits for SPETA have been established to be able to capture the important heat transfer phenomena at supercritical conditions. Heat balance and flow calculations have been done to appropriately size components in the loop. Sensitivity analysis has been done to find the optimum design for the loop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26394333','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26394333"><span>Convergence of EEG and fMRI measures of reward anticipation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gorka, Stephanie M; Phan, K Luan; Shankman, Stewart A</p> <p>2015-12-01</p> <p>Deficits in reward anticipation are putative mechanisms for multiple psychopathologies. Research indicates that these deficits are characterized by reduced left (relative to right) frontal electroencephalogram (EEG) activity and blood oxygenation level-dependent (BOLD) signal abnormalities in mesolimbic and prefrontal neural regions during reward anticipation. Although it is often assumed that these two measures capture similar mechanisms, no study to our knowledge has directly examined the convergence between frontal EEG alpha asymmetry and functional magnetic resonance imaging (fMRI) during reward anticipation in the same sample. Therefore, the aim of the current study was to investigate if and where in the brain frontal EEG alpha asymmetry and fMRI measures were correlated in a sample of 40 adults. All participants completed two analogous reward anticipation tasks--once during EEG data collection and the other during fMRI data collection. Results indicated that the two measures do converge and that during reward anticipation, increased relative left frontal activity is associated with increased left anterior cingulate cortex (ACC)/medial prefrontal cortex (mPFC) and left orbitofrontal cortex (OFC) activation. This suggests that the two measures may similarly capture PFC functioning, which is noteworthy given the role of these regions in reward processing and the pathophysiology of disorders such as depression and schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10384231','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10384231"><span>Compatibility problems in frontal, side, single car collisions and car-to-pedestrian accidents in Japan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mizuno, K; Kajzer, J</p> <p>1999-07-01</p> <p>Compatibility problems in car-to-car frontal, side, single car and car-to-pedestrian collisions in Japan are discussed using traffic accident data. The number of serious and fatal injuries is investigated for the subject car and other cars, which are categorized by their class and mass. The aggressivity of the cars is calculated by the number of fatalities, fatality rates and by the number of car registrations. The results show that in car-to-car frontal collisions, cars with a mass of 1150 kg are the most compatible among the current car population. In both car-to-car frontal and side collisions, the sports utility vehicle and mini car are found to be the most incompatible car types with high and low aggressivity, respectively. On the other hand, the accident data show that the wagon and midsize sedan are the most compatible car types. The compatibility of fixed objects in the road environment with cars and cars with pedestrians is also discussed. In a single car collision with a fixed object, the guardrail is the most compatible object and can reduce the fatality rate on prefecture roads by about 60%. The front geometry of the car has large effect on compatibility with a pedestrian.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28056388','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28056388"><span>Aberrant temporal behavior of mismatch negativity generators in schizophrenia patients and subjects at clinical high risk for psychosis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Minah; Cho, Kang Ik Kevin; Yoon, Youngwoo Bryan; Lee, Tae Young; Kwon, Jun Soo</p> <p>2017-02-01</p> <p>Although disconnection syndrome has been considered a core pathophysiologic mechanism of schizophrenia, little is known about the temporal behavior of mismatch negativity (MMN) generators in individuals with schizophrenia or clinical high risk (CHR) for psychosis. MMN was assessed in 29 schizophrenia patients, 40 CHR subjects, and 47 healthy controls (HCs). Individual realistic head models and the minimum L2 norm algorithm were used to generate a current source density (CSD) model of MMN. The strength and time course of MMN CSD activity were calculated separately for the frontal and temporal cortices and were compared across brain regions and groups. Schizophrenia patients and CHR subjects displayed lower MMN CSD strength than HCs in both the temporal and frontal cortices. We found a significant time delay in MMN generator activity in the frontal cortex relative to that in the temporal cortex in HCs. However, the sequential temporo-frontal activities of MMN generators were disrupted in both the schizophrenia and CHR groups. Impairments and altered temporal behavior of MMN multiple generators were observed even in individuals at risk for psychosis. These findings suggest that aberrant MMN generator activity might be helpful in revealing the pathophysiology of schizophrenia. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5598971','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5598971"><span>Parametric analysis of occupant ankle and tibia injuries in frontal impact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mo, Fuhao; Jiang, Xiaoqing; Duan, Shuyong; Xiao, Zhi; Shi, Wei</p> <p>2017-01-01</p> <p>Objective Non-fatal tibia and ankle injuries without proper protection from the restraint system has gotten wide attention from researchers. This study aimed to investigate occupant tibia and ankle injuries under realistic frontal impact environment that is rarely considered in previous experimental and simulant studies. Methods An integrated occupant-vehicle model was established by coupling an isolated car cab model and a hybrid occupant model with a biofidelic pelvis-lower limb model, while its loading conditions were extracted from the realistic full-frontal impact test. A parametric study was implemented concerning instrument panel (IP) design and pedal intrusion/rotation parameters. Results The significant influences of the IP angle, pedal intrusion and pedal rotation on tibia axial force, tibia bending moment and ankle dorsiflexion angle are noted. By coupling their effects, a new evaluation index named CAIEI (Combined Ankle Injury Evaluation Index) is established to evaluate ankle injury (including tibia fractures in ankle region) risk and severity in robustness. Conclusions Overall results and analysis indicate that ankle dorsiflexion angle should be considered when judging the injury in lower limb under frontal impact. Meanwhile, the current index with coupling effects of tibia axial force, bending moment and ankle dorsiflexion angle is in a good correlation with the simulation injury outcomes. PMID:28910377</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28188856','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28188856"><span>MRI correlates of interaction between gender and expressive suppression among the Chinese population.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Kangcheng; Huang, Hui; Chen, Li; Hou, Xin; Zhang, Yong; Yang, Junyi; Hao, Xin; Qiu, Jiang</p> <p>2017-04-07</p> <p>Expressive suppression is a kind of emotion regulation strategies by suppressing behaviors related to emotional responding. Despite the amount of behavioral research on expressive suppression, the structural and functional mechanisms underlying the interaction between gender and expressive suppression in Chinese healthy subjects have remained unknown. In the current study, we assessed the levels of expressive suppression and acquired the structural and functional imaging data from 273 Chinese individuals. A nearly automatic cortical processing technique was used to calculate cortical thickness for each subject. The results from cortical thickness analyses revealed a significant interaction between gender and expressive suppression in the superior frontal gyrus. Then, we conducted the whole-brain functional connectivity analysis with the seed of the superior frontal gyrus to explore the functionally related regions of brain. Subsequent analysis of the interaction between gender and expressive suppression indicated a significant functional connectivity between the superior frontal gyrus and default mode network (DMN) core regions, including the medial prefrontal cortex, precuneus and parahippocampal gyrus. Our results provided the robust empirical evidence illustrating the role of the superior frontal gyrus and DMN in gender difference of expressive suppression among the Chinese population. These findings might have implications for understanding gender difference in emotion processing and regulation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23029316','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23029316"><span>Regional frontal gray matter volume associated with executive function capacity as a risk factor for vehicle crashes in normal aging adults.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sakai, Hiroyuki; Takahara, Miwa; Honjo, Naomi F; Doi, Shun'ichi; Sadato, Norihiro; Uchiyama, Yuji</p> <p>2012-01-01</p> <p>Although low executive functioning is a risk factor for vehicle crashes among elderly drivers, the neural basis of individual differences in this cognitive ability remains largely unknown. Here we aimed to examine regional frontal gray matter volume associated with executive functioning in normal aging individuals, using voxel-based morphometry (VBM). To this end, 39 community-dwelling elderly volunteers who drove a car on a daily basis participated in structural magnetic resonance imaging, and completed two questionnaires concerning executive functioning and risky driving tendencies in daily living. Consequently, we found that participants with low executive function capacity were prone to risky driving. Furthermore, VBM analysis revealed that lower executive function capacity was associated with smaller gray matter volume in the supplementary motor area (SMA). Thus, the current data suggest that SMA volume is a reliable predictor of individual differences in executive function capacity as a risk factor for vehicle crashes among elderly persons. The implication of our results is that regional frontal gray matter volume might underlie the variation in driving tendencies among elderly drivers. Therefore, detailed driving behavior assessments might be able to detect early neurodegenerative changes in the frontal lobe in normal aging adults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PrOce.134...77P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PrOce.134...77P"><span>Changes in zooplankton habitat, behavior, and acoustic scattering characteristics across glider-resolved fronts in the Southern California Current System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Powell, Jesse R.; Ohman, Mark D.</p> <p>2015-05-01</p> <p>We report cross-frontal changes in the characteristics of plankton proxy variables measured by autonomous Spray ocean gliders operating within the Southern California Current System (SCCS). A comparison of conditions across the 154 positive frontal gradients (i.e., where density of the surface layer decreased in the offshore direction) identified from six years of continuous measurements showed that waters on the denser side of the fronts typically showed higher Chl-a fluorescence, shallower euphotic zones, and higher acoustic backscatter than waters on the less dense side. Transitions between these regions were relatively abrupt. For positive fronts the amplitude of Diel Vertical Migration (DVM), inferred from a 3-beam 750 kHz acoustic Doppler profiler, increased offshore of fronts and covaried with optical transparency of the water column. Average interbeam variability in acoustic backscatter also changed across many positive fronts within 3 depth strata (0-150 m, 150-400 m, and 400-500 m), revealing a front-related change in the acoustic scattering characteristics of the assemblages. The extent of vertical stratification of distinct scattering assemblages was also more pronounced offshore of positive fronts. Depth-stratified zooplankton samples collected by Mocness nets corroborated the autonomous measurements, showing copepod-dominated assemblages and decreased zooplankton body sizes offshore and euphausiid-dominated assemblages with larger median body sizes inshore of major frontal features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IJEEP..17..385H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IJEEP..17..385H"><span>A New Method for Setting Calculation Sequence of Directional Relay Protection in Multi-Loop Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haijun, Xiong; Qi, Zhang</p> <p>2016-08-01</p> <p>Workload of relay protection setting calculation in multi-loop networks may be reduced effectively by optimization setting calculation sequences. A new method of setting calculation sequences of directional distance relay protection in multi-loop networks based on minimum broken nodes cost vector (MBNCV) was proposed to solve the problem experienced in current methods. Existing methods based on minimum breakpoint set (MBPS) lead to more break edges when untying the loops in dependent relationships of relays leading to possibly more iterative calculation workloads in setting calculations. A model driven approach based on behavior trees (BT) was presented to improve adaptability of similar problems. After extending the BT model by adding real-time system characters, timed BT was derived and the dependency relationship in multi-loop networks was then modeled. The model was translated into communication sequence process (CSP) models and an optimization setting calculation sequence in multi-loop networks was finally calculated by tools. A 5-nodes multi-loop network was applied as an example to demonstrate effectiveness of the modeling and calculation method. Several examples were then calculated with results indicating the method effectively reduces the number of forced broken edges for protection setting calculation in multi-loop networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22660927-role-kelvinhelmholtz-instability-producing-loop-top-hard-ray-sources-solar-flares','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22660927-role-kelvinhelmholtz-instability-producing-loop-top-hard-ray-sources-solar-flares"><span>THE ROLE OF KELVIN–HELMHOLTZ INSTABILITY FOR PRODUCING LOOP-TOP HARD X-RAY SOURCES IN SOLAR FLARES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fang, Xia; Yuan, Ding; Xia, Chun</p> <p></p> <p>We propose a model for the formation of loop-top hard X-ray (HXR) sources in solar flares through the inverse Compton mechanism, scattering the surrounding soft X-ray (SXR) photons to higher energy HXR photons. We simulate the consequences of a flare-driven energy deposit in the upper chromosphere in the impulsive phase of single loop flares. The consequent chromosphere evaporation flows from both footpoints reach speeds up to hundreds of kilometers per second, and we demonstrate how this triggers Kelvin–Helmholtz instability (KHI) in the loop top, under mildly asymmetric conditions, or more toward the loop flank for strongly asymmetric cases. The KHImore » vortices further fragment the magnetic topology into multiple magnetic islands and current sheets, and the hot plasma within leads to a bright loop-top SXR source region. We argue that the magnetohydrodynamic turbulence that appears at the loop apex could be an efficient accelerator of non-thermal particles, which the island structures can trap at the loop-top. These accelerated non-thermal particles can upscatter the surrounding thermal SXR photons emitted by the extremely hot evaporated plasma to HXR photons.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720022933','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720022933"><span>Dynamic testing of a single-degree-of-freedom strapdown gyroscope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lory, C. B.; Feldman, J.; Sinkiewicz, J. S., Jr.</p> <p>1971-01-01</p> <p>Test methods and results are presented for the equivalent average input rate of a single-degree-of-freedom gyroscope operated both open loop and with a ternary-logic pulse-torque-to-balance loop during multiaxis angular oscillation. For the open-loop tests, good agreement was obtained with theoretical results. Two-axis testing was performed for oscillations about the Input-Output axes, the Input-Spin axes, and the Spin-Output axes. These tests run in the torque-to-balance mode revealed significant departures from open-loop results in the induced drift rate. An analysis is developed explaining much of the closed-loop data presented. Test data for the gryoscope in a ternary torque-to-balance loop with constant input rates is presented. The tests demonstrate that the instrument rate linearity does not change with interrogation frequency from 3,600 to 14,400 Hz if the torque coil is tuned to offer a resistive load to the current switch. Analysis cited shows that gyroscope lag compensation eliminates multiple pulsing and other equivalent forms of degraded resolution in a wide variety of quantizing loops. This result is test verified for the ternary delta-modulator loop.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930038972&hterms=discrete+mathematical&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddiscrete%2Bmathematical','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930038972&hterms=discrete+mathematical&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddiscrete%2Bmathematical"><span>Loop transfer recovery for general nonminimum phase discrete time systems. I - Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Ben M.; Saberi, Ali; Sannuti, Peddapullaiah; Shamash, Yacov</p> <p>1992-01-01</p> <p>A complete analysis of loop transfer recovery (LTR) for general nonstrictly proper, not necessarily minimum phase discrete time systems is presented. Three different observer-based controllers, namely, `prediction estimator' and full or reduced-order type `current estimator' based controllers, are used. The analysis corresponding to all these three controllers is unified into a single mathematical framework. The LTR analysis given here focuses on three fundamental issues: (1) the recoverability of a target loop when it is arbitrarily given, (2) the recoverability of a target loop while taking into account its specific characteristics, and (3) the establishment of necessary and sufficient conditions on the given system so that it has at least one recoverable target loop transfer function or sensitivity function. Various differences that arise in LTR analysis of continuous and discrete systems are pointed out.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3115511','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3115511"><span>Expert cognitive control and individual differences associated with frontal and parietal white matter microstructure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Roberts, R.E.; Anderson, E. J.; Husain, M.</p> <p>2011-01-01</p> <p>Although many functional imaging studies have reported frontal activity associated with ‘cognitive control’ tasks, little is understood about factors underlying individual differences in performance. Here we compared the behaviour and brain structure of healthy controls with fighter pilots, an expert group trained to make precision choices at speed in the presence of conflicting cues. Two different behavioural paradigms – Eriksen Flanker and Change of plan tasks – were used to assess the influence of distractors and the ability to update ongoing action plans. Fighter pilots demonstrated superior cognitive control as indexed by accuracy and post-conflict adaptation on the flanker task, but also showed increased sensitivity to irrelevant, distracting choices. By contrast, when pilots were examined on their ability to inhibit a current action plan in favour of an alternative response, their performance was no better than the control group. Diffusion weighted imaging revealed differences in white matter radial diffusivity between pilots and controls not only in the right dorsomedial frontal region but also in the right parietal lobe. Moreover, analysis of individual differences in reaction time costs for conflict trials on the flanker task demonstrated significant correlations with radial diffusivity at these locations, but in different directions. Post-conflict adaptation effects, however, were confined to the dorsomedial frontal locus. The findings demonstrate that in humans expert cognitive control may surprisingly be mediated by enhanced response gain to both relevant and irrelevant stimuli, and is accompanied by structural alterations in the white matter of the frontal and parietal lobe. PMID:21159976</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25582326','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25582326"><span>Behavioral profiles in frontal lobe epilepsy: Autobiographic memory versus mood impairment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rayner, Genevieve; Jackson, Graeme D; Wilson, Sarah J</p> <p>2015-02-01</p> <p>Autobiographic memory encompasses the encoding and retrieval of episodes, people, and places encountered in everyday life. It can be impaired in both epilepsy and frontal lobe damage. Here, we performed an initial investigation of how autobiographic memory is impacted by chronic frontal lobe epilepsy (FLE) together with its underlying pathology. We prospectively studied a series of nine consecutive patients with medically refractory FLE, relative to 24 matched healthy controls. Seven of the nine patients had frontal lobe structural abnormalities. Episodic and semantic autobiographic memory functioning was profiled, and factors associated with impaired autobiographic memory were identified among epileptologic, neuroimaging, neuropsychiatric, and cognitive variables including auditory-verbal and visual memory, and the executive function of cognitive control. Results showed that the FLE group experienced significantly higher rates of autobiographic memory and mood disturbance (p < 0.001), with detailed assessment of individual patients revealing two profiles of impairment, primarily characterized by cognitive or mood disturbance. Five of the patients (56%) exhibited significant episodic autobiographic memory deficits, whereas in three of these, knowledge of semantic autobiographic facts was preserved. Four of them also had reduced cognitive control. Mood disorder was largely unrelated to poor autobiographic memory. In contrast, the four cases with preserved autobiographic memory were notable for their past or current depressive symptoms. These findings provide preliminary data that frontal lobe seizure activity with its underlying pathology may selectively disrupt large-scale cognitive or affective networks, giving rise to different neurobehavioral profiles that may be used to inform clinical management. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19923241','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19923241"><span>Selective involvement of superior frontal cortex during working memory for shapes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yee, Lydia T S; Roe, Katherine; Courtney, Susan M</p> <p>2010-01-01</p> <p>A spatial/nonspatial functional dissociation between the dorsal and ventral visual pathways is well established and has formed the basis of domain-specific theories of prefrontal cortex (PFC). Inconsistencies in the literature regarding prefrontal organization, however, have led to questions regarding whether the nature of the dissociations observed in PFC during working memory are equivalent to those observed in the visual pathways for perception. In particular, the dissociation between dorsal and ventral PFC during working memory for locations versus object identities has been clearly present in some studies but not in others, seemingly in part due to the type of objects used. The current study compared functional MRI activation during delayed-recognition tasks for shape or color, two object features considered to be processed by the ventral pathway for perceptual recognition. Activation for the shape-delayed recognition task was greater than that for the color task in the lateral occipital cortex, in agreement with studies of visual perception. Greater memory-delay activity was also observed, however, in the parietal and superior frontal cortices for the shape than for the color task. Activity in superior frontal cortex was associated with better performance on the shape task. Conversely, greater delay activity for color than for shape was observed in the left anterior insula and this activity was associated with better performance on the color task. These results suggest that superior frontal cortex contributes to performance on tasks requiring working memory for object identities, but it represents different information about those objects than does the ventral frontal cortex.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20576258','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20576258"><span>Frontal lobe damage impairs process and content in semantic memory: evidence from category-specific effects in progressive non-fluent aphasia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reilly, Jamie; Rodriguez, Amy D; Peelle, Jonathan E; Grossman, Murray</p> <p>2011-06-01</p> <p>Portions of left inferior frontal cortex have been linked to semantic memory both in terms of the content of conceptual representation (e.g., motor aspects in an embodied semantics framework) and the cognitive processes used to access these representations (e.g., response selection). Progressive non-fluent aphasia (PNFA) is a neurodegenerative condition characterized by progressive atrophy of left inferior frontal cortex. PNFA can, therefore, provide a lesion model for examining the impact of frontal lobe damage on semantic processing and content. In the current study we examined picture naming in a cohort of PNFA patients across a variety of semantic categories. An embodied approach to semantic memory holds that sensorimotor features such as self-initiated action may assume differential importance for the representation of manufactured artifacts (e.g., naming hand tools). Embodiment theories might therefore predict that patients with frontal damage would be differentially impaired on manufactured artifacts relative to natural kinds, and this prediction was borne out. We also examined patterns of naming errors across a wide range of semantic categories and found that naming error distributions were heterogeneous. Although PNFA patients performed worse overall on naming manufactured artifacts, there was no reliable relationship between anomia and manipulability across semantic categories. These results add to a growing body of research arguing against a purely sensorimotor account of semantic memory, suggesting instead a more nuanced balance of process and content in how the brain represents conceptual knowledge. Copyright © 2010 Elsevier Srl. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25088284','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25088284"><span>Proton magnetic resonance spectroscopy (MRS) in on-line game addiction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Han, Doug Hyun; Lee, Young Sik; Shi, Xianfeng; Renshaw, Perry F</p> <p>2014-11-01</p> <p>Recent brain imaging studies suggested that both the frontal and temporal cortices are important candidate areas for mediating the symptoms of internet addiction. We hypothesized that deficits of prefrontal and temporal cortical function in patients with on-line game addiction (PGA) would be reflected in decreased levels of N-acetyl aspartate (NAA) and cytosolic, choline containing compound (Cho). Seventy three young PGA and 38 age and sex matched healthy control subjects were recruited in the study. Structural MR and (1)H MRS data were acquired using a 3.0 T MRI scanner. Voxels were sequentially placed in right frontal cortex and right medial temporal cortices. In the right frontal cortex, the levels of NAA in PGA were lower than those in healthy controls. In the medial temporal cortex, the levels of Cho in PGA participants were lower than those observed in healthy controls. The Young Internet Addiction Scale (YIAS) scores and perseverative responses in PGA were negatively correlated with the level of NAA in right frontal cortex. The Beck Depressive Inventory (BDI) scores in the PGA cohort were negatively correlated with Cho levels in the right temporal lobe. To the best of our knowledge, this is the first MRS study of individuals with on-line game addiction. Although, the subjects with on-line game addiction in the current study were free from psychiatric co-morbidity, patients with on-line game addiction appear to share characteristics with ADHD and MDD in terms of neurochemical changes in frontal and temporal cortices. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4466229','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4466229"><span>Atrophic Patterns of the Frontal-Subcortical Circuits in Patients with Mild Cognitive Impairment and Alzheimer’s Disease</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhao, Hui; Li, Xiaoxi; Wu, Wenbo; Li, Zheng; Qian, Lai; Li, ShanShan; Zhang, Bing; Xu, Yun</p> <p>2015-01-01</p> <p>Atrophy of the cortical thickness and gray matter volume are regarded as sensitive markers for the early clinical diagnosis of Alzheimer’s disease (AD). This study aimed to investigate differences in atrophy patterns in the frontal-subcortical circuits between MCI and AD, assess whether these differences were essential for the pathologic basis of cognitive impairment. A total of 131 individuals were recruited, including 45 with cognitively normal controls (CN), 46 with MCI, and 40 with AD. FreeSurfer software was used to perform volumetric measurements of the frontal-subcortical circuits from 3.0T magnetic resonance (MR) scans. Data revealed that both MCI and AD subjects had a thinner cortex in the left caudal middle frontal gyrus and the left lateral orbitofrontal gyrus compared with CN individuals. The left lateral orbitofrontal gyrus was also thinner in AD compared with MCI patients. There were no statistically significant differences in the cortical mean curvature among the three groups. Both MCI and AD subjects exhibited smaller bilateral hippocampus volumes compared with CN individuals. The volumes of the bilateral hippocampus and the right putamen were also smaller in AD compared with MCI patients. Logistic regression analyses revealed that the left lateral orbitofrontal gyrus and bilateral hippocampus were risk factors for cognitive impairment. These current results suggest that atrophy was heterogeneous in subregions of the frontal-subcortical circuits in MCI and AD patients. Among these subregions, the reduced thickness of the left lateral orbitofrontal and the smaller volume of the bilateral hippocampus seemed to be markers for predicting cognitive impairment. PMID:26066658</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhFl...27i6602H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhFl...27i6602H"><span>Inclined gravity currents filling basins: The influence of Reynolds number on entrainment into gravity currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hogg, Charlie A. R.; Dalziel, Stuart B.; Huppert, Herbert E.; Imberger, Jörg</p> <p>2015-09-01</p> <p>In many important natural and industrial systems, gravity currents of dense fluid feed basins. Examples include lakes fed by dense rivers and auditoria supplied with cooled air by ventilation systems. As we will show, the entrainment into such buoyancy driven currents can be influenced by viscous forces. Little work, however, has examined this viscous influence and how entrainment varies with the Reynolds number, Re. Using the idea of an entrainment coefficient, E, we derive a mathematical expression for the rise of the front at the top of the dense fluid ponding in a basin, where the horizontal cross-sectional area of the basin varies linearly with depth. We compare this expression to experiments on gravity currents with source Reynolds numbers, Res, covering the broad range 100 < Res < 1500. The form of the observed frontal rises was well approximated by our theory. By fitting the observed frontal rises to the theoretical form with E as the free parameter, we find a linear trend for E(Res) over the range 350 < Res < 1100, which is in the transition to turbulent flow. In the experiments, the entrainment coefficient, E, varied from 4 × 10-5 to 7 × 10-2. These observations show that viscous damping can be a dominant influence on gravity current entrainment in the laboratory and in geophysical flows in this transitional regime.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21965362','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21965362"><span>Review article: closed-loop systems in anesthesia: is there a potential for closed-loop fluid management and hemodynamic optimization?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rinehart, Joseph; Liu, Ngai; Alexander, Brenton; Cannesson, Maxime</p> <p>2012-01-01</p> <p>Closed-loop (automated) controllers are encountered in all aspects of modern life in applications ranging from air-conditioning to spaceflight. Although these systems are virtually ubiquitous, they are infrequently used in anesthesiology because of the complexity of physiologic systems and the difficulty in obtaining reliable and valid feedback data from the patient. Despite these challenges, closed-loop systems are being increasingly studied and improved for medical use. Two recent developments have made fluid administration a candidate for closed-loop control. First, the further description and development of dynamic predictors of fluid responsiveness provides a strong parameter for use as a control variable to guide fluid administration. Second, rapid advances in noninvasive monitoring of cardiac output and other hemodynamic variables make goal-directed therapy applicable for a wide range of patients in a variety of clinical care settings. In this article, we review the history of closed-loop controllers in clinical care, discuss the current understanding and limitations of the dynamic predictors of fluid responsiveness, and examine how these variables might be incorporated into a closed-loop fluid administration system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3962102','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3962102"><span>Thumb-loops up for catalysis: a structure/function investigation of a functional loop movement in a GH11 xylanase</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Paës, Gabriel; Cortés, Juan; Siméon, Thierry; O'Donohue, Michael J.; Tran, Vinh</p> <p>2012-01-01</p> <p>Dynamics is a key feature of enzyme catalysis. Unfortunately, current experimental and computational techniques do not yet provide a comprehensive understanding and description of functional macromolecular motions. In this work, we have extended a novel computational technique, which combines molecular modeling methods and robotics algorithms, to investigate functional motions of protein loops. This new approach has been applied to study the functional importance of the so-called thumb-loop in the glycoside hydrolase family 11 xylanase from Thermobacillus xylanilyticus (Tx-xyl). The results obtained provide new insight into the role of the loop in the glycosylation/deglycosylation catalytic cycle, and underline the key importance of the nature of the residue located at the tip of the thumb-loop. The effect of mutations predicted in silico has been validated by in vitro site-directed mutagenesis experiments. Overall, we propose a comprehensive model of Tx-xyl catalysis in terms of substrate and product dynamics by identifying the action of the thumb-loop motion during catalysis. PMID:24688637</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19963548','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19963548"><span>Estimation of joint stiffness with a compliant load.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ludvig, Daniel; Kearney, Robert E</p> <p>2009-01-01</p> <p>Joint stiffness defines the dynamic relationship between the position of the joint and the torque acting about it. It consists of two components: intrinsic and reflex stiffness. Many previous studies have investigated joint stiffness in an open-loop environment, because the current algorithm in use is an open-loop algorithm. This paper explores issues related to the estimation of joint stiffness when subjects interact with compliant loads. First, we show analytically how the bias in closed-loop estimates of joint stiffness depends on the properties of the load, the noise power, and length of the estimated impulse response functions (IRF). We then demonstrate with simulations that the open-loop analysis will fail completely for an elastic load but may succeed for an inertial load. We further show that the open-loop analysis can yield unbiased results with an inertial load and document IRF length, signal-to-noise ratio needed, and minimum inertia needed for the analysis to succeed. Thus, by using a load with a properly selected inertia, open-loop analysis can be used under closed-loop conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=350633','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=350633"><span>Specific detection of the wheat blast pathogen (Magnaporthe oryzae Triticum) by loop-mediated isothermal amplification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Wheat blast, caused by Magnaporthe oryzae Triticum (MoT) pathotype, is an economically important fungal disease of wheat. Wheat blast symptoms are similar to Fusarium head scab and can cause confusion in the field. Currently, no in-field diagnostic exists for MoT. Loop-mediated isothermal amplificat...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvD..97i4022A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvD..97i4022A"><span>Heavy quark form factors at two loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ablinger, J.; Behring, A.; Blümlein, J.; Falcioni, G.; De Freitas, A.; Marquard, P.; Rana, N.; Schneider, C.</p> <p>2018-05-01</p> <p>We compute the two-loop QCD corrections to the heavy quark form factors in the case of the vector, axial-vector, scalar and pseudoscalar currents up to second order in the dimensional parameter ɛ =(4 -D )/2 . These terms are required in the renormalization of the higher-order corrections to these form factors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22392468-automated-setup-magnetic-hysteresis-characterization-based-voltage-controlled-current-source-khz-full-power-bandwidth-peak-peak-current','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22392468-automated-setup-magnetic-hysteresis-characterization-based-voltage-controlled-current-source-khz-full-power-bandwidth-peak-peak-current"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Calabrese, G.; Capineri, L., E-mail: lorenzo.capineri@unifi.it; Granato, M.</p> <p></p> <p>This paper describes the design of a system for the characterization of magnetic hysteresis behavior in soft ferrite magnetic cores. The proposed setup can test magnetic materials exciting them with controlled arbitrary magnetic field waveforms, including the capability of providing a DC bias, in a frequency bandwidth up to 500 kHz, with voltages up to 32 V peak-to-peak, and currents up to 10 A peak-to-peak. In order to have an accurate control of the magnetic field waveform, the system is based on a voltage controlled current source. The electronic design is described focusing on closed loop feedback stabilization and passivemore » components choice. The system has real-time hysteretic loop acquisition and visualization. The comparisons between measured hysteresis loops of sample magnetic materials and datasheet available ones are shown. Results showing frequency and thermal behavior of the hysteresis of a test sample prove the system capabilities. Moreover, the B-H loops obtained with a multiple waveforms excitation signal, including DC bias, are reported. The proposal is a low-cost and replicable solution for hysteresis characterization of magnetic materials used in power electronics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/908336','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/908336"><span>Passive magnetic bearing for a motor-generator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Post, Richard F [Walnut Creek, CA</p> <p>2006-07-18</p> <p>Conductive lap windings are interleaved with conventional loops in the stator of a motor-generator. The rotor provides magnetic induction lines that, when rotated, cut across the lap windings and the loops. When the rotor is laterally displaced from its equilibrium axis of rotation, its magnetic lines of induction induce a current in the interleaved lap windings. The induced current interacts with the magnetic lines of induction of the rotor in accordance with Lenz's law to generate a radial force that returns the rotor to its equilibrium axis of rotation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhTea..56..224D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhTea..56..224D"><span>A Pictorial Approach to Lenz's Law</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duffy, Andrew</p> <p>2018-04-01</p> <p>This paper describes a pictorial approach to Lenz's law that involves following four steps and drawing three pictures to determine the direction of the current induced by a changing magnetic flux. Lenz's law accompanies Faraday's law, stating that, for a closed conducting loop, the induced emf (electromotive force) created by a changing magnetic flux sets up a current in the loop that tends to oppose the change in flux. Students are often confused by this, but drawing a sequence of three pictures can make it clearer to students how Lenz's law is applied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990iece....1..365K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990iece....1..365K"><span>Analysis of spacecraft battery charger systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Seong J.; Cho, Bo H.</p> <p></p> <p>In spacecraft battery charger systems, switching regulators are widely used for bus voltage regulation, charge current regulation, and peak power tracking. Small-signal dynamic characteristics of the battery charging subsystem of direct energy transfer (DET) and peak power tracking (PPT) systems are analyzed to facilitate design of the control loop for optimum performance and stability. Control loop designs of the charger in various modes of operation are discussed. Analyses are verified through simulations. It is shown that when the charger operates in the bus voltage regulation mode, the control-to-voltage transfer function has a negative DC gain and two LHP zeros in both the DET and PPT systems. The control-to-inductor current transfer function also has a negative DC gain and a RHP zero. Thus, in the current-mode control, the current loop can no longer be used to stabilize the system. When the system operates in the charge current regulation mode, the charger operates with a fixed duty cycle which is determined by the regulated bus voltage and the battery voltage. Without an input filter, the converter becomes a first-order system. When the peak power tracker is inactive, the operating point of the solar array output moves to the voltage source region. Thus, the solar array behaves as a stiff voltage source to a constant power load.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980018999','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980018999"><span>Force Balance and Substorm Effects in the Magnetotail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaufmann, Richard L.; Larson, Douglas J.; Kontodinas, Ioannis D.; Ball, Bryan M.</p> <p>1997-01-01</p> <p>A model of the quiet time middle magnetotail is developed using a consistent orbit tracing technique. The momentum equation is used to calculate geocentric solar magnetospheric components of the particle and electromagnetic forces throughout the current sheet. Ions generate the dominant x and z force components. Electron and ion forces almost cancel in the y direction because the two species drift earthward at comparable speeds. The force viewpoint is applied to a study of some substorm processes. Generation of the rapid flows seen during substorm injection and bursty bulk flow events implies substantial force imbalances. The formation of a substorm diversion loop is one cause of changes in the magnetic field and therefore in the electromagnetic force. It is found that larger forces are produced when the cross-tail current is diverted to the ionosphere than would be produced if the entire tail current system simply decreased. Plasma is accelerated while the forces are unbalanced resulting in field lines within a diversion loop becoming more dipolar. Field lines become more stretched and the plasma sheet becomes thinner outside a diversion loop. Mechanisms that require thin current sheets to produce current disruption then can create additional diversion loops in the newly thinned regions. This process may be important during multiple expansion substorms and in differentiating pseudoexpansions from full substorms. It is found that the tail field model used here can be generated by a variety of particle distribution functions. However, for a given energy distribution the mixture of particle mirror or reflection points is constrained by the consistency requirement. The study of uniqueness also leads to the development of a technique to select guiding center electrons that will produce charge neutrality all along a flux tube containing nonguiding center ions without the imposition of a parallel electric field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990MsT..........2K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990MsT..........2K"><span>A generic set of HF antennas for use with spherical model expansions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Katal, Nedim</p> <p>1990-03-01</p> <p>An antenna engineering handbook and database program has been constructed by engineers at the Lawrence Livermore National Laboratory (LLNL) using the Numerical Electromagnetics Code (NEC) antenna modeling program to prepare data performance on tactical field communication antennas used by the Army. It is desirable to have this information installed on a personnel computer (PC), using relational database techniques to select antennas based on performance criteria. This thesis obtains and analyses current distributions and radiation pattern data by using NEC for the following set of four (4) high frequency (HF) tactical generic antennas to be used in future spherical mode expansion work: a quarter wavelength basic whip, a one-wavelength horizontal quad Loop, a 564-foot longwire, and a sloping vee beam dipole. The results of this study show that the basic whip antenna provides good groundwave communication, but it has poor near vertical incident skywave (NVIS) performance. The current distribution has the characteristics of standing waves. The horizontal quad loop antenna is good for night vision imaging systems (NVIS) and medium range skywave communications. The current distribution is sinusoidal and continuous around the loop. The long wire antenna allows short, medium and long range communications and a standing wave current distribution occurs along the antenna axis due to non-termination. The sloping vee beam antenna favors long range communication and the current distribution is mainly that of travelling sinusoidal waves. Because of their well-known efficiency, the basic whip and quad loop can be used as reference standards for the spherical mode expansion work. The longwire and sloping vee beam antenna are unwieldy, but they are effective as base station antennas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026745','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026745"><span>The effects of storms and storm-generated currents on sand beaches in Southern Maine, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hill, H.W.; Kelley, J.T.; Belknap, D.F.; Dickson, S.M.</p> <p>2004-01-01</p> <p>Storms are one of the most important controls on the cycle of erosion and accretion on beaches. Current meters placed in shoreface locations of Saco Bay and Wells Embayment, ME, recorded bottom currents during the winter months of 2000 and 2001, while teams of volunteers profiled the topography of nearby beaches. Coupling offshore meteorological and beach profile data made it possible to determine the response of nine beaches in southern Maine to various oceanographic and meteorological conditions. The beaches selected for profiling ranged from pristine to completely developed and permitted further examination of the role of seawalls on the response of beaches to storms. Current meters documented three unique types of storms: frontal passages, southwest storms, and northeast storms. In general, the current meter results indicate that frontal passages and southwest storms were responsible for bringing sediment towards the shore, while northeast storms resulted in a net movement of sediment away from the beach. During the 1999-2000 winter, there were a greater percentage of frontal passages and southwest storms, while during the 2000-2001 winter, there were more northeast storms. The sediment that was transported landward during the 1999-2000 winter was reworked into the berm along moderately and highly developed beaches during the next summer. A northeast storm on March 5-6, 2001, resulted in currents in excess of 1 m s-1 and wave heights that reached six meters. The storm persisted over 10 high tides and caused coastal flooding and property damage. Topographic profiles made before and after the storm demonstrate that developed beaches experienced a loss of sediment volume during the storm, while sediment was redistributed along the profile on moderately developed and undeveloped beaches. Two months after the storm, the profiles along the developed beaches had not reached their pre-storm elevation. In comparison, the moderately developed and undeveloped beaches reached and exceeded their pre-storm elevation and began to show berm buildup characteristic of the summer months. ?? 2004 Elsevier B.V. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.airnow.gov/index.cfm?action=airnow.showmap&pollutant=OZONE','NIH-MEDLINEPLUS'); return false;" href="https://www.airnow.gov/index.cfm?action=airnow.showmap&pollutant=OZONE"><span>Ozone - Current Air Quality Index</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>GO! Local Air Quality Conditions Zip Code: State : My Current Location Current AQI Forecast AQI Loop More Maps AQI: Good (0 - 50) ... resources for Hawaii residents and visitors more announcements Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23939031','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23939031"><span>Peri-ictal ECG changes in childhood epilepsy: implications for detection systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jansen, Katrien; Varon, Carolina; Van Huffel, Sabine; Lagae, Lieven</p> <p>2013-10-01</p> <p>Early detection of seizures could reduce associated morbidity and mortality and improve the quality of life of patients with epilepsy. In this study, the aim was to investigate whether ictal tachycardia is present in focal and generalized epileptic seizures in children. We sought to predict in which type of seizures tachycardia can be identified before actual seizure onset. Electrocardiogram segments in 80 seizures were analyzed in time and frequency domains before and after the onset of epileptic seizures on EEG. These ECG parameters were analyzed to find the most informative ones that can be used for seizure detection. The algorithm of Leutmezer et al. was used to find the temporal relationship between the change in heart rate and seizure onset. In the time domain, the mean RR shows a significant difference before compared to after onset of the seizure in focal seizures. This can be observed in temporal lobe seizures as well as frontal lobe seizures. Calculation of mean RR interval has a high specificity for detection of ictal heart rate changes. Preictal heart rate changes are observed in 70% of the partial seizures. Ictal heart rate changes are present only in partial seizures in this childhood epilepsy study. The changes can be observed in temporal lobe seizures as well as in frontal lobe seizures. Heart rate changes precede seizure onset in 70% of the focal seizures, making seizure detection and closed-loop systems a possible therapeutic alternative in the population of children with refractory epilepsy. © 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19615733','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19615733"><span>A PET study of word generation in Huntington's disease: effects of lexical competition and verb/noun category.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lepron, Evelyne; Péran, Patrice; Cardebat, Dominique; Démonet, Jean-François</p> <p>2009-08-01</p> <p>Huntington's disease (HD) patients show language production deficits that have been conceptualized as a consequence of executive disorders, e.g. selection deficit between candidate words or switching between word categories. More recently, a deficit of word generation specific to verbs has been reported, which might relate to impaired action representations in HD. We studied the brain correlates of language impairment in HD using H(2)O(15) positron emission tomography (PET). The activation task consisted of generation of semantically appropriate nouns and verbs in dominant (low lexical selection) and selective conditions (high lexical selection). Reaction times were longer and number of errors was higher in 12 non-demented HD than in 17 age-matched controls in all conditions. In both groups, the selective condition yielded longer reaction time and a greater number of errors than the dominant one. PET data revealed that, in control subjects, the left inferior temporal gyrus was involved in the selective condition whereas it was not in HD. Moreover, activity in the anterior cingulate and the inferior frontal gyri was correlated with behavioral performance in control subjects only. In HD, the lack of implication of these regions, already shown to be crucial in lexical selection, might have been partly compensated by the activation in the left supramarginal gyrus (phonological loop activity) and the right inferior frontal gyrus (effortful retrieval processes), which might support accessory language strategies allowing patients to achieve word generation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20370181','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20370181"><span>Simultaneously measured signals in scanning probe microscopy with a needle sensor: frequency shift and tunneling current.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Morawski, Ireneusz; Voigtländer, Bert</p> <p>2010-03-01</p> <p>We present combined noncontact scanning force microscopy and tunneling current images of a platinum(111) surface obtained by means of a 1 MHz quartz needle sensor. The low-frequency circuit of the tunneling current was combined with a high-frequency signal of the quartz resonator enabling full electrical operation of the sensor. The frequency shift and the tunneling current were detected simultaneously, while the feedback control loop of the topography signal was fed using one of them. In both cases, the free signal that was not connected to the feedback loop reveals proportional-integral controller errorlike behavior, which is governed by the time derivative of the topography signal. A procedure is proposed for determining the mechanical oscillation amplitude by utilizing the tunneling current also including the average tip-sample work function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PlST...14..855J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PlST...14..855J"><span>Electromagnetic Modeling of the Passive Stabilization Loop at EAST</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji, Xiang; Song, Yuntao; Wu, Songtao; Wang, Zhibin; Shen, Guang; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Peng, Xuebing; Wang, Chenghao</p> <p>2012-09-01</p> <p>A passive stabilization loop (PSL) has been designed and manufactured in order to enhance the control of vertical instability and accommodate the new stage for high-performance plasma at EAST. Eddy currents are induced by vertical displacement events (VDEs) and disruption, which can produce a magnetic field to control the vertical instability of the plasma in a short timescale. A finite element model is created and meshed using ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The largest eddy current is 200 kA and the stress is 68 MPa at the outer current bridge, which is the weakest point of the PSL because of the eddy currents and the magnetic fields. The analysis results provide the supporting data for the structural design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012MsT..........4B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012MsT..........4B"><span>Design of Test Loops for Forced Convection Heat Transfer Studies at Supercritical State</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balouch, Masih N.</p> <p></p> <p>Worldwide research is being conducted to improve the efficiency of nuclear power plants by using supercritical water (SCW) as the working fluid. One such SCW reactor considered for future development is the CANDU-Supercritical Water Reactor (CANDU-SCWR). For safe and accurate design of the CANDU-SCWR, a detailed knowledge of forced-convection heat transfer in SCW is required. For this purpose, two supercritical fluid loops, i.e. a SCW loop and an R-134a loop are developed at Carleton University. The SCW loop is designed to operate at pressures as high as 28 MPa, temperatures up to 600 °C and mass fluxes of up to 3000 kg/m2s. The R-134a loop is designed to operate at pressures as high as 6 MPa, temperatures up to 140 °C and mass fluxes in the range of 500-6000 kg/m2s. The test loops designs allow for up to 300 kW of heating power to be imparted to the fluid. Both test loops are of the closed-loop design, where flow circulation is achieved by a centrifugal pump in the SCW loop and three parallel-connected gear pumps in the R-134a loop, respectively. The test loops are pressurized using a high-pressure nitrogen cylinder and accumulator assembly, which allows independent control of the pressure, while simultaneously dampening pump induced pressure fluctuations. Heat exchangers located upstream of the pumps control the fluid temperature in the test loops. Strategically located measuring instrumentation provides information on the flow rate, pressure and temperature in the test loops. The test loops have been designed to accommodate a variety of test-section geometries, ranging from a straight circular tube to a seven-rod bundle, achieving heat fluxes up to 2.5 MW/m2 depending on the test-section geometry. The design of both test loops allows for easy reconfiguration of the test-section orientation relative to the gravitational direction. All the test sections are of the directly-heated design, where electric current passing through the pressure retaining walls of the test sections provides the Joule heating required to heat up the fluid to supercritical conditions. A high-temperature dielectric gasket isolates the current carrying parts of the test section from the rest of the assembly. Temperature and pressure drop data are collected at the inlet and outlet, and along the heated length of the test section. The test loops and test sections are designed according to American Society of Mechanical Engineers (ASME) Pressure Piping B31.1, and Boiler and Pressure Vessel Code, Section VIII-Division 1 rules. The final test loops and test sections assemblies are certified by Technical Standards and Safety Authority (TSSA). Every attempt is made to use off-the-shelf components where possible in order to streamline the design process and reduce costs. Following a rigorous selection process, stainless steel Types 316 and 316H are selected as the construction materials for the test loops, and Inconel 625 is selected as the construction material for the test sections. This thesis describes the design of the SCW and R-134a loops along with the three test-section geometries (i.e., tubular, annular and bundle designs).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/54096-keyboard-control-method-loop-measurement','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/54096-keyboard-control-method-loop-measurement"><span>A keyboard control method for loop measurement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gao, Z.W.</p> <p>1994-12-31</p> <p>This paper describes a keyboard control mode based on the DEC VAX computer. The VAX Keyboard code can be found under running of a program was developed. During the loop measurement or multitask operation, it ables to be distinguished from a keyboard code to stop current operation or transfer to another operation while previous information can be held. The combining of this mode, the author successfully used one key control loop measurement for test Dual Input Memory module which is used in a rearrange Energy Trigger system for LEP 8 Bunch operation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Eddy+AND+current&id=EJ185642','ERIC'); return false;" href="https://eric.ed.gov/?q=Eddy+AND+current&id=EJ185642"><span>Eddy Currents: Levitation, Metal Detectors, and Induction Heating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Wouch, G.; Lord, A. E., Jr.</p> <p>1978-01-01</p> <p>A simple and accessible calculation is given of the effects of eddy currents for a sphere in the field of a single circular loop of alternating current. These calculations should help toward the inclusion of eddy current effects in upper undergraduate physics courses. (BB)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28587498','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28587498"><span>Surface EEG-Transcranial Direct Current Stimulation (tDCS) Closed-Loop System.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Leite, Jorge; Morales-Quezada, Leon; Carvalho, Sandra; Thibaut, Aurore; Doruk, Deniz; Chen, Chiun-Fan; Schachter, Steven C; Rotenberg, Alexander; Fregni, Felipe</p> <p>2017-09-01</p> <p>Conventional transcranial direct current stimulation (tDCS) protocols rely on applying electrical current at a fixed intensity and duration without using surrogate markers to direct the interventions. This has led to some mixed results; especially because tDCS induced effects may vary depending on the ongoing level of brain activity. Therefore, the objective of this preliminary study was to assess the feasibility of an EEG-triggered tDCS system based on EEG online analysis of its frequency bands. Six healthy volunteers were randomized to participate in a double-blind sham-controlled crossover design to receive a single session of 10[Formula: see text]min 2[Formula: see text]mA cathodal and sham tDCS. tDCS trigger controller was based upon an algorithm designed to detect an increase in the relative beta power of more than 200%, accompanied by a decrease of 50% or more in the relative alpha power, based on baseline EEG recordings. EEG-tDCS closed-loop-system was able to detect the predefined EEG magnitude deviation and successfully triggered the stimulation in all participants. This preliminary study represents a proof-of-concept for the development of an EEG-tDCS closed-loop system in humans. We discuss and review here different methods of closed loop system that can be considered and potential clinical applications of such system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NucFu..57a6001A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NucFu..57a6001A"><span>Efficient ECH-assisted plasma start-up using trapped particle configuration in the versatile experiment spherical torus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>An, YoungHwa; Lee, Jeongwon; Jo, JongGab; Jung, Bong-Ki; Lee, HyunYeong; Chung, Kyoung-Jae; Na, Yong-Su; Hahm, T. S.; Hwang, Y. S.</p> <p>2017-01-01</p> <p>An efficient and robust ECH (electron cyclotron heating)-assisted plasma start-up scheme with a low loop voltage and low volt-second consumption utilizing the trapped particle configuration (TPC) has been developed in the versatile experiment spherical torus (VEST). The TPC is a mirror-like magnetic field configuration providing a vertical magnetic field in the same direction as the equilibrium field. It significantly enhances ECH pre-ionization with enhanced particle confinement due to its mirror effect, and intrinsically provides an equilibrium field with a stable decay index enabling prompt plasma current initiation. Consequently, the formation of TPC before the onset of the loop voltage allows the plasma to start up with a lower loop voltage and lower volt-second consumption as well as a wider operation range in terms of ECH pre-ionization power and H2 filling pressure. The TPC can improve the widely-used field null configuration significantly for more efficient start-up when ECH pre-ionization is used. This can then be utilized in superconducting tokamaks requiring a low loop voltage start-up, such as ITER, or in spherical tori with limited volt-seconds. The TPC can be particularly useful in superconducting tokamaks with a limited current slew-rate of superconducting PF coils, as it can save volt-second consumption before plasma current initiation by providing prompt initiation with an intrinsic stable equilibrium field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950012544','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950012544"><span>Constant current loop impedance measuring system that is immune to the effects of parasitic impedances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, Karl F. (Inventor)</p> <p>1994-01-01</p> <p>A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024263','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024263"><span>Sand wave fields beneath the Loop Current, Gulf of Mexico: Reworking of fan sands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kenyon, Neil H.; Akhmetzhanov, A.M.; Twichell, D.C.</p> <p>2002-01-01</p> <p>Extensive fields of large barchan-like sand waves and longitudinal sand ribbons have been mapped by deep-towed SeaMARC IA sidescan sonar on part of the middle and lower Mississippi Fan that lies in about 3200 m of water. The area is beneath the strongly flowing Loop Current. The bedforms have not been adequately sampled but probably consist of winnowed siliciclastic-foraminiferal sands. The size (about 200 m from wingtip to wingtip) and shape of the large barchans is consistent with a previously observed peak current speed of 30 cm/s, measured 25 m above the seabed. The types of small-scale bedforms and the scoured surfaces of chemical crusts, seen on nearby bottom photographs, indicate that near-bed currents in excess of 30 cm/s may sometimes occur. At the time of the survey the sand transport direction was to the northwest, in the opposite direction to the Loop Current but consistent with there being a deep boundary current along the foot of the Florida Escarpment. Some reworking of the underlying sandy turbidites and debris flow deposits is apparent on the sidescan sonar records. Reworking by deep-sea currents, resulting in erosion and in deposits characterised by coarsening upwards structures and cross-bedding, is a process that has been proposed for sand found in cores in shallower parts of the Gulf of Mexico. This process is more widespread than hitherto supposed. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21697858','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21697858"><span>Effects of sertraline on brain current source of the high beta frequency band: analysis of electroencephalography during audiovisual erotic stimulation in males with premature ejaculation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kwon, O Y; Kam, S C; Choi, J H; Do, J M; Hyun, J S</p> <p>2011-01-01</p> <p>To identify the effects of sertraline, a selective serotonin reuptake inhibitor, for the treatment of premature ejaculation (PE), changes in brain current-source density (CSD) of the high beta frequency band (22-30 Hz) induced by sertraline administration were investigated during audiovisual erotic stimulation. Eleven patients with PE (36.9±7.8 yrs) and 11 male volunteers (24.2±1.9 years) were enrolled. Scalp electroencephalography (EEG) was conducted twice: once before sertraline administration and then again 4 h after the administration of 50 mg sertraline. Statistical non-parametric maps were obtained using the EEG segments to detect the current-density differences in the high beta frequency bands (beta-3, 22-30 Hz) between the EEGs before and after sertraline administration in the patient group and between the patient group and controls after the administration of sertraline during the erotic video sessions. Comparing between before and after sertraline administration in the patients with PE, the CSD of the high beta frequency band at 4 h after sertraline administration increased significantly in both superior frontal gyri and the right medial frontal gyrus (P<0.01). The CSD of the beta-3 band of the patients with PE were less activated significantly in the middle and superior temporal gyrus, lingual and fusiform gyrus, inferior occipital gyrus and cuneus of the right cerebral hemisphere compared with the normal volunteers 4 h after sertraline administration (P<0.01). In conclusion, sertraline administration increased the CSD in both the superior frontal and right middle temporal gyrus in patients with PE. The results suggest that the increased neural activity in these particular cerebral regions after sertraline administration may be associated with inhibitory effects on ejaculation in patients with PE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28466144','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28466144"><span>Comparative analysis of background EEG activity in childhood absence epilepsy during valproate treatment: a standardized, low-resolution, brain electromagnetic tomography (sLORETA) study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shin, Jung-Hyun; Eom, Tae-Hoon; Kim, Young-Hoon; Chung, Seung-Yun; Lee, In-Goo; Kim, Jung-Min</p> <p>2017-07-01</p> <p>Valproate (VPA) is an antiepileptic drug (AED) used for initial monotherapy in treating childhood absence epilepsy (CAE). EEG might be an alternative approach to explore the effects of AEDs on the central nervous system. We performed a comparative analysis of background EEG activity during VPA treatment by using standardized, low-resolution, brain electromagnetic tomography (sLORETA) to explore the effect of VPA in patients with CAE. In 17 children with CAE, non-parametric statistical analyses using sLORETA were performed to compare the current density distribution of four frequency bands (delta, theta, alpha, and beta) between the untreated and treated condition. Maximum differences in current density were found in the left inferior frontal gyrus for the delta frequency band (log-F-ratio = -1.390, P > 0.05), the left medial frontal gyrus for the theta frequency band (log-F-ratio = -0.940, P > 0.05), the left inferior frontal gyrus for the alpha frequency band (log-F-ratio = -0.590, P > 0.05), and the left anterior cingulate for the beta frequency band (log-F-ratio = -1.318, P > 0.05). However, none of these differences were significant (threshold log-F-ratio = ±1.888, P < 0.01; threshold log-F-ratio = ±1.722, P < 0.05). Because EEG background is accepted as normal in CAE, VPA would not be expected to significantly change abnormal thalamocortical oscillations on a normal EEG background. Therefore, our results agree with currently accepted concepts but are not consistent with findings in some previous studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvB..92g5123D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvB..92g5123D"><span>Strong competition between ΘI I-loop-current order and d -wave charge order along the diagonal direction in a two-dimensional hot spot model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Carvalho, Vanuildo S.; Kloss, Thomas; Montiel, Xavier; Freire, Hermann; Pépin, Catherine</p> <p>2015-08-01</p> <p>We study the fate of the so-called ΘI I-loop-current order that breaks both time-reversal and parity symmetries in a two-dimensional hot spot model with antiferromagnetically mediated interactions, using Fermi surfaces relevant to the phenomenology of the cuprate superconductors. We start from a three-band Emery model describing the hopping of holes in the CuO2 plane that includes two hopping parameters tp p and tp d, local onsite Coulomb interactions Ud and Up, and nearest-neighbor Vp d couplings between the fermions in the copper [Cu (3 dx2-y2) ] and oxygen [O (2 px) and O (2 py)] orbitals. By focusing on the lowest-energy band, we proceed to decouple the local interaction Ud of the Cu orbital in the spin channel using a Hubbard-Stratonovich transformation to arrive at the interacting part of the so-called spin-fermion model. We also decouple the nearest-neighbor interaction Vp d to introduce the order parameter of the ΘI I-loop-current order. In this way, we are able to construct a consistent mean-field theory that describes the strong competition between the composite order parameter made of a quadrupole-density wave and d -wave pairing fluctuations proposed in Efetov et al. [Nat. Phys. 9, 442 (2013), 10.1038/nphys2641] with the ΘI I-loop-current order parameter that is argued to be relevant for explaining important aspects of the physics of the pseudogap phase displayed in the underdoped cuprates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4428915','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4428915"><span>Manipulations of extracellular Loop 2 in α1 GlyR ultra-sensitive ethanol receptors (USERs) enhance receptor sensitivity to isoflurane, ethanol, and lidocaine, but not propofol</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Naito, Anna; Muchhala, Karan H.; Trang, Janice; Asatryan, Liana; Trudell, James R.; Homanics, Gregg E.; Alkana, Ronald L.; Davies, Daryl L.</p> <p>2015-01-01</p> <p>We recently developed Ultra-Sensitive Ethanol Receptors (USERs) as a novel tool for investigation of single receptor subunit populations sensitized to extremely low ethanol concentrations that do not affect other receptors in the nervous system. To this end, we found that mutations within the extracellular Loop 2 region of glycine receptors (GlyRs) and γ-aminobutyric acid type A receptors (GABAARs) can significantly increase receptor sensitivity to micro-molar concentrations of ethanol resulting in up to a 100-fold increase in ethanol sensitivity relative to wild type (WT) receptors. The current study investigated: 1) Whether structural manipulations of Loop 2 in α1 GlyRs could similarly increase receptor sensitivity to other anesthetics; and 2) If mutations exclusive to the C-terminal end of Loop 2 are sufficient to impart these changes. We expressed α1 GlyR USERs in Xenopus oocytes and tested the effects of three classes of anesthetics, isoflurane (volatile), propofol (intravenous), and lidocaine (local), known to enhance glycine-induced chloride currents using two-electrode voltage clamp electrophysiology. Loop 2 mutations produced a significant 10-fold increase in isoflurane and lidocaine sensitivity, but no increase in propofol sensitivity compared to WT α1 GlyRs. Interestingly, we also found that structural manipulations in the C-terminal end of Loop 2 were sufficient and selective for α1 GlyR modulation by ethanol, isoflurane, and lidocaine. These studies are the first to report the extracellular region of α1 GlyRs as a site of lidocaine action. Overall, the findings suggest that Loop 2 of α1 GlyRs is a key region that mediates isoflurane and lidocaine modulation. Moreover, the results identify important amino acids in Loop 2 that regulate isoflurane, lidocaine, and ethanol action. Collectively, these data indicate the commonality of the sites for isoflurane, lidocaine, and ethanol action, and the structural requirements for allosteric modulation on α1 GlyRs within the extracellular Loop 2 region. PMID:25827497</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720003886','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720003886"><span>SNAP-8 power conversion system design review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lopez, L. P.</p> <p>1970-01-01</p> <p>The conceptual design of the SNAP-8 electrical generating system configurations are reviewed including the evolution of the PCS configuration, and the current concepts. The reliabilities of two alternative PCS-G heat rejection loop configurations with two radiator design concepts are also reviewed. A computer program for calculating system pressure loss using multiple-loop flow analysis is included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810011456','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810011456"><span>Resonant electrodynamic heating of stellar coronal loops: An LRC circuit analogue</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ionson, J. A.</p> <p>1980-01-01</p> <p>The electrodynamic coupling of stellar coronal loops to underlying beta velocity fields. A rigorous analysis revealed that the physics can be represented by a simple yet equivalent LRC circuit analogue. This analogue points to the existence of global structure oscillations which resonantly excite internal field line oscillations at a spatial resonance within the coronal loop. Although the width of this spatial resonance, as well as the induced currents and coronal velocity field, explicitly depend upon viscosity and resistivity, the resonant form of the generalized electrodynamic heating function is virtually independent of irreversibilities. This is a classic feature of high quality resonators that are externally driven by a broad band source of spectral power. Applications to solar coronal loops result in remarkable agreement with observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1331770','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1331770"><span>Top-quark loop corrections in Z+jet and Z + 2 jet production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Campbell, John M.; Keith Ellis, R.</p> <p>2017-01-01</p> <p>The sophistication of current predictions formore » $Z+$jet production at hadron colliders necessitates a re-evaluation of any approximations inherent in the theoretical calculations. In this paper we address one such issue, the inclusion of mass effects in top-quark loops. We ameliorate an existing calculation of $Z+1$~jet and $Z+2$~jet production by presenting exact analytic formulae for amplitudes containing top-quark loops that enter at next-to-leading order in QCD. Although approximations based on an expansion in powers of $$1/m_t^2$$ can lead to poor high-energy behavior, an exact treatment of top-quark loops demonstrates that their effect is small and has limited phenomenological interest.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28029630','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28029630"><span>Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Xilin; Zhang, Milin; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan</p> <p>2017-08-01</p> <p>This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18 μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014FiIO...33..129G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014FiIO...33..129G"><span>Unbundling in Current Broadband and Next-Generation Ultra-Broadband Access Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaudino, Roberto; Giuliano, Romeo; Mazzenga, Franco; Valcarenghi, Luca; Vatalaro, Francesco</p> <p>2014-05-01</p> <p>This article overviews the methods that are currently under investigation for implementing multi-operator open-access/shared-access techniques in next-generation access ultra-broadband architectures, starting from the traditional "unbundling-of-the-local-loop" techniques implemented in legacy twisted-pair digital subscriber line access networks. A straightforward replication of these copper-based unbundling-of-the-local-loop techniques is usually not feasible on next-generation access networks, including fiber-to-the-home point-to-multipoint passive optical networks. To investigate this issue, the article first gives a concise description of traditional copper-based unbundling-of-the-local-loop solutions, then focalizes on both next-generation access hybrid fiber-copper digital subscriber line fiber-to-the-cabinet scenarios and on fiber to the home by accounting for the mix of regulatory and technological reasons driving the next-generation access migration path, focusing mostly on the European situation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJASS.tmp...22B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJASS.tmp...22B"><span>Thrust Control Loop Design for Electric-Powered UAV</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Byun, Heejae; Park, Sanghyuk</p> <p>2018-04-01</p> <p>This paper describes a process of designing a thrust control loop for an electric-powered fixed-wing unmanned aerial vehicle equipped with a propeller and a motor. In particular, the modeling method of the thrust system for thrust control is described in detail and the propeller thrust and torque force are modeled using blade element theory. A relation between current and torque of the motor is obtained using an experimental setup. Another relation between current, voltage and angular velocity is also obtained. The electric motor and the propeller dynamics are combined to model the thrust dynamics. The associated trim and linearization equations are derived. Then, the thrust dynamics are coupled with the flight dynamics to allow a proper design for the thrust loop in the flight control. The proposed method is validated by an application to a testbed UAV through simulations and flight test.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24051522','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24051522"><span>Analysis and design of a 3rd order velocity-controlled closed-loop for MEMS vibratory gyroscopes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Huan-ming; Yang, Hai-gang; Yin, Tao; Jiao, Ji-wei</p> <p>2013-09-18</p> <p>The time-average method currently available is limited to analyzing the specific performance of the automatic gain control-proportional and integral (AGC-PI) based velocity-controlled closed-loop in a micro-electro-mechanical systems (MEMS) vibratory gyroscope, since it is hard to solve nonlinear functions in the time domain when the control loop reaches to 3rd order. In this paper, we propose a linearization design approach to overcome this limitation by establishing a 3rd order linear model of the control loop and transferring the analysis to the frequency domain. Order reduction is applied on the built linear model's transfer function by constructing a zero-pole doublet, and therefore mathematical expression of each control loop's performance specification is obtained. Then an optimization methodology is summarized, which reveals that a robust, stable and swift control loop can be achieved by carefully selecting the system parameters following a priority order. Closed-loop drive circuits are designed and implemented using 0.35 μm complementary metal oxide semiconductor (CMOS) process, and experiments carried out on a gyroscope prototype verify the optimization methodology that an optimized stability of the control loop can be achieved by constructing the zero-pole doublet, and disturbance rejection capability (D.R.C) of the control loop can be improved by increasing the integral term.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26441544','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26441544"><span>Bi-frontal transcranial alternating current stimulation in the ripple range reduced overnight forgetting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ambrus, Géza Gergely; Pisoni, Alberto; Primaßin, Annika; Turi, Zsolt; Paulus, Walter; Antal, Andrea</p> <p>2015-01-01</p> <p>High frequency oscillations in the hippocampal structures recorded during sleep have been proved to be essential for long-term episodic memory consolidation in both animals and in humans. The aim of this study was to test if transcranial Alternating Current Stimulation (tACS) of the dorsolateral prefrontal cortex (DLPFC) in the hippocampal ripple range, applied bi-frontally during encoding, could modulate declarative memory performance, measured immediately after encoding, and after a night's sleep. An associative word-pair learning test was used. During an evening encoding phase, participants received 1 mA 140 Hz tACS or sham stimulation over both DLPFCs for 10 min while being presented twice with a list of word-pairs. Cued recall performance was investigated 10 min after training and the morning following the training session. Forgetting from evening to morning was observed in the sham condition, but not in the 140 Hz stimulation condition. 140 Hz tACS during encoding may have an effect on the consolidation of declarative material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3168437','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3168437"><span>Dissociation of Subjectively Reported and Behaviorally Indexed Mind Wandering by EEG Rhythmic Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Qin, Jungang; Perdoni, Christopher; He, Bin</p> <p>2011-01-01</p> <p>Inattention to current activity is ubiquitous in everyday situations. Mind wandering is an example of such a state, and its related brain areas have been examined in the literature. However, there is no clear evidence regarding neural rhythmic activities linked to mind wandering. Using a vigilance task with thought sampling and electroencephalography recording, the current study simultaneously examined neural oscillatory activities related to subjectively reported and behaviorally indexed mind wandering. By implementing time-frequency analysis, we found that subjectively reported mind wandering, relative to behaviorally indexed, showed increased gamma band activity at bilateral frontal-central areas. By means of beamformer source imaging, we found subjectively reported mind wandering within the gamma band to be characterized by increased activation in bilateral frontal cortices, supplemental motor area, paracentral cortex and right inferior temporal cortex in comparison to behaviorally indexed mind wandering. These findings dissociate subjectively reported and behaviorally indexed mind wandering and suggest that a higher degree of executive control processes are engaged in subjectively reported mind wandering. PMID:21915257</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JNuM..498..430B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JNuM..498..430B"><span>Atomistic study of the hardening of ferritic iron by Ni-Cr decorated dislocation loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonny, G.; Bakaev, A.; Terentyev, D.; Zhurkin, E.; Posselt, M.</p> <p>2018-01-01</p> <p>The exact nature of the radiation defects causing hardening in reactor structural steels consists of several components that are not yet clearly determined. While generally, the hardening is attributed to dislocation loops, voids and secondary phases (radiation-induced precipitates), recent advanced experimental and computational studies point to the importance of solute-rich clusters (SRCs). Depending on the exact composition of the steel, SRCs may contain Mn, Ni and Cu (e.g. in reactor pressure vessel steels) or Ni, Cr, Si, Mn (e.g. in high-chromium steels for generation IV and fusion applications). One of the hypotheses currently implied to explain their formation is the process of radiation-induced diffusion and segregation of these elements to small dislocation loops (heterogeneous nucleation), so that the distinction between SRCs and loops becomes somewhat blurred. In this work, we perform an atomistic study to investigate the enrichment of loops by Ni and Cr solutes and their interaction with an edge dislocation. The dislocation loops decorated with Ni and Cr solutes are obtained by Monte Carlo simulations, while the effect of solute segregation on the loop's strength and interaction mechanism is then addressed by large scale molecular dynamics simulations. The synergy of the Cr-Ni interaction and their competition to occupy positions in the dislocation loop core are specifically clarified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22370040-unresolved-fine-scale-structure-solar-coronal-loop-tops','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22370040-unresolved-fine-scale-structure-solar-coronal-loop-tops"><span>Unresolved fine-scale structure in solar coronal loop-tops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Scullion, E.; Van der Voort, L. Rouppe; Wedemeyer, S.</p> <p>2014-12-10</p> <p>New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer substructures within coronal loop cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric Hα 656.28 nm spectral line core and wings can, under certainmore » circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in Hα) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal loop-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from loop-top to footpoint. We discover that coronal loop fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal loop cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal loops, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal loops.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2888260','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2888260"><span>Modulation of NMDA and AMPA-Mediated Synaptic Transmission by CB1 Receptors in Frontal Cortical Pyramidal Cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Qiang; Yan, Haidun; Wilson, Wilkie A.; Swartzwelder, H. Scott</p> <p>2010-01-01</p> <p>Although the endogenous cannabinoid system modulates a variety of physiological and pharmacological processes, the specific role of cannabinoid CB1 receptors in the modulation of glutamatergic neurotransmission and neural plasticity is not well understood. Using whole-cell patch clamp recording techniques, evoked or spontaneous excitatory postsynaptic currents (eEPSCs or sEPSCs) were recorded from visualized, layer II/III pyramidal cells in frontal cortical slices from rat brain. Bath application of the CB1 receptor agonist, WIN 55212-2 (WIN), reduced the amplitude of NMDA receptor-mediated EPSCs in a concentration-dependent manner. When co-applied with the specific CB1 antagonists, AM251 or AM281, WIN did not suppress NMDA receptor mediated EPSCs. WIN also reduced the amplitude of evoked AMPA receptor-mediated EPSCs, an effect that was also reversed by AM251. Both the frequency and amplitude of spontaneous AMPA receptor-mediated EPSCs were significantly reduced by WIN. In contrast, WIN reduced the frequency, but not the amplitude of miniature EPSCs, suggesting that the suppression of glutmatergic activity by CB1 receptors in the frontal neocortex is mediated by a pre-synaptic mechanism. Taken together, these data indicate a critical role for endocannabinoid signaling in the regulation of excitatory synaptic transmission in frontal neocortex, and suggest a possible neuronal mechanism whereby THC regulates cortical function. PMID:20420813</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4425585','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4425585"><span>A direct GABAergic output from the basal ganglia to frontal cortex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Saunders, Arpiar; Oldenburg, Ian A.; Berezovskii, Vladimir K.; Johnson, Caroline A.; Kingery, Nathan D.; Elliott, Hunter L.; Xie, Tiao; Gerfen, Charles R.; Sabatini, Bernardo L.</p> <p>2014-01-01</p> <p>The basal ganglia (BG) are phylogenetically conserved subcortical nuclei necessary for coordinated motor action and reward learning1. Current models postulate that the BG modulate cerebral cortex indirectly via an inhibitory output to thalamus, bidirectionally controlled by the BG via direct (dSPNs) and indirect (iSPNs) pathway striatal projection neurons2–4. The BG thalamic output sculpts cortical activity by interacting with signals from sensory and motor systems5. Here we describe a direct projection from the globus pallidus externus (GP), a central nucleus of the BG, to frontal regions of the cerebral cortex (FC). Two cell types make up the GP-FC projection, distinguished by their electrophysiological properties, cortical projections and expression of choline acetyltransferase (ChAT), a synthetic enzyme for the neurotransmitter acetylcholine (ACh). Despite these differences, ChAT+ cells, which have been historically identified as an extension of the nucleus basalis (NB), as well as ChAT− cells, release the inhibitory neurotransmitter GABA (γ-aminobutyric acid) and are inhibited by iSPNs and dSPNs of dorsal striatum. Thus GP-FC cells comprise a direct GABAergic/cholinergic projection under the control of striatum that activates frontal cortex in vivo. Furthermore, iSPN inhibition of GP-FC cells is sensitive to dopamine 2 receptor signaling, revealing a pathway by which drugs that target dopamine receptors for the treatment of neuropsychiatric disorders can act in the BG to modulate frontal cortices. PMID:25739505</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26070155','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26070155"><span>Counterfactual Thinking Deficit in Huntington's Disease.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Solca, Federica; Poletti, Barbara; Zago, Stefano; Crespi, Chiara; Sassone, Francesca; Lafronza, Annalisa; Maraschi, Anna Maria; Sassone, Jenny; Silani, Vincenzo; Ciammola, Andrea</p> <p>2015-01-01</p> <p>Counterfactual thinking (CFT) refers to the generation of mental simulations of alternatives to past events, actions and outcomes. CFT is a pervasive cognitive feature in every-day life and is closely related to decision-making, planning and problem-solving - all of which are cognitive processes linked to unimpaired frontal lobe functioning. Huntington's Disease (HD) is a neurodegenerative disorder characterised by motor, behavioral and cognitive dysfunctions. Because an impairment in frontal and executive functions has been described in HD, we hypothesised that HD patients may have a CFT impairment. Tests of spontaneous counterfactual thoughts and counterfactual-derived inferences were administered to 24 symptomatic HD patients and 24 age- and sex-matched healthy subjects. Our results show a significant impairment in the spontaneous generation of CFT and low performance on the Counterfactual Inference Test (CIT) in HD patients. Low performance on the spontaneous CFT test significantly correlates with impaired attention abilities, verbal fluency and frontal lobe efficiency, as measured by Trail Making Test - Part A, Phonemic Verbal Fluency Test and FAB. Spontaneous CFT and the use of this type of reasoning are impaired in HD patients. This deficit may be related to frontal lobe dysfunction, which is a hallmark of HD. Because CFT has a pervasive role in patients' daily lives regarding their planning, decision making and problem solving skills, cognitive rehabilitation may improve HD patients' ability to analyse current behaviors and future actions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29776018','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29776018"><span>Voxel-based morphometry in creative writers: Gray-matter increase in a prefronto-thalamic-cerebellar network.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Neumann, Nicola; Domin, Martin; Erhard, Katharina; Lotze, Martin</p> <p>2018-05-18</p> <p>Continuous practice modulates those features of brain anatomy specifically associated with requirements of the respective training task. The current study aimed to highlight brain structural changes going along with long-term experience in creative writing. To this end, we investigated the gray-matter volume of 23 expert writers with voxel-based morphometry and compared it to 28 matched non-expert controls. Expert writers had higher gray-matter volume in the right superior frontal and middle frontal gyri (BA 9,10) as well as left middle frontal gyrus (BA 9, 10, 46), the bilateral medial dorsal nuclei of the thalamus and left posterior cerebellum. A regression analysis confirmed the association of enhanced gray-matter volume in the right superior frontal gyrus (BA 10) with practice index of writing. In region-of interest based regression analyses, we found associations of gray-matter volume in the right Broca's analogue (BA 44) and right primary visual cortex (BA 17) with creativity ratings of the texts written during scanning, but not with a standardized verbal creativity test. Creative writing thus seems to be strongly connected to a prefronto-thalamic-cerebellar network that supports the continuous generation, organization and revision of ideas that is necessary to write literary texts. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23636971','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23636971"><span>Early metabolic crisis-related brain atrophy and cognition in traumatic brain injury.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wright, Matthew J; McArthur, David L; Alger, Jeffry R; Van Horn, Jack; Irimia, Andrei; Filippou, Maria; Glenn, Thomas C; Hovda, David A; Vespa, Paul</p> <p>2013-09-01</p> <p>Traumatic brain injury often results in acute metabolic crisis. We recently demonstrated that this is associated with chronic brain atrophy, which is most prominent in the frontal and temporal lobes. Interestingly, the neuropsychological profile of traumatic brain injury is often characterized as 'frontal-temporal' in nature, suggesting a possible link between acute metabolic crisis-related brain atrophy and neurocognitive impairment in this population. While focal lesions and diffuse axonal injury have a well-established role in the neuropsychological deficits observed following traumatic brain injury, no studies to date have examined the possible contribution of acute metabolic crisis-related atrophy in the neuropsychological sequelae of traumatic brain injury. In the current study we employed positron emission tomography, magnetic resonance imaging, and neuropsychological assessments to ascertain the relationship between acute metabolic crisis-related brain atrophy and neurocognitive outcome in a sample of 14 right-handed traumatic brain injury survivors. We found that acute metabolic crisis-related atrophy in the frontal and temporal lobes was associated with poorer attention, executive functioning, and psychomotor abilities at 12 months post-injury. Furthermore, participants with gross frontal and/or temporal lobe atrophy exhibited numerous clinically significant neuropsychological deficits in contrast to participants with other patterns of brain atrophy. Our findings suggest that interventions that reduce acute metabolic crisis may lead to improved functional outcomes for traumatic brain injury survivors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12313949','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12313949"><span>Ortho stops marketing Lippes Loop; cites economic factors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p></p> <p>1985-11-01</p> <p>Ortho Pharmaceutical Corporation has stopped marketing the Lippes Loop IUD, the only inert IUD currently available in the US. The firm cited "economic considerations" as its reason. Linda Organ, company spokeswoman, told Contraceptive Technology Update (CTU) that the number of women using IUDs has declined in the past few years and, as a result, Ortho's Lippes Loop sales dropped. Most physicians, according to Organ, currently prescribe copper-bearing IUDs. Few devices have been studied as thoroughly before marketing as the Lippes Loop, according to its developer, Dr. Jack Lippes. Lippes told CTU that the Population Council analyzed 40,000 women from 1962 to 1968 and "found no trouble with the Loop." Lippes attributes Ortho's recent decision to 2 factors: the IUD has been only "marginally profitable" and the problems of A.H. Robins with the Dalkon Shield has most likely had an effect; and the US Food and Drug Administration (FDA) published a proposed rule in August 1985 that would require any company wanting to manufacture and market IUDs like the Lippes Loop to submit a premarketing approval application to that agency. In effect, the FDA's rule would only apply to the Lippes Loop. Under the proposed rule, any company wanting to market Lippes Loops, or any nondrug IUD, would have to submit an application to the FDA with a detailed discussion and supporting clinical studies addressing the following concerns: pelvic actinomycosis; tubal infertility; duration that the IUD should remain in situ; and safety of leaving the IUD in situ when contraception is no longer indicated. According to Lillian Yin, FDA device evaluation, the clinical effectiveness and most of the safety issues regarding inert IUDs have been thoroughly covered in published data. She told CTU that "most of the information needed is straightforward, but the part that's new involves the long term use infection rate." Yin indicated that the FDA received a letter from Ortho advising the agency of the company's decision to discontinue selling the loop. That decision, according to Organ, is not based on new study information about inert versus copper bearing IUDs. The company sent a letter to physicians on April 15 advising them of revisions in Lippes Loop patient and physician information materials. The added information is cited.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5861137','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5861137"><span>The Association Between Suicidal Behavior, Attentional Control, and Frontal Asymmetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Thompson, Catherine; Ong, Elsie Li Chen</p> <p>2018-01-01</p> <p>It can be difficult to identify those at risk of suicide because suicidal thoughts are often internalized and not shared with others. Yet to prevent suicide attempts it is crucial to identify suicidal thoughts and actions at an early stage. Past studies have suggested that deficits in attentional control are associated with suicide, with the argument that individuals are unable to inhibit negative thoughts and direct resources away from negative information. The current study aimed to investigate the association of suicidal behavior with neurological and behavioral markers, measuring attentional bias and inhibition in two Stroop tasks. Fifty-four participants responded to the color of color words in a standard Stroop task and the color of positive, negative, and neutral words in an emotional Stroop task. Electroencephalographic (EEG) activity was recorded from frontal areas during each task and at resting. Participants were separated into a low-risk and high-risk group according to their self-reported suicidal behavior. Participants in the high-risk group showed slower response times in the color Stroop and reduced accuracy to incongruent trials, but faster response times in the emotional Stroop task. Response times to the word “suicide” were significantly slower for the high-risk group. This indicates an attentional bias toward specific negative stimuli and difficulties inhibiting information for those with high levels of suicidal behavior. In the emotional Stroop task the high-risk group showed reduced activity in leftward frontal areas, suggesting limitations in the ability to regulate emotional processing via the left frontal regions. The findings support the argument that deficits in attentional control are related to suicidal behavior. The research also suggests that under certain conditions frontal asymmetry may be associated with suicidal behavior. PMID:29593586</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25179136','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25179136"><span>Abnormal hubs of white matter networks in the frontal-parieto circuit contribute to depression discrimination via pattern classification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qin, Jiaolong; Wei, Maobin; Liu, Haiyan; Chen, Jianhuai; Yan, Rui; Hua, Lingling; Zhao, Ke; Yao, Zhijian; Lu, Qing</p> <p>2014-12-01</p> <p>Previous studies had explored the diagnostic and prognostic value of the structural neuroimaging data of MDD and treated the whole brain voxels, the fractional anisotropy and the structural connectivity as classification features. To our best knowledge, no study examined the potential diagnostic value of the hubs of anatomical brain networks in MDD. The purpose of the current study was to provide an exploratory examination of the potential diagnostic and prognostic values of hubs of white matter brain networks in MDD discrimination and the corresponding impaired hub pattern via a multi-pattern analysis. We constructed white matter brain networks from 29 depressions and 30 healthy controls based on diffusion tensor imaging data, calculated nodal measures and identified hubs. Using these measures as features, two types of feature architectures were established, one only included hubs (HUB) and the other contained both hubs and non hubs. The support vector machine classifiers with Gaussian radial basis kernel were used after the feature selection. Moreover, the relative contribution of the features was estimated by means of the consensus features. Our results presented that the hubs (including the bilateral dorsolateral part of superior frontal gyrus, the left middle frontal gyrus, the bilateral middle temporal gyrus, and the bilateral inferior temporal gyrus) played an important role in distinguishing the depressions from healthy controls with the best accuracy of 83.05%. Moreover, most of the HUB consensus features located in the frontal-parieto circuit. These findings provided evidence that the hubs could be served as valuable potential diagnostic measure for MDD, and the hub-concentrated lesion distribution of MDD was primarily anchored within the frontal-parieto circuit. Copyright © 2014 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP23A1285C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP23A1285C"><span>Calcareous nannoplankton assemblages across the Pliocene-Pleistocene transition in the southwestern Indian Ocean, IODP Site U1475</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cares, Z.; Farr, C. L.; LeVay, L.; Tangunan, D.; Brentegani, L.</p> <p>2017-12-01</p> <p>International Ocean Discovery Program (IODP) Expedition 361 cored six sites along the greater Agulhas Current System to track its intensity through time and to better understand its role in global oceanic circulation and climate. One of the main scientific objectives of this expedition was to determine the dynamics of the Indian-Atlantic Ocean Gateway circulation during Pliocene-Pleistocene climate changes in association with changing wind fields and migrating ocean fronts. The Indian-Atlantic Ocean Gateway contains a pronounced oceanic frontal system, the position of which has the potential to influence global climate on millennial scales. Owing to the physical differences between the frontal zones, this region has complex biogeochemistry, changes in phytoplankton distribution, and variations in primary productivity. Site U1475 was cored on the Agulhas Plateau in the Southwestern Indian Ocean and recovered a complete sequence of calcareous ooze spanning the last 7 Ma. Previous studies at this locality have shown latitudinal migrations of the frontal zones over the past 350 kyr that resulted in prominent millennial shifts in primary production, biological pump efficiency, and microfossil assemblages that coincide with Antarctic climate variability. Here we present initial results comprised of calcareous nannoplankton assemblages in order to test if similar latitudinal frontal migrations occurred during the Pliocene-Pleistocene transition (PPT; 2.7 Ma). The calcareous nannoplankton assemblage shows an abundance increase of taxa associated with cooler water and higher primary production across the PPT interval. In addition to a change in species abudance, the Shannon diversity index drops notably across the transition, which is typical of nannoplankton communities in more productive regions. These data suggest that a long-term change in sea surface temperature and nutrient availability took place across the PPT, potentially linked to the northward migration of frontal zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19085174','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19085174"><span>Impact response and biomechanical analysis of the knee-thigh-hip complex in frontal impacts with a full human body finite element model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ruan, Jesse S; El-Jawahri, Raed; Barbat, Saeed; Rouhana, Stephen W; Prasad, Priya</p> <p>2008-11-01</p> <p>Changes in vehicle safety design technology and the increasing use of seat-belts and airbag restraint systems have gradually changed the relative proportion of lower extremity injuries. These changes in real world injuries have renewed interest and the need of further investigation into occupant injury mechanisms and biomechanical impact responses of the knee-thigh-hip complex during frontal impacts. This study uses a detailed finite element model of the human body to simulate occupant knee impacts experienced in frontal crashes. The human body model includes detailed anatomical features of the head, neck, shoulder, chest, thoracic and lumbar spine, abdomen, pelvis, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The human body model used in the current study has been previously validated in frontal and side impacts. It was further validated with cadaver knee-thigh-hip impact tests in the current study. The effects of impactor configuration and flexion angle of the knee on biomechanical impact responses of the knee-thigh-hip complex were studied using the validated human body finite element model. This study showed that the knee flexion angle and the impact direction and shape of the impactors affected the injury outcomes of the knee-thigh-hip complex significantly. The 60 degrees flexed knee impact showed the least impact force, knee pressure, femoral von Mises stress, and pelvic von Mises stress but largest relative displacements of the Posterior Cruciate Ligament (PCL) and Anterior Cruciate Ligament (ACL). The 90 degrees flexed knee impact resulted in a higher impact force, knee pressure, femoral von Mises stress, and pelvic von Mises stress; but smaller PCL and ACL displacements. Stress distributions of the patella, femur, and pelvis were also given for all the simulated conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26542620','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26542620"><span>Neurophysiological correlates of persistent psycho-affective alterations in athletes with a history of concussion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moore, Robert Davis; Sauve, William; Ellemberg, Dave</p> <p>2016-12-01</p> <p>Understanding the neuropathological underpinnings of sport-related concussion are critical for diagnosis, prognosis, and remediation. Although electro-encephalographic (EEG) methods have proven invaluable for understanding psycho-affective pathologies in various clinical conditions, they have not been used to understand the psycho-affective outcomes of concussive injuries. Accordingly, we evaluated the relation of electroencephalographic (EEG) power in collegiate athletes to psycho-affective measures. We predicted that athletes with a history of concussion would exhibit alterations in frontal EEG asymmetries indicative of increased depression, anxiety and more general mood disturbance. During this cross-sectional study, resting EEG and measures of mood and affect, including the Beck Depression Inventory-II (BDI-II) and Profile of Mood States (POMS) were collected in 81 young-adult male athletes (52 concussion history; 29 controls). All athletes with a history of concussion (9+ months from injury) reported to be symptom free, and all participants were actively taking part in their sport at the time of testing. Compared to control athletes, the athletes with a history of concussion exhibited alterations in frontal-alpha and frontal-beta asymmetry (p's < .05). Correlational analyses revealed that alterations in frontal-alpha asymmetry were related to self-reported depression and anxiety, and alterations in beta-asymmetry were related to self-reported anger/aggression, but these relations were only significant for athletes with a history of concussion. The current study suggests that athletes with a history of concussion who made a complete return to play and reported to be asymptomatic on a commonly used symptom checklist may still exhibit neural activity associated with increased levels of depression, anxiety and anger/hostility. The current results reinforce the clinical necessity for long-term evaluations of athletes irrespective of apparent symptom resolution, and suggest that EEG may serve as a sensitive tool to identify and track concussion-related alterations in psycho-affective health before they manifest as clinical disorders.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770006752','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770006752"><span>Generalized EC&LSS computer program configuration control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blakely, R. L.</p> <p>1976-01-01</p> <p>The generalized environmental control and life support system (ECLSS) computer program (G189A) simulation of the shuttle orbiter ECLSS was upgraded. The G189A component model configuration was changed to represent the current PV102 and subsequent vehicle ECLSS configurations as defined by baseline ARS and ATCS schematics. The diagrammatic output schematics of the gas, water, and freon loops were also revised to agree with the new ECLSS configuration. The accuracy of the transient analysis was enhanced by incorporating the thermal mass effects of the equipment, structure, and fluid in the ARS gas and water loops and in the ATCS freon loops. The sources of the data used to upgrade the simulation are: (1) ATCS freon loop line sizes and lengths; (2) ARS water loop line sizes and lengths; (3) ARS water loop and ATCS freon loop component and equipment weights; and (4) ARS cabin and avionics bay thermal capacitance and conductance values. A single G189A combination master program library tape was generated which contains all of the master program library versions which were previously maintained on separate tapes. A new component subroutine, PIPETL, was developed and incorporated into the G189A master program library.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24516504','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24516504"><span>Virtual grasping: closed-loop force control using electrotactile feedback.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario</p> <p>2014-01-01</p> <p>Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA085306','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA085306"><span>Naval Outgoing Message Processing, A Study of Message Generation and Message Preparation for Transmission and the Impact of Automation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1979-12-01</p> <p>AM AM .m Itp 3MM"fvob 3MMopo" INA 7M 3M. St Z is pu~ e posep 3MM 3MMoar INA 3M 3MM St. 3M. Y" M3L-SINA1I 334IopAsoe * w*; INAt e M IM0NA .6.6.36...C or 20 ma current loop Current loop (60V. 60 ma) High level (±80V, 20 ma) INA Yes Yes Yes Same sIBM SELECTRIC Yes INA INA INA INA INA INA INA INA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29775018','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29775018"><span>[Causes and management of frontal sinusitis after transfrontal craniotomy].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, T C; Yu, X F; Gu, Z W; Bai, W L; Wang, Z H; Cao, Z W</p> <p>2018-02-01</p> <p>Objective: The aim of this study is to investigate the causes and the strategy of frontal sinusitis after transfrontal craniotomy by endoscopic frontal sinus surgery and traditional surgery with facial incision. Method: A total of thirty-four patients with frontal sinusitis after transfrontal craniotomy were admitted, with the symptom of purulence stuff, headache and upper eyelid discharging. The onset time was 2.6 years on average. The frontal sinus CT and MRI images showed frontal sinusitis. Twenty-seven patients were treated with endoscopic frontal sinus surgery, and seven patient was treated with combined endoscopic and traditional frontal sinus surgery. In the revision surgery, the bone wax and inflammatory granulation tissue were cleaned out in both operational methods. The cure standard was that the postoperative frontal sinus inflammation disappeared and the drainage of the volume recess was unobstructed. Result: Thirty-four patients had a history of transfrontal craniotomy, and there was a record of bone wax packing in every operation. Among twenty-seven patients with endoscopic frontal sinus surgery, Twenty-five cases cured and two cases were operated twice. Seven patients were cured with combined endoscopic and traditional frontal sinus surgery. Conclusion: The frontal sinusitis after transfrontal craniotomy may be related to the inadequate sinus management, especially bone wax to be addressed to the frontal sinus ramming leading to frontal sinus mucosa secretion obstruction and poor drainage. Endoscopic frontal sinus surgery is a way of minimally invasive surgery. The satisfying curative effect can be obtained by endoscopic removal of bone wax, inflammatory granulation tissue, and the enlargement of frontal sinus aperture after exposure to the frontal sinus, and some cases was treated with both operation method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18571388','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18571388"><span>Differences in regional blood volume during a 28-day period of abstinence in chronic cannabis smokers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sneider, Jennifer T; Pope, Harrison G; Silveri, Marisa M; Simpson, Norah S; Gruber, Staci A; Yurgelun-Todd, Deborah A</p> <p>2008-08-01</p> <p>Cerebral blood volume (CBV) studies have provided important insight into the effects of illicit substances such as cannabis. The present study examined changes in regional blood volume in the frontal and temporal lobe, and the cerebellum during 28 days of supervised abstinence from cannabis. Dynamic susceptibility contrast MRI (DSCMRI) data were collected on 15 current, long-term cannabis users between 6 and 36 h after the subjects' last reported cannabis use (Day 0), and again after 7 and 28 days of abstinence. Resting state CBV images were also acquired on 17 healthy comparison subjects. The present findings demonstrate that at Day 7, cannabis users continued to display increased blood volumes in the right frontal region, the left and right temporal regions, and the cerebellum. However, after 28 days of abstinence, only the left temporal area and cerebellum showed significantly increased CBV values in cannabis users. These findings suggest that while CBV levels begin to normalize with continued abstinence from cannabis, specifically in frontal areas, other temporal and cerebellar brain regions show slower CBV decreases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.3848P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.3848P"><span>Modeling temperature inversion in southeastern Yellow Sea during winter 2016</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pang, Ig-Chan; Moon, Jae-Hong; Lee, Joon-Ho; Hong, Ji-Seok; Pang, Sung-Jun</p> <p>2017-05-01</p> <p>A significant temperature inversion with temperature differences larger than 3°C was observed in the southeastern Yellow Sea (YS) during February 2016. By analyzing in situ hydrographic profiles and results from a regional ocean model for the YS, this study examines the spatiotemporal evolution of the temperature inversion and its connection with wind-induced currents in winter. Observations reveal that in winter, when the northwesterly wind prevails over the YS, the temperature inversion occurs largely at the frontal zone southwest of Korea where warm/saline water of a Kuroshio origin meets cold/fresh coastal water. Our model successfully captures the temperature inversion observed in the winter of 2016 and suggests a close relation between northwesterly wind bursts and the occurrence of the large inversion. In this respect, the strong northwesterly wind drove cold coastal water southward in the upper layer via Ekman transport, which pushed the water mass southward and increased the sea level slope in the frontal zone in southeastern YS. The intensified sea level slope propagated northward away from the frontal zone as a shelf wave, causing a northward upwind flow response along the YS trough in the lower layer, thereby resulting in the large temperature inversion. Diagnostic analysis of the momentum balance shows that the westward pressure gradient, which developed with shelf wave propagation along the YS trough, was balanced with the Coriolis force in accordance with the northward upwind current in and around the inversion area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018DSRI..131...62R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018DSRI..131...62R"><span>Effects of mesoscale structures on the distribution of cephalopod paralarvae in the Gulf of California and adjacent Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruvalcaba-Aroche, Erick D.; Sánchez-Velasco, Laura; Beier, Emilio; Godínez, Victor M.; Barton, Eric D.; Pacheco, Ma. Rocío</p> <p>2018-01-01</p> <p>Vertical distribution of the cephalopod paralarvae was investigated in relation to a system of two cyclonic and three anticyclonic eddies in the southern Gulf of California and a front in the adjacent Pacific Ocean. Results showed that the preferential habitat for the Sthenoteuthis oualaniensis - Dosidicus gigas "SD-complex" in both regions was the oxygenated surface mixed layer and the thermocline. The highest abundances occurred in of one of the anticyclonic eddies and a frontal zone, which are convergent structures. Enoploteuthid and Pyroteuthid paralarvae both displayed their highest abundances in the thermocline. Pyroteuthids dominated in the cyclonic eddy whereas Enoploteuthidae were less evident in the eddy system. Pyroteuthids were observed on the western (California Current) side of the frontal zone, and Enoploteuthids on its eastern (Gulf of California) side. The octopods and the complex of Ommastrephes-Eucleoteuthis-Hyaloteuthis paralarvae were present below the thermocline. Both groups had a scarce presence in the eddy system and high abundance near the frontal zone. The octopods abounded on the eastern side in association with the low dissolved oxygen concentrations (< 44 μmol kg-1) of Subtropical-Subsurface Water; the complex on the western front side was immersed in California Current Water. It may be concluded that the spawning and early stages of development of these cephalopod groups are associated with particular mesoscale structures of the water masses. For example, the "SD complex" inhabits the surface water masses, preferentially in convergence zones generated by mesoscale activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvD..93a3008O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvD..93a3008O"><span>Two-loop neutrino model with exotic leptons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Okada, Hiroshi; Orikasa, Yuta</p> <p>2016-01-01</p> <p>We propose a two-loop induced neutrino mass model, in which we show some bench mark points to satisfy the observed neutrino oscillation, the constraints of lepton flavor violations, and the relic density in the coannihilation system satisfying the current upper bound on the spin independent scattering cross section with nuclei. We also discuss new sources of muon anomalous magnetic moments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27526310','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27526310"><span>Abnormal Origin and Course of the Accessory Phrenic Nerve: Case Report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Paraskevas, George; Koutsouflianiotis, Konstantinos; Kitsoulis, Panagiotis; Spyridakis, Ioannis</p> <p></p> <p>In the current cadaveric study an unusual sizeable accessory phrenic nerve (APN) was encountered emerging from the trunk of the supraclavicular nerves and forming a triangular loop that was anastomosing with the phrenic nerve. That neural loop surrounded the superficial cervical artery which displayed a spiral course. The form of a triangular loop of APN involving the aforementioned artery and originating from the supraclavicular nerve to the best of our knowledge has not been documented previously in the literature. The variable morphological features of the APN along with its clinical applications are briefly discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhLB..681..105C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhLB..681..105C"><span>Minimally doubled fermions at one loop</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Capitani, Stefano; Weber, Johannes; Wittig, Hartmut</p> <p>2009-10-01</p> <p>Minimally doubled fermions have been proposed as a cost-effective realization of chiral symmetry at non-zero lattice spacing. Using lattice perturbation theory at one loop, we study their renormalization properties. Specifically, we investigate the consequences of the breaking of hyper-cubic symmetry, which is a typical feature of this class of fermionic discretizations. Our results for the quark self-energy indicate that the four-momentum undergoes a renormalization which is linearly divergent. We also compute renormalization factors for quark bilinears, construct the conserved vector and axial-vector currents and verify that at one loop the renormalization factors of the latter are equal to one.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040043717&hterms=adsorption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dadsorption','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040043717&hterms=adsorption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dadsorption"><span>Integrated Testing of a Carbon Dioxide Removal Assembly and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Knox, J. C.; Mulloth, Lila; Frederick, Kenneth; Affleck, Dave</p> <p>2003-01-01</p> <p>Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The carbon dioxide removal assembly (CDRA) of ISS currently operates in an open loop mode without a compressor. This paper describes the integrated test results of a flight-like CDRA and a temperature-swing adsorption compressor (TSAC) for carbon dioxide removal and compression. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667361-mhd-modeling-twisted-coronal-loops','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667361-mhd-modeling-twisted-coronal-loops"><span>3D MHD MODELING OF TWISTED CORONAL LOOPS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Reale, F.; Peres, G.; Orlando, S.</p> <p></p> <p>We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube in the solar atmosphere extending from the high- β chromosphere to the low- β corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ∼30 km.more » We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (∼3 MK) after ∼2/3 hr. Upflows from the chromosphere up to ∼100 km s{sup −1} fill the core of the flux tube to densities above 10{sup 9} cm{sup −3}. More heating is released in the low corona than the high corona and is finely structured both in space and time.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPA....7e6607Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPA....7e6607Y"><span>Improvement in thrust force estimation of solenoid valve considering minor hysteresis loop</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoon, Myung-Hwan; Choi, Yun-Yong; Hong, Jung-Pyo</p> <p>2017-05-01</p> <p>Solenoid valve is a very important hydraulic actuator for an automatic transmission in terms of shift quality. The same form of pressure for the clutch and the input current are required for an ideal control. However, the gap between a pressure and a current can occur which brings a delay in a transmission and a decrease in quality. This problem is caused by hysteresis phenomenon. As the ascending or descending magnetic field is applied to the solenoid, different thrust forces are generated. This paper suggests the calculation method of the thrust force considering the hysteresis phenomenon and consequently the accurate force can be obtained. Such hysteresis occurs in ferromagnetic materials, however the hysteresis phenomenon includes a minor hysteresis loop which begins with an initial magnetization curve and is generated by DC biased field density. As the core of the solenoid is ferromagnetic material, an accurate thrust force is obtained by applying the minor hysteresis loop compared to the force calculated by considering only the initial magnetization curve. An analytical background and the detailed explanation of measuring the minor hysteresis loop are presented. Furthermore experimental results and finite element analysis results are compared for the verification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..108e2069Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..108e2069Z"><span>A three-level support method for smooth switching of the micro-grid operation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zong, Yuanyang; Gong, Dongliang; Zhang, Jianzhou; Liu, Bin; Wang, Yun</p> <p>2018-01-01</p> <p>Smooth switching of micro-grid between the grid-connected operation mode and off-grid operation mode is one of the key technologies to ensure it runs flexible and efficiently. The basic control strategy and the switching principle of micro-grid are analyzed in this paper. The reasons for the fluctuations of the voltage and the frequency in the switching process are analyzed from views of power balance and control strategy, and the operation mode switching strategy has been improved targeted. From the three aspects of controller’s current inner loop reference signal, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level security strategy for smooth switching of micro-grid operation mode is proposed. From the three aspects of controller’s current inner loop reference signal tracking, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level strategy for smooth switching of micro-grid operation mode is proposed. At last, it is proved by simulation that the proposed control strategy can make the switching process smooth and stable, the fluctuation problem of the voltage and frequency has been effectively improved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4834583','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4834583"><span>Improving Interference Control in ADHD Patients with Transcranial Direct Current Stimulation (tDCS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Breitling, Carolin; Zaehle, Tino; Dannhauer, Moritz; Bonath, Björn; Tegelbeckers, Jana; Flechtner, Hans-Henning; Krauel, Kerstin</p> <p>2016-01-01</p> <p>The use of transcranial direct current stimulation (tDCS) in patients with attention deficit hyperactivity disorder (ADHD) has been suggested as a promising alternative to psychopharmacological treatment approaches due to its local and network effects on brain activation. In the current study, we investigated the impact of tDCS over the right inferior frontal gyrus (rIFG) on interference control in 21 male adolescents with ADHD and 21 age matched healthy controls aged 13–17 years, who underwent three separate sessions of tDCS (anodal, cathodal, and sham) while completing a Flanker task. Even though anodal stimulation appeared to diminish commission errors in the ADHD group, the overall analysis revealed no significant effect of tDCS. Since participants showed a considerable learning effect from the first to the second session, performance in the first session was separately analyzed. ADHD patients receiving sham stimulation in the first session showed impaired interference control compared to healthy control participants whereas ADHD patients who were exposed to anodal stimulation, showed comparable performance levels (commission errors, reaction time variability) to the control group. These results suggest that anodal tDCS of the right inferior frontal gyrus could improve interference control in patients with ADHD. PMID:27147964</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27147964','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27147964"><span>Improving Interference Control in ADHD Patients with Transcranial Direct Current Stimulation (tDCS).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Breitling, Carolin; Zaehle, Tino; Dannhauer, Moritz; Bonath, Björn; Tegelbeckers, Jana; Flechtner, Hans-Henning; Krauel, Kerstin</p> <p>2016-01-01</p> <p>The use of transcranial direct current stimulation (tDCS) in patients with attention deficit hyperactivity disorder (ADHD) has been suggested as a promising alternative to psychopharmacological treatment approaches due to its local and network effects on brain activation. In the current study, we investigated the impact of tDCS over the right inferior frontal gyrus (rIFG) on interference control in 21 male adolescents with ADHD and 21 age matched healthy controls aged 13-17 years, who underwent three separate sessions of tDCS (anodal, cathodal, and sham) while completing a Flanker task. Even though anodal stimulation appeared to diminish commission errors in the ADHD group, the overall analysis revealed no significant effect of tDCS. Since participants showed a considerable learning effect from the first to the second session, performance in the first session was separately analyzed. ADHD patients receiving sham stimulation in the first session showed impaired interference control compared to healthy control participants whereas ADHD patients who were exposed to anodal stimulation, showed comparable performance levels (commission errors, reaction time variability) to the control group. These results suggest that anodal tDCS of the right inferior frontal gyrus could improve interference control in patients with ADHD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=dopamine&pg=5&id=EJ921679','ERIC'); return false;" href="https://eric.ed.gov/?q=dopamine&pg=5&id=EJ921679"><span>Positive Affect Modulates Flexibility and Evaluative Control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>van Wouwe, Nelleke C.; Band, Guido P. H.; Ridderinkhof, K. Richard</p> <p>2011-01-01</p> <p>The ability to interact with a constantly changing environment requires a balance between maintaining the currently relevant working memory content and being sensitive to potentially relevant new information that should be given priority access to working memory. Mesocortical dopamine projections to frontal brain areas modulate working memory…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4598642','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4598642"><span>Oscillating square wave Transcranial Direct Current Stimulation (tDCS) delivered during slow wave sleep does not improve declarative memory more than sham: A randomized sham controlled crossover study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sahlem, Gregory L.; Badran, Bashar W.; Halford, Jonathan J.; Williams, Nolan R.; Korte, Jeffrey E.; Leslie, Kimberly; Strachan, Martha; Breedlove, Jesse L.; Runion, Jennifer; Bachman, David L.; Uhde, Thomas W.; Borckardt, Jeffery J.; George, Mark S.</p> <p>2015-01-01</p> <p>Background A 2006 trial in healthy medical students found that anodal slow oscillating tDCS delivered bi-frontally during slow wave sleep had an enhancing effect in declarative, but not procedural memory. Although there have been supporting animal studies, and similar findings in pathological groups, this study has not been replicated, or refuted, in the intervening years. We therefore tested these earlier results for replication using similar methods with the exception of current wave form (square in our study, nearly sinusoidal in the original). Objective/Hypothesis Our objective was to test the findings of a 2006 trial suggesting bi-frontal anodal tDCS during slow wave sleep enhances declarative memory. Methods Twelve students (mean age 25, 9 women) free of medical problems underwent two testing conditions (active, sham) in a randomized counterbalanced fashion. Active stimulation consisted of oscillating square wave tDCS delivered during early Non-Rapid Eye Movement (NREM) sleep. The sham condition consisted of setting-up the tDCS device and electrodes, but not turning it on during sleep. tDCS was delivered bi-frontally with anodes placed at F3/F4, and cathodes placed at mastoids. Current density was 0.517mA/CM2, and oscillated between zero and maximal current at a frequency of 0.75Hz. Stimulation occurred during five-five minute blocks with one-minute inter-block intervals (25 minutes total stimulation). The primary outcomes were both declarative memory consolidation measured by a paired word association test (PWA), and non-declarative memory, measured by a non-dominant finger-tapping test (FTT). We also recorded and analyzed sleep EEG. Results There was no difference in the number of paired word associations remembered before compared to after sleep [(active = 3.1±3.0SD more associations) (sham = 3.8±3.1S.D more associations)]. Finger tapping improved, (non-significantly) following active stimulation [(3.6±2.7 S.D. correctly typed sequences) compared to sham stimulation (2.3± 2.2 S.D. correctly typed sequences)]. Conclusion In this study, we failed to find improvements in declarative or performance memory and could not replicate an earlier study using nearly identical settings. Specifically we failed to find a beneficial effect on either overnight declarative or non-declarative memory consolidation via square-wave oscillating tDCS intervention applied bi-frontally during early NREM sleep. It is unclear if the morphology of the tDCS pulse is critical in any memory related improvements. PMID:25795621</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25795621','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25795621"><span>Oscillating Square Wave Transcranial Direct Current Stimulation (tDCS) Delivered During Slow Wave Sleep Does Not Improve Declarative Memory More Than Sham: A Randomized Sham Controlled Crossover Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sahlem, Gregory L; Badran, Bashar W; Halford, Jonathan J; Williams, Nolan R; Korte, Jeffrey E; Leslie, Kimberly; Strachan, Martha; Breedlove, Jesse L; Runion, Jennifer; Bachman, David L; Uhde, Thomas W; Borckardt, Jeffery J; George, Mark S</p> <p>2015-01-01</p> <p>A 2006 trial in healthy medical students found that anodal slow oscillating tDCS delivered bi-frontally during slow wave sleep had an enhancing effect in declarative, but not procedural memory. Although there have been supporting animal studies, and similar findings in pathological groups, this study has not been replicated, or refuted, in the intervening years. We therefore tested these earlier results for replication using similar methods with the exception of current waveform (square in our study, nearly sinusoidal in the original). Our objective was to test the findings of a 2006 trial suggesting bi-frontal anodal tDCS during slow wave sleep enhances declarative memory. Twelve students (mean age 25, 9 women) free of medical problems underwent two testing conditions (active, sham) in a randomized counterbalanced fashion. Active stimulation consisted of oscillating square wave tDCS delivered during early Non-Rapid Eye Movement (NREM) sleep. The sham condition consisted of setting-up the tDCS device and electrodes, but not turning it on during sleep. tDCS was delivered bi-frontally with anodes placed at F3/F4, and cathodes placed at mastoids. Current density was 0.517 mA/cm(2), and oscillated between zero and maximal current at a frequency of 0.75 Hz. Stimulation occurred during five-five minute blocks with 1-min inter-block intervals (25 min total stimulation). The primary outcomes were both declarative memory consolidation measured by a paired word association test (PWA), and non-declarative memory, measured by a non-dominant finger-tapping test (FTT). We also recorded and analyzed sleep EEG. There was no difference in the number of paired word associations remembered before compared to after sleep [(active = 3.1 ± 3.0 SD more associations) (sham = 3.8 ± 3.1 SD more associations)]. Finger tapping improved, (non-significantly) following active stimulation [(3.6 ± 2.7 SD correctly typed sequences) compared to sham stimulation (2.3 ± 2.2 SD correctly typed sequences)]. In this study, we failed to find improvements in declarative or performance memory and could not replicate an earlier study using nearly identical settings. Specifically we failed to find a beneficial effect on either overnight declarative or non-declarative memory consolidation via square-wave oscillating tDCS intervention applied bi-frontally during early NREM sleep. It is unclear if the morphology of the tDCS pulse is critical in any memory related improvements. Copyright © 2015 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJC....90...90L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJC....90...90L"><span>Non-linear control of the output stage of a solar microinverter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lopez-Santos, Oswaldo; Garcia, Germain; Martinez-Salamero, Luis; Avila-Martinez, Juan C.; Seguier, Lionel</p> <p>2017-01-01</p> <p>This paper presents a proposal to control the output stage of a two-stage solar microinverter to inject real power into the grid. The input stage of the microinverter is used to extract the maximum available power of a photovoltaic module enforcing a power source behavior in the DC-link to feed the output stage. The work here reported is devoted to control a grid-connected power source inverter with a high power quality level at the grid side ensuring the power balance of the microinverter regulating the voltage of the DC-link. The proposed control is composed of a sinusoidal current reference generator and a cascade type controller composed by a current tracking loop and a voltage regulation loop. The current reference is obtained using a synchronized generator based on phase locked loop (PLL) which gives the shape, the frequency and phase of the current signal. The amplitude of the reference is obtained from a simple controller regulating the DC-link voltage. The tracking of the current reference is accomplished by means of a first-order sliding mode control law. The solution takes advantage of the rapidity and inherent robustness of the sliding mode current controller allowing a robust behavior in the regulation of the DC-link using a simple linear controller. The analytical expression to determine the power quality indicators of the micro-inverter's output is theoretically solved giving expressions relating the converter parameters. The theoretical approach is validated using simulation and experimental results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...611L...6P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...611L...6P"><span>Chromospheric counterparts of solar transition region unresolved fine structure loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pereira, Tiago M. D.; Rouppe van der Voort, Luc; Hansteen, Viggo H.; De Pontieu, Bart</p> <p>2018-04-01</p> <p>Low-lying loops have been discovered at the solar limb in transition region temperatures by the Interface Region Imaging Spectrograph (IRIS). They do not appear to reach coronal temperatures, and it has been suggested that they are the long-predicted unresolved fine structures (UFS). These loops are dynamic and believed to be visible during both heating and cooling phases. Making use of coordinated observations between IRIS and the Swedish 1-m Solar Telescope, we study how these loops impact the solar chromosphere. We show for the first time that there is indeed a chromospheric signal of these loops, seen mostly in the form of strong Doppler shifts and a conspicuous lack of chromospheric heating. In addition, we find that several instances have a inverse Y-shaped jet just above the loop, suggesting that magnetic reconnection is driving these events. Our observations add several puzzling details to the current knowledge of these newly discovered structures; this new information must be considered in theoretical models. Two movies associated to Fig. 1 are available at http://https://www.aanda.org</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150007701','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150007701"><span>MHD Modeling of Coronal Loops: the Transition Region Throat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Guarrasi, M.; Reale, F.; Orlando, S.; Mignone, A.; Klimchuk, J. A.</p> <p>2014-01-01</p> <p>Context. The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross-sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. Aims. The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. Methods. We study the area response with a time-dependent 2D magnetohydrodynamic (MHD) loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction, and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 millikelvin. Results. We find that the area can change substantially with the quasi-steady heating rate, e.g., by approx. 40% at 0.5 millikelvin as the loop temperature varies between 1 millikelvin and 4 millikelvin, and, therefore, affects the interpretation of the differential emission measure vs. temperature (DEM(T)) curves.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050160223&hterms=post+event&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dpost%2Bevent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050160223&hterms=post+event&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dpost%2Bevent"><span>Dynamical and Physical Properties of a Post-Coronal Mass Ejection Current Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ko, Yuan-Kuen; Raymond, John C.; Lin, Jun; Lawrence, Gareth; Li, Jing; Fludra, Andrzej</p> <p>2003-01-01</p> <p>In the eruptive process of the Kopp-Pneuman type, the closed magnetic field is stretched by the eruption so much that it is usually believed to be " open " to infinity. Formation of the current sheet in such a configuration makes it possible for the energy in the coronal magnetic field to quickly convert into thermal and kinetic energies and cause significant observational consequences, such as growing postflare/CME loop system in the corona, separating bright flare ribbons in the chromosphere, and fast ejections of the plasma and the magnetic flux. An eruption on 2002 January 8 provides us a good opportunity to look into these observational signatures of and place constraints on the theories of eruptions. The event started with the expansion of a magnetic arcade over an active region, developed into a coronal mass ejection (CME), and left some thin streamer-like structures with successively growing loop systems beneath them. The plasma outflow and the highly ionized states of the plasma inside these streamer-like structures, as well as the growing loops beneath them, lead us to conclude that these structures are associated with a magnetic reconnection site, namely, the current sheet, of this eruptive process. We combine the data from the Ultraviolet Coronagraph Spectrometer, Large Angle and Spectrometric Coronagraph Experiment, EUV Imaging Telescope, and Coronal Diagnostic Spectrometer on board the Solar and Heliospheric Observatory, as well is from the Mauna Loa Solar Observatory Mark IV K-coronameter, to investigate the morphological and dynamical properties of this event, as well as the physical properties of the current sheet. The velocity and acceleration of the CME reached up to 1800 km/s and 1 km/sq s, respectively. The acceleration is found to occur mainly at the lower corona (<2.76 Solar Radius). The post-CME loop systems showed behaviors of both postflare loops (upward motion with decreasing speed) and soft X-ray giant arches (upward motion with constant speed, or acceleration) according to the definition of Svestka. In the current sheet, the presence of highly ionized ions, such as Fe(+17) and Ca(+13), suggests temperature as high as (3-4) x 10(exp 6) K, and the plasma outflows have speeds ranging from 300 to 650 km/s. Absolute elemental abundances in the current sheet show a strong first ionization potential effect and have values similar to those found in the active region streamers. The magnetic field strength in the vicinity of the current sheet is found to be of the order of 1 G.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920048734&hterms=TOC&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DTOC','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920048734&hterms=TOC&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DTOC"><span>Phase III integrated water recovery testing at MSFC - Partially closed hygiene loop and open potable loop results and lessons learned</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bagdigian, R. M.; Traweek, M. S.; Griffith, G. K.; Griffin, M. R.</p> <p>1991-01-01</p> <p>A series of tests has been conducted at the NASA Marshall Space Flight Center (MSFC) to evaluate the performance of a predevelopment water recovery system. Potable, hygiene, and urine reclamation subsystems were integrated with end-use equipment items and successfully operated in open and partially closed-loop modes, with man-in-the-loop, for a total of 28 days. Several significant subsystem physical anomalies were encountered during testing. Reclaimed potable and hygiene water generally met the current Space Station Freedom (SSF) water quality specifications for inorganic and microbiological constituents, but exceeded the maximum allowable concentrations for Total Organic Carbon (TOC). This paper summarizes the test objectives, system design, test activities/protocols, significant results/anomalies, and major lessons learned.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970016372','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970016372"><span>Series Connected Converter for Control of Multi-Bus Spacecraft Power Utility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Beach, Raymond F. (Inventor); Brush, Andy (Inventor)</p> <p>1997-01-01</p> <p>The invention provides a power system using series connected regulators. Power from a source, such as a solar array, is processed through the regulators and provided to corresponding buses used to charge a battery and supply loads. The regulators employ a bypass loop around a DC-DC converter. The bypass loop connects a hot input of the converter to a return output, preferably though an inductor. Part of the current from the source passes through the bypass loop to the power bus. The converter bucks or boosts the voltage from the source to maintain the desired voltage at the bus. Thus, only part of the power is processed through the converter. The converter can also be used without the bypass loop to provide isolation. All of the converters can be substantially identical.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28833126','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28833126"><span>Visuo-manual tracking: does intermittent control with aperiodic sampling explain linear power and non-linear remnant without sensorimotor noise?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gollee, Henrik; Gawthrop, Peter J; Lakie, Martin; Loram, Ian D</p> <p>2017-11-01</p> <p>A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non-linearly related to the input, attributed to sensorimotor noise. Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200-500 ms periods of irresponsiveness to sensory input making the control process intrinsically non-linear. This evidence calls for re-examination of the extent to which random sensorimotor noise is required to explain the non-linear remnant. This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds. Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non-linear remnant resulting from random sensorimotor noise from multiple sources, and non-linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non-linear remnant using noise or non-linear transformations? (ii) Can non-linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi-sine disturbance. Joystick power was analysed using three models, continuous-linear-control (CC), continuous-linear-control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77-87% vs. 8-48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo-manual tracking. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16881265','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16881265"><span>Sign language processing and the mirror neuron system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Corina, David P; Knapp, Heather</p> <p>2006-05-01</p> <p>In this paper we review evidence for frontal and parietal lobe involvement in sign language comprehension and production, and evaluate the extent to which these data can be interpreted within the context of a mirror neuron system for human action observation and execution. We present data from three literatures--aphasia, cortical stimulation, and functional neuroimaging. Generally, we find support for the idea that sign language comprehension and production can be viewed in the context of a broadly-construed frontal-parietal human action observation/execution system. However, sign language data cannot be fully accounted for under a strict interpretation of the mirror neuron system. Additionally, we raise a number of issues concerning the lack of specificity in current accounts of the human action observation/execution system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24816141','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24816141"><span>Induction of self awareness in dreams through frontal low current stimulation of gamma activity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Voss, Ursula; Holzmann, Romain; Hobson, Allan; Paulus, Walter; Koppehele-Gossel, Judith; Klimke, Ansgar; Nitsche, Michael A</p> <p>2014-06-01</p> <p>Recent findings link fronto-temporal gamma electroencephalographic (EEG) activity to conscious awareness in dreams, but a causal relationship has not yet been established. We found that current stimulation in the lower gamma band during REM sleep influences ongoing brain activity and induces self-reflective awareness in dreams. Other stimulation frequencies were not effective, suggesting that higher order consciousness is indeed related to synchronous oscillations around 25 and 40 Hz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA626850','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA626850"><span>Augmenting Visual Search Performance with Transcranial Direct Current Stimulation (tDCS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-28</p> <p>Augmenting Visual Search Performance with Transcranial Direct Current Stimulation ( tDCS ) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62202F...stimulation ( tDCS ) over the left frontal eye field (LFEF) region of the scalp to improve cognitive performance. The participants received anodal and...blinking frequency in relation to stimulation condition. Our data suggest that tDCS over the LFEF would be a beneficial countermeasure to mitigate the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1024769-rf-assisted-current-startup-fed','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1024769-rf-assisted-current-startup-fed"><span>RF-assisted current startup in FED</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Borowski, S. K.; Peng, Yueng Kay Martin; Kammash, T.</p> <p>1981-01-01</p> <p>Auxiliary rf heating of electrons before and during the current rise phase in FED is examined as a means of reducing both the initiation loop voltage and resistive flux expendicture during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating (ECRH) power at {approx} 90 GHz is used to create a small volume of high conductivity plasma (T{sub e} {approx_equal} 100-200 eV, n{sub e} {approx_equal} 10{sup 13} cm{sup -3}) near the upper hybrid resonance (UHR) region. This plasma conditioning permits a small radius (a{sub o} {approx_equal} 0.2-0.4 m) current channel to be established with amore » relatively low initial loop voltage (<25 V). During the subsequent plasma expansion and current ramp phase, additional rf power is introduced to reduce volt-second consumption due to plasma resistance. The physics models used for analyzing the UHR heating and current rise phases are also discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25372369','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25372369"><span>Real-time dual-loop electric current measurement for label-free nanofluidic preconcentration chip.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chung, Pei-Shan; Fan, Yu-Jui; Sheen, Horn-Jiunn; Tian, Wei-Cheng</p> <p>2015-01-07</p> <p>An electrokinetic trapping (EKT)-based nanofluidic preconcentration device with the capability of label-free monitoring trapped biomolecules through real-time dual-loop electric current measurement was demonstrated. Universal current-voltage (I-V) curves of EKT-based preconcentration devices, consisting of two microchannels connected by ion-selective channels, are presented for functional validation and optimal operation; universal onset current curves indicating the appearance of the EKT mechanism serve as a confirmation of the concentrating action. The EKT mechanism and the dissimilarity in the current curves related to the volume flow rate (Q), diffusion coefficient (D), and diffusion layer (DL) thickness were explained by a control volume model with a five-stage preconcentration process. Different behaviors of the trapped molecular plug were categorized based on four modes associated with different degrees of electroosmotic instability (EOI). A label-free approach to preconcentrating (bio)molecules and monitoring the multibehavior molecular plug was demonstrated through real-time electric current monitoring, rather than through the use of microscope images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29525579','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29525579"><span>The application of frontal sinus index and frontal sinus area in sex estimation based on lateral cephalograms among Han nationality adults in Xinjiang.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Luo, Huifang; Wang, Jierui; Zhang, Shuang; Mi, Congbo</p> <p>2018-05-01</p> <p>The frontal sinus, due to its unique anatomical features, has become an important element in research for individual identification. Previous studies have demonstrated the use of frontal sinus as an indicator for sex discrimination; however, the sex discrimination rate using frontal sinus was lower compared to that using the traditional morphological methods. In order to improve the sex discrimination percentage, we developed a new method involving the measurement of the frontal sinus index and frontal sinus area from lateral cephalogram radiographs. In this study, 475 digital lateral cephalograms of adult Han citizens from Xinjiang were included. The maximum height, depth, and area of the frontal sinus were calculated using the NemoCeph NX software. The frontal sinus index (ratio of the maximum height to the depth of frontal sinus) was also computed. Statistical analysis results showed significant differences in the frontal sinus index and area between males and females. Discriminant function equation derived from this study differentiated between sexes with 76.6% accuracy. The results demonstrated that the use of frontal sinus index and area for sex discrimination was more accurate than using the frontal sinus index alone. Copyright © 2017. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930000072&hterms=current+feedback&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcurrent%2Bfeedback','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930000072&hterms=current+feedback&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcurrent%2Bfeedback"><span>Faster Hall-Effect Current-Measuring Circuit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sullender, Craig C.; Johnson, Daniel D.; Walker, Daniel D.</p> <p>1993-01-01</p> <p>Current-measuring circuit operates on Hall-effect-sensing and magnetic-field-nulling principles similar to those described in article, "Nulling Hall-Effect Current-Measuring Circuit" (LEW-15023), but simpler and responds faster. Designed without feedback loop, and analog pulse-width-modulated output indicates measured current. Circuit measures current at frequency higher than bandwidth of its Hall-effect sensor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29150349','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29150349"><span>Frontal sinus revision rate after nasal polyposis surgery including frontal recess clearance and middle turbinectomy: A long-term analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Benkhatar, Hakim; Khettab, Idir; Sultanik, Philippe; Laccourreye, Ollivier; Bonfils, Pierre</p> <p>2018-08-01</p> <p>To determine the frontal sinus revision rate after nasal polyposis (NP) surgery including frontal recess clearance (FRC) and middle turbinectomy (MT), to search for predictive factors and to analyse surgical management. Longitudinal analysis of 153 patients who consecutively underwent bilateral sphenoethmoidectomy with FRC and MT for NP with a minimum follow-up of 7 years. Decision of revision surgery was made in case of medically refractory chronic frontal sinusitis or frontal mucocele. Univariate and multivariate analysis incorporating clinical and radiological variables were performed. The frontal sinus revision rate was 6.5% (10/153). The mean time between the initial procedure and revision surgery was 3 years, 10 months. Osteitis around the frontal sinus outflow tract (FSOT) was associated with a higher risk of frontal sinus revision surgery (p=0.01). Asthma and aspirin intolerance did not increase the risk, as well as frontal sinus ostium diameter or residual frontoethmoid cells. Among revised patients, 60% required multiple procedures and 70% required frontal sinus ostium enlargement. Our long-term study reports that NP surgery including FRC and MT is associated with a low frontal sinus revision rate (6.5%). Patients developing osteitis around the FSOT have a higher risk of frontal sinus revision surgery. As mucosal damage can lead to osteitis, FSOT mucosa should be preserved during initial NP surgery. However, as multiple procedures are common among NP patients requiring frontal sinus revision, frontal sinus ostium enlargement should be considered during first revision in the hope of reducing the need of further revisions. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=frontal+AND+lobe&pg=3&id=EJ805347','ERIC'); return false;" href="https://eric.ed.gov/?q=frontal+AND+lobe&pg=3&id=EJ805347"><span>Improving Lives through Evidence-Based Practice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Young Exceptional Children, 2008</p> <p>2008-01-01</p> <p>Tess is a joyful eight-year old girl with epilepsy, frontal lobe dysfunction, and dyspraxia, as well as delays in language, fine motor, and gross motor skills. However, despite her disabilities, Tess happily embraces life. With assistance from a few support professionals, Tess currently functions successfully in a regular education second grade…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH12B..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH12B..07S"><span>Steady State Model for Solar Coronal Loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sugiyama, L.; Asgari-Targhi, M.</p> <p>2017-12-01</p> <p>Solar coronal loops on the surface of the sun provide background magnetic and plasma structures for the release of a significant amount of the sun's energy, through energetic solar flares and coronal mass ejections and more gradual processes. Understanding their steady states is the first step in understanding loop dynamics. A consistent MHD steady state model, for a curved magnetic flux rope that contains plasma, has been developed[1] for simple coronal loops with both ends anchored in the photosphere. Plasma pressure or current makes the loop unstable to expansion in major radius and must be balanced by external forces, such as the solar gravity. The MHD momentum equation has a well defined small parameter ordering in the loop inverse aspect ratio ɛ=a/Ro (minor/major radius). Different types of common coronal loops fall in different parameter regimes, determined by the relative values of the plasma beta β=po/(Bo2/2μo), the MHD gravity parameter Ĝ≡ga/vA2 (the gravitational acceleration g normalized to the minor radius a and shear Alfvén velocity vA), and ɛ. The largest possible gravity, Ĝ ɛ1β, corresponds to the largest loops because it reduces the plasma density at the top of the loop exponentially compared to its lower ends, reducing the downward gravitational force -ρĜ there. The thin loops that are ubiquitous in solar active regions have ``high'' beta, β ɛ1, for ɛ≃0.02, and fit the predicted model scalings. The thicker loops that can give rise to flares and CMEs have ``low'' beta, β ɛ2. Cool loops, such as solar filaments outside active regions, that have a central pressure lower than that of the surrounding corona would have the strongest stability against radial expansion. The model raises a number of questions about the connection of loops to the photosphere and the force-free nature of the magnetic field there. [1] L. Sugiyama, M. Asgari-Targhi, Phys. Plasmas 24, 022904 (2017).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23142812','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23142812"><span>Biomechanical performance of different cable and wire cerclage configurations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lenz, Mark; Perren, Stephan Marcel; Richards, Robert Geoff; Mückley, Thomas; Hofmann, Gunther Olaf; Gueorguiev, Boyko; Windolf, Markus</p> <p>2013-01-01</p> <p>Cerclage technology is regaining interest due to the increasing number of periprosthetic fractures. Different wiring techniques have been formerly proposed and have hibernated over years. Hereby, they are compared to current cerclage technology. Seven groups (n = 6) of different cable cerclage (Ø1.7 mm, crimp closure) configurations (one single cerclage looped once around the shells, one single cerclage looped twice, two cerclages each looped once) and solid wire cerclages (Ø1.5 mm, twist closure) (same configurations as cable cerclages, and two braided wires, twisted around each other looped once) fixed two cortical half shells of human femoral shaft mounted on a testing jig. Sinusoidal cyclic loading with constantly increasing force (0.1 N/cycle) was applied starting at 50 N peak load. Cerclage pretension (P), load leading to onset of plastic deformation (D) and load at total failure (T) were identified. Statistical differences between the groups were detected by univariate ANOVA. Double looped cables (P442N ± 129; D1334N ± 319; T2734N ± 330) performed significantly better (p < 0.05) than single looped cables (P292N ± 56; D646N ± 108; T1622N ± 171) and were comparable to two single cables (P392N ± 154; D1191N ± 334; T2675N ± 361). Double looped wires (P335N ± 49; D752N ± 119; T1359N ± 80) were significantly better (p < 0.05) than single looped wires (P181N ± 16; D343N ± 33; T606N ± 109) and performed similarly to single looped cables. Braided wires (P119N ± 26; D225N ± 55; T919N ± 197) exhibited early loss of pretension and plastic deformation. Double looped cerclages provided a better fixation stability compared to a single looped cerclage. Double looped wires were comparable to a single looped cable. The use of braided wires could not be recommended mechanically.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994PhDT.......103Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994PhDT.......103Z"><span>Dynamic Response of a Magnetized Plasma to AN External Source: Application to Space and Solid State Plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Huai-Bei</p> <p></p> <p>This dissertation examines the dynamic response of a magnetoplasma to an external time-dependent current source. To achieve this goal a new method which combines analytic and numerical techniques to study the dynamic response of a 3-D magnetoplasma to a time-dependent current source imposed across the magnetic field was developed. The set of the cold electron and/or ion plasma equations and Maxwell's equations are first solved analytically in (k, omega)^ace; inverse Laplace and 3 -D complex Fast Fourier Transform (FFT) techniques are subsequently used to numerically transform the radiation fields and plasma currents from the (k, omega) ^ace to the (r, t) space. The dynamic responses of the electron plasma and of the compensated two-component plasma to external current sources are studied separately. The results show that the electron plasma responds to a time -varying current source imposed across the magnetic field by exciting whistler/helicon waves and forming of an expanding local current loop, induced by field aligned plasma currents. The current loop consists of two anti-parallel field-aligned current channels concentrated at the ends of the imposed current and a cross-field current region connecting these channels. The latter is driven by an electron Hall drift. A compensated two-component plasma responds to the same current source as following: (a) For slow time scales tau > Omega_sp{i}{-1} , it generates Alfven waves and forms a non-local current loop in which the ion polarization currents dominate the cross-field current; (b) For fast time scales tau < Omega_sp{i}{-1} , the dynamic response of the compensated two-component plasma is the same as that of the electron plasma. The characteristics of the current closure region are determined by the background plasma density, the magnetic field and the time scale of the current source. This study has applications to a diverse range of space and solid state plasma problems. These problems include current closure in emf inducing tethered satellite systems (TSS), generation of ELF/VLF waves by ionospheric heating, current closure and quasineutrality in thin magnetopause transitions, and short electromagnetic pulse generation in solid state plasmas. The cross-field current in TSS builds up on a time scale corresponding to the whistler waves and results in local current closure. Amplitude modulated HF ionospheric heating generates ELF/VLF waves by forming a horizontal magnetic dipole. The dipole is formed by the current closure in the modified region. For thin transition the time-dependent cross-field polarization field at the magnetopause could be neutralized by the formation of field aligned current loops that close by a cross-field electron Hall current. A moving current source in a solid state plasma results in microwave emission if the speed of the source exceeds the local phase velocity of the helicon or Alfven waves. Detailed analysis of the above problems is presented in the thesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29536567','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29536567"><span>The ultimate intrinsic signal-to-noise ratio of loop- and dipole-like current patterns in a realistic human head model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pfrommer, Andreas; Henning, Anke</p> <p>2018-03-13</p> <p>The ultimate intrinsic signal-to-noise ratio (UISNR) represents an upper bound for the achievable SNR of any receive coil. To reach this threshold a complete basis set of equivalent surface currents is required. This study systematically investigated to what extent either loop- or dipole-like current patterns are able to reach the UISNR threshold in a realistic human head model between 1.5 T and 11.7 T. Based on this analysis, we derived guidelines for coil designers to choose the best array element at a given field strength. Moreover, we present ideal current patterns yielding the UISNR in a realistic body model. We distributed generic current patterns on a cylindrical and helmet-shaped surface around a realistic human head model. We excited electromagnetic fields in the human head by using eigenfunctions of the spherical and cylindrical Helmholtz operator. The electromagnetic field problem was solved by a fast volume integral equation solver. At 7 T and above, adding curl-free current patterns to divergence-free current patterns substantially increased the SNR in the human head (locally >20%). This was true for the helmet-shaped and the cylindrical surface. On the cylindrical surface, dipole-like current patterns had high SNR performance in central regions at ultra-high field strength. The UISNR increased superlinearly with B0 in most parts of the cerebrum but only sublinearly in the periphery of the human head. The combination of loop and dipole elements could enhance the SNR performance in the human head at ultra-high field strength. © 2018 International Society for Magnetic Resonance in Medicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19963595','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19963595"><span>A closed loop wireless power transmission system using a commercial RFID transceiver for biomedical applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kiani, Mehdi; Ghovanloo, Maysam</p> <p>2009-01-01</p> <p>This paper presents a standalone closed loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio frequency identification (RFID) transceiver (MLX90121) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop fashion. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either malfunction or excessive heat dissipation. RFID transceivers are often used open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 1.48 mW over a range of 6 to 12 cm, while the transmitter power consumption changed from 0.3 W to 1.21 W. The closed loop system can also oppose voltage variations as a result of sudden changes in load current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21179391','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21179391"><span>An RFID-Based Closed-Loop Wireless Power Transmission System for Biomedical Applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kiani, Mehdi; Ghovanloo, Maysam</p> <p>2010-04-01</p> <p>This brief presents a standalone closed-loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader (TRF7960) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either a malfunction or excessive heat dissipation. RFID circuits are often used in an open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 11.2 mW over a range of 0.5 to 2 cm, while the transmitter power consumption changed from 78 mW to 1.1 W. The closed-loop system can also oppose voltage variations as a result of sudden changes in the load current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25778872','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25778872"><span>A novel classification of frontal bone fractures: The prognostic significance of vertical fracture trajectory and skull base extension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Garg, Ravi K; Afifi, Ahmed M; Gassner, Jennifer; Hartman, Michael J; Leverson, Glen; King, Timothy W; Bentz, Michael L; Gentry, Lindell R</p> <p>2015-05-01</p> <p>The broad spectrum of frontal bone fractures, including those with orbital and skull base extension, is poorly understood. We propose a novel classification scheme for frontal bone fractures. Maxillofacial CT scans of trauma patients were reviewed over a five year period, and frontal bone fractures were classified: Type 1: Frontal sinus fracture without vertical extension. Type 2: Vertical fracture through the orbit without frontal sinus involvement. Type 3: Vertical fracture through the frontal sinus without orbit involvement. Type 4: Vertical fracture through the frontal sinus and ipsilateral orbit. Type 5: Vertical fracture through the frontal sinus and contralateral or bilateral orbits. We also identified the depth of skull base extension, and performed a chart review to identify associated complications. 149 frontal bone fractures, including 51 non-vertical frontal sinus (Type 1, 34.2%) and 98 vertical (Types 2-5, 65.8%) fractures were identified. Vertical fractures penetrated the middle or posterior cranial fossa significantly more often than non-vertical fractures (62.2 v. 15.7%, p = 0.0001) and had a significantly higher mortality rate (18.4 v. 0%, p < 0.05). Vertical fractures with frontal sinus and orbital extension, and fractures that penetrated the middle or posterior cranial fossa had the strongest association with intracranial injuries, optic neuropathy, disability, and death (p < 0.05). Vertical frontal bone fractures carry a worse prognosis than frontal bone fractures without a vertical pattern. In addition, vertical fractures with extension into the frontal sinus and orbit, or with extension into the middle or posterior cranial fossa have the highest complication rate and mortality. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940031051','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940031051"><span>Performance evaluation of digital phase-locked loops for advanced deep space transponders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.</p> <p>1994-01-01</p> <p>The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040161495','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040161495"><span>An Environmental for Hardware-in-the-Loop Formation Navigation and Control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burns, Rich; Naasz, Bo; Gaylor, Dave; Higinbotham, John</p> <p>2004-01-01</p> <p>Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the inclusion of GPS receiver hardware in the simulation loop. Support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3525568','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3525568"><span>The Natively Disordered Loop of Bcl-2 Undergoes Phosphorylation-Dependent Conformational Change and Interacts with Pin1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kang, CongBao; Bharatham, Nagakumar; Chia, Joel; Mu, Yuguang; Baek, Kwanghee; Yoon, Ho Sup</p> <p>2012-01-01</p> <p>Bcl-2 plays a central role in the regulation of apoptosis. Structural studies of Bcl-2 revealed the presence of a flexible and natively disordered loop that bridges the Bcl-2 homology motifs, BH3 and BH4. This loop is phosphorylated on multiple sites in response to a variety of external stimuli, including the microtubule-targeting drugs, paclitaxel and colchicine. Currently, the underlying molecular mechanism of Bcl-2 phosphorylation and its biological significance remain elusive. In this study, we investigated the molecular characteristics of this anti-apoptotic protein. To this end, we generated synthetic peptides derived from the Bcl-2 loop, and multiple Bcl-2 loop truncation mutants that include the phosphorylation sites. Our results demonstrate that S87 in the flexible loop of Bcl-2 is the primary phosphorylation site for JNK and ERK2, suggesting some sequence or structural specificity for the phosphorylation by these kinases. Our NMR studies and molecular dynamics simulation studies support indicate that phosphorylation of S87 induces a conformational change in the peptide. Finally, we show that the phosphorylated peptides of the Bcl-2 loop can bind Pin1, further substantiating the phosphorylation-mediated conformation change of Bcl-2. PMID:23272207</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22314638-nonlinear-space-charge-dynamics-mixed-ionic-electronic-conductors-resistive-switching-ferroelectric-like-hysteresis-electromechanical-response','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22314638-nonlinear-space-charge-dynamics-mixed-ionic-electronic-conductors-resistive-switching-ferroelectric-like-hysteresis-electromechanical-response"><span>Nonlinear space charge dynamics in mixed ionic-electronic conductors: Resistive switching and ferroelectric-like hysteresis of electromechanical response</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Morozovska, Anna N.; Morozovsky, Nicholas V.; Eliseev, Eugene A.</p> <p></p> <p>We performed self-consistent modelling of nonlinear electrotransport and electromechanical response of thin films of mixed ionic-electronic conductors (MIEC) allowing for steric effects of mobile charged defects (ions, protons, or vacancies), electron degeneration, and Vegard stresses. We establish correlations between the features of the nonlinear space-charge dynamics, current-voltage, and bending-voltage curves for different types of the film electrodes. A pronounced ferroelectric-like hysteresis of the bending-voltage loops and current maxima on the double hysteresis current-voltage loops appear for the electron-transport electrodes. The double hysteresis loop with pronounced humps indicates a memristor-type resistive switching. The switching occurs due to the strong nonlinear couplingmore » between the electronic and ionic subsystems. A sharp meta-stable maximum of the electron density appears near one open electrode and moves to another one during the periodic change of applied voltage. Our results can explain the nonlinear nature and correlation of electrical and mechanical memory effects in thin MIEC films. The analytical expression proving that the electrically induced bending of MIEC films can be detected by interferometric methods is derived.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1151823','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1151823"><span>Control system and method for a universal power conditioning system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Lai, Jih-Sheng; Park, Sung Yeul; Chen, Chien-Liang</p> <p>2014-09-02</p> <p>A new current loop control system method is proposed for a single-phase grid-tie power conditioning system that can be used under a standalone or a grid-tie mode. This type of inverter utilizes an inductor-capacitor-inductor (LCL) filter as the interface in between inverter and the utility grid. The first set of inductor-capacitor (LC) can be used in the standalone mode, and the complete LCL can be used for the grid-tie mode. A new admittance compensation technique is proposed for the controller design to avoid low stability margin while maintaining sufficient gain at the fundamental frequency. The proposed current loop controller system and admittance compensation technique have been simulated and tested. Simulation results indicate that without the admittance path compensation, the current loop controller output duty cycle is largely offset by an undesired admittance path. At the initial simulation cycle, the power flow may be erratically fed back to the inverter causing catastrophic failure. With admittance path compensation, the output power shows a steady-state offset that matches the design value. Experimental results show that the inverter is capable of both a standalone and a grid-tie connection mode using the LCL filter configuration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920033163&hterms=magnetic+cooling&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmagnetic%2Bcooling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920033163&hterms=magnetic+cooling&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmagnetic%2Bcooling"><span>A numerical simulation of magnetic reconnection and radiative cooling in line-tied current sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Forbes, T. G.; Malherbe, J. M.</p> <p>1991-01-01</p> <p>Radiative MHD equations are used for an optically thin plasma to carry out a numerical experiment related to the formation of 'postflare' loops. The numerical experiment starts with a current sheet that is in mechanical and thermal equilibrium but is unstable to both tearing-mode and thermal-condensation instabilities. The current sheet is line-tied at one end to a photospheric-like boundary and evolves asymmetrically. The effects of thermal conduction, resistivity variation, and gravity are ignored. In general, reconnection in the nonlinear stage of the tearing-mode instability can strongly affect the onset of condensations unless the radiative-cooling time scale is much smaller than the tearing-mode time scale. When the ambient plasma is less than 0.2, the reconnection enters a regime where the outflow from the reconnection region is supermagnetosonic with respect to the fast-mode wave speed. In the supermagnetosonic regime the most rapidly condensing regions occur downstream of a fast-mode shock that forms where the outflow impinges on closed loops attached to the photospheric-like boundary. A similar shock-induced condensation might occur during the formation of 'postflare' loops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4341542','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4341542"><span>Brain activations during bimodal dual tasks depend on the nature and combination of component tasks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo</p> <p>2015-01-01</p> <p>We used functional magnetic resonance imaging to investigate brain activations during nine different dual tasks in which the participants were required to simultaneously attend to concurrent streams of spoken syllables and written letters. They performed a phonological, spatial or “simple” (speaker-gender or font-shade) discrimination task within each modality. We expected to find activations associated specifically with dual tasking especially in the frontal and parietal cortices. However, no brain areas showed systematic dual task enhancements common for all dual tasks. Further analysis revealed that dual tasks including component tasks that were according to Baddeley's model “modality atypical,” that is, the auditory spatial task or the visual phonological task, were not associated with enhanced frontal activity. In contrast, for other dual tasks, activity specifically associated with dual tasking was found in the left or bilateral frontal cortices. Enhanced activation in parietal areas, however, appeared not to be specifically associated with dual tasking per se, but rather with intermodal attention switching. We also expected effects of dual tasking in left frontal supramodal phonological processing areas when both component tasks required phonological processing and in right parietal supramodal spatial processing areas when both tasks required spatial processing. However, no such effects were found during these dual tasks compared with their component tasks performed separately. Taken together, the current results indicate that activations during dual tasks depend in a complex manner on specific demands of component tasks. PMID:25767443</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26183693','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26183693"><span>Case series analysis of hindfoot injuries sustained by drivers in frontal motor vehicle crashes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ye, Xin; Funk, James; Forbes, Aaron; Hurwitz, Shepard; Shaw, Greg; Crandall, Jeff; Freeth, Rob; Michetti, Chris; Rudd, Rodney; Scarboro, Mark</p> <p>2015-09-01</p> <p>Improvements to vehicle frontal crashworthiness have led to reductions in toe pan and instrument panel intrusions as well as leg, foot, and ankle loadings in standardized crash tests. Current field data, however, suggests the proportion of foot and ankle injuries sustained by drivers in frontal crashes has not decreased over the past two decades. To explain the inconsistency between crash tests results and real world lower limb injury prevalence, this study investigated the injury causation scenario for the specific hind-foot injury patterns observed in frontal vehicle crashes. Thirty-four cases with leg, foot, and ankle injuries were selected from the Crash Injury Research and Engineering Network (CIREN) database. Talus fractures were present in 20 cases, representing the most frequent hind-foot skeletal injuries observed among the reviewed cases. While axial compression was the predominant loading mechanism causing 18 injuries, 11 injured ankles involved inversion or eversion motion, and 5 involved dorsiflexion as the injury mechanism. Injured ankles of drivers were more biased towards the right aspect with foot pedals contributing to injuries in 13 of the 34 cases. Combined, the results suggest that despite recent advancement of vehicle performance in crash tests, efforts to reduce axial forces sustained in lower extremity should be prioritized. The analysis of injury mechanisms in this study could aid in crash reconstructions and the development of safety systems for vehicles. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4466481','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4466481"><span>Counterfactual Thinking Deficit in Huntington’s Disease</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Solca, Federica; Poletti, Barbara; Zago, Stefano; Crespi, Chiara; Sassone, Francesca; Lafronza, Annalisa; Maraschi, Anna Maria; Sassone, Jenny; Silani, Vincenzo; Ciammola, Andrea</p> <p>2015-01-01</p> <p>Background and Objective Counterfactual thinking (CFT) refers to the generation of mental simulations of alternatives to past events, actions and outcomes. CFT is a pervasive cognitive feature in every-day life and is closely related to decision-making, planning and problem-solving – all of which are cognitive processes linked to unimpaired frontal lobe functioning. Huntington’s Disease (HD) is a neurodegenerative disorder characterised by motor, behavioral and cognitive dysfunctions. Because an impairment in frontal and executive functions has been described in HD, we hypothesised that HD patients may have a CFT impairment. Methods Tests of spontaneous counterfactual thoughts and counterfactual-derived inferences were administered to 24 symptomatic HD patients and 24 age- and sex-matched healthy subjects. Results Our results show a significant impairment in the spontaneous generation of CFT and low performance on the Counterfactual Inference Test (CIT) in HD patients. Low performance on the spontaneous CFT test significantly correlates with impaired attention abilities, verbal fluency and frontal lobe efficiency, as measured by Trail Making Test – Part A, Phonemic Verbal Fluency Test and FAB. Conclusions Spontaneous CFT and the use of this type of reasoning are impaired in HD patients. This deficit may be related to frontal lobe dysfunction, which is a hallmark of HD. Because CFT has a pervasive role in patients’ daily lives regarding their planning, decision making and problem solving skills, cognitive rehabilitation may improve HD patients’ ability to analyse current behaviors and future actions. PMID:26070155</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JMS....79..134R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JMS....79..134R"><span>Identification, characteristics and seasonal evolution of surface thermal fronts in the Argentinean Continental Shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rivas, Andrés L.; Pisoni, Juan Pablo</p> <p>2010-01-01</p> <p>The location and seasonal variability of surface thermal fronts along the Argentinean Continental Shelf (38-55°S) were studied using 18 years (1985-2002) of sea surface temperature (SST) satellite data. Monthly SST gradients were calculated and a threshold was used to identify frontal pixels. Frontal areas were classified into 4 zones according to their seasonal evolution and the main forcings leading to the front's formation were identified for each group. The shelf break front was easily detected due to the large number of frontal pixels in the region and its high mean gradient values. This front showed a marked annual cycle and relatively constant position associated to the bottom slope; it tended to be located where the core of the Malvinas current is closest to the shelf. Tidal fronts also showed a strong annual cycle, being detected in three well-defined regions during spring and summer. Along the coasts of Tierra del Fuego and Santa Cruz, the combination of strong tidal mixing and low-salinity coastal plumes led to semi-annual seasonal cycles of frontal intensity and persistence that showed a relative maximum in winter. A similar behavior (semi-annual) was found at the coast off the Buenos Aires Province. There, the coastal dilution and the bathymetric gradient generated near-coastal fronts that changed direction seasonally. In the northern mid-shelf, a front linked to the intrusion of warm waters formed in the San Matías Gulf was identified during the winter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28245482','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28245482"><span>Neuropsychiatric Symptoms in Alzheimer Disease, Vascular Dementia, and Mixed Dementia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anor, Cassandra J; O'Connor, Sean; Saund, Amardeep; Tang-Wai, David F; Keren, Ron; Tartaglia, Maria Carmela</p> <p>2017-01-01</p> <p>Neuropsychiatric symptoms (NPS) are common in Alzheimer disease (AD) and vascular dementia (VaD), and are distressful to patients and caregivers. NPS are likely related to the underlying pathology. Previous studies suggest that frontal lobe lesions and vascular changes such as white matter hyperintensities (WMH) have a significant association with specific NPS. The current study aimed to compare NPS in patients with AD, VaD, and mixed AD/VaD, and to evaluate the differences in the prevalence of NPS in relation to frontal WMH volume. In total, 180 patients with NPS and MRI data (92 probable AD, 51%; 34 probable VaD, 19%; and 54 probable mixed AD/VaD, 30%) were included in the study. Regression analyses were performed to determine the relationships between NPS prevalence and diagnosis, and between NPS and frontal WMH. VaD patients had significantly more agitation (p < 0.05; 40 vs. 14%) and sleep disturbances (p < 0.05; 57 vs. 32%) than AD patients, and significantly more depression (p < 0.05; 48 vs. 20%) and aberrant motor behaviors (p < 0.05; 31 vs. 13%) than mixed AD/VaD patients. AD patients with delusions had significantly greater right frontal WMH volumes than those without (p < 0.05; delusions 1/0 = 314.8/112.6 mm3). Differences in NPS prevalence are likely related to the underlying pathology and warrant further study as they have implications for treatment. © 2017 S. Karger AG, Basel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25224073','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25224073"><span>Auditory aura in nocturnal frontal lobe epilepsy: a red flag to suspect an extra-frontal epileptogenic zone.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ferri, Lorenzo; Bisulli, Francesca; Nobili, Lino; Tassi, Laura; Licchetta, Laura; Mostacci, Barbara; Stipa, Carlotta; Mainieri, Greta; Bernabè, Giorgia; Provini, Federica; Tinuper, Paolo</p> <p>2014-11-01</p> <p>To describe the anatomo-electro-clinical findings of patients with nocturnal hypermotor seizures (NHS) preceded by auditory symptoms, to evaluate the localizing value of auditory aura. Our database of 165 patients with nocturnal frontal lobe epilepsy (NFLE) diagnosis confirmed by videopolysomnography (VPSG) was reviewed, selecting those who reported an auditory aura as the initial ictal symptom in at least two NHS during their lifetime. Eleven patients were selected (seven males, four females). According to the anatomo-electro-clinical data, three groups were identified. Group 1 [defined epileptogenic zone (EZ)]: three subjects were studied with stereo-EEG. The EZ lay in the left superior temporal gyrus in two cases, whereas in the third case seizures arose from a dysplastic lesion located in the left temporal lobe. One of these three patients underwent left Heschl's gyrus resection, and is currently seizure-free. Group 2 (presumed EZ): three cases in which a presumed EZ was identified; in the left temporal lobe in two cases and in the left temporal lobe extending to the insula in one subject. Group 3 (uncertain EZ): five cases had anatomo-electro-clinical correlations discordant. This work suggests that auditory aura may be a helpful anamnestic feature suggesting an extra-frontal seizure origin. This finding could guide secondary investigations to improve diagnostic definition and selection of candidates for surgical treatment. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26208170','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26208170"><span>Temporal Lobe and Frontal-Subcortical Dissociations in Non-Demented Parkinson's Disease with Verbal Memory Impairment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tanner, Jared J; Mareci, Thomas H; Okun, Michael S; Bowers, Dawn; Libon, David J; Price, Catherine C</p> <p>2015-01-01</p> <p>The current investigation examined verbal memory in idiopathic non-dementia Parkinson's disease and the significance of the left entorhinal cortex and left entorhinal-retrosplenial region connections (via temporal cingulum) on memory impairment in Parkinson's disease. Forty non-demented Parkinson's disease patients and forty non-Parkinson's disease controls completed two verbal memory tests--a wordlist measure (Philadelphia repeatable Verbal Memory Test) and a story measure (Logical Memory). All participants received T1-weighted and diffusion magnetic resonance imaging (3T; Siemens) sequences. Left entorhinal volume and left entorhinal-retrosplenial connectivity (temporal cingulum edge weight) were the primary imaging variables of interest with frontal lobe thickness and subcortical structure volumes as dissociating variables. Individuals with Parkinson's disease showed worse verbal memory, smaller entorhinal volumes, but did not differ in entorhinal-retrosplenial connectivity. For Parkinson's disease entorhinal-retrosplenial edge weight had the strongest associations with verbal memory. A subset of Parkinson's disease patients (23%) had deficits (z-scores < -1.5) across both memory measures. Relative to non-impaired Parkinson's peers, this memory-impaired group had smaller entorhinal volumes. Although entorhinal cortex volume was significantly reduced in Parkinson's disease patients relative to non-Parkinson's peers, only white matter connections associated with the entorhinal cortex were significantly associated with verbal memory performance in our sample. There was also no suggestion of contribution from frontal-subcortical gray or frontal white matter regions. These findings argue for additional investigation into medial temporal lobe gray and white matter connectivity for understanding memory in Parkinson's disease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4451406','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4451406"><span>Role of Frontal Alpha Oscillations in Creativity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lustenberger, Caroline; Boyle, Michael R.; Foulser, A. Alban; Mellin, Juliann M.; Fröhlich, Flavio</p> <p>2015-01-01</p> <p>Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent EEG data suggests that cortical oscillations in the alpha frequency band (8 – 12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a fundamental role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking, a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40Hz-tACS was used in instead of 10Hz-tACS to rule out a general “electrical stimulation” effect. No significant change in the Creativity Index was found for such frontal gamma stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation. PMID:25913062</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920023788','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920023788"><span>Device for removing foreign objects from anatomic organs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Angulo, Earl D. (Inventor)</p> <p>1992-01-01</p> <p>A device is disclosed for removing foreign objects from anatomic organs such as the ear canal or throat. It has a housing shaped like a flashlight, an electrical power source such as a battery or AC power from a wall socket, and a tip extending from the housing. The tip has at least one wire loop made from a shape-memory-effect alloy, such as Nitinol, switchably connected to the electrical power source such that when electric current flows through the wire loop the wire loop heats up and returns to a previously programmed shape such as a curet or tweezers so as to facilitate removal of the foreign object.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900012635','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900012635"><span>Balanced bridge feedback control system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lurie, Boris J. (Inventor)</p> <p>1990-01-01</p> <p>In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790047101&hterms=magnetic+cooling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmagnetic%2Bcooling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790047101&hterms=magnetic+cooling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmagnetic%2Bcooling"><span>The effects of magnetic structure on the conduction cooling of flare loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Van Hoven, G.</p> <p>1979-01-01</p> <p>A model of the sheared magnetic field in a coronal loop is used to evaluate the average cross-field suppression of axial thermal conduction. If the energy source is uniform in radius, this can lead to heat-flux reduction by a factor greater than three. When the source is annular, in a region of radius where the current density and shear are peaked, the effect can be significantly larger. In one extreme case, however, in which magnetic tearing provides the heating in a very narrow layer, the spatial resonance of the source excitation in a long loop leads to approximately axial conduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5380860','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5380860"><span>DETERMINATION OF CLINICALLY RELEVANT DIFFERENCES IN FRONTAL PLANE HOP TESTS IN WOMEN'S COLLEGIATE BASKETBALL AND SOCCER PLAYERS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hardesty, Kelly; Hegedus, Eric J.; Ford, Kevin R.; Nguyen, Anh‐Dung</p> <p>2017-01-01</p> <p>Background ACL injury prevention programs are less successful in female basketball players than in soccer players. Previous authors have identified anthropometric and biomechanical differences between the athletes and different sport‐specific demands, including a higher frequency of frontal plane activities in basketball. Current injury risk screening and preventive training practices do not place a strong emphasis on frontal plane activities. The medial and lateral triple hop for distance tests may be beneficial for use in the basketball population. Hypothesis/Purpose To 1) establish normative values for the medial and lateral triple hop tests in healthy female collegiate athletes, and 2) analyze differences in test scores between female basketball and soccer players. It was hypothesized that due to the frequent frontal plane demands of their sport, basketball players would exhibit greater performance during these frontal plane performance tests. Study Design Cross‐sectional. Methods Thirty‐two NCAA Division‐1 female athletes (20 soccer, 12 basketball) performed three trials each of a medial and lateral triple hop for distance test. Distances were normalized to height and mass in order to account for anthropometric differences. Repeated measures ANOVAs were performed to identify statistically significant main effects of sport (basketball vs. soccer), and side (right vs. left), and sport x side interactions. Results After accounting for anthropometric differences, soccer players exhibited significantly better performance than basketball players in the medial and lateral triple hop tests (p < 0.05). Significant side differences (p = 0.02) were identified in the entire population for the medial triple hop test, such that participants jumped farther on their left (400.3 ± 41.5 cm) than right (387.9 ± 43.4 cm) limbs, but no side differences were identified in the lateral triple hop. No significant side x sport interactions were identified. Conclusions Women's basketball players exhibit decreased performance of frontal plane hop tests when compared to women's soccer players. Additionally, the medial triple hop for distance test may be effective at identifying side‐to‐side asymmetries Level of Evidence 3 PMID:28515972</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24557703','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24557703"><span>Association between resting-state coactivation in the parieto-frontal network and intelligence during late childhood and adolescence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, C; Tian, L</p> <p>2014-06-01</p> <p>A number of studies have associated the adult intelligence quotient with the structure and function of the bilateral parieto-frontal networks, whereas the relationship between intelligence quotient and parieto-frontal network function has been found to be relatively weak in early childhood. Because both human intelligence and brain function undergo protracted development into adulthood, the purpose of the present study was to provide a better understanding of the development of the parieto-frontal network-intelligence quotient relationship. We performed independent component analysis of resting-state fMRI data of 84 children and 50 adolescents separately and then correlated full-scale intelligence quotient with the spatial maps of the bilateral parieto-frontal networks of each group. In children, significant positive spatial-map versus intelligence quotient correlations were detected in the right angular gyrus and inferior frontal gyrus in the right parieto-frontal network, and no significant correlation was observed in the left parieto-frontal network. In adolescents, significant positive correlation was detected in the left inferior frontal gyrus in the left parieto-frontal network, and the correlations in the frontal pole in the 2 parieto-frontal networks were only marginally significant. The present findings not only support the critical role of the parieto-frontal networks for intelligence but indicate that the relationship between intelligence quotient and the parieto-frontal network in the right hemisphere has been well established in late childhood, and that the relationship in the left hemisphere was also established in adolescence. © 2014 by American Journal of Neuroradiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28617954','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28617954"><span>Mind the movement: Frontal asymmetry stands for behavioral motivation, bilateral frontal activation for behavior.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rodrigues, Johannes; Müller, Mathias; Mühlberger, Andreas; Hewig, Johannes</p> <p>2018-01-01</p> <p>Frontal asymmetry has been investigated over the past 30 years, and several theories have been developed about its meaning. The original theory of Davidson and its diversification by Harmon-Jones & Allen allocated approach motivation to relative left frontal brain activity and withdrawal motivation to relative right frontal brain activity. Hewig and colleagues extended this theory by adding bilateral frontal activation representing a biological correlate of the behavioral activation system if actual behavior is shown. Wacker and colleagues formulated a theory related to the revised reinforcement sensitivity theory by Gray & McNaughton. Here, relative left frontal brain activation represents the revised behavioral activation system and behavior, while relative right frontal brain activation represents the revised behavioral inhibition system, representing the experience of conflict. These theories were investigated with a newly developed paradigm where participants were able to move around freely in a virtual T maze via joystick while having their EEG recorded. Analyzing the influence of frontal brain activation during this virtual reality task on observable behavior for 30 participants, we found more relative left frontal brain activation during approach behavior and more relative right brain activation for withdrawal behavior of any kind. Additionally, there was more bilateral frontal brain activation when participants were engaged in behavior compared to doing nothing. Hence, this study provides evidence for the idea that frontal asymmetry stands for behavioral approach or avoidance motivation, and bilateral frontal activation stands for behavior. Additionally, observable behavior is not only determined by frontal asymmetry, but also by relevant traits. © 2017 Society for Psychophysiological Research.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A51G0140T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A51G0140T"><span>Creating Indices Representing the Atmospheric Conditions throughout Japan by Using Frontal Zone Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, N.</p> <p>2015-12-01</p> <p>The climate of Japan exhibits mid-latitude and east coast condition characteristics within the continent, which leads to the large meridional range of the frontal migration and the resultant large annual seasonal change. Therefore, describing the long-term behavior of frontal zones is important for understanding the seasonal, interannual, and long-term variations of the Japanese climate. The purpose of this work is to create indices representing the atmospheric conditions throughout Japan by using frontal zone data created by an objective method at pentad intervals for the period 1948-2013. The indexation was conducted by principal component analyses on the distribution maps of the frontal frequencies near frontal zones, which are defined as the latitude indicating the maximum of the frontal frequencies along each longitude in the climatological mean field. This work focuses on the first four factors, PC1-4, which indicate high contribution rates. The distribution maps of factor loadings were interpreted in the following manner as variations of the frontal zone: PC1, north-south variations in the locations of the frontal zone; PC2, frontal frequencies around the frontal zone; PC3, the running direction of the frontal zone, whether northwest-southeast or southwest-northeast; and PC4, west-east variations of the frontal frequencies. These factors could be regarded as the indices representing the atmospheric conditions throughout Japan. The result of correlation analysis among the indices in this work and those representing global climatic phenomena such as Niño3 sea surface temperature (SST), in addition to Pacific decadal and Arctic oscillations, indicated the comprehensive relationships revealed in previous research. Furthermore, several long-term trend characteristics were exhibited, such as the southward shift of frontal zones in mid- and late spring and the increase of frontal frequencies around frontal zones in mid- and late summer. Thus, the simple indices created in this work verify the effectiveness in the investigation of climate change with regard to the seasonal march.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22661258-elongation-flare-ribbons','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22661258-elongation-flare-ribbons"><span>Elongation of Flare Ribbons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Qiu, Jiong; Longcope, Dana W.; Cassak, Paul A.</p> <p>2017-03-20</p> <p>We present an analysis of the apparent elongation motion of flare ribbons along the polarity inversion line (PIL), as well as the shear of flare loops in several two-ribbon flares. Flare ribbons and loops spread along the PIL at a speed ranging from a few to a hundred km s{sup −1}. The shear measured from conjugate footpoints is consistent with the measurement from flare loops, and both show the decrease of shear toward a potential field as a flare evolves and ribbons and loops spread along the PIL. Flares exhibiting fast bidirectional elongation appear to have a strong shear, whichmore » may indicate a large magnetic guide field relative to the reconnection field in the coronal current sheet. We discuss how the analysis of ribbon motion could help infer properties in the corona where reconnection takes place.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015FNL....1450011K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015FNL....1450011K"><span>Analysis of an Attenuator Artifact in an Experimental Attack by Gunn-Allison-Abbott Against the Kirchhoff-Law-Johnson-Noise (KLJN) Secure Key Exchange System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kish, Laszlo B.; Gingl, Zoltan; Mingesz, Robert; Vadai, Gergely; Smulko, Janusz; Granqvist, Claes-Göran</p> <p>2015-12-01</p> <p>A recent paper by Gunn-Allison-Abbott (GAA) [L. J. Gunn et al., Scientific Reports 4 (2014) 6461] argued that the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system could experience a severe information leak. Here we refute their results and demonstrate that GAA's arguments ensue from a serious design flaw in their system. Specifically, an attenuator broke the single Kirchhoff-loop into two coupled loops, which is an incorrect operation since the single loop is essential for the security in the KLJN system, and hence GAA's asserted information leak is trivial. Another consequence is that a fully defended KLJN system would not be able to function due to its built-in current-comparison defense against active (invasive) attacks. In this paper we crack GAA's scheme via an elementary current-comparison attack which yields negligible error probability for Eve even without averaging over the correlation time of the noise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SPIE.7663E..0PT','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SPIE.7663E..0PT"><span>Exploiting current-generation graphics hardware for synthetic-scene generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tanner, Michael A.; Keen, Wayne A.</p> <p>2010-04-01</p> <p>Increasing seeker frame rate and pixel count, as well as the demand for higher levels of scene fidelity, have driven scene generation software for hardware-in-the-loop (HWIL) and software-in-the-loop (SWIL) testing to higher levels of parallelization. Because modern PC graphics cards provide multiple computational cores (240 shader cores for a current NVIDIA Corporation GeForce and Quadro cards), implementation of phenomenology codes on graphics processing units (GPUs) offers significant potential for simultaneous enhancement of simulation frame rate and fidelity. To take advantage of this potential requires algorithm implementation that is structured to minimize data transfers between the central processing unit (CPU) and the GPU. In this paper, preliminary methodologies developed at the Kinetic Hardware In-The-Loop Simulator (KHILS) will be presented. Included in this paper will be various language tradeoffs between conventional shader programming, Compute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL), including performance trades and possible pathways for future tool development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900013742&hterms=MATLAB&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DMATLAB','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900013742&hterms=MATLAB&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DMATLAB"><span>OPTICON: Pro-Matlab software for large order controlled structure design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Peterson, Lee D.</p> <p>1989-01-01</p> <p>A software package for large order controlled structure design is described and demonstrated. The primary program, called OPTICAN, uses both Pro-Matlab M-file routines and selected compiled FORTRAN routines linked into the Pro-Matlab structure. The program accepts structural model information in the form of state-space matrices and performs three basic design functions on the model: (1) open loop analyses; (2) closed loop reduced order controller synthesis; and (3) closed loop stability and performance assessment. The current controller synthesis methods which were implemented in this software are based on the Generalized Linear Quadratic Gaussian theory of Bernstein. In particular, a reduced order Optimal Projection synthesis algorithm based on a homotopy solution method was successfully applied to an experimental truss structure using a 58-state dynamic model. These results are presented and discussed. Current plans to expand the practical size of the design model to several hundred states and the intention to interface Pro-Matlab to a supercomputing environment are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3694628','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3694628"><span>Prediction of Long Loops with Embedded Secondary Structure using the Protein Local Optimization Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Miller, Edward B.; Murrett, Colleen S.; Zhu, Kai; Zhao, Suwen; Goldfeld, Dahlia A.; Bylund, Joseph H.; Friesner, Richard A.</p> <p>2013-01-01</p> <p>Robust homology modeling to atomic-level accuracy requires in the general case successful prediction of protein loops containing small segments of secondary structure. Further, as loop prediction advances to success with larger loops, the exclusion of loops containing secondary structure becomes awkward. Here, we extend the applicability of the Protein Local Optimization Program (PLOP) to loops up to 17 residues in length that contain either helical or hairpin segments. In general, PLOP hierarchically samples conformational space and ranks candidate loops with a high-quality molecular mechanics force field. For loops identified to possess α-helical segments, we employ an alternative dihedral library composed of (ϕ,ψ) angles commonly found in helices. The alternative library is searched over a user-specified range of residues that define the helical bounds. The source of these helical bounds can be from popular secondary structure prediction software or from analysis of past loop predictions where a propensity to form a helix is observed. Due to the maturity of our energy model, the lowest energy loop across all experiments can be selected with an accuracy of sub-Ångström RMSD in 80% of cases, 1.0 to 1.5 Å RMSD in 14% of cases, and poorer than 1.5 Å RMSD in 6% of cases. The effectiveness of our current methods in predicting hairpin-containing loops is explored with hairpins up to 13 residues in length and again reaching an accuracy of sub-Ångström RMSD in 83% of cases, 1.0 to 1.5 Å RMSD in 10% of cases, and poorer than 1.5 Å RMSD in 7% of cases. Finally, we explore the effect of an imprecise surrounding environment, in which side chains, but not the backbone, are initially in perturbed geometries. In these cases, loops perturbed to 3Å RMSD from the native environment were restored to their native conformation with sub-Ångström RMSD. PMID:23814507</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866096','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866096"><span>In-line beam current monitor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ekdahl, Jr., Carl A.; Frost, Charles A.</p> <p>1986-01-01</p> <p>An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5269922','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/5269922"><span>In-line beam current monitor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ekdahl, C.A. Jr.; Frost, C.A.</p> <p>1984-11-13</p> <p>An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28900732','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28900732"><span>Plant STAND P-loop NTPases: a current perspective of genome distribution, evolution, and function : Plant STAND P-loop NTPases: genomic organization, evolution, and molecular mechanism models contribute broadly to plant pathogen defense.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arya, Preeti; Acharya, Vishal</p> <p>2018-02-01</p> <p>STAND P-loop NTPase is the common weapon used by plant and other organisms from all three kingdoms of life to defend themselves against pathogen invasion. The purpose of this study is to review comprehensively the latest finding of plant STAND P-loop NTPase related to their genomic distribution, evolution, and their mechanism of action. Earlier, the plant STAND P-loop NTPase known to be comprised of only NBS-LRRs/AP-ATPase/NB-ARC ATPase. However, recent finding suggests that genome of early green plants comprised of two types of STAND P-loop NTPases: (1) mammalian NACHT NTPases and (2) NBS-LRRs. Moreover, YchF (unconventional G protein and members of P-loop NTPase) subfamily has been reported to be exceptionally involved in biotic stress (in case of Oryza sativa), thereby a novel member of STAND P-loop NTPase in green plants. The lineage-specific expansion and genome duplication events are responsible for abundance of plant STAND P-loop NTPases; where "moderate tandem and low segmental duplication" trajectory followed in majority of plant species with few exception (equal contribution of tandem and segmental duplication). Since the past decades, systematic research is being investigated into NBS-LRR function supported the direct recognition of pathogen or pathogen effectors by the latest models proposed via 'integrated decoy' or 'sensor domains' model. Here, we integrate the recently published findings together with the previous literature on the genomic distribution, evolution, and distinct models proposed for functional molecular mechanism of plant STAND P-loop NTPases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...610L...9K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...610L...9K"><span>Simulations of fully deformed oscillating flux tubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karampelas, K.; Van Doorsselaere, T.</p> <p>2018-02-01</p> <p>Context. In recent years, a number of numerical studies have been focusing on the significance of the Kelvin-Helmholtz instability in the dynamics of oscillating coronal loops. This process enhances the transfer of energy into smaller scales, and has been connected with heating of coronal loops, when dissipation mechanisms, such as resistivity, are considered. However, the turbulent layer is expected near the outer regions of the loops. Therefore, the effects of wave heating are expected to be confined to the loop's external layers, leaving their denser inner parts without a heating mechanism. Aim. In the current work we aim to study the spatial evolution of wave heating effects from a footpoint driven standing kink wave in a coronal loop. Methods: Using the MPI-AMRVAC code, we performed ideal, three dimensional magnetohydrodynamic simulations of footpoint driven transverse oscillations of a cold, straight coronal flux tube, embedded in a hotter environment. We have also constructed forward models for our simulation using the FoMo code. Results: The developed transverse wave induced Kelvin-Helmholtz (TWIKH) rolls expand throughout the tube cross-section, and cover it entirely. This turbulence significantly alters the initial density profile, leading to a fully deformed cross section. As a consequence, the resistive and viscous heating rate both increase over the entire loop cross section. The resistive heating rate takes its maximum values near the footpoints, while the viscous heating rate at the apex. Conclusions: We conclude that even a monoperiodic driver can spread wave heating over the whole loop cross section, potentially providing a heating source in the inner loop region. Despite the loop's fully deformed structure, forward modelling still shows the structure appearing as a loop. A movie attached to Fig. 1 is available at http://https://www.aanda.org</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA069536','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA069536"><span>Characterization of Electrically Active Defects in Si Using CCD Image Sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1978-02-01</p> <p>63 35 Dislocation Segments in CCD Imager . . . . . . . . . . . . . 64 36 422 Reflection Topograph of Dislocation Loop ir... Loops . . . . . 3 39 422 Reflection Topograph of Scratch on CCD Imager, . . . 69 40 Dark Current Display of a CCD Imager with 32 ms integration Time...made of each slice using the elon -asoorbio aold developer described in Appendix D. The inagers were then thinned using the procedure at Appendix taor</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730016208','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730016208"><span>Thermoelectric thin film thermal coating systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Harpster, J. W.; Bulman, W. E.; Middleton, A. E.; Swinehart, P. R.; Braun, F. D.</p> <p>1973-01-01</p> <p>Derivation of the fluid loop temperature profile for a model with thermoelectric devices (TED) attached is developed as a function of position, incident radiation intensity, input fluid loop temperature and TED current. The associated temperature of the radiator is also developed so that the temperature difference across the TED can be determined for each position. The temperature difference is used in determining optimum operating conditions and available generated electrical power.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040171637','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040171637"><span>Evidence for Magnetic Reconnection in Three Homologous Solar Flares Observed by RHESSI</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sui, Lin-Hui; Holman, Gordon D.; Dennis, Brian R.</p> <p>2004-01-01</p> <p>We present RHESSI observF5oss of three homologous flares, which occurred between April 14 and 16, 2002. We find that the RHESSI images of all three flares at energies between 6 and 25 keV had some common features: (1) A. separate coronal source up to approx. 30 deg. above the flare loop appeared in the early impulsive phase and stayed stationary for several minutes. (2) Before the flare loop moved upward; previously reported by others, the flare loop-top centroid moved downward for 2-4 minutes during the early impulsive phase of the Ears: falling by 13 - 30% of its initial height with a speed between 8 and 23 km/s. We conclude that these features are associated with the formation and development of a current sheet between the loop-top and the coronal source. In the April 14-15 flare, we find that the hard X-ray flux (greater than 25 keV) is correlated with the rate at which the flare loop moves upward, indicating that the faster the loop grows, the faster the reconnection rate, and therefore, the greater the flux of accelerated electrons. Subject headings: Sun: L'iaies-Sun: X-1-ay-s -</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014A%26A...564A..48G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014A%26A...564A..48G"><span>MHD modeling of coronal loops: the transition region throat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guarrasi, M.; Reale, F.; Orlando, S.; Mignone, A.; Klimchuk, J. A.</p> <p>2014-04-01</p> <p>Context. The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross-sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. Aims: The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. Methods: We study the area response with a time-dependent 2D magnetohydrodynamic (MHD) loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction, and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 MK. Results: We find that the area can change substantially with the quasi-steady heating rate, e.g., by ~40% at 0.5 MK as the loop temperature varies between 1 MK and 4 MK, and, therefore, affects the interpretation of the differential emission measure vs. temperature (DEM(T)) curves. The movie associated to Fig. 4 is available in electronic form at http://www.aanda.org</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25249295','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25249295"><span>Frontal lobe function and behavioral changes in amyotrophic lateral sclerosis: a study from Southwest China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wei, QianQian; Chen, XuePing; Zheng, ZhenZhen; Huang, Rui; Guo, XiaoYan; Cao, Bei; Zhao, Bi; Shang, Hui-Fang</p> <p>2014-12-01</p> <p>Despite growing interest, the frequency and characteristics of frontal lobe functional and behavioral deficits in Chinese people with amyotrophic lateral sclerosis (ALS), as well as their impact on the survival of ALS patients, remain unknown. The Chinese version of the frontal assessment battery (FAB) and frontal behavioral inventory (FBI) were used to evaluate 126 sporadic ALS patients and 50 healthy controls. The prevalence of frontal lobe dysfunction was 32.5%. The most notable impairment domain of the FAB was lexical fluency (30.7%). The binary logistic regression model revealed that an onset age older than 45 years (OR 5.976, P = 0.002) and a lower educational level (OR 0.858, P = 0.002) were potential determinants of an abnormal FAB. Based on the FBI score, 46.0% of patients showed varied degrees of frontal behavioral changes. The most common impaired neurobehavioral domains were irritability (25.4%), logopenia (20.6%) and apathy (19.0%). The binary logistic regression model revealed that the ALS Functional Rating Scale-Revised scale score (OR 0.127, P = 0.001) was a potential determinant of an abnormal FBI. Frontal functional impairment and the severity of frontal behavioral changes were not associated with the survival status or the progression of ALS by the cox proportional hazard model and multivariate regression analyses, respectively. Frontal lobe dysfunction and frontal behavioral changes are common in Chinese ALS patients. Frontal lobe dysfunction may be related to the onset age and educational level. The severity of frontal behavioral changes may be associated with the ALSFRS-R. However, the frontal functional impairment and the frontal behavioral changes do not worsen the progression or survival of ALS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21704653','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21704653"><span>Continuous nicotinamide administration improves behavioral recovery and reduces lesion size following bilateral frontal controlled cortical impact injury.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vonder Haar, Cole; Anderson, Gail D; Hoane, Michael R</p> <p>2011-10-31</p> <p>Previous research has demonstrated considerable preclinical efficacy of nicotinamide (NAM; vitamin B(3)) in animal models of TBI with systemic dosing at 50 and 500 mg/kg yielding improvements on sensory, motor, cognitive and histological measures. The current study aimed to utilize a more specific dosing paradigm in a clinically relevant delivery mechanism: continuously secreting subcutaneous pumps. A bilateral frontal controlled cortical impact (CCI) or sham surgery was performed and rats were treated with NAM (150 mg/kg day) or saline (1 ml/kg) pumps 30 min after CCI, continuing until seven days post-CCI. Rats were given a loading dose of NAM (50mg/kg) or saline (1 ml/kg) following pump implant. Rats received behavioral testing (bilateral tactile adhesive removal, locomotor placing task and Morris water maze) starting on day two post-CCI and were sacrificed at 31 days post-CCI and brains were stained to examine lesion size. NAM-treated rats had reductions in sensory, motor and cognitive behavioral deficits compared to vehicle-treated rats. Specifically, NAM-treated rats significantly improved on the bilateral tactile adhesive removal task, locomotor placing task and the reference memory paradigm of the Morris water maze. Lesion size was also significantly reduced in the NAM-treated group. The results from this study indicate that at the current dose, NAM produces beneficial effects on recovery from a bilateral frontal brain injury and that it may be a relevant compound to be explored in human studies. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27288226','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27288226"><span>Transcranial Direct Current Stimulation Effects on Semantic Processing in Healthy Individuals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Joyal, Marilyne; Fecteau, Shirley</p> <p>2016-01-01</p> <p>Semantic processing allows us to use conceptual knowledge about the world. It has been associated with a large distributed neural network that includes the frontal, temporal and parietal cortices. Recent studies using transcranial direct current stimulation (tDCS) also contributed at investigating semantic processing. The goal of this article was to review studies investigating semantic processing in healthy individuals with tDCS and discuss findings from these studies in line with neuroimaging results. Based on functional magnetic resonance imaging studies assessing semantic processing, we predicted that tDCS applied over the inferior frontal gyrus, middle temporal gyrus, and posterior parietal cortex will impact semantic processing. We conducted a search on Pubmed and selected 27 articles in which tDCS was used to modulate semantic processing in healthy subjects. We analysed each article according to these criteria: demographic information, experimental outcomes assessing semantic processing, study design, and effects of tDCS on semantic processes. From the 27 reviewed studies, 8 found main effects of stimulation. In addition to these 8 studies, 17 studies reported an interaction between stimulus types and stimulation conditions (e.g. incoherent functional, but not instrumental, actions were processed faster when anodal tDCS was applied over the posterior parietal cortex as compared to sham tDCS). Results suggest that regions in the frontal, temporal, and parietal cortices are involved in semantic processing. tDCS can modulate some aspects of semantic processing and provide information on the functional roles of brain regions involved in this cognitive process. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27076181','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27076181"><span>Reasoning by analogy requires the left frontal pole: lesion-deficit mapping and clinical implications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Urbanski, Marika; Bréchemier, Marie-Laure; Garcin, Béatrice; Bendetowicz, David; Thiebaut de Schotten, Michel; Foulon, Chris; Rosso, Charlotte; Clarençon, Frédéric; Dupont, Sophie; Pradat-Diehl, Pascale; Labeyrie, Marc-Antoine; Levy, Richard; Volle, Emmanuelle</p> <p>2016-06-01</p> <p>SEE BURGESS DOI101093/BRAIN/AWW092 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE  : Analogical reasoning is at the core of the generalization and abstraction processes that enable concept formation and creativity. The impact of neurological diseases on analogical reasoning is poorly known, despite its importance in everyday life and in society. Neuroimaging studies of healthy subjects and the few studies that have been performed on patients have highlighted the importance of the prefrontal cortex in analogical reasoning. However, the critical cerebral bases for analogical reasoning deficits remain elusive. In the current study, we examined analogical reasoning abilities in 27 patients with focal damage in the frontal lobes and performed voxel-based lesion-behaviour mapping and tractography analyses to investigate the structures critical for analogical reasoning. The findings revealed that damage to the left rostrolateral prefrontal region (or some of its long-range connections) specifically impaired the ability to reason by analogies. A short version of the analogy task predicted the existence of a left rostrolateral prefrontal lesion with good accuracy. Experimental manipulations of the analogy tasks suggested that this region plays a role in relational matching or integration. The current lesion approach demonstrated that the left rostrolateral prefrontal region is a critical node in the analogy network. Our results also suggested that analogy tasks should be translated to clinical practice to refine the neuropsychological assessment of patients with frontal lobe lesions. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3245806','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3245806"><span>Neurocognitive Deficits in Male Alcoholics: An ERP/sLORETA Analysis of the N2 Component in an Equal Probability Go/NoGo Task</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pandey, AK; Kamarajan, C; Tang, Y; Chorlian, DB; Roopesh, BN; Manz, N; Stimus, A; Rangaswamy, M; Porjesz, B</p> <p>2011-01-01</p> <p>In alcoholism research, studies concerning time-locked electrophysiological aspects of response inhibition have concentrated mainly on the P3 component of the event-related potential (ERP). The objective of the present study was to investigate the N2 component of the ERP to elucidate possible brain dysfunction related to the motor response and its inhibition using a Go/NoGo task in alcoholics. The sample consisted of 78 abstinent alcoholic males and 58 healthy male controls. The N2 peak was compared across group and task conditions. Alcoholics showed significantly reduced N2 peak amplitudes compared to normal controls for Go as well as NoGo task conditions. Control subjects showed significantly larger NoGo than Go N2 amplitudes at frontal regions, whereas alcoholics did not show any differences between task conditions at frontal regions. Standardized Low Resolution Electromagnetic Tomography Analysis (sLORETA) indicated that alcoholics had significantly lower current density at the source than control subjects for the NoGo condition at bilateral anterior prefrontal regions, whereas the differences between groups during the Go trials was not statistically significant. Furthermore, NoGo current density across both groups revealed significantly more activation in bilateral anterior cingulate cortical (ACC) areas, with the maximum activation in the right cingulate regions. However, the magnitude of this difference was much less in alcoholics compared to control subjects. These findings suggest that alcoholics may have deficits in effortful processing during the motor response and its inhibition, suggestive of possible frontal lobe dysfunction. PMID:22024409</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4020551','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4020551"><span>Impairments in proverb interpretation following focal frontal lobe lesions☆</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Murphy, Patrick; Shallice, Tim; Robinson, Gail; MacPherson, Sarah E.; Turner, Martha; Woollett, Katherine; Bozzali, Marco; Cipolotti, Lisa</p> <p>2013-01-01</p> <p>The proverb interpretation task (PIT) is often used in clinical settings to evaluate frontal “executive” dysfunction. However, only a relatively small number of studies have investigated the relationship between frontal lobe lesions and performance on the PIT. We compared 52 patients with unselected focal frontal lobe lesions with 52 closely matched healthy controls on a proverb interpretation task. Participants also completed a battery of neuropsychological tests, including a fluid intelligence task (Raven’s Advanced Progressive Matrices). Lesions were firstly analysed according to a standard left/right sub-division. Secondly, a finer-grained analysis compared the performance of patients with medial, left lateral and right lateral lesions with healthy controls. Thirdly, a contrast of specific frontal subgroups compared the performance of patients with medial lesions with patients with lateral frontal lesions. The results showed that patients with left frontal lesions were significantly impaired on the PIT, while in patients with right frontal lesions the impairments approached significance. Medial frontal patients were the only frontal subgroup impaired on the PIT, relative to healthy controls and lateral frontal patients. Interestingly, an error analysis indicated that a significantly higher number of concrete responses were found in the left lateral subgroup compared to healthy controls. We found no correlation between scores on the PIT and on the fluid intelligence task. Overall our results suggest that specific regions of the frontal lobes contribute to the performance on the PIT. PMID:23850600</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Implicit+AND+explicit+AND+functions&pg=5&id=EJ894240','ERIC'); return false;" href="https://eric.ed.gov/?q=Implicit+AND+explicit+AND+functions&pg=5&id=EJ894240"><span>Rule-Based and Information-Integration Category Learning in Normal Aging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Maddox, W. Todd; Pacheco, Jennifer; Reeves, Maia; Zhu, Bo; Schnyer, David M.</p> <p>2010-01-01</p> <p>The basal ganglia and prefrontal cortex play critical roles in category learning. Both regions evidence age-related structural and functional declines. The current study examined rule-based and information-integration category learning in a group of older and younger adults. Rule-based learning is thought to involve explicit, frontally mediated…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA280639','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA280639"><span>European Science Notes Information Bulletin Reports on Current European and Middle Eastern Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1993-01-01</p> <p>Geophys. Res. diabatic effects of the midlatitude storm- 73, 487-492 (1968). track clouds on the climate system; 4. J. Testud , G. Breger, P. Amayenc...A. Clough and J. Testud , "The FRONTS- network will probably be to the northwest of Scot- 87 Experiment and Mesoscale Frontal Dy- land. Other</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=tapping&pg=7&id=EJ1007753','ERIC'); return false;" href="https://eric.ed.gov/?q=tapping&pg=7&id=EJ1007753"><span>Heterogeneity of Social Approach Behaviour in Williams Syndrome: The Role of Response Inhibition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Little, Katie; Riby, Deborah M.; Janes, Emily; Clark, Fiona; Fleck, Ruth; Rodgers, Jacqui</p> <p>2013-01-01</p> <p>The developmental disorder of Williams syndrome (WS) is associated with an overfriendly personality type, including an increased tendency to approach strangers. This atypical social approach behaviour (SAB) has been linked to two potential theories: the amygdala hypothesis and the frontal lobe hypothesis. The current study aimed to investigate…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24718308','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24718308"><span>Does human body odor represent a significant and rewarding social signal to individuals high in social openness?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lübke, Katrin T; Croy, Ilona; Hoenen, Matthias; Gerber, Johannes; Pause, Bettina M; Hummel, Thomas</p> <p>2014-01-01</p> <p>Across a wide variety of domains, experts differ from novices in their response to stimuli linked to their respective field of expertise. It is currently unknown whether similar patterns can be observed with regard to social expertise. The current study therefore focuses on social openness, a central social skill necessary to initiate social contact. Human body odors were used as social cues, as they inherently signal the presence of another human being. Using functional MRI, hemodynamic brain responses to body odors of women reporting a high (n = 14) or a low (n = 12) level of social openness were compared. Greater activation within the inferior frontal gyrus and the caudate nucleus was observed in high socially open individuals compared to individuals low in social openness. With the inferior frontal gyrus being a crucial part of the human mirror neuron system, and the caudate nucleus being implicated in social reward, it is discussed whether human body odor might constitute more of a significant and rewarding social signal to individuals high in social openness compared to individuals low in social openness process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29702443','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29702443"><span>Immediate and delayed neuroendocrine responses to social exclusion in males and females.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Radke, S; Seidel, E M; Boubela, R N; Thaler, H; Metzler, H; Kryspin-Exner, I; Moser, E; Habel, U; Derntl, B</p> <p>2018-07-01</p> <p>Social exclusion is a complex phenomenon, with wide-ranging immediate and delayed effects on well-being, hormone levels, brain activation and motivational behavior. Building upon previous work, the current fMRI study investigated affective, endocrine and neural responses to social exclusion in a more naturalistic Cyberball task in 40 males and 40 females. As expected, social exclusion elicited well-documented affective and neural responses, i.e., increased anger and distress, as well as increased exclusion-related activation of the anterior insula, the posterior-medial frontal cortex and the orbitofrontal cortex. Cortisol and testosterone decreased over the course of the experiment, whereas progesterone showed no changes. Hormone levels were not correlated with subjective affect, but they were related to exclusion-induced neural responses. Exclusion-related activation in frontal areas was associated with decreases in cortisol and increases in testosterone until recovery. Given that results were largely independent of sex, the current findings have important implications regarding between-sex vs. within-sex variations and the conceptualization of state vs. trait neuroendocrine functions in social neuroscience. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JIEIB..95..295K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JIEIB..95..295K"><span>Analysis of Mesh Distribution Systems Considering Load Models and Load Growth Impact with Loops on System Performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar Sharma, A.; Murty, V. V. S. N.</p> <p>2014-12-01</p> <p>The distribution system is the final link between bulk power system and consumer end. A distinctive load flow solution method is used for analysis of the load flow of radial and weakly meshed network based on Kirchhoff's Current Law (KCL) and KVL. This method has excellent convergence characteristics for both radial as well as weakly meshed structure and is based on bus injection to branch current and branch-current to bus-voltage matrix. The main contribution of the paper is: (i) an analysis has been carried out for a weekly mesh network considering number of loops addition and its impact on the losses, kW and kVAr requirements from a system, and voltage profile, (ii) different load models, realistic ZIP load model and load growth impact on losses, voltage profile, kVA and kVAr requirements, (iii) impact of addition of loops on losses, voltage profile, kVA and kVAr requirements from substation, and (iv) comparison of system performance with radial distribution system. Voltage stability is a major concern in planning and operation of power systems. This paper also includes identifying the closeness critical bus which is the most sensitive to the voltage collapse in radial distribution networks. Node having minimum value of voltage stability index is the most sensitive node. Voltage stability index values are computed for meshed network with number of loops added in the system. The results have been obtained for IEEE 33 and 69 bus test system. The results have also been obtained for radial distribution system for comparison.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27138951','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27138951"><span>Language, aging, and cognition: frontal aslant tract and superior longitudinal fasciculus contribute toward working memory performance in older adults.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rizio, Avery A; Diaz, Michele T</p> <p>2016-06-15</p> <p>Previous research has documented change in white matter tract integrity with increasing age. Both interhemispheric and intrahemispheric tracts that underlie language processing are susceptible to these age-related changes. The aim of the current study was to explore age and white matter integrity in language-related tracts as predictors of cognitive task performance in younger and older adults. To this end, we carried out principal component analyses of white matter tracts and confirmatory factor analysis of neuropsychological measures. We next carried out a series of regression analyses that used white matter components to predict scores on each of the neuropsychological components. For both younger and older adults, age was a significant predictor of processing speed and working memory. However, white matter integrity did not contribute independently toward these models. In older adults only, both age and a white matter component that included the bilateral frontal aslant tract and left superior longitudinal fasciculus were significant predictors of working memory. Taken together, these results extend our understanding of the contributions of language-related white matter structure to cognitive processing and highlight the effects of age-related differences in both frontal and dorsal tracts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29297181','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29297181"><span>The relationship between frontal sinus morphology and skeletal maturation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Buyuk, Suleyman Kutalmıs; Simsek, Huseyin; Karaman, Ahmet</p> <p>2018-01-03</p> <p>The aim of this study is to evaluate the relationship between frontal sinus morphology and hand-wrist bone maturation by using postero-anterior (PA) cephalometric radiographs. The study sample consisted of 220 patients divided into eleven groups based on the hand-wrist radiographs. The right and left maximum height, width and area of the frontal sinus parameters were measured in postero-anterior cephalometric radiographs 220 subjects aged 8-18 years. The hand-wrist skeletal maturation stages were evaluated on the hand-wrist radiographs using the method of Fishman. The Kendall tau-b values were analyzed to evaluate the correlation between the hand-wrist skeletal maturation stages and the frontal sinus parameters. The right and left frontal sinus areas and widths were found to be larger in males than in females (p < 0.05). In males, a significant difference was observed in all frontal sinus parameters in different maturation stages (p < 0.001), while a statistically significant correlation was found in females between the left frontal sinus area, right frontal sinus height, right frontal sinus width and different maturation stages (p < 0.05). In conclusion, the relationship between frontal sinus dimensions obtained from PA cephalometric radiographs and hand-wrist maturation stages suggests that frontal sinuses can be used in determining growth and development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5451121','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5451121"><span>Enhancement of multitasking performance and neural oscillations by transcranial alternating current stimulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zanto, Theodore P.; van Schouwenburg, Martine R.; Gazzaley, Adam</p> <p>2017-01-01</p> <p>Multitasking is associated with the generation of stimulus-locked theta (4–7 Hz) oscillations arising from prefrontal cortex (PFC). Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that influences endogenous brain oscillations. Here, we investigate whether applying alternating current stimulation within the theta frequency band would affect multitasking performance, and explore tACS effects on neurophysiological measures. Brief runs of bilateral PFC theta-tACS were applied while participants were engaged in a multitasking paradigm accompanied by electroencephalography (EEG) data collection. Unlike an active control group, a tACS stimulation group showed enhancement of multitasking performance after a 90-minute session (F1,35 = 6.63, p = 0.01, ηp2 = 0.16; effect size = 0.96), coupled with significant modulation of posterior beta (13–30 Hz) activities (F1,32 = 7.66, p = 0.009, ηp2 = 0.19; effect size = 0.96). Across participant regression analyses indicated that those participants with greater increases in frontal theta, alpha and beta oscillations exhibited greater multitasking performance improvements. These results indicate frontal theta-tACS generates benefits on multitasking performance accompanied by widespread neuronal oscillatory changes, and suggests that future tACS studies with extended treatments are worth exploring as promising tools for cognitive enhancement. PMID:28562642</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28562642','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28562642"><span>Enhancement of multitasking performance and neural oscillations by transcranial alternating current stimulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hsu, Wan-Yu; Zanto, Theodore P; van Schouwenburg, Martine R; Gazzaley, Adam</p> <p>2017-01-01</p> <p>Multitasking is associated with the generation of stimulus-locked theta (4-7 Hz) oscillations arising from prefrontal cortex (PFC). Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that influences endogenous brain oscillations. Here, we investigate whether applying alternating current stimulation within the theta frequency band would affect multitasking performance, and explore tACS effects on neurophysiological measures. Brief runs of bilateral PFC theta-tACS were applied while participants were engaged in a multitasking paradigm accompanied by electroencephalography (EEG) data collection. Unlike an active control group, a tACS stimulation group showed enhancement of multitasking performance after a 90-minute session (F1,35 = 6.63, p = 0.01, ηp2 = 0.16; effect size = 0.96), coupled with significant modulation of posterior beta (13-30 Hz) activities (F1,32 = 7.66, p = 0.009, ηp2 = 0.19; effect size = 0.96). Across participant regression analyses indicated that those participants with greater increases in frontal theta, alpha and beta oscillations exhibited greater multitasking performance improvements. These results indicate frontal theta-tACS generates benefits on multitasking performance accompanied by widespread neuronal oscillatory changes, and suggests that future tACS studies with extended treatments are worth exploring as promising tools for cognitive enhancement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/5446697','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/5446697"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Evans, J.H.; Chipley, K.K.; Nelms, H.A.</p> <p></p> <p>An evaluation of the ORNL loop transport cask demonstrating its compliance with the regulations governing the transportation of radioactive and fissile materials is presented. A previous review of the cask is updated to demonstrate compliance with current regulations, to present current procedures, and to reflect the more recent technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26855865','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26855865"><span>Sustained attention in skilled and novice martial arts athletes: a study of event-related potentials and current sources.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sanchez-Lopez, Javier; Silva-Pereyra, Juan; Fernandez, Thalia</p> <p>2016-01-01</p> <p>Background. Research on sports has revealed that behavioral responses and event-related brain potentials (ERP) are better in expert than in novice athletes for sport-related tasks. Focused attention is essential for optimal athletic performance across different sports but mainly in combat disciplines. During combat, long periods of focused attention (i.e., sustained attention) are required for a good performance. Few investigations have reported effects of expertise on brain electrical activity and its neural generators during sport-unrelated attention tasks. The aim of the present study was to assess the effect of expertise (i.e., skilled and novice martial arts athletes) analyzing the ERP during a sustained attention task (Continuous Performance Task; CPT) and the cortical three-dimensional distribution of current density, using the sLORETA technique. Methods. CPT consisted in an oddball-type paradigm presentation of five stimuli (different pointing arrows) where only one of them (an arrow pointing up right) required a motor response (i.e., target). CPT was administered to skilled and novice martial arts athletes while EEG were recorded. Amplitude ERP data from target and non-target stimuli were compared between groups. Subsequently, current source analysis for each ERP component was performed on each subject. sLORETA images were compared by condition and group using Statistical Non-Parametric Mapping analysis. Results. Skilled athletes showed significant amplitude differences between target and non-target conditions in early ERP components (P100 and P200) as opposed to the novice group; however, skilled athletes showed no significant effect of condition in N200 but novices did show a significant effect. Current source analysis showed greater differences in activations in skilled compared with novice athletes between conditions in the frontal (mainly in the Superior Frontal Gyrus and Medial Frontal Gyrus) and limbic (mainly in the Anterior Cingulate Gyrus) lobes. Discussion. These results are supported by previous findings regarding activation of neural structures that underlie sustained attention. Our findings may indicate a better-controlled attention in skilled athletes, which suggests that expertise can improve effectiveness in allocation of attentional resources during the first stages of cognitive processing during combat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21924095','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21924095"><span>[Transnasal endoscopic frontal sinus surgery using expanded agger nasi approach].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shi, Jian-bo; Chen, Feng-hong; Xu, Rui; Zuo, Ke-jun; Deng, Jie; Xu, Geng</p> <p>2011-06-01</p> <p>To explore the feasibility of endoscopic modified agger nasi approach for the surgical treatment of frontal sinus diseases. The data of patients undergoing modified agger nasi approach for frontal diseases were prospectively collected since January 2009, including demographic data, findings at surgery, presence of postoperative symptoms, endoscopic appearance of the frontal recess and sinus, and complications. Nineteen patients were enrolled from January 2009 to August 2010. Seventeen patients had chronic rhinosinusitis, in which 13 patients (76.5%) completely healed, 3 patients (17.6%) improved and 1 patient (5.9%) failed. Two patients had frontal sinus and anterior ethmoid sinus inverted papilloma, with no recurrence. The patients were followed up from 6 to 24 months, medium 16 months. No severe complication occurred. No frontal recess adhesion was found. Four sides of frontal recess showed stenosis caused by tissue hypertrophy. The modified agger nasi approach provides excellent access to frontal recess and frontal sinus, with good effect for preventing re-stenosis after surgery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1173100','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1173100"><span>Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>James E. O'Brien; Piyush Sabharwall; SuJong Yoon</p> <p>2001-11-01</p> <p>Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water.more » Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090019141&hterms=corona&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcorona','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090019141&hterms=corona&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcorona"><span>Heating of the Solar Corona and its Loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Klimchuk, James A.</p> <p>2009-01-01</p> <p>At several million degrees, the solar corona is more than two orders of magnitude hotter than the underlying solar surface. The reason for these extreme conditions has been a puzzle for decades and is considered one of the fundamental problems in astrophysics. Much of the coronal plasma is organized by the magnetic field into arch-like structures called loops. Recent observational and theoretical advances have led to great progress in understanding the nature of these loops. In particular, we now believe they are bundles of unresolved magnetic strands that are heated by storms of impulsive energy bursts called nanoflares. Turbulent convection at the solar surface shuffles the footpoints of the strands and causes them to become tangled. A nanoflare occurs when the magnetic stresses reach a critical threshold, probably by way of a mechanism called the secondary instability. I will describe our current state of knowledge concerning the corona, its loops, and how they are heated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4940409','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4940409"><span>A Review of Control Strategies in Closed-Loop Neuroprosthetic Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wright, James; Macefield, Vaughan G.; van Schaik, André; Tapson, Jonathan C.</p> <p>2016-01-01</p> <p>It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improved performance of tasks, better usability, and greater embodiment have all been reported in systems utilizing some form of feedback. However, the interdisciplinary work on neuroprosthetic systems can lead to miscommunication due to similarities in well-established nomenclature in different fields. Here we present a review of control strategies in existing experimental, investigational and clinical neuroprosthetic systems in order to establish a baseline and promote a common understanding of different feedback modes and closed-loop controllers. The first section provides a brief discussion of feedback control and control theory. The second section reviews the control strategies of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems, and assistive neurorobotic devices. The final section examines the different approaches to feedback in current neuroprosthetic and neurorobotic systems. PMID:27462202</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1254128','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1254128"><span>Cooling system with automated seasonal freeze protection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth, Jr., Michael J.; Iyengar, Madhusudan K.; Simons, Robert E.; Singh, Prabjit; Zhang, Jing</p> <p>2016-05-24</p> <p>An automated multi-fluid cooling system and method are provided for cooling an electronic component(s). The cooling system includes a coolant loop, a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060045871','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060045871"><span>Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bosworth, John</p> <p>2006-01-01</p> <p>A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1254838','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1254838"><span>Cooling method with automated seasonal freeze protection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Cambell, Levi; Chu, Richard; David, Milnes; Ellsworth, Jr, Michael; Iyengar, Madhusudan; Simons, Robert; Singh, Prabjit; Zhang, Jing</p> <p>2016-05-31</p> <p>An automated multi-fluid cooling method is provided for cooling an electronic component(s). The method includes obtaining a coolant loop, and providing a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900010125','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900010125"><span>Costas loop lock detection in the advanced receiver</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mileant, A.; Hinedi, S.</p> <p>1989-01-01</p> <p>The advanced receiver currently being developed uses a Costas digital loop to demodulate the subcarrier. Previous analyses of lock detector algorithms for Costas loops have ignored the effects of the inherent correlation between the samples of the phase-error process. Accounting for this correlation is necessary to achieve the desired lock-detection probability for a given false-alarm rate. Both analysis and simulations are used to quantify the effects of phase correlation on lock detection for the square-law and the absolute-value type detectors. Results are obtained which depict the lock-detection probability as a function of loop signal-to-noise ratio for a given false-alarm rate. The mathematical model and computer simulation show that the square-law detector experiences less degradation due to phase jitter than the absolute-value detector and that the degradation in detector signal-to-noise ratio is more pronounced for square-wave than for sine-wave signals.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H53A1654W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H53A1654W"><span>Real-time demonstration and evaluation of over-the-loop short to medium-range ensemble streamflow forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wood, A. W.; Clark, E.; Newman, A. J.; Nijssen, B.; Clark, M. P.; Gangopadhyay, S.; Arnold, J. R.</p> <p>2015-12-01</p> <p>The US National Weather Service River Forecasting Centers are beginning to operationalize short range to medium range ensemble predictions that have been in development for several years. This practice contrasts with the traditional single-value forecast practice at these lead times not only because the ensemble forecasts offer a basis for quantifying forecast uncertainty, but also because the use of ensembles requires a greater degree of automation in the forecast workflow than is currently used. For instance, individual ensemble member forcings cannot (practically) be manually adjusted, a step not uncommon with the current single-value paradigm, thus the forecaster is required to adopt a more 'over-the-loop' role than before. The relative lack of experience among operational forecasters and forecast users (eg, water managers) in the US with over-the-loop approaches motivates the creation of a real-time demonstration and evaluation platform for exploring the potential of over-the-loop workflows to produce usable ensemble short-to-medium range forecasts, as well as long range predictions. We describe the development and early results of such an effort by a collaboration between NCAR and the two water agencies, the US Army Corps of Engineers and the US Bureau of Reclamation. Focusing on small to medium sized headwater basins around the US, and using multi-decade series of ensemble streamflow hindcasts, we also describe early results, assessing the skill of daily-updating, over-the-loop forecasts driven by a set of ensemble atmospheric outputs from the NCEP GEFS for lead times from 1-15 days.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/336724-perturbative-matching-lattice-continuum-heavy-light-currents-nrqcd-heavy-quarks','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/336724-perturbative-matching-lattice-continuum-heavy-light-currents-nrqcd-heavy-quarks"><span>Perturbative matching of lattice and continuum heavy-light currents with NRQCD heavy quarks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Morningstar, C.J.; Shigemitsu, J.</p> <p>1999-05-01</p> <p>The temporal and spatial components of the heavy-light vector current and the spatial components of the axial-vector current are expressed in terms of lattice-regulated operators suitable for simulations of {ital B} and {ital D} mesons. The currents are constructed by matching the appropriate scattering amplitudes in continuum QCD and a lattice model to one-loop order in perturbation theory. In the lattice theory, the heavy quarks are treated using the nonrelativistic (NRQCD) formulation and the light quarks are described by the tadpole-improved clover action. The light quarks are treated as massless. Our currents include relativistic and discretization corrections through O({alpha}{sub s}/M,a{alpha}{submore » s}), where {ital M} is the heavy-quark mass, {ital a} is the lattice spacing, and {alpha}{sub s} is the QCD coupling. As in our previous construction of the temporal component of the heavy-light axial-vector current, mixing between several lattice operators is encountered at one-loop order, and O(a{alpha}{sub s}) dimension-four improvement terms are identified. {copyright} {ital 1999} {ital The American Physical Society}« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23850600','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23850600"><span>Impairments in proverb interpretation following focal frontal lobe lesions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Murphy, Patrick; Shallice, Tim; Robinson, Gail; MacPherson, Sarah E; Turner, Martha; Woollett, Katherine; Bozzali, Marco; Cipolotti, Lisa</p> <p>2013-09-01</p> <p>The proverb interpretation task (PIT) is often used in clinical settings to evaluate frontal "executive" dysfunction. However, only a relatively small number of studies have investigated the relationship between frontal lobe lesions and performance on the PIT. We compared 52 patients with unselected focal frontal lobe lesions with 52 closely matched healthy controls on a proverb interpretation task. Participants also completed a battery of neuropsychological tests, including a fluid intelligence task (Raven's Advanced Progressive Matrices). Lesions were firstly analysed according to a standard left/right sub-division. Secondly, a finer-grained analysis compared the performance of patients with medial, left lateral and right lateral lesions with healthy controls. Thirdly, a contrast of specific frontal subgroups compared the performance of patients with medial lesions with patients with lateral frontal lesions. The results showed that patients with left frontal lesions were significantly impaired on the PIT, while in patients with right frontal lesions the impairments approached significance. Medial frontal patients were the only frontal subgroup impaired on the PIT, relative to healthy controls and lateral frontal patients. Interestingly, an error analysis indicated that a significantly higher number of concrete responses were found in the left lateral subgroup compared to healthy controls. We found no correlation between scores on the PIT and on the fluid intelligence task. Overall our results suggest that specific regions of the frontal lobes contribute to the performance on the PIT. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28137968','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28137968"><span>Two Independent Frontal Midline Theta Oscillations during Conflict Detection and Adaptation in a Simon-Type Manual Reaching Task.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Töllner, Thomas; Wang, Yijun; Makeig, Scott; Müller, Hermann J; Jung, Tzyy-Ping; Gramann, Klaus</p> <p>2017-03-01</p> <p>One of the most firmly established factors determining the speed of human behavioral responses toward action-critical stimuli is the spatial correspondence between the stimulus and response locations. If both locations match, the time taken for response production is markedly reduced relative to when they mismatch, a phenomenon called the Simon effect. While there is a consensus that this stimulus-response (S-R) conflict is associated with brief (4-7 Hz) frontal midline theta (fmθ) complexes generated in medial frontal cortex, it remains controversial (1) whether there are multiple, simultaneously active theta generator areas in the medial frontal cortex that commonly give rise to conflict-related fmθ complexes; and if so, (2) whether they are all related to the resolution of conflicting task information. Here, we combined mental chronometry with high-density electroencephalographic measures during a Simon-type manual reaching task and used independent component analysis and time-frequency domain statistics on source-level activities to model fmθ sources. During target processing, our results revealed two independent fmθ generators simultaneously active in or near anterior cingulate cortex, only one of them reflecting the correspondence between current and previous S-R locations. However, this fmθ response is not exclusively linked to conflict but also to other, conflict-independent processes associated with response slowing. These results paint a detailed picture regarding the oscillatory correlates of conflict processing in Simon tasks, and challenge the prevalent notion that fmθ complexes induced by conflicting task information represent a unitary phenomenon related to cognitive control, which governs conflict processing across various types of response-override tasks. SIGNIFICANCE STATEMENT Humans constantly monitor their environment for and adjust their cognitive control settings in response to conflicts, an ability that arguably paves the way for survival in ever-changing situations. Anterior cingulate-generated frontal midline theta (fmθ) complexes have been hypothesized to play a role in this conflict-monitoring function. However, it remains a point of contention whether fmθ complexes govern conflict processing in a unitary, paradigm-nonspecific manner. Here, we identified two independent fmθ oscillations triggered during a Simon-type task, only one of them reflecting current and previous conflicts. Importantly, this signal differed in various respects (cortical origin, intertrial history) from fmθ phenomena in other response-override tasks, challenging the prevalent notion of conflict-induced fmθ as a unitary phenomenon associated with the resolution of conflict. Copyright © 2017 the authors 0270-6474/17/372505-12$15.00/0.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5128138-supercomputers-engineering-analysis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5128138-supercomputers-engineering-analysis"><span>Supercomputers for engineering analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Goudreau, G.L.; Benson, D.J.; Hallquist, J.O.</p> <p>1986-07-01</p> <p>The Cray-1 and Cray X-MP/48 experience in engineering computations at the Lawrence Livermore National Laboratory is surveyed. The fully vectorized explicit DYNA and implicit NIKE finite element codes are discussed with respect to solid and structural mechanics. The main efficiencies for production analyses are currently obtained by simple CFT compiler exploitation of pipeline architecture for inner do-loop optimization. Current developmet of outer-loop multitasking is also discussed. Applications emphasis will be on 3D examples spanning earth penetrator loads analysis, target lethality assessment, and crashworthiness. The use of a vectorized large deformation shell element in both DYNA and NIKE has substantially expandedmore » 3D nonlinear capability. 25 refs., 7 figs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869055','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869055"><span>Radiation detector using a bulk high T.sub.c superconductor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Artuso, Joseph F.; Franks, Larry A.; Hull, Kenneth L.; Symko, Orest G.</p> <p>1993-01-01</p> <p>A radiation detector (10) is provided, wherein a bulk high T.sub.c superconducting sample (11) is placed in a magnetic field and maintained at a superconducting temperature. Photons of incident radiation will cause localized heating in superconducting loops of the sample destroying trapped flux and redistributing the fluxons, and reducing the critical current of the loops. Subsequent cooling of the sample in the magnetic field will cause trapped flux redistributed Abrikosov fluxons and trapped Josephson fluxons. The destruction and trapping of the fluxons causes changes in the magnetization of the sample inducing currents in opposite directions in a pickup coil (12) which is coupled by an input coil (15) to an rf SQUID (16).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5434634','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/5434634"><span>Radiation detector using a bulk high T[sub c] superconductor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Artuso, J.F.; Franks, L.A.; Hull, K.L.; Symko, O.G.</p> <p>1993-12-07</p> <p>A radiation detector is provided, wherein a bulk high T[sub c] superconducting sample is placed in a magnetic field and maintained at a superconducting temperature. Photons of incident radiation will cause localized heating in superconducting loops of the sample destroying trapped flux and redistributing the fluxons, and reducing the critical current of the loops. Subsequent cooling of the sample in the magnetic field will cause trapped flux redistributed Abrikosov fluxons and trapped Josephson fluxons. The destruction and trapping of the fluxons causes changes in the magnetization of the sample inducing currents in opposite directions in a pickup coil which is coupled by an input coil to an rf SQUID. 4 figures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4129494','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4129494"><span>Bending and twisting the embryonic heart: a computational model for c-looping based on realistic geometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shi, Yunfei; Yao, Jiang; Young, Jonathan M.; Fee, Judy A.; Perucchio, Renato; Taber, Larry A.</p> <p>2014-01-01</p> <p>The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and cytoskeletal contraction in the omphalomesenteric veins (primitive atria) and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test the physical plausibility of this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study. PMID:25161623</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25161623','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25161623"><span>Bending and twisting the embryonic heart: a computational model for c-looping based on realistic geometry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shi, Yunfei; Yao, Jiang; Young, Jonathan M; Fee, Judy A; Perucchio, Renato; Taber, Larry A</p> <p>2014-01-01</p> <p>The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and cytoskeletal contraction in the omphalomesenteric veins (primitive atria) and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test the physical plausibility of this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040079838&hterms=hardware+loop&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dhardware%2Bin%2Bloop','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040079838&hterms=hardware+loop&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dhardware%2Bin%2Bloop"><span>An Environment for Hardware-in-the-Loop Formation Navigation and Control Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burns, Rich</p> <p>2004-01-01</p> <p>Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Testbed (FFTB) at NASA's Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the injection of GPS receiver hardware into the simulation loop, and support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described in detail. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described in detail. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented and results are analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003SPD....34.1711B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003SPD....34.1711B"><span>To BG or not to BG: Background Subtraction for EIT Coronal Loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beene, J. E.; Schmelz, J. T.</p> <p>2003-05-01</p> <p>One of the few observational tests for various coronal heating models is to determine the temperature profile along coronal loops. Since loops are such an abundant coronal feature, this method originally seemed quite promising - that the coronal heating problem might actually be solved by determining the temperature as a function of arc length and comparing these observations with predictions made by different models. But there are many instruments currently available to study loops, as well as various techniques used to determine their temperature characteristics. Consequently, there are many different, mostly conflicting temperature results. We chose data for ten coronal loops observed with the Extreme ultraviolet Imaging Telescope (EIT), and chose specific pixels along each loop, as well as corresponding nearby background pixels where the loop emission was not present. Temperature analysis from the 171-to-195 and 195-to-284 angstrom image ratios was then performed on three forms of the data: the original data alone, the original data with a uniform background subtraction, and the original data with a pixel-by-pixel background subtraction. The original results show loops of constant temperature, as other authors have found before us, but the 171-to-195 and 195-to-284 results are significantly different. Background subtraction does not change the constant-temperature result or the value of the temperature itself. This does not mean that loops are isothermal, however, because the background pixels, which are not part of any contiguous structure, also produce a constant-temperature result with the same value as the loop pixels. These results indicate that EIT temperature analysis should not be trusted, and the isothermal loops that result from EIT (and TRACE) analysis may be an artifact of the analysis process. Solar physics research at the University of Memphis is supported by NASA grants NAG5-9783 and NAG5-12096.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1015049','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1015049"><span>Megawatt-Scale Power Hardware-in-the-Loop Simulation Testing of a Power Conversion Module for Naval Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-06-21</p> <p>problem was detected . Protection elements were implemented to trigger on over- voltage , over-current, over/under-frequency, and zero-sequence voltage ...power hardware in the loop simulation of distribution networks with photovoltaic generation,” International Journal of Renewable Energy Research...source modules were intended to support both emulation of a representative gas turbine generator set, as well as a flexible, controllable voltage source</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016350','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016350"><span>System and circuitry to provide stable transconductance for biasing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garverick, Steven L. (Inventor); Yu, Xinyu (Inventor)</p> <p>2012-01-01</p> <p>An amplifier system can include an input amplifier configured to receive an analog input signal and provide an amplified signal corresponding to the analog input signal. A tracking loop is configured to employ delta modulation for tracking the amplified signal, the tracking loop providing a corresponding output signal. A biasing circuit is configured to adjust a bias current to maintain stable transconductance over temperature variations, the biasing circuit providing at least one bias signal for biasing at least one of the input amplifier and the tracking loop, whereby the circuitry receiving the at least one bias signal exhibits stable performance over the temperature variations. In another embodiment the biasing circuit can be utilized in other applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930057312&hterms=Pre+test+design&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DPre%2Btest%2Bdesign','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930057312&hterms=Pre+test+design&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DPre%2Btest%2Bdesign"><span>Phase III Integrated Water Recovery Testing at MSFC - Closed hygiene and potable loop test results and lesson learned</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holder, Donald W., Jr.; Bagdigian, Robert M.</p> <p>1992-01-01</p> <p>A series of tests has been conducted at the NASA Marshall Space Flight Center (MSFC) to evaluate the performance of a Space Station Freedom (SSF) pre-development water recovery system. Potable, hygiene, and urine reclamation subsystems were integrated with end-use equipment items and successfully operated for a total of 35 days, including 23 days in closed-loop mode with man-in-the-loop. Although several significant subsystem physical anomalies were encountered, reclaimed potable and hygiene water routinely met current SSF water quality specifications. This paper summarizes the test objectives, system design, test activities/protocols, significant results/anomalies, and major lessons learned.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Brain+AND+cancer&pg=3&id=EJ730475','ERIC'); return false;" href="https://eric.ed.gov/?q=Brain+AND+cancer&pg=3&id=EJ730475"><span>The Impact of Frontal and Non-Frontal Brain Tumor Lesions on Wisconsin Card Sorting Test Performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Goldstein, B.; Obrzut, J. E.; John, C.; Ledakis, G.; Armstrong, C. L.</p> <p>2004-01-01</p> <p>Several lesion and imaging studies have suggested that the Wisconsin Card Sorting Test (WCST) is a measure of executive dysfunction. However, some studies have reported that this measure has poor anatomical specificity because patients with either frontal or non-frontal focal lesions exhibit similar performance. This study examined 25 frontal, 20…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24372328','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24372328"><span>Frontal lobe seizures: from clinical semiology to localization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bonini, Francesca; McGonigal, Aileen; Trébuchon, Agnès; Gavaret, Martine; Bartolomei, Fabrice; Giusiano, Bernard; Chauvel, Patrick</p> <p>2014-02-01</p> <p>Frontal lobe seizures are difficult to characterize according to semiologic and electrical features. We wished to establish whether different semiologic subgroups can be identified and whether these relate to anatomic organization. We assessed all seizures from 54 patients with frontal lobe epilepsy that were explored with stereoelectroencephalography (SEEG) during presurgical evaluation. Semiologic features and concomitant intracerebral EEG changes were documented and quantified. These variables were examined using Principal Component Analysis and Cluster Analysis, and semiologic features correlated with anatomic localization. Four main groups of patients were identified according to semiologic features, and correlated with specific patterns of anatomic seizure localization. Group 1 was characterized clinically by elementary motor signs and involved precentral and premotor regions. Group 2 was characterized by a combination of elementary motor signs and nonintegrated gestural motor behavior, and involved both premotor and prefrontal regions. Group 3 was characterized by integrated gestural motor behavior with distal stereotypies and involved anterior lateral and medial prefrontal regions. Group 4 was characterized by seizures with fearful behavior and involved the paralimbic system (ventromedial prefrontal cortex ± anterior temporal structures). The groups were organized along a rostrocaudal axis, representing bands within a spectrum rather than rigid categories. The more anterior the seizure organization, the more likely was the occurrence of integrated behavior during seizures. Distal stereotypies were associated with the most anterior prefrontal localizations, whereas proximal stereotypies occurred in more posterior prefrontal regions. Meaningful categorization of frontal seizures in terms of semiology is possible and correlates with anatomic organization along a rostrocaudal axis, in keeping with current hypotheses of frontal lobe hierarchical organization. The proposed electroclinical categorization offers pointers as to the likely zone of organization of networks underlying semiologic production, thus aiding presurgical localization. Furthermore, analysis of ictal motor behavior in prefrontal seizures, including stereotypies, leads to deciphering the cortico-subcortical networks that produce such behaviors. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27500966','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27500966"><span>New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>De Benedictis, Alessandro; Petit, Laurent; Descoteaux, Maxime; Marras, Carlo Efisio; Barbareschi, Mattia; Corsini, Francesco; Dallabona, Monica; Chioffi, Franco; Sarubbo, Silvio</p> <p>2016-12-01</p> <p>Extensive studies revealed that the human corpus callosum (CC) plays a crucial role in providing large-scale bi-hemispheric integration of sensory, motor and cognitive processing, especially within the frontal lobe. However, the literature lacks of conclusive data regarding the structural macroscopic connectivity of the frontal CC. In this study, a novel microdissection approach was adopted, to expose the frontal fibers of CC from the dorsum to the lateral cortex in eight hemispheres and in one entire brain. Post-mortem results were then combined with data from advanced constrained spherical deconvolution in 130 healthy subjects. We demonstrated as the frontal CC provides dense inter-hemispheric connections. In particular, we found three types of fronto-callosal fibers, having a dorso-ventral organization. First, the dorso-medial CC fibers subserve homotopic connections between the homologous medial cortices of the superior frontal gyrus. Second, the ventro-lateral CC fibers subserve homotopic connections between lateral frontal cortices, including both the middle frontal gyrus and the inferior frontal gyrus, as well as heterotopic connections between the medial and lateral frontal cortices. Third, the ventro-striatal CC fibers connect the medial and lateral frontal cortices with the contralateral putamen and caudate nucleus. We also highlighted an intricate crossing of CC fibers with the main association pathways terminating in the lateral regions of the frontal lobes. This combined approach of ex vivo microdissection and in vivo diffusion tractography allowed demonstrating a previously unappreciated three-dimensional architecture of the anterior frontal CC, thus clarifying the functional role of the CC in mediating the inter-hemispheric connectivity. Hum Brain Mapp 37:4718-4735, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20809106','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20809106"><span>Visuomotor cerebellum in human and nonhuman primates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Voogd, Jan; Schraa-Tam, Caroline K L; van der Geest, Jos N; De Zeeuw, Chris I</p> <p>2012-06-01</p> <p>In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula-nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11963275','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11963275"><span>A sensorimotor theory of temporal tracking and beat induction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Todd, N P McAngus; Lee, C S; O'Boyle, D J</p> <p>2002-02-01</p> <p>In this paper, we develop a theory of the neurobiological basis of temporal tracking and beat induction as a form of sensory-guided action. We propose three principal components for the neurological architecture of temporal tracking: (1) the central auditory system, which represents the temporal information in the input signal in the form of a modulation power spectrum; (2) the musculoskeletal system, which carries out the action and (3) a controller, in the form of a parieto-cerebellar-frontal loop, which carries out the synchronisation between input and output by means of an internal model of the musculoskeletal dynamics. The theory is implemented in the form of a computational algorithm which takes sound samples as input and synchronises a simple linear mass-spring-damper system to simulate audio-motor synchronisation. The model may be applied to both the tracking of isochronous click sequences and beat induction in rhythmic music or speech, and also accounts for the approximate Weberian property of timing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750033109&hterms=turbidity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dturbidity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750033109&hterms=turbidity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dturbidity"><span>Correlation of coastal water turbidity and current circulation with ERTS-1 and Skylab imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Klemas, V.; Otley, M.; Philpot, W.; Wethe, C.; Rogers, R.; Shah, N.</p> <p>1974-01-01</p> <p>The article reviews investigations of current circulation patterns, suspended sediment concentration, coastal frontal systems, and waste disposal plumes based on visual interpretation and digital analysis of ERTS-1 and Skylab/EREP imagery. Data on conditions in the Delaware Bay area were obtained from 10 ERTS-1 passes and one Skylab pass, with simultaneous surface and airborne sensing. The current patterns and sediments observed by ERTS-1 correlated well with ground-based observations. Methods are suggested which would make it possible to identify certain pollutants and sediment types from multispectral scanner data.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>