Low-energy effective action in two-dimensional SQED: a two-loop analysis
NASA Astrophysics Data System (ADS)
Samsonov, I. B.
2017-07-01
We study two-loop quantum corrections to the low-energy effective actions in N=(2,2) and N=(4,4) SQED on the Coulomb branch. In the latter model, the low-energy effective action is described by a generalized Kähler potential which depends on both chiral and twisted chiral superfields. We demonstrate that this generalized Kähler potential is one-loop exact and corresponds to the N=(4,4) sigma-model with torsion presented by Roček, Schoutens and Sevrin [1]. In the N=(2,2) SQED, the effective Kähler potential is not protected against higher-loop quantum corrections. The two-loop quantum corrections to this potential and the corresponding sigma-model metric are explicitly found.
Closing the Feedback Loop: Ensuring Effective Action from Student Feedback
ERIC Educational Resources Information Center
Watson, Sarah
2003-01-01
Feedback from students can inform improvement in higher education institutions and be part of the students' role in university management. To be effective it is important to"close the loop": from student views, through identifying issues and delegating responsibility for action, to informing students of the action resulting from their expressed…
Mixed heavy–light matching in the Universal One-Loop Effective Action
Ellis, Sebastian A. R.; Quevillon, Jérémie; You, Tevong; ...
2016-11-10
Recently, a general result for evaluating the path integral at one loop was obtained in the form of the Universal One-Loop Effective Action. It may be used to derive effective field theory operators of dimensions up to six, by evaluating the traces of matrices in this expression, with the mass dependence encapsulated in the universal coefficients. In this study we show that it can account for loops of mixed heavy–light particles in the matching procedure. Our prescription for computing these mixed contributions to the Wilson coefficients is conceptually simple. Moreover it has the advantage of maintaining the universal structure ofmore » the effective action, which we illustrate using the example of integrating out a heavy electroweak triplet scalar coupling to a light Higgs doublet. Finally we also identify new structures that were previously neglected in the universal results.« less
Extending the Universal One-Loop Effective Action: heavy-light coefficients
Ellis, Sebastian A. R.; Quevillon, Jérémie; You, Tevong; ...
2017-08-16
The Universal One-Loop Effective Action (UOLEA) is a general expression for the effective action obtained by evaluating in a model-independent way the one-loop expansion of a functional path integral. It can also be used to match UV theories to their low-energy EFTs more efficiently by avoiding redundant steps in the application of functional methods, simplifying the process of obtaining Wilson coefficients of operators up to dimension six. In addition to loops involving only heavy fields, matching may require the inclusion of loops containing both heavy and light particles. Here we use the recently-developed covariant diagram technique to extend the UOLEAmore » to include heavy-light terms which retain the same universal structure as the previously-derived heavy-only terms. As an example of its application, we integrate out a heavy singlet scalar with a linear coupling to a light doublet Higgs. The extension presented here is a first step towards completing the UOLEA to incorporate all possible structures encountered in a covariant derivative expansion of the one-loop path integral.« less
Extending the Universal One-Loop Effective Action: heavy-light coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, Sebastian A. R.; Quevillon, Jérémie; You, Tevong
The Universal One-Loop Effective Action (UOLEA) is a general expression for the effective action obtained by evaluating in a model-independent way the one-loop expansion of a functional path integral. It can also be used to match UV theories to their low-energy EFTs more efficiently by avoiding redundant steps in the application of functional methods, simplifying the process of obtaining Wilson coefficients of operators up to dimension six. In addition to loops involving only heavy fields, matching may require the inclusion of loops containing both heavy and light particles. Here we use the recently-developed covariant diagram technique to extend the UOLEAmore » to include heavy-light terms which retain the same universal structure as the previously-derived heavy-only terms. As an example of its application, we integrate out a heavy singlet scalar with a linear coupling to a light doublet Higgs. The extension presented here is a first step towards completing the UOLEA to incorporate all possible structures encountered in a covariant derivative expansion of the one-loop path integral.« less
Unexpected Extra-renal Effects of Loop Diuretics in the Preterm Neonate
Cotton, Robert; Suarez, Sandra; Reese, Jeff
2012-01-01
The loop diuretics furosemide and bumetanide are commonly used in neonatal intensive care units (NICUs). Furosemide, due to its actions on the ubiquitous NKCC1 co-transporter and its promotion of prostanoid production and release, also has non-diuretic effects on vascular smooth muscle, airways, the ductus arteriosus, and theoretically the gastrointestinal tract. Loop diuretics also affect the central nervous system through the inhibitory neurotransmitter, GABA. Conclusion The loop diuretics have a variety of biological effects that are potentially harmful as well as beneficial. Care should be taken with the use of these agents since the range of their effects may be broader than the single action sought by the prescribing physician. PMID:22536874
Unexpected extra-renal effects of loop diuretics in the preterm neonate.
Cotton, Robert; Suarez, Sandra; Reese, Jeff
2012-08-01
The loop diuretics furosemide and bumetanide are commonly used in neonatal intensive care units (NICUs). Furosemide, because of its actions on the ubiquitous Na(+) -K(+) -2Cl(-) isoform cotransporter and its promotion of prostanoid production and release, also has non-diuretic effects on vascular smooth muscle, airways, the ductus arteriosus and theoretically the gastrointestinal tract. Loop diuretics also affect the central nervous system through modulation of the GABA-A chloride channel. The loop diuretics have a variety of biological effects that are potentially harmful as well as beneficial. Care should be taken with the use of these agents because the range of their effects may be broader than the single action sought by the prescribing physician. © 2012 The Author(s)/Acta Paediatrica © 2012 Foundation Acta Paediatrica.
On low-energy effective action in three-dimensional = 2 and = 4 supersymmetric electrodynamics
NASA Astrophysics Data System (ADS)
Buchbinder, I. L.; Merzlikin, B. S.; Samsonov, I. B.
2013-11-01
We discuss general structure of low-energy effective actions in = 2 and = 4 three-dimensional supersymmetric electrodynamics (SQED) in gauge superfield sector. There are specific terms in the effective action having no four-dimensional analogs. Some of these terms are responsible for the moduli space metric in the Coulomb branch of the theory. We find two-loop quantum corrections to the moduli space metric in the = 2 SQED and show that in the = 4 SQED the moduli space does not receive two-loop quantum corrections.
Effective action for stochastic partial differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, David; Centro de Astrobiologia, INTA, Carratera Ajalvir, Km. 4, 28850 Torrejon, Madrid,; Molina-Paris, Carmen
Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relationships with quantum field theory. In this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate how to extract all the one-loop physics for an arbitrary SPDE subject to arbitrary Gaussian noise. It is extremely important tomore » realize that Gaussian noise does not imply that the field variables undergo Gaussian fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as serious as might be supposed: Experience with quantum field theories (QFTs) has taught us that one-loop physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does, however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formalism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT) and instead focus attention on a minimalist approach that uses only the physical fields (this ''direct approach'' is the SPDE analog of canonical quantization using physical fields). After setting up the general formalism for the characteristic functional (partition function), we show how to define the effective action to all loops, and then focus on the one-loop effective action and its specialization to constant fields: the effective potential. The physical interpretation of the effective action and effective potential for SPDEs is addressed and we show that key features carry over from QFT to the case of SPDEs. An important result is that the amplitude of the two-point function governing the noise acts as the loop-counting parameter and is the analog of Planck's constant ({Dirac_h}/2{pi}) in this SPDE context. We derive a general expression for the one-loop effective potential of an arbitrary SPDE subject to translation-invariant Gaussian noise, and compare this with the one-loop potential for QFT. (c) 1999 The American Physical Society.« less
Quantum properties of affine-metric gravity with the cosmological term
NASA Astrophysics Data System (ADS)
Baurov, A. Yu; Pronin, P. I.; Stepanyantz, K. V.
2018-04-01
The paper contains analysis of the one-loop effective action for affine-metric gravity of the Hilbert–Einstein type with the cosmological term. We discuss different approaches to the calculation of the effective action, which depends on two independent variables, namely, the metric tensor and the affine connection. In the one-loop approximation we explain how the effective action can be obtained, if, at the first step of the calculation, the metric tensor is integrated out. It is demonstrated that the result is the same as in the case when one starts by integrating out the connection.
Conservation of ζ with radiative corrections from heavy field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Takahiro; Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto, 606-8502; Urakawa, Yuko
2016-06-08
In this paper, we address a possible impact of radiative corrections from a heavy scalar field χ on the curvature perturbation ζ. Integrating out χ, we derive the effective action for ζ, which includes the loop corrections of the heavy field χ. When the mass of χ is much larger than the Hubble scale H, the loop corrections of χ only yield a local contribution to the effective action and hence the effective action simply gives an action for ζ in a single field model, where, as is widely known, ζ is conserved in time after the Hubble crossing time.more » Meanwhile, when the mass of χ is comparable to H, the loop corrections of χ can give a non-local contribution to the effective action. Because of the non-local contribution from χ, in general, ζ may not be conserved, even if the classical background trajectory is determined only by the evolution of the inflaton. In this paper, we derive the condition that ζ is conserved in time in the presence of the radiative corrections from χ. Namely, we show that when the dilatation invariance, which is a part of the diffeomorphism invariance, is preserved at the quantum level, the loop corrections of the massive field χ do not disturb the constant evolution of ζ at super Hubble scales. In this discussion, we show the Ward-Takahashi identity for the dilatation invariance, which yields a consistency relation for the correlation functions of the massive field χ.« less
Action Control: Independent Effects of Memory and Monocular Viewing on Reaching Accuracy
ERIC Educational Resources Information Center
Westwood, D.A.; Robertson, C.; Heath, M.
2005-01-01
Evidence suggests that perceptual networks in the ventral visual pathway are necessary for action control when targets are viewed with only one eye, or when the target must be stored in memory. We tested whether memory-linked (i.e., open-loop versus memory-guided actions) and monocular-linked effects (i.e., binocular versus monocular actions) on…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, Sebastian A. R.; Quevillon, Jérémie; You, Tevong
Recently, a general result for evaluating the path integral at one loop was obtained in the form of the Universal One-Loop Effective Action. It may be used to derive effective field theory operators of dimensions up to six, by evaluating the traces of matrices in this expression, with the mass dependence encapsulated in the universal coefficients. In this study we show that it can account for loops of mixed heavy–light particles in the matching procedure. Our prescription for computing these mixed contributions to the Wilson coefficients is conceptually simple. Moreover it has the advantage of maintaining the universal structure ofmore » the effective action, which we illustrate using the example of integrating out a heavy electroweak triplet scalar coupling to a light Higgs doublet. Finally we also identify new structures that were previously neglected in the universal results.« less
One-loop perturbative coupling of A and A⊙ through the chiral overlap operator
NASA Astrophysics Data System (ADS)
Makino, Hiroki; Morikawa, Okuto; Suzuki, Hiroshi
2017-06-01
We study the one-loop effective action defined by the chiral overlap operator in the four-dimensional lattice formulation of chiral gauge theories by Grabowska and Kaplan. In the tree-level continuum limit, the left-handed component of the fermion is coupled only to the original gauge field A, while the right-handed one is coupled only to A_\\star, which is given by the gradient flow of A with infinite flow time. In this paper, we show that the continuum limit of the one-loop effective action contains local interaction terms between A and A_\\star, which do not generally vanish even if the gauge representation of the fermion is anomaly free. We argue that the presence of such interaction terms can be regarded as undesired gauge symmetry-breaking effects in the formulation.
NASA Astrophysics Data System (ADS)
Ohta, N.; Percacci, R.; Pereira, A. D.
2018-05-01
We compute the one-loop divergences in a theory of gravity with a Lagrangian of the general form f (R ,Rμ νRμ ν), on an Einstein background. We also establish that the one-loop effective action is invariant under a duality that consists of changing certain parameters in the relation between the metric and the quantum fluctuation field. Finally, we discuss the unimodular version of such a theory and establish its equivalence at one-loop order with the general case.
Diuretics in the treatment of hypertension. Part 2: loop diuretics and potassium-sparing agents.
Tamargo, Juan; Segura, Julian; Ruilope, Luis M
2014-04-01
Diuretics enhance the renal excretion of Na(+) and water due to a direct action at different tubular sites of the nephron where solute re-absorption occurs. This paper focuses on the mechanism of action, pharmacodynamics, antihypertensive effects, adverse effects, interactions and contraindications of loop diuretics and potassium-sparing agents (including mineralocorticoid receptor antagonists (MRAs) and epithelial Na(+) channel blockers). Loop diuretics are less effective than thiazide diuretics in lowering blood pressure, so that their major use is in edematous patients with congestive heart failure (HF), cirrhosis with ascites and nephritic edema. MRAs represent a major advance in the treatment of resistant hypertension, primary and secondary hyperaldosteronism and in patients with systolic HF to reduce the risks of hospitalization and of premature death. Potassium-sparing diuretics when coadministered with diuretics (thiazides and loop diuretics) working at more proximal nephron locations reduce the risk of hypokalemia and hypomagnesemia and the risk of cardiac arrhythmias. At the end of the article, the basis for the combination of diuretics with other antihypertensive drugs to achieve blood pressure targets is presented.
NASA Astrophysics Data System (ADS)
Gilet, Estelle; Diard, Julien; Palluel-Germain, Richard; Bessière, Pierre
2011-03-01
This paper is about modeling perception-action loops and, more precisely, the study of the influence of motor knowledge during perception tasks. We use the Bayesian Action-Perception (BAP) model, which deals with the sensorimotor loop involved in reading and writing cursive isolated letters and includes an internal simulation of movement loop. By using this probabilistic model we simulate letter recognition, both with and without internal motor simulation. Comparison of their performance yields an experimental prediction, which we set forth.
Antisymmetric Wilson loops in N = 4 SYM beyond the planar limit
NASA Astrophysics Data System (ADS)
Gordon, James
2018-01-01
We study the 1/2 -BPS circular Wilson loop in the totally antisymmetric representation of the gauge group in N = 4 supersymmetric Yang-Mills. This observable is captured by a Gaussian matrix model with appropriate insertion. We compute the first 1 /N correction at leading order in 't Hooft coupling by means of the matrix model loop equations. Disagreement with the 1-loop effective action of the holographically dual D5-brane suggests the need to account for gravitational backreaction on the string theory side.
Higher Rank ABJM Wilson Loops from Matrix Models
NASA Astrophysics Data System (ADS)
Cookmeyer, Jonathan; Liu, James; Zayas, Leopoldo
2017-01-01
We compute the expectation values of 1/6 supersymmetric Wilson Loops in ABJM theory in higher rank representations. Using standard matrix model techniques, we calculate the expectation value in the rank m fully symmetric and fully antisymmetric representation where m is scaled with N. To leading order, we find agreement with the classical action of D6 and D2 branes in AdS4 ×CP3 respectively. Further, we compute the first subleading order term, which, on the AdS side, makes a prediction for the one-loop effective action of the corresponding D6 and D2 branes. Supported by the National Science Foundation under Grant No. PHY 1559988 and the US Department of Energy under Grant No. DE-SC0007859.
One-loop light-cone QCD, effective action for reggeized gluons and QCD RFT calculus
NASA Astrophysics Data System (ADS)
Bondarenko, S.; Lipatov, L.; Pozdnyakov, S.; Prygarin, A.
2017-09-01
The effective action for reggeized gluons is based on the gluodynamic Yang-Mills Lagrangian with external current for longitudinal gluons added, see Lipatov (Nucl Phys B 452:369, 1995; Phys Rep 286:131, 1997; Subnucl Ser 49:131, 2013; Int J Mod Phys Conf Ser 39:1560082, 2015; Int J Mod Phys A 31(28/29):1645011, 2016; EPJ Web Conf 125:01010, 2016). On the base of classical solutions, obtained in Bondarenko et al. (Eur Phys J C 77(8):527, 2017), the one-loop corrections to this effective action in light-cone gauge are calculated. The RFT calculus for reggeized gluons similarly to the RFT introduced in Gribov (Sov Phys JETP 26:414, 1968) is proposed and discussed. The correctness of the results is verified by calculation of the propagators of A+ and A- reggeized gluons fields and application of the obtained results is discussed as well.
Yam, Chun-Shan
2007-11-01
The purpose of this article is to describe an alternative for creating scrollable movie loops for electronic presentations including PowerPoint. The alternative provided in this article enables academic radiologists to present scrollable movie loops in PowerPoint. The scrolling capability is created using Flash ActionScript. A Flash template with the required ActionScript code is provided. Users can simply download the template and follow the step-by-step demonstration to create scrollable movie loops. No previous ActionScript programming knowledge is necessary.
A proposal of a local modified QCD
NASA Astrophysics Data System (ADS)
Cabo Montes de Oca, A.
2012-06-01
A local and renormalizable version of a modified PQCD introduced in previous works is presented. The construction indicates that it could be equivalent to massless QCD. The case in which only quark condensate effects are retained is discussed in more detail. Then, the appearing auxiliary fermion fields can be integrated, leading to a theory with the action of massless QCD, to which one local and gauge invariant Lagrangian term for each quark flavour is added. Those action terms are defined by two gluon and two quark fields, in a form curiously not harming power counting renormalizability. The gluon self-energy is evaluated in second order in the gauge coupling and all orders in the new quark couplings, and the result became transversal as required by the gauge invariance. The vacuum energy was also calculated in the two-loop approximation and became gauge parameter independent. The possibilities that higher-loop contributions to the vacuum energy allow the generation of a quark mass hierarchy as a flavour symmetry-breaking effect are commented. The decision on this issue needs a further evaluation of more than two-loop contributions, in which more than one type of quark loops start appearing, possibly leading to interference effects in the vacuum energy.
Effects of Coulomb collisions on cyclotron maser and plasma wave growth in magnetic loops
NASA Technical Reports Server (NTRS)
Hamilton, Russell J.; Petrosian, Vahe
1990-01-01
The evolution of nonthermal electrons accelerated in magnetic loops is determined by solving the kinetic equation, including magnetic field convergence and Coulomb collisions in order to determine the effects of these interactions on the induced cyclotron maser and plasma wave growth. It is found that the growth rates are larger and the possibility of cyclotron maser action is stronger for smaller loop column density, for larger magnetic field convergence, for a more isotropic injected electron pitch angle distribution, and for more impulsive acceleration. For modest values of the column density in the coronal portion of a flaring loop, the growth rates of instabilities are significantly reduced, and the reduction is much larger for the cyclotron modes than for the plasma wave modes. The rapid decrease in the growth rates with increasing loop column density suggests that, in flare loops when such phenomena occur, the densities are lower than commonly accepted.
Loop Diuretics in the Treatment of Hypertension.
Malha, Line; Mann, Samuel J
2016-04-01
Loop diuretics are not recommended in current hypertension guidelines largely due to the lack of outcome data. Nevertheless, they have been shown to lower blood pressure and to offer potential advantages over thiazide-type diuretics. Torsemide offers advantages of longer duration of action and once daily dosing (vs. furosemide and bumetanide) and more reliable bioavailability (vs. furosemide). Studies show that the previously employed high doses of thiazide-type diuretics lower BP more than furosemide. Loop diuretics appear to have a preferable side effect profile (less hyponatremia, hypokalemia, and possibly less glucose intolerance). Studies comparing efficacy and side effect profiles of loop diuretics with the lower, currently widely prescribed, thiazide doses are needed. Research is needed to fill gaps in knowledge and common misconceptions about loop diuretic use in hypertension and to determine their rightful place in the antihypertensive arsenal.
Loop-corrected Virasoro symmetry of 4D quantum gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, T.; Kapec, D.; Raclariu, A.
Recently a boundary energy-momentum tensor T zz has been constructed from the soft graviton operator for any 4D quantum theory of gravity in asymptotically flat space. Up to an “anomaly” which is one-loop exact, T zz generates a Virasoro action on the 2D celestial sphere at null infinity. Here we show by explicit construction that the effects of the IR divergent part of the anomaly can be eliminated by a one-loop renormalization that shifts T zz .
Loop-corrected Virasoro symmetry of 4D quantum gravity
He, T.; Kapec, D.; Raclariu, A.; ...
2017-08-16
Recently a boundary energy-momentum tensor T zz has been constructed from the soft graviton operator for any 4D quantum theory of gravity in asymptotically flat space. Up to an “anomaly” which is one-loop exact, T zz generates a Virasoro action on the 2D celestial sphere at null infinity. Here we show by explicit construction that the effects of the IR divergent part of the anomaly can be eliminated by a one-loop renormalization that shifts T zz .
The Sustainability Cycle and Loop: models for a more unified understanding of sustainability.
Hay, Laura; Duffy, Alex; Whitfield, R I
2014-01-15
In spite of the considerable research on sustainability, reports suggest that we are barely any closer to a more sustainable society. As such, there is an urgent need to improve the effectiveness of human efforts towards sustainability. A clearer and more unified understanding of sustainability among different people and sectors could help to facilitate this. This paper presents the results of an inductive literature investigation, aiming to develop models to explain the nature of sustainability in the Earth system, and how humans can effectively strive for it. The major contributions are two general and complementary models, that may be applied in any context to provide a common basis for understanding sustainability: the Sustainability Cycle (S-Cycle), and the Sustainability Loop (S-Loop). Literature spanning multiple sectors is examined from the perspective of three concepts, emerging as significant in relation to our aim. Systems are shown to provide the context for human action towards sustainability, and the nature of the Earth system and its sub-systems is explored. Activities are outlined as a fundamental target that humans need to sustain, since they produce the entities both needed and desired by society. The basic behaviour of activities operating in the Earth system is outlined. Finally, knowledge is positioned as the driver of human action towards sustainability, and the key components of knowledge involved are examined. The S-Cycle and S-Loop models are developed via a process of induction from the reviewed literature. The S-Cycle describes the operation of activities in a system from the perspective of sustainability. The sustainability of activities in a system depends upon the availability of resources, and the availability of resources depends upon the rate that activities consume and produce them. Humans may intervene in these dynamics via an iterative process of interpretation and action, described in the S-Loop model. The models are briefly applied to a system described in the literature. It is shown that the S-Loop may be used to guide efforts towards sustainability in a particular system of interest, by prescribing the basic activities involved. The S-Cycle may be applied complementary to the S-Loop, to support the interpretation of activity behaviour described in the latter. Given their general nature, the models provide the basis for a more unified understanding of sustainability. It is hoped that their use may go some way towards improving the effectiveness of human action towards sustainability. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kamisetty, Supradeep Kumar; N, Raghuveer; N, Rajavikram; N, Chakrapani; Dwaragesh; Praven
2014-07-01
Evaluations on retraction loop designs have been limited to describe the force systems applied to the buccal surfaces of the tooth that can be in different planes resulting undesirable effects, needing corrective action in future. By initially understanding these effects, modifications to the loop design can essentially counteract the undesired affects. To deter-mine Moments & M/F ratios produced by different gabling in the three retraction loops (Tear drop loop, T-loop, Open vertical loop) and movement of the anterior teeth and posterior teeth) of the maxillary arch in an extraction model, on activation of three retraction loops by1 mm. A PC with Quad core processor, 8GB RAM, 1TB storage space and Graphic Accelerator was used. Computer Software: ANSYS Version11, PRO/ENGINEER was used in the study. The first step is modeling, done by using Pro/Engineer software and for creating a model the CT scan data is required. The maxilla with teeth of a patient is scanned at various sections at regular intervals of 0.5 mm. These scanned images are then imported into Pro/E software to various offset planes. Once imported, the software can do an automatic meshing and establishes contact automatically. When angulations increases intrusive or extrusive movements and movements in horizontal direction of crown tip and root tip increases. All values of T-loop are more than Teardrop loop and less than Open vertical loop. FEM study concludes that Teardrop loop with 10-20(α-β) combination is preferred for Group A anchorage.
One-loop perturbative coupling of A and A? through the chiral overlap operator
NASA Astrophysics Data System (ADS)
Makino, Hiroki; Morikawa, Okuto; Suzuki, Hiroshi
2018-03-01
Recently, Grabowska and Kaplan constructed a four-dimensional lattice formulation of chiral gauge theories on the basis of the chiral overlap operator. At least in the tree-level approximation, the left-handed fermion is coupled only to the original gauge field A, while the right-handed one is coupled only to the gauge field A*, a deformation of A by the gradient flow with infinite flow time. In this paper, we study the fermion one-loop effective action in their formulation. We show that the continuum limit of this effective action contains local interaction terms between A and A*, even if the anomaly cancellation condition is met. These non-vanishing terms would lead an undesired perturbative spectrum in the formulation.
Application of active control landing gear technology to the A-10 aircraft
NASA Technical Reports Server (NTRS)
Ross, I.; Edson, R.
1983-01-01
Two concepts which reduce the A-10 aircraft's wing/gear interface forces as a result of applying active control technology to the main landing gear are described. In the first concept, referred to as the alternate concept a servovalve in a closed pressure control loop configuration effectively varies the size of the third stage spool valve orifice which is embedded in the strut. This action allows the internal energy in the strut to shunt hydraulic flow around the metering orifice. The command signal to the loop is reference strut pressure which is compared to the measured strut pressure, the difference being the loop error. Thus, the loop effectively varies the spool valve orifice size to maintain the strut pressure, and therefore minimizes the wing/gear interface force referenced.
NASA Astrophysics Data System (ADS)
O'Donnell, Patrick J.; Smith, Brian Hendee
1996-11-01
The Table of Contents for the full book PDF is as follows: * Preface * Roberto Mendel, An Appreciaton * The Infamous Coulomb Gauge * Renormalized Path Integral in Quantum Mechanics * New Analysis of the Divergence of Perturbation Theory * The Last of the Soluble Two Dimensional Field Theories? * Rb and Heavy Quark Mixing * Rb Problem: Loop Contributions and Supersymmetry * QCD Radiative Effects in Inclusive Hadronic B Decays * CP-Violating Dipole Moments of Quarks in the Kobayashi-Maskawa Model * Hints of Dynamical Symmetry Breaking? * Pi Pi Scattering in an Effective Chiral Lagrangian * Pion-Resonance Parameters from QCD Sum Rules * Higgs Theorem, Effective Action, and its Gauge Invariance * SUSY and the Decay H_2^0 to gg * Effective Higgs-to-Light Quark Coupling Induced by Heavy Quark Loops * Heavy Charged Lepton Production in Superstring Inspired E6 Models * The Elastic Properties of a Flat Crystalline Membrane * Gauge Dependence of Topological Observables in Chern-Simons Theory * Entanglement Entropy From Edge States * A Simple General Treatment of Flavor Oscillations * From Schrödinger to Maupertuis: Least Action Principles from Quantum Mechanics * The Matrix Method for Multi-Loop Feynman Integrals * Simplification in QCD and Electroweak Calculations * Programme * List of Participants
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
... on the Interchange of State Loop 1604 and United States Highway 281 in Texas AGENCY: Federal Highway... agencies that are final within the meaning of 23 U.S.C. 139(l)(1). The actions relate to a proposed highway project, the interchange of Texas State Loop 1604 (LP 1604) with United States Highway 281 (US 281...
Naito, Anna; Muchhala, Karan H.; Trang, Janice; Asatryan, Liana; Trudell, James R.; Homanics, Gregg E.; Alkana, Ronald L.; Davies, Daryl L.
2015-01-01
We recently developed Ultra-Sensitive Ethanol Receptors (USERs) as a novel tool for investigation of single receptor subunit populations sensitized to extremely low ethanol concentrations that do not affect other receptors in the nervous system. To this end, we found that mutations within the extracellular Loop 2 region of glycine receptors (GlyRs) and γ-aminobutyric acid type A receptors (GABAARs) can significantly increase receptor sensitivity to micro-molar concentrations of ethanol resulting in up to a 100-fold increase in ethanol sensitivity relative to wild type (WT) receptors. The current study investigated: 1) Whether structural manipulations of Loop 2 in α1 GlyRs could similarly increase receptor sensitivity to other anesthetics; and 2) If mutations exclusive to the C-terminal end of Loop 2 are sufficient to impart these changes. We expressed α1 GlyR USERs in Xenopus oocytes and tested the effects of three classes of anesthetics, isoflurane (volatile), propofol (intravenous), and lidocaine (local), known to enhance glycine-induced chloride currents using two-electrode voltage clamp electrophysiology. Loop 2 mutations produced a significant 10-fold increase in isoflurane and lidocaine sensitivity, but no increase in propofol sensitivity compared to WT α1 GlyRs. Interestingly, we also found that structural manipulations in the C-terminal end of Loop 2 were sufficient and selective for α1 GlyR modulation by ethanol, isoflurane, and lidocaine. These studies are the first to report the extracellular region of α1 GlyRs as a site of lidocaine action. Overall, the findings suggest that Loop 2 of α1 GlyRs is a key region that mediates isoflurane and lidocaine modulation. Moreover, the results identify important amino acids in Loop 2 that regulate isoflurane, lidocaine, and ethanol action. Collectively, these data indicate the commonality of the sites for isoflurane, lidocaine, and ethanol action, and the structural requirements for allosteric modulation on α1 GlyRs within the extracellular Loop 2 region. PMID:25827497
Electronic Maxwell demon in the coherent strong-coupling regime
NASA Astrophysics Data System (ADS)
Schaller, Gernot; Cerrillo, Javier; Engelhardt, Georg; Strasberg, Philipp
2018-05-01
We consider an external feedback control loop implementing the action of a Maxwell demon. Applying control actions that are conditioned on measurement outcomes, the demon may transport electrons against a bias voltage and thereby effectively converts information into electric power. While the underlying model—a feedback-controlled quantum dot that is coupled to two electronic leads—is well explored in the limit of small tunnel couplings, we can address the strong-coupling regime with a fermionic reaction-coordinate mapping. This exact mapping transforms the setup into a serial triple quantum dot coupled to two leads. We find that a continuous projective measurement of the central dot occupation would lead to a complete suppression of electronic transport due to the quantum Zeno effect. In contrast, by using a microscopic detector model we can implement a weak measurement, which allows for closure of the control loop without transport blockade. Then, in the weak-coupling regime, the energy flows associated with the feedback loop are negligible, and dominantly the information gained in the measurement induces a bound for the generated electric power. In the strong coupling limit, the protocol may require more energy for operating the control loop than electric power produced, such that the whole device is no longer information dominated and can thus not be interpreted as a Maxwell demon.
Ihara, Makoto; Hikida, Mai; Matsushita, Hiroyuki; Yamanaka, Kyosuke; Kishimoto, Yuya; Kubo, Kazuki; Watanabe, Shun; Sakamoto, Mifumi; Matsui, Koutaro; Yamaguchi, Akihiro; Okuhara, Daiki; Furutani, Shogo; Sattelle, David B; Matsuda, Kazuhiko
2018-06-01
Neonicotinoid insecticides interact with the orthosteric site formed at subunit interfaces of insect nicotinic ACh (nACh) receptors. However, their interactions with the orthosteric sites at α-non α and α-α subunit interfaces remain poorly understood. The aim of this study was to elucidate the mechanism of neonicotinoid actions using the Drosophila Dα1-chicken β2 hybrid nACh receptor. Computer models of the (Dα1) 3 (β2) 2 nACh receptor in complex with imidacloprid and thiacloprid were generated. Amino acids in the Dα1 subunit were mutated to corresponding amino acids in the human α4 subunit to examine their effects on the agonist actions of neonicotinoids on (Dα1) 3 (β2) 2 and (Dα1) 2 (β2) 3 nACh receptors expressed in Xenopus laevis oocytes using voltage-clamp electrophysiology. The (Dα1) 3 (β2) 2 nACh receptor models indicated that amino acids in loops D, E and G probably determine the effects of neonicotinoids. The amino acid mutations tested had minimal effects on the EC 50 for ACh. However, the R57S mutation in loop G, although having minimal effect on imidacloprid's actions, reduced the affinity of thiacloprid for the (Dα1) 3 (β2) 2 nACh receptor, while scarcely affecting thiacloprid's action on the (Dα1) 2 (β2) 3 nACh receptor. Both the K140T and the combined R57S;K140T mutations reduced neonicotinoid efficacy but only for the (Dα1) 3 (β2) 2 nACh receptor. Combining the E78K mutation with the R57S;K140T mutations resulted in a selective reduction of thiacloprid's affinity for the (Dα1) 3 (β2) 2 nACh receptor. These findings suggest that a triangle of residues from loops D, E and G contribute to the selective actions of neonicotinoids on insect-vertebrate hybrid nACh receptors. This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc. © 2017 The British Pharmacological Society.
Intelligent flight control systems
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1993-01-01
The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.
Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions
NASA Astrophysics Data System (ADS)
Netz, R. R.; Orland, H.
2000-02-01
We formulate the exact non-linear field theory for a fluctuating counter-ion distribution in the presence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the saddle-point of the field-theoretic action, and the effects of counter-ion fluctuations are included by a loop-wise expansion around this saddle point. The Poisson equation is obeyed at each order in this loop expansion. We explicitly give the expansion of the Gibbs potential up to two loops. We then apply our field-theoretic formalism to the case of a single impenetrable wall with counter ions only (in the absence of salt ions). We obtain the fluctuation corrections to the electrostatic potential and the counter-ion density to one-loop order without further approximations. The relative importance of fluctuation corrections is controlled by a single parameter, which is proportional to the cube of the counter-ion valency and to the surface charge density. The effective interactions and correlation functions between charged particles close to the charged wall are obtained on the one-loop level.
2PI effective action for the SYK model and tensor field theories
NASA Astrophysics Data System (ADS)
Benedetti, Dario; Gurau, Razvan
2018-05-01
We discuss the two-particle irreducible (2PI) effective action for the SYK model and for tensor field theories. For the SYK model the 2PI effective action reproduces the bilocal reformulation of the model without using replicas. In general tensor field theories the 2PI formalism is the only way to obtain a bilocal reformulation of the theory, and as such is a precious instrument for the identification of soft modes and for possible holographic interpretations. We compute the 2PI action for several models, and push it up to fourth order in the 1 /N expansion for the model proposed by Witten in [1], uncovering a one-loop structure in terms of an auxiliary bilocal action.
NASA Astrophysics Data System (ADS)
Bodendorfer, N.; Schäfer, A.; Schliemann, J.
2018-04-01
Chamseddine and Mukhanov recently proposed a modified version of general relativity that implements the idea of a limiting curvature. In the spatially flat, homogeneous, and isotropic sector, their theory turns out to agree with the effective dynamics of the simplest version of loop quantum gravity if one identifies their limiting curvature with a multiple of the Planck curvature. At the same time, it extends to full general relativity without any symmetry assumptions and thus provides an ideal toy model for full loop quantum gravity in the form of a generally covariant effective action known to all orders. In this paper, we study the canonical structure of this theory and point out some interesting lessons for loop quantum gravity. We also highlight in detail how the two theories are connected in the spatially flat, homogeneous, and isotropic sector.
On the two-loop divergences of the 2-point hypermultiplet supergraphs for 6D, N = (1 , 1) SYM theory
NASA Astrophysics Data System (ADS)
Buchbinder, I. L.; Ivanov, E. A.; Merzlikin, B. S.; Stepanyantz, K. V.
2018-03-01
We consider 6D, N = (1 , 1) supersymmetric Yang-Mills theory formulated in N = (1 , 0) harmonic superspace and analyze the structure of the two-loop divergences in the hypermultiplet sector. Using the N = (1 , 0) superfield background field method we study the two-point supergraphs with the hypermultiplet legs and prove that their total contribution to the divergent part of effective action vanishes off shell.
Yamaguchi, Motonori; Logan, Gordon D; Li, Vanessa
2013-08-01
Does response selection select words or letters in skilled typewriting? Typing performance involves hierarchically organized control processes: an outer loop that controls word level processing, and an inner loop that controls letter (or keystroke) level processing. The present study addressed whether response selection occurs in the outer loop or the inner loop by using the psychological refractory period (PRP) paradigm in which Task1 required typing single words and Task2 required vocal responses to tones. The number of letters (string length) in the words was manipulated to discriminate selection of words from selection of keystrokes. In Experiment 1, the PRP effect depended on string length of words in Task1, suggesting that response selection occurs in the inner loop. To assess contributions of the outer loop, the influence of string length was examined in a lexical-decision task that also involves word encoding and lexical access (Experiment 2), or to-be-typed words were preexposed so outer-loop processing could finish before typing started (Experiment 3). Response time for Task2 (RT2) did not depend on string length with lexical decision, and RT2 still depended on string length with typing preexposed strings. These results support the inner-loop locus of the PRP effect. In Experiment 4, typing was performed as Task2, and the effect of string length on typing RT interacted with stimulus onset asynchrony superadditively, implying that another bottleneck also exists in the outer loop. We conclude that there are at least two bottleneck processes in skilled typewriting. 2013 APA, all rights reserved
The ξ/ξ2nd ratio as a test for Effective Polyakov Loop Actions
NASA Astrophysics Data System (ADS)
Caselle, Michele; Nada, Alessandro
2018-03-01
Effective Polyakov line actions are a powerful tool to study the finite temperature behaviour of lattice gauge theories. They are much simpler to simulate than the original (3+1) dimensional LGTs and are affected by a milder sign problem. However it is not clear to which extent they really capture the rich spectrum of the original theories, a feature which is instead of great importance if one aims to address the sign problem. We propose here a simple way to address this issue based on the so called second moment correlation length ξ2nd. The ratio ξ/ξ2nd between the exponential correlation length and the second moment one is equal to 1 if only a single mass is present in the spectrum, and becomes larger and larger as the complexity of the spectrum increases. Since both ξexp and ξ2nd are easy to measure on the lattice, this is an economic and effective way to keep track of the spectrum of the theory. In this respect we show using both numerical simulation and effective string calculations that this ratio increases dramatically as the temperature decreases. This non-trivial behaviour should be reproduced by the Polyakov loop effective action.
Paës, Gabriel; Cortés, Juan; Siméon, Thierry; O'Donohue, Michael J.; Tran, Vinh
2012-01-01
Dynamics is a key feature of enzyme catalysis. Unfortunately, current experimental and computational techniques do not yet provide a comprehensive understanding and description of functional macromolecular motions. In this work, we have extended a novel computational technique, which combines molecular modeling methods and robotics algorithms, to investigate functional motions of protein loops. This new approach has been applied to study the functional importance of the so-called thumb-loop in the glycoside hydrolase family 11 xylanase from Thermobacillus xylanilyticus (Tx-xyl). The results obtained provide new insight into the role of the loop in the glycosylation/deglycosylation catalytic cycle, and underline the key importance of the nature of the residue located at the tip of the thumb-loop. The effect of mutations predicted in silico has been validated by in vitro site-directed mutagenesis experiments. Overall, we propose a comprehensive model of Tx-xyl catalysis in terms of substrate and product dynamics by identifying the action of the thumb-loop motion during catalysis. PMID:24688637
ERIC Educational Resources Information Center
Cetin, Ibrahim
2015-01-01
The purpose of this study is to explore students' understanding of loops and nested loops concepts. Sixty-three mechanical engineering students attending an introductory programming course participated in the study. APOS (Action, Process, Object, Schema) is a constructivist theory developed originally for mathematics education. This study is the…
Running with rugby balls: bulk renormalization of codimension-2 branes
NASA Astrophysics Data System (ADS)
Williams, M.; Burgess, C. P.; van Nierop, L.; Salvio, A.
2013-01-01
We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D - 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane's effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.
Non-polynomial closed string field theory: loops and conformal maps
NASA Astrophysics Data System (ADS)
Hua, Long; Kaku, Michio
1990-11-01
Recently, we proposed the complete classical action for the non-polynomial closed string field theory, which succesfully reproduced all closed string tree amplitudes. (The action was simultaneously proposed by the Kyoto group). In this paper, we analyze the structure of the theory. We (a) compute the explicit conformal map for all g-loop, p-puncture diagrams, (b) compute all one-loop, two-puncture maps in terms of hyper-elliptic functions, and (c) analyze their modular structure. We analyze, but do not resolve, the question of modular invariance.
Some new results for the one-loop mass correction to the compactified λϕ4 theory
NASA Astrophysics Data System (ADS)
Fucci, Guglielmo; Kirsten, Klaus
2018-03-01
In this work, we consider the one-loop effective action of a self-interacting λϕ4 field propagating in a D dimensional Euclidean space endowed with d ≤ D compact dimensions. The main purpose of this paper is to compute the corrections to the mass of the field due to the presence of the compactified dimensions. Although the results of the one-loop correction to the mass of a λϕ4 field are very well known for compactified toroidal spaces, where the field obeys periodic boundary conditions, similar results do not appear to be readily available for cases in which the scalar field is subject to Dirichlet and Neumann boundary conditions. We apply the results of the one-loop mass correction to the study of the critical temperature in Ginzburg-Landau models.
Applying Influence Diagrams to Support Collective C2 in Multinational Civil-Military Operations
2011-06-01
highlighting pathways of influence, it is possible to set a course (or courses ) of action which will be taken in order to achieve the desired objectives...from the general activities of the operation, by highlighting these loops on the ID and showing how they feed into the main courses of action may once...are taken. These courses of action and active loops can be shown to members of humanitarian organisations and local government representatives in
NASA Astrophysics Data System (ADS)
Cooper, Fred; Dawson, John F.
2016-02-01
We present an alternative to the perturbative (in coupling constant) diagrammatic approach for studying stochastic dynamics of a class of reaction diffusion systems. Our approach is based on an auxiliary field loop expansion for the path integral representation for the generating functional of the noise induced correlation functions of the fields describing these systems. The systems we consider include Langevin systems describable by the set of self interacting classical fields ϕi(x , t) in the presence of external noise ηi(x , t) , namely (∂t - ν∇2) ϕ - F [ ϕ ] = η, as well as chemical reaction annihilation processes obtained by applying the many-body approach of Doi-Peliti to the Master Equation formulation of these problems. We consider two different effective actions, one based on the Onsager-Machlup (OM) approach, and the other due to Janssen-deGenneris based on the Martin-Siggia-Rose (MSR) response function approach. For the simple models we consider, we determine an analytic expression for the Energy landscape (effective potential) in both formalisms and show how to obtain the more physical effective potential of the Onsager-Machlup approach from the MSR effective potential in leading order in the auxiliary field loop expansion. For the KPZ equation we find that our approximation, which is non-perturbative and obeys broken symmetry Ward identities, does not lead to the appearance of a fluctuation induced symmetry breakdown. This contradicts the results of earlier studies.
Inflationary magnetogenesis and non-local actions: the conformal anomaly
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Menoufi, Basem Kamal, E-mail: bmahmoud@physics.umass.edu
2016-02-01
We discuss the possibility of successful magnetogenesis during inflation by employing the one-loop effective action of massless QED. The action is strictly non-local and results from the long distance fluctuations of massless charged particles present at the inflationary scale. Most importantly, it encodes the conformal anomaly of QED which is crucial to avoid the vacuum preservation in classical electromagnetism. In particular, we find a blue spectrum for the magnetic field with spectral index n{sub B} ≅ 2 − α{sub e} where α{sub e} depends on both the number of e-folds during inflation as well as the coefficient of the one-loop beta function. In particular,more » the sign of the beta function has important bearing on the final result. A low reheating temperature is required for the present day magnetic field to be consistent with the lower bound inferred on the field in the intergalactic medium.« less
Using video modeling with substitutable loops to teach varied play to children with autism.
Dupere, Sally; MacDonald, Rebecca P F; Ahearn, William H
2013-01-01
Children with autism often engage in repetitive play with little variation in the actions performed or items used. This study examined the use of video modeling with scripted substitutable loops on children's pretend play with trained and untrained characters. Three young children with autism were shown a video model of scripted toy play that included a substitutable loop that allowed various characters to perform the same actions and vocalizations. Three characters were modeled with the substitutable loop during training sessions, and 3 additional characters were present in the video but never modeled. Following video modeling, all the participants incorporated untrained characters into their play, but the extent to which they did so varied. © Society for the Experimental Analysis of Behavior.
One-loop matching and running with covariant derivative expansion
Henning, Brian; Lu, Xiaochuan; Murayama, Hitoshi
2018-01-24
We develop tools for performing effective field theory (EFT) calculations in a manifestly gauge-covariant fashion. We clarify how functional methods account for one-loop diagrams resulting from the exchange of both heavy and light fields, as some confusion has recently arisen in the literature. To efficiently evaluate functional traces containing these “mixed” one-loop terms, we develop a new covariant derivative expansion (CDE) technique that is capable of evaluating a much wider class of traces than previous methods. The technique is detailed in an appendix, so that it can be read independently from the rest of this work. We review the well-knownmore » matching procedure to one-loop order with functional methods. What we add to this story is showing how to isolate one-loop terms coming from diagrams involving only heavy propagators from diagrams with mixed heavy and light propagators. This is done using a non-local effective action, which physically connects to the notion of “integrating out” heavy fields. Lastly, we show how to use a CDE to do running analyses in EFTs, i.e. to obtain the anomalous dimension matrix. We demonstrate the methodologies by several explicit example calculations.« less
One-loop matching and running with covariant derivative expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henning, Brian; Lu, Xiaochuan; Murayama, Hitoshi
We develop tools for performing effective field theory (EFT) calculations in a manifestly gauge-covariant fashion. We clarify how functional methods account for one-loop diagrams resulting from the exchange of both heavy and light fields, as some confusion has recently arisen in the literature. To efficiently evaluate functional traces containing these “mixed” one-loop terms, we develop a new covariant derivative expansion (CDE) technique that is capable of evaluating a much wider class of traces than previous methods. The technique is detailed in an appendix, so that it can be read independently from the rest of this work. We review the well-knownmore » matching procedure to one-loop order with functional methods. What we add to this story is showing how to isolate one-loop terms coming from diagrams involving only heavy propagators from diagrams with mixed heavy and light propagators. This is done using a non-local effective action, which physically connects to the notion of “integrating out” heavy fields. Lastly, we show how to use a CDE to do running analyses in EFTs, i.e. to obtain the anomalous dimension matrix. We demonstrate the methodologies by several explicit example calculations.« less
One-loop matching and running with covariant derivative expansion
NASA Astrophysics Data System (ADS)
Henning, Brian; Lu, Xiaochuan; Murayama, Hitoshi
2018-01-01
We develop tools for performing effective field theory (EFT) calculations in a manifestly gauge-covariant fashion. We clarify how functional methods account for one-loop diagrams resulting from the exchange of both heavy and light fields, as some confusion has recently arisen in the literature. To efficiently evaluate functional traces containing these "mixed" one-loop terms, we develop a new covariant derivative expansion (CDE) technique that is capable of evaluating a much wider class of traces than previous methods. The technique is detailed in an appendix, so that it can be read independently from the rest of this work. We review the well-known matching procedure to one-loop order with functional methods. What we add to this story is showing how to isolate one-loop terms coming from diagrams involving only heavy propagators from diagrams with mixed heavy and light propagators. This is done using a non-local effective action, which physically connects to the notion of "integrating out" heavy fields. Lastly, we show how to use a CDE to do running analyses in EFTs, i.e. to obtain the anomalous dimension matrix. We demonstrate the methodologies by several explicit example calculations.
One-loop Pfaffians and large-field inflation in string theory
NASA Astrophysics Data System (ADS)
Ruehle, Fabian; Wieck, Clemens
2017-06-01
We study the consistency of large-field inflation in low-energy effective field theories of string theory. In particular, we focus on the stability of Kähler moduli in the particularly interesting case where the non-perturbative superpotential of the Kähler sector explicitly depends on the inflaton field. This situation arises generically due to one-loop corrections to the instanton action. The field dependence of the modulus potential feeds back into the inflationary dynamics, potentially impairing slow roll. We distinguish between world-sheet instantons from Euclidean D-branes, which typically yield polynomial one-loop Pfaffians, and gaugino condensates, which can yield exponential or periodic corrections. In all scenarios successful slow-roll inflation imposes bounds on the magnitude of the one-loop correction, corresponding to constraints on possible compactifications. While we put a certain emphasis on Type IIB constructions with mobile D7-branes, our results seem to apply more generally.
Breaking a habit: a further role of the phonological loop in action control.
Saeki, Erina; Baddeley, Alan D; Hitch, Graham J; Saito, Satoru
2013-10-01
Recent research has suggested that keeping track of a task goal in rapid task switching may depend on the phonological loop component of working memory. In this study, we investigated whether the phonological loop plays a similar role when a single switch extending over several trials is required after many trials on which one has performed a competing task. Participants were shown pairs of digits varying in numerical and physical size, and they were required to decide which digit was numerically or physically larger. An experimental cycle consisted of four blocks of 24 trials. In Experiment 1, participants in the task change groups performed the numerical-size judgment task during the first three blocks, and then changed to the physical-size judgment task in the fourth. Participants in the continuation groups performed only the physical-size judgment task throughout all four blocks. We found negative effects of articulatory suppression on the fourth block, but only in the task change groups. Experiment 2 was a replication, with the modification that both groups received identical instructions and practice. Experiment 3 was a further replication using numerical-size judgment as the target task. The results showed a pattern similar to that from Experiment 1, with negative effects of articulatory suppression found only in the task change group. The congruity of numerical and physical size had a reliable effect on performance in all three experiments, but unlike the task change, it did not reliably interact with articulatory suppression. The results suggest that in addition to its well-established role in rapid task switching, the phonological loop also contributes to active goal maintenance in longer-term action control.
Understanding the Hysteresis Loop Conundrum in Pharmacokinetic / Pharmacodynamic Relationships
Louizos, Christopher; Yáñez, Jaime A.; Forrest, Laird; Davies, Neal M.
2015-01-01
Hysteresis loops are phenomena that sometimes are encountered in the analysis of pharmacokinetic and pharmacodynamic relationships spanning from pre-clinical to clinical studies. When hysteresis occurs it provides insight into the complexity of drug action and disposition that can be encountered. Hysteresis loops suggest that the relationship between drug concentration and the effect being measured is not a simple direct relationship, but may have an inherent time delay and disequilibrium, which may be the result of metabolites, the consequence of changes in pharmacodynamics or the use of a non-specific assay or may involve an indirect relationship. Counter-clockwise hysteresis has been generally defined as the process in which effect can increase with time for a given drug concentration, while in the case of clockwise hysteresis the measured effect decreases with time for a given drug concentration. Hysteresis loops can occur as a consequence of a number of different pharmacokinetic and pharmacodynamic mechanisms including tolerance, distributional delay, feedback regulation, input and output rate changes, agonistic or antagonistic active metabolites, uptake into active site, slow receptor kinetics, delayed or modified activity, time-dependent protein binding and the use of racemic drugs among other factors. In this review, each of these various causes of hysteresis loops are discussed, with incorporation of relevant examples of drugs demonstrating these relationships for illustrative purposes. Furthermore, the effect that pharmaceutical formulation has on the occurrence and potential change in direction of the hysteresis loop, and the major pharmacokinetic / pharmacodynamic modeling approaches utilized to collapse and model hysteresis are detailed. PMID:24735761
Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation.
Prockop, Darwin J; Oh, Joo Youn
2012-01-01
Recent observations have demonstrated that one of the functions of mesenchymal stem/stromal cells (MSCs) is to serve as guardians against excessive inflammatory responses. One mode of action of the cells is that they are activated to express the interleukin (IL)-1 receptor antagonist. A second mode of action is to create a negative feedback loop in which tumor necrosis factor-α (TNF-α) and other proinflammatory cytokines from resident macrophages activate MSCs to secrete the multifunctional anti-inflammatory protein TNF-α stimulated gene/protein 6 (TSG-6). The TSG-6 then reduces nuclear factor-κB (NF-κB) signaling in the resident macrophages and thereby modulates the cascade of proinflammatory cytokines. A third mode of action is to create a second negative feedback loop whereby lipopolysaccharide, TNF-α, nitric oxide, and perhaps other damage-associated molecular patterns (DAMPs) from injured tissues and macrophages activate MSCs to secrete prostaglandin E(2) (PGE(2)). The PGE(2) converts macrophages to the phenotype that secretes IL-10. There are also suggestions that MSCs may produce anti-inflammatory effects through additional modes of action including activation to express the antireactive oxygen species protein stanniocalcin-1.
Confronting effective models for deconfinement in dense quark matter with lattice data
NASA Astrophysics Data System (ADS)
Andersen, Jens O.; Brauner, Tomáš; Naylor, William R.
2015-12-01
Ab initio numerical simulations of the thermodynamics of dense quark matter remain a challenge. Apart from the infamous sign problem, lattice methods have to deal with finite volume and discretization effects as well as with the necessity to introduce sources for symmetry-breaking order parameters. We study these artifacts in the Polyakov-loop-extended Nambu-Jona-Lasinio (PNJL) model and compare its predictions to existing lattice data for cold and dense two-color matter with two flavors of Wilson quarks. To achieve even qualitative agreement with lattice data requires the introduction of two novel elements in the model: (i) explicit chiral symmetry breaking in the effective contact four-fermion interaction, referred to as the chiral twist, and (ii) renormalization of the Polyakov loop. The feedback of the dense medium to the gauge sector is modeled by a chemical-potential-dependent scale in the Polyakov-loop potential. In contrast to previously used analytical Ansätze, we determine its dependence on the chemical potential from lattice data for the expectation value of the Polyakov loop. Finally, we propose adding a two-derivative operator to our effective model. This term acts as an additional source of explicit chiral symmetry breaking, mimicking an analogous term in the lattice Wilson action.
The International Conference on Amorphous and Liquid Semiconductors (9th).
1979-12-11
loop effective action of a constant gluon field can be expressed in terms of the experimentally determinable A,.,• In the following chapter, the...regularization and Schwinger’s proper time method. The renormalization mass parameters appearing in the two treatments can then be related and the exact one
Quantum equivalence of f (R) gravity and scalar-tensor theories in the Jordan and Einstein frames
NASA Astrophysics Data System (ADS)
Ohta, Nobuyoshi
2018-03-01
The f(R) gravity and scalar-tensor theory are known to be equivalent at the classical level. We study if this equivalence is valid at the quantum level. There are two descriptions of the scalar-tensor theory in the Jordan and Einstein frames. It is shown that these three formulations of the theories give the same determinant or effective action on shell, and thus they are equivalent at the quantum one-loop level on shell in arbitrary dimensions. We also compute the one-loop divergence in f(R) gravity on an Einstein space.
Hammant, T C; Hart, A G; von Hippel, G M; Horgan, R R; Monahan, C J
2011-09-09
We present the first application of the background field method to nonrelativistic QCD (NRQCD) on the lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in a manifestly gauge-covariant manner. The coefficients of the σ·B term in the NRQCD action and the four-fermion spin-spin interaction are computed at the one-loop level; the resulting shift of the hyperfine splitting of bottomonium is found to bring the lattice predictions in line with experiment.
NASA Astrophysics Data System (ADS)
Maelger, J.; Reinosa, U.; Serreau, J.
2018-04-01
We extend a previous investigation [U. Reinosa et al., Phys. Rev. D 92, 025021 (2015), 10.1103/PhysRevD.92.025021] of the QCD phase diagram with heavy quarks in the context of background field methods by including the two-loop corrections to the background field effective potential. The nonperturbative dynamics in the pure-gauge sector is modeled by a phenomenological gluon mass term in the Landau-DeWitt gauge-fixed action, which results in an improved perturbative expansion. We investigate the phase diagram at nonzero temperature and (real or imaginary) chemical potential. Two-loop corrections yield an improved agreement with lattice data as compared to the leading-order results. We also compare with the results of nonperturbative continuum approaches. We further study the equation of state as well as the thermodynamic stability of the system at two-loop order. Finally, using simple thermodynamic arguments, we show that the behavior of the Polyakov loops as functions of the chemical potential complies with their interpretation in terms of quark and antiquark free energies.
1987-03-01
environment . Actions within the process loop is initiated by a perceived divergence from a desired state and the sensed environmental state. Definitions of the...initiated environmental effect. An action by our own forces as well as by the enemy forces can create an alteration to the overall environment . The DESIRED...Additionally, the model would accommodate the entire C2 system, including physical entities, structure, and its environment . The objective was to
Mechanism of Chromosomal Boundary Action: Roadblock, Sink, or Loop?
Gohl, Daryl; Aoki, Tsutomu; Blanton, Jason; Shanower, Greg; Kappes, Gretchen; Schedl, Paul
2011-01-01
Boundary elements or insulators subdivide eukaryotic chromosomes into a series of structurally and functionally autonomous domains. They ensure that the action of enhancers and silencers is restricted to the domain in which these regulatory elements reside. Three models, the roadblock, sink/decoy, and topological loop, have been proposed to explain the insulating activity of boundary elements. Strong predictions about how boundaries will function in different experimental contexts can be drawn from these models. In the studies reported here, we have designed assays that test these predictions. The results of our assays are inconsistent with the expectations of the roadblock and sink models. Instead, they support the topological loop model. PMID:21196526
Achieving Change through Reflective Practice: Closing the Loop.
ERIC Educational Resources Information Center
Page, Susie; Meerabeau, Liz
2000-01-01
A study in which reflection was used to identify nurses' learning needs regarding cardiopulmonary resuscitation found that an unexpected outcome of reflection was "apathy": action issues were not prioritized or acted upon. In order to effect changes in practice, planning and management of change should be part of the reflective cycle.…
Alteration of the mode of antibacterial action of a defensin by the amino-terminal loop substitution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Bin; Zhu, Shunyi, E-mail: Zhusy@ioz.ac.cn
Highlights: Black-Right-Pointing-Pointer Al-M is an engineered fungal defensin with the n-loop of an insect defensin. Black-Right-Pointing-Pointer Al-M adopts a native defensin-like structure with high antibacterial potency. Black-Right-Pointing-Pointer Al-M kills bacteria through a membrane disruptive mechanism. Black-Right-Pointing-Pointer This work sheds light on the functional evolution of CS{alpha}{beta}-type defensins. -- Abstract: Ancient invertebrate-type and classical insect-type defensins (AITDs and CITDs) are two groups of evolutionarily related antimicrobial peptides (AMPs) that adopt a conserved cysteine-stabilized {alpha}-helical and {beta}-sheet (CS{alpha}{beta}) fold with a different amino-terminal loop (n-loop) size and diverse modes of antibacterial action. Although they both are identified as inhibitors of cell wallmore » biosynthesis, only CITDs evolved membrane disruptive ability by peptide oligomerization to form pores. To understand how this occurred, we modified micasin, a fungus-derived AITDs with a non-membrane disruptive mechanism, by substituting its n-loop with that of an insect-derived CITDs. After air oxidization, the synthetic hybrid defensin (termed Al-M) was structurally identified by circular dichroism (CD) and functionally evaluated by antibacterial and membrane permeability assays and electronic microscopic observation. Results showed that Al-M folded into a native-like defensin structure, as determined by its CD spectrum that is similar to that of micasin. Al-M was highly efficacious against the Gram-positive bacterium Bacillus megaterium with a lethal concentration of 1.76 {mu}M. As expected, in contrast to micasin, Al-M killed the bacteria through a membrane disruptive mechanism of action. The alteration in modes of action supports a key role of the n-loop extension in assembling functional surface of CITDs for membrane disruption. Our work provides mechanical evidence for evolutionary relationship between AITDs and CITDs.« less
Stability of flat spacetime in quantum gravity
NASA Astrophysics Data System (ADS)
Jordan, R. D.
1987-12-01
In a previous paper, a modified effective-action formalism was developed which produces equations satisfied by the expectation value of the field, rather than the usual in-out average. Here this formalism is applied to a quantized scalar field in a background which is a small perturbation from Minkowski spacetime. The one-loop effective field equation describes the back reaction of created particles on the gravitational field, and is calculated in this paper to linear order in the perturbation. In this way we rederive an equation first found by Horowitz using completely different methods. This equation possesses exponentially growing solutions, so we confirm Horowitz's conclusion that flat spacetime is unstable in this approximation to the theory. The new derivation shows that the field equation is just as useful as the one-loop approximation to the in-out equation, contrary to earlier arguments. However, the instability suggests that the one-loop approximation cannot be trusted for gravity. These results are compared with the corresponding situation in QED and QCD.
NASA Astrophysics Data System (ADS)
Trottier, H. D.; Shakespeare, N. H.; Lepage, G. P.; MacKenzie, P. B.
2002-05-01
Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 34 to 164) and couplings (from β~9 to β~60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.
Zhang, Joel Z.; Yarov-Yarovoy, Vladimir; Scheuer, Todd; Karbat, Izhar; Cohen, Lior; Gordon, Dalia; Gurevitz, Michael; Catterall, William A.
2012-01-01
Activation of voltage-gated sodium (Nav) channels initiates and propagates action potentials in electrically excitable cells. β-Scorpion toxins, including toxin IV from Centruroides suffusus suffusus (CssIV), enhance activation of NaV channels. CssIV stabilizes the voltage sensor in domain II in its activated state via a voltage-sensor trapping mechanism. Amino acid residues required for the action of CssIV have been identified in the S1-S2 and S3-S4 extracellular loops of domain II. The extracellular loops of domain III are also involved in toxin action, but individual amino acid residues have not been identified. We used site-directed mutagenesis and voltage clamp recording to investigate amino acid residues of domain III that are involved in CssIV action. In the IIISS2-S6 loop, five substitutions at four positions altered voltage-sensor trapping by CssIVE15A. Three substitutions (E1438A, D1445A, and D1445Y) markedly decreased voltage-sensor trapping, whereas the other two substitutions (N1436G and L1439A) increased voltage-sensor trapping. These bidirectional effects suggest that residues in IIISS2-S6 make both positive and negative interactions with CssIV. N1436G enhanced voltage-sensor trapping via increased binding affinity to the resting state, whereas L1439A increased voltage-sensor trapping efficacy. Based on these results, a three-dimensional model of the toxin-channel interaction was developed using the Rosetta modeling method. These data provide additional molecular insight into the voltage-sensor trapping mechanism of toxin action and define a three-point interaction site for β-scorpion toxins on NaV channels. Binding of α- and β-scorpion toxins to two distinct, pseudo-symmetrically organized receptor sites on NaV channels acts synergistically to modify channel gating and paralyze prey. PMID:22761417
Caligiore, Daniele; Pezzulo, Giovanni; Miall, R. Chris; Baldassarre, Gianluca
2013-01-01
Research on action understanding in cognitive neuroscience has led to the identification of a wide “action understanding network” mainly encompassing parietal and premotor cortical areas. Within this cortical network mirror neurons are critically involved implementing a neural mechanism according to which, during action understanding, observed actions are reflected in the motor patterns for the same actions of the observer. We suggest that focusing only on cortical areas and processes could be too restrictive to explain important facets of action understanding regarding, for example, the influence of the observer's motor experience, the multiple levels at which an observed action can be understood, and the acquisition of action understanding ability. In this respect, we propose that aside from the cortical action understanding network, sub-cortical processes pivoting on cerebellar and basal ganglia cortical loops could crucially support both the expression and the acquisition of action understanding abilities. Within the paper we will discuss how this extended view can overcome some limitations of the “pure” cortical perspective, supporting new theoretical predictions on the brain mechanisms underlying action understanding that could be tested by future empirical investigations. PMID:23911926
Cortical tremor: a variant of cortical reflex myoclonus.
Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H
1990-10-01
Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.
Nonlocal quantum effective actions in Weyl-Flat spacetimes
NASA Astrophysics Data System (ADS)
Bautista, Teresa; Benevides, André; Dabholkar, Atish
2018-06-01
Virtual massless particles in quantum loops lead to nonlocal effects which can have interesting consequences, for example, for primordial magnetogenesis in cosmology or for computing finite N corrections in holography. We describe how the quantum effective actions summarizing these effects can be computed efficiently for Weyl-flat metrics by integrating the Weyl anomaly or, equivalently, the local renormalization group equation. This method relies only on the local Schwinger-DeWitt expansion of the heat kernel and allows for a re-summation of the anomalous leading large logarithms of the scale factor, log a( x), in situations where the Weyl factor changes by several e-foldings. As an illustration, we obtain the quantum effective action for the Yang-Mills field coupled to massless matter, and the self-interacting massless scalar field. Our action reduces to the nonlocal action obtained using the Barvinsky-Vilkovisky covariant perturbation theory in the regime R 2 ≪ ∇2 R for a typical curvature scale R, but has a greater range of validity effectively re-summing the covariant perturbation theory to all orders in curvatures. In particular, it is applicable also in the opposite regime R 2 ≫ ∇2 R, which is often of interest in cosmology.
Gauge copies in the Landau-DeWitt gauge: A background invariant restriction
NASA Astrophysics Data System (ADS)
Dudal, David; Vercauteren, David
2018-04-01
The Landau background gauge, also known as the Landau-DeWitt gauge, has found renewed interest during the past decade given its usefulness in accessing the confinement-deconfinement transition via the vacuum expectation value of the Polyakov loop, describable via an appropriate background. In this Letter, we revisit this gauge from the viewpoint of it displaying gauge (Gribov) copies. We generalize the Gribov-Zwanziger effective action in a BRST and background invariant way; this action leads to a restriction on the allowed gauge fluctuations, thereby eliminating the infinitesimal background gauge copies. The explicit background invariance of our action is in contrast with earlier attempts to write down and use an effective Gribov-Zwanziger action. It allows to address certain subtleties arising in these earlier works, such as a spontaneous and thus spurious Lorentz symmetry breaking, something which is now averted.
Quantum corrections for the cubic Galileon in the covariant language
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saltas, Ippocratis D.; Vitagliano, Vincenzo, E-mail: isaltas@fc.ul.pt, E-mail: vincenzo.vitagliano@ist.utl.pt
We present for the first time an explicit exposition of quantum corrections within the cubic Galileon theory including the effect of quantum gravity, in a background- and gauge-invariant manner, employing the field-reparametrisation approach of the covariant effective action at 1-loop. We show that the consideration of gravitational effects in combination with the non-linear derivative structure of the theory reveals new interactions at the perturbative level, which manifest themselves as higher-operators in the associated effective action, which' relevance is controlled by appropriate ratios of the cosmological vacuum and the Galileon mass scale. The significance and concept of the covariant approach inmore » this context is discussed, while all calculations are explicitly presented.« less
ξ /ξ2 n d ratio as a tool to refine effective Polyakov loop models
NASA Astrophysics Data System (ADS)
Caselle, Michele; Nada, Alessandro
2017-10-01
Effective Polyakov line actions are a powerful tool to study the finite temperature behavior of lattice gauge theories. They are much simpler to simulate than the original lattice model and are affected by a milder sign problem, but it is not clear to which extent they really capture the rich spectrum of the original theories. We propose here a simple way to address this issue based on the so-called second moment correlation length ξ2 n d . The ratio ξ /ξ2 n d between the exponential correlation length and the second moment one is equal to 1 if only a single mass is present in the spectrum, and it becomes larger and larger as the complexity of the spectrum increases. Since both ξ and ξ2 n d are easy to measure on the lattice, this is a cheap and efficient way to keep track of the spectrum of the theory. As an example of the information one can obtain with this tool, we study the behavior of ξ /ξ2 n d in the confining phase of the (D =3 +1 ) SU(2) gauge theory and show that it is compatible with 1 near the deconfinement transition, but it increases dramatically as the temperature decreases. We also show that this increase can be well understood in the framework of an effective string description of the Polyakov loop correlator. This nontrivial behavior should be reproduced by the Polyakov loop effective action; thus, it represents a stringent and challenging test of existing proposals, and it may be used to fine-tune the couplings and to identify the range of validity of the approximations involved in their construction.
About problematic peculiarities of Fault Tolerance digital regulation organization
NASA Astrophysics Data System (ADS)
Rakov, V. I.; Zakharova, O. V.
2018-05-01
The solution of problems concerning estimation of working capacity of regulation chains and possibilities of preventing situations of its violation in three directions are offered. The first direction is working out (creating) the methods of representing the regulation loop (circuit) by means of uniting (combining) diffuse components and forming algorithmic tooling for building predicates of serviceability assessment separately for the components and the for regulation loops (circuits, contours) in general. The second direction is creating methods of Fault Tolerance redundancy in the process of complex assessment of current values of control actions, closure errors and their regulated parameters. The third direction is creating methods of comparing the processes of alteration (change) of control actions, errors of closure and regulating parameters with their standard models or their surroundings. This direction allows one to develop methods and algorithmic tool means, aimed at preventing loss of serviceability and effectiveness of not only a separate digital regulator, but also the whole complex of Fault Tolerance regulation.
Rea, Teresa; Bartolacci, Mauro; Leombruni, Edoardo; Brizzi, Felice; Picardi, Nicola
2005-01-01
The Roux-en-Y recostruction after total or subtotal gastrectomy for gastric cancer is frequently performed to prevent esophageal alkaline reflux. Also after total gastrectomy and end-to-side gastrojejunal anastomosis, as usual in former experience, the alkaline reflux can be efficaciously treated by conversion in an esophago-jejunal Roux-en-Y procedure. The main factor preventing reflux is the length of jejunal loop, at least of 35-40 cm. The recostruction with a Roux-en-Y jejunal loop offers the advantage to meet together two primary requirements: the restoration of digestive travel from esophagus to intestine, and the prevention of on alcaline reflux esophagitis, both with relevant simplicity and without a time-consuming surgical technique. Also as a consequence the postoperative morbidity is decreased. The obvious suitable requirement is a sufficient lenght of the jejunal loop for a reservoir of the ingested food and to oppose the antiperistaltic jejunal movements thanks to the effects of the new activated jejunal pace-maker.
A simplifying feature of the heterotic one loop four graviton amplitude
NASA Astrophysics Data System (ADS)
Basu, Anirban
2018-01-01
We show that the weight four modular graph functions that contribute to the integrand of the t8t8D4R4 term at one loop in heterotic string theory do not require regularization, and hence the integrand is simple. This is unlike the graphs that contribute to the integrands of the other gravitational terms at this order in the low momentum expansion, and these integrands require regularization. This property persists for an infinite number of terms in the effective action, and their integrands do not require regularization. We find non-trivial relations between weight four graphs of distinct topologies that do not require regularization by performing trivial manipulations using auxiliary diagrams.
Lattice corrections to the quark quasidistribution at one loop
Carlson, Carl E.; Freid, Michael
2017-05-12
Here, we calculate radiative corrections to the quark quasidistribution in lattice perturbation theory at one loop to leading orders in the lattice spacing. We also consider one-loop corrections in continuum Euclidean space. We find that the infrared behavior of the corrections in Euclidean and Minkowski space are different. Furthermore, we explore features of momentum loop integrals and demonstrate why loop corrections from the lattice perturbation theory and Euclidean continuum do not correspond with their Minkowski brethren, and comment on a recent suggestion for transcending the differences in the results. Finally, we examine the role of the lattice spacing a andmore » of the r parameter in the Wilson action in these radiative corrections.« less
Lattice corrections to the quark quasidistribution at one loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Carl E.; Freid, Michael
Here, we calculate radiative corrections to the quark quasidistribution in lattice perturbation theory at one loop to leading orders in the lattice spacing. We also consider one-loop corrections in continuum Euclidean space. We find that the infrared behavior of the corrections in Euclidean and Minkowski space are different. Furthermore, we explore features of momentum loop integrals and demonstrate why loop corrections from the lattice perturbation theory and Euclidean continuum do not correspond with their Minkowski brethren, and comment on a recent suggestion for transcending the differences in the results. Finally, we examine the role of the lattice spacing a andmore » of the r parameter in the Wilson action in these radiative corrections.« less
Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System
Belmonte, Lidia María; Morales, Rafael; Fernández-Caballero, Antonio; Somolinos, José Andrés
2016-01-01
This article presents the design of a novel decentralized nonlinear multivariate control scheme for an underactuated, nonlinear and multivariate laboratory helicopter denominated the twin rotor MIMO system (TRMS). The TRMS is characterized by a coupling effect between rotor dynamics and the body of the model, which is due to the action-reaction principle originated in the acceleration and deceleration of the motor-propeller groups. The proposed controller is composed of two nested loops that are utilized to achieve stabilization and precise trajectory tracking tasks for the controlled position of the generalized coordinates of the TRMS. The nonlinear internal loop is used to control the electrical dynamics of the platform, and the nonlinear external loop allows the platform to be perfectly stabilized and positioned in space. Finally, we illustrate the theoretical control developments with a set of experiments in order to verify the effectiveness of the proposed nonlinear decentralized feedback controller, in which a comparative study with other controllers is performed, illustrating the excellent performance of the proposed robust decentralized control scheme in both stabilization and trajectory tracking tasks. PMID:27472338
Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System.
Belmonte, Lidia María; Morales, Rafael; Fernández-Caballero, Antonio; Somolinos, José Andrés
2016-07-27
This article presents the design of a novel decentralized nonlinear multivariate control scheme for an underactuated, nonlinear and multivariate laboratory helicopter denominated the twin rotor MIMO system (TRMS). The TRMS is characterized by a coupling effect between rotor dynamics and the body of the model, which is due to the action-reaction principle originated in the acceleration and deceleration of the motor-propeller groups. The proposed controller is composed of two nested loops that are utilized to achieve stabilization and precise trajectory tracking tasks for the controlled position of the generalized coordinates of the TRMS. The nonlinear internal loop is used to control the electrical dynamics of the platform, and the nonlinear external loop allows the platform to be perfectly stabilized and positioned in space. Finally, we illustrate the theoretical control developments with a set of experiments in order to verify the effectiveness of the proposed nonlinear decentralized feedback controller, in which a comparative study with other controllers is performed, illustrating the excellent performance of the proposed robust decentralized control scheme in both stabilization and trajectory tracking tasks.
Control-structure interaction in precision pointing servo loops
NASA Technical Reports Server (NTRS)
Spanos, John T.
1989-01-01
The control-structure interaction problem is addressed via stability analysis of a generic linear servo loop model. With the plant described by the rigid body mode and a single elastic mode, structural flexibility is categorized into one of three types: (1) appendage, (2) in-the-loop minimum phase, and (3) in-the-loop nonminimum phase. Closing the loop with proportional-derivative (PD) control action and introducing sensor roll-off dynamics in the feedback path, stability conditions are obtained. Trade studies are conducted with modal frequency, modal participation, modal damping, loop bandwidth, and sensor bandwidth treated as free parameters. Results indicate that appendage modes are most likely to produce instability if they are near the sensor rolloff, whereas in-the-loop modes are most dangerous near the loop bandwidth. The main goal of this paper is to provide a fundamental understanding of the control-structure interaction problem so that it may benefit the design of complex spacecraft and pointing system servo loops. In this framework, the JPL Pathfinder gimbal pointer is considered as an example.
Excitation of vertical coronal loop oscillations by impulsively driven flows
NASA Astrophysics Data System (ADS)
Kohutova, P.; Verwichte, E.
2018-05-01
Context. Flows of plasma along a coronal loop caused by the pressure difference between loop footpoints are common in the solar corona. Aims: We aim to investigate the possibility of excitation of loop oscillations by an impulsively driven flow triggered by an enhanced pressure in one of the loop footpoints. Methods: We carry out 2.5D magnetohydrodynamic (MHD) simulations of a coronal loop with an impulsively driven flow and investigate the properties and evolution of the resulting oscillatory motion of the loop. Results: The action of the centrifugal force associated with plasma moving at high speeds along the curved axis of the loop is found to excite the fundamental harmonic of a vertically polarised kink mode. We analyse the dependence of the resulting oscillations on the speed and kinetic energy of the flow. Conclusions: We find that flows with realistic speeds of less than 100 km s-1 are sufficient to excite oscillations with observable amplitudes. We therefore propose plasma flows as a possible excitation mechanism for observed transverse loop oscillations.
Loop vertex expansion for higher-order interactions
NASA Astrophysics Data System (ADS)
Rivasseau, Vincent
2018-05-01
This note provides an extension of the constructive loop vertex expansion to stable interactions of arbitrarily high order, opening the way to many applications. We treat in detail the example of the (\\bar{φ } φ )^p field theory in zero dimension. We find that the important feature to extend the loop vertex expansion is not to use an intermediate field representation, but rather to force integration of exactly one particular field per vertex of the initial action.
Phenomenological implications of an alternative Hamiltonian constraint for quantum cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, Mikhail
2005-11-15
In this paper we review a model based on loop quantum cosmology that arises from a symmetry reduction of the self-dual Plebanski action. In this formulation the symmetry reduction leads to a very simple Hamiltonian constraint that can be quantized explicitly in the framework of loop quantum cosmology. We investigate the phenomenological implications of this model in the semiclassical regime and compare those with the known results of the standard Loop Quantum Cosmology.
Initial conditions in high-energy collisions
NASA Astrophysics Data System (ADS)
Petreska, Elena
This thesis is focused on the initial stages of high-energy collisions in the saturation regime. We start by extending the McLerran-Venugopalan distribution of color sources in the initial wave-function of nuclei in heavy-ion collisions. We derive a fourth-order operator in the action and discuss its relevance for the description of color charge distributions in protons in high-energy experiments. We calculate the dipole scattering amplitude in proton-proton collisions with the quartic action and find an agreement with experimental data. We also obtain a modification to the fluctuation parameter of the negative binomial distribution of particle multiplicities in proton-proton experiments. The result implies an advancement of the fourth-order action towards Gaussian when the energy is increased. Finally, we calculate perturbatively the expectation value of the magnetic Wilson loop operator in the first moments of heavy-ion collisions. For the magnetic flux we obtain a first non-trivial term that is proportional to the square of the area of the loop. The result is close to numerical calculations for small area loops.
NASA Astrophysics Data System (ADS)
Murugan, R.
2010-10-01
In this paper, we develop a theory on the mechanism of distal action of the transcription factors, which are bound at their respective cis-regulatory enhancer modules on the promoter-RNA polymerase II (PR) complexes to initiate the transcription event in eukaryotes. We consider both the looping and tracking modes of their distal communication and calculate the mean first passage time that is required for the distal interactions of the complex of enhancer and transcription factor with the PR via both these modes. We further investigate how this mean first passage time is dependent on the length of the DNA segment (L, base-pairs) that connects the cis-regulatory binding site and the respective promoter. When the radius of curvature of this connecting segment of DNA is R that was induced upon binding of the transcription factor at the cis-acting element and RNAPII at the promoter in cis-positions, our calculations indicate that the looping mode of distal action will dominate when L is such that L > 2πR and the tracking mode of distal action will be favored when L < 2πR. The time required for the distal action will be minimum when L = 2πR where the typical value of R for the binding of histones will be R ~ 16 bps and L ~ 102 bps. It seems that the free energy associated with the binding of the transcription factor with its cis-acting element and the distance of this cis-acting element from the corresponding promoter of the gene of interest is negatively correlated. Our results suggest that the looping and tracking modes of distal action are concurrently operating on the transcription activation and the physics that determines the timescales associated with the looping/tracking in the mechanism of action of these transcription factors on the initiation of the transcription event must put a selection pressure on the distribution of the distances of cis-regulatory modules from their respective promoters of the genes. The computational analysis of the upstream sequences of promoters of various genes in the human and mouse genomes for the presence of putative cis-regulatory elements for a set of known transcription factors using the position weight matrices available with the JASPAR database indicates the presence of cis-acting elements with maximum probability at a distance of ~102 bps from the promoters which substantiates our theoretical predictions.
A Parametric Computational Model of the Action Potential of Pacemaker Cells.
Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L
2018-01-01
A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.
Stretchable Random Lasers with Tunable Coherent Loops.
Sun, Tzu-Min; Wang, Cih-Su; Liao, Chi-Shiun; Lin, Shih-Yao; Perumal, Packiyaraj; Chiang, Chia-Wei; Chen, Yang-Fang
2015-12-22
Stretchability represents a key feature for the emerging world of realistic applications in areas, including wearable gadgets, health monitors, and robotic skins. Many optical and electronic technologies that can respond to large strain deformations have been developed. Laser plays a very important role in our daily life since it was discovered, which is highly desirable for the development of stretchable devices. Herein, stretchable random lasers with tunable coherent loops are designed, fabricated, and demonstrated. To illustrate our working principle, the stretchable random laser is made possible by transferring unique ZnO nanobrushes on top of polydimethylsiloxane (PDMS) elastomer substrate. Apart from the traditional gain material of ZnO nanorods, ZnO nanobrushes were used as optical gain materials so they can serve as scattering centers and provide the Fabry-Perot cavity to enhance laser action. The stretchable PDMS substrate gives the degree of freedom to mechanically tune the coherent loops of the random laser action by changing the density of ZnO nanobrushes. It is found that the number of laser modes increases with increasing external strain applied on the PDMS substrate due to the enhanced possibility for the formation of coherent loops. The device can be stretched by up to 30% strain and subjected to more than 100 cycles without loss in laser action. The result shows a major advance for the further development of man-made smart stretchable devices.
The effective hyper-Kähler potential in the N = 2 supersymmetric QCD
NASA Astrophysics Data System (ADS)
Ketov, Sergei V.
1997-02-01
The effective low-energy hyper-Kähler potential for a massive N = 2 matter in N = 2 super-QCD is investigated. TheN = 2 extended supersymmetry severely restricts the N = 2 matter self-couplings so that their exact form can be fixed by a few parameters, which is apparent in the N = 2 harmonic superspace. In the N = 2 QED with a single matter hypermultiplet, the one-loop perturbative calculations lead to the Taub-NUT hyper-Kähler metric in the massive case, and a free metric in the massless case. It is remarkable that the naive non-renormalization `theorem' does not apply. There exists a manifestly N = 2 supersymmetric duality transformation converting the low-energy effective action for the N = 2 QED hypermultiplet into a sum of the quadratic and the improved (non-polynomial) actions for an N = 2 tensor multiplet. The duality transformation also gives a simple connection between the low-energy effective action in the N = 2 harmonic superspace and the component results.
Zuchegna, Candida; Aceto, Fabiana; Bertoni, Alessandra; Romano, Antonella; Perillo, Bruno; Laccetti, Paolo; Gottesman, Max E; Avvedimento, Enrico V; Porcellini, Antonio
2014-01-01
Histone methylation changes and formation of chromatin loops involving enhancers, promoters and 3' end regions of genes have been variously associated with active transcription in eukaryotes. We have studied the effect of activation of the retinoic A receptor, at the RARE-promoter chromatin of CASP9 and CYP26A1 genes, 15 and 45 min following RA exposure, and we found that histone H3 lysines 4 and 9 are demethylated by the lysine-specific demethylase, LSD1 and by the JMJ-domain containing demethylase, D2A. The action of the oxidase (LSD1) and a dioxygenase (JMJD2A) in the presence of Fe++ elicits an oxidation wave that locally modifies the DNA and recruits the enzymes involved in base and nucleotide excision repair (BER and NER). These events are essential for the formation of chromatin loop(s) that juxtapose the RARE element with the 5' transcription start site and the 3' end of the genes. The RARE bound-receptor governs the 5' and 3' end selection and directs the productive transcription cycle of RNA polymerase. These data mechanistically link chromatin loops, histone methylation changes and localized DNA repair with transcription. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Yang, Ya-Chin; Hsieh, Jui-Yi
2009-01-01
Carbamazepine, phenytoin, and lamotrigine are widely prescribed anticonvulsants in neurological clinics. These drugs bind to the same receptor site, probably with the diphenyl motif in their structure, to inhibit the Na+ channel. However, the location of the drug receptor remains controversial. In this study, we demonstrate close proximity and potential interaction between an external aromatic residue (W1716 in the external pore loop) and an internal aromatic residue (F1764 in the pore-lining part of the sixth transmembrane segment, S6) of domain 4 (D4), both being closely related to anticonvulsant and/or local anesthetic binding to the Na+ channel. Double-mutant cycle analysis reveals significant cooperativity between the two phenyl residues for anticonvulsant binding. Concomitant F1764C mutation evidently decreases the susceptibility of W1716C to external Cd2+ and membrane-impermeable methanethiosulfonate reagents. Also, the W1716E/F1764R and G1715E/F1764R double mutations significantly alter the selectivity for Na+ over K+ and markedly shift the activation curve, respectively. W1716 and F1764 therefore very likely form a link connecting the outer and inner compartments of the Na+ channel pore (in addition to the selectivity filter). Anticonvulsants and local anesthetics may well traverse this “S6 recess” without trespassing on the selectivity filter. Furthermore, we found that Y1618K, a point mutation in the S3-4 linker (the extracellular extension of D4S4), significantly alters the consequences of carbamazepine binding to the Na+ channel. The effect of Y1618K mutation, however, is abolished by concomitant point mutations in the vicinity of Y1618, but not by those in the internally located inactivation machinery, supporting a direct local rather than a long-range allosteric action. Moreover, Y1618 could interact with D4 pore residues W1716 and L1719 to have a profound effect on both channel gating and anticonvulsant action. We conclude that there are direct interactions among the external S3-4 linker, the external pore loop, and the internal S6 segment in D4, making the external pore loop a pivotal point critically coordinating ion permeation, gating, and anticonvulsant binding in the Na+ channel. PMID:19635852
Yang, Ya-Chin; Hsieh, Jui-Yi; Kuo, Chung-Chin
2009-08-01
Carbamazepine, phenytoin, and lamotrigine are widely prescribed anticonvulsants in neurological clinics. These drugs bind to the same receptor site, probably with the diphenyl motif in their structure, to inhibit the Na(+) channel. However, the location of the drug receptor remains controversial. In this study, we demonstrate close proximity and potential interaction between an external aromatic residue (W1716 in the external pore loop) and an internal aromatic residue (F1764 in the pore-lining part of the sixth transmembrane segment, S6) of domain 4 (D4), both being closely related to anticonvulsant and/or local anesthetic binding to the Na(+) channel. Double-mutant cycle analysis reveals significant cooperativity between the two phenyl residues for anticonvulsant binding. Concomitant F1764C mutation evidently decreases the susceptibility of W1716C to external Cd(2+) and membrane-impermeable methanethiosulfonate reagents. Also, the W1716E/F1764R and G1715E/F1764R double mutations significantly alter the selectivity for Na(+) over K(+) and markedly shift the activation curve, respectively. W1716 and F1764 therefore very likely form a link connecting the outer and inner compartments of the Na(+) channel pore (in addition to the selectivity filter). Anticonvulsants and local anesthetics may well traverse this "S6 recess" without trespassing on the selectivity filter. Furthermore, we found that Y1618K, a point mutation in the S3-4 linker (the extracellular extension of D4S4), significantly alters the consequences of carbamazepine binding to the Na(+) channel. The effect of Y1618K mutation, however, is abolished by concomitant point mutations in the vicinity of Y1618, but not by those in the internally located inactivation machinery, supporting a direct local rather than a long-range allosteric action. Moreover, Y1618 could interact with D4 pore residues W1716 and L1719 to have a profound effect on both channel gating and anticonvulsant action. We conclude that there are direct interactions among the external S3-4 linker, the external pore loop, and the internal S6 segment in D4, making the external pore loop a pivotal point critically coordinating ion permeation, gating, and anticonvulsant binding in the Na(+) channel.
1991, EPA publicized the Lead and Copper Rule (LCR),which set regulations to minimize the amount of lead copper in drinking water. The LCR set the copper action level at 1.3 mg/L in more then 10% of customer’s first-draw taps sampled. Potential health effects of copper include vo...
The target-specific transporter and current status of diuretics as antihypertensive.
Ali, Syed Salman; Sharma, Pramod Kumar; Garg, Vipin Kumar; Singh, Avnesh Kumar; Mondal, Sambhu Charan
2012-04-01
The currently available diuretics increase the urinary excretion of sodium chloride by selective inhibition of specific sodium transporters in the loop of Henle and distal nephron. In recent years, the molecular cloning of the diuretic-sensitive sodium transporters at distal convoluted tubule has improved our understanding of the cellular mechanisms of action of each class of diuretics. Diuretics are tools of considerable therapeutic importance. First, they effectively reduce blood pressure. Loop and thiazide diuretics are secreted from the proximal tubule via the organic anion transporter-1 and exert their diuretic action by binding to the Na(+)-K(+)-2Cl(-) co-transporter type 2 in the thick ascending limb and the Na(+)-Cl(-) co-transporter in the distal convoluted tubule, respectively. Recent studies in animal models suggest that abundance of these ion transporters is affected by long-term diuretic administration. The WHO/ISH guidelines point out that diuretics enhance the efficacy of antihypertensive drugs and will most often be a component of combination therapy. © 2011 The Authors Fundamental and Clinical Pharmacology © 2011 Société Française de Pharmacologie et de Thérapeutique.
Effects of Automation Types on Air Traffic Controller Situation Awareness and Performance
NASA Technical Reports Server (NTRS)
Sethumadhavan, A.
2009-01-01
The Joint Planning and Development Office has proposed the introduction of automated systems to help air traffic controllers handle the increasing volume of air traffic in the next two decades (JPDO, 2007). Because fully automated systems leave operators out of the decision-making loop (e.g., Billings, 1991), it is important to determine the right level and type of automation that will keep air traffic controllers in the loop. This study examined the differences in the situation awareness (SA) and collision detection performance of individuals when they worked with information acquisition, information analysis, decision and action selection and action implementation automation to control air traffic (Parasuraman, Sheridan, & Wickens, 2000). When the automation was unreliable, the time taken to detect an upcoming collision was significantly longer for all the automation types compared with the information acquisition automation. This poor performance following automation failure was mediated by SA, with lower SA yielding poor performance. Thus, the costs associated with automation failure are greater when automation is applied to higher order stages of information processing. Results have practical implications for automation design and development of SA training programs.
75 FR 16732 - Action Affecting Export Privileges; Aqua-Loop Cooling Towers, Co.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... Regulations by facilitating or coordinating the export of approximately 174 rolls of hog hair filter media... about September 28, 2004, Aqua-Loop ordered or financed approximately 174 rolls of hog hair filter media... coordinating the export of approximately 185 rolls of hog hair filter media, part number HHB6O 130 and valued...
Environmental Assessment: Building 3001 Tinker Air Force Base, Oklahoma
2008-09-01
developing a Memorandum of Agreement (MOA) with the SHPO and the Oklahoma Archaeological Survey regarding the potential effects the Proposed Action...3.3.5.4 Electrical System Tinker AFB receives its electrical power from Oklahoma Gas and Electric, which delivers power through a looped 138... gas , with diesel fuel used as the backup supply. The steam line system is primarily underground, with a limited number of lines extending
Quantum implications of a scale invariant regularization
NASA Astrophysics Data System (ADS)
Ghilencea, D. M.
2018-04-01
We study scale invariance at the quantum level in a perturbative approach. For a scale-invariant classical theory, the scalar potential is computed at a three-loop level while keeping manifest this symmetry. Spontaneous scale symmetry breaking is transmitted at a quantum level to the visible sector (of ϕ ) by the associated Goldstone mode (dilaton σ ), which enables a scale-invariant regularization and whose vacuum expectation value ⟨σ ⟩ generates the subtraction scale (μ ). While the hidden (σ ) and visible sector (ϕ ) are classically decoupled in d =4 due to an enhanced Poincaré symmetry, they interact through (a series of) evanescent couplings ∝ɛ , dictated by the scale invariance of the action in d =4 -2 ɛ . At the quantum level, these couplings generate new corrections to the potential, as scale-invariant nonpolynomial effective operators ϕ2 n +4/σ2 n. These are comparable in size to "standard" loop corrections and are important for values of ϕ close to ⟨σ ⟩. For n =1 , 2, the beta functions of their coefficient are computed at three loops. In the IR limit, dilaton fluctuations decouple, the effective operators are suppressed by large ⟨σ ⟩, and the effective potential becomes that of a renormalizable theory with explicit scale symmetry breaking by the DR scheme (of μ =constant).
Using Video Modeling with Substitutable Loops to Teach Varied Play to Children with Autism
ERIC Educational Resources Information Center
Dupere, Sally; MacDonald, Rebecca P. F.; Ahearn, William H.
2013-01-01
Children with autism often engage in repetitive play with little variation in the actions performed or items used. This study examined the use of video modeling with scripted substitutable loops on children's pretend play with trained and untrained characters. Three young children with autism were shown a video model of scripted toy play that…
Meaning of the field dependence of the renormalization scale in Higgs inflation
NASA Astrophysics Data System (ADS)
Hamada, Yuta; Kawai, Hikaru; Nakanishi, Yukari; Oda, Kin-ya
2017-05-01
We consider the prescription dependence of the Higgs effective potential under the presence of general nonminimal couplings. We evaluate the fermion loop correction to the effective action in a simplified Higgs-Yukawa model whose path integral measure takes simple form either in the Jordan or Einstein frame. The resultant effective action becomes identical in both cases when we properly take into account the quartically divergent term coming from the change of measure. Working in the counterterm formalism, we clarify that the difference between the prescriptions I and II comes from the counter term to cancel the logarithmic divergence. This difference can be absorbed into the choice of tree-level potential from the infinitely many possibilities, including all the higher-dimensional terms. We also present another mechanism to obtain a flat potential by freezing the running of the effective quartic coupling for large field values, using the nonminimal coupling in the gauge kinetic function.
Payne, Jennifer A. E.; Hayes, Brigitte M. E.; Durek, Thomas; Craik, David J.; Shafee, Thomas M. A.; Poon, Ivan K. H.; Hulett, Mark D.; van der Weerden, Nicole L.
2016-01-01
The plant defensin NaD1 is a potent antifungal molecule that also targets tumor cells with a high efficiency. We examined the features of NaD1 that contribute to these two activities by producing a series of chimeras with NaD2, a defensin that has relatively poor activity against fungi and no activity against tumor cells. All plant defensins have a common tertiary structure known as a cysteine-stabilized α-β motif which consists of an α helix and a triple-stranded β-sheet stabilized by four disulfide bonds. The chimeras were produced by replacing loops 1 to 7, the sequences between each of the conserved cysteine residues on NaD1, with the corresponding loops from NaD2. The loop 5 swap replaced the sequence motif (SKILRR) that mediates tight binding with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and is essential for the potent cytotoxic effect of NaD1 on tumor cells. Consistent with previous reports, there was a strong correlation between PI(4,5)P2 binding and the tumor cell killing activity of all of the chimeras. However, this correlation did not extend to antifungal activity. Some of the loop swap chimeras were efficient antifungal molecules, even though they bound poorly to PI(4,5)P2, suggesting that additional mechanisms operate against fungal cells. Unexpectedly, the loop 1B swap chimera was 10 times more active than NaD1 against filamentous fungi. This led to the conclusion that defensin loops have evolved as modular components that combine to make antifungal molecules with variable mechanisms of action and that artificial combinations of loops can increase antifungal activity compared to that of the natural variants. PMID:27503651
Subleading soft graviton theorem for loop amplitudes
NASA Astrophysics Data System (ADS)
Sen, Ashoke
2017-11-01
Superstring field theory gives expressions for heterotic and type II string loop amplitudes that are free from ultraviolet and infrared divergences when the number of non-compact space-time dimensions is five or more. We prove the subleading soft graviton theorem in these theories to all orders in perturbation theory for S-matrix elements of arbitrary number of finite energy external states but only one external soft graviton. We also prove the leading soft graviton theorem for arbitrary number of finite energy external states and arbitrary number of soft gravitons. Since our analysis is based on general properties of one particle irreducible effective action, the results are valid in any theory of quantum gravity that gives finite result for the S-matrix order by order in perturbation theory without violating general coordinate invariance.
Characterization of a symbol rate timing recovery technique for a 2B1Q digital receiver
NASA Astrophysics Data System (ADS)
Aboulnasr, T.; Hage, M.; Sayar, B.; Aly, S.
1994-02-01
This paper presents a study of several implementations of the Mueller and Muller symbol rate timing recovery algorithm for ISDN transmission over digital subscriber loops (DSL). Implementations of this algorithm using various estimates of a specified timing function are investigated. It will be shown that despite the fact that all of the estimates considered are derived based on one set of conditions, their performance varies widely in a real system. The intrinsic properties of these estimates are first analyzed, then their performance on real subscriber loops is studied through extensive simulations of a practical digital receiver. The effect of various system parameters such as channel distortion and additive noise are included. Possible sources of convergence problems are also identified and corrective action proposed.
One-loop effective actions and higher spins. Part II
NASA Astrophysics Data System (ADS)
Bonora, L.; Cvitan, M.; Prester, P. Dominis; Giaccari, S.; Štemberga, T.
2018-01-01
In this paper we continue and improve the analysis of the effective actions obtained by integrating out a scalar and a fermion field coupled to external symmetric sources, started in the previous paper. The first subject we study is the geometrization of the results obtained there, that is we express them in terms of covariant Jacobi tensors. The second subject concerns the treatment of tadpoles and seagull terms in order to implement off-shell covariance in the initial model. The last and by far largest part of the paper is a repository of results concerning all two point correlators (including mixed ones) of symmetric currents of any spin up to 5 and in any dimensions between 3 and 6. In the massless case we also provide formulas for any spin in any dimension.
Wang, Jingping; Zhang, Yuean; Wang, Huixian; Zeng, Xiaoxia; Yang, Jinjing; Dong, Jin; Wang, Jianling; Yang, Yan; Wang, Rijun; Zhang, Xiaojuan; Chai, Xiaohong; Zhang, Haozhou; Li, Bao
2015-02-17
To explore the levels of autoantibodies against AT1-receptor (AT1-AA) in hypertensive patients with acute coronary syndrome (ACS) and observe the in vitro effects of AT1-AA on resting tension of isolated anterior descending artery of vascular ring in male Wistar rats. All patients were recruited from June 2007 to August 2008. There were hypertensive patients with ACS (n = 120), those with simple hypertension (n = 253) and those with simple ACS (n = 115). And the outpatients for health examination during the same period were selected as healthy control group (n = 188). The second extracellular loop amino acid sequences of peptides of ATI receptor was synthesized and used as antigen (AT1-Ag) and sialic acid-enzyme-linked immunosorbent assay (SA-ELISA) for detect the serum levels of AT1-AA. Microvascular ring tension technology was used to test the vascular loop resting tension of anterior descending coronary artery from rats induced by a high-fat diet. The positive rates of AT1-AA in patients with simple hypertension (35.2%) and those with simple ACS (30.4%) were significantly higher than those in healthy control group (7.2%, P < 0.01). And the positive rate of AT1-AA in hypertensive patients with ACS (43.3%) was significantly higher than that in those with simple hypertension (35.2%, P < 0.05) and that in healthy control group (7.2%, P < 0.05).Furthermore, AT1-AA increased the vascular loop resting tension of anterior descending coronary artery rings in rats induced by a high-fat diet in a dose-dependant manner. And the vasoconstrictive action of AT1-AA was equal to 46.4% of AngII's action. And such an action was blocked by losartan and antigens. The level of AT1-AA increases markedly in hypertensive patients with ACS. And AT1-AA induces vasoconstrictive effects on anterior descending artery rings in rats induced by a high-fat diet.
Quality in Action: Closing the Loop
ERIC Educational Resources Information Center
Nair, Chenicheri Sid; Pawley, David; Mertova, Patricie
2010-01-01
Purpose: This paper aims to report on how an Administrative Division at a research-intensive Australian university utilised feedback data from the Learning and Growth Survey, to initiate changes. Design/methodology/approach: This paper refers to the actions taken by the Administrative Division to the results obtained from the Learning and Growth…
Extending the Soar Cognitive Architecture
2007-07-01
the first corticostriatal loop, communicating with areas in prefrontal cortex may decide that the medium term intention goal is to satisfy hunger ...decided upon, perhaps rising from a chair. The medium term goal of hunger satiation remains - repeatedly selected by its corticostriatal loop when a...decision between hunger and another medium term goal is required. The actions needed to fulfill that goal are executed in sequence until the goal has
Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines
NASA Astrophysics Data System (ADS)
Kravats, Andrea N.; Tonddast-Navaei, Sam; Bucher, Ryan J.; Stan, George
2013-09-01
Essential protein quality control includes mechanisms of substrate protein (SP) unfolding and translocation performed by powerful ring-shaped AAA+ (ATPases associated with various cellular activities) nanomachines. These SP remodeling actions are effected by mechanical forces imparted by AAA+ loops that protrude into the central channel. Sequential intra-ring allosteric motions, which underlie repetitive SP-loop interactions, have been proposed to comprise clockwise (CW), counterclockwise (CCW), or random (R) conformational transitions of individual AAA+ subunits. To probe the effect of these allosteric mechanisms on unfoldase and translocase functions, we perform Langevin dynamics simulations of a coarse-grained model of an all-alpha SP processed by the single-ring ClpY ATPase or by the double-ring p97 ATPase. We find that, in all three allosteric mechanisms, the SP undergoes conformational transitions along a common set of pathways, which reveals that the active work provided by the ClpY machine involves single loop-SP interactions. Nevertheless, the rates and yields of SP unfolding and translocation are controlled by mechanism-dependent loop-SP binding events, as illustrated by faster timescales of SP processing in CW allostery compared with CCW and R allostery. The distinct efficacy of allosteric mechanisms is due to the asymmetric collaboration of adjacent subunits, which involves CW-biased structural motions of AAA+ loops and results in CW-compatible torque applied onto the SP. Additional simulations of mutant ClpY rings, which render a subset of subunits catalytically-defective or reduce their SP binding affinity, reveal that subunit-based conformational transitions play the major role in SP remodeling. Based on these results we predict that the minimally functional AAA+ ring includes three active subunits, only two of which are adjacent.
Hamzei, Farsin; Vry, Magnus-Sebastian; Saur, Dorothee; Glauche, Volkmar; Hoeren, Markus; Mader, Irina; Weiller, Cornelius; Rijntjes, Michel
2016-05-01
The inferior frontal gyrus (IFG) is active during both goal-directed action and while observing the same motor act, leading to the idea that also the meaning of a motor act (action understanding) is represented in this "mirror neuron system" (MNS). However, in the dual-loop model, based on dorsal and ventral visual streams, the MNS is thought to be a function of the dorsal steam, projecting to pars opercularis (BA44) of IFG, while recent studies suggest that conceptual meaning and semantic analysis are a function of ventral connections, projecting mainly to pars triangularis (BA45) of IFG. To resolve this discrepancy, we investigated action observation (AO) and imitation (IMI) using fMRI in a large group of subjects. A grasping task (GR) assessed the contribution from movement without AO. We analyzed connections of the MNS-related areas within IFG with postrolandic areas with the use of activation-based DTI. We found that action observation with imitation are mainly a function of the dorsal stream centered on dorsal part of BA44, but also involve BA45, which is dorsally and ventrally connected to the same postrolandic regions. The current finding suggests that BA45 is the crucial part where the MNS and the dual-loop system interact. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Vacuum fluctuations of the supersymmetric field in curved background
NASA Astrophysics Data System (ADS)
Bilić, Neven; Domazet, Silvije; Guberina, Branko
2012-01-01
We study a supersymmetric model in curved background spacetime. We calculate the effective action and the vacuum expectation value of the energy momentum tensor using a covariant regularization procedure. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density and pressure. Assuming the presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric field an effective equation of state is derived in a self-consistent approach at one loop order. The net effect of the vacuum fluctuations of the supersymmetric fields in the leading adiabatic order is a renormalization of the Newton and cosmological constants.
Quantum Gravitational Effects on the Boundary
NASA Astrophysics Data System (ADS)
James, F.; Park, I. Y.
2018-04-01
Quantum gravitational effects might hold the key to some of the outstanding problems in theoretical physics. We analyze the perturbative quantum effects on the boundary of a gravitational system and the Dirichlet boundary condition imposed at the classical level. Our analysis reveals that for a black hole solution, there is a contradiction between the quantum effects and the Dirichlet boundary condition: the black hole solution of the one-particle-irreducible action no longer satisfies the Dirichlet boundary condition as would be expected without going into details. The analysis also suggests that the tension between the Dirichlet boundary condition and loop effects is connected with a certain mechanism of information storage on the boundary.
Cosmic acceleration in the nonlocal approach to the cosmological constant problem
NASA Astrophysics Data System (ADS)
Oda, Ichiro
2018-04-01
We have recently constructed a manifestly local formulation of a nonlocal approach to the cosmological constant problem which can treat with quantum effects from both matter and gravitational fields. In this formulation, it has been explicitly shown that the effective cosmological constant is radiatively stable even in the presence of the gravitational loop effects. Since we are naturally led to add the R^2 term and the corresponding topological action to an original action, we make use of this formulation to account for the late-time acceleration of expansion of the universe in case of the open universes with infinite space-time volume. We will see that when the "scalaron", which exists in the R^2 gravity as an extra scalar field, has a tiny mass of the order of magnitude {O}(1 meV), we can explain the current value of the cosmological constant in a consistent manner.
Kumar, Raj; Dhaliwal, Harkiran Preet; Kukreja, Roshan Vijay; Singh, Bal Ram
2016-02-01
Botulinum neurotoxin (BoNT) produced by Clostridium botulinum is the most potent molecule known to mankind. Higher potency of BoNT is attributed to several factors, including structural and functional uniqueness, target specificity, and longevity. Although BoNT is an extremely toxic molecule, it is now increasingly used for the treatment of disorders related to muscle hyperactivity and glandular hyperactivity. Weakening of muscles due to peripheral action of BoNT produces a therapeutic effect. Depending on the target tissue, BoNT can block the cholinergic neuromuscular or cholinergic autonomic innervation of exocrine glands and smooth muscles. In recent observations of the analgesic properties of BoNT, the toxin modifies the sensory feedback loop to the central nervous system. Differential effects of BoNT in excitatory and inhibitory neurons provide a unique therapeutic tool. In this review the authors briefly summarize the structure and mechanism of actions of BoNT on motor and sensory neurons to explain its therapeutic effects and future potential. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Noncommutative Jackiw-Pi model: One-loop renormalization
NASA Astrophysics Data System (ADS)
Bufalo, R.; Ghasemkhani, M.; Alipour, M.
2018-06-01
In this paper, we study the quantum behavior of the noncommutative Jackiw-Pi model. After establishing the Becchi-Rouet-Store-Tyutin (BRST) invariant action, the perturbative renormalizability is discussed, allowing us to introduce the renormalized mass and gauge coupling. We then proceed to compute the one-loop correction to the basic 1PI functions, necessary to determine the renormalized parameters (mass and charge), next we discuss the physical behavior of these parameters.
Towards loop quantum gravity without the time gauge.
Cianfrani, Francesco; Montani, Giovanni
2009-03-06
The Hamiltonian formulation of the Holst action is reviewed and it provides a solution of second-class constraints corresponding to a generic local Lorentz frame. Within this scheme the form of rotation constraints can be reduced to a Gauss-like one by a proper generalization of Ashtekar-Barbero-Immirzi connections. This result emphasizes that the loop quantum gravity quantization procedure can be applied when the time-gauge condition does not stand.
Goldstone, Robert L; de Leeuw, Joshua R; Landy, David H
2016-01-01
Attention is often inextricably intertwined with perception, and it is deployed not only to spatial regions, but also to sensory dimensions, learned dimensions, and learned complex configurations. Firestone & Scholl's (F&S)'s tactic of isolating visual perceptual processes from attention and action has the negative consequence of neglecting interactions that are critically important for allowing people to perceive their world in efficient and useful ways.
Immunity to Transformational Learning and Change
ERIC Educational Resources Information Center
Bochman, David J.; Kroth, Michael
2010-01-01
Purpose: The purpose of this paper is to examine and synthesize Argyris and Schon's Theory of Action and Kegan and Lahey's theory of Immunity to Change in order to produce an integrated model. Design/methodology/approach: Literature discussing Argyris and Schon's Theory of Action (Model I and Model II), single and double-loop learning, espoused…
Facilitating Systemic Research and Learning and the Transition to Agricultural Sustainability
ERIC Educational Resources Information Center
Eksvard, Karin
2010-01-01
This article focuses on how a facilitated process of triple loop learning can enable transition toward more sustainable forms of farming. The article is a case-based study of Participatory Learning and Action Research with organic tomato growers in Malardalen, Sweden. The importance of negotiating learning and action, capacity building, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levi, Michele; Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de
2016-01-01
The next-to-next-to-leading order spin-squared interaction potential for generic compact binaries is derived for the first time via the effective field theory for gravitating spinning objects in the post-Newtonian scheme. The spin-squared sector is an intricate one, as it requires the consideration of the point particle action beyond minimal coupling, and mainly involves the spin-squared worldline couplings, which are quite complex, compared to the worldline couplings from the minimal coupling part of the action. This sector also involves the linear in spin couplings, as we go up in the nonlinearity of the interaction, and in the loop order. Hence, there ismore » an excessive increase in the number of Feynman diagrams, of which more are higher loop ones. We provide all the Feynman diagrams and their values. The beneficial ''nonrelativistic gravitational'' fields are employed in the computation. This spin-squared correction, which enters at the fourth post-Newtonian order for rapidly rotating compact objects, completes the conservative sector up to the fourth post-Newtonian accuracy. The robustness of the effective field theory for gravitating spinning objects is shown here once again, as demonstrated in a recent series of papers by the authors, which obtained all spin dependent sectors, required up to the fourth post-Newtonian accuracy. The effective field theory of spinning objects allows to directly obtain the equations of motion, and the Hamiltonians, and these will be derived for the potential obtained here in a forthcoming paper.« less
SimSup's Loop: A Control Theory Approach to Spacecraft Operator Training
NASA Technical Reports Server (NTRS)
Owens, Brandon Dewain; Crocker, Alan R.
2015-01-01
Immersive simulation is a staple of training for many complex system operators, including astronauts and ground operators of spacecraft. However, while much has been written about simulators, simulation facilities, and operator certification programs, the topic of how one develops simulation scenarios to train a spacecraft operator is relatively understated in the literature. In this paper, an approach is presented for using control theory as the basis for developing the immersive simulation scenarios for a spacecraft operator training program. The operator is effectively modeled as a high level controller of lower level hardware and software control loops that affect a select set of system state variables. Simulation scenarios are derived from a STAMP-based hazard analysis of the operator's high and low level control loops. The immersive simulation aspect of the overall training program is characterized by selecting a set of scenarios that expose the operator to the various inadequate control actions that stem from control flaws and inadequate control executions in the different sections of the typical control loop. Results from the application of this approach to the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are provided through an analysis of the simulation scenarios used for operator training and the actual anomalies that occurred during the mission. The simulation scenarios and inflight anomalies are mapped to specific control flaws and inadequate control executions in the different sections of the typical control loop to illustrate the characteristics of anomalies arising from the different sections of the typical control loop (and why it is important for operators to have exposure to these characteristics). Additionally, similarities between the simulation scenarios and inflight anomalies are highlighted to make the case that the simulation scenarios prepared the operators for the mission.
2018-01-01
During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop brain/body/environment interactions strongly supporting the idea that brain function cannot be fully understood through open-loop approaches alone. PMID:29342146
Buckley, Christopher L; Toyoizumi, Taro
2018-01-01
During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop brain/body/environment interactions strongly supporting the idea that brain function cannot be fully understood through open-loop approaches alone.
NASA Astrophysics Data System (ADS)
Patil, Sameer; Kobsa, Alfred; John, Ajita; Brotman, Lynne S.; Seligmann, Doree
To understand how collaborators reconcile the often conflicting needs of awareness and privacy, we studied a large software development project in a multinational corporation involving individuals at sites in the U.S. and India. We present a theoretical framework describing privacy management practices and their determinants that emerged from field visits, interviews, and questionnaire responses. The framework identifies five relevant situational characteristics: issue(s) under consideration, physical place(s) involved in interaction(s), temporal aspects, affordances and limitations presented by technology, and nature of relationships among parties. Each actor, in turn, interprets the situation based on several simultaneous influences: self, team, work site, organization, and cultural environment. This interpretation guides privacy management action(s). Past actions form a feedback loop refining and/or reinforcing the interpretive influences. The framework suggests that effective support for privacy management will require that designers follow a socio-technical approach incorporating a wider scope of situational and interpretive differences.
Dynamics of visual feedback in a laboratory simulation of a penalty kick.
Morya, Edgard; Ranvaud, Ronald; Pinheiro, Walter Machado
2003-02-01
Sport scientists have devoted relatively little attention to soccer penalty kicks, despite their decisive role in important competitions such as the World Cup. Two possible kicker strategies have been described: ignoring the goalkeeper action (open loop) or trying to react to the goalkeeper action (closed loop). We used a paradigm simulating a penalty kick in the laboratory to investigate the dynamics of the closed-loop strategy in these controlled conditions. The probability of correctly responding to the simulated goalkeeper motion as a function of time available followed a logistic curve. Kickers on average reached perfect performance only if the goalkeeper committed him or herself to one side about 400 ms before ball contact and showed chance performance if the goalkeeper motion occurred less than 150 ms before ball contact. Interestingly, coincidence judgement--another aspect of the laboratory responses--appeared to be affected for a much longer time (> 500 ms) than was needed to correctly determine laterality. The present study is meant as groundwork for experiments in more ecological conditions applicable to kickers and goalkeepers.
Diuretics in heart failure: practical considerations.
Basraon, Jagroop; Deedwani, Prakash C
2012-09-01
This review discusses the role of diuretics in heart failure by focusing on different classifications and mechanisms of action. Pharmacodynamic and pharmacokinetic properties of diuretics are elucidated. The predominant discussion highlights the use of loop diuretics, which are the most commonly used drugs in heart failure. Different methods of using this therapy in different settings along with a comprehensive review of the side-effect profile are highlighted. Special situations necessitating adjustment and the phenomenon of diuretic resistance are explained. Copyright © 2012. Published by Elsevier Inc.
Renormalization of minimally doubled fermions
NASA Astrophysics Data System (ADS)
Capitani, Stefano; Creutz, Michael; Weber, Johannes; Wittig, Hartmut
2010-09-01
We investigate the renormalization properties of minimally doubled fermions, at one loop in perturbation theory. Our study is based on the two particular realizations of Boriçi-Creutz and Karsten-Wilczek. A common feature of both formulations is the breaking of hyper-cubic symmetry, which requires that the lattice actions are supplemented by suitable counterterms. We show that three counterterms are required in each case and determine their coefficients to one loop in perturbation theory. For both actions we compute the vacuum polarization of the gluon. It is shown that no power divergences appear and that all contributions which arise from the breaking of Lorentz symmetry are cancelled by the counterterms. We also derive the conserved vector and axial-vector currents for Karsten-Wilczek fermions. Like in the case of the previously studied Boriçi-Creutz action, one obtains simple expressions, involving only nearest-neighbour sites. We suggest methods how to fix the coefficients of the counterterms non-perturbatively and discuss the implications of our findings for practical simulations.
Gilet, Estelle; Diard, Julien; Bessière, Pierre
2011-01-01
In this paper, we study the collaboration of perception and action representations involved in cursive letter recognition and production. We propose a mathematical formulation for the whole perception–action loop, based on probabilistic modeling and Bayesian inference, which we call the Bayesian Action–Perception (BAP) model. Being a model of both perception and action processes, the purpose of this model is to study the interaction of these processes. More precisely, the model includes a feedback loop from motor production, which implements an internal simulation of movement. Motor knowledge can therefore be involved during perception tasks. In this paper, we formally define the BAP model and show how it solves the following six varied cognitive tasks using Bayesian inference: i) letter recognition (purely sensory), ii) writer recognition, iii) letter production (with different effectors), iv) copying of trajectories, v) copying of letters, and vi) letter recognition (with internal simulation of movements). We present computer simulations of each of these cognitive tasks, and discuss experimental predictions and theoretical developments. PMID:21674043
[Mechanism of the diuretic effect of eufillin].
Kantariia, V A; Lebedev, A A
1975-01-01
In acute experiments on rats the xanthine diuretic euphylline did not block the short-circuited current in the proximal tubule, nor did it lower the transtubular potential and the transepithelial resistance of the nephron wall. The diuretic speeded up significantly the passage of the tubular fluid along the proximal region of the nephron and Henle's loop. The dihydroergotoxin and inderal blocking of adrenoreceptors did not produce any influence on the renal effects of the xanthine agent. Reserpine totally blocked the diuretic and saluretic effects of euphylline, whereas other sympatholytics, such as alpha-methyl-dofa, anthabus and hemedin, did not modify the action of the diuretic.
Strings in bubbling geometries and dual Wilson loop correlators
NASA Astrophysics Data System (ADS)
Aguilera-Damia, Jeremías; Correa, Diego H.; Fucito, Francesco; Giraldo-Rivera, Victor I.; Morales, Jose F.; Pando Zayas, Leopoldo A.
2017-12-01
We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU( N) gauge group in N=4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry, explicitly. We also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a "small" one in the fundamental, totally symmetric or totally antisymmetric representation.
Kyrchanova, Olga; Maksimenko, Oksana; Stakhov, Viacheslav; Ivlieva, Tatyana; Parshikov, Alexander; Studitsky, Vasily M; Georgiev, Pavel
2013-01-01
Chromatin insulators block the action of transcriptional enhancers when interposed between an enhancer and a promoter. In this study, we examined the role of chromatin loops formed by two unrelated insulators, gypsy and Fab-7, in their enhancer-blocking activity. To test for this activity, we selected the white reporter gene that is activated by the eye-specific enhancer. The results showed that one copy of the gypsy or Fab-7 insulator failed to block the eye enhancer in most of genomic sites, whereas a chromatin loop formed by two gypsy insulators flanking either the eye enhancer or the reporter completely blocked white stimulation by the enhancer. However, strong enhancer blocking was achieved due not only to chromatin loop formation but also to the direct interaction of the gypsy insulator with the eye enhancer, which was confirmed by the 3C assay. In particular, it was observed that Mod(mdg4)-67.2, a component of the gypsy insulator, interacted with the Zeste protein, which is critical for the eye enhancer-white promoter communication. These results suggest that efficient enhancer blocking depends on the combination of two factors: chromatin loop formation by paired insulators, which generates physical constraints for enhancer-promoter communication, and the direct interaction of proteins recruited to an insulator and to the enhancer-promoter pair.
Stakhov, Viacheslav; Ivlieva, Tatyana; Parshikov, Alexander; Studitsky, Vasily M.; Georgiev, Pavel
2013-01-01
Chromatin insulators block the action of transcriptional enhancers when interposed between an enhancer and a promoter. In this study, we examined the role of chromatin loops formed by two unrelated insulators, gypsy and Fab-7, in their enhancer-blocking activity. To test for this activity, we selected the white reporter gene that is activated by the eye-specific enhancer. The results showed that one copy of the gypsy or Fab-7 insulator failed to block the eye enhancer in most of genomic sites, whereas a chromatin loop formed by two gypsy insulators flanking either the eye enhancer or the reporter completely blocked white stimulation by the enhancer. However, strong enhancer blocking was achieved due not only to chromatin loop formation but also to the direct interaction of the gypsy insulator with the eye enhancer, which was confirmed by the 3C assay. In particular, it was observed that Mod(mdg4)-67.2, a component of the gypsy insulator, interacted with the Zeste protein, which is critical for the eye enhancer–white promoter communication. These results suggest that efficient enhancer blocking depends on the combination of two factors: chromatin loop formation by paired insulators, which generates physical constraints for enhancer–promoter communication, and the direct interaction of proteins recruited to an insulator and to the enhancer–promoter pair. PMID:23861668
Sub-millisecond closed-loop feedback stimulation between arbitrary sets of individual neurons
Müller, Jan; Bakkum, Douglas J.; Hierlemann, Andreas
2012-01-01
We present a system to artificially correlate the spike timing between sets of arbitrary neurons that were interfaced to a complementary metal–oxide–semiconductor (CMOS) high-density microelectrode array (MEA). The system features a novel reprogrammable and flexible event engine unit to detect arbitrary spatio-temporal patterns of recorded action potentials and is capable of delivering sub-millisecond closed-loop feedback of electrical stimulation upon trigger events in real-time. The relative timing between action potentials of individual neurons as well as the temporal pattern among multiple neurons, or neuronal assemblies, is considered an important factor governing memory and learning in the brain. Artificially changing timings between arbitrary sets of spiking neurons with our system could provide a “knob” to tune information processing in the network. PMID:23335887
Toward rational design of electrical stimulation strategies for epilepsy control
Sunderam, Sridhar; Gluckman, Bruce; Reato, Davide; Bikson, Marom
2009-01-01
Electrical stimulation is emerging as a viable alternative for epilepsy patients whose seizures are not alleviated by drugs or surgery. Its attractions are temporal and spatial specificity of action, flexibility of waveform parameters and timing, and the perception that its effects are reversible unlike resective surgery. However, despite significant advances in our understanding of mechanisms of neural electrical stimulation, clinical electrotherapy for seizures relies heavily on empirical tuning of parameters and protocols. We highlight concurrent treatment goals with potentially conflicting design constraints that must be resolved when formulating rational strategies for epilepsy electrotherapy: namely seizure reduction versus cognitive impairment, stimulation efficacy versus tissue safety, and mechanistic insight versus clinical pragmatism. First, treatment markers, objectives, and metrics relevant to electrical stimulation for epilepsy are discussed from a clinical perspective. Then the experimental perspective is presented, with the biophysical mechanisms and modalities of open-loop electrical stimulation, and the potential benefits of closed-loop control for epilepsy. PMID:19926525
Kuhn, Josef; Tengler, Ulrike; Binder, Stefan
2001-01-01
To determine the influence of posttranscriptional modifications on 3′ end processing and RNA stability in plant mitochondria, pea atp9 and Oenothera atp1 transcripts were investigated for the presence and function of 3′ nonencoded nucleotides. A 3′ rapid amplification of cDNA ends approach initiated at oligo(dT)-adapter primers finds the expected poly(A) tails predominantly attached within the second stem or downstream of the double stem-loop structures at sites of previously mapped 3′ ends. Functional studies in a pea mitochondrial in vitro processing system reveal a rapid removal of the poly(A) tails up to termini at the stem-loop structure but little if any influence on further degradation of the RNA. In contrast 3′ poly(A) tracts at RNAs without such stem-loop structures significantly promote total degradation in vitro. To determine the in vivo identity of 3′ nonencoded nucleotides more accurately, pea atp9 transcripts were analyzed by a direct anchor primer ligation-reverse transcriptase PCR approach. This analysis identified maximally 3-nucleotide-long nonencoded extensions most frequently of adenosines combined with cytidines. Processing assays with substrates containing homopolymer stretches of different lengths showed that 10 or more adenosines accelerate RNA processivity, while 3 adenosines have no impact on RNA life span. Thus polyadenylation can generally stimulate the decay of RNAs, but processivity of degradation is almost annihilated by the stabilizing effect of the stem-loop structures. These antagonistic actions thus result in the efficient formation of 3′ processed and stable transcripts. PMID:11154261
Current systems of coronal loops in 3D MHD simulations
NASA Astrophysics Data System (ADS)
Warnecke, J.; Chen, F.; Bingert, S.; Peter, H.
2017-11-01
Aims: We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down and where they might be justified. Methods: We analyze a three-dimensional (3D) magnetohydrodynamic (MHD) model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux and the horizontal motions at the surface a coronal loop forms self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. Results: We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. This is caused by the inclination of the loop together with the footpoint motion. Around the loop, the currents form a complex non-force-free helical structure. This is directly related to a bipolar current structure at the loop footpoints at the base of the corona and a local reduction of the background magnetic field (I.e., outside the loop) caused by the plasma flow into and along the loop. Furthermore, the locally reduced magnetic pressure in the loop allows the loop to sustain a higher density, which is crucial for the emission in extreme UV. The action of the flow on the magnetic field hosting the loop turns out to also be responsible for the observed squashing of the loop. Conclusions: The complex magnetic field and current system surrounding it can only be modeled in 3D MHD models where the magnetic field has to balance the plasma pressure. A one-dimensional coronal loop model or a force-free extrapolation cannot capture the current system and the complex interaction of the plasma and the magnetic field in the coronal loop, despite the fact that the loop is under low-β conditions.
Lateralization in motor facilitation during action observation: a TMS study.
Aziz-Zadeh, Lisa; Maeda, Fumiko; Zaidel, Eran; Mazziotta, John; Iacoboni, Marco
2002-05-01
Action observation facilitates corticospinal excitability. This is presumably due to a premotor neural system that is active when we perform actions and when we observe actions performed by others. It has been speculated that this neural system is a precursor of neural systems subserving language. If this theory is true, we may expect hemispheric differences in the motor facilitation produced by action observation, with the language-dominant left hemisphere showing stronger facilitation than the right hemisphere. Furthermore, it has been suggested that body parts are recognized via cortical regions controlling sensory and motor processing associated with that body part. If this is true, then corticospinal facilitation during action observation should be modulated by the laterality of the observed body part. The present study addressed these two issues using TMS for each motor cortex separately as participants observed actions being performed by a left hand, a right hand, or a control stimulus on the computer screen. We found no overall difference between the right and left hemisphere for motor-evoked potential (MEP) size during action observation. However, when TMS was applied to the left motor cortex, MEPs were larger while observing right hand actions. Likewise, when TMS was applied to the right motor cortex, MEPs were larger while observing left hand actions. Our data do not suggest left hemisphere superiority in the facilitating effects of action observation on the motor system. However, they do support the notion of a sensory-motor loop according to which sensory stimulus properties (for example, the image of a left hand or a right hand) directly affect motor cortex activity, even when no motor output is required. The pattern of this effect is congruent with the pattern of motor representation in each hemisphere.
Petzschner, Frederike H; Weber, Lilian A E; Gard, Tim; Stephan, Klaas E
2017-09-15
This article outlines how a core concept from theories of homeostasis and cybernetics, the inference-control loop, may be used to guide differential diagnosis in computational psychiatry and computational psychosomatics. In particular, we discuss 1) how conceptualizing perception and action as inference-control loops yields a joint computational perspective on brain-world and brain-body interactions and 2) how the concrete formulation of this loop as a hierarchical Bayesian model points to key computational quantities that inform a taxonomy of potential disease mechanisms. We consider the utility of this perspective for differential diagnosis in concrete clinical applications. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Mason, Eric L.
2014-01-01
Two-year community colleges are commissioned to close the assessment-outcome loop, which includes the research site for this study. This action research study, which utilized quantitative and qualitative data sets, was designed to close the assessments, learning outcomes and the professional development budget proposal process gap. The developed…
ERIC Educational Resources Information Center
Ssajjakambwe, Paul; Setumba, Christopher; Kisaka, Stevens; Bahizi, Gloria; Vudriko, Patrick; Kabasa, John D.; Kaneene, John B.
2013-01-01
One of the cornerstones of the AgShare program is the application of an information loop of action research in the training of graduate students to generate new and practical educational materials and interventions for creating open education research (OER) modules for teaching at universities, and for designing interventions and training…
Unannounced Meals in the Artificial Pancreas: Detection Using Continuous Glucose Monitoring
Herrero, Pau; Bondia, Jorge
2018-01-01
The artificial pancreas (AP) system is designed to regulate blood glucose in subjects with type 1 diabetes using a continuous glucose monitor informed controller that adjusts insulin infusion via an insulin pump. However, current AP developments are mainly hybrid closed-loop systems that include feed-forward actions triggered by the announcement of meals or exercise. The first step to fully closing the loop in the AP requires removing meal announcement, which is currently the most effective way to alleviate postprandial hyperglycemia due to the delay in insulin action. Here, a novel approach to meal detection in the AP is presented using a sliding window and computing the normalized cross-covariance between measured glucose and the forward difference of a disturbance term, estimated from an augmented minimal model using an Unscented Kalman Filter. Three different tunings were applied to the same meal detection algorithm: (1) a high sensitivity tuning, (2) a trade-off tuning that has a high amount of meals detected and a low amount of false positives (FP), and (3) a low FP tuning. For the three tunings sensitivities 99 ± 2%, 93 ± 5%, and 47 ± 12% were achieved, respectively. A sensitivity analysis was also performed and found that higher carbohydrate quantities and faster rates of glucose appearance result in favorable meal detection outcomes. PMID:29547553
Non-analytic terms from nested divergences in maximal supergravity
NASA Astrophysics Data System (ADS)
Basu, Anirban
2016-07-01
The {D}4{{ R }}4 and {D}6{{ R }}4 coefficient functions in the effective action of type II string theory compactified on T d contain terms of the form {{ E }}1{{ln}}{g}d and {{ E }}2{({{ln}}{g}d)}2 in specific dimensions, where g d is the T-duality invariant string coupling, and {{ E }}1 and {{ E }}2 are U-duality invariant coefficient functions. We derive these non-analytic terms from nested ultraviolet divergences in two and three loop maximal supergravity. For the {D}4{{ R }}4 coupling, the contribution involves {{ E }}{{ R }4}{{ln}}{g}d, while for the {D}6{{ R }}4 coupling, it involves {{ E }}{{ R }4}{{ln}}{g}d, {{ E }}{D2{{ R }}4}{({{ln}}{g}d)}2 and {{ E }}{D4{{ R }}4}{{ln}}{g}d; where {{ E }}{{ R }4}, {{ E }}{D2{{ R }}4} and {{ E }}{D4{{ R }}4} are the {{ R }}4, {D}2{{ R }}4 and {D}4{{ R }}4 coefficient functions respectively. The contribution from {{ E }}{D2{{ R }}4}, the coefficient function of an amplitude that vanishes onshell, arises from a two loop nested subdivergence of the three loop amplitude.
Effect of loop structure of bovine lactoferricin on apoptosis in Jurkat cells.
Zhang, Tie-nan; Yang, Wei; Liu, Ning
2010-06-01
Bovine lactoferricin (LfcinB) is a cationic peptide that selectively induces apoptosis in Jurkat cells. However less is known about the influence of this kind of apoptosis on the intra-cellular ceramide metabolism and the structure-function relationship between the loop structure of LfcinB and its action of inducing apoptosis in Jurkat cells. In the present study, the artificially synthesized LfcinB and LfcinB-derived peptide (Cys 19 residue in LfcinB was replaced by Ala) was added in Jurkat cells, the nucleolus shape was observed by fluorescent microscopy, the ceramide concentration in Jurkat cells was determined by reversed phase high performance liquid chromatography (RP-HPLC). The results of MTT assay showed that LfcinB inhibited proliferation of Jurkat cells, and the inhibition rate was approximately 18.90%. Moreover, the inhibition rate of LfcinB together with MAPP was upto approximately 59.89%. The RP-HPLC result showed that LfcinB improved the ceramide level in Jurkat cells. By using the DNA fragmentation assay and observing the nucleolus shape, the result displayed deficiency of the loop structure could cause LfcinB losing the biological activity of inducing apoptosis in Jurkat cells.
One-loop renormalization of Lorentz and C P T -violating scalar field theory in curved spacetime
NASA Astrophysics Data System (ADS)
Netto, Tibério de Paula
2018-03-01
The one-loop divergences for the scalar field theory with Lorentz and/or C P T breaking terms are obtained in curved spacetime. We analyze two separate cases: a minimal coupled scalar field with gravity and a nonminimal one. For the minimal case with a real scalar field, the counterterms are evaluated in a nonperturbative form in the C P T -even parameter through a redefinition of a space-time metric. In the most complicated case of a complex scalar field nonminimally interacting with gravity, the solution for the divergences is obtained in the first order in the weak Lorentz violating parameter. The necessary form of the vacuum counterterms indicate the most important structures of Lorentz and C P T violations in the pure gravitational sector of the theory. The conformal theory limit is also analyzed. It turns out that if we allow the violating fields to transform, the classical conformal invariance of massless scalar fields can be maintained in the ξ =1 /6 case. At a quantum level, the conformal symmetry is violated by a trace anomaly. As a result, the conformal anomaly and the anomaly induced effective action are evaluated in the presence of extra Lorentz- and/or C P T -violating parameters. Such gravitational effective action is important for cosmological applications and can be used for searching of Lorentz violation in the primordial Universe in the cosmological perturbations, especially gravitational waves.
Brown, D R; Miller, R J
1984-10-01
The antisecretory effects of the stable enkephalin analogs, [D-Ala2-Met5] enkephalinamide (DAMA) and [D-Ala2-D-Leu5] enkephalin, and the opiate drug morphine were evaluated on fluid secretion induced by cholera toxin in isolated loops of the jejunum and proximal and distal ileum in anesthetized rats. Intracerebroventricular administration of DAMA (0.03-3 micrograms) or [D-Ala2-D-Leu5] enkephalin (1.0-10 micrograms) dose-dependently reduced secretion in the jejunum without affecting fluid movement in the other small intestinal segments. Morphine in doses up to 30 micrograms i.c.v. had no significant antisecretory effects. Intravenous administration of DAMA, at doses up to 3000 micrograms/kg, had little effect on intestinal fluid accumulation. The antisecretory action of DAMA (3 micrograms i.c.v.) was completely blocked by pretreatment with the alpha adrenergic antagonist phentolamine and after peripheral sympathectomy induced by guanethidine. In contrast, DAMA activity was preserved in adrenal demedullated rats. DAMA had no significant effects upon mean arterial blood pressure or on blood acid-base balance. These results suggest that the antisecretory effects of opiates are, at least partly, mediated at sites within the central nervous system. These actions are probably a consequence of increased activity in sympathetic nerve fibers innervating the upper small intestine.
Dual-circuit, multiple-effect refrigeration system and method
DeVault, Robert C.
1995-01-01
A dual circuit absorption refrigeration system comprising a high temperature single-effect refrigeration loop and a lower temperature double-effect refrigeration loop separate from one another and provided with a double-condenser coupling therebetween. The high temperature condenser of the single-effect refrigeration loop is double coupled to both of the generators in the double-effect refrigeration loop to improve internal heat recovery and a heat and mass transfer additive such as 2-ethyl-1-hexanol is used in the lower temperature double-effect refrigeration loop to improve the performance of the absorber in the double-effect refrigeration loop.
Experimental Observation of Classical Dynamical Monodromy
NASA Astrophysics Data System (ADS)
Nerem, M. P.; Salmon, D.; Aubin, S.; Delos, J. B.
2018-03-01
A Hamiltonian system is said to have nontrivial monodromy if its fundamental action-angle loops do not return to their initial topological state at the end of a closed circuit in angular momentum-energy space. This process has been predicted to have consequences which can be seen in dynamical systems, called dynamical monodromy. Using an apparatus consisting of a spherical pendulum subject to magnetic potentials and torques, we observe nontrivial monodromy by the associated topological change in the evolution of a loop of trajectories.
Two loop renormalization of the magnetic coupling in hot QCD
NASA Astrophysics Data System (ADS)
Giovannangeli, P.
2004-04-01
Well above the critical temperature hot QCD is described by 3d electrostatic QCD with gauge coupling gE and Debye mass mE. We integrate out the Debye scales to two loop accuracy and find for the gauge coupling in the resulting magnetostatic action gM2=gE21-{1}/{48}{gE2N}/{πmE}-{17}/{4608}{gE2N}/{πmE}2+O{gE2N}/{πmE}3.
Infrared propagators of Yang-Mills theory from perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tissier, Matthieu; Wschebor, Nicolas
2010-11-15
We show that the correlation functions of ghosts and gluons for the pure Yang-Mills theory in Landau gauge can be accurately reproduced for all momenta by a one-loop calculation. The key point is to use a massive extension of the Faddeev-Popov action. The agreement with lattice simulation is excellent in d=4. The one-loop calculation also reproduces all the characteristic features of the lattice simulations in d=3 and naturally explains the peculiarities of the propagators in d=2.
Strings in bubbling geometries and dual Wilson loop correlators
Aguilera-Damia, Jeremias; Correa, Diego H.; Fucito, Francesco; ...
2017-12-20
We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU(N) gauge group in N = 4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry,more » explicitly. Lastly, we also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a “small” one in the fundamental, totally symmetric or totally antisymmetric representation.« less
Strings in bubbling geometries and dual Wilson loop correlators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilera-Damia, Jeremias; Correa, Diego H.; Fucito, Francesco
We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU(N) gauge group in N = 4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry,more » explicitly. Lastly, we also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a “small” one in the fundamental, totally symmetric or totally antisymmetric representation.« less
Russo, Marc; Cousins, Michael J; Brooker, Charles; Taylor, Nathan; Boesel, Tillman; Sullivan, Richard; Poree, Lawrence; Shariati, Nastaran Hesam; Hanson, Erin; Parker, John
2018-01-01
Conventional spinal cord stimulation (SCS) delivers a fixed-input of energy into the dorsal column. Physiologic effects such as heartbeat, respiration, spinal cord movement, and history of stimulation can cause both the perceived intensity and recruitment of stimulation to increase or decrease, with clinical consequences. A new SCS system controls stimulation dose by measuring the recruitment of fibers in the dorsal column and by using the amplitude of the evoked compound action potentials (ECAPs) to maintain stimulation within an individualized therapeutic range. Safety and efficacy of this closed-loop system was evaluated through six-month postimplantation. Chronic pain subjects with back and/or leg pain who were successfully trialed received a permanent system (Evoke; Saluda Medical, Sydney, Australia). Ratings of pain (100-mm visual analogue scale [VAS] and Brief Pain Instrument [BPI]), quality of life (EuroQol instrument [EQ-5D-5L]), function (Oswestry Disability Index [ODI]), and sleep (Pittsburgh Sleep Quality Index [PSQI]) were collected at baseline and repeated three and six months after implantation. Fifty-one subjects underwent a trial procedure; permanent implants were placed in 36 subjects. The proportion of subjects with ≥50% relief was 92.6% (back) and 91.3% (leg) at three months, and 85.7% (back) and 82.6% (leg) at six months. The proportion with ≥80% pain relief was 70.4% (back) and 56.5% (leg) at three months, and 64.3% (back) and 60.9% (leg) at six months. Statistically significant improvements in mean BPI, EQ-5D-5L, ODI, and PSQI were also observed at both time points. The majority of subjects experienced profound pain relief at three and six months, providing preliminary evidence for the effectiveness of the closed-loop SCS system. The exact mechanism of action for these outcomes is still being explored, although one likely hypothesis holds that ECAP feedback control may minimize recruitment of Aβ nociceptors and Aδ fibers during daily use of SCS. © 2017 International Neuromodulation Society.
Current trend in drug delivery considerations for subcutaneous insulin depots to treat diabetes.
P V, Jayakrishnapillai; Nair, Shantikumar V; Kamalasanan, Kaladhar
2017-05-01
Diabetes mellitus (DM) is a metabolic disorder due to irregularities in glucose metabolism, as a result of insulin disregulation. Chronic DM (Type 1) is treated by daily insulin injections by subcutaneous route. Daily injections cause serious patient non-compliance and medication non-adherence. Insulin Depots (ID) are parenteral formulations designed to release the insulin over a specified period of time, to control the plasma blood glucose level for intended duration. Physiologically, pancreas produces and secretes insulin in basal and pulsatile mode into the blood. Delivery systems mimicking basal release profiles are known as open-loop systems and current marketed products are open-loop systems. Future trend in open-loop systems is to reduce the number of injections per week by enhancing duration of action, by modifying the depot properties. The next generation technologies are closed-loop systems that mimic the pulsatile mode of delivery by pancreas. In closed-loop systems insulin will be released in response to plasma glucose. This review focuses on future trend in open-loop systems; by understanding (a) the secretion of insulin from pancreas, (b) the insulin regulation normal and in DM, (c) insulin depots and (d) the recent progress in open-loop depot technology particularly with respect to nanosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
Concerted loop motion triggers induced fit of FepA to ferric enterobactin
Smallwood, Chuck R.; Jordan, Lorne; Trinh, Vy; Schuerch, Daniel W.; Gala, Amparo; Hanson, Mathew; Shipelskiy, Yan; Majumdar, Aritri; Newton, Salete M.C.
2014-01-01
Spectroscopic analyses of fluorophore-labeled Escherichia coli FepA described dynamic actions of its surface loops during binding and transport of ferric enterobactin (FeEnt). When FeEnt bound to fluoresceinated FepA, in living cells or outer membrane fragments, quenching of fluorophore emissions reflected conformational motion of the external vestibular loops. We reacted Cys sulfhydryls in seven surface loops (L2, L3, L4, L5, L7 L8, and L11) with fluorophore maleimides. The target residues had different accessibilities, and the labeled loops themselves showed variable extents of quenching and rates of motion during ligand binding. The vestibular loops closed around FeEnt in about a second, in the order L3 > L11 > L7 > L2 > L5 > L8 > L4. This sequence suggested that the loops bind the metal complex like the fingers of two hands closing on an object, by individually adsorbing to the iron chelate. Fluorescence from L3 followed a biphasic exponential decay as FeEnt bound, but fluorescence from all the other loops followed single exponential decay processes. After binding, the restoration of fluorescence intensity (from any of the labeled loops) mirrored cellular uptake that depleted FeEnt from solution. Fluorescence microscopic images also showed FeEnt transport, and demonstrated that ferric siderophore uptake uniformly occurs throughout outer membrane, including at the poles of the cells, despite the fact that TonB, its inner membrane transport partner, was not detectable at the poles. PMID:24981231
Concerted loop motion triggers induced fit of FepA to ferric enterobactin.
Smallwood, Chuck R; Jordan, Lorne; Trinh, Vy; Schuerch, Daniel W; Gala, Amparo; Hanson, Mathew; Hanson, Matthew; Shipelskiy, Yan; Majumdar, Aritri; Newton, Salete M C; Klebba, Phillip E
2014-07-01
Spectroscopic analyses of fluorophore-labeled Escherichia coli FepA described dynamic actions of its surface loops during binding and transport of ferric enterobactin (FeEnt). When FeEnt bound to fluoresceinated FepA, in living cells or outer membrane fragments, quenching of fluorophore emissions reflected conformational motion of the external vestibular loops. We reacted Cys sulfhydryls in seven surface loops (L2, L3, L4, L5, L7 L8, and L11) with fluorophore maleimides. The target residues had different accessibilities, and the labeled loops themselves showed variable extents of quenching and rates of motion during ligand binding. The vestibular loops closed around FeEnt in about a second, in the order L3 > L11 > L7 > L2 > L5 > L8 > L4. This sequence suggested that the loops bind the metal complex like the fingers of two hands closing on an object, by individually adsorbing to the iron chelate. Fluorescence from L3 followed a biphasic exponential decay as FeEnt bound, but fluorescence from all the other loops followed single exponential decay processes. After binding, the restoration of fluorescence intensity (from any of the labeled loops) mirrored cellular uptake that depleted FeEnt from solution. Fluorescence microscopic images also showed FeEnt transport, and demonstrated that ferric siderophore uptake uniformly occurs throughout outer membrane, including at the poles of the cells, despite the fact that TonB, its inner membrane transport partner, was not detectable at the poles. © 2014 Smallwood et al.
Liu, Xilin; Zhang, Milin; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan
2017-08-01
This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18 μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.
Improved actions and asymptotic scaling in lattice Yang-Mills theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langfeld, Kurt
2007-11-01
Improved actions in SU(2) and SU(3) lattice gauge theories are investigated with an emphasis on asymptotic scaling. A new scheme for tadpole improvement is proposed. The standard but heuristic tadpole improvement emerges from a mean field approximation from the new approach. Scaling is investigated by means of the large distance static quark potential. Both the generic and the new tadpole scheme yield significant improvements on asymptotic scaling when compared with loop improved actions. A study of the rotational symmetry breaking terms, however, reveals that only the new improvement scheme efficiently eliminates the leading irrelevant term from the action.
Voltage regulator/amplifier is self-regulated
NASA Technical Reports Server (NTRS)
Day, W. E.; Phillips, D. E.
1967-01-01
Signal modulated, self-regulating voltage regulator/amplifier controls the output b-plus voltage in modulated regulator systems. It uses self-oscillation with feedback to a control circuit with a discontinuous amplitude action feedback loop.
NASA Astrophysics Data System (ADS)
Bulava, John; Della Morte, Michele; Heitger, Jochen; Wittemeier, Christian
2016-06-01
We nonperturbatively determine the renormalization factor of the axial vector current in lattice QCD with Nf=3 flavors of Wilson-clover fermions and the tree-level Symanzik-improved gauge action. The (by now standard) renormalization condition is derived from the massive axial Ward identity, and it is imposed among Schrödinger functional states with large overlap on the lowest lying hadronic state in the pseudoscalar channel, in order to reduce kinematically enhanced cutoff effects. We explore a range of couplings relevant for simulations at lattice spacings of ≈0.09 fm and below. An interpolation formula for ZA(g02) , smoothly connecting the nonperturbative values to the 1-loop expression, is provided together with our final results.
Wilson loops in warped resolved deformed conifolds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Stephen, E-mail: pystephen@swansea.ac.uk
We calculate quark-antiquark potentials using the relationship between the expectation value of the Wilson loop and the action of a probe string in the string dual. We review and categorise the possible forms of the dependence of the energy on the separation between the quarks. In particular, we examine the possibility of there being a minimum separation for probe strings which do not penetrate close to the origin of the bulk space, and derive a condition which determines whether this is the case. We then apply these considerations to the flavoured resolved deformed conifold background of Gaillard et al. (2010)more » . We suggest that the unusual behaviour that we observe in this solution is likely to be related to the IR singularity which is not present in the unflavoured case. - Highlights: > We calculate quark-antiquark potentials using the Wilson loop and the action of a probe string in the string dual. > We review and categorise the possible forms of the dependence of the energy on the separation between the quarks. > We look in particular at the flavoured resolved deformed conifold. > There appears to be unusual behaviour which seems likely to be related to the IR singularity introduced by flavours.« less
Possible Quantum Absorber Effects in Cortical Synchronization
NASA Astrophysics Data System (ADS)
Kämpf, Uwe
The Wheeler-Feynman transactional "absorber" approach was proposed originally to account for anomalous resonance coupling between spatio-temporally distant measurement partners in entangled quantum states of so-called Einstein-Podolsky-Rosen paradoxes, e.g. of spatio-temporal non-locality, quantum teleportation, etc. Applied to quantum brain dynamics, however, this view provides an anticipative resonance coupling model for aspects of cortical synchronization and recurrent visual action control. It is proposed to consider the registered activation patterns of neuronal loops in so-called synfire chains not as a result of retarded brain communication processes, but rather as surface effects of a system of standing waves generated in the depth of visual processing. According to this view, they arise from a counterbalance between the actual input's delayed bottom-up data streams and top-down recurrent information-processing of advanced anticipative signals in a Wheeler-Feynman-type absorber mode. In the framework of a "time-loop" model, findings about mirror neurons in the brain cortex are suggested to be at least partially associated with temporal rather than spatial mirror functions of visual processing, similar to phase conjugate adaptive resonance-coupling in nonlinear optics.
Effects of automobile steering characteristics on driver vehicle system dynamics in regulation tasks
NASA Technical Reports Server (NTRS)
Mcruer, D. T.; Klein, R.
1975-01-01
A regulation task which subjected the automobile to a random gust disturbance which is countered by driver control action is used to study the effects of various automobile steering characteristics on the driver/vehicle system. The experiments used a variable stability automobile specially configured to permit insertion of the simulated gust disturbance and the measurement of the driver/vehicle system characteristics. Driver/vehicle system dynamics were measured and interpreted as an effective open loop system describing function. Objective measures of system bandwidth, stability, and time delays were deduced and compared. These objective measures were supplemented by driver ratings. A tentative optimum range of vehicle dynamics for the directional regulation task was established.
Duclay, Julien; Robbe, Alice; Pousson, Michel; Martin, Alain
2009-10-01
At rest, the H-reflex is lower during lengthening than shortening actions. During passive lengthening, both soleus (SOL) and medial gastrocnemius (MG) H-reflex amplitudes decrease with increasing angular velocity. This study was designed to investigate whether H-reflex amplitude is affected by angular velocity during concentric and eccentric maximal voluntary contraction (MVC). Experiments were performed on nine healthy men. At a constant angular velocity of 60 degrees /s and 20 degrees /s, maximal H-reflex and M-wave potentials were evoked at rest (i.e., H(max) and M(max), respectively) and during concentric and eccentric MVC (i.e., H(sup) and M(sup), respectively). Regardless of the muscle, H(max)/M(max) was lower during lengthening than shortening actions and the H(sup)/M(sup) ratio was higher than H(max)/M(max) during lengthening actions. Whereas no action type and angular velocity effects on the MG H(sup)/M(sup) were found, the SOL H(sup)/M(sup) was lower during eccentric than concentric MVC and this depression was increased with higher angular velocity. Our findings indicate that the depression of the H-reflex amplitude during eccentric compared to concentric MVC depends mainly on the amount of inhibition induced by lengthening action. In conclusion, H-reflex should be evoked during both passive and active dynamic trials to evaluate the plasticity of the spinal loop.
Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.
2016-03-01
A geometric formulation of Higgs Effective Field Theory (HEFT) is presented. Experimental observables are given in terms of geometric invariants of the scalar sigma model sector such as the curvature of the scalar field manifold M. Here we show how the curvature can be measured experimentally via Higgs cross-sections, WLscattering, and the Sparameter. The one-loop action of HEFT is given in terms of geometric invariants of M. Moreover, the distinction between the Standard Model (SM) and HEFT is whether Mis flat or curved, and the curvature is a signal of the scale of new physics.
Sizable electron/neutron electric dipole moment in D 3 /D 7 μ -split supersymmetry
NASA Astrophysics Data System (ADS)
Dhuria, Mansi; Misra, Aalok
2014-10-01
Within the framework of N =1 gauged supergravity, using a phenomenological model that can be obtained locally as a Swiss-cheese Calabi-Yau string-theoretic compactification with a mobile D 3 -brane localized on a nearly special Lagrangian three cycle in the Calabi-Yau and fluxed stacks of wrapped D 7 -branes, and which provides a natural realization of μ -split supersymmetry (SUSY), we show that in addition to getting a significant value of an [electron/neutron (e/n)] electron dipole moment (EDM) at two-loop level, one can obtain a sizable contribution of (e/n) EDM even at one-loop level due to the presence of heavy supersymmetric fermions nearly isospectral with heavy sfermions. Unlike traditional split SUSY models in which the one-loop diagrams do not give significant contribution to the EDM of the electron/neutron because of very heavy sfermions existing as propagators in the loop, we show that one obtains a "healthy" value of the EDM in our model because of the presence of a heavy Higgsino, neutralino/chargino, and gaugino as fermionic propagators in the loops. The independent C P -violating phases are generated from nontrivial distinct phase factors associated with four Wilson line moduli [identified with first-generation leptons and quarks and their S U (2 )L -singlet cousins] as well as the D 3 -brane position moduli (identified with two Higgses), and the same are sufficient to produce overall distinct phase factors corresponding to all possible effective Yukawas as well as effective gauge couplings that we discuss in the context of N =1 gauged supergravity action. However, the complex phases responsible to generate a nonzero EDM at one-loop level mainly appear from an off-diagonal contribution of sfermion as well as Higgs mass matrices at the electroweak scale (EW). In our analysis, we obtain a dominant contribution of the electron/neutron EDM around de/e ≡O (1 0-29) cm from two-loop diagrams involving heavy sfermions and a light Higgs, and de/e ≡O (1 0-32) cm from a one-loop diagram involving a heavy chargino and a light Higgs as propagators in the loop. The neutron EDM gets a dominant contribution of the order dn/e ≡O (1 0-33) cm from the one-loop diagram involving SM-like quarks and Higgs. To justify the possibility of obtaining a large EDM value in the case of a Barr-Zee diagram which involves W± and the Higgs (responsible to generate the nontrivial C P -violating phase) in the two-loop diagrams as discussed by Leigh et al. [Nucl. Phys. B267, 509 (1986)], we provide an analysis of the same in the context of our D 3 /D 7 μ -split SUSY model at the EW scale. By conjecturing that the C P -violating phase can appear from the diagonalization of the Higgs mass matrix obtained in the context of μ -split SUSY, we also get an EDM of the electron/neutron around O (1 0-27) e cm in the case of the two-loop diagram involving W± bosons.
NASA Astrophysics Data System (ADS)
Bhattacharya, Sourav
2015-06-01
Consideration of vacuum polarization in quantum electrodynamics may affect the momentum dispersion relation for photons for a non-trivial background, due to the appearance of curvature dependent terms in the effective action. We investigate the effect of a positive cosmological constant on this at one-loop order for stationary -vacuum spacetimes. To the best of our knowledge, so far it only has been shown that affects the propagation in a time dependent black hole spacetime. Here we consider the static de Sitter cosmic string and the Kerr-de Sitter spacetime to show that there might occur a non-vanishing effect due to for physical polarizations. The consistency of these results with the polarization sum rule is discussed.
Campbell; Heyes; Goldsmith
1999-07-01
Juvenile European starlings, Sturnus vulgaris, were allowed to observe a conspecific demonstrator using its beak to remove one of two distinctively coloured objects (i.e. a red or a black plug) from a hole in the lid of a plastic box. Both plugs could be removed by either pulling up on a loop of string inserted through the centre of the plug, or pushing down on the plug. When subsequently allowed access to the plugs, and rewarded with food for all removal responses, regardless of the object to which they were made and their direction, observer birds removed the same plug in the same direction as their demonstrator. These results suggest that the two-object/two-action paradigm is a valuable procedure for testing for the simultaneous effects of learning about a stimulus and a response, an object and an action, through conspecific observation. Copyright 1999 The Association for the Study of Animal Behaviour.
Arya, Preeti; Acharya, Vishal
2018-02-01
STAND P-loop NTPase is the common weapon used by plant and other organisms from all three kingdoms of life to defend themselves against pathogen invasion. The purpose of this study is to review comprehensively the latest finding of plant STAND P-loop NTPase related to their genomic distribution, evolution, and their mechanism of action. Earlier, the plant STAND P-loop NTPase known to be comprised of only NBS-LRRs/AP-ATPase/NB-ARC ATPase. However, recent finding suggests that genome of early green plants comprised of two types of STAND P-loop NTPases: (1) mammalian NACHT NTPases and (2) NBS-LRRs. Moreover, YchF (unconventional G protein and members of P-loop NTPase) subfamily has been reported to be exceptionally involved in biotic stress (in case of Oryza sativa), thereby a novel member of STAND P-loop NTPase in green plants. The lineage-specific expansion and genome duplication events are responsible for abundance of plant STAND P-loop NTPases; where "moderate tandem and low segmental duplication" trajectory followed in majority of plant species with few exception (equal contribution of tandem and segmental duplication). Since the past decades, systematic research is being investigated into NBS-LRR function supported the direct recognition of pathogen or pathogen effectors by the latest models proposed via 'integrated decoy' or 'sensor domains' model. Here, we integrate the recently published findings together with the previous literature on the genomic distribution, evolution, and distinct models proposed for functional molecular mechanism of plant STAND P-loop NTPases.
QCD Condensates and Holographic Wilson Loops for Asymptotically AdS Spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quevedo, R. Carcasses; Goity, Jose L.; Trinchero, Roberto C.
2014-02-01
The minimization of the Nambu-Goto (NG) action for a surface whose contour defines a circular Wilson loop of radius a placed at a finite value of the coordinate orthogonal to the border is considered. This is done for asymptotically AdS spaces. The condensates of dimension n = 2, 4, 6, 8, and 10 are calculated in terms of the coefficients in the expansion in powers of the radius a of the on-shell subtracted NG action for small a->0. The subtraction employed is such that it presents no conflict with conformal invariance in the AdS case and need not introduce anmore » additional infrared scale for the case of confining geometries. It is shown that the UV value of the gluon condensates is universal in the sense that it only depends on the first coefficients of the difference with the AdS case.« less
An Adapting Auditory-motor Feedback Loop Can Contribute to Generating Vocal Repetition
Brainard, Michael S.; Jin, Dezhe Z.
2015-01-01
Consecutive repetition of actions is common in behavioral sequences. Although integration of sensory feedback with internal motor programs is important for sequence generation, if and how feedback contributes to repetitive actions is poorly understood. Here we study how auditory feedback contributes to generating repetitive syllable sequences in songbirds. We propose that auditory signals provide positive feedback to ongoing motor commands, but this influence decays as feedback weakens from response adaptation during syllable repetitions. Computational models show that this mechanism explains repeat distributions observed in Bengalese finch song. We experimentally confirmed two predictions of this mechanism in Bengalese finches: removal of auditory feedback by deafening reduces syllable repetitions; and neural responses to auditory playback of repeated syllable sequences gradually adapt in sensory-motor nucleus HVC. Together, our results implicate a positive auditory-feedback loop with adaptation in generating repetitive vocalizations, and suggest sensory adaptation is important for feedback control of motor sequences. PMID:26448054
Heat exchanger with oscillating flow
NASA Technical Reports Server (NTRS)
Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)
1992-01-01
Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators, or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.
Heat exchanger with oscillating flow
NASA Technical Reports Server (NTRS)
Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)
1993-01-01
Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xing; Morgan, Huw; Leonard, Drew
During 2011 September 24, as observed by the Atmospheric Imaging Assembly instrument of the Solar Dynamic Observatory and ground-based H{alpha} telescopes, a prominence and associated cavity appeared above the southwest limb. On 2011 September 25 8:00 UT, material flows upward from the prominence core along a narrow loop-like structure, accompanied by a rise ({>=}50,000 km) of the prominence core and the loop. As the loop fades by 10:00, small blobs and streaks of varying brightness rotate around the top part of the prominence and cavity, mimicking a cyclone. The most intense and coherent rotation lasts for over three hours, withmore » emission in both hot ({approx}1 MK) and cold (hydrogen and helium) lines. We suggest that the cyclonic appearance and overall evolution of the structure can be interpreted in terms of the expansion of helical structures into the cavity, and the movement of plasma along helical structures which appears as a rotation when viewed along the helix axis. The coordinated movement of material between prominence and cavity suggests that they are structurally linked. Complexity is great due to the combined effect of these actions and the line-of-sight integration through the structure which contains tangled fields.« less
On MHD rotational transport, instabilities and dynamo action in stellar radiation zones
NASA Astrophysics Data System (ADS)
Mathis, Stéphane; Brun, A.-S.; Zahn, J.-P.
2009-04-01
Magnetic field and their related dynamical effects are thought to be important in stellar radiation zones. For instance, it has been suggested that a dynamo, sustained by a m = 1 MHD instability of toroidal magnetic fields (discovered by Tayler in 1973), could lead to a strong transport of angular momentum and of chemicals in such stable regions. We wish here to recall the different magnetic transport processes present in radiative zone and show how the dynamo can operate by recalling the conditions required to close the dynamo loop (BPol → BTor → BPol). Helped by high-resolution 3D MHD simulations using the ASH code in the solar case, we confirm the existence of the m = 1 instability, study its non-linear saturation, but we do not detect, up to a magnetic Reylnods number of 105, any dynamo action.
On the Liouville Integrability of the Periodic Kostant-Toda Flow on Matrix Loops of Level k
NASA Astrophysics Data System (ADS)
Li, Luen-Chau; Nie, Zhaohu
2017-06-01
In this work, we consider the periodic Kostant-Toda flow on matrix loops in sl(n,C) of level k, which correspond to periodic infinite band matrices with period n with lower bandwidth equal to k and fixed upper bandwidth equal to 1 with 1's on the first superdiagonal. We show that the coadjoint orbits through the submanifold of such matrix loops can be identified with those of a finite-dimensional Lie group, which appears in the form of a semi-direct product. We then characterize the generic coadjoint orbits and obtain an explicit global cross-section for such orbits. We also establish the Liouville integrability of the periodic Kostant-Toda flow on such orbits via the construction of action-angle variables.
Development of closed-loop supply chain network in terms of corporate social responsibility.
Pedram, Ali; Pedram, Payam; Yusoff, Nukman Bin; Sorooshian, Shahryar
2017-01-01
Due to the rise in awareness of environmental issues and the depletion of virgin resources, many firms have attempted to increase the sustainability of their activities. One efficient way to elevate sustainability is the consideration of corporate social responsibility (CSR) by designing a closed loop supply chain (CLSC). This paper has developed a mathematical model to increase corporate social responsibility in terms of job creation. Moreover the model, in addition to increasing total CLSC profit, provides a range of strategic decision solutions for decision makers to select a best action plan for a CLSC. A proposed multi-objective mixed-integer linear programming (MILP) model was solved with non-dominated sorting genetic algorithm II (NSGA-II). Fuzzy set theory was employed to select the best compromise solution from the Pareto-optimal solutions. A numerical example was used to validate the potential application of the proposed model. The results highlight the effect of CSR in the design of CLSC.
Development of closed–loop supply chain network in terms of corporate social responsibility
Pedram, Payam; Yusoff, Nukman Bin; Sorooshian, Shahryar
2017-01-01
Due to the rise in awareness of environmental issues and the depletion of virgin resources, many firms have attempted to increase the sustainability of their activities. One efficient way to elevate sustainability is the consideration of corporate social responsibility (CSR) by designing a closed loop supply chain (CLSC). This paper has developed a mathematical model to increase corporate social responsibility in terms of job creation. Moreover the model, in addition to increasing total CLSC profit, provides a range of strategic decision solutions for decision makers to select a best action plan for a CLSC. A proposed multi-objective mixed-integer linear programming (MILP) model was solved with non-dominated sorting genetic algorithm II (NSGA-II). Fuzzy set theory was employed to select the best compromise solution from the Pareto-optimal solutions. A numerical example was used to validate the potential application of the proposed model. The results highlight the effect of CSR in the design of CLSC. PMID:28384250
Kernel Temporal Differences for Neural Decoding
Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.
2015-01-01
We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504
Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake.
Renguet, Edith; Ginion, Audrey; Gélinas, Roselle; Bultot, Laurent; Auquier, Julien; Robillard Frayne, Isabelle; Daneault, Caroline; Vanoverschelde, Jean-Louis; Des Rosiers, Christine; Hue, Louis; Horman, Sandrine; Beauloye, Christophe; Bertrand, Luc
2017-08-01
High plasma leucine levels strongly correlate with type 2 diabetes. Studies of muscle cells have suggested that leucine alters the insulin response for glucose transport by activating an insulin-negative feedback loop driven by the mammalian target of rapamycin/p70 ribosomal S6 kinase (mTOR/p70S6K) pathway. Here, we examined the molecular mechanism involved in leucine's action on cardiac glucose uptake. Leucine was indeed able to curb glucose uptake after insulin stimulation in both cultured cardiomyocytes and perfused hearts. Although leucine activated mTOR/p70S6K, the mTOR inhibitor rapamycin did not prevent leucine's inhibitory action on glucose uptake, ruling out the contribution of the insulin-negative feedback loop. α-Ketoisocaproate, the first metabolite of leucine catabolism, mimicked leucine's effect on glucose uptake. Incubation of cardiomyocytes with [ 13 C]leucine ascertained its metabolism to ketone bodies (KBs), which had a similar negative impact on insulin-stimulated glucose transport. Both leucine and KBs reduced glucose uptake by affecting translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Finally, we found that leucine elevated the global protein acetylation level. Pharmacological inhibition of lysine acetyltransferases counteracted this increase in protein acetylation and prevented leucine's inhibitory action on both glucose uptake and GLUT4 translocation. Taken together, these results indicate that leucine metabolism into KBs contributes to inhibition of cardiac glucose uptake by hampering the translocation of GLUT4-containing vesicles via acetylation. They offer new insights into the establishment of insulin resistance in the heart. NEW & NOTEWORTHY Catabolism of the branched-chain amino acid leucine into ketone bodies efficiently inhibits cardiac glucose uptake through decreased translocation of glucose transporter 4 to the plasma membrane. Leucine increases protein acetylation. Pharmacological inhibition of acetylation reverses leucine's action, suggesting acetylation involvement in this phenomenon.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/leucine-metabolism-inhibits-cardiac-glucose-uptake/. Copyright © 2017 the American Physiological Society.
Nyström, M E; Höög, E; Garvare, R; Andersson Bäck, M; Terris, D D; Hansson, J
2018-05-24
Eldercare and care of people with functional impairments is organized by the municipalities in Sweden. Improving care in these areas is complex, with multiple stakeholders and organizations. Appropriate strategies to develop capability for continuing organizational improvement and learning (COIL) are needed. The purpose of our study was to develop and pilot-test a flexible, multilevel approach for COIL capability building and to identify what it takes to achieve changes in key actors' approaches to COIL. The approach, named "Sustainable Improvement and Development through Strategic and Systematic Approaches" (SIDSSA), was applied through an action-research and action-learning intervention. The SIDSSA approach was tested in a regional research and development (R&D) unit, and in two municipalities handling care of the elderly and people with functional impairments. Our approach included a multilevel strategy, development loops of five flexible phases, and an action-learning loop. The approach was designed to support systems understanding, strategic focus, methodological practices, and change process knowledge - all of which required double-loop learning. Multiple qualitative methods, i.e., repeated interviews, process diaries, and documents, provided data for conventional content analyses. The new approach was successfully tested on all cases and adopted and sustained by the R&D unit. Participants reported new insights and skills. The development loop facilitated a sense of coherence and control during uncertainty, improved planning and problem analysis, enhanced mapping of context and conditions, and supported problem-solving at both the individual and unit levels. The systems-level view and structured approach helped participants to explain, motivate, and implement change initiatives, especially after working more systematically with mapping, analyses, and goal setting. An easily understood and generalizable model internalized by key organizational actors is an important step before more complex development models can be implemented. SIDSSA facilitated individual and group learning through action-learning and supported systems-level views and structured approaches across multiple organizational levels. Active involvement of diverse organizational functions and levels in the learning process was facilitated. However, the time frame was too short to fully test all aspects of the approach, specifically in reaching beyond the involved managers to front-line staff and patients.
Metabolic complications associated with use of diuretics.
Palmer, Biff F
2011-11-01
Diuretics are commonly used therapeutic agents that act to inhibit sodium transport systems along the length of the renal tubule. The most effective diuretics are inhibitors of sodium chloride transport in the thick ascending limb of Henle. Loop diuretics mobilize large amounts of sodium chloride and water and produce a copious diuresis with a sharp reduction of extracellular fluid volume. As the site of action of diuretics moves downstream (thiazide and potassium-sparing diuretics), their effectiveness declines because the transport systems they inhibit have low transport capacity. Depending on the site of action diuretics can influence the renal handling of electrolyte-free water, calcium, potassium, protons, sodium bicarbonate, and uric acid. As a result, electrolyte and acid-base disorders commonly accompany diuretic use. Glucose and lipid abnormalities also can occur, particularly with the use of thiazide diuretics. This review focuses on the biochemical complications associated with the use of diuretics. The development of these complications can be minimized with careful monitoring, dosage adjustment, and replacement of electrolyte losses. Copyright © 2011 Elsevier Inc. All rights reserved.
Mellish, Sarah; Sanders, Ben; Litchfield, Carla A; Pearson, Elissa L
2017-05-01
Modern zoos are uniquely positioned to educate the public about environmental issues and promote conservation action. This report investigates the introduction of a donation request during an interactive fur seal presentation (as part of Melbourne Zoo's "Seal-the-Loop" initiative) on visitor satisfaction, perceptions of donation as a way to help wild fur seals, and donation behaviors. Comparisons are made between three groups surveyed upon exit: (1) viewed the interactive fur seal presentation prior to the donation request implementation (pledge-presentation: N = 86; see Mellish, Pearson, Sanders, and Litchfield []; International Zoo Yearbook 129:129-154); (2) viewed the interactive fur seal presentation including the donation request (donate-presentation: N = 82); and (3) viewed the fur seal exhibit and donation point but not the presentation and were not directly asked to make a donation (donate-exhibit: N = 82). Findings demonstrate visitor satisfaction with the interactive fur seal presentation was not negatively impacted following the implementation of the donate request (with >92% of pledge-presentation and donate-presentation visitors providing a "satisfied" or "very satisfied" rating). Only the donate-presentation visitors reported donation as a conservation action to help wild fur seals (19.18%; 0% for pledge-presentation visitors). While both donate-exhibit (39.51%) and donate-presentation visitors (60.75%) self-reported making donations or intending to do so, donation behavior was significantly increased for visitors who had viewed the fur seal presentation. Findings provide preliminary support that zoos may utilize interactive educational presentations to effectively ask visitors for donations to support specific conservation projects, without negatively impacting on satisfaction and with a relatively high level of visitor engagement. © 2017 Wiley Periodicals, Inc.
Simulation of process identification and controller tuning for flow control system
NASA Astrophysics Data System (ADS)
Chew, I. M.; Wong, F.; Bono, A.; Wong, K. I.
2017-06-01
PID controller is undeniably the most popular method used in controlling various industrial processes. The feature to tune the three elements in PID has allowed the controller to deal with specific needs of the industrial processes. This paper discusses the three elements of control actions and improving robustness of controllers through combination of these control actions in various forms. A plant model is simulated using the Process Control Simulator in order to evaluate the controller performance. At first, the open loop response of the plant is studied by applying a step input to the plant and collecting the output data from the plant. Then, FOPDT of physical model is formed by using both Matlab-Simulink and PRC method. Then, calculation of controller’s setting is performed to find the values of Kc and τi that will give satisfactory control in closed loop system. Then, the performance analysis of closed loop system is obtained by set point tracking analysis and disturbance rejection performance. To optimize the overall physical system performance, a refined tuning of PID or detuning is further conducted to ensure a consistent resultant output of closed loop system reaction to the set point changes and disturbances to the physical model. As a result, the PB = 100 (%) and τi = 2.0 (s) is preferably chosen for setpoint tracking while PB = 100 (%) and τi = 2.5 (s) is selected for rejecting the imposed disturbance to the model. In a nutshell, selecting correlation tuning values is likewise depended on the required control’s objective for the stability performance of overall physical model.
Cui, Yanfang; Tae, Han-Shen; Norris, Nicole C; Karunasekara, Yamuna; Pouliquin, Pierre; Board, Philip G; Dulhunty, Angela F; Casarotto, Marco G
2009-03-01
The II-III loop of the dihydropyridine receptor (DHPR) alpha(1s) subunit is a modulator of the ryanodine receptor (RyR1) Ca(2+) release channel in vitro and is essential for skeletal muscle contraction in vivo. Despite its importance, the structure of this loop has not been reported. We have investigated its structure using a suite of NMR techniques which revealed that the DHPR II-III loop is an intrinsically unstructured protein (IUP) and as such belongs to a burgeoning structural class of functionally important proteins. The loop does not possess a stable tertiary fold: it is highly flexible, with a strong N-terminal helix followed by nascent helical/turn elements and unstructured segments. Its residual structure is loosely globular with the N and C termini in close proximity. The unstructured nature of the II-III loop may allow it to easily modify its interaction with RyR1 following a surface action potential and thus initiate rapid Ca(2+) release and contraction. The in vitro binding partner for the II-III was investigated. The II-III loop interacts with the second of three structurally distinct SPRY domains in RyR1, whose function is unknown. This interaction occurs through two preformed N-terminal alpha-helical regions and a C-terminal hydrophobic element. The A peptide corresponding to the helical N-terminal region is a common probe of RyR function and binds to the same SPRY domain as the full II-III loop. Thus the second SPRY domain is an in vitro binding site for the II-III loop. The possible in vivo role of this region is discussed.
The importance of plasma effects on electron-cyclotron maser-emission from flaring loops
NASA Technical Reports Server (NTRS)
Sharma, R. R.; Vlahos, L.; Papadopoulos, K.
1982-01-01
Electron cyclotron maser instability has been suggested as the cause of the observed short (10-20 msec), intense (an approximate brightness temperature of 10 to the 15th K) and up to 100% polarized microwave solar emission. It is shown that plasma effects and thermal cyclotron damping, ignored in previous theories, play an important role in controlling the frequency range of the emission. The radio emission is suppressed for ratios of the plasma frequency to the cyclotron frequency smaller than 0.4. An examination of the cyclotron damping, reveals that the maser action is suppressed unless a large fraction (i.e., over 10%) of the accelerated electrons participates in the emission process.
[Local GABA-ergic modulation of serotonergic neuron activity in the nucleus raphe magnus].
Iniushkin, A N; Merkulova, N A; Orlova, A O; Iniushkina, E M
2009-07-01
In voltage-clamp experimental on slices of the rat brainstem the effects of 5-HT and GABA on serotonergic neurons of nucleus raphe magnus were investigated. Local applications of 5-HT induced an increase in IPCSs frequency and amplitude in 45% of serotonergic cells. The effect suppressed by the blocker of fast sodium channels tetradotoxin. Antagonist of GABA receptor gabazine blocked IPSCs in neurons both sensitive and non-sensitive to 5-HT action. Applications of GABA induced a membrane current (I(GABA)), which was completely blocked by gabazine. The data suggest self-control of the activity of serotonergic neurons in nucleus raphe magnus by negative feedback loop via local GABAergic interneurons.
Two formalisms, one renormalized stress-energy tensor
NASA Astrophysics Data System (ADS)
Barceló, C.; Carballo, R.; Garay, L. J.
2012-04-01
We explicitly compare the structure of the renormalized stress-energy tensor of a massless scalar field in a (1+1) curved spacetime as obtained by two different strategies: normal-mode construction of the field operator and one-loop effective action. We pay special attention to where and how the information related to the choice of vacuum state in both formalisms is encoded. By establishing a clear translation map between both procedures, we show that these two potentially different renormalized stress-energy tensors are actually equal, when using vacuum-state choices related by this map. One specific aim of the analysis is to facilitate the comparison of results regarding semiclassical effects in gravitational collapse as obtained within these different formalisms.
And the Human Saves the Day or Maybe They Ruin It, The Importance of Humans in the Loop
NASA Technical Reports Server (NTRS)
DeMott, Diana L.; Boyer, Roger L.
2017-01-01
Flying a mission in space requires a massive commitment of resources, and without the talent and commitment of the people involved in this effort we would never leave the atmosphere of Earth as safely as we have. When we use the phrase "humans in the loop", it could apply to almost any endeavor since everything starts with humans developing a concept, completing the design process, building or implementing a product and using the product to achieve a goal or purpose. Narrowing the focus to spaceflight, there are a variety of individuals involved throughout the preparations for flight and the flight itself. All of the humans involved add value and support for program success. The paper discusses the concepts of human involvement in technological programs, how a Probabilistic Risk Assessment (PRA) accounts for the human in the loop for potential missions using a technique called Human Reliability Analysis (HRA) and the tradeoffs between having a human in the loop or not. Human actions can increase or decrease the overall risk via initiating events or mitigating them, thus removing the human from the loop doesn't always lowers the risk.
Charged string loops in Reissner-Nordström black hole background
NASA Astrophysics Data System (ADS)
Oteev, Tursinbay; Kološ, Martin; Stuchlík, Zdeněk
2018-03-01
We study the motion of current carrying charged string loops in the Reissner-Nordström black hole background combining the gravitational and electromagnetic field. Introducing new electromagnetic interaction between central charge and charged string loop makes the string loop equations of motion to be non-integrable even in the flat spacetime limit, but it can be governed by an effective potential even in the black hole background. We classify different types of the string loop trajectories using effective potential approach, and we compare the innermost stable string loop positions with loci of the charged particle innermost stable orbits. We examine string loop small oscillations around minima of the string loop effective potential, and we plot radial profiles of the string loop oscillation frequencies for both the radial and vertical modes. We construct charged string loop quasi-periodic oscillations model and we compare it with observed data from microquasars GRO 1655-40, XTE 1550-564, and GRS 1915+105. We also study the acceleration of current carrying string loops along the vertical axis and the string loop ejection from RN black hole neighbourhood, taking also into account the electromagnetic interaction.
From SL(5, ℝ) Yang-Mills theory to induced gravity
NASA Astrophysics Data System (ADS)
Assimos, T. S.; Pereira, A. D.; Santos, T. R. S.; Sobreiro, R. F.; Tomaz, A. A.; Otoya, V. J. Vasquez
From pure Yang-Mills action for the SL(5, ℝ) group in four Euclidean dimensions we obtain a gravity theory in the first order formalism. Besides the Einstein-Hilbert term, the effective gravity has a cosmological constant term, a curvature squared term, a torsion squared term and a matter sector. To obtain such geometrodynamical theory, asymptotic freedom and the Gribov parameter (soft BRST symmetry breaking) are crucial. Particularly, Newton and cosmological constant are related to these parameters and they also run as functions of the energy scale. One-loop computations are performed and the results are interpreted.
Situation awareness-based agent transparency for human-autonomy teaming effectiveness
NASA Astrophysics Data System (ADS)
Chen, Jessie Y. C.; Barnes, Michael J.; Wright, Julia L.; Stowers, Kimberly; Lakhmani, Shan G.
2017-05-01
We developed the Situation awareness-based Agent Transparency (SAT) model to support human operators' situation awareness of the mission environment through teaming with intelligent agents. The model includes the agent's current actions and plans (Level 1), its reasoning process (Level 2), and its projection of future outcomes (Level 3). Human-inthe-loop simulation experiments have been conducted (Autonomous Squad Member and IMPACT) to illustrate the utility of the model for human-autonomy team interface designs. Across studies, the results consistently showed that human operators' task performance improved as the agents became more transparent. They also perceived transparent agents as more trustworthy.
Mitchell, Felicity L.; Miles, Steven M.; Neres, João; Bichenkova, Elena V.; Bryce, Richard A.
2010-01-01
Abstract Molecular dynamics investigations into active site plasticity of Trypanosoma cruzi trans-sialidase, a protein implicated in Chagas disease, suggest that movement of the Trp312 loop plays an important role in the enzyme's sialic acid transfer mechanism. The observed Trp312 flexibility equates to a molecular shovel action, which leads to the expulsion of the donor aglycone leaving group from the catalytic site. These computational simulations provide detailed structural insights into sialyl transfer by the trans-sialidase and may aid the design of inhibitors effective against this neglected tropical disease. PMID:20441732
Plotting performance improvement progress through the development of a trauma dashboard.
Hochstuhl, Diane C; Elwell, Sean
2014-01-01
Performance improvement processes are the core of a pediatric trauma program. The ability to identify, resolve, and trend specific indicators related to patient care and to show effective loop closure can be especially challenging. Using the hospital's overall quality process as a template, the trauma program built its own electronic dashboard. Our maturing trauma PI program now guides the overall trauma care. All departments own at least one performance indicator and must provide action plans for improvement. Utilization of an electronic dashboard for trauma performance improvement has provided a highly visible scorecard, which highlights successes and tracks areas needing improvement.
Aznar, Susana; Klein, Anders B
2013-12-01
The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala and the striatal circuitry, areas involved in emotion and reward processing. The PFC, however, is able to modulate amygdala reactivity via a feedback loop to this area. A role for serotonin in adjusting for this circuitry of cognitive regulation of emotion has long been suggested based primarily on the positive pharmacological effect of elevating serotonin levels in anxiety regulation. Recent animal and human functional magnetic resonance studies have pointed to a specific involvement of the 5-hydroxytryptamine (5-HT)2A serotonin receptor in the PFC feedback regulatory projection onto the amygdala. This receptor is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings of a regulatory effect of the PFC on the emotional control of our actions.
Feedback from incident reporting: information and action to improve patient safety.
Benn, J; Koutantji, M; Wallace, L; Spurgeon, P; Rejman, M; Healey, A; Vincent, C
2009-02-01
Effective feedback from incident reporting systems in healthcare is essential if organisations are to learn from failures in the delivery of care. Despite the wide-scale development and implementation of incident reporting in healthcare, studies in the UK suggest that information concerning system vulnerabilities could be better applied to improve operational safety within organisations. In this article, the findings and implications of research to identify forms of effective feedback from incident reporting are discussed, to promote best practices in this area. The research comprised a mixed methods review to investigate mechanisms of effective feedback for healthcare, drawing upon experience within established reporting programmes in high-risk industry and transport domains. Systematic searches of published literature were undertaken, and 23 case studies describing incident reporting programmes with feedback were identified for analysis from the international healthcare literature. Semistructured interviews were undertaken with 19 subject matter experts across a range of domains, including: civil aviation, maritime, energy, rail, offshore production and healthcare. In analysis, qualitative information from several sources was synthesised into practical requirements for developing effective feedback in healthcare. Both action and information feedback mechanisms were identified, serving safety awareness, improvement and motivational functions. The provision of actionable feedback that visibly improved systems was highlighted as important in promoting future reporting. Fifteen requirements for the design of effective feedback systems were identified, concerning: the role of leadership, the credibility and content of information, effective dissemination channels, the capacity for rapid action and the need for feedback at all levels of the organisation, among others. Above all, the safety-feedback cycle must be closed by ensuring that reporting, analysis and investigation result in timely corrective actions that effectively address vulnerabilities in existing work systems. Limited research evidence exists concerning the issue of effective forms of safety feedback within healthcare. Much valuable operational knowledge resides in safety management communities within high-risk industries. Multiple means of feeding back recommended actions and safety information may be usefully employed to promote safety awareness, improve clinical processes and promote future reporting. Further work is needed to establish best practices for feedback systems in healthcare that effectively close the safety loop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitiashvili, I. N.; Mansour, N. N.; Wray, A. A.
Magnetic fields are usually observed in the quiet Sun as small-scale elements that cover the entire solar surface (the “salt-and-pepper” patterns in line-of-sight magnetograms). By using 3D radiative MHD numerical simulations, we find that these fields result from a local dynamo action in the top layers of the convection zone, where extremely weak “seed” magnetic fields (e.g., from a 10{sup −6} G) can locally grow above the mean equipartition field to a stronger than 2000 G field localized in magnetic structures. Our results reveal that the magnetic flux is predominantly generated in regions of small-scale helical downflows. We find thatmore » the local dynamo action takes place mostly in a shallow, about 500 km deep, subsurface layer, from which the generated field is transported into the deeper layers by convective downdrafts. We demonstrate that the observed dominance of vertical magnetic fields at the photosphere and horizontal fields above the photosphere can be explained by small-scale magnetic loops produced by the dynamo. Such small-scale loops play an important role in the structure and dynamics of the solar atmosphere and their detection in observations is critical for understanding the local dynamo action on the Sun.« less
Jagannathan, Sarangapani; He, Pingan
2008-12-01
In this paper, a suite of adaptive neural network (NN) controllers is designed to deliver a desired tracking performance for the control of an unknown, second-order, nonlinear discrete-time system expressed in nonstrict feedback form. In the first approach, two feedforward NNs are employed in the controller with tracking error as the feedback variable whereas in the adaptive critic NN architecture, three feedforward NNs are used. In the adaptive critic architecture, two action NNs produce virtual and actual control inputs, respectively, whereas the third critic NN approximates certain strategic utility function and its output is employed for tuning action NN weights in order to attain the near-optimal control action. Both the NN control methods present a well-defined controller design and the noncausal problem in discrete-time backstepping design is avoided via NN approximation. A comparison between the controller methodologies is highlighted. The stability analysis of the closed-loop control schemes is demonstrated. The NN controller schemes do not require an offline learning phase and the NN weights can be initialized at zero or random. Results show that the performance of the proposed controller schemes is highly satisfactory while meeting the closed-loop stability.
Right- and left-loop short shRNAs have distinct and unusual mechanisms of gene silencing
Dallas, Anne; Ilves, Heini; Ge, Qing; Kumar, Pavan; Shorenstein, Joshua; Kazakov, Sergei A.; Cuellar, Trinna L.; McManus, Michael T.; Behlke, Mark A.; Johnston, Brian H.
2012-01-01
Small hairpin RNAs (shRNAs) having duplex lengths of 25–29 bp are normally processed by Dicer into short interfering RNAs (siRNAs) before incorporation into the RNA-induced silencing complex (RISC). However, shRNAs of ≤19 bp [short shRNAs (sshRNAs)] are too short for Dicer to excise their loops, raising questions about their mechanism of action. sshRNAs are designated as L-type or R-type according to whether the loop is positioned 3′ or 5′ to the guide sequence, respectively. Using nucleotide modifications that inhibit RNA cleavage, we show that R- but not L-sshRNAs require loop cleavage for optimum activity. Passenger-arm slicing was found to be important for optimal functioning of L-sshRNAs but much less important for R-sshRNAs that have a cleavable loop. R-sshRNAs could be immunoprecipitated by antibodies to Argonaute-1 (Ago1); complexes with Ago1 contained both intact and loop-cleaved sshRNAs. In contrast, L-sshRNAs were immunoprecipitated with either Ago1 or Ago2 and were predominantly sliced in the passenger arm of the hairpin. However, ‘pre-sliced’ L-sshRNAs were inactive. We conclude that active L-sshRNAs depend on slicing of the passenger arm to facilitate opening of the duplex, whereas R-sshRNAs primarily act via loop cleavage to generate a 5′-phosphate at the 5′-end of the guide strand. PMID:22810205
Acupuncture's Cardiovascular Actions: A Mechanistic Perspective.
Longhurst, John
2013-04-01
Over the last several decades, there has been an explosion of articles on acupuncture, including studies that have begun to explore mechanisms underlying its analgesic and cardiovascular actions. Modulation of cardiovascular function is most effective during manual and low-frequency, low-intensity electroacupuncture (EA) at a select set of acupoints situated along meridians located over deep somatic nerves on the upper and lower extremities. Stimulation at these acupoints activates underlying sensory neural pathways that project to a number of regions in the central nervous system (CNS) that ultimately regulate autonomic outflow and hence cardiovascular function. A long-loop pathway involving the hypothalamus, midbrain, and medulla underlies EA modulation of reflex increases in blood pressure (BP). Actions of excitatory and inhibitory neurotransmitters in the supraspinal CNS underlie processing of the somatic input and adjustment of autonomic outflow during EA. Acupuncture also decreases elevated blood pressure through actions in the thoracic spinal cord. Reflexes that lower BP likewise are modulated by EA through its actions on sympathetic and parasympathetic nuclei in the medulla. The autonomic influence of acupuncture is slow in onset but prolonged in duration, typically lasting beyond the period of stimulation. Clinical studies suggest that acupuncture can be used to treat cardiac diseases, such as myocardial ischemia and hypertension, associated with overactivity of the sympathetic nervous system.
Acupuncture's Cardiovascular Actions: A Mechanistic Perspective
2013-01-01
Abstract Over the last several decades, there has been an explosion of articles on acupuncture, including studies that have begun to explore mechanisms underlying its analgesic and cardiovascular actions. Modulation of cardiovascular function is most effective during manual and low-frequency, low-intensity electroacupuncture (EA) at a select set of acupoints situated along meridians located over deep somatic nerves on the upper and lower extremities. Stimulation at these acupoints activates underlying sensory neural pathways that project to a number of regions in the central nervous system (CNS) that ultimately regulate autonomic outflow and hence cardiovascular function. A long-loop pathway involving the hypothalamus, midbrain, and medulla underlies EA modulation of reflex increases in blood pressure (BP). Actions of excitatory and inhibitory neurotransmitters in the supraspinal CNS underlie processing of the somatic input and adjustment of autonomic outflow during EA. Acupuncture also decreases elevated blood pressure through actions in the thoracic spinal cord. Reflexes that lower BP likewise are modulated by EA through its actions on sympathetic and parasympathetic nuclei in the medulla. The autonomic influence of acupuncture is slow in onset but prolonged in duration, typically lasting beyond the period of stimulation. Clinical studies suggest that acupuncture can be used to treat cardiac diseases, such as myocardial ischemia and hypertension, associated with overactivity of the sympathetic nervous system. PMID:24761168
The Search for Perpetual Motion: Fatigue, Friction, and Drag in Quality Improvement.
Cumbler, Ethan; Pierce, Read
Most people who have worked on continuous quality improvement (QI) with teams in the clinical microsystem have experienced "change fatigue." Application of the "Limit-to-Growth" system archetype to QI teams within health care can be used to understand negative feedback loops generated by successful QI that can limit future progress. Awareness of these factors can result in actions designed to reduce drag on forward momentum. Leaders in health care QI can anticipate and minimize negative feedback loops that accumulate to slow subsequent progress of highly functioning improvement teams within clinical microsystems.
77 FR 55896 - Notice of Final Federal Agency Actions on Loop 1 in Texas
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... Indian Religious Freedom Act [42 U.S.C. 1996]; Farmland Protection Policy Act (FPPA) [7 U.S.C. 4201- 4209... Protection and Enhancement of Cultural Resources; E.O. 13007 Indian Sacred Sites; E.O. 13287 Preserve America...
R-loop-mediated genomic instability is caused by impairment of replication fork progression
Gan, Wenjian; Guan, Zhishuang; Liu, Jie; Gui, Ting; Shen, Keng; Manley, James L.; Li, Xialu
2011-01-01
Transcriptional R loops are anomalous RNA:DNA hybrids that have been detected in organisms from bacteria to humans. These structures have been shown in eukaryotes to result in DNA damage and rearrangements; however, the mechanisms underlying these effects have remained largely unknown. To investigate this, we first show that R-loop formation induces chromosomal DNA rearrangements and recombination in Escherichia coli, just as it does in eukaryotes. More importantly, we then show that R-loop formation causes DNA replication fork stalling, and that this in fact underlies the effects of R loops on genomic stability. Strikingly, we found that attenuation of replication strongly suppresses R-loop-mediated DNA rearrangements in both E. coli and HeLa cells. Our findings thus provide a direct demonstration that R-loop formation impairs DNA replication and that this is responsible for the deleterious effects of R loops on genome stability from bacteria to humans. PMID:21979917
Domain wall network as QCD vacuum: confinement, chiral symmetry, hadronization
NASA Astrophysics Data System (ADS)
Nedelko, Sergei N.; Voronin, Vladimir V.
2017-03-01
An approach to QCD vacuum as a medium describable in terms of statistical ensemble of almost everywhere homogeneous Abelian (anti-)self-dual gluon fields is reviewed. These fields play the role of the confining medium for color charged fields as well as underline the mechanism of realization of chiral SUL(Nf) × SUR(Nf) and UA(1) symmetries. Hadronization formalism based on this ensemble leads to manifestly defined quantum effective meson action. Strong, electromagnetic and weak interactions of mesons are represented in the action in terms of nonlocal n-point interaction vertices given by the quark-gluon loops averaged over the background ensemble. Systematic results for the mass spectrum and decay constants of radially excited light, heavy-light mesons and heavy quarkonia are presented. Relationship of this approach to the results of functional renormalization group and Dyson-Schwinger equations, and the picture of harmonic confinement is briefly outlined.
NASA Astrophysics Data System (ADS)
Yang, Xiong; Liu, Derong; Wang, Ding
2014-03-01
In this paper, an adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem of constrained-input continuous-time nonlinear systems in the presence of nonlinearities with unknown structures. Two different types of neural networks (NNs) are employed to approximate the Hamilton-Jacobi-Bellman equation. That is, an recurrent NN is constructed to identify the unknown dynamical system, and two feedforward NNs are used as the actor and the critic to approximate the optimal control and the optimal cost, respectively. Based on this framework, the action NN and the critic NN are tuned simultaneously, without the requirement for the knowledge of system drift dynamics. Moreover, by using Lyapunov's direct method, the weights of the action NN and the critic NN are guaranteed to be uniformly ultimately bounded, while keeping the closed-loop system stable. To demonstrate the effectiveness of the present approach, simulation results are illustrated.
Song, Ruizhuo; Lewis, Frank L; Wei, Qinglai
2017-03-01
This paper establishes an off-policy integral reinforcement learning (IRL) method to solve nonlinear continuous-time (CT) nonzero-sum (NZS) games with unknown system dynamics. The IRL algorithm is presented to obtain the iterative control and off-policy learning is used to allow the dynamics to be completely unknown. Off-policy IRL is designed to do policy evaluation and policy improvement in the policy iteration algorithm. Critic and action networks are used to obtain the performance index and control for each player. The gradient descent algorithm makes the update of critic and action weights simultaneously. The convergence analysis of the weights is given. The asymptotic stability of the closed-loop system and the existence of Nash equilibrium are proved. The simulation study demonstrates the effectiveness of the developed method for nonlinear CT NZS games with unknown system dynamics.
Learning and exploration in action-perception loops.
Little, Daniel Y; Sommer, Friedrich T
2013-01-01
Discovering the structure underlying observed data is a recurring problem in machine learning with important applications in neuroscience. It is also a primary function of the brain. When data can be actively collected in the context of a closed action-perception loop, behavior becomes a critical determinant of learning efficiency. Psychologists studying exploration and curiosity in humans and animals have long argued that learning itself is a primary motivator of behavior. However, the theoretical basis of learning-driven behavior is not well understood. Previous computational studies of behavior have largely focused on the control problem of maximizing acquisition of rewards and have treated learning the structure of data as a secondary objective. Here, we study exploration in the absence of external reward feedback. Instead, we take the quality of an agent's learned internal model to be the primary objective. In a simple probabilistic framework, we derive a Bayesian estimate for the amount of information about the environment an agent can expect to receive by taking an action, a measure we term the predicted information gain (PIG). We develop exploration strategies that approximately maximize PIG. One strategy based on value-iteration consistently learns faster than previously developed reward-free exploration strategies across a diverse range of environments. Psychologists believe the evolutionary advantage of learning-driven exploration lies in the generalized utility of an accurate internal model. Consistent with this hypothesis, we demonstrate that agents which learn more efficiently during exploration are later better able to accomplish a range of goal-directed tasks. We will conclude by discussing how our work elucidates the explorative behaviors of animals and humans, its relationship to other computational models of behavior, and its potential application to experimental design, such as in closed-loop neurophysiology studies.
Kinetics of Internal-Loop Formation in Polypeptide Chains: A Simulation Study
Doucet, Dana; Roitberg, Adrian; Hagen, Stephen J.
2007-01-01
The speed of simple diffusional motions, such as the formation of loops in the polypeptide chain, places one physical limit on the speed of protein folding. Many experimental studies have explored the kinetics of formation of end-to-end loops in polypeptide chains; however, protein folding more often requires the formation of contacts between interior points on the chain. One expects that, for loops of fixed contour length, interior loops will form more slowly than end-to-end loops, owing to the additional excluded volume associated with the “tails”. We estimate the magnitude of this effect by generating ensembles of randomly coiled, freely jointed chains, and then using the theory of Szabo, Schulten, and Schulten to calculate the corresponding contact formation rates for these ensembles. Adding just a few residues, to convert an end-to-end loop to an internal loop, sharply decreases the contact rate. Surprisingly, the relative change in rate increases for a longer loop; sufficiently long tails, however, actually reverse the effect and accelerate loop formation slightly. Our results show that excluded volume effects in real, full-length polypeptides may cause the rates of loop formation during folding to depart significantly from the values derived from recent loop-formation experiments on short peptides. PMID:17208979
Alternative dimensional reduction via the density matrix
NASA Astrophysics Data System (ADS)
de Carvalho, C. A.; Cornwall, J. M.; da Silva, A. J.
2001-07-01
We give graphical rules, based on earlier work for the functional Schrödinger equation, for constructing the density matrix for scalar and gauge fields in equilibrium at finite temperature T. More useful is a dimensionally reduced effective action (DREA) constructed from the density matrix by further functional integration over the arguments of the density matrix coupled to a source. The DREA is an effective action in one less dimension which may be computed order by order in perturbation theory or by dressed-loop expansions; it encodes all thermal matrix elements. We term the DREA procedure alternative dimensional reduction, to distinguish it from the conventional dimensionally reduced field theory (DRFT) which applies at infinite T. The DREA is useful because it gives a dimensionally reduced theory usable at any T including infinity, where it yields the DRFT, and because it does not and cannot have certain spurious infinities which sometimes occur in the density matrix itself or the conventional DRFT; these come from ln T factors at infinite temperature. The DREA can be constructed to all orders (in principle) and the only regularizations needed are those which control the ultraviolet behavior of the zero-T theory. An example of spurious divergences in the DRFT occurs in d=2+1φ4 theory dimensionally reduced to d=2. We study this theory and show that the rules for the DREA replace these ``wrong'' divergences in physical parameters by calculable powers of ln T; we also compute the phase transition temperature of this φ4 theory in one-loop order. Our density-matrix construction is equivalent to a construction of the Landau-Ginzburg ``coarse-grained free energy'' from a microscopic Hamiltonian.
Quasi-local action of curl-less vector potential on vortex dynamics in superconductors
NASA Astrophysics Data System (ADS)
Gulian, Armen M.; Nikoghosyan, Vahan R.; Gulian, Ellen D.; Melkonyan, Gurgen G.
2018-04-01
Studies of the Abrikosov vortex motion in superconductors based on time-dependent Ginzburg-Landau equations reveal an opportunity to detect the values of the Aharonov-Bohm type curl-less vector potentials without closed-loop electron trajectories encompassing the magnetic flux.
Techniques for Teachers Section
ERIC Educational Resources Information Center
Tait, A., Ed.
1973-01-01
Includes a simple technique to demonstrate Millikan's oil drop experiment, an environmental studies experiment to measure dissolved oxygen in water samples, and a technique to demonstrate action-reaction. Science materials described are the Pol-A-Star Tomiscope, Nuffield chemistry film loops, air pucks and pH meters. (JR)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-13
.... 2000(d)-2000(d)(1)]; American Indian Religious Freedom Act [42 U.S.C. 1996]; Farmland Protection Policy... Indian Sacred Sites; E.O. 13287 Preserve America; E.O. 13175 Consultation and Coordination with Indian...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... a major federal action significantly affecting the quality of the human environment. The U.S. Army... equipment along Loop 313 including a pig launcher; \\2\\ and \\2\\ A ``pig'' is a tool that the pipeline company...
NASA Technical Reports Server (NTRS)
Wu, Shu-Chieh; Remington, Roger W.; Lewis, Richard
2006-01-01
Common tasks in daily life are often accomplished by a sequence of actions that interleave information acquisition through the eyes and action execution by the hands. How are eye movements coordinated with the release of manual responses and how may their coordination be represented at the level of component mental operations? We have previously presented data from a typing-like task requiring separate choice responses to a series of five stimuli. We found a consistent pattern of results in both motor and ocular timing, and hypothesized possible relationships among underlying components. Here we report a model of that task, which demonstrates how the observed timing of eye movements to successive stimuli could be accounted for by assuming systems: an open-loop system generating saccades at a periodic rate, and a closed-loop system commanding a saccade based on stimulus processing. We relate this model to models of reading and discuss the motivation for dual control.
Heterogeneous memory in restitution of action potential duration in pig ventricles.
Jing, Linyuan; Chourasia, Sonam; Patwardhan, Abhijit
2010-01-01
Restitution of action potential duration and memory importantly affect electrical stability in ventricles. Studies have reported heterogeneous restitution among different regions of the ventricles. However, existence of heterogeneity in memory is not as well investigated. Transmembrane potentials were recorded in endocardial and epicardial tissues from both ventricles of farm pigs. Pacing protocols with sinusoidally changing diastolic intervals were used to reveal hysteresis in restitution, from which quantitative measures of memory were calculated. Larger measures of hysteresis were observed in the endocardium than the epicardium (P < .05): loop thickness (in milliseconds), 26.9 vs 16.2; overall tilt, 0.376 vs 0.249; and loop area (in square milliseconds), 7288 vs 4146. Except for overall tilt, no significant differences in these measures were observed between ventricles. Heterogeneity in memory exists in pig ventricles. Because regions with the steepest restitution may also have the largest memory, our results suggest that heterogeneity in memory should also be factored in when predicting electrical stability. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tanigawa, Hiroyasu; Katoh, Yutai; Kohyama, Akira
1995-08-01
Effects of applied stress on early stages of interstitial type Frank loop evolution were investigated by both numerical calculation and irradiation experiments. The final objective of this research is to propose a comprehensive model of complex stress effects on microstructural evolution under various conditions. In the experimental part of this work, the microstructural analysis revealed that the differences in resolved normal stress caused those in the nucleation rates of Frank loops on {111} crystallographic family planes, and that with increasing external applied stress the total nucleation rate of Frank loops was increased. A numerical calculation was carried out primarily to evaluate the validity of models of stress effects on nucleation processes of Frank loop evolution. The calculation stands on rate equuations which describe evolution of point defects, small points defect clusters and Frank loops. The rate equations of Frank loop evolution were formulated for {111} planes, considering effects of resolved normal stress to clustering processes of small point defects and growth processes of Frank loops, separately. The experimental results and the predictions from the numerical calculation qualitatively coincided well with each other.
Particle propagation, wave growth and energy dissipation in a flaring flux tube
NASA Technical Reports Server (NTRS)
White, S. M.; Melrose, D. B.; Dulk, G. A.
1986-01-01
Wave amplification by downgoing particles in a common flare model is investigated. The flare is assumed to occur at the top of a coronal magnetic flux loop, and results in the heating of plasma in the flaring region. The hot electrons propagate down the legs of the flux tube towards increasing magnetic field. It is simple to demonstrate that the velocity distributions which result in this model are unstable to both beam instabilities and cyclotron maser action. An explanation is presented for the propagation effects on the distribution, and the properties of the resulting amplified waves are explored, concentrating on cyclotron maser action, which has properties (emission in the z mode below the local gyrofrequency) quite different from maser action by other distributions considered in the context of solar flares. The z mode waves will be damped in the coronal plasma surrounding the flaring flux tube and lead to heating there. This process may be important in the overall energy budget of the flare. The downgoing maser is compared with the loss cone maser, which is more likely to produce observable bursts.
NASA Astrophysics Data System (ADS)
Ikeda, Fujio; Toyama, Shigehiro; Ishiduki, Souta; Seta, Hiroaki
2016-09-01
Maritime accidents of small ships continue to increase in number. One of the major factors is poor manoeuvrability of the Manual Hydraulic Steering Mechanism (MHSM) in common use. The manoeuvrability can be improved by using the Electronic Control Steering Mechanism (ECSM). This paper conducts stability analyses of a pleasure boat controlled by human models in view of path following on a target course, in order to establish design guidelines for the ECSM. First, to analyse the stability region, the research derives the linear approximated model in a planar global coordinate system. Then, several human models are assumed to develop closed-loop human-machine controlled systems. These human models include basic proportional, derivative, integral and time-delay actions. The stability analysis simulations for those human-machine systems are carried out. The results show that the stability region tends to spread as a ship's velocity increases in the case of the basic proportional human model. The derivative action and time-delay action of human models are effective in spreading the stability region in their respective ranges of frontal gazing points.
Moon, Suk-Hee; Seo, Joobeom; Park, Ki-Min
2017-11-01
The asymmetric unit of the title compound, [Co(NO 3 ) 2 (C 12 H 12 N 2 S) 2 ] n , contains a bis-(pyridin-3-ylmeth-yl)sulfane ( L ) ligand, an NO 3 - anion and half a Co II cation, which lies on an inversion centre. The Co II cation is six-coordinated, being bound to four pyridine N atoms from four symmetry-related L ligands. The remaining coordination sites are occupied by two O atoms from two symmetry-related nitrate anions in a monodentate manner. Thus, the Co II centre adopts a distorted octa-hedral geometry. Two symmetry-related L ligands are connected by two symmetry-related Co II cations, forming a 20-membered cyclic dimer, in which the Co II atoms are separated by 10.2922 (7) Å. The cyclic dimers are connected to each other by sharing Co II atoms, giving rise to the formation of an infinite looped chain propagating along the [101] direction. Inter-molecular C-H⋯π (H⋯ring centroid = 2.89 Å) inter-actions between one pair of corresponding L ligands and C-H⋯O hydrogen bonds between the L ligands and the nitrate anions occur in the looped chain. In the crystal, adjacent looped chains are connected by inter-molecular π-π stacking inter-actions [centroid-to-centroid distance = 3.8859 (14) Å] and C-H⋯π hydrogen bonds (H⋯ring centroid = 2.65 Å), leading to the formation of layers parallel to (101). These layers are further connected through C-H⋯O hydrogen bonds between the layers, resulting in the formation of a three-dimensional supra-molecular architecture.
The strainrange conversion principle for treating cumulative fatigue damage in the creep range
NASA Technical Reports Server (NTRS)
Manson, S. S.
1983-01-01
A formula is derived for combining effects of successive hysteresis loops in the creep range of materials when one loop has excess tensile creep, while the other contains excess compressive creep. The resultant effect resembles single loops involving balanced tensile and compressive creep. The attempt to use the Interaction Damage Rule as a tool in combining loops of non-equal size and complex strainrange content has led to important new concepts useful in future studies of creep-fatigue. It turns out that the Interaction Damage Rule is basically an expression of how a set of hysteresis loops involving only single generic strains can combine to produce the same micromechanistic damage as the loop containing the combined strainranges which it analyzes. Making use of the underlying concept of Strainrange Partitioning that only the strainrange content of a hysteresis loop governs fatigue life, not order of introducing strainranges, a rational derivation of the Interaction Damage Rule is provided, showing also how it can effectively be used to synthesize independent loops and determine both damaging and healing effects.
Fermionic localization of the schwarzian theory
Stanford, Douglas; Witten, Edward
2017-10-02
The SYK model is a quantum mechanical model that has been proposed to be holographically dual to a 1 + 1-dimensional model of a quantum black hole. An emergent “gravitational” mode of this model is governed by an unusual action that has been called the Schwarzian action. It governs a reparametrization of a circle. We show that the path integral of the Schwarzian theory is one-loop exact. Here, the argument uses a method of fermionic localization, even though the model itself is purely bosonic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villanueva, J. F.; Carlos, S.; Martorell, S.
The loss of the residual heat removal system in mid-loop conditions may occur with a non-negligible contribution to the plant risk, so the analysis of the accidental sequences and the actions to mitigate the accident are of great interest in shutdown conditions. In order to plan the appropriate measures to mitigate the accident is necessary to understand the thermal-hydraulic processes following the loss of the residual heat removal system during shutdown. Thus, transients of this kind have been simulated using best-estimate codes in different integral test facilities and compared with experimental data obtained in different facilities. In PKL (Primaerkreislauf-Versuchsanlage, primarymore » coolant loop test facility) test facility different series of experiments have been undertaken to analyze the plant response in shutdown. In this context, the E3 and F2 series consist of analyzing the loss of the residual heat removal system with a reduced inventory in the primary system. In particular, the experiments were developed to investigate the influence of the steam generators secondary side configuration on the plant response, what involves the consideration of different number of steam generators filled with water and ready for activation, on the heat transfer mechanisms inside the steam generators U-tubes. This work presents the results of such experiments calculated using, RELAP5/Mod 3.3. (authors)« less
Spectral asymptotics of Euclidean quantum gravity with diff-invariant boundary conditions
NASA Astrophysics Data System (ADS)
Esposito, Giampiero; Fucci, Guglielmo; Kamenshchik, Alexander Yu; Kirsten, Klaus
2005-03-01
A general method is known to exist for studying Abelian and non-Abelian gauge theories, as well as Euclidean quantum gravity, at 1-loop level on manifolds with boundary. In the latter case, boundary conditions on metric perturbations h can be chosen to be completely invariant under infinitesimal diffeomorphisms, to preserve the invariance group of the theory and BRST symmetry. In the de Donder gauge, however, the resulting boundary-value problem for the Laplace-type operator acting on h is known to be self-adjoint but not strongly elliptic. The latter is a technical condition ensuring that a unique smooth solution of the boundary-value problem exists, which implies, in turn, that the global heat-kernel asymptotics yielding 1-loop divergences and 1-loop effective action actually exists. The present paper shows that, on the Euclidean 4-ball, only the scalar part of perturbative modes for quantum gravity is affected by the lack of strong ellipticity. Further evidence for lack of strong ellipticity, from an analytic point of view, is therefore obtained. Interestingly, three sectors of the scalar-perturbation problem remain elliptic, while lack of strong ellipticity is 'confined' to the remaining fourth sector. The integral representation of the resulting ζ-function asymptotics on the Euclidean 4-ball is also obtained; this remains regular at the origin by virtue of a spectral identity here obtained for the first time.
Kimura, Genjiro
2016-03-01
Primarily the sodium-glucose cotransporter 2 (SGLT2) inhibitors suppress the cotransport of glucose and sodium from the tubular lumen of proximal tubules to the blood and enhance the glucose excretion into urine. Therefore, glucose and caloric balances become negative, making the blood glucose level as well as insulin secretion both reduced. On the other hand, the proximal tubular fluid, constituting with low chloride concentration because of SGLT2 inhibition, is transferred to the loop of Henle. On the low chloride conditions, the reabsorption mechanisms in the loop of Henle do not work, as if loop diuretics are given. Finally, blood pressure is also lowered secondarily due to the loop diuretic action by SGLT2 inhibitions. Thus, the metabolic and hemodynamic combined systems synergistically interact further to suppress the risks leading to atherosclerosis and organs damage. Precise mechanisms for SGLT2 inhibitors to work in various aspects especially in preventing organ damage and cardiovascular events must be clarified further. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
And the Humans Save the Day or Maybe They Ruin It: The Importance of Humans in the Loop
NASA Technical Reports Server (NTRS)
DeMott, Diana; Boyer, Roger; Bigler, Mark
2017-01-01
Flying a mission in space requires a massive commitment of resources, and without the talent and commitment of the people involved in this effort we would never leave the atmosphere of Earth. When we use the phrase "humans in the loop", it could apply to almost any endeavor since everything starts with humans developing a concept, completing the design process, building or implementing a product and using the product to achieve a goal or purpose. Narrowing the focus to spaceflights, there are a variety of individuals involved throughout the preparations for flight and the flight itself. All of the humans involved add value and support for program success. The purpose of this paper focuses on how a Probabilistic Risk Assessment (PRA) accounts for the human in the loop for potential missions using a technique called Human Reliability Analysis (HRA). Human actions can increase or decrease the overall risk via initiating events or mitigating them, thus removing the human from the loop doesn't always lower the risk.
Shortening a loop can increase protein native state entropy.
Gavrilov, Yulian; Dagan, Shlomi; Levy, Yaakov
2015-12-01
Protein loops are essential structural elements that influence not only function but also protein stability and folding rates. It was recently reported that shortening a loop in the AcP protein may increase its native state conformational entropy. This effect on the entropy of the folded state can be much larger than the lower entropic penalty of ordering a shorter loop upon folding, and can therefore result in a more pronounced stabilization than predicted by polymer model for loop closure entropy. In this study, which aims at generalizing the effect of loop length shortening on native state dynamics, we use all-atom molecular dynamics simulations to study how gradual shortening a very long or solvent-exposed loop region in four different proteins can affect their stability. For two proteins, AcP and Ubc7, we show an increase in native state entropy in addition to the known effect of the loop length on the unfolded state entropy. However, for two permutants of SH3 domain, shortening a loop results only with the expected change in the entropy of the unfolded state, which nicely reproduces the observed experimental stabilization. Here, we show that an increase in the native state entropy following loop shortening is not unique to the AcP protein, yet nor is it a general rule that applies to all proteins following the truncation of any loop. This modification of the loop length on the folded state and on the unfolded state may result with a greater effect on protein stability. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Steele, John; Metselaar, Carol; Peyton, Barbara; Rector, Tony; Rossato, Robert; Macias, Brian; Weigel, Dana; Holder, Don
2015-01-01
Water entered the Extravehicular Mobility Unit (EMU) helmet during extravehicular activity (EVA) no. 23 aboard the International Space Station on July 16, 2013, resulting in the termination of the EVA approximately 1 hour after it began. It was estimated that 1.5 liters of water had migrated up the ventilation loop into the helmet, adversely impacting the astronaut's hearing, vision, and verbal communication. Subsequent on-board testing and ground-based test, tear-down, and evaluation of the affected EMU hardware components determined that the proximate cause of the mishap was blockage of all water separator drum holes with a mixture of silica and silicates. The blockages caused a failure of the water separator degassing function, which resulted in EMU cooling water spilling into the ventilation loop, migrating around the circulating fan, and ultimately pushing into the helmet. The root cause of the failure was determined to be ground-processing shortcomings of the Airlock Cooling Loop Recovery (ALCLR) Ion Filter Beds, which led to various levels of contaminants being introduced into the filters before they left the ground. Those contaminants were thereafter introduced into the EMU hardware on-orbit during ALCLR scrubbing operations. This paper summarizes the failure analysis results along with identified process, hardware, and operational corrective actions that were implemented as a result of findings from this investigation.
NASA Technical Reports Server (NTRS)
Steele, John; Metselaar, Carol; Peyton, Barbara; Rector, Tony; Rossato, Robert; Macias, Brian; Weigel, Dana; Holder, Don
2015-01-01
During EVA (Extravehicular Activity) No. 23 aboard the ISS (International Space Station) on 07/16/2013 water entered the EMU (Extravehicular Mobility Unit) helmet resulting in the termination of the EVA (Extravehicular Activity) approximately 1-hour after it began. It was estimated that 1.5-L of water had migrated up the ventilation loop into the helmet, adversely impacting the astronauts hearing, vision and verbal communication. Subsequent on-board testing and ground-based TT and E (Test, Tear-down and Evaluation) of the affected EMU hardware components led to the determination that the proximate cause of the mishap was blockage of all water separator drum holes with a mixture of silica and silicates. The blockages caused a failure of the water separator function which resulted in EMU cooling water spilling into the ventilation loop, around the circulating fan, and ultimately pushing into the helmet. The root cause of the failure was determined to be ground-processing short-comings of the ALCLR (Airlock Cooling Loop Recovery) Ion Filter Beds which led to various levels of contaminants being introduced into the Filters before they left the ground. Those contaminants were thereafter introduced into the EMU hardware on-orbit during ALCLR scrubbing operations. This paper summarizes the failure analysis results along with identified process, hardware and operational corrective actions that were implemented as a result of findings from this investigation.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Gazda, Daniel; Lewis, John
2011-01-01
An EMU water processing kit (Airlock Coolant Loop Recovery -- A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. A conservative duty cycle and set of use parameters for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. Several initiatives were undertaken to optimize the duty cycle and use parameters of the hardware. Examination of post-flight samples and EMU Coolant Loop hardware provided invaluable information on the performance of the A/L CLR and has allowed for an optimization of the process. The intent of this paper is to detail the evolution of the A/L CLR hardware, efforts to optimize the duty cycle and use parameters, and the final recommendations for implementation in the post-Shuttle retirement era.
Edge-on dislocation loop in anisotropic hcp zirconium thin foil
NASA Astrophysics Data System (ADS)
Wu, Wenwang; Xia, Re; Qian, Guian; Xu, Shucai; Zhang, Jinhuan
2015-10-01
Edge-on dislocation loops with 〈 a 〉 -type and 〈 c 〉 -type of Burgers vectors can be formed on prismatic or basel habit planes of hexagonal close-packed (hcp) zirconium alloys during in-situ ion irradiation and neutron irradiation experiments. In this work, an anisotropic image stress method was employed to analyze the free surface effects of dislocation loops within hcp Zr thin foils. Calculation results demonstrate that image stress has a remarkable effect on the distortion fields of dislocation loops within infinite medium, and the image energy becomes remarkable when dislocation loops are situated close to the free surfaces. Moreover, image forces of the 1 / 2 〈 0001 〉 (0001) dislocation loop within (0001) thin foil is much stronger than that of the 1 / 3 〈 11 2 bar 0 〉 (11 2 bar 0) dislocation loop within (11 2 bar 0) thin foil of identical geometrical configurations. Finally, image stress effect on the physical behaviors of loops during in-situ ion irradiation experiments is discussed.
Instantons in Script N = 2 magnetized D-brane worlds
NASA Astrophysics Data System (ADS)
Billò, Marco; Frau, Marialuisa; Pesando, Igor; Di Vecchia, Paolo; Lerda, Alberto; Marotta, Raffaele
2007-10-01
In a toroidal orbifold of type IIB string theory we study instanton effects in Script N = 2 super Yang-Mills theories engineered with systems of wrapped magnetized D9 branes and Euclidean D5 branes. We analyze the various open string sectors in this brane system and study the 1-loop amplitudes described by annulus diagrams with mixed boundary conditions, explaining their rôle in the stringy instanton calculus. We show in particular that the non-holomorphic terms in these annulus amplitudes precisely reconstruct the appropriate Kähler metric factors that are needed to write the instanton correlators in terms of purely holomorphic variables. We also explicitly derive the correct holomorphic structure of the instanton induced low energy effective action in the Coulomb branch.
An intact action-perception coupling depends on the integrity of the cerebellum.
Christensen, Andrea; Giese, Martin A; Sultan, Fahad; Mueller, Oliver M; Goericke, Sophia L; Ilg, Winfried; Timmann, Dagmar
2014-05-07
It is widely accepted that action and perception in humans functionally interact on multiple levels. Moreover, areas originally suggested to be predominantly motor-related, as the cerebellum, are also involved in action observation. However, as yet, few studies provided unequivocal evidence that the cerebellum is involved in the action perception coupling (APC), specifically in the integration of motor and multisensory information for perception. We addressed this question studying patients with focal cerebellar lesions in a virtual-reality paradigm measuring the effect of action execution on action perception presenting self-generated movements as point lights. We measured the visual sensitivity to the point light stimuli based on signal detection theory. Compared with healthy controls cerebellar patients showed no beneficial influence of action execution on perception indicating deficits in APC. Applying lesion symptom mapping, we identified distinct areas in the dentate nucleus and the lateral cerebellum of both hemispheres that are causally involved in APC. Lesions of the right ventral dentate, the ipsilateral motor representations (lobules V/VI), and most interestingly the contralateral posterior cerebellum (lobule VII) impede the benefits of motor execution on perception. We conclude that the cerebellum establishes time-dependent multisensory representations on different levels, relevant for motor control as well as supporting action perception. Ipsilateral cerebellar motor representations are thought to support the somatosensory state estimate of ongoing movements, whereas the ventral dentate and the contralateral posterior cerebellum likely support sensorimotor integration in the cerebellar-parietal loops. Both the correct somatosensory as well as the multisensory state representations are vital for an intact APC.
Meek, M E; Boobis, A; Cote, I; Dellarco, V; Fotakis, G; Munn, S; Seed, J; Vickers, C
2014-01-01
The World Health Organization/International Programme on Chemical Safety mode of action/human relevance framework has been updated to reflect the experience acquired in its application and extend its utility to emerging areas in toxicity testing and non-testing methods. The underlying principles have not changed, but the framework's scope has been extended to enable integration of information at different levels of biological organization and reflect evolving experience in a much broader range of potential applications. Mode of action/species concordance analysis can also inform hypothesis-based data generation and research priorities in support of risk assessment. The modified framework is incorporated within a roadmap, with feedback loops encouraging continuous refinement of fit-for-purpose testing strategies and risk assessment. Important in this construct is consideration of dose-response relationships and species concordance analysis in weight of evidence. The modified Bradford Hill considerations have been updated and additionally articulated to reflect increasing experience in application for cases where the toxicological outcome of chemical exposure is known. The modified framework can be used as originally intended, where the toxicological effects of chemical exposure are known, or in hypothesizing effects resulting from chemical exposure, using information on putative key events in established modes of action from appropriate in vitro or in silico systems and other lines of evidence. This modified mode of action framework and accompanying roadmap and case examples are expected to contribute to improving transparency in explicitly addressing weight of evidence considerations in mode of action/species concordance analysis based on both conventional data sources and evolving methods. Copyright © 2013 John Wiley & Sons, Ltd. The World Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.
75 FR 69633 - Marine Mammals; File No. 15206
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-15
... the Vancouver Aquarium Marine Science Center, British Columbia, Canada to Sea World of Texas, had been... Administration (NOAA), Commerce. ACTION: Notice; issuance of permit. SUMMARY: Notice is hereby given that Sea World, LLC, 9205 South Park Center Loop, Suite 400, Orlando, FL 32819 [Brad Andrews, Responsible Party...
A Cognitive-System Model for En Route Air Traffic Management
NASA Technical Reports Server (NTRS)
Corker, Kevin M.; Pisanich, Gregory; Lebacqz, J. Victor (Technical Monitor)
1998-01-01
NASA Ames Research Center has been engaged in the development of advanced air traffic management technologies whose basic form is cognitive aiding systems for air traffic controller and flight deck operations. In the design and evaluation of such systems the dynamic interaction between the airborne aiding system and the ground-based aiding systems forms a critical coupling for control. The human operator is an integral control element in the system and the optimal integration of human decision and performance parameters with those of the automation aiding systems offers a significant challenge to cognitive engineering. This paper presents a study in full mission simulation and the development of a predictive computational model of human performance. We have found that this combination of methodologies provide a powerful design-aiding process. We have extended the computational model Man Machine Integrated Design and Analysis System (N13DAS) to include representation of multiple cognitive agents (both human operators and intelligent aiding systems), operating aircraft airline operations centers and air traffic control centers in the evolving airspace. The demands of this application require the representation of many intelligent agents sharing world-models, and coordinating action/intention with cooperative scheduling of goals and actions in a potentially unpredictable world of operations. The operator's activity structures have been developed to include prioritization and interruption of multiple parallel activities among multiple operators, to provide for anticipation (knowledge of the intention and action of remote operators), and to respond to failures of the system and other operators in the system in situation-specific paradigms. We have exercised this model in a multi-air traffic sector scenario with potential conflict among aircraft at and across sector boundaries. We have modeled the control situation as a multiple closed loop system. The inner and outer loop alerting structure of air traffic management has many implications that need to be investigated to assure adequate design. First, there are control and stability factors implicit in the design. As the inner loop response time approaches that of the outer loop, system stability may be compromised in that controllers may be solving a problem the nature of which has already been changed by pilot action. Second, information exchange and information presentation for both air and ground must be designed to complement as opposed to compete with each other. Third, the level of individual and shared awareness in trajectory modification and flight conformance needs to be defined. Fourth, the level of required awareness and performance impact of mixed fleet operations and failed-mode recovery must be explored.
Sun, Haoyu; Pan, Yongzheng; Gu, Yue; Lin, Zhifen
2018-07-15
Cross-phenomenon in which the concentration-response curve (CRC) for a mixture crosses the CRC for the reference model has been identified in many studies, expressed as a heterogeneous pattern of joint toxic action. However, a mechanistic explanation of the cross-phenomenon has thus far been extremely insufficient. In this study, a time-dependent cross-phenomenon was observed, in which the cross-concentration range between the CRC for the mixture of sulfamethoxypyridazine (SMP) and (Z-)-4-Bromo-5-(bromomethylene)-2(5H)-furanone (C30) to the bioluminescence of Aliivibrio fischeri (A. fischeri) and the CRC for independent action model with 95% confidence bands varied from low-concentration to higher-concentration regions in a timely manner expressed the joint toxic action of the mixture changing with an increase of both concentration and time. Through investigating the time-dependent hormetic effects of SMP and C30 (by measuring the expression of protein mRNA, simulating the bioluminescent reaction and analyzing the toxic action), the underlying mechanism was as follows: SMP and C30 acted on the quorum sensing (QS) system of A. fischeri, which induced low-concentration stimulatory effects and high-concentration inhibitory effects; in the low-concentration region, the stimulatory effects of SMP and C30 made the mixture produce a synergistic stimulation on the bioluminescence; thus, the joint toxic action exhibited antagonism. In the high-concentration region, the inhibitory effects of SMP and C30 in the mixture caused a double block in the loop circuit of the QS system; thus, the joint toxic action exhibited synergism. With the increase of time, these stimulatory and inhibitory effects of SMP and C30 were changed by the variation of the QS system at different growth phases, resulting in the time-dependent cross-phenomenon. This study proposes an induced mechanism for time-dependent cross-phenomenon based on QS, which may provide new insight into the mechanistic investigation of time-dependent cross-phenomenon, benefitting the environmental risk assessment of mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.
Finite Feedback Cycling in Structural Equation Models
ERIC Educational Resources Information Center
Hayduk, Leslie A.
2009-01-01
In models containing reciprocal effects, or longer causal loops, the usual effect estimates assume that any effect touching a loop initiates an infinite cycling of effects around that loop. The real world, in contrast, might permit only finite feedback cycles. I use a simple hypothetical model to demonstrate that if the world permits only a few…
Closing the loop of deep brain stimulation
Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance
2013-01-01
High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment. PMID:24391555
Closing the loop of deep brain stimulation.
Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance
2013-12-20
High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment.
Chen, Jian; Zhang, Xing; Wang, Yong; Ye, Yu; Huang, Zhaoquan
2018-05-02
For postmenopausal cardiovascular disease, long-term estrogen therapy may increase the risk of breast cancer. To reduce this risk, estrogen may be replaced with the phytoestrogen formononetin, but how formononetin acts on vascular endothelial cells (ECs) and breast cancer cells is unclear. Here, we show that low concentrations of formononetin induced proliferation and inhibited apoptosis more strongly in cultured human umbilical vein endothelial cells (HUVECs) than in breast cancer cells expressing estrogen receptor α (ERα) (MCF-7, BT474) or not (MDA-MB-231), and that this differential stimulation was associated with miR-375 up-regulation in HUVECs. For the first time, we demonstrate the presence of a feedback loop involving miR-375, ras dexamethasone-induced 1 (RASD1), and ERα in normal HUVECs, and we show that formononetin stimulated this feedback loop in HUVECs but not in MCF-7 or BT474 cells. In all three cell lines, formononetin increased Akt phosphorylation and Bcl-2 expression. Inhibiting miR-375 blocked these changes and increased proliferation in HUVECs, but not in MCF-7 or BT474 cells. In ovariectomized rats, formononetin increased uterine weight and caused similar changes in levels of miR-375, RASD1, ERα, and Bcl-2 in aortic ECs as in cultured HUVECs. In mice bearing MCF-7 xenografts, tumor growth was stimulated by 17β-estradiol but not by formononetin. These results suggest selective action of formononetin in ECs (proliferation stimulation and apoptosis inhibition) relative to breast cancer cells, possibly via a feedback loop involving miR-375, RASD1, and ERα. This differential effect may explain why formononetin may not increase the risk of postmenopausal breast cancer. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Göschl, Daniel
2018-03-01
We discuss simulation strategies for the massless lattice Schwinger model with a topological term and finite chemical potential. The simulation is done in a dual representation where the complex action problem is solved and the partition function is a sum over fermion loops, fermion dimers and plaquette-occupation numbers. We explore strategies to update the fermion loops coupled to the gauge degrees of freedom and check our results with conventional simulations (without topological term and at zero chemical potential), as well as with exact summation on small volumes. Some physical implications of the results are discussed.
NASA Astrophysics Data System (ADS)
Stolnitz, Mikhail M.; Medvedev, Boris A.; Gribko, Tatyana V.
2004-05-01
The semi-phenomenological model of epidermal cell dynamics is submitted. The model takes into account three types of basal layer keratinocytes (stem, transient amplifying, terminally differentiated), distribution of first two types cells on mitotic cycle stages and resting states, keratinocytes-lymphocytes interactions that provide a positive feedback loop, influence of more differentiated cells on their progenitors that provide a negative feedback loop. Simplified model are developed and its stationary solutions are received. The opportunity of interpretation of some received modes as corresponding to various stages of psoriasis is discussed. Influence of UV-radiation on transitions between various modes of epidermis functioning is qualitatively analyzed.
Mitchell, Felicity L; Miles, Steven M; Neres, João; Bichenkova, Elena V; Bryce, Richard A
2010-05-19
Molecular dynamics investigations into active site plasticity of Trypanosoma cruzi trans-sialidase, a protein implicated in Chagas disease, suggest that movement of the Trp(312) loop plays an important role in the enzyme's sialic acid transfer mechanism. The observed Trp(312) flexibility equates to a molecular shovel action, which leads to the expulsion of the donor aglycone leaving group from the catalytic site. These computational simulations provide detailed structural insights into sialyl transfer by the trans-sialidase and may aid the design of inhibitors effective against this neglected tropical disease. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Design and verification of large-moment transmitter loops for geophysical applications
NASA Astrophysics Data System (ADS)
Sternberg, Ben K.; Dvorak, Steven L.; Feng, Wanjie
2017-01-01
In this paper we discuss the modeling, design and verification of large-moment transmitter (TX) loops for geophysical applications. We first develop two equivalent circuit models for TX loops. We show that the equivalent inductance can be predicted using one of two empirical formulas. The stray capacitance of the loop is then calculated using the measured self-resonant frequency and the loop inductance. We model the losses associated with both the skin effect and the dissipation factor in both of these equivalent circuits. We find that the two equivalent circuit models produce the same results provided that the dissipation factor is small. Next we compare the measured input impedances for three TX loops that were constructed with different wire configurations with the equivalent circuit model. We found excellent agreement between the measured and simulated results after adjusting the dissipation factor. Since the skin effect and dissipation factor yield good agreement with measurements, the proximity effect is negligible in the three TX loops that we tested. We found that the effects of the dissipation factor dominated those of the skin effect when the wires were relatively close together. When the wires were widely separated, then the skin effect was the dominant loss mechanism. We also found that loops with wider wire separations exhibited higher self-resonant frequencies and better high-frequency performance.
Knowledge Generated by Audiovisual Narrative Action Research Loops
ERIC Educational Resources Information Center
Bautista Garcia-Vera, Antonio
2012-01-01
We present data collected from the research project funded by the Ministry of Education and Science of Spain entitled "Audiovisual Narratives and Intercultural Relations in Education." One of the aims of the research was to determine the nature of thought processes occurring during audiovisual narratives. We studied the possibility of…
2017-12-01
Action Reports .....................................................................9 2. Psychological Impact of Training... INTEGRATION ...................................................................60 D. JOHN BOYD’S OODA LOOP...impact of a school-based active shooter cannot be understated. Beyond the given risk of injury and death, a potential psychological impact exists to all
Extraction of urea and ammonium ion
NASA Technical Reports Server (NTRS)
Anselmi, R. T.; Husted, R. R.; Schulz, J. R.
1977-01-01
Water purification system keeps urea and ammonium ion concentration below toxic limits in recirculated water of closed loop aquatic habitat. Urea is first converted to ammonium ions and carbon dioxide by enzygmatic action. Ammonium ions are removed by ion exchange. Bioburden is controlled by filtration through 0.45 micron millipore filters.
Wang, Ming; Yang, Kezhen; Le, Jie
2015-03-01
In Arabidopsis, stomatal development initiates after protodermal cells acquire stomatal lineage cell fate. Stomata or their precursors communicate with their neighbor epidermal cells to ensure the "one cell spacing" rule. The signals from EPF/EPFL peptide ligands received by Too Many Mouths (TMM) and ERECTA-family receptors are supposed to be transduced by YODA MAPK cascade. A basic helix-loop-helix transcription factor SPEECHLESS (SPCH) is another key regulator of stomatal cell fate determination and asymmetric entry divisions, and SPCH activity is regulated by YODA MAPK cascade. Brassinosteroid (BR) signaling, one of the most well characterized signal transduction pathways in plants, contributes to the control of stomatal production. But opposite organ-specific effects of BR on stomatal production were reported. Here we confirm that stomatal production in hypocotyls is controlled by BR levels. YODA and CYCD4 are not essential for BR stomata-promoting function. Furthermore, we found that BR could confer tmm hypocotyls clustered stomatal phenotype, indicating that the BR organ-specific effects on stomatal production might coordinate with the TMM organ-specific actions. © 2014 Institute of Botany, Chinese Academy of Sciences.
Curvature effects on activation speed and repolarization in an ionic model of cardiac myocytes
NASA Astrophysics Data System (ADS)
Comtois, P.; Vinet, A.
1999-10-01
Reentry is a major mechanism underlying the initiation and perpetuation of many cardiac arrhythmias 12345. Stimulated ventricular myocytes give action potential characterized by a fast upstroke, a long-lasting plateau, and a late repolarization phase. The plateau phase determines the action potential duration (APD) during which the system remains refractory, a property essential to the synchronization of the heart cycle. The APD varies much with prematurity and this change has been shown to be the main determinant of the dynamics in models of paced cells and cable, and during reentry in the one-dimensional loop. Curvature has also been shown to be an important factor for propagation in experimental and theoretical cardiac extended tissue. The objective of this paper is to combine both curvature and prematurity effects in a kinematical model of propagation in cardiac tissue. First, an approximation of the ionic model is used to obtain the effects of curvature and prematurity on the speed of propagation, the APD, and the absolute refractory period. Two versions of the ionic model are studied that differ in their rate of excitability recovery. The functions are used in a kinematical model describing the propagation of period-1 solutions around an annulus.
Inverse spin Hall effect in a closed loop circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omori, Y.; Auvray, F.; Wakamura, T.
We present measurements of inverse spin Hall effects (ISHEs), in which the conversion of a spin current into a charge current via the ISHE is detected not as a voltage in a standard open circuit but directly as the charge current generated in a closed loop. The method is applied to the ISHEs of Bi-doped Cu and Pt. The derived expression of ISHE for the loop structure can relate the charge current flowing into the loop to the spin Hall angle of the SHE material and the resistance of the loop.
NASA Astrophysics Data System (ADS)
Punya Jaroenjittichai, Atchara; Laosiritaworn, Yongyut
2017-09-01
In this work, the stock-price versus economic-field hysteresis was investigated. The Ising spin Hamiltonian was utilized as the level of ‘disagreement’ in describing investors’ behaviour. The Ising spin directions were referred to an investor’s intention to perform his action on trading his stock. The periodic economic variation was also considered via the external economic-field in the Ising model. The stochastic Monte Carlo simulation was performed on Ising spins, where the steady-state excess demand and supply as well as the stock-price were extracted via the magnetization. From the results, the economic-field parameters and market temperature were found to have significant effect on the dynamic magnetization and stock-price behaviour. Specifically, the hysteresis changes from asymmetric to symmetric loops with increasing market temperature and economic-field strength. However, the hysteresis changes from symmetric to asymmetric loops with increasing the economic-field frequency, when either temperature or economic-field strength is large enough, and returns to symmetric shape at very high frequencies. This suggests competitive effects among field and temperature factors on the hysteresis characteristic, implying multi-dimensional complicated non-trivial relationship among inputs-outputs. As is seen, the results reported (over extensive range) can be used as basis/guideline for further analysis/quantifying how economic-field and market-temperature affect the stock-price distribution on the course of economic cycle.
Krieger, Florian; Möglich, Andreas; Kiefhaber, Thomas
2005-03-16
Glycine and proline residues are frequently found in turn and loop structures of proteins and are believed to play an important role during chain compaction early in folding. We investigated their effect on the dynamics of intrachain loop formation in various unstructured polypeptide chains. Loop formation is significantly slower around trans prolyl peptide bonds and faster around glycine residues compared to any other amino acid. However, short loops are formed fastest around cis prolyl bonds with a time constant of 6 ns for end-to-end contact formation in a four-residue loop. Formation of short loops encounters activation energies in the range of 15 to 30 kJ/mol. The altered dynamics around glycine and trans prolyl bonds can be mainly ascribed to their effects on the activation energy. The fast dynamics around cis prolyl bonds, in contrast, originate in a higher Arrhenius pre-exponential factor, which compensates for an increased activation energy for loop formation compared to trans isomers. All-atom simulations of proline-containing peptides indicate that the conformational space for cis prolyl isomers is largely restricted compared to trans isomers. This leads to decreased average end-to-end distances and to a smaller loss in conformational entropy upon loop formation in cis isomers. The results further show that glycine and proline residues only influence formation of short loops containing between 2 and 10 residues, which is the typical loop size in native proteins. Formation of larger loops is not affected by the presence of a single glycine or proline residue.
LINEAR AND NONLINEAR CORRECTIONS IN THE RHIC INTERACTION REGIONS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
PILAT,F.; CAMERON,P.; PTITSYN,V.
2002-06-02
A method has been developed to measure operationally the linear and non-linear effects of the interaction region triplets, that gives access to the multipole content through the action kick, by applying closed orbit bumps and analysing tune and orbit shifts. This technique has been extensively tested and used during the RHIC operations in 2001. Measurements were taken at 3 different interaction regions and for different focusing at the interaction point. Non-linear effects up to the dodecapole have been measured as well as the effects of linear, sextupolar and octupolar corrections. An analysis package for the data processing has been developedmore » that through a precise fit of the experimental tune shift data (measured by a phase lock loop technique to better than 10{sup -5} resolution) determines the multipole content of an IR triplet.« less
Closed loop statistical performance analysis of N-K knock controllers
NASA Astrophysics Data System (ADS)
Peyton Jones, James C.; Shayestehmanesh, Saeed; Frey, Jesse
2017-09-01
The closed loop performance of engine knock controllers cannot be rigorously assessed from single experiments or simulations because knock behaves as a random process and therefore the response belongs to a random distribution also. In this work a new method is proposed for computing the distributions and expected values of the closed loop response, both in steady state and in response to disturbances. The method takes as its input the control law, and the knock propensity characteristic of the engine which is mapped from open loop steady state tests. The method is applicable to the 'n-k' class of knock controllers in which the control action is a function only of the number of cycles n since the last control move, and the number k of knock events that have occurred in this time. A Cumulative Summation (CumSum) based controller falls within this category, and the method is used to investigate the performance of the controller in a deeper and more rigorous way than has previously been possible. The results are validated using onerous Monte Carlo simulations, which confirm both the validity of the method and its high computational efficiency.
NASA Technical Reports Server (NTRS)
Steele, John; Rector, tony; Gazda, Daniel; Lewis, John
2009-01-01
An EMU water processing kit (Airlock Coolant Loop Recovery A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. Conservative schedules for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. The examination of postflight samples and EMU hardware in November of 2006 indicated that the A/L CLR kits were functioning well and had excess capacity that would allow a relaxation of the initially conservative schedules of use and component life. A relaxed use schedule and list of component lives was implemented thereafter. Since the adoption of the relaxed A/L CLR schedules of use and component lives, several A/L CLR kit components, transport loop water samples and sensitive EMU transport loop components have been examined to gage the impact of the relaxed requirements. The intent of this paper is to summarize the findings of that evaluation, and to outline updated schedules for A/L CLR use and component life.
Calculation of K →π π decay amplitudes with improved Wilson fermion action in lattice QCD
NASA Astrophysics Data System (ADS)
Ishizuka, N.; Ishikawa, K.-I.; Ukawa, A.; Yoshié, T.
2015-10-01
We present our result for the K →π π decay amplitudes for both the Δ I =1 /2 and 3 /2 processes with the improved Wilson fermion action. Expanding on the earlier works by Bernard et al. and by Donini et al., we show that mixings with four-fermion operators with wrong chirality are absent even for the Wilson fermion action for the parity odd process in both channels due to CPS symmetry. Therefore, after subtraction of an effect from the lower dimensional operator, a calculation of the decay amplitudes is possible without complications from operators with wrong chirality, as for the case with chirally symmetric lattice actions. As a first step to verify the possibility of calculations with the Wilson fermion action, we consider the decay amplitudes at an unphysical quark mass mK˜2 mπ . Our calculations are carried out with Nf=2 +1 gauge configurations generated with the Iwasaki gauge action and nonperturbatively O (a )-improved Wilson fermion action at a =0.091 fm , mπ=280 MeV , and mK=580 MeV on a 323×64 (L a =2.9 fm ) lattice. For the quark loops in the penguin and disconnected contributions in the I =0 channel, the combined hopping parameter expansion and truncated solver method work very well for variance reduction. We obtain, for the first time with a Wilson-type fermion action, that Re A0=60 (36 )×1 0-8 GeV and Im A0=-67 (56 )×1 0-12 GeV for a matching scale q*=1 /a . The dependence on the matching scale q* for these values is weak.
Size-dependent magnetic properties of FeGaB/Al2O3 multilayer micro-islands
NASA Astrophysics Data System (ADS)
Wang, X.; Gao, Y.; Chen, H.; Chen, Y.; Liang, X.; Lin, W.; Sun, N. X.
2018-06-01
Recently, micrometer-size patterned magnetic materials have been widely used in MEMS devices. However, the self-demagnetizing action is significantly influencing the performance of the magnetic materials in many MEMS devices. Here, we report an experimental study on the magnetic properties of the patterned micro-scale FeGaB/Al2O3 multilayers. Ferromagnetic hysteresis loop, ferromagnetic resonance (FMR), permeability and domain behavior have been demonstrated by complementary techniques. Magnetic annealing was used to enhance the performance of magnetic multilayers. The comparisons among micro-islands with different sizes in the range of 200 μm ∼ 500 μm as well as full film show a marked influence of size-effect, the exchange coupling effect, and the different domain structures inside the islands.
78 FR 34881 - Special Local Regulations; Marine Events, Wrightsville Channel; Wrightsville Beach, NC
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
...-AA08 Special Local Regulations; Marine Events, Wrightsville Channel; Wrightsville Beach, NC AGENCY... Regulation for the ``Swim the Loop/Motts Channel Sprint'' swim event, to be held on the waters adjacent to... necessary to provide for the safety of life on navigable waters during the event. This action will restrict...
Exploring Adaptability through Learning Layers and Learning Loops
ERIC Educational Resources Information Center
Lof, Annette
2010-01-01
Adaptability in social-ecological systems results from individual and collective action, and multi-level interactions. It can be understood in a dual sense as a system's ability to adapt to disturbance and change, and to navigate system transformation. Inherent in this conception, as found in resilience thinking, are the concepts of learning and…
The High School Forensic Program: Resource for School and Community.
ERIC Educational Resources Information Center
Fryar, Maridell; Wise, Charles N.
1974-01-01
There is valid criticism that contest debate practices constitute both a reality gap between contest debate and actual public communication, and a closed feedback loop among coaches, judges, and debaters. However, remedial and preventive action is possible if forensics directors are highly motivated to work within a broad program of communication…
Invariant Connections in Loop Quantum Gravity
NASA Astrophysics Data System (ADS)
Hanusch, Maximilian
2016-04-01
Given a group {G}, and an abelian {C^*}-algebra {A}, the antihomomorphisms {Θ\\colon G→ {Aut}(A)} are in one-to-one with those left actions {Φ\\colon G× {Spec}(A)→ {Spec}(A)} whose translation maps {Φ_g} are continuous; whereby continuities of {Θ} and {Φ} turn out to be equivalent if {A} is unital. In particular, a left action {φ\\colon G × X→ X} can be uniquely extended to the spectrum of a {C^*}-subalgebra {A} of the bounded functions on {X} if {φ_g^*(A)subseteq A} holds for each {gin G}. In the present paper, we apply this to the framework of loop quantum gravity. We show that, on the level of the configuration spaces, quantization and reduction in general do not commute, i.e., that the symmetry-reduced quantum configuration space is (strictly) larger than the quantized configuration space of the reduced classical theory. Here, the quantum-reduced space has the advantage to be completely characterized by a simple algebraic relation, whereby the quantized reduced classical space is usually hard to compute.
A novel feedforward compensation canceling input filter-regulator interaction
NASA Technical Reports Server (NTRS)
Kelkar, S. S.; Lee, F. C.
1983-01-01
The interaction between the input and the control loop of switching regulators often results in deterimental effects, such as loop instability, degradation of transient response, and audiosusceptibility, etc. The concept of pole-zero cancelation is employed to mitigate some of these detrimental effects and is implemented using a novel feedforward loop, in addition to existing feedback loops of a buck regulator. Experimental results are presented which show excellent correlation with theory.
Ku-band signal design study. [for space shuttle orbiter communication links
NASA Technical Reports Server (NTRS)
Lindsey, W. L.; Woo, K. T.
1977-01-01
The acquisition/tracking performance of a practical squaring loop in which the times two multiplier is mechanized as a limiter/multiplier combination is evaluated. This squaring approach serves to produce the absolute value of the arriving signal as opposed to the perfect square law action which is required in order to render acquisition and tracking performance equivalent to that of a Costas loop. The Ku-Band orbiter signal design for the forward link is assessed. Acquisition time results and acquisition and tracking thresholds are summarized. A tradeoff study which pertains to bit synchronization techniques for the high rate Ku-Band channel is included and an optimum selection is made based upon the appropriate design constraints.
Lysons, R J; Kent, K A; Bland, A P; Sellwood, R; Robinson, W F; Frost, A J
1991-02-01
The haemolysin from a virulent strain of Treponema hyodysenteriae was extracted and injected into ligated loops of the ileum and colon of germ-free pigs. It caused severe epithelial damage, especially to the differentiated cells at the tips of the villi in the ileum and the cells in the intercrypt zones of the colon; goblet cells were less affected. The changes in the colon were similar to those seen in natural cases of swine dysentery. The ligated loop offers a means of investigating pathogenic mechanisms and the mode of action of the toxin. This study demonstrated that the haemolysin was a potent cytotoxin for pig enterocytes, and a probable virulence determinant in swine dysentery.
Loop Mirror Laser Neural Network with a Fast Liquid-Crystal Display
NASA Astrophysics Data System (ADS)
Mos, Evert C.; Schleipen, Jean J. H. B.; de Waardt, Huug; Khoe, Djan G. D.
1999-07-01
In our laser neural network (LNN) all-optical threshold action is obtained by application of controlled optical feedback to a laser diode. Here an extended experimental LNN is presented with as many as 32 neurons and 12 inputs. In the setup we use a fast liquid-crystal display to implement an optical matrix vector multiplier. This display, based on ferroelectric liquid-crystal material, enables us to present 125 training examples s to the LNN. To maximize the optical feedback efficiency of the setup, a loop mirror is introduced. We use a -rule learning algorithm to train the network to perform a number of functions toward the application area of telecommunication data switching.
A New Method for Setting Calculation Sequence of Directional Relay Protection in Multi-Loop Networks
NASA Astrophysics Data System (ADS)
Haijun, Xiong; Qi, Zhang
2016-08-01
Workload of relay protection setting calculation in multi-loop networks may be reduced effectively by optimization setting calculation sequences. A new method of setting calculation sequences of directional distance relay protection in multi-loop networks based on minimum broken nodes cost vector (MBNCV) was proposed to solve the problem experienced in current methods. Existing methods based on minimum breakpoint set (MBPS) lead to more break edges when untying the loops in dependent relationships of relays leading to possibly more iterative calculation workloads in setting calculations. A model driven approach based on behavior trees (BT) was presented to improve adaptability of similar problems. After extending the BT model by adding real-time system characters, timed BT was derived and the dependency relationship in multi-loop networks was then modeled. The model was translated into communication sequence process (CSP) models and an optimization setting calculation sequence in multi-loop networks was finally calculated by tools. A 5-nodes multi-loop network was applied as an example to demonstrate effectiveness of the modeling and calculation method. Several examples were then calculated with results indicating the method effectively reduces the number of forced broken edges for protection setting calculation in multi-loop networks.
Shakuntala, K; Naveen, S; Lokanath, N K; Suchetan, P A
2017-05-01
The crystal structures of three isomeric compounds of formula C 14 H 13 Cl 2 NO 2 S, namely 3,5-di-chloro- N -(2,3-di-methyl-phen-yl)-benzene-sulfonamide (I), 3,5-di-chloro- N -(2,6-di-methyl-phen-yl)benzene-sulfonamide (II) and 3,5-di-chloro- N -(3,5-di-methyl-phen-yl)benzene-sulfonamide (III) are described. The mol-ecules of all the three compounds are U-shaped with the two aromatic rings inclined at 41.3 (6)° in (I), 42.1 (2)° in (II) and 54.4 (3)° in (III). The mol-ecular conformation of (II) is stabilized by intra-molecular C-H⋯O hydrogen bonds and C-H⋯π inter-actions. The crystal structure of (I) features N-H⋯O hydrogen-bonded R 2 2 (8) loops inter-connected via C (7) chains of C-H⋯O inter-actions, forming a three-dimensional architecture. The structure also features π-π inter-actions [ Cg ⋯ Cg = 3.6970 (14) Å]. In (II), N-H⋯O hydrogen-bonded R 2 2 (8) loops are inter-connected via π-π inter-actions [inter-centroid distance = 3.606 (3) Å] to form a one-dimensional architecture running parallel to the a axis. In (III), adjacent C (4) chains of N-H⋯O hydrogen-bonded mol-ecules running parallel to [010] are connected via C-H⋯π inter-actions, forming sheets parallel to the ab plane. Neighbouring sheets are linked via offset π-π inter-actions [inter-centroid distance = 3.8303 (16) Å] to form a three-dimensional architecture.
Yang, Qinmin; Jagannathan, Sarangapani
2012-04-01
In this paper, reinforcement learning state- and output-feedback-based adaptive critic controller designs are proposed by using the online approximators (OLAs) for a general multi-input and multioutput affine unknown nonlinear discretetime systems in the presence of bounded disturbances. The proposed controller design has two entities, an action network that is designed to produce optimal signal and a critic network that evaluates the performance of the action network. The critic estimates the cost-to-go function which is tuned online using recursive equations derived from heuristic dynamic programming. Here, neural networks (NNs) are used both for the action and critic whereas any OLAs, such as radial basis functions, splines, fuzzy logic, etc., can be utilized. For the output-feedback counterpart, an additional NN is designated as the observer to estimate the unavailable system states, and thus, separation principle is not required. The NN weight tuning laws for the controller schemes are also derived while ensuring uniform ultimate boundedness of the closed-loop system using Lyapunov theory. Finally, the effectiveness of the two controllers is tested in simulation on a pendulum balancing system and a two-link robotic arm system.
Closing the Loop in ICU Decision Support: Physiologic Event Detection, Alerts, and Documentation
Norris, Patrick R.; Dawant, Benoit M.
2002-01-01
Automated physiologic event detection and alerting is a challenging task in the ICU. Ideally care providers should be alerted only when events are clinically significant and there is opportunity for corrective action. However, the concepts of clinical significance and opportunity are difficult to define in automated systems, and effectiveness of alerting algorithms is difficult to measure. This paper describes recent efforts on the Simon project to capture information from ICU care providers about patient state and therapy in response to alerts, in order to assess the value of event definitions and progressively refine alerting algorithms. Event definitions for intracranial pressure and cerebral perfusion pressure were studied by implementing a reliable system to automatically deliver alerts to clinical users’ alphanumeric pagers, and to capture associated documentation about patient state and therapy when the alerts occurred. During a 6-month test period in the trauma ICU at Vanderbilt University Medical Center, 530 alerts were detected in 2280 hours of data spanning 14 patients. Clinical users electronically documented 81% of these alerts as they occurred. Retrospectively classifying documentation based on therapeutic actions taken, or reasons why actions were not taken, provided useful information about ways to potentially improve event definitions and enhance system utility.
Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in Drosophila
Dus, Monica; Sih-Yu Lai, Jason; Gunapala, Keith M.; Min, Soohong; Tayler, Timothy D.; Hergarden, Anne C.; Geraud, Eliot; Joseph, Christina M.; Suh, Greg S. B.
2015-01-01
Summary Animals can detect and consume nutritive sugars without the influence of taste. However, the identity of the taste-independent nutrient sensor and the mechanism by which animals respond to the nutritional value of sugar are unclear. Here, we report that six neurosecretory cells in the Drosophila brain that produce Diuretic hormone 44 (Dh44), a homologue of the mammalian corticotropin-releasing hormone (CRH), were specifically activated by nutritive sugars. Flies in which the activity of these neurons or the expression of Dh44 was disrupted failed to select nutritive sugars. Manipulation of the function of Dh44 receptors had a similar effect. Notably, artificial activation of Dh44 receptor-1 neurons resulted in proboscis extensions, and frequent episodes of excretion. Conversely, reduced Dh44 activity led to decreased excretion. Together, these actions facilitate ingestion and digestion of nutritive foods. We propose that the Dh44 system directs the detection and consumption of nutritive sugars through a positive feedback loop. PMID:26074004
Regge spectra of excited mesons, harmonic confinement, and QCD vacuum structure
NASA Astrophysics Data System (ADS)
Nedelko, Sergei N.; Voronin, Vladimir E.
2016-05-01
An approach to QCD vacuum as a medium describable in terms of a statistical ensemble of almost everywhere homogeneous Abelian (anti-)self-dual gluon fields is briefly reviewed. These fields play the role of the confining medium for color charged fields as well as underline the mechanism of realization of chiral S UL(Nf)×S UR(Nf) and UA(1 ) symmetries. Hadronization formalism based on this ensemble leads to manifestly defined quantum effective meson action. Strong, electromagnetic, and weak interactions of mesons are represented in the action in terms of nonlocal n -point interaction vertices given by the quark-gluon loops averaged over the background ensemble. New systematic results for the mass spectrum and decay constants of radially excited light, heavy-light mesons, and heavy quarkonia are presented. The interrelation between the present approach, models based on ideas of soft-wall anti-de Sitter/QCD, light-front holographic QCD, and the picture of harmonic confinement is outlined.
Some properties of purified Escherichia coli heat-stable enterotoxin II.
Hitotsubashi, S; Fujii, Y; Yamanaka, H; Okamoto, K
1992-01-01
We examined the biological properties of purified Escherichia coli heat-stable enterotoxin II (STII) using mouse intestinal loop assays and compared these properties with those of heat-stable enterotoxin I (STI) and cholera toxin (CT). The action of STII over time differed from those of STI and CT. STII did not alter cyclic GMP or cyclic AMP levels in intestinal mucosal cells. Our results supported the idea that the mechanism of action of STII in inducing fluid secretion is different from the mechanisms of action of STI and CT. This hypothesis was further supported by the fact that an anti-STII neutralizing serum did not neutralize the activities of STI and CT. Subsequently, we examined the involvement of prostaglandins in the action of STII. The level of prostaglandin E2 in the fluid accumulated as a result of the action of STII increased, and the prostaglandin synthesis inhibitors aspirin and indomethacin significantly reduced the response to STII. These results implicate prostaglandin E2 in the mechanism of action of STII. Images PMID:1398961
Black holes in loop quantum gravity.
Perez, Alejandro
2017-12-01
This is a review of results on black hole physics in the context of loop quantum gravity. The key feature underlying these results is the discreteness of geometric quantities at the Planck scale predicted by this approach to quantum gravity. Quantum discreteness follows directly from the canonical quantization prescription when applied to the action of general relativity that is suitable for the coupling of gravity with gauge fields, and especially with fermions. Planckian discreteness and causal considerations provide the basic structure for the understanding of the thermal properties of black holes close to equilibrium. Discreteness also provides a fresh new look at more (at the moment) speculative issues, such as those concerning the fate of information in black hole evaporation. The hypothesis of discreteness leads, also, to interesting phenomenology with possible observational consequences. The theory of loop quantum gravity is a developing program; this review reports its achievements and open questions in a pedagogical manner, with an emphasis on quantum aspects of black hole physics.
Functional renormalization group approach to the Yang-Lee edge singularity
An, X.; Mesterházy, D.; Stephanov, M. A.
2016-07-08
Here, we determine the scaling properties of the Yang-Lee edge singularity as described by a one-component scalar field theory with imaginary cubic coupling, using the nonperturbative functional renormalization group in 3 ≤ d ≤ 6 Euclidean dimensions. We find very good agreement with high-temperature series data in d = 3 dimensions and compare our results to recent estimates of critical exponents obtained with the four-loop ϵ = 6 - d expansion and the conformal bootstrap. The relevance of operator insertions at the corresponding fixed point of the RG β functions is discussed and we estimate the error associated with O(∂more » 4) truncations of the scale-dependent effective action.« less
Functional renormalization group approach to the Yang-Lee edge singularity
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, X.; Mesterházy, D.; Stephanov, M. A.
Here, we determine the scaling properties of the Yang-Lee edge singularity as described by a one-component scalar field theory with imaginary cubic coupling, using the nonperturbative functional renormalization group in 3 ≤ d ≤ 6 Euclidean dimensions. We find very good agreement with high-temperature series data in d = 3 dimensions and compare our results to recent estimates of critical exponents obtained with the four-loop ϵ = 6 - d expansion and the conformal bootstrap. The relevance of operator insertions at the corresponding fixed point of the RG β functions is discussed and we estimate the error associated with O(∂more » 4) truncations of the scale-dependent effective action.« less
Using Systems Thinking to train future leaders in global health.
Paxton, Anne; Frost, Laura J
2017-07-09
Systems Thinking provides a useful set of concepts and tools that can be used to train students to be effective and innovative global health leaders in an ever-changing and often chaotic world. This paper describes an experiential, multi-disciplinary curriculum that uses Systems Thinking to frame and analyse global health policies and practices. The curriculum uses case studies and hands-on activities to deepen students' understanding of the following concepts: complex adaptive systems, dynamic complexity, inter-relationships, feedback loops, policy resistance, mental models, boundary critique, leverage points, and multi-disciplinary, multi-sectoral, and multi-stakeholder thinking and action. A sample of Systems Thinking tools for analysing global health policies and practices are also introduced.
Higgs boson mass in the standard model at two-loop order and beyond
Martin, Stephen P.; Robertson, David G.
2014-10-01
We calculate the mass of the Higgs boson in the standard model in terms of the underlying Lagrangian parameters at complete 2-loop order with leading 3-loop corrections. A computer program implementing the results is provided. The program also computes and minimizes the standard model effective potential in Landau gauge at 2-loop order with leading 3-loop corrections.
NASA Technical Reports Server (NTRS)
Collins, J. J.; De Luca, C. J.; Pavlik, A. E.; Roy, S. H.; Emley, M. S.; Young, L. R. (Principal Investigator)
1995-01-01
Stabilogram-diffusion analysis was used to examine how prolonged periods in microgravity affect the open-loop and closed-loop postural control mechanisms. It was hypothesized that following spaceflight: (1) the effective stochastic activity of the open-loop postural control schemes in astronauts is increased; (2) the effective stochastic activity and uncorrelated behavior, respectively, of the closed-loop postural control mechanisms in astronauts are increased; and (3) astronauts utilized open-loop postural controls schemes for shorter time intervals and smaller displacements. Four crew members and two alternates from the 14-day Spacelab Life Sciences 2 Mission were included in the study. Each subject was tested under eyes-open, quiet-standing conditions on multiple preflight and postflight days. The subjects' center-of-pressure trajectories were measured with a force platform and analyzed according to stabilogram-diffusion analysis. It was found that the effective stochastic activity of the open-loop postural control schemes in three of the four crew members was increased following spaceflight. This result is interpreted as an indication that there may be in-flight adaptations to higher-level descending postural control pathways, e.g., a postflight increase in the tonic activation of postural muscles. This change may also be the consequence of a compensatory (e.g., "stiffening") postural control strategy that is adopted by astronauts to account for general feeling of postflight unsteadiness. The crew members, as a group, did not exhibit any consistent preflight/postflight differences in the steady-state behavior of their closed-loop postural control mechanisms or in the functional interaction of their open-loop and closed-loop postural control mechanisms. These results are interpreted as indications that although there may be in-flight adaptations to the vestibular system and/or proprioceptive system, input from the visual system can compensate for such changes during undisturbed stance.
Torborg, Christine L; Nakashiba, Toshiaki; Tonegawa, Susumu; McBain, Chris J
2010-11-17
In somatosensory cortex, the relative balance of excitation and inhibition determines how effectively feedforward inhibition enforces the temporal fidelity of action potentials. Within the CA3 region of the hippocampus, glutamatergic mossy fiber (MF) synapses onto CA3 pyramidal cells (PCs) provide strong monosynaptic excitation that exhibit prominent facilitation during repetitive activity. We demonstrate in the juvenile CA3 that MF-driven polysynaptic IPSCs facilitate to maintain a fixed EPSC-IPSC ratio during short-term plasticity. In contrast, in young adult mice this MF-driven polysynaptic inhibitory input can facilitate or depress in response to short trains of activity. Transgenic mice lacking the feedback inhibitory loop continue to exhibit both facilitating and depressing polysynaptic IPSCs, indicating that this robust inhibition is not caused by the secondary engagement of feedback inhibition. Surprisingly, eliminating MF-driven inhibition onto CA3 pyramidal cells by blockade of GABA(A) receptors did not lead to a loss of temporal precision of the first action potential observed after a stimulus but triggered in many cases a long excitatory plateau potential capable of triggering repetitive action potential firing. These observations indicate that, unlike other regions of the brain, the temporal precision of single MF-driven action potentials is dictated primarily by the kinetics of MF EPSPs, not feedforward inhibition. Instead, feedforward inhibition provides a robust regulation of CA3 PC excitability across development to prevent excessive depolarization by the monosynaptic EPSP and multiple action potential firings.
NASA Technical Reports Server (NTRS)
Zimetbaum, P. J.; Kim, K. Y.; Josephson, M. E.; Goldberger, A. L.; Cohen, D. J.
1998-01-01
BACKGROUND: Continuous-loop event recorders are widely used for the evaluation of palpitations, but the optimal duration of monitoring is unknown. OBJECTIVE: To determine the yield, timing, and incremental cost-effectiveness of each week of event monitoring for palpitations. DESIGN: Prospective cohort study. PATIENTS: 105 consecutive outpatients referred for the placement of a continuous-loop event recorder for the evaluation of palpitations. MEASUREMENTS: Diagnostic yield, incremental cost, and cost-effectiveness for each week of monitoring. RESULTS: The diagnostic yield of continuous-loop event recorders was 1.04 diagnoses per patient in week 1, 0.15 diagnoses per patient in week 2, and 0.01 diagnoses per patient in week 3 and beyond. Over time, the cost-effectiveness ratio increased from $98 per new diagnosis in week 1 to $576 per new diagnosis in week 2 and $5832 per new diagnosis in week 3. CONCLUSIONS: In patients referred for evaluation of palpitations, the diagnostic yield of continuous-loop event recording decreases rapidly after 2 weeks of monitoring. A 2-week monitoring period is reasonably cost-effective for most patients and should be the standard period for continuous-loop event recording for the evaluation of palpitations.
1992-12-27
quantities, but they are not continuously dependent on these quantities. This pure open-loop programmed-control-like behaviour is called precognitive . Like...and largely accomplished by the precognitive action and then may be completed with compeisatory eor-reducuon operations. 304. A quasilinear or
Mechanical-thermal noise in drive-mode of a silicon micro-gyroscope.
Yang, Bo; Wang, Shourong; Li, Hongsheng; Zhou, Bailing
2009-01-01
A new closed-loop drive scheme which decouples the phase and the gain of the closed-loop driving system was designed in a Silicon Micro-Gyroscope (SMG). We deduce the system model of closed-loop driving and use stochastic averaging to obtain an approximate "slow" system that clarifies the effect of thermal noise. The effects of mechanical-thermal noise on the driving performance of the SMG, including the noise spectral density of the driving amplitude and frequency, are derived. By calculating and comparing the noise amplitude due to thermal noise both in the opened-loop driving and in the closed-loop driving, we find that the closed-loop driving does not reduce the RMS noise amplitude. We observe that the RMS noise frequency can be reduced by increasing the quality factor and the drive amplitude in the closed-loop driving system. The experiment and simulation validate the feasibility of closed-loop driving and confirm the validity of the averaged equation and its stablility criterion. The experiment and simulation results indicate the electrical noise of closed-loop driving circuitry is bigger than the mechanical-thermal noise and as the driving mass decreases, the mechanical-thermal noise may get bigger than the electrical noise of the closed-loop driving circuitry.
Posner, Jonathan; Marsh, Rachel; Maia, Tiago V; Peterson, Bradley S; Gruber, Allison; Simpson, H Blair
2014-06-01
Cortico-striato-thalamo-cortical (CSTC) loops project from the cortex to the striatum, then from the striatum to the thalamus via the globus pallidus, and finally from the thalamus back to the cortex again. These loops have been implicated in Obsessive-Compulsive Disorder (OCD) with particular focus on the limbic CSTC loop, which encompasses the orbitofrontal and anterior cingulate cortices, as well as the ventral striatum. Resting state functional-connectivity MRI (rs-fcMRI) studies, which examine temporal correlations in neural activity across brain regions at rest, have examined CSTC loop connectivity in patients with OCD and suggest hyperconnectivity within these loops in medicated adults with OCD. We used rs-fcMRI to examine functional connectivity within CSTC loops in unmedicated adults with OCD (n = 23) versus healthy controls (HCs) (n = 20). Contrary to prior rs-fcMRI studies in OCD patients on medications that report hyperconnectivity in the limbic CSTC loop, we found that compared with HCs, unmedicated OCD participants had reduced connectivity within the limbic CSTC loop. Exploratory analyses revealed that reduced connectivity within the limbic CSTC loop correlated with OCD symptom severity in the OCD group. Our finding of limbic loop hypoconnectivity in unmedicted OCD patients highlights the potential confounding effects of antidepressants on connectivity measures and the value of future examinations of the effects of pharmacological and/or behavioral treatments on limbic CSTC loop connectivity. Copyright © 2013 Wiley Periodicals, Inc.
Kimura, Tohru; Allen, Patrick B.; Nairn, Angus C.
2007-01-01
The activity and trafficking of the Na+,K+-ATPase are regulated by several hormones, including dopamine, vasopressin, and adrenergic hormones through the action of G-protein–coupled receptors (GPCRs). Arrestins, GPCR kinases (GRKs), 14-3-3 proteins, and spinophilin interact with GPCRs and modulate the duration and magnitude of receptor signaling. We have found that arrestin 2 and 3, GRK 2 and 3, 14-3-3 ε, and spinophilin directly associate with the Na+,K+-ATPase and that the associations with arrestins, GRKs, or 14-3-3 ε are blocked in the presence of spinophilin. In COS cells that overexpressed arrestin, the Na+,K+-ATPase was redistributed to intracellular compartments. This effect was not seen in mock-transfected cells or in cells expressing spinophilin. Furthermore, expression of spinophilin appeared to slow, whereas overexpression of β-arrestins accelerated internalization of the Na+,K+-ATPase endocytosis. We also find that GRKs phosphorylate the Na+,K+-ATPase in vitro on its large cytoplasmic loop. Taken together, it appears that association with arrestins, GRKs, 14-3-3 ε, and spinophilin may be important modulators of Na+,K+-ATPase trafficking. PMID:17804821
Towards autonomous neuroprosthetic control using Hebbian reinforcement learning.
Mahmoudi, Babak; Pohlmeyer, Eric A; Prins, Noeline W; Geng, Shijia; Sanchez, Justin C
2013-12-01
Our goal was to design an adaptive neuroprosthetic controller that could learn the mapping from neural states to prosthetic actions and automatically adjust adaptation using only a binary evaluative feedback as a measure of desirability/undesirability of performance. Hebbian reinforcement learning (HRL) in a connectionist network was used for the design of the adaptive controller. The method combines the efficiency of supervised learning with the generality of reinforcement learning. The convergence properties of this approach were studied using both closed-loop control simulations and open-loop simulations that used primate neural data from robot-assisted reaching tasks. The HRL controller was able to perform classification and regression tasks using its episodic and sequential learning modes, respectively. In our experiments, the HRL controller quickly achieved convergence to an effective control policy, followed by robust performance. The controller also automatically stopped adapting the parameters after converging to a satisfactory control policy. Additionally, when the input neural vector was reorganized, the controller resumed adaptation to maintain performance. By estimating an evaluative feedback directly from the user, the HRL control algorithm may provide an efficient method for autonomous adaptation of neuroprosthetic systems. This method may enable the user to teach the controller the desired behavior using only a simple feedback signal.
Borthwick, Karen; Jackson, Vicky N; Price, Nigel T; Zammit, Victor A
2006-11-03
Carnitine palmitoyltransferase (CPT) 1A adopts a polytopic conformation within the mitochondrial outer membrane, having both the N- and C-terminal segments on the cytosolic aspect of the membrane and a loop region connecting the two transmembrane (TM) segments protruding into the inter membrane space. In this study we demonstrate that the loop exerts major effects on the sensitivity of the enzyme to its inhibitor, malonyl-CoA. Insertion of a 16-residue spacer between the C-terminal part of the loop sequence (i.e. between residues 100 and 101) and TM2 (which is predicted to start at residue 102) increased the sensitivity to malonyl-CoA inhibition of the resultant mutant protein by more than 10-fold. By contrast, the same insertion made between TM1 and the loop had no effects on the kinetic properties of the enzyme, indicating that effects on the catalytic C-terminal segment were specifically induced by loop-TM2 interactions. Enhanced sensitivity was also observed in all mutants in which the native TM2-loop pairing was disrupted either by making chimeras in which the loops and TM2 segments of CPT 1A and CPT 1B were exchanged or by deleting successive 9-residue segments from the loop sequence. The data suggest that the sequence spanning the loop-TM2 boundary determines the disposition of this TM in the membrane so as to alter the conformation of the C-terminal segment and thus affect its interaction with malonyl-CoA.
Bumetanide, a new loop diuretic.
Carrière, S; Dandavino, R
1976-10-01
The effect of bumetanide on renal function has been compared with that of furosemide and a placebo in a double-blind study of 9 healthy young men. The sequence for oral administration of the drug was subjected to a random assignation based upon the Latin-square methodology under three different conditions. (1) Normal hydration: The administration of bumetanide (2 mg) produced within the next 4 hr a diuresis comparable to that induced by 80 mg of furosemide. Urinary excretion of sodium, potassium, chloride, calcium, and uric acid also followed comparable patterns. Phosphaturia occurred only under bumetanide. The effect of bumetanide seemed longer lasting. (2) Water loading: The effects of bumetanide and furosemide were comparable with the exception of the phosphaturic effect induced by bumetanide. The action of both diuretics on the diluting segment of the nephron was well demonstrated by the marked depression of CH2O. (3) Water deprivation: The effects of the two diuretics were comparable, including depression tCH20. In none of these conditions did the placebo produce any significant effect.
Fujimoto, Takeshi; Nakano, Shu-ichi; Sugimoto, Naoki; Miyoshi, Daisuke
2013-01-31
We systematically investigated the effects of loop length on the conformation, thermodynamic stability, and hydration of DNA G-quadruplexes under dilute and molecular crowding conditions in the presence of Na(+). Structural analysis showed that molecular crowding induced conformational switches of oligonucleotides with the longer guanine stretch and the shorter thymine loop. Thermodynamic parameters further demonstrated that the thermodynamic stability of G-quadruplexes increased by increasing the loop length from two to four, whereas it decreased by increasing the loop length from four to six. Interestingly, we found by osmotic pressure analysis that the number of water molecules released from the G-quadruplex decreased with increasing thermodynamic stability. We assumed that base-stacking interactions within the loops not only stabilized the whole G-quadruplex structure but also created hydration sites by accumulating nucleotide functional groups. The molecular crowding effects on the stability of G-quadruplexes composed of abasic sites, which reduce the stacking interactions at the loops, further demonstrated that G-quadruplexes with fewer stacking interactions within the loops released a larger number of water molecules upon folding. These results showed that the stacking interactions within the loops determined the thermodynamic stability and hydration of the whole G-quadruplex.
3D MHD Models of Active Region Loops
NASA Technical Reports Server (NTRS)
Ofman, Leon
2004-01-01
Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.
The effect of a prudent adaptive behaviour on disease transmission
NASA Astrophysics Data System (ADS)
Scarpino, Samuel V.; Allard, Antoine; Hébert-Dufresne, Laurent
2016-11-01
The spread of disease can be slowed by certain aspects of real-world social networks, such as clustering and community structure, and of human behaviour, including social distancing and increased hygiene, many of which have already been studied. Here, we consider a model in which individuals with essential societal roles--be they teachers, first responders or health-care workers--fall ill, and are replaced with healthy individuals. We refer to this process as relational exchange, and incorporate it into a dynamic network model to demonstrate that replacing individuals can accelerate disease transmission. We find that the effects of this process are trivial in the context of a standard mass-action model, but dramatic when considering network structure, featuring accelerating spread, discontinuous transitions and hysteresis loops. This result highlights the inability of mass-action models to account for many behavioural processes. Using empirical data, we find that this mechanism parsimoniously explains observed patterns across 17 influenza outbreaks in the USA at a national level, 25 years of influenza data at the state level, and 19 years of dengue virus data from Puerto Rico. We anticipate that our findings will advance the emerging field of disease forecasting and better inform public health decision making during outbreaks.
Control systems for platform landings cushioned by air bags
NASA Astrophysics Data System (ADS)
Ross, Edward W.
1987-07-01
This report presents an exploratory mathematical study of control systems for airdrop platform landings cushioned by airbags. The basic theory of airbags is reviewed and solutions to special cases are noted. A computer program is presented, which calculates the time-dependence of the principal variables during a landing under the action of various control systems. Two existing control systems of open-loop type are compared with a conceptual feedback (closed-loop) system for a fairly typical set of landing conditions. The feedback controller is shown to have performance much superior to the other systems. The feedback system undergoes an interesting oscillation not present in the other systems, the source of which is investigated. Recommendations for future work are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krein, Gastao; Leme, Rafael R.; Woitek, Marcio
Traditional Monte Carlo simulations of QCD in the presence of a baryon chemical potential are plagued by the complex phase problem and new numerical approaches are necessary for studying the phase diagram of the theory. In this work we consider a Z{sub 3} Polyakov loop model for the deconfining phase transition in QCD and discuss how a flux representation of the model in terms of dimer and monomer variable solves the complex action problem. We present results of numerical simulations using a worm algorithm for the specific heat and two-point correlation function of Polyakov loops. Evidences of a first ordermore » deconfinement phase transition are discussed.« less
Higgs boson self-coupling from two-loop analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alhendi, H. A.; National Center for Mathematics and Physics, KACST P. O. Box 6086, Riyadh 11442; Barakat, T.
2010-09-01
The scale invariant of the effective potential of the standard model at two loop is used as a boundary condition under the assumption that the two-loop effective potential approximates the full effective potential. This condition leads with the help of the renormalization-group functions of the model at two loop to an algebraic equation of the scalar self-coupling with coefficients that depend on the gauge and the top quark couplings. It admits only two real positive solutions. One of them, in the absence of the gauge and top quark couplings, corresponds to the nonperturbative ultraviolet fixed point of the scalar renormalization-groupmore » function and the other corresponds to the perturbative infrared fixed point. The dependence of the scalar coupling on the top quark and the strong couplings at two-loop radiative corrections is analyzed.« less
Effect of combined treatment with diuretics and gabapentin on convulsive threshold in mice.
Łukawski, Krzysztof; Swiderska, Grajyna; Czuczwar, Stanisław J
2013-01-01
Research data show that diuretics can have anticonvulsant properties. This study examined effects of ethacrynic acid, a loop diuretic, and hydrochlorothiazide, a thiazide-type diuretic, on the anticonvulsant activity of gabapentin, a newer antiepileptic drug, in the maximal electroshock seizure threshold test in mice. Diuretics were administered intraperitoneally (ip.) both acutely (single dose) and chronically (once daily for seven days). Electroconvulsions were produced by an alternating current (50 Hz, 500 V, 0.2 s stimulus duration) delivered via ear-clip electrodes by a generator. Additionally, the influence of combined treatment with the diuretics and gabapentin on motor performance in the chimney test has been assessed. In the current study, ethacrynic acid at the chronic dose of 12.5 mg/kg and the single dose of 100 mg/kg did not affect the anticonvulsant activity of gabapentin. Similarly, hydrochlorothiazide (100 mg/kg), both in acute and chronic experiments, had no effect on the gabapentin action. On the other hand, in the chimney test, the combined treatment with ethacrynic acid (100 mg/kg) and gabapentin (50 mg/kg) significantly impaired motor performance in mice. Based on the current preclinical findings, it can be suggested that the diuretics should not affect the anticonvulsant action of gabapentin in epileptic patients. However, the combination of ethacrynic acid with gabapentin may cause neurotoxicity.
Ting, See-Yeun; Schilke, Brenda A; Hayashi, Masaya; Craig, Elizabeth A
2014-10-10
Translocation of proteins from the cytosol across the mitochondrial inner membrane is driven by action of the matrix-localized multi-subunit import motor, which is associated with the TIM23 translocon. The architecture of the import apparatus is not well understood. Here, we report results of site-specific in vivo photocross-linking along with genetic and coimmunoprecipitation analyses dissecting interactions between import motor subunits and the translocon. The translocon is composed of the two integral membrane proteins Tim23 and Tim17, each containing four membrane-spanning segments. We found that Tim23 having a photoactivatable cross-linker in the matrix exposed loop between transmembrane domains 1 and 2 (loop 1) cross-linked to Tim44. Alterations in this loop destabilized interaction of Tim44 with the translocon. Analogously, Tim17 having a photoactivatable cross-linker in the matrix exposed loop between transmembrane segments 1 and 2 (loop 1) cross-linked to Pam17. Alterations in this loop caused destabilization of the interaction of Pam17 with the translocon. Substitution of individual photoactivatable residues in Tim44 and Pam17 in regions we previously identified as important for translocon association resulted in cross-linking to Tim23 and Tim17, respectively. Our results are consistent with a model in which motor association is achieved via interaction of Tim23 with Tim44, which serves as a scaffold for association of other motor components, and of Tim17 with Pam17. As both Tim44 and Pam17 have been implicated as regulatory subunits of the motor, this positioning is conducive for responding to conformational changes in the translocon upon a translocating polypeptide entering the channel. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Technical Reports Server (NTRS)
Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig
2017-01-01
This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fröb, Markus B.; Verdaguer, Enric, E-mail: mfroeb@itp.uni-leipzig.de, E-mail: enric.verdaguer@ub.edu
We derive the leading quantum corrections to the gravitational potentials in a de Sitter background, due to the vacuum polarization from loops of conformal fields. Our results are valid for arbitrary conformal theories, even strongly interacting ones, and are expressed using the coefficients b and b' appearing in the trace anomaly. Apart from the de Sitter generalization of the known flat-space results, we find two additional contributions: one which depends on the finite coefficients of terms quadratic in the curvature appearing in the renormalized effective action, and one which grows logarithmically with physical distance. While the first contribution corresponds tomore » a rescaling of the effective mass, the second contribution leads to a faster fall-off of the Newton potential at large distances, and is potentially measurable.« less
Equation of state of the one- and three-dimensional Bose-Bose gases
NASA Astrophysics Data System (ADS)
Chiquillo, Emerson
2018-06-01
We calculate the equation of state of Bose-Bose gases in one and three dimensions in the framework of an effective quantum field theory. The beyond-mean-field approximation at zero temperature and the one-loop finite-temperature results are obtained performing functional integration on a local effective action. The ultraviolet divergent zero-point quantum fluctuations are removed by means of dimensional regularization. We derive the nonlinear Schrödinger equation to describe one- and three-dimensional Bose-Bose mixtures and solve it analytically in the one-dimensional scenario. This equation supports self-trapped brightlike solitonic droplets and self-trapped darklike solitons. At low temperature, we also find that the pressure and the number of particles of symmetric quantum droplets have a nontrivial dependence on the chemical potential and the difference between the intra- and the interspecies coupling constants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jie; Lancaster, Laura; Trakhanov, Sergei
2012-03-26
The class II release factor RF3 is a GTPase related to elongation factor EF-G, which catalyzes release of class I release factors RF1 and RF2 from the ribosome after termination of protein synthesis. The 3.3 {angstrom} crystal structure of the RF3 {center_dot} GDPNP {center_dot} ribosome complex provides a high-resolution description of interactions and structural rearrangements that occur when binding of this translational GTPase induces large-scale rotational movements in the ribosome. RF3 induces a 7{sup o} rotation of the body and 14{sup o} rotation of the head of the 30S ribosomal subunit, and itself undergoes inter- and intradomain conformational rearrangements. Wemore » suggest that ordering of critical elements of switch loop I and the P loop, which help to form the GTPase catalytic site, are caused by interactions between the G domain of RF3 and the sarcin-ricin loop of 23S rRNA. The rotational movements in the ribosome induced by RF3, and its distinctly different binding orientation to the sarcin-ricin loop of 23S rRNA, raise interesting implications for the mechanism of action of EF-G in translocation.« less
Movement Forms: A Graph-Dynamic Perspective
Saltzman, Elliot; Holt, Ken
2014-01-01
The focus of this paper is on characterizing the physical movement forms (e.g., walk, crawl, roll, etc.) that can be used to actualize abstract, functionally-specified behavioral goals (e.g., locomotion). Emphasis is placed on how such forms are distinguished from one another, in part, by the set of topological patterns of physical contact between agent and environment (i.e., the set of physical graphs associated with each form) and the transitions among these patterns displayed over the course of performance (i.e., the form’s physical graph dynamics). Crucial in this regard is the creation and dissolution of loops in these graphs, which can be related to the distinction between open and closed kinematic chains. Formal similarities are described within the theoretical framework of task-dynamics between physically-closed kinematic chains (physical loops) that are created during various movement forms and functionally-closed kinematic chains (functional loops) that are associated with task-space control of end-effectors; it is argued that both types of loop must be flexibly incorporated into the coordinative structures that govern skilled action. Final speculation is focused on the role of graphs and their dynamics, not only in processes of coordination and control for individual agents, but also in processes of inter-agent coordination and the coupling of agents with (non-sentient) environmental objects. PMID:24910507
Movement Forms: A Graph-Dynamic Perspective.
Saltzman, Elliot; Holt, Ken
2014-01-01
The focus of this paper is on characterizing the physical movement forms (e.g., walk, crawl, roll, etc.) that can be used to actualize abstract, functionally-specified behavioral goals (e.g., locomotion). Emphasis is placed on how such forms are distinguished from one another, in part, by the set of topological patterns of physical contact between agent and environment (i.e., the set of physical graphs associated with each form) and the transitions among these patterns displayed over the course of performance (i.e., the form's physical graph dynamics ). Crucial in this regard is the creation and dissolution of loops in these graphs, which can be related to the distinction between open and closed kinematic chains. Formal similarities are described within the theoretical framework of task-dynamics between physically-closed kinematic chains (physical loops) that are created during various movement forms and functionally-closed kinematic chains (functional loops) that are associated with task-space control of end-effectors; it is argued that both types of loop must be flexibly incorporated into the coordinative structures that govern skilled action. Final speculation is focused on the role of graphs and their dynamics, not only in processes of coordination and control for individual agents, but also in processes of inter-agent coordination and the coupling of agents with (non-sentient) environmental objects.
One-loop effects of a heavy Higgs boson: A functional approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittmaier, S.; Grosse-Knetter, C.
1995-11-01
We integrate out the Higgs boson in the electroweak standard model at one loop, assuming that it is very heavy. We construct a low-energy effective Lagrangian, which parametrizes the one-loop effect of the heavy Higgs boson at {O}({ital M}{sup O}{sup -}{sub {ital H}}). Instead of applying conventional diagrammatical techniques, we integrate out the Higgs boson directly in the path integral. {copyright} 1995 American Institute of Physics
A Dynamic Model of Sustainment Investment
2015-02-01
Sustainment System Dynamics Model 11 Figure 7: Core Structure of Sustainment Work 12 Figure 8: Bandwagon Effect Loop 13 Figure 9: Limits to Growth Loop 14...Dynamics Model sustainment capacity sustainment performance gap Bandwagon Effect R1 Limits to Growth B1 S Work Smarter B3 Work Bigger B2 desired...which is of concern primarily when using the model as a vehicle for research. Figure 8 depicts a reinforcing loop called the “ Bandwagon Effect
Nozaki, Takao; Sugiyama, Kenji; Yagi, Shunsuke; Yoshikawa, Etsuji; Kanno, Toshihiko; Asakawa, Tetsuya; Ito, Tae; Terada, Tatsuhiro; Namba, Hiroki; Ouchi, Yasuomi
2013-03-01
To elucidate the dynamic effects of deep brain stimulation (DBS) in the subthalamic nucleus (STN) during activity on the dopaminergic system, 12 PD patients who had STN-DBS operations at least 1 month prior, underwent two positron emission tomography scans during right-foot movement in DBS-off and DBS-on conditions. To quantify motor performance changes, the motion speed and mobility angle of the foot at the ankle were measured twice. Estimations of the binding potential of [(11)C]raclopride (BP(ND)) were based on the Logan plot method. Significant motor recovery was found in the DBS-on condition. The STN-DBS during exercise significantly reduced the [(11)C]raclopride BP(ND) in the caudate and the nucleus accumbens (NA), but not in the dorsal or ventral putamen. The magnitude of dopamine release in the NA correlated negatively with the magnitude of motor load, indicating that STN-DBS facilitated motor behavior more smoothly and at less expense to dopamine neurons in the region. The lack of dopamine release in the putamen and the significant dopamine release in the ventromedial striatum by STN-DBS during exercise indicated dopaminergic activation occurring in the motivational circuit during action, suggesting a compensatory functional activation of the motor loop from the nonmotor to the motor loop system.
Kantor, Harvey S.; Tao, Pearl; Wisdom, Charlene
1974-01-01
Heat-labile enterotoxin preparations obtained from two enteropathogenic strains of Escherichia coli of porcine and human origin were shown to stimulate adenylate cyclase activity of human embryonic intestinal epithelial cells in culture. Comparable results were also obtained when cholera toxin was used. The degree of enzyme stimulation was proportional to the concentration of enterotoxin. Similar preparations from two strains of non-enterotoxigenic E. coli had no effect on adenylate cyclase activity. Cells exposed to enterotoxin could be washed after 1 min of contact time without altering the subsequent course of maximum adenylate cyclase activity, which was maintained for at least 18 h at 37 C. During long periods (18 h) of tissue culture incubation, the determination of adenylate cyclase activity was 200- to 300-fold more sensitive than quantitating fluid accumulation in the adult rabbit ileal loop model. Decreasing the incubation time appreciably reduced the sensitivity of the epithelial cells to enterotoxin. E. coli enterotoxin is an effective activator of nonintestinal adenylate cyclase systems. Treatment of KB and HEp-2 cell lines with enterotoxin also resulted in significant enzyme stimulation. The intestinal epithelial cell tissue culture model provides a sensitive homogenous biological system for studying the response of intestinal adenylate cyclase to enterotoxin while eliminating the numerous cellular and tissue components present in the ligated ileal loop model. PMID:4364505
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Ning; Shen, Tielong; Kurtz, Richard
The properties of nano-scale interstitial dislocation loops under the coupling effect of stress and temperature are studied using atomistic simulation methods and experiments. The decomposition of a loop by the emission of smaller loops is identified as one of the major mechanisms to release the localized stress induced by the coupling effect, which is validated by the TEM observations. The classical conservation law of Burgers vector cannot be applied during such decomposition process. The dislocation network is formed from the decomposed loops, which may initiate the irradiation creep much earlier than expected through the mechanism of climb-controlled glide of dislocations.
Takata, Miki; Fukushima, Kazuyo; Kino-Kimata, Noriko; Nagao, Norio; Niwa, Chiaki; Toda, Tatsuki
2012-08-15
In Japan, a revised Food Recycling Law went into effect in 2007 to promote a "recycling loop" that requires food industries to purchase farm products that are grown using food waste-derived compost/animal feed. To realize and expand food recycling, it is necessary to evaluate how the recycling facilities work in the recycling loop. The purpose of this study is to assess the environmental and economic efficiency of the food recycling facilities that are involved in the recycling loop, which are also known as looped facilities. The global warming potential and running cost of five looped facilities were evaluated by LCA (life cycle assessment) and LCC (life cycle cost) approaches: machine integrated compost, windrow compost, liquid feed, dry feed, and bio-gasification. The LCA results showed low total GHG (greenhouse gas) emissions of -126 and -49 kg-CO(2)/t-waste, respectively, for dry feed and bio-gasification facilities, due to a high substitution effect. The LCC study showed a low running cost for composting facilities of -15,648 and -18,955 yen/t-waste, respectively, due to high revenue from the food waste collection. It was found that the mandatory reporting of food waste emitters to the government increased collection fees; however, the collection fee in animal feed facilities was relatively low because food waste was collected at a low price or nutritious food waste was purchased to produce quality feed. In the characterisation survey of various treatment methods, the composting facilities showed a relatively low environmental impact and a high economic efficiency. Animal feed facilities had a wide distribution of the total GHG emissions, depending on both the energy usage during the drying process and the substitution effect, which were related to the water content of the food waste and the number of recycled products. In comparison with incineration, the majority of the food recycling facilities showed low GHG emissions and economic effectiveness. This paper also reported on the effects of recycling loops by comparing looped and non-looped animal feed facilities, and confirmed that the looped facilities were economically effective, due to an increased amount of food waste collection. Copyright © 2012 Elsevier B.V. All rights reserved.
Girard, B; Tabareau, N; Pham, Q C; Berthoz, A; Slotine, J-J
2008-05-01
Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.
Burtscher, Laura; Hajdu, Dorottya; Muñoz, Alberto; Gáspári, Zoltán; Read, Nick D.; Batta, Gyula; Marx, Florentine
2017-01-01
The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF. PMID:28072824
Evaluating Mathematics Achievement of Middle School Students in a Looping Environment
ERIC Educational Resources Information Center
Franz, Dana Pomykal; Thompson, Nicole L.; Fuller, Bob; Hare, R. Dwight; Miller, Nicole C.; Walker, Jacob
2010-01-01
Looping, a school structure where students remain with one group of teachers for two or more school years, is used by middle schools to meet the diverse needs of young adolescents. However, little research exists on how looping effects the academic performance of students. This study was designed to determine if looping influenced middle school…
Kulkarni, Yogesh M.; Chambers, Emily; McGray, A. J. Robert; Ware, Jason S.; Bramson, Jonathan L.
2012-01-01
Interleukin-12 (IL12) enhances anti-tumor immunity when delivered to the tumor microenvironment. However, local immunoregulatory elements dampen the efficacy of IL12. The identity of these local mechanisms used by tumors to suppress immunosurveillance represents a key knowledge gap for improving tumor immunotherapy. From a systems perspective, local suppression of anti-tumor immunity is a closed-loop system - where system response is determined by an unknown combination of external inputs and local cellular cross-talk. Here, we recreated this closed-loop system in vitro and combined quantitative high content assays, in silico model-based inference, and a proteomic workflow to identify the biochemical cues responsible for immunosuppression. Following an induction period, the B16 melanoma cell model, a transplantable model for spontaneous malignant melanoma, inhibited the response of a T helper cell model to IL12. This paracrine effect was not explained by induction of apoptosis or creation of a cytokine sink, despite both mechanisms present within the co-culture assay. Tumor-derived Wnt-inducible signaling protein-1 (WISP-1) was identified to exert paracrine action on immune cells by inhibiting their response to IL12. Moreover, WISP-1 was expressed in vivo following intradermal challenge with B16F10 cells and was inferred to be expressed at the tumor periphery. Collectively, the data suggest that (1) biochemical cues associated with epithelial-to-mesenchymal transition can shape anti-tumor immunity through paracrine action and (2) remnants of the immunoselective pressure associated with evolution in cancer include both sculpting of tumor antigens and expression of proteins that proactively shape anti-tumor immunity. PMID:22777646
Chromatin loops as allosteric modulators of enhancer-promoter interactions.
Doyle, Boryana; Fudenberg, Geoffrey; Imakaev, Maxim; Mirny, Leonid A
2014-10-01
The classic model of eukaryotic gene expression requires direct spatial contact between a distal enhancer and a proximal promoter. Recent Chromosome Conformation Capture (3C) studies show that enhancers and promoters are embedded in a complex network of looping interactions. Here we use a polymer model of chromatin fiber to investigate whether, and to what extent, looping interactions between elements in the vicinity of an enhancer-promoter pair can influence their contact frequency. Our equilibrium polymer simulations show that a chromatin loop, formed by elements flanking either an enhancer or a promoter, suppresses enhancer-promoter interactions, working as an insulator. A loop formed by elements located in the region between an enhancer and a promoter, on the contrary, facilitates their interactions. We find that different mechanisms underlie insulation and facilitation; insulation occurs due to steric exclusion by the loop, and is a global effect, while facilitation occurs due to an effective shortening of the enhancer-promoter genomic distance, and is a local effect. Consistently, we find that these effects manifest quite differently for in silico 3C and microscopy. Our results show that looping interactions that do not directly involve an enhancer-promoter pair can nevertheless significantly modulate their interactions. This phenomenon is analogous to allosteric regulation in proteins, where a conformational change triggered by binding of a regulatory molecule to one site affects the state of another site.
2013-01-01
Bovine necrohemorrhagic enteritis is a major cause of mortality in veal calves. Clostridium perfringens is considered as the causative agent, but there has been controversy on the toxins responsible for the disease. Recently, it has been demonstrated that a variety of C. perfringens type A strains can induce necrohemorrhagic lesions in a calf intestinal loop assay. These results put forward alpha toxin and perfringolysin as potential causative toxins, since both are produced by all C. perfringens type A strains. The importance of perfringolysin in the pathogenesis of bovine necrohemorrhagic enteritis has not been studied before. Therefore, the objective of the current study was to evaluate the role of perfringolysin in the development of necrohemorrhagic enteritis lesions in calves and its synergism with alpha toxin. A perfringolysin-deficient mutant, an alpha toxin-deficient mutant and a perfringolysin alpha toxin double mutant were less able to induce necrosis in a calf intestinal loop assay as compared to the wild-type strain. Only complementation with both toxins could restore the activity to that of the wild-type. In addition, perfringolysin and alpha toxin had a synergistic cytotoxic effect on bovine endothelial cells. This endothelial cell damage potentially explains why capillary hemorrhages are an initial step in the development of bovine necrohemorrhagic enteritis. Taken together, our results show that perfringolysin acts synergistically with alpha toxin in the development of necrohemorrhagic enteritis in a calf intestinal loop model and we hypothesize that both toxins act by targeting the endothelial cells. PMID:23782465
Rocket Propellant Ducts (Cryogenic Fuel Lines): First Cut Approximations and Design Guidance
NASA Technical Reports Server (NTRS)
Brewer, William V.
1998-01-01
The design team has to set parameters before analysis can take place. Analysis is customarily a thorough and time consuming process which can take weeks or even months. Only when analysis is complete can the designer obtain feedback. If margins are negative, the process must be repeated to a greater or lesser degree until satisfactory results are achieved. Reduction of the number of iterations thru this loop would beneficially conserve time and resources. The task was to develop relatively simple, easy to use, guidelines and analytic tools that allow the designer to evaluate what effect various alternatives may have on performance as the design progresses. "Easy to use" is taken to mean closed form approximations and the use of graphic methods. "Simple" implies that 2-d and quasi 3-d approximations be exploited to whatever degree is useful before more resource intensive methods are applied. The objective is to avoid the grosser violation of performance margins at the outset. Initial efforts are focused on thermal expansion/contraction and rigid body kinematics as they relate to propellant duct displacements in the gimbal plane loop (GPL). The purpose of the loop is to place two flexible joints on the same two orthogonal intersecting axes as those of the rocket motor gimbals. This supposes the ducting will flex predictably with independent rotations corresponding to those of the motor gimbal actions. It can be shown that if GPL joint axes do not coincide with motor gimbal axes, displacement incompatibilities result in less predictable movement of the ducts.
Pion decay constant and the {rho}-meson mass at finite temperature in hidden local symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harada, M.; Shibata, A.
1997-06-01
We study the temperature dependence of the pion decay constant and {rho}-meson mass in the hidden local symmetry model at one loop. Using the standard imaginary time formalism, we include the thermal effect of the {rho} meson as well as that of the pion. We show that the pion gives a dominant contribution to the pion decay constant and the {rho}-meson contribution slightly decreases the critical temperature. The {rho}-meson pole mass increases as T{sup 4}/m{sub {rho}}{sup 2} at low temperature, dominated by the pion-loop effect. At high temperature, although the pion-loop effect decreases the {rho}-meson mass, the {rho}-loop contribution overcomesmore » the pion-loop contribution and the {rho}-meson mass increases with temperature. We also show that the conventional parameter a is stable as the temperature increases. {copyright} {ital 1997} {ital The American Physical Society}« less
NASA Astrophysics Data System (ADS)
Li, L. B.
2017-01-01
The effect of matrix multicracking on the stress-strain hysteresis loops of cross-ply C/SiC ceramic-matrix composites (CMCs) under cyclic loading/unloading was investigated. When matrix multicracking and fiber/matrix interface debonding occur in the 0° plies, fiber slipping relative to the matrix in the debonded region of interface is the mainly reason for occurrence of the loops. The interfacial slip lengths, i.e., the debonded lengths of interface are determined, with consideration of matrix multicracking in the 90° and 0° plies, by using the fracture mechanics approach. The effects of peak stress, fiber volume content, fiber/matrix interfacial shear stress, and number of cycles on the hysteresis loops are analyzed. The stress-strain hysteresis loops of cross-ply C/SiC composites corresponding to different peak stresses and numbers of cycles are predicted.
Competition and quality in health care markets: a differential-game approach.
Brekke, Kurt R; Cellini, Roberto; Siciliani, Luigi; Straume, Odd Rune
2010-07-01
We investigate the effect of competition on quality in health care markets with regulated prices taking a differential game approach, in which quality is a stock variable. Using a Hotelling framework, we derive the open-loop solution (health care providers set the optimal investment plan at the initial period) and the feedback closed-loop solution (providers move investments in response to the dynamics of the states). Under the closed-loop solution competition is more intense in the sense that providers observe quality in each period and base their investment on this information. If the marginal provision cost is constant, the open-loop and closed-loop solutions coincide, and the results are similar to the ones obtained by static models. If the marginal provision cost is increasing, investment and quality are lower in the closed-loop solution (when competition is more intense). In this case, static models tend to exaggerate the positive effect of competition on quality.
What Constitutes Terrorist Network Resiliency?
2011-05-31
organizations like al Qaeda. One of the main deficiencies with international law is with the Financial Action Task Force ( FATF ) which had been...2005). The FATF identified 40 recommendations to be implemented to counter money laundering activities. However, no formal binding convention or...treaty was created therefore consistent implementation of the FATF recommendations did not occur thus leaving loop holes in international law for
MYST: a comprehensive high-level AO control tool for GeMS
NASA Astrophysics Data System (ADS)
Rigaut, F.; Neichel, B.; Bec, M.; Garcia-Rissman, A.
2010-07-01
Myst is the Gemini MCAO System (GeMS) high level control GUI. It is written in yorick, python and C. In this paper, we review the software architecture of Myst and its primary purposes, which are many: Real-time display, high level diagnostics, calibrations, and executor/sequencer of high level actions (closing the loop, coordinating dithers, etc).
Toward mechanistic models of action-oriented and detached cognition.
Pezzulo, Giovanni
2016-01-01
To be successful, the research agenda for a novel control view of cognition should foresee more detailed, computationally specified process models of cognitive operations including higher cognition. These models should cover all domains of cognition, including those cognitive abilities that can be characterized as online interactive loops and detached forms of cognition that depend on internally generated neuronal processing.
Universality hypothesis breakdown at one-loop order
NASA Astrophysics Data System (ADS)
Carvalho, P. R. S.
2018-05-01
We probe the universality hypothesis by analytically computing the at least two-loop corrections to the critical exponents for q -deformed O (N ) self-interacting λ ϕ4 scalar field theories through six distinct and independent field-theoretic renormalization group methods and ɛ -expansion techniques. We show that the effect of q deformation on the one-loop corrections to the q -deformed critical exponents is null, so the universality hypothesis is broken down at this loop order. Such an effect emerges only at the two-loop and higher levels, and the validity of the universality hypothesis is restored. The q -deformed critical exponents obtained through the six methods are the same and, furthermore, reduce to their nondeformed values in the appropriated limit.
St-Pierre, François; Marshall, Jesse D; Yang, Ying; Gong, Yiyang; Schnitzer, Mark J; Lin, Michael Z
2015-01-01
Accurate optical reporting of electrical activity in genetically defined neuronal populations is a long-standing goal in neuroscience. Here we describe Accelerated Sensor of Action Potentials 1 (ASAP1), a novel voltage sensor design in which a circularly permuted green fluorescent protein is inserted within an extracellular loop of a voltage-sensing domain, rendering fluorescence responsive to membrane potential. ASAP1 demonstrates on- and off- kinetics of 2.1 and 2.0 ms, reliably detects single action potentials and subthreshold potential changes, and tracks trains of action potential waveforms up to 200 Hz in single trials. With a favorable combination of brightness, dynamic range, and speed, ASAP1 enables continuous monitoring of membrane potential in neurons at KHz frame rates using standard epifluorescence microscopy. PMID:24755780
Stoichiometry effect on the irradiation response in the microstructure of zirconium carbides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young Yang; Wei-Yang Lo; Clayton Dickerson
2014-11-01
Zone-refined ultra high pure ZrC with five C/Zr ratios ranging from 0.84 to 1.17 was irradiated using a 2 MeV proton beam at 1125 C. The stoichiometry effect on the irradiation response of ZrC microstructure was examined using transmission electron microscopy following the irradiation. The irradiated microstructures generally feature a high density of perfect dislocation loops particularly at away from the graphite precipitates, and the C/Zr ratio shows a notable effect on the size and density of dislocation loops. The dislocation loops are identified as interstitial type perfect loops, and it was indirectly proved that the dislocation loop core likelymore » consists of carbon atoms. Graphite precipitates that form with excess carbon in the super-stoichiometric ZrC are detrimental, and the dramatic increases in the size of and density of dislocation loops in the vicinity of graphite precipitates in ZrC phase were observed. Irradiationinduced faceted voids were only observed in ZrC0.95, which is attributed to the pre-existing dislocation lines as biased sinks for vacancies.« less
Dvorak, Melita M; De Joussineau, Cyrille; Carter, D Howard; Pisitkun, Trairak; Knepper, Mark A; Gamba, Gerardo; Kemp, Paul J; Riccardi, Daniela
2008-01-01
Thiazide diuretics are used, worldwide, as the first-choice drug for patients with uncomplicated hypertension. In addition to their anti-hypertensive actions, they increase bone mineral density and reduce the prevalence of fractures, indicating that thiazides may have a role in the management of postmenopausal osteoporosis. Traditionally, the bone-protective effects of thiazides have been attributed to an increase in renal calcium reabsorption, secondary to the inhibition of the sodium chloride cotransporter, NCC, expressed in the kidney distal tubule. Whether thiazides exert a direct osteoanabolic effect independently of their renal action is controversial. Here we demonstrate that freshly frozen sections of human and rat bone express NCC, principally in bone-forming cells, the osteoblasts. In primary and established culture models of osteoblasts, fetal rat calvarial (FRC) and human MG63 cells, NCC protein is virtually absent in proliferating cells while its expression is dramatically increased during differentiation. Thiazides directly stimulate the production of osteoblast markers, runt-related transcription factor 2 (runx2) and osteopontin, in the absence of a proliferative effect. Using overexpression/knockdown studies in FRC cells, we show that thiazides, but not loop diuretics, increase mineralized nodule formation acting on NCC. Overall, our study demonstrates that thiazides stimulate osteoblast differentiation and bone mineral formation independently of their renal actions. In addition to their use as part of a therapeutic treatment plan for elderly, hypertensive individuals, our discovery opens up the possibility that bone-specific drug targeting by thiazides may be developed for the prevention and treatment of osteoporosis in the patient population as a whole. PMID:17656470
On the nature of fast sausage waves in coronal loops
NASA Astrophysics Data System (ADS)
Bahari, Karam
2018-05-01
The effect of the parameters of coronal loops on the nature of fast sausage waves are investigated. To do this three models of the coronal loop considered, a simple loop model, a current-carrying loop model and a model with radially structured density called "Inner μ" profile. For all the models the Magnetohydrodynamic (MHD) equations solved analytically in the linear approximation and the restoring forces of oscillations obtained. The ratio of the magnetic tension force to the pressure gradient force obtained as a function of the distance from the axis of the loop. In the simple loop model for all values of the loop parameters the fast sausages wave have a mixed nature of Alfvénic and fast MHD waves, in the current-carrying loop model with thick annulus and low density contrast the fast sausage waves can be considered as purely Alfvénic wave in the core region of the loop, and in the "Inner μ" profile for each set of the parameters of the loop the wave can be considered as a purely Alfvénic wave in some regions of the loop.
Using Decision Structures for Policy Analysis in Software Product-line Evolution - A Case Study
NASA Astrophysics Data System (ADS)
Sarang, Nita; Sanglikar, Mukund A.
Project management decisions are the primary basis for project success (or failure). Mostly, such decisions are based on an intuitive understanding of the underlying software engineering and management process and have a likelihood of being misjudged. Our problem domain is product-line evolution. We model the dynamics of the process by incorporating feedback loops appropriate to two decision structures: staffing policy, and the forces of growth associated with long-term software evolution. The model is executable and supports project managers to assess the long-term effects of possible actions. Our work also corroborates results from earlier studies of E-type systems, in particular the FEAST project and the rules for software evolution, planning and management.
Liu, Teresa T.; Grubisha, Melanie J.; Frahm, Krystle A.; Wendell, Stacy G.; Liu, Jiayan; Ricke, William A.; Auchus, Richard J.; DeFranco, Donald B.
2016-01-01
Current pharmacotherapies for symptomatic benign prostatic hyperplasia (BPH), an androgen receptor-driven, inflammatory disorder affecting elderly men, include 5α-reductase (5AR) inhibitors (i.e. dutasteride and finasteride) to block the conversion of testosterone to the more potent androgen receptor ligand dihydrotestosterone. Because dihydrotestosterone is the precursor for estrogen receptor β (ERβ) ligands, 5AR inhibitors could potentially limit ERβ activation, which maintains prostate tissue homeostasis. We have uncovered signaling pathways in BPH-derived prostate epithelial cells (BPH-1) that are impacted by 5AR inhibition. The induction of apoptosis and repression of the cell adhesion protein E-cadherin by the 5AR inhibitor dutasteride requires both ERβ and TGFβ. Dutasteride also induces cyclooxygenase type 2 (COX-2), which functions in a negative feedback loop in TGFβ and ERβ signaling pathways as evidenced by the potentiation of apoptosis induced by dutasteride or finasteride upon pharmacological inhibition or shRNA-mediated ablation of COX-2. Concurrently, COX-2 positively impacts ERβ action through its effect on the expression of a number of steroidogenic enzymes in the ERβ ligand metabolic pathway. Therefore, effective combination pharmacotherapies, which have included non-steroidal anti-inflammatory drugs, must take into account biochemical pathways affected by 5AR inhibition and opposing effects of COX-2 on the tissue-protective action of ERβ. PMID:27226548
Dressing the post-Newtonian two-body problem and classical effective field theory
NASA Astrophysics Data System (ADS)
Kol, Barak; Smolkin, Michael
2009-12-01
We apply a dressed perturbation theory to better organize and economize the computation of high orders of the 2-body effective action of an inspiralling post-Newtonian (PN) gravitating binary. We use the effective field theory approach with the nonrelativistic field decomposition (NRG fields). For that purpose we develop quite generally the dressing theory of a nonlinear classical field theory coupled to pointlike sources. We introduce dressed charges and propagators, but unlike the quantum theory there are no dressed bulk vertices. The dressed quantities are found to obey recursive integral equations which succinctly encode parts of the diagrammatic expansion, and are the classical version of the Schwinger-Dyson equations. Actually, the classical equations are somewhat stronger since they involve only finitely many quantities, unlike the quantum theory. Classical diagrams are shown to factorize exactly when they contain nonlinear worldline vertices, and we classify all the possible topologies of irreducible diagrams for low loop numbers. We apply the dressing program to our post-Newtonian case of interest. The dressed charges consist of the dressed energy-momentum tensor after a nonrelativistic decomposition, and we compute all dressed charges (in the harmonic gauge) appearing up to 2PN in the 2-body effective action (and more). We determine the irreducible skeleton diagrams up to 3PN and we employ the dressed charges to compute several terms beyond 2PN.
NONLINEAR AND FIBER OPTICS: Propagation of femtosecond solitons in a fiber-optic loop
NASA Astrophysics Data System (ADS)
Zakhidov, É. A.; Mirtadzhiev, F. M.; Khaĭdarov, D. V.; Kuznetsov, A. V.; Okhotnikov, A. G.
1991-03-01
An investigation was made of the propagation of fundamental femtosecond soliton pulses in a fiber-optic loop, which is an element with promising applications in logic operations. It is shown that such a loop can filter off the nonsoliton component effectively. The conditions for high-contrast self-switching of fundamental solitons in a fiber-optic loop are identified.
ERIC Educational Resources Information Center
Williams-Wright, Vera
2013-01-01
The purpose of this research study was two-fold. The first purpose was to investigate the impact of looping on academic achievement of students in selected public schools in Mississippi. The students' results on the 2010 and 2011 Mississippi Curriculum Test, Second Edition (MCT2) were used to determine whether looping students score differently in…
The Projectile Inside the Loop
ERIC Educational Resources Information Center
Varieschi, Gabriele U.
2006-01-01
The loop-the-loop demonstration can be easily adapted to study the kinematics of projectile motion, when the moving body falls inside the apparatus. Video capturing software can be used to reveal peculiar geometrical effects of this simple but educational experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Atwani, O.; Esquivel, E.; Efe, M.
Displacement damage, through heavy ion irradiation was studied on two tungsten grades (coarse grained tungsten (CGW) and nanocrystalline and ultrafine grained tungsten (NCW)) using different displacement per atom rates and different irradiation temperatures (RT and 1050 K). Percentage of <111> and <100> type loops at the irradiation conditions was determined. Irradiation damage in the microstructure was quantified using average loop areas and densities (method A) and loop areal fraction in the grain matrices under 2-beam diffraction conditions (method B). Average values of <111> and <100> loops were calculated from method A. Loop coalescence was shown to occur for CGW atmore » 0.25 dpa. Using both methods of quantifying microstructural damage, no effect of dpa rate was observed and damage in CGW was shown to be the same at RT and 1050 K. Swelling from voids observed at 1050 K was quantified. The loop damage in NCW was compared to CGW at the same diffraction and imaging conditions. NCW was shown to possess enhanced irradiation resistance at RT regarding loop damage and higher swelling resistance at 1050 K compared to CGW. For irradiation at 1050 K, the NCW was shown to have a similar defect densities to the CGW which is attributed to higher surface effects in the CGW, vacancy loop growth to voids and a better sink efficiency in the CGW deduced from the vacancy distribution profiles from Kinetic Monte Carlo simulations. Loop density and swelling was shown to have similar values in grains sizes that range from 80-600 nm. No loop or void denuded zones occurred at any of the irradiation conditions. This work has a collection of experiments and conclusions that are of vital importance to materials and nuclear communities.« less
El-Atwani, O.; Esquivel, E.; Efe, M.; ...
2018-02-20
Displacement damage, through heavy ion irradiation was studied on two tungsten grades (coarse grained tungsten (CGW) and nanocrystalline and ultrafine grained tungsten (NCW)) using different displacement per atom rates and different irradiation temperatures (RT and 1050 K). Percentage of <111> and <100> type loops at the irradiation conditions was determined. Irradiation damage in the microstructure was quantified using average loop areas and densities (method A) and loop areal fraction in the grain matrices under 2-beam diffraction conditions (method B). Average values of <111> and <100> loops were calculated from method A. Loop coalescence was shown to occur for CGW atmore » 0.25 dpa. Using both methods of quantifying microstructural damage, no effect of dpa rate was observed and damage in CGW was shown to be the same at RT and 1050 K. Swelling from voids observed at 1050 K was quantified. The loop damage in NCW was compared to CGW at the same diffraction and imaging conditions. NCW was shown to possess enhanced irradiation resistance at RT regarding loop damage and higher swelling resistance at 1050 K compared to CGW. For irradiation at 1050 K, the NCW was shown to have a similar defect densities to the CGW which is attributed to higher surface effects in the CGW, vacancy loop growth to voids and a better sink efficiency in the CGW deduced from the vacancy distribution profiles from Kinetic Monte Carlo simulations. Loop density and swelling was shown to have similar values in grains sizes that range from 80-600 nm. No loop or void denuded zones occurred at any of the irradiation conditions. This work has a collection of experiments and conclusions that are of vital importance to materials and nuclear communities.« less
Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat.
Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart
2015-04-21
Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation.
Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat
Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart
2015-01-01
Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation. PMID:25897892
Comparison of cervical dysplasia treatment with leep-loop method and CO2 laser vaporization
NASA Astrophysics Data System (ADS)
Wozniak, Jakub; Rzymski, Pawel; Opala, Tomasz; Wilczak, Maciej; Sajdak, Stefan
2003-10-01
There are several methods of treating cervical dysplasia, including surgical and electric conisation, laservaporisation. The aim of our study was to evaluate leep-loop method and laservaporisation wtih CO2 laser. Material consisted of 49 women, 28 underwent leep-loop conisation and 21 lavervaporisation. The effectiveness of laser treatment was 90,4% and with leep-loop 96,4%, but the difference was not statistically significant. Mean time of wound healing and frequency of pain was shorter after laser treatment, but the differences were not statistically significant. Conclusions: Effect treatment with both methods is comparable.
Loop corrections to primordial non-Gaussianity
NASA Astrophysics Data System (ADS)
Boran, Sibel; Kahya, E. O.
2018-02-01
We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.
Hellenthal, Chris; Sotthewes, Kai; Siekman, Martin H; Kooij, E Stefan; Zandvliet, Harold J W
2015-01-01
We demonstrate the validity of using closed-loop z(V) conductance scanning tunneling spectroscopy (STS) measurements for the determination of the effective tunneling barrier by comparing them to more conventional open-loop I(z) measurements. Through the development of a numerical model, the individual contributions to the effective tunneling barrier present in these experiments, such as the work function and the presence of an image charge, are determined quantitatively. This opens up the possibility of determining tunneling barriers of both vacuum and molecular systems in an alternative and more detailed manner.
Nonequilibrium quantum field dynamics from the two-particle-irreducible effective action
NASA Astrophysics Data System (ADS)
Laurie, Nathan S.
The two-particle-irreducible effective action offers a powerful approach to the study of quantum field dynamics far from equilibrium. Recent and upcoming heavy ion collision experiments motivate the study of such nonequilibrium dynamics in an expanding space-time background. For the O(N) model I derive exact, causal evolution equations for the statistical and spectral functions in a longitudinally expanding system. It is followed by an investigation into how the expansion affects the prospect of the system reaching equilibrium. Results are obtained in 1+1 dimensions at next-to- leading order in loop- and 1/N-expansions of the 2PI effective action. I focus on the evolution of the statistical function from highly nonequilibrium initial conditions, presenting a detailed analysis of early, intermediate and late-time dynamics. It is found that dynamics at very early times is attracted by a nonthermal fixed point of the mean field equations, after which interactions attempt to drive the system to equilibrium. The competition between the interactions and the expansion is eventually won by the expansion, with so-called freeze-out emerging naturally in this description. In order to investigate the convergence of the 2PI-1/N expansion in the 0(N) model, I compare results obtained numerically in 1+1 dimensions at leading, next- to-leading and next-to-next-to-leading order in 1/N. Convergence with increasing N, and also with decreasing coupling are discussed. A comparison is also made in the classical statistical field theory limit, where exact numerical results are available. I focus on early-time dynamics and quasi-particle properties far from equilibrium and observe rapid effective convergence already for moderate values of 1/N or the coupling strength.
Presne, Claire; Monge, Matthieu; Mansour, Janette; Oprisiu, Roxana; Choukroun, Gabriel; Achard, Jean Michel; Fournier, Albert
2007-10-01
Diuretics are pharmacological agents that increase natriuresis through inhibition of tubular re-absorption of sodium. The mechanisms and site of this inhibition differ with each drug class, accounting for their additive effects on natriuresis increase and their hydroelectrolytic side effects. The response to a given diuretic dose depends on the diuretic concentration on the urine at its action site. This concentration may be decreased by pharmacokinetic factors such as encountered in renal insufficiency or in nephrotic syndrome. These resistance mechanisms of diuretics may be corrected by dose increase, previous diuretic fixation on albumin or warfarin administration. Once these mechanisms are opposed, the diuretic concentration for maximal efficacy is reached at is action site and the natriuresis obtained as the normal maximal plateau. This is not the case when an oedematous systemic disease with effective hypovolemia is present, like in heart failure or cirrhosis, or when chronic use of loop diuretics has induced a hypertrophy of the more distant part of the tubule. In theses cases, a pharmacodynamic resistance exists, resulting in a lower maximal natriuresis plateau in spite of adequate concentration of the diuretic at its action site, even in the absence of pharmacokinetic resistance factors. The main indications of diuretics are systemic oedematous disease and hypertension. In the oedematous diseases, diuretics indication is both straightforward and sufficient only if effective hypervolemia is present. The therapeutic approach is discussed according to the various clinical conditions and pathophysiological background. In uncomplicated hypertension, diuretics are the cornerstone of the therapy. The most suitable diuretic treatment for hypertension is an association of low doses thiazide (12.5-50 mg/day) with potassium sparing diuretics. Rare indications of diuretics are also reviewed.
Duroc, Yann; Kumar, Rajeev; Ranjha, Lepakshi; Adam, Céline; Guérois, Raphaël; Md Muntaz, Khan; Marsolier-Kergoat, Marie-Claude; Dingli, Florent; Laureau, Raphaëlle; Loew, Damarys; Llorente, Bertrand; Charbonnier, Jean-Baptiste; Cejka, Petr; Borde, Valérie
2017-01-01
Gene conversions resulting from meiotic recombination are critical in shaping genome diversification and evolution. How the extent of gene conversions is regulated is unknown. Here we show that the budding yeast mismatch repair related MutLβ complex, Mlh1-Mlh2, specifically interacts with the conserved meiotic Mer3 helicase, which recruits it to recombination hotspots, independently of mismatch recognition. This recruitment is essential to limit gene conversion tract lengths genome-wide, without affecting crossover formation. Contrary to expectations, Mer3 helicase activity, proposed to extend the displacement loop (D-loop) recombination intermediate, does not influence the length of gene conversion events, revealing non-catalytical roles of Mer3. In addition, both purified Mer3 and MutLβ preferentially recognize D-loops, providing a mechanism for limiting gene conversion in vivo. These findings show that MutLβ is an integral part of a new regulatory step of meiotic recombination, which has implications to prevent rapid allele fixation and hotspot erosion in populations. DOI: http://dx.doi.org/10.7554/eLife.21900.001 PMID:28051769
Dinitroanilines Bind α-Tubulin to Disrupt Microtubules
Morrissette, Naomi S.; Mitra, Arpita; Sept, David; Sibley, L. David
2004-01-01
Protozoan parasites are remarkably sensitive to dinitroanilines such as oryzalin, which disrupt plant but not animal microtubules. To explore the basis of dinitroaniline action, we isolated 49 independent resistant Toxoplasma gondii lines after chemical mutagenesis. All 23 of the lines that we examined harbored single point mutations in α-tubulin. These point mutations were sufficient to confer resistance when transfected into wild-type parasites. Several mutations were in the M or N loops, which coordinate protofilament interactions in the microtubule, but most of the mutations were in the core of α-tubulin. Docking studies predict that oryzalin binds with an average affinity of 23 nM to a site located beneath the N loop of Toxoplasma α-tubulin. This binding site included residues that were mutated in several resistant lines. Moreover, parallel analysis of Bos taurus α-tubulin indicated that oryzalin did not interact with this site and had a significantly decreased, nonspecific affinity for vertebrate α-tubulin. We propose that the dinitroanilines act through a novel mechanism, by disrupting M-N loop contacts. These compounds also represent the first class of drugs that act on α-tubulin function. PMID:14742718
Computational study of stability of an H-H-type pseudoknot motif.
Wang, Jun; Zhao, Yunjie; Wang, Jian; Xiao, Yi
2015-12-01
Motifs in RNA tertiary structures are important to their structural organizations and biological functions. Here we consider an H-H-type pseudoknot (HHpk) motif that consists of two hairpins connected by a junction loop and with kissing interactions between the two hairpin loops. Such a tertiary structural motif is recurrently found in RNA tertiary structures, but is difficult to predict computationally. So it is important to understand the mechanism of its formation and stability. Here we investigate the stability of the HHpk tertiary structure by using an all-atom molecular dynamics simulation. The results indicate that the HHpk tertiary structure is stable. However, it is found that this stability is not due to the helix-helix packing, as is usually expected, but is maintained by the combined action of the kissing hairpin loops and junctions, although the former plays the main role. Stable HHpk motifs may form structural platforms for the molecules to realize their biological functions. These results are useful for understanding the construction principle of RNA tertiary structures and structure prediction.
NASA Astrophysics Data System (ADS)
Salmon, Daniel; Nerem, M. Perry; Aubin, Seth; Delos, John
Monodromy means ``once around a path,'' therefore systems that have non-trivial monodromy are systems such that, when taken around a closed circuit in some space, the system has changed state in some way. Classical systems that exhibit non-trivial Hamiltonian monodromy have action and angle variables that are multivalued functions. A family, or loop, of trajectories of this system has a topological change upon traversing a monodromy circuit. We present an experimental apparatus for observing this topological change. A family of particles moving in a cylindrically symmetric champagne-bottle potential exhibits non-trivial Hamiltonian monodromy. At the center of this system is a classically forbidden region. By following a monodromy circuit, a loop of initial conditions on one side of the forbidden region can be made to evolve continuously into a loop that surrounds the forbidden region. We realize this system using a spherical pendulum, having at its end a permanent magnet. Magnetic fields generated by coils can then be used to create the champagne-bottle potential, as well as drive the pendulum through the monodromy circuit.
Closing the loop in ICU decision support: physiologic event detection, alerts, and documentation.
Norris, P. R.; Dawant, B. M.
2001-01-01
Automated physiologic event detection and alerting is a challenging task in the ICU. Ideally care providers should be alerted only when events are clinically significant and there is opportunity for corrective action. However, the concepts of clinical significance and opportunity are difficult to define in automated systems, and effectiveness of alerting algorithms is difficult to measure. This paper describes recent efforts on the Simon project to capture information from ICU care providers about patient state and therapy in response to alerts, in order to assess the value of event definitions and progressively refine alerting algorithms. Event definitions for intracranial pressure and cerebral perfusion pressure were studied by implementing a reliable system to automatically deliver alerts to clinical users alphanumeric pagers, and to capture associated documentation about patient state and therapy when the alerts occurred. During a 6-month test period in the trauma ICU at Vanderbilt University Medical Center, 530 alerts were detected in 2280 hours of data spanning 14 patients. Clinical users electronically documented 81% of these alerts as they occurred. Retrospectively classifying documentation based on therapeutic actions taken, or reasons why actions were not taken, provided useful information about ways to potentially improve event definitions and enhance system utility. PMID:11825238
Palkowski, Marek; Bielecki, Wlodzimierz
2017-06-02
RNA secondary structure prediction is a compute intensive task that lies at the core of several search algorithms in bioinformatics. Fortunately, the RNA folding approaches, such as the Nussinov base pair maximization, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. Polyhedral compilation techniques have proven to be a powerful tool for optimization of dense array codes. However, classical affine loop nest transformations used with these techniques do not optimize effectively codes of dynamic programming of RNA structure predictions. The purpose of this paper is to present a novel approach allowing for generation of a parallel tiled Nussinov RNA loop nest exposing significantly higher performance than that of known related code. This effect is achieved due to improving code locality and calculation parallelization. In order to improve code locality, we apply our previously published technique of automatic loop nest tiling to all the three loops of the Nussinov loop nest. This approach first forms original rectangular 3D tiles and then corrects them to establish their validity by means of applying the transitive closure of a dependence graph. To produce parallel code, we apply the loop skewing technique to a tiled Nussinov loop nest. The technique is implemented as a part of the publicly available polyhedral source-to-source TRACO compiler. Generated code was run on modern Intel multi-core processors and coprocessors. We present the speed-up factor of generated Nussinov RNA parallel code and demonstrate that it is considerably faster than related codes in which only the two outer loops of the Nussinov loop nest are tiled.
Using virtual reality to analyze sports performance.
Bideau, Benoit; Kulpa, Richard; Vignais, Nicolas; Brault, Sébastien; Multon, Franck; Craig, Cathy
2010-01-01
Improving performance in sports can be difficult because many biomechanical, physiological, and psychological factors come into play during competition. A better understanding of the perception-action loop employed by athletes is necessary. This requires isolating contributing factors to determine their role in player performance. Because of its inherent limitations, video playback doesn't permit such in-depth analysis. Interactive, immersive virtual reality (VR) can overcome these limitations and foster a better understanding of sports performance from a behavioral-neuroscience perspective. Two case studies using VR technology and a sophisticated animation engine demonstrate how to use information from visual displays to inform a player's future course of action.
Effect of Loop Geometry on TEM Response Over Layered Earth
NASA Astrophysics Data System (ADS)
Qi, Youzheng; Huang, Ling; Wu, Xin; Fang, Guangyou; Yu, Gang
2014-09-01
A large horizontal loop located on the ground or carried by an aircraft are the most common sources of the transient electromagnetic method. Although topographical factors or airplane outlines make the loop of arbitrary shape, magnetic sources are generally represented as a magnetic dipole or a circular loop, which may bring about significant errors in the calculated response. In this paper, we present a method for calculating the response of a loop of arbitrary shape (for which the description can be obtained by different methods, including GPS localization) in air or on the surface of a stratified earth. The principle of reciprocity is firstly used to exchange the functions of the transmitting loop and the dipole receiver, then the response of a vertical or a horizontal magnetic dipole is calculated beforehand, and finally the line integral of the second kind is employed to get the transient response. Analytical analysis and comparisons depict that our work got very good results in many situations. Synthetic and field examples are given in the end to show the effect of loop geometry and how our method improves the precision of the EM response.
La-CTP: Loop-Aware Routing for Energy-Harvesting Wireless Sensor Networks.
Sun, Guodong; Shang, Xinna; Zuo, Yan
2018-02-02
In emerging energy-harvesting wireless sensor networks (EH-WSN), the sensor nodes can harvest environmental energy to drive their operation, releasing the user's burden in terms of frequent battery replacement, and even enabling perpetual sensing systems. In EH-WSN applications, usually, the node in energy-harvesting or recharging state has to stop working until it completes the energy replenishment. However, such temporary departures of recharging nodes severely impact the packet routing, and one immediate result is the routing loop problem. Controlling loops in connectivity-intermittent EH-WSN in an efficient way is a big challenge in practice, and so far, users still lack of effective and practicable routing protocols with loop handling. Based on the Collection Tree Protocol (CTP) widely used in traditional wireless sensor networks, this paper proposes a loop-aware routing protocol for real-world EH-WSNs, called La-CTP, which involves a new parent updating metric and a proactive, adaptive beaconing scheme to effectively suppress the occurrence of loops and unlock unavoidable loops, respectively. We constructed a 100-node testbed to evaluate La-CTP, and the experimental results showed its efficacy and efficiency.
NASA Astrophysics Data System (ADS)
Lewandowski, Jerzy; Lin, Chun-Yen
2017-03-01
We explicitly solved the anomaly-free quantum constraints proposed by Tomlin and Varadarajan for the weak Euclidean model of canonical loop quantum gravity, in a large subspace of the model's kinematic Hilbert space, which is the space of the charge network states. In doing so, we first identified the subspace on which each of the constraints acts convergingly, and then by explicitly evaluating such actions we found the complete set of the solutions in the identified subspace. We showed that the space of solutions consists of two classes of states, with the first class having a property that involves the condition known from the Minkowski theorem on polyhedra, and the second class satisfying a weaker form of the spatial diffeomorphism invariance.
Yangian symmetry for bi-scalar loop amplitudes
NASA Astrophysics Data System (ADS)
Chicherin, Dmitry; Kazakov, Vladimir; Loebbert, Florian; Müller, Dennis; Zhong, De-liang
2018-05-01
We establish an all-loop conformal Yangian symmetry for the full set of planar amplitudes in the recently proposed integrable bi-scalar field theory in four dimensions. This chiral theory is a particular double scaling limit of γ-twisted weakly coupled N=4 SYM theory. Each amplitude with a certain order of scalar particles is given by a single fishnet Feynman graph of disc topology cut out of a regular square lattice. The Yangian can be realized by the action of a product of Lax operators with a specific sequence of inhomogeneity parameters on the boundary of the disc. Based on this observation, the Yangian generators of level one for generic bi-scalar amplitudes are explicitly constructed. Finally, we comment on the relation to the dual conformal symmetry of these scattering amplitudes.
NASA Technical Reports Server (NTRS)
Mileant, A.; Simon, M.
1986-01-01
When a digital phase-locked loop with a long loop update time tracks a signal with high Doppler, the demodualtion losses due to frequency mismatch can become very significant. One way of reducing these Doppler-related losses is to compensate for the Doppler effect using some kind of frequency-rate estimator. The performance of the fixed-window least-squares estimator and the Kalman filter is investigated; several Doppler compensating techniques are proposed. It is shown that the variance of the frequency estimator can be made as small as desired, and with this, the Doppler effect can be effectively compensated. The remaining demodulation losses due to phase jitter in the loop can be less than 0.1 dB.
Soft thermal contributions to 3-loop gauge coupling
NASA Astrophysics Data System (ADS)
Laine, M.; Schicho, P.; Schröder, Y.
2018-05-01
We analyze 3-loop contributions to the gauge coupling felt by ultrasoft ("magnetostatic") modes in hot Yang-Mills theory. So-called soft/hard terms, originating from dimension-six operators within the soft effective theory, are shown to cancel 1097/1098 of the IR divergence found in a recent determination of the hard 3-loop contribution to the soft gauge coupling. The remaining 1/1098 originates from ultrasoft/hard contributions, induced by dimension-six operators in the ultrasoft effective theory. Soft 3-loop contributions are likewise computed, and are found to be IR divergent, rendering the ultrasoft gauge coupling non-perturbative at relative order O({α}s^{3/2}) . We elaborate on the implications of these findings for effective theory studies of physical observables in thermal QCD.
Móricz, K; Gyetvai, B; Bárdos, G
1998-08-01
The aim of this work was to study the effects of benzalkonium chloride (BAC) treatment on the small intestine and its functioning in rats surgically prepared with Thiry-Vella intestinal loop. The loops were treated with either BAC, which ablated much of the myenteric plexus and extrinsic innervation, or with physiological saline (SAL). In vivo drinking experiments were performed to examine the effect on fluid intake and behavioral indices of distending the loop with a balloon. Spontaneous motility and its changes induced by acetylcholine (ACh) and histamine (His) were studied on isolated stripes in vitro. Finally, samples from the loops were examined histologically. Though reduction of the cell number was less than expected and no differences of the thickness of the muscular layer between the two groups was observed, BAC treatment altered the pattern of spontaneous activity and also the sensitivity to ACh and His in isolated stripes. In vivo distension of the SAL-treated loops reduced fluid intake and produced signs of aversivity; these effects were absent in the BAC-treated group. Our results show that despite the differences in the degree of ablation from those obtained by others, BAC treatment can be used to study the mechanisms underlying the effects of the enteral stimuli on the behavior.
Chiral topological insulating phases from three-dimensional nodal loop semimetals
NASA Astrophysics Data System (ADS)
Li, Linhu; Yin, Chuanhao; Chen, Shu; Araujo, Miguel
We begin with a minimal model of three-dimensional nodal loop semimetals, and study the effect of anticommuting gap terms. The resulting topological insulating phases are protected by a chiral symmetry, and can be characterized by a winding number defined along the nodal loop. We illustrate the geometric relation between the nodal loop and the gap terms, which has a correspondence to the nodal loop winding number. We further investigate a lattice model and study its edge states under open boundary condition. The edge states hold Dirac cones with the same number as the summation of the winding numbers of each nodal loop in the first Brillouin zone.
The Kaon B-parameter in mixed action chiral perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubin, C.; /Columbia U.; Laiho, Jack
2006-09-01
We calculate the kaon B-parameter, B{sub K}, in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At one-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an {Omicron}(a{sup 2}) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B{sub K} by an amount of {Omicron}(a{sup 2}).more » This term, however, is not strictly due to taste-breaking, and is therefore also present in the expression for B{sub K} for pure G-W lattice fermions. We also present a numerical study of the mixed B{sub K} expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.« less
Kaon B-parameter in mixed action chiral perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubin, C.; Laiho, Jack; Water, Ruth S. van de
2007-02-01
We calculate the kaon B-parameter, B{sub K}, in chiral perturbation theory for a partially quenched, mixed-action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At 1-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an O(a{sup 2}) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B{sub K} by an amount of O(a{sup 2}). Thismore » term, however, is not strictly due to taste breaking, and is therefore also present in the expression for B{sub K} for pure Ginsparg-Wilson lattice fermions. We also present a numerical study of the mixed B{sub K} expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.« less
Yang, Xiong; Liu, Derong; Wang, Ding; Wei, Qinglai
2014-07-01
In this paper, a reinforcement-learning-based direct adaptive control is developed to deliver a desired tracking performance for a class of discrete-time (DT) nonlinear systems with unknown bounded disturbances. We investigate multi-input-multi-output unknown nonaffine nonlinear DT systems and employ two neural networks (NNs). By using Implicit Function Theorem, an action NN is used to generate the control signal and it is also designed to cancel the nonlinearity of unknown DT systems, for purpose of utilizing feedback linearization methods. On the other hand, a critic NN is applied to estimate the cost function, which satisfies the recursive equations derived from heuristic dynamic programming. The weights of both the action NN and the critic NN are directly updated online instead of offline training. By utilizing Lyapunov's direct method, the closed-loop tracking errors and the NN estimated weights are demonstrated to be uniformly ultimately bounded. Two numerical examples are provided to show the effectiveness of the present approach. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kamariah, Neelagandan; Eisenhaber, Birgit; Eisenhaber, Frank; Grüber, Gerhard
2018-04-01
Peroxiredoxins (Prxs) catalyse the rapid reduction of hydrogen peroxide, organic hydroperoxide and peroxynitrite, using a fully conserved peroxidatic cysteine (C P ) located in a conserved sequence Pxxx(T/S)xxC P motif known as C P -loop. In addition, Prxs are involved in cellular signaling pathways and regulate several redox-dependent process related disease. The effective catalysis of Prxs is associated with alterations in the C P -loop between reduced, Fully Folded (FF), and oxidized, Locally Unfolded (LU) conformations, which are linked to dramatic changes in the oligomeric structure. Despite many studies, little is known about the precise structural and dynamic roles of the C P -loop on Prxs functions. Herein, the comprehensive biochemical and biophysical studies on Escherichia coli alkyl hydroperoxide reductase subunit C (EcAhpC) and the C P -loop mutants, EcAhpC-F45A and EcAhpC-F45P reveal that the reduced form of the C P -loop adopts conformational dynamics, which is essential for effective peroxide reduction. Furthermore, the point mutants alter the structure and dynamics of the reduced form of the C P -loop and, thereby, affect substrate binding, catalysis, oligomerization, stability and overoxidiation. In the oxidized form, due to restricted C P -loop dynamics, the EcAhpC-F45P mutant favours a decamer formation, which enhances the effective recycling by physiological reductases compared to wild-type EcAhpC. In addition, the study reveals that residue F45 increases the specificity of Prxs-reductase interactions. Based on these studies, we propose an evolution of the C P -loop with confined sequence conservation within Prxs subfamilies that might optimize the functional adaptation of Prxs into various physiological roles. Copyright © 2018 Elsevier Inc. All rights reserved.
Effect of orientation of prismatic dislocation loops on interaction with free surfaces in BCC iron
NASA Astrophysics Data System (ADS)
Fikar, Jan; Gröger, Roman; Schäublin, Robin
2017-12-01
The prismatic loops appear in metals as a result of high-energy irradiation. Understanding their formation and interaction is important for quantification of irradiation-induced deterioration of mechanical properties. Characterization of dislocation loops in thin foils is commonly made using transmission electron microscopy (TEM), but the results are inevitably influenced by the proximity of free surfaces. The prismatic loops are attracted to free surfaces by image forces. Depending on the type, shape, size, orientation and depth of the loop in the foil, they can escape to the free surface creating denuded loop-free zones and thus invalidating TEM observations. In our previous studies we described a simple general method to determine the critical depth and the critical stress to move prismatic dislocation loops. The critical depths can be further used to correct measurements of the loop density by TEM. Here, we use this procedure to compare 〈100〉 loops and 1/2 〈111〉 loops in body-centered cubic (BCC) iron. The influences of the interatomic potential and the loop orientation are studied in detail. The difference between interstitial and vacancy type loop is also investigated.
11.2 YIP Human In the Loop Statistical RelationalLearners
2017-10-23
learning formalisms including inverse reinforcement learning [4] and statistical relational learning [7, 5, 8]. We have also applied our algorithms in...one introduced for label preferences. 4 Figure 2: Active Advice Seeking for Inverse Reinforcement Learning. active advice seeking is in selecting the...learning tasks. 1.2.1 Sequential Decision-Making Our previous work on advice for inverse reinforcement learning (IRL) defined advice as action
The Holst spin foam model via cubulations
NASA Astrophysics Data System (ADS)
Baratin, Aristide; Flori, Cecilia; Thiemann, Thomas
2012-10-01
Spin foam models are an attempt at a covariant or path integral formulation of canonical loop quantum gravity. The construction of such models usually relies on the Plebanski formulation of general relativity as a constrained BF theory and is based on the discretization of the action on a simplicial triangulation, which may be viewed as an ultraviolet regulator. The triangulation dependence can be removed by means of group field theory techniques, which allows one to sum over all triangulations. The main tasks for these models are the correct quantum implementation of the Plebanski constraints, the existence of a semiclassical sector implementing additional ‘Regge-like’ constraints arising from simplicial triangulations and the definition of the physical inner product of loop quantum gravity via group field theory. Here we propose a new approach to tackle these issues stemming directly from the Holst action for general relativity, which is also a proper starting point for canonical loop quantum gravity. The discretization is performed by means of a ‘cubulation’ of the manifold rather than a triangulation. We give a direct interpretation of the resulting spin foam model as a generating functional for the n-point functions on the physical Hilbert space at finite regulator. This paper focuses on ideas and tasks to be performed before the model can be taken seriously. However, our analysis reveals some interesting features of this model: firstly, the structure of its amplitudes differs from the standard spin foam models. Secondly, the tetrad n-point functions admit a ‘Wick-like’ structure. Thirdly, the restriction to simple representations does not automatically occur—unless one makes use of the time gauge, just as in the classical theory.
Computational model of precision grip in Parkinson's disease: a utility based approach
Gupta, Ankur; Balasubramani, Pragathi P.; Chakravarthy, V. Srinivasa
2013-01-01
We propose a computational model of Precision Grip (PG) performance in normal subjects and Parkinson's Disease (PD) patients. Prior studies on grip force generation in PD patients show an increase in grip force during ON medication and an increase in the variability of the grip force during OFF medication (Ingvarsson et al., 1997; Fellows et al., 1998). Changes in grip force generation in dopamine-deficient PD conditions strongly suggest contribution of the Basal Ganglia, a deep brain system having a crucial role in translating dopamine signals to decision making. The present approach is to treat the problem of modeling grip force generation as a problem of action selection, which is one of the key functions of the Basal Ganglia. The model consists of two components: (1) the sensory-motor loop component, and (2) the Basal Ganglia component. The sensory-motor loop component converts a reference position and a reference grip force, into lift force and grip force profiles, respectively. These two forces cooperate in grip-lifting a load. The sensory-motor loop component also includes a plant model that represents the interaction between two fingers involved in PG, and the object to be lifted. The Basal Ganglia component is modeled using Reinforcement Learning with the significant difference that the action selection is performed using utility distribution instead of using purely Value-based distribution, thereby incorporating risk-based decision making. The proposed model is able to account for the PG results from normal and PD patients accurately (Ingvarsson et al., 1997; Fellows et al., 1998). To our knowledge the model is the first model of PG in PD conditions. PMID:24348373
Rockx, Marie Antoinette; Hoch, Jeffrey S; Klein, George J; Yee, Raymond; Skanes, Allan C; Gula, Lorne J; Krahn, Andrew D
2005-11-01
Out patient ambulatory monitoring is often performed in patients with syncope that present in the primary care setting to include or exclude an arrhythmia. The cost-effectiveness of 2 monitoring strategies was assessed in a prospective randomized trial. One hundred patients referred for ambulatory monitoring with syncope or presyncope were randomized to a 1-month external loop recorder (n = 49) or 48-hour Holter monitor (n = 51). Patients were offered crossover if there was failed activation or no symptom recurrence. The primary end point was symptom-rhythm correlation during monitoring. Direct costs were calculated based on the 2003 Ontario Health Insurance Plan fee schedule, combined with calculation of labor, materials, service, and overhead for diagnostic testing and related equipment. Before enrollment, the cost of all previous health care resource use was USD 472 +/- USD 397 (range USD 21-USD 1965). In the loop recorder group, 63% of patients had symptom recurrence and successful activation, compared with 24% in the Holter group (P < .0001). The cost per Holter was USD 177.64, and per loop recorder, USD 533.56, with a similar cost per diagnosis with the 2 techniques. The incremental cost-effectiveness ratio of the loop recorder was USD 901.74 per extra successful diagnosis. A strategy of Holter followed by offered loop recorder trended toward lower cost than initial loop recorder followed by Holter (USD 481 +/- USD 267 vs USD 551 +/- USD 83, P = .08), but was associated with a lower overall diagnostic yield (49% vs 63%) and a resultant higher cost per diagnosis (USD 982 vs USD 871, P = .08). Bootstrapping suggested that 90% of incremental cost-effectiveness ratios were less than USD 1250. Despite the increased upfront cost of external loop recorders, the marked improvement in diagnostic yield offsets the cost. External loop recorders are an economically attractive alternative. First-line use of external loop recorders in patients with "community-acquired" syncope and presyncope should be considered to optimize diagnostic yield given its value.
NASA Astrophysics Data System (ADS)
Sakai, Naoki; Kawabe, Naoto; Hara, Masayuki; Toyoda, Nozomi; Yabuta, Tetsuro
This paper argues how a compact humanoid robot can acquire a giant-swing motion without any robotic models by using Q-Learning method. Generally, it is widely said that Q-Learning is not appropriated for learning dynamic motions because Markov property is not necessarily guaranteed during the dynamic task. However, we tried to solve this problem by embedding the angular velocity state into state definition and averaging Q-Learning method to reduce dynamic effects, although there remain non-Markov effects in the learning results. The result shows how the robot can acquire a giant-swing motion by using Q-Learning algorithm. The successful acquired motions are analyzed in the view point of dynamics in order to realize a functionally giant-swing motion. Finally, the result shows how this method can avoid the stagnant action loop at around the bottom of the horizontal bar during the early stage of giant-swing motion.
Invariant measure of the one-loop quantum gravitational backreaction on inflation
NASA Astrophysics Data System (ADS)
Miao, S. P.; Tsamis, N. C.; Woodard, R. P.
2017-06-01
We use dimensional regularization in pure quantum gravity on a de Sitter background to evaluate the one-loop expectation value of an invariant operator which gives the local expansion rate. We show that the renormalization of this nonlocal composite operator can be accomplished using the counterterms of a simple local theory of gravity plus matter, at least at one-loop order. This renormalization completely absorbs the one-loop correction, which accords with the prediction that the lowest secular backreaction should be a two-loop effect.
Thermal stability of static coronal loops: Part 1: Effects of boundary conditions
NASA Technical Reports Server (NTRS)
Antiochos, S. K.; Shoub, E. C.; An, C. H.; Emslie, A. G.
1985-01-01
The linear stability of static coronal-loop models undergoing thermal perturbations was investigated. The effect of conditions at the loop base on the stability properties of the models was considered in detail. The question of appropriate boundary conditions at the loop base was considered and it was concluded that the most physical assumptions are that the temperature and density (or pressure) perturbations vanish there. However, if the base is taken to be sufficiently deep in the chromosphere, either several chromospheric scale heights or several coronal loop lengths in depth, then the effect of the boundary conditions on loop stability becomes negligible so that all physically acceptable conditions are equally appropriate. For example, one could as well assume that the velocity vanishes at the base. The growth rates and eigenmodes of static models in which gravity is neglected and in which the coronal heating is a relatively simple function, either constant per-unit mass or per-unit volume were calculated. It was found that all such models are unstable with a growth rate of the order of the coronal cooling time. The physical implications of these results for the solar corona and transition region are discussed.
Yoo, Do Guen; Lee, Ho Min; Sadollah, Ali; Kim, Joong Hoon
2015-01-01
Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply.
Lee, Ho Min; Sadollah, Ali
2015-01-01
Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply. PMID:25874252
Gust alleviation - Criteria and control laws
NASA Technical Reports Server (NTRS)
Rynaski, E. G.
1979-01-01
The relationships between criteria specified for aircraft gust alleviation and the form of the control laws that result from the criteria are considered. Open-loop gust alleviation based on the linearized, small perturbation equations of aircraft motion is discussed, and an approximate solution of the open-loop control law is presented for the case in which the number of degrees of freedom of the aircraft exceeds the rank of the control effectiveness matrix. Excessive actuator lag is compensated for by taking into account actuator dynamics in the equations of motion, resulting in the specification of a general load network. Criteria for gust alleviation when output motions are gust alleviated and the closed-loop control law derived from them are examined and linear optimal control law is derived. Comparisons of the control laws reveal that the effectiveness of an open-loop control law is greatest at low aircraft frequencies but deteriorates as the natural frequency of the actuators is approached, while closed-loop methods are found to be more effective at higher frequencies.
Noncoherent pseudonoise code tracking performance of spread spectrum receivers
NASA Technical Reports Server (NTRS)
Simon, M. K.
1977-01-01
The optimum design and performance of two noncoherent PN tracking loop configurations, namely, the delay-locked loop and tau-dither loop, are described. In particular, the bandlimiting effects of the bandpass arm filters are considered by demonstrating that for a fixed data rate and data signal-to-noise ratio, there exists an optimum filter bandwidth in the sense of minimizing the loop's tracking jitter. Both the linear and nonlinear loop analyses are presented, and the region of validity of the former relative to the latter is indicated. In addition, numerical results are given for several filter types. For example, assuming ideal bandpass arm filters, it is shown that the tau-dither loop requires approximately 1 dB more signal-to-noise ratio than the delay-locked loop for equal rms tracking jitters.
DOT National Transportation Integrated Search
2010-08-01
The installation of loop detectors in portland cement concrete pavement (PCCP) may shorten affected panel life, thus prematurely worsening the condition of the overall pavement. This study focuses on the performance of those loop embedded panels (LEP...
NASA Astrophysics Data System (ADS)
Satoh, Y.; Yoshiie, T.; Arai, S.
2018-03-01
We conducted systematic experiments of defect structure development in Cu base binary alloys under 1000 kV electron irradiation at temperatures higher than 300 K, using in situ observations with high voltage electron microscopy. This report describes the effects of undersize elements: Co (-3.78%), Ni (-8.45%) and Be (-26.45%). The volume size factors are given in parentheses. The amounts of the respective elements were 2, 0.3, 0.05 at.%, or less. In Cu-Ni and Cu-Co and in the reference Cu, temperature dependence of the number density of interstitial-type dislocation loops had a down peak (i.e. loops hardly formed) at approximately 373 K, attributed to unexpected impurity atoms. Above the down-peak temperature, the addition of Co or Ni increased the loop number density through continuous nucleation of loops, extended the loop formation to higher temperatures, and decreased the apparent activation energy of loop growth rate. The addition of Be for 0.3 at.% or more delayed loop formation after formation of stacking fault tetrahedra (SFTs) around 300 K. The apparent mobility of self-interstitial atoms is expected to be smaller than that of vacancies because of strong binding with Be. Loop formation at temperatures higher than 373 K was enhanced by Be for 0.3 or 2 at.%, although it was suppressed greatly for 0.05 at.% or less. All undersize atoms increased the stability of SFTs under irradiation. Mechanisms of those effects were discussed and were briefly compared with earlier results found for oversize elements in Cu.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yanfei; Larson, Ben C.
There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order -1, we have shown thatmore » the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental–theoretical investigations.« less
Gao, Yanfei; Larson, Ben C.
2015-06-19
There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order -1, we have shown thatmore » the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental–theoretical investigations.« less
Thresholds of cortical activation of muscle spindles and α motoneurones of the baboon's hand
Koeze, T. H.; Phillips, C. G.; Sheridan, J. D.
1968-01-01
1. Much current thinking about voluntary movement assumes that the segmental γ loops can function as a servomechanism operated by the brain. However, the α motoneurones of the baboon's hand receive a powerful monosynaptic (CM) projection from the precentral gyrus. If servo-driving from the same cortical area is to be possible, it must project independently to the fusimotor neurones and have sufficient power to increase the afferent signalling from the muscle spindles. The cortical thresholds for contraction of m. extensor digitorum communis and for acceleration of the discharges of its muscle spindles have therefore been compared. 2. Significant results in this context require that the spindles studied be coupled in parallel with the responding extrafusal muscle fibres. Many spindles were not unloaded by the submaximal contractions evoked by cortical stimulation, although all so tested were unloaded by maximal motor nerve twitches. Reasons are given for thinking that such apparent lack of parallel coupling is an artifact of complex intramuscular anatomy and limitation of shortening by `isometric' myography. 3. A brief burst of corticospinal volleys at 500/sec, which is specially effective in exciting α motoneurones over the CM projection, failed to excite spindle afferents at or below the threshold for a cortical `twitch'. 4. In a few epileptiform discharges, bursts of spindle acceleration occurred independently of the clonic contractions. A relatively direct and independent cortico-fusimotor (CF) projection may therefore exist. 5. Prolonged near-threshold stimulation at 50-100/sec, which allows time for temporal summation in the less direct projections (e.g. cortico-interneuronal, cortico-rubro-spinal) and does not cause frequency-potentiation at CM synapses, gives abundant evidence of independent α and fusimotor projections, whose actions hardly outlast the stimulation period. 6. Although independent CF projections would permit servo-driving in natural movements of the hand (given adequate loop gain), there has been no evidence of servo-driving by cortical stimulation or in the spontaneous contractions of light anaesthesia. 7. Independent projections would provide for controlled αγ co-excitation in the servo-governing of natural movements (Matthews, 1964). 8. Evidence is reviewed that the CM projection itself may be part of an important control loop for voluntary movement in primates. A corollary would be a diminished importance of CF projections for segmental loops and an increased importance for maintaining the spindle input to cortical loops. PMID:4231033
La-CTP: Loop-Aware Routing for Energy-Harvesting Wireless Sensor Networks
Sun, Guodong; Shang, Xinna; Zuo, Yan
2018-01-01
In emerging energy-harvesting wireless sensor networks (EH-WSN), the sensor nodes can harvest environmental energy to drive their operation, releasing the user’s burden in terms of frequent battery replacement, and even enabling perpetual sensing systems. In EH-WSN applications, usually, the node in energy-harvesting or recharging state has to stop working until it completes the energy replenishment. However, such temporary departures of recharging nodes severely impact the packet routing, and one immediate result is the routing loop problem. Controlling loops in connectivity-intermittent EH-WSN in an efficient way is a big challenge in practice, and so far, users still lack of effective and practicable routing protocols with loop handling. Based on the Collection Tree Protocol (CTP) widely used in traditional wireless sensor networks, this paper proposes a loop-aware routing protocol for real-world EH-WSNs, called La-CTP, which involves a new parent updating metric and a proactive, adaptive beaconing scheme to effectively suppress the occurrence of loops and unlock unavoidable loops, respectively. We constructed a 100-node testbed to evaluate La-CTP, and the experimental results showed its efficacy and efficiency. PMID:29393876
Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lal, Shankar, E-mail: shankar@rrcat.gov.in; Pant, K. K.
2016-08-15
Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday’s law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled withmore » β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.« less
Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient
NASA Astrophysics Data System (ADS)
Lal, Shankar; Pant, K. K.
2016-08-01
Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday's law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.
Effects of controlled element dynamics on human feedforward behavior in ramp-tracking tasks.
Laurense, Vincent A; Pool, Daan M; Damveld, Herman J; van Paassen, Marinus René M; Mulder, Max
2015-02-01
In real-life manual control tasks, human controllers are often required to follow a visible and predictable reference signal, enabling them to use feedforward control actions in conjunction with feedback actions that compensate for errors. Little is known about human control behavior in these situations. This paper investigates how humans adapt their feedforward control dynamics to the controlled element dynamics in a combined ramp-tracking and disturbance-rejection task. A human-in-the-loop experiment is performed with a pursuit display and vehicle-like controlled elements, ranging from a single integrator through second-order systems with a break frequency at either 3, 2, or 1 rad/s, to a double integrator. Because the potential benefits of feedforward control increase with steeper ramp segments in the target signal, three steepness levels are tested to investigate their possible effect on feedforward control with the various controlled elements. Analyses with four novel models of the operator, fitted to time-domain data, reveal feedforward control for all tested controlled elements and both (nonzero) tested levels of ramp steepness. For the range of controlled element dynamics investigated, it is found that humans adapt to these dynamics in their feedforward response, with a close to perfect inversion of the controlled element dynamics. No significant effects of ramp steepness on the feedforward model parameters are found.
Role of 6-Gingerol in Reduction of Cholera Toxin Activity In Vitro and In Vivo
Saha, Pallashri; Das, Bornita
2013-01-01
Vibrio cholerae is one of the major bacterial pathogens responsible for the devastating diarrheal disease called cholera. Chemotherapy is often used against V. cholerae infections; however, the emergence of V. cholerae with multidrug resistance (MDR) toward the chemotherapeutic agents is a serious clinical problem. This scenario has provided us with the impetus to look into herbal remediation, especially toward blocking the action of cholera toxin (CT). Our studies were undertaken to determine the antidiarrheal potential of 6-gingerol (6G) on the basis of its effect on CT, the virulence factor secreted by V. cholerae. We report here that 6G binds to CT, hindering its interaction with the GM1 receptor present on the intestinal epithelial cells. The 50% inhibitory concentration (IC50) was determined to be 10 μg/ml. The detailed mechanistic study was conducted by enzyme-linked immunosorbent assay (ELISA), fluorescence spectroscopy, and isoelectric focusing. These results were validated with in vitro studies performed with the CHO, HeLa, and HT-29 cell lines, whereas a rabbit ileal loop assay was done to estimate the in vivo action, which confirms the efficacy of 6G in remediation of the choleragenic effects of CT. Thus, 6G can be an effective adjunctive therapy with oral rehydration solution for severe CT-mediated diarrhea. PMID:23817372
Cosmological singularities and bounce in Cartan-Einstein theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucat, Stefano; Prokopec, Tomislav, E-mail: s.lucat@students.uu.nl, E-mail: t.prokopec@uu.nl
We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh ( in-in ) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins inmore » a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce . We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).« less
Cosmological singularities and bounce in Cartan-Einstein theory
NASA Astrophysics Data System (ADS)
Lucat, Stefano; Prokopec, Tomislav
2017-10-01
We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh (in-in) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins in a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce. We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).
Field, Jessica J; Pera, Benet; Gallego, Juan Estévez; Calvo, Enrique; Rodríguez-Salarichs, Javier; Sáez-Calvo, Gonzalo; Zuwerra, Didier; Jordi, Michel; Andreu, José M; Prota, Andrea E; Ménchon, Grégory; Miller, John H; Altmann, Karl-Heinz; Díaz, J Fernando
2018-03-23
The marine natural product zampanolide and analogues thereof constitute a new chemotype of taxoid site microtubule-stabilizing agents with a covalent mechanism of action. Zampanolide-ligated tubulin has the switch-activation loop (M-loop) in the assembly prone form and, thus, represents an assembly activated state of the protein. In this study, we have characterized the biochemical properties of the covalently modified, activated tubulin dimer, and we have determined the effect of zampanolide on tubulin association and the binding of tubulin ligands at other binding sites. Tubulin activation by zampanolide does not affect its longitudinal oligomerization but does alter its lateral association properties. The covalent binding of zampanolide to β-tubulin affects both the colchicine site, causing a change of the quantum yield of the bound ligand, and the exchangeable nucleotide binding site, reducing the affinity for the nucleotide. While these global effects do not change the binding affinity of 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one (MTC) (a reversible binder of the colchicine site), the binding affinity of a fluorescent analogue of GTP (Mant-GTP) at the nucleotide E-site is reduced from 12 ± 2 × 10 5 M -1 in the case of unmodified tubulin to 1.4 ± 0.3 × 10 5 M -1 in the case of the zampanolide tubulin adduct, indicating signal transmission between the taxane site and the colchicine and nucleotide sites of β-tubulin.
Multiday Fully Closed Loop Insulin Delivery in Monitored Outpatient Conditions
2014-04-29
To Demonstrate That the Closed Loop System Can be Used Safely Over a Few Consecutive Days.; To Assess Effectiveness in Maintaining Patients' Glucose Levels in the Target Range of 70 to 180 mg/dl, Measured by Blood Glucose Sensor.; To Evaluate the User Experience With a Closed Loop System
El Youssef, Joseph; Bakhtiani, Parkash A.; Cai, Yu; Stobbe, Jade M.; Branigan, Deborah; Ramsey, Katrina; Jacobs, Peter; Reddy, Ravi; Woods, Mark; Ward, W. Kenneth
2015-01-01
OBJECTIVE To evaluate subjects with type 1 diabetes for hepatic glycogen depletion after repeated doses of glucagon, simulating delivery in a bihormonal closed-loop system. RESEARCH DESIGN AND METHODS Eleven adult subjects with type 1 diabetes participated. Subjects underwent estimation of hepatic glycogen using 13C MRS. MRS was performed at the following four time points: fasting and after a meal at baseline, and fasting and after a meal after eight doses of subcutaneously administered glucagon at a dose of 2 µg/kg, for a total mean dose of 1,126 µg over 16 h. The primary and secondary end points were, respectively, estimated hepatic glycogen by MRS and incremental area under the glucose curve for a 90-min interval after glucagon administration. RESULTS In the eight subjects with complete data sets, estimated glycogen stores were similar at baseline and after repeated glucagon doses. In the fasting state, glycogen averaged 21 ± 3 g/L before glucagon administration and 25 ± 4 g/L after glucagon administration (mean ± SEM) (P = NS). In the fed state, glycogen averaged 40 ± 2 g/L before glucagon administration and 34 ± 4 g/L after glucagon administration (P = NS). With the use of an insulin action model, the rise in glucose after the last dose of glucagon was comparable to the rise after the first dose, as measured by the 90-min incremental area under the glucose curve. CONCLUSIONS In adult subjects with well-controlled type 1 diabetes (mean A1C 7.2%), glycogen stores and the hyperglycemic response to glucagon administration are maintained even after receiving multiple doses of glucagon. This finding supports the safety of repeated glucagon delivery in the setting of a bihormonal closed-loop system. PMID:26341131
Coherent feedback control of a single qubit in diamond
NASA Astrophysics Data System (ADS)
Hirose, Masashi; Cappellaro, Paola
2016-04-01
Engineering desired operations on qubits subjected to the deleterious effects of their environment is a critical task in quantum information processing, quantum simulation and sensing. The most common approach relies on open-loop quantum control techniques, including optimal-control algorithms based on analytical or numerical solutions, Lyapunov design and Hamiltonian engineering. An alternative strategy, inspired by the success of classical control, is feedback control. Because of the complications introduced by quantum measurement, closed-loop control is less pervasive in the quantum setting and, with exceptions, its experimental implementations have been mainly limited to quantum optics experiments. Here we implement a feedback-control algorithm using a solid-state spin qubit system associated with the nitrogen vacancy centre in diamond, using coherent feedback to overcome the limitations of measurement-based feedback, and show that it can protect the qubit against intrinsic dephasing noise for milliseconds. In coherent feedback, the quantum system is connected to an auxiliary quantum controller (ancilla) that acquires information about the output state of the system (by an entangling operation) and performs an appropriate feedback action (by a conditional gate). In contrast to open-loop dynamical decoupling techniques, feedback control can protect the qubit even against Markovian noise and for an arbitrary period of time (limited only by the coherence time of the ancilla), while allowing gate operations. It is thus more closely related to quantum error-correction schemes, although these require larger and increasing qubit overheads. Increasing the number of fresh ancillas enables protection beyond their coherence time. We further evaluate the robustness of the feedback protocol, which could be applied to quantum computation and sensing, by exploring a trade-off between information gain and decoherence protection, as measurement of the ancilla-qubit correlation after the feedback algorithm voids the protection, even if the rest of the dynamics is unchanged.
NASA Astrophysics Data System (ADS)
Chen, Xi; Li, Yancheng; Li, Jianchun; Gu, Xiaoyu
2018-01-01
Time delay is a challenge issue faced by the real-time control application of the magnetorheological (MR) devices. Not to deal with it properly may jeopardize the effectiveness of the control, even lead to instability of the control system or catastrophic failure. This paper proposes a dual-loop adaptive control to address the response time delay associated with MR devices. In the proposed dual-loop control, the inner loop is designed to compensate the time delay of MR device induced by the PWM current driver. While the outer loop control can be any structural control algorithm with aims to reducing structural responses of a building during extreme loadings. Here an adaptive control strategy is adopted. To verify the proposed dual-loop control, a smart base isolation system employing magnetorheological elastomer base isolators is used as an example to illustrate the control effect. Numerical study is then conducted using a 5 -storey shear building model equipped with smart base isolation system. The result shows that with the implementation of the inner loop, the control current can instantly follow the control command which reduce the possibility of instability caused by the time delay. Comparative studies are conducted between three control strategies, i.e. dual-loop control, Lyapunov’s direct method based control and optimal passive base isolation control. The results of the study have demonstrated that the proposed dual-loop control strategy can achieve much better performance than the other two control strategies.
Effective field theory dimensional regularization
NASA Astrophysics Data System (ADS)
Lehmann, Dirk; Prézeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.
Mechanisms of action of ligands of potential-dependent sodium channels.
Tikhonov, D B
2008-06-01
Potential-dependent sodium channels play a leading role in generating action potentials in excitable cells. Sodium channels are the site of action of a variety of modulator ligands. Despite numerous studies, the mechanisms of action of many modulators remain incompletely understood. The main reason that many important questions cannot be resolved is that there is a lack of precise data on the structures of the channels themselves. Structurally, potential-dependent sodium channels are members of the P-loop channel superfamily, which also include potassium and calcium channels and glutamate receptor channels. Crystallization of a series of potassium channels showed that it was possible to analyze the structures of different members of the superfamily using the "homologous modeling" method. The present study addresses model investigations of the actions of ligands of sodium channels, including tetrodotoxin and batrachotoxin, as well as local anesthetics. Comparison of experimental data on sodium channel ligands with x-ray analysis data allowed us to reach a new level of understanding of the mechanisms of channel modulation and to propose a series of experimentally verifiable hypotheses.
The effect of proximity on open-loop accommodation responses measured with pinholes.
Morrison, K A; Seidel, D; Strang, N C; Gray, L S
2010-07-01
Open-loop accommodation levels were measured in 41 healthy, young subjects using a Shin-Nippon SRW-5000 autorefractor in the three viewing conditions: a small physical pinhole pupil (SP), an optically projected pinhole in Maxwellian view (MV) and in the dark (DF). The target viewed through the pinholes was a high-contrast letter presented at 0 D vergence in a +5 D Badal lens system. Overall, results showed that SP open-loop accommodation levels were significantly higher than MV and DF levels. Subjects could be divided into two distinct subgroups according to their response behaviour: responders to the proximal effect of the small physical pinhole (SP accommodation > MV accommodation) and non-responders to the proximal effect of the small physical pinhole (SP accommodation approximately MV accommodation). Correlation analysis demonstrated that open-loop accommodation for both pinhole conditions was correlated with DF for the responders, while for the non-responders SP and MV accommodation were correlated, but were not related to DF accommodation. This suggests that under open-loop conditions some individuals' accommodation levels are mainly affected by proximal and cognitive factors (responders) while others are guided primarily by the presence of the more distal target (non-responders). In conclusion, MV reduces the proximal effect of the physical pinhole and produces open-loop accommodation responses which are more consistent than SP and DF responses.
Hiermeier, Florian; Männer, Jörg
2017-11-19
Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts.
Hiermeier, Florian; Männer, Jörg
2017-01-01
Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts. PMID:29367548
Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback
NASA Astrophysics Data System (ADS)
Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.
2018-02-01
We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.
[Mechanisms of action of voltage-gated sodium channel ligands].
Tikhonov, D B
2007-05-01
The voltage-gated sodium channels play a key role in the generation of action potential in excitable cells. Sodium channels are targeted by a number of modulating ligands. Despite numerous studies, the mechanisms of action of many ligands are still unknown. The main cause of the problem is the absence of the channel structure. Sodium channels belong to the superfamily of P-loop channels that also the data abowt includes potassium and calcium channels and the channels of ionotropic glutamate receptors. Crystallization of several potassium channels has opened a possibility to analyze the structure of other members of the superfamily using the homology modeling approach. The present study summarizes the results of several recent modelling studies of such sodium channel ligands as tetrodotoxin, batrachotoxin and local anesthetics. Comparison of available experimental data with X-ray structures of potassium channels has provided a new level of understanding of the mechanisms of action of sodium channel ligands and has allowed proposing several testable hypotheses.
THE CORONAL LOOP INVENTORY PROJECT: EXPANDED ANALYSIS AND RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmelz, J. T.; Christian, G. M.; Chastain, R. A., E-mail: jschmelz@usra.edu
We have expanded upon earlier work that investigates the relative importance of coronal loops with isothermal versus multithermal cross-field temperature distributions. These results are important for determining if loops have substructure in the form of unresolved magnetic strands. We have increased the number of loops targeted for temperature analysis from 19 to 207 with the addition of 188 new loops from multiple regions. We selected all loop segments visible in the 171 Å images of the Atmospheric Imaging Assembly (AIA) that had a clean background. Eighty-six of the new loops were rejected because they could not be reliably separated frommore » the background in other AIA filters. Sixty-one loops required multithermal models to reproduce the observations. Twenty-eight loops were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within uncertainties. Ten loops were isothermal. Also, part of our inventory was one small flaring loop, one very cool loop whose temperature distribution could not be constrained by the AIA data, and one loop with inconclusive results. Our survey can confirm an unexpected result from the pilot study: we found no isothermal loop segments where we could properly use the 171-to-193 ratio method, which would be similar to the analysis done for many loops observed with TRACE and EIT. We recommend caution to observers who assume the loop plasma is isothermal, and hope that these results will influence the direction of coronal heating models and the effort modelers spend on various heating scenarios.« less
Topological insulating phases from two-dimensional nodal loop semimetals
NASA Astrophysics Data System (ADS)
Li, Linhu; Araújo, Miguel A. N.
2016-10-01
Starting from a minimal model for a two-dimensional nodal loop semimetal, we study the effect of chiral mass gap terms. The resulting Dirac loop anomalous Hall insulator's Chern number is the phase-winding number of the mass gap terms on the loop. We provide simple lattice models, analyze the topological phases, and generalize a previous index characterizing topological transitions. The responses of the Dirac loop anomalous Hall and quantum spin Hall insulators to a magnetic field's vector potential are also studied both in weak- and strong-field regimes, as well as the edge states in a ribbon geometry.
Miller, Edward B.; Murrett, Colleen S.; Zhu, Kai; Zhao, Suwen; Goldfeld, Dahlia A.; Bylund, Joseph H.; Friesner, Richard A.
2013-01-01
Robust homology modeling to atomic-level accuracy requires in the general case successful prediction of protein loops containing small segments of secondary structure. Further, as loop prediction advances to success with larger loops, the exclusion of loops containing secondary structure becomes awkward. Here, we extend the applicability of the Protein Local Optimization Program (PLOP) to loops up to 17 residues in length that contain either helical or hairpin segments. In general, PLOP hierarchically samples conformational space and ranks candidate loops with a high-quality molecular mechanics force field. For loops identified to possess α-helical segments, we employ an alternative dihedral library composed of (ϕ,ψ) angles commonly found in helices. The alternative library is searched over a user-specified range of residues that define the helical bounds. The source of these helical bounds can be from popular secondary structure prediction software or from analysis of past loop predictions where a propensity to form a helix is observed. Due to the maturity of our energy model, the lowest energy loop across all experiments can be selected with an accuracy of sub-Ångström RMSD in 80% of cases, 1.0 to 1.5 Å RMSD in 14% of cases, and poorer than 1.5 Å RMSD in 6% of cases. The effectiveness of our current methods in predicting hairpin-containing loops is explored with hairpins up to 13 residues in length and again reaching an accuracy of sub-Ångström RMSD in 83% of cases, 1.0 to 1.5 Å RMSD in 10% of cases, and poorer than 1.5 Å RMSD in 7% of cases. Finally, we explore the effect of an imprecise surrounding environment, in which side chains, but not the backbone, are initially in perturbed geometries. In these cases, loops perturbed to 3Å RMSD from the native environment were restored to their native conformation with sub-Ångström RMSD. PMID:23814507
Tang, Rixin; Whitwell, Robert L; Goodale, Melvyn A
2015-05-01
Goal-directed movements, such as reaching out to grasp an object, are necessarily constrained by the spatial properties of the target such as its size, shape, and position. For example, during a reach-to-grasp movement, the peak width of the aperture formed by the thumb and fingers in flight (peak grip aperture, PGA) is linearly related to the target's size. Suppressing vision throughout the movement (visual open loop) has a small though significant effect on this relationship. Visual open loop conditions also produce a large increase in the PGA compared to when vision is available throughout the movement (visual closed loop). Curiously, this differential effect of the availability of visual feedback is influenced by the presentation order: the difference in PGA between closed- and open-loop trials is smaller when these trials are intermixed (an effect we have called 'homogenization'). Thus, grasping movements are affected not only by the availability of visual feedback (closed loop or open loop) but also by what happened on the previous trial. It is not clear, however, whether this carry-over effect is mediated through motor (or sensorimotor) memory or through the interference of different task sets for closed-loop and open-loop feedback that determine when the movements are fully specified. We reasoned that sensorimotor memory, but not a task set for closed and open loop feedback, would be specific to the type of response. We tested this prediction in a condition in which pointing to targets was alternated with grasping those same targets. Critically, in this condition, when pointing was performed in open loop, grasping was always performed in closed loop (and vice versa). Despite the fact that closed- and open-loop trials were alternating in this condition, we found no evidence for homogenization of the PGA. Homogenization did occur, however, in a follow-up experiment in which grasping movements and visual feedback were alternated between the left and the right hand, indicating that sensorimotor (or motor) memory can operate both within and between hands when the response type is kept the same. In a final experiment, we ruled out the possibility that simply alternating the hand used to perform the grasp interferes with motor or sensorimotor memory. We did this by showing that when the hand was alternated within a block of exclusively closed- or open-loop trials, homogenization of the PGA did not occur. Taken together, the results suggest that (1) interference from simply switching between task sets for closed or open-loop feedback or from switching between the hands cannot account homogenization in the PGA and that (2) the programming and execution of grasps can borrow not only from grasping movements executed in the past by the same hand, but also from grasping movements executed with the other hand. Copyright © 2015 Elsevier B.V. All rights reserved.
Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl; Foltynie, Tom
2014-04-01
Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the 'effective' connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network-disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses.
Systematic approach to thermal leptogenesis
NASA Astrophysics Data System (ADS)
Frossard, T.; Garny, M.; Hohenegger, A.; Kartavtsev, A.; Mitrouskas, D.
2013-04-01
In this work we study thermal leptogenesis using nonequilibrium quantum field theory. Starting from fundamental equations for correlators of the quantum fields we describe the steps necessary to obtain quantum-kinetic equations for quasiparticles. These can easily be compared to conventional results and overcome conceptional problems inherent in the canonical approach. Beyond CP-violating decays we include also those scattering processes which are tightly related to the decays in a consistent approximation of fourth order in the Yukawa couplings. It is demonstrated explicitly how the S-matrix elements for the scattering processes in the conventional approach are related to two- and three-loop contributions to the effective action. We derive effective decay and scattering amplitudes taking medium corrections and thermal masses into account. In this context we also investigate CP-violating Higgs decay within the same formalism. From the kinetic equations we derive rate equations for the lepton asymmetry improved in that they include quantum-statistical effects and medium corrections to the quasiparticle properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henning, Brian; Lu, Xiaochuan; Murayama, Hitoshi
Here, we present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on a given UV model. We give a detailed explanation for calculating the effective action up to one-loop order in a manifestly gauge covariant fashion. This covariant derivative expansion method dramatically simplifies the process of matching a UV model with the SM EFT, and also makes available a universal formalism that is easy to use for a variety of UVmore » models. A few general aspects of RG running effects and choosing operator bases are discussed. Finally, we provide mapping results between the bosonic sector of the SM EFT and a complete set of precision electroweak and Higgs observables to which present and near future experiments are sensitive. Many results and tools which should prove useful to those wishing to use the SM EFT are detailed in several appendices.« less
Lucas, M L; Duncan, N W; o'reilly, N F; McIlvenny, T J; Nelson, Y B
2008-05-01
On contact with the mucosa, heat stable (STa) enterotoxin from Escherichia coli reduces fluid absorption in vivo in the perfused jejunum of the anaesthetized rat. The question of whether it also has a vagally mediated remote action on jejunal absorption, when instilled into the ileum, was re-examined, given contradictory findings in the literature. A standard perfused loop preparation was used to measure luminal uptake of fluid in vivo by means of volume recovery. STa in the ileum was found to have no effect on jejunal absorption, regardless of cervical or sub-diaphragmatic vagotomy and also regardless of the nature of the perfusate anion. The batches of toxin were shown in parallel experiments to reduce fluid absorption directly in the jejunum and also in the ileum. Similarly, vagal nerves prior to section had demonstrable in vivo physiological function. There was therefore no evidence for an indirect, vagally mediated ileal effect of STa on proximal fluid absorption.
The 1-loop effective potential for the Standard Model in curved spacetime
NASA Astrophysics Data System (ADS)
Markkanen, Tommi; Nurmi, Sami; Rajantie, Arttu; Stopyra, Stephen
2018-06-01
The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of β-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which is demonstrated with the example of vacuum stability in de Sitter space.
Optoelectronic instrumentation enhancement using data mining feedback for a 3D measurement system
NASA Astrophysics Data System (ADS)
Flores-Fuentes, Wendy; Sergiyenko, Oleg; Gonzalez-Navarro, Félix F.; Rivas-López, Moisés; Hernandez-Balbuena, Daniel; Rodríguez-Quiñonez, Julio C.; Tyrsa, Vera; Lindner, Lars
2016-12-01
3D measurement by a cyber-physical system based on optoelectronic scanning instrumentation has been enhanced by outliers and regression data mining feedback. The prototype has applications in (1) industrial manufacturing systems that include: robotic machinery, embedded vision, and motion control, (2) health care systems for measurement scanning, and (3) infrastructure by providing structural health monitoring. This paper presents new research performed in data processing of a 3D measurement vision sensing database. Outliers from multivariate data have been detected and removal to improve artificial intelligence regression algorithm results. Physical measurement error regression data has been used for 3D measurements error correction. Concluding, that the joint of physical phenomena, measurement and computation is an effectiveness action for feedback loops in the control of industrial, medical and civil tasks.
An Adaptive Control Technology for Safety of a GTM-like Aircraft
NASA Technical Reports Server (NTRS)
Matsutani, Megumi; Crespo, Luis G.; Annaswamy, Anuradha; Jang, Jinho
2010-01-01
An adaptive control architecture for safe performance of a transport aircraft subject to various adverse conditions is proposed and verified in this report. This architecture combines a nominal controller based on a Linear Quadratic Regulator with integral action, and an adaptive controller that accommodates actuator saturation and bounded disturbances. The effectiveness of the baseline controller and its adaptive augmentation are evaluated using a stand-alone control veri fication methodology. Case studies that pair individual parameter uncertainties with critical flight maneuvers are studied. The resilience of the controllers is determined by evaluating the degradation in closed-loop performance resulting from increasingly larger deviations in the uncertain parameters from their nominal values. Symmetric and asymmetric actuator failures, flight upsets, and center of gravity displacements, are some of the uncertainties considered.
The hypermultiplet with Heisenberg isometry in N = 2 global and local supersymmetry
NASA Astrophysics Data System (ADS)
Ambrosetti, Nicola; Antoniadis, Ignatios; Derendinger, Jean-Pierre; Tziveloglou, Pantelis
2011-06-01
The string coupling of N = 2 supersymmetric compactifications of type II string theory on a Calabi-Yau manifold belongs to the so-called universal dilaton hyper-multiplet, that has four real scalars living on a quaternion-Kähler manifold. Requiring Heisenberg symmetry, which is a maximal subgroup of perturbative isometries, reduces the possible manifolds to a one-parameter family that describes the tree-level effective action deformed by the only possible perturbative correction arising at one-loop level. A similar argument can be made at the level of global supersymmetry where the scalar manifold is hyper-Kähler. In this work, the connection between global and local supersymmetry is explicitly constructed, providing a non-trivial gravity decoupled limit of type II strings already in perturbation theory.
Nonlinear effective theory of dark energy
NASA Astrophysics Data System (ADS)
Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo
2018-04-01
We develop an approach to parametrize cosmological perturbations beyond linear order for general dark energy and modified gravity models characterized by a single scalar degree of freedom. We derive the full nonlinear action, focusing on Horndeski theories. In the quasi-static, non-relativistic limit, there are a total of six independent relevant operators, three of which start at nonlinear order. The new nonlinear couplings modify, beyond linear order, the generalized Poisson equation relating the Newtonian potential to the matter density contrast. We derive this equation up to cubic order in perturbations and, in a companion article [1], we apply it to compute the one-loop matter power spectrum. Within this approach, we also discuss the Vainshtein regime around spherical sources and the relation between the Vainshtein scale and the nonlinear scale for structure formation.
OSCILLATION OF NEWLY FORMED LOOPS AFTER MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuhong; Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn
With the high spatial and temporal resolution Hα images from the New Vacuum Solar Telescope, we focus on two groups of loops with an X-shaped configuration in the dynamic chromosphere. We find that the anti-directed loops approach each other and reconnect continually. The connectivity of the loops is changed and new loops are formed and stack together. The stacked loops are sharply bent, implying that they are greatly impacted by the magnetic tension force. When another reconnection process takes place, one new loop is formed and stacks with the previously formed ones. Meanwhile, the stacked loops retract suddenly and movemore » toward the balance position, performing an overshoot movement, which led to an oscillation with an average period of about 45 s. The oscillation of newly formed loops after magnetic reconnection in the chromosphere is observed for the first time. We suggest that the stability of the stacked loops is destroyed due to the attachment of the last new loop and then suddenly retract under the effect of magnetic tension. Because of the retraction, another lower loop is pushed outward and performs an oscillation with a period of about 25 s. The different oscillation periods may be due to their difference in three parameters, i.e., loop length, plasma density, and magnetic field strength.« less
Molecular Velcro constructed from polymer loop brushes showing enhanced adhesion force
NASA Astrophysics Data System (ADS)
Zhou, Tian; Han, Biao; Han, Lin; Li, Christopher; Department of Materials Science; Engineering Team; School of Biomedical Engineering, Science; Health Systems Team
2015-03-01
Molecular Velcro is commonly seen in biological systems as the formation of strong physical entanglement at molecular scale could induce strong adhesion, which is crucial to many biological processes. To mimic this structure, we designed, and fabricated polymer loop brushes using polymer single crystals with desired surface functionality and controlled chain folding. Compared with reported loop brushes fabricated using triblock copolymers, the present loop bushes have precise loop sizes, loop grafting density, and well controlled tethering locations on the solid surface. Atomic force microscopy-based force spectroscopy measurements using a polymer chain coated probe reveal that the adhesion force are significantly enhanced on the loop brush surface as compared with its single-strand counterpart. This study directly shows the effect of polymer brush conformation on their properties, and suggests a promising strategy for advanced polymer surface design.
Direct Torque Control of a Three-Phase Voltage Source Inverter-Fed Induction Machine
2013-12-01
factors, FOC acquires all advantages of DC machine control and frees itself from the mechanical commutation drawbacks. Furthermore, FOC leads to high...of three-phase induction motor using microcontroller,” S.R.M Engineering College, Tamil Nadu, India , June/July 2006. [5] Texas Instruments Europe...loop. Direct flux control is possible through the constant magnetic field orientation achieved through commutator action. These two primary factors
NASA Technical Reports Server (NTRS)
Nagano, Hosei; Ku, Jentung
2007-01-01
This paper describes the gravity effect on heat transport characteristics in a minia6re loop heat pipe with multiple evaporators and multiple condensers. Tests were conducted in three different orientations: horizontal, 45deg tilt, and vertical. The gravity affected the loop's natural operating temperature, the maximum heat transport capability, and the thermal conductance. In the case that temperatures of compensation chambers were actively controlled, the required control heater power was also dependent on the test configuration. In the vertical configuration, the secondary wick was not able to pump the liquid from the CC to the evaporator against the gravity. Thus the loop could operate stably or display some peculiar behaviors depending on the initial liquid distribution between the evaporator and the CC. Because such an initial condition was not known prior to the test, the subsequent loop performance was unpredictable.
Klug, G; Cohen, S N
1990-01-01
Differential expression of the genes within the puf operon of Rhodobacter capsulatus is accomplished in part by differences in the rate of degradation of different segments of the puf transcript. We report here that decay of puf mRNA sequences specifying the light-harvesting I (LHI) and reaction center (RC) photosynthetic membrane peptides is initiated endoribonucleolytically within a discrete 1.4-kilobase segment of the RC-coding region. Deletion of this segment increased the half-life of the RC-coding region from 8 to 20 min while not affecting decay of LHI-coding sequences upstream from an intercistronic hairpin loop structure shown previously to impede 3'-to-5' degradation. Prolongation of RC segment half-life was dependent on the presence of other hairpin structures 3' to the RC region. Inserting the endonuclease-sensitive sites into the LHI-coding segment markedly accelerated its degradation. Our results suggest that differential degradation of the RC- and LHI-coding segments of puf mRNA is accomplished at least in part by the combined actions of RC region-specific endonuclease(s), one or more exonucleases, and several strategically located exonuclease-impeding hairpins. Images PMID:2394682
High Reliability Engine Control Demonstrated for Aircraft Engines
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
1999-01-01
For a dual redundant-control system, which is typical for short-haul aircraft, if a failure is detected in a control sensor, the engine control is transferred to a safety mode and an advisory is issued for immediate maintenance action to replace the failed sensor. The safety mode typically results in severely degraded engine performance. The goal of the High Reliability Engine Control (HREC) program was to demonstrate that the neural-network-based sensor validation technology can safely operate an engine by using the nominal closed-loop control during and after sensor failures. With this technology, engine performance could be maintained, and the sensor could be replaced as a conveniently scheduled maintenance action.
Parallel Digital Phase-Locked Loops
NASA Technical Reports Server (NTRS)
Sadr, Ramin; Shah, Biren N.; Hinedi, Sami M.
1995-01-01
Wide-band microwave receivers of proposed type include digital phase-locked loops in which band-pass filtering and down-conversion of input signals implemented by banks of multirate digital filters operating in parallel. Called "parallel digital phase-locked loops" to distinguish them from other digital phase-locked loops. Systems conceived as cost-effective solution to problem of filtering signals at high sampling rates needed to accommodate wide input frequency bands. Each of M filters process 1/M of spectrum of signal.
Parikh, Punam P; Tashiro, Jun; Wagenaar, Amy E; Curbelo, Miosotys; Perez, Eduardo A; Neville, Holly L; Hogan, Anthony R; Sola, Juan E
2018-04-01
Appendiceal ligation during pediatric laparoscopic appendectomy (LA) may be performed using looped suture versus stapler. Controversy regarding the utility of either method exists. Clinical outcomes and cost analysis of LA with both methods were compared. All pediatric LA were performed from fiscal years 2013 and 2014 by two pediatric surgeons. While one surgeon used looped suture, the other used stapler exclusively. chi-Square tests were performed to analyze associations. Two hundred thirty-eight cases were analyzed where looped suture versus stapler LA was performed in 46% and 54% of patients, respectively. Operating room costs were $317.10 and $707.12/person for looped suture and stapler LA, respectively (P<0.0001). Difference in cost of $390.02/person was attributed solely to ligation type. On bivariate analysis, rate of in-hospital complications, length of stay, return-to-ER and readmission within 30 days did not significantly differ between groups. A comparative analysis of looped suture versus stapler device during LA for pediatric appendicitis revealed that postoperative complications, length of stay, ER visits and readmissions were not significantly different. Looped suture LA was significantly more cost efficient than stapler LA. In pediatric appendicitis, appendiceal ligation during LA may be performed safely and cost effectively with looped suture versus stapler. Cost effectiveness LEVEL OF EVIDENCE: III. Copyright © 2017 Elsevier Inc. All rights reserved.
Simulating nanostorm heating in coronal loops using hydrodynamics and non-thermal particle evolution
NASA Astrophysics Data System (ADS)
Migliore, Christina; Winter, Henry; Murphy, Nicholas
2018-01-01
The solar corona is filled with loop-like structures that appear bright against the background when observed in the extreme ultraviolet (EUV). These loops have several remarkable properties that are not yet well understood. Warm loops (∼ 1 MK) appear to be ∼ 2 ‑ 9 times as dense at their apex as the predictions of hydrostatic atmosphere models. These loops also appear to be of constant cross-section despite the fact that the field strength in a potential magnetic field should decrease in the corona, causing the loops to expand. It is not clear why many active region loops appear to be of constant cross-section. Theories range from an internal twist of the magnetic field to observational effects. In this work we simulate active region loops heated by nanoflare storms using a dipolar magnetic field. We calculate the hydrodynamic properties for each loop using advanced hydrodynamics codes to simulate the corona and chromospheric response and basic dipole models to represent the magnetic fields of the loops. We show that even modest variations of the magnetic field strength along the loop can lead to drastic changes in the density profiles of active region loops, and they can also explain the overpressure at the apex of these loops. Synthetic AIA images of each loop are made to show the observable consequences of varying magnetic field strengths along the loop’s axis of symmetry. We also show how this work can lead to improved modeling of larger solar and stellar flares.
NASA Technical Reports Server (NTRS)
Baron, S.; Muralidharan, R.; Kleinman, D. L.
1978-01-01
The optimal control model of the human operator is used to develop closed loop models for analyzing the effects of (digital) simulator characteristics on predicted performance and/or workload. Two approaches are considered: the first utilizes a continuous approximation to the discrete simulation in conjunction with the standard optimal control model; the second involves a more exact discrete description of the simulator in a closed loop multirate simulation in which the optimal control model simulates the pilot. Both models predict that simulator characteristics can have significant effects on performance and workload.
Simulations of fully deformed oscillating flux tubes
NASA Astrophysics Data System (ADS)
Karampelas, K.; Van Doorsselaere, T.
2018-02-01
Context. In recent years, a number of numerical studies have been focusing on the significance of the Kelvin-Helmholtz instability in the dynamics of oscillating coronal loops. This process enhances the transfer of energy into smaller scales, and has been connected with heating of coronal loops, when dissipation mechanisms, such as resistivity, are considered. However, the turbulent layer is expected near the outer regions of the loops. Therefore, the effects of wave heating are expected to be confined to the loop's external layers, leaving their denser inner parts without a heating mechanism. Aim. In the current work we aim to study the spatial evolution of wave heating effects from a footpoint driven standing kink wave in a coronal loop. Methods: Using the MPI-AMRVAC code, we performed ideal, three dimensional magnetohydrodynamic simulations of footpoint driven transverse oscillations of a cold, straight coronal flux tube, embedded in a hotter environment. We have also constructed forward models for our simulation using the FoMo code. Results: The developed transverse wave induced Kelvin-Helmholtz (TWIKH) rolls expand throughout the tube cross-section, and cover it entirely. This turbulence significantly alters the initial density profile, leading to a fully deformed cross section. As a consequence, the resistive and viscous heating rate both increase over the entire loop cross section. The resistive heating rate takes its maximum values near the footpoints, while the viscous heating rate at the apex. Conclusions: We conclude that even a monoperiodic driver can spread wave heating over the whole loop cross section, potentially providing a heating source in the inner loop region. Despite the loop's fully deformed structure, forward modelling still shows the structure appearing as a loop. A movie attached to Fig. 1 is available at http://https://www.aanda.org
Use of Double-Loop Learning to Combat Advanced Persistent Threat: Multiple Case Studies
ERIC Educational Resources Information Center
Lamb, Christopher J.
2013-01-01
The Advanced Persistent Threat (APT) presents an ever present and more growing threat to organizations across the globe. Traditional Information Technology (IT) incident response falls short in effectively addressing this threat. This researcher investigated the use of single-loop and double-loop learning in two organizations with internal…
Kellmeyer, Philipp; Cochrane, Thomas; Müller, Oliver; Mitchell, Christine; Ball, Tonio; Fins, Joseph J; Biller-Andorno, Nikola
2016-10-01
Closed-loop medical devices such as brain-computer interfaces are an emerging and rapidly advancing neurotechnology. The target patients for brain-computer interfaces (BCIs) are often severely paralyzed, and thus particularly vulnerable in terms of personal autonomy, decisionmaking capacity, and agency. Here we analyze the effects of closed-loop medical devices on the autonomy and accountability of both persons (as patients or research participants) and neurotechnological closed-loop medical systems. We show that although BCIs can strengthen patient autonomy by preserving or restoring communicative abilities and/or motor control, closed-loop devices may also create challenges for moral and legal accountability. We advocate the development of a comprehensive ethical and legal framework to address the challenges of emerging closed-loop neurotechnologies like BCIs and stress the centrality of informed consent and refusal as a means to foster accountability. We propose the creation of an international neuroethics task force with members from medical neuroscience, neuroengineering, computer science, medical law, and medical ethics, as well as representatives of patient advocacy groups and the public.
Logan, Gordon D; Crump, Matthew J C
2009-10-01
Everyone knows that attention to the details disrupts skilled performance, but little empirical evidence documents this fact. We show that attention to the hands disrupts skilled typewriting. We had skilled typists type words preceded by cues that told them to type only the letters assigned to one hand or to type all of the letters. Cuing the hands disrupted performance markedly, slowing typing and increasing the error rate (Experiment 1); these deleterious effects were observed even when no keystrokes were actually inhibited (Experiment 3). However, cuing the same letters with colors was not disruptive (Experiment 2). We account for the disruption with a hierarchical control model, in which an inner loop controls the hands and an outer loop controls what is typed. Typing letters using only one hand requires the outer loop to monitor the inner loop's output; the outer loop slows inner-loop cycle time to increase the likelihood of inhibiting responses with the unwanted hand. This produces the disruption.
Low Speed and High Speed Correlation of SMART Active Flap Rotor Loads
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi B. R.
2010-01-01
Measured, open loop and closed loop data from the SMART rotor test in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with CAMRAD II calculations. One open loop high-speed case and four closed loop cases are considered. The closed loop cases include three high-speed cases and one low-speed case. Two of these high-speed cases include a 2 deg flap deflection at 5P case and a test maximum-airspeed case. This study follows a recent, open loop correlation effort that used a simple correction factor for the airfoil pitching moment Mach number. Compared to the earlier effort, the current open loop study considers more fundamental corrections based on advancing blade aerodynamic conditions. The airfoil tables themselves have been studied. Selected modifications to the HH-06 section flap airfoil pitching moment table are implemented. For the closed loop condition, the effect of the flap actuator is modeled by increased flap hinge stiffness. Overall, the open loop correlation is reasonable, thus confirming the basic correctness of the current semi-empirical modifications; the closed loop correlation is also reasonable considering that the current flap model is a first generation model. Detailed correlation results are given in the paper.
IN-PILE CORROSION TEST LOOPS FOR AQUEOUS HOMOGENEOUS REACTOR SOLUTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, H.C.; Jenks, G.H.; Bohlmann, E.G.
1960-12-21
An in-pile corrosion test loop is described which is used to study the effect of reactor radiation on the corrosion of materials of construction and the chemical stability of fuel solutions of interest to the Aqueous Homogeneous Reactor Program at ORNL. Aqueous solutions of uranyl sulfate are circulated in the loop by means of a 5-gpm canned-rotor pump, and the pump loop is designed for operation at temperatures to 300 ts C and pressures to 2000 psia while exposed to reactor radiation in beam-hole facilities of the LITR and ORR. Operation of the first loop in-pile was begun in Octobermore » 1954, and since that time 17 other in-pile loop experiments were completed. Design criteria of the pump loop and its associated auxiliary equipment and instrumentation are described. In-pile operating procedures, safety features, and operating experience are presented. A cost summary of the design, fabrication, and installation of the loop and experimental facillties is also included. (auth)« less
Cockell, C S; Andrady, A L
1999-01-01
The Martian surface is exposed to both UVC radiation (<280 nm) and higher doses of UVB (280-315 nm) compared to the surface of the Earth. Terrestrial organisms have not evolved to cope with such high levels of UVC and UVB and thus any attempts to introduce organisms to Mars, particularly in closed-loop life support systems that use ambient sunlight, must address this problem. Here we examine the UV radiation environment of Mars with respect to biological systems. Action spectra and UV surface fluxes are used to estimate the UV stress that both DNA and chloroplasts would experience. From this vantage point it is possible to consider appropriate measures to address the problem of the Martian UV environment for future long term human exploration and settlement strategies. Some prospects for improving the UV tolerance of organisms are also discussed. Existing artificial ecosystems such as Biosphere 2 can provide some insights into design strategies pertinent to high UV environments. Some prospects for improving the UV tolerance of organisms are also discussed. The data also have implications for the establishment of closed-loop ecosystems using natural sunlight on the lunar surface and elsewhere in the Solar System.
Staggered heavy baryon chiral perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Jon A.
2008-03-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{supmore » 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.« less
Simplicity constraints: A 3D toy model for loop quantum gravity
NASA Astrophysics Data System (ADS)
Charles, Christoph
2018-05-01
In loop quantum gravity, tremendous progress has been made using the Ashtekar-Barbero variables. These variables, defined in a gauge fixing of the theory, correspond to a parametrization of the solutions of the so-called simplicity constraints. Their geometrical interpretation is however unsatisfactory as they do not constitute a space-time connection. It would be possible to resolve this point by using a full Lorentz connection or, equivalently, by using the self-dual Ashtekar variables. This leads however to simplicity constraints or reality conditions which are notoriously difficult to implement in the quantum theory. We explore in this paper the possibility of using completely degenerate actions to impose such constraints at the quantum level in the context of canonical quantization. To do so, we define a simpler model, in 3D, with similar constraints by extending the phase space to include an independent vielbein. We define the classical model and show that a precise quantum theory by gauge unfixing can be defined out of it, completely equivalent to the standard 3D Euclidean quantum gravity. We discuss possible future explorations around this model as it could help as a stepping stone to define full-fledged covariant loop quantum gravity.
Trajectory tracking control for underactuated stratospheric airship
NASA Astrophysics Data System (ADS)
Zheng, Zewei; Huo, Wei; Wu, Zhe
2012-10-01
Stratospheric airship is a new kind of aerospace system which has attracted worldwide developing interests for its broad application prospects. Based on the trajectory linearization control (TLC) theory, a novel trajectory tracking control method for an underactuated stratospheric airship is presented in this paper. Firstly, the TLC theory is described sketchily, and the dynamic model of the stratospheric airship is introduced with kinematics and dynamics equations. Then, the trajectory tracking control strategy is deduced in detail. The designed control system possesses a cascaded structure which consists of desired attitude calculation, position control loop and attitude control loop. Two sub-loops are designed for the position and attitude control loops, respectively, including the kinematics control loop and dynamics control loop. Stability analysis shows that the controlled closed-loop system is exponentially stable. Finally, simulation results for the stratospheric airship to track typical trajectories are illustrated to verify effectiveness of the proposed approach.
Investigation of Low Power Operation in a Loop Heat Pipe
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Powers, Edward I. (Technical Monitor)
2001-01-01
This paper presents test results of an experimental study of low power operation in a loop heat pipe. The main objective was to demonstrate how changes in the vapor void fraction inside the evaporator core would affect the loop behavior, The fluid inventory and the relative tilt between the evaporator and the compensation chamber were varied so as to create different vapor void fractions in the evaporator core. The effect on the loop start-up, operating temperature, and capillary limit was investigated. Test results indicate that the vapor void fraction inside the evaporator core is the single most important factor in determining the loop operation at low powers.
A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.
Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A
2005-11-01
While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.
Fast-sausage oscillations in coronal loops with smooth boundary
NASA Astrophysics Data System (ADS)
Lopin, I.; Nagorny, I.
2014-12-01
Aims: The effect of the transition layer (shell) in nonuniform coronal loops with a continuous radial density profile on the properties of fast-sausage modes are studied analytically and numerically. Methods: We modeled the coronal waveguide as a structured tube consisting of a cord and a transition region (shell) embedded within a magnetic uniform environment. The derived general dispersion relation was investigated analytically and numerically in the context of frequency, cut-off wave number, and the damping rate of fast-sausage oscillations for various values of loop parameters. Results: The frequency of the global fast-sausage mode in the loops with a diffuse (or smooth) boundary is determined mainly by the external Alfvén speed and longitudinal wave number. The damping rate of such a mode can be relatively low. The model of coronal loop with diffuse boundary can support a comparatively low-frequency, global fast-sausage mode of detectable quality without involving extremely low values of the density contrast. The effect of thin transition layer (corresponds to the loops with steep boundary) is negligible and produces small reductions of oscillation frequency and relative damping rate in comparison with the case of step-function density profile. Seismological application of obtained results gives the estimated Alfvén speed outside the flaring loop about 3.25 Mm/s.
EMIR: a configurable hierarchical system for event monitoring and incident response
NASA Astrophysics Data System (ADS)
Deich, William T. S.
2014-07-01
The Event Monitor and Incident Response system (emir) is a flexible, general-purpose system for monitoring and responding to all aspects of instrument, telescope, and general facility operations, and has been in use at the Automated Planet Finder telescope for two years. Responses to problems can include both passive actions (e.g. generating alerts) and active actions (e.g. modifying system settings). Emir includes a monitor-and-response daemon, plus graphical user interfaces and text-based clients that automatically configure themselves from data supplied at runtime by the daemon. The daemon is driven by a configuration file that describes each condition to be monitored, the actions to take when the condition is triggered, and how the conditions are aggregated into hierarchical groups of conditions. Emir has been implemented for the Keck Task Library (KTL) keyword-based systems used at Keck and Lick Observatories, but can be readily adapted to many event-driven architectures. This paper discusses the design and implementation of Emir , and the challenges in balancing the competing demands for simplicity, flexibility, power, and extensibility. Emir 's design lends itself well to multiple purposes, and in addition to its core monitor and response functions, it provides an effective framework for computing running statistics, aggregate values, and summary state values from the primitive state data generated by other subsystems, and even for creating quick-and-dirty control loops for simple systems.
Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation
NASA Astrophysics Data System (ADS)
Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.
2017-08-01
In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.
Top-quark loop corrections in Z+jet and Z + 2 jet production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, John M.; Keith Ellis, R.
2017-01-01
The sophistication of current predictions formore » $Z+$jet production at hadron colliders necessitates a re-evaluation of any approximations inherent in the theoretical calculations. In this paper we address one such issue, the inclusion of mass effects in top-quark loops. We ameliorate an existing calculation of $Z+1$~jet and $Z+2$~jet production by presenting exact analytic formulae for amplitudes containing top-quark loops that enter at next-to-leading order in QCD. Although approximations based on an expansion in powers of $$1/m_t^2$$ can lead to poor high-energy behavior, an exact treatment of top-quark loops demonstrates that their effect is small and has limited phenomenological interest.« less
Watkins, Stephan; Pichler, Werner J.
2013-01-01
T cell receptors (TCR) containing Vβ20-1 have been implicated in a wide range of T cell mediated disease and allergic reactions, making it a target for understanding these. Mechanics of T cell receptors are largely unexplained by static structures available from x-ray crystallographic studies. A small number of molecular dynamic simulations have been conducted on TCR, however are currently lacking either portions of the receptor or explanations for differences between binding and non-binding TCR recognition of respective peptide-HLA. We performed molecular dynamic simulations of a TCR containing variable domain Vβ20-1, sequenced from drug responsive T cells. These were initially from a patient showing maculopapular eruptions in response to the sulfanilamide-antibiotic sulfamethoxazole (SMX). The CDR2β domain of this TCR was found to dock SMX with high affinity. Using this compound as a perturbation, overall mechanisms involved in responses mediated by this receptor were explored, showing a chemical action on the TCR free from HLA or peptide interaction. Our simulations show two completely separate modes of binding cognate peptide-HLA complexes, with an increased affinity induced by SMX bound to the Vβ20-1. Overall binding of the TCR is mediated through a primary recognition by either the variable β or α domain, and a switch in recognition within these across TCR loops contacting the peptide and HLA occurs when SMX is present in the CDR2β loop. Large binding affinity differences are induced by summed small amino acid changes primarily by SMX modifying only three critical CDR2β loop amino acid positions. These residues, TYRβ57, ASPβ64, and LYSβ65 initially hold hydrogen bonds from the CDR2β to adjacent CDR loops. Effects from SMX binding are amplified and traverse longer distances through internal TCR hydrogen bonding networks, controlling the overall TCR conformation. Thus, the CDR2β of Vβ20-1 acts as a ligand controlled switch affecting overall TCR binding affinity. PMID:24116097
Onset of Spin Polarization in Four-Gate Quantum Point Contacts
NASA Astrophysics Data System (ADS)
Jones, Alex
A series of simulations which utilize a Non-equilibrium Green's function (NEGF) formalism is suggested which can provide indirect evidence of the fine and non-local electrostatic tuning of the onset of spin polarization in two closely spaced quantum point contacts (QPCs) that experience a phenomenon known as lateral spin-orbit coupling (LSOC). Each of the QPCs that create the device also has its own pair of side gates (SGs) which are in-plane with the device channel. Numerical simulations of the conductance of the two closely spaced QPCs or four-gate QPC are carried out for different biasing conditions applied to two leftmost and rightmost SGs. Conductance plots are then calculated as a function of the variable, Vsweep, which is the common sweep voltage applied to the QPC. When Vsweep is only applied to two of the four side gates, the plots show several conductance anomalies, i.e., below G0 = 2e2/h, characterized by intrinsic bistability, i.e., hysteresis loops due to a difference in the conductance curves for forward and reverse common voltage sweep simulations. The appearance of hysteresis loops is attributed to the co-existence of multistable spin textures in the narrow channel of the four-gate QPC. The shape, location, and number of hysteresis loops are very sensitive to the biasing conditions on the four SGs. The shape and size of the conductance anomalies and hysteresis loops are shown to change when the biasing conditions on the leftmost and rightmost SGs are swapped, a rectifying behavior providing an additional indirect evidence for the onset of spontaneous spin polarization in nanoscale devices made of QPCs. The results of the simulations reveal that the occurrence and fine tuning of conductance anomalies in QPC structures are highly sensitive to the non-local action of closely spaced SGs. It is therefore imperative to take into account this proximity effect in the design of all electrical spin valves making use of middle gates to fine tune the spin precession between QPC based spin injector and detector contacts.
Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 2: Data
NASA Technical Reports Server (NTRS)
Waszak, M. R.; Schmidt, D. K.
1985-01-01
Two analysis methods are applied to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop modal analysis technique. This method considers the effect of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Both analyses indicated that dynamic aeroelastic effects caused a degradation in vehicle tracking performance, based on the evaluation of some simulation results. Volume 2 consists of the presentation of the state variable models of the flexible aircraft configurations used in the analysis applications mode shape plots for the structural modes, numerical results from the modal analysis frequency response plots from the pilot in the loop analysis and a listing of the modal analysis computer program.
Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project
NASA Technical Reports Server (NTRS)
Bosworth, John
2006-01-01
A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions
A Symbiotic Brain-Machine Interface through Value-Based Decision Making
Mahmoudi, Babak; Sanchez, Justin C.
2011-01-01
Background In the development of Brain Machine Interfaces (BMIs), there is a great need to enable users to interact with changing environments during the activities of daily life. It is expected that the number and scope of the learning tasks encountered during interaction with the environment as well as the pattern of brain activity will vary over time. These conditions, in addition to neural reorganization, pose a challenge to decoding neural commands for BMIs. We have developed a new BMI framework in which a computational agent symbiotically decoded users' intended actions by utilizing both motor commands and goal information directly from the brain through a continuous Perception-Action-Reward Cycle (PARC). Methodology The control architecture designed was based on Actor-Critic learning, which is a PARC-based reinforcement learning method. Our neurophysiology studies in rat models suggested that Nucleus Accumbens (NAcc) contained a rich representation of goal information in terms of predicting the probability of earning reward and it could be translated into an evaluative feedback for adaptation of the decoder with high precision. Simulated neural control experiments showed that the system was able to maintain high performance in decoding neural motor commands during novel tasks or in the presence of reorganization in the neural input. We then implanted a dual micro-wire array in the primary motor cortex (M1) and the NAcc of rat brain and implemented a full closed-loop system in which robot actions were decoded from the single unit activity in M1 based on an evaluative feedback that was estimated from NAcc. Conclusions Our results suggest that adapting the BMI decoder with an evaluative feedback that is directly extracted from the brain is a possible solution to the problem of operating BMIs in changing environments with dynamic neural signals. During closed-loop control, the agent was able to solve a reaching task by capturing the action and reward interdependency in the brain. PMID:21423797
Integrating robotic action with biologic perception: A brain-machine symbiosis theory
NASA Astrophysics Data System (ADS)
Mahmoudi, Babak
In patients with motor disability the natural cyclic flow of information between the brain and external environment is disrupted by their limb impairment. Brain-Machine Interfaces (BMIs) aim to provide new communication channels between the brain and environment by direct translation of brain's internal states into actions. For enabling the user in a wide range of daily life activities, the challenge is designing neural decoders that autonomously adapt to different tasks, environments, and to changes in the pattern of neural activity. In this dissertation, a novel decoding framework for BMIs is developed in which a computational agent autonomously learns how to translate neural states into action based on maximization of a measure of shared goal between user and the agent. Since the agent and brain share the same goal, a symbiotic relationship between them will evolve therefore this decoding paradigm is called a Brain-Machine Symbiosis (BMS) framework. A decoding agent was implemented within the BMS framework based on the Actor-Critic method of Reinforcement Learning. The rule of the Actor as a neural decoder was to find mapping between the neural representation of motor states in the primary motor cortex (MI) and robot actions in order to solve reaching tasks. The Actor learned the optimal control policy using an evaluative feedback that was estimated by the Critic directly from the user's neural activity of the Nucleus Accumbens (NAcc). Through a series of computational neuroscience studies in a cohort of rats it was demonstrated that NAcc could provide a useful evaluative feedback by predicting the increase or decrease in the probability of earning reward based on the environmental conditions. Using a closed-loop BMI simulator it was demonstrated the Actor-Critic decoding architecture was able to adapt to different tasks as well as changes in the pattern of neural activity. The custom design of a dual micro-wire array enabled simultaneous implantation of MI and NAcc for the development of a full closed-loop system. The Actor-Critic decoding architecture was able to solve the brain-controlled reaching task using a robotic arm by capturing the interdependency between the simultaneous action representation in MI and reward expectation in NAcc.
Prell, Christina; Sun, Laixiang; Feng, Kuishuang; He, Jiaying; Hubacek, Klaus
2017-05-15
Land-use change is increasingly driven by global trade. The term "telecoupling" has been gaining ground as a means to describe how human actions in one part of the world can have spatially distant impacts on land and land-use in another. These interactions can, over time, create both direct and spatially distant feedback loops, in which human activity and land use mutually impact one another over great expanses. In this paper, we develop an analytical framework to clarify spatially distant feedbacks in the case of land use and global trade. We use an innovative mix of multi-regional input-output (MRIO) analysis and stochastic actor-oriented models (SAOMs) for analyzing the co-evolution of changes in trade network patterns with those of land use, as embodied in trade. Our results indicate that the formation of trade ties and changes in embodied land use mutually impact one another, and further, that these changes are linked to disparities in countries' wealth. Through identifying this feedback loop, our results support ongoing discussions about the unequal trade patterns between rich and poor countries that result in uneven distributions of negative environmental impacts. Finally, evidence for this feedback loop is present even when controlling for a number of underlying mechanisms, such as countries' land endowments, their geographical distance from one another, and a number of endogenous network tendencies. Copyright © 2017 Elsevier B.V. All rights reserved.
Is the Library's Online Orientation Program Effective with English Language Learners?
ERIC Educational Resources Information Center
Albarillo, Frans
2017-01-01
In this paper, the author examines four years of assessment data (N = 4,786) from Brooklyn College's Library Online Orientation Program (LOOP; url: https://library.brooklyn.cuny.edu/resources/loop/loop.php), which is used to provide all English 1010 students with an orientation to the library, to see if English language learners (ELLs) are…
NASA Astrophysics Data System (ADS)
Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi
2018-01-01
Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.
Observed form and action of the magnetic energy release in flares
NASA Technical Reports Server (NTRS)
Machado, Marcos E.; Moore, Ronald L.
1986-01-01
The observable spatio-temporal characteristics of the energy release in flares and their association with the magnetic environment and tracers of field dynamics are reviewed. The observations indicate that impulsive phase manifestations, like particle acceleration, may be related to the formation of neutral sheets at the interface between interacting bipoles, but that the site for the bulk of the energy release is within closed loops rather than at the interaction site.
The Warfighter Associate: Decision-Support and Metrics for Mission Command
2013-01-01
complex situations can be captured it makes sense to use software to provide this important adjunct to complex human cognitive problems. As a software...tasks that could distract the user from the important events occurring. An Associate System also observes the actions undertaken by a human operator...the Commander’s Critical Information Requirements. ‡It is important to note that the Warfighter Associate maintains a human -in-the-loop for decision
Magnetic Bianchi type II string cosmological model in loop quantum cosmology
NASA Astrophysics Data System (ADS)
Rikhvitsky, Victor; Saha, Bijan; Visinescu, Mihai
2014-07-01
The loop quantum cosmology of the Bianchi type II string cosmological model in the presence of a homogeneous magnetic field is studied. We present the effective equations which provide modifications to the classical equations of motion due to quantum effects. The numerical simulations confirm that the big bang singularity is resolved by quantum gravity effects.
Path integrals and the WKB approximation in loop quantum cosmology
NASA Astrophysics Data System (ADS)
Ashtekar, Abhay; Campiglia, Miguel; Henderson, Adam
2010-12-01
We follow the Feynman procedure to obtain a path integral formulation of loop quantum cosmology starting from the Hilbert space framework. Quantum geometry effects modify the weight associated with each path so that the effective measure on the space of paths is different from that used in the Wheeler-DeWitt theory. These differences introduce some conceptual subtleties in arriving at the WKB approximation. But the approximation is well defined and provides intuition for the differences between loop quantum cosmology and the Wheeler-DeWitt theory from a path integral perspective.
Loop-loop interactions govern multiple steps in indole-3-glycerol phosphate synthase catalysis
Zaccardi, Margot J; O'Rourke, Kathleen F; Yezdimer, Eric M; Loggia, Laura J; Woldt, Svenja; Boehr, David D
2014-01-01
Substrate binding, product release, and likely chemical catalysis in the tryptophan biosynthetic enzyme indole-3-glycerol phosphate synthase (IGPS) are dependent on the structural dynamics of the β1α1 active-site loop. Statistical coupling analysis and molecular dynamic simulations had previously indicated that covarying residues in the β1α1 and β2α2 loops, corresponding to Arg54 and Asn90, respectively, in the Sulfolobus sulfataricus enzyme (ssIGPS), are likely important for coordinating functional motions of these loops. To test this hypothesis, we characterized site mutants at these positions for changes in catalytic function, protein stability and structural dynamics for the thermophilic ssIGPS enzyme. Although there were only modest changes in the overall steady-state kinetic parameters, solvent viscosity and solvent deuterium kinetic isotope effects indicated that these amino acid substitutions change the identity of the rate-determining step across multiple temperatures. Surprisingly, the N90A substitution had a dramatic effect on the general acid/base catalysis of the dehydration step, as indicated by the loss of the descending limb in the pH rate profile, which we had previously assigned to Lys53 on the β1α1 loop. These changes in enzyme function are accompanied with a quenching of ps-ns and µs-ms timescale motions in the β1α1 loop as measured by nuclear magnetic resonance studies. Altogether, our studies provide structural, dynamic and functional rationales for the coevolution of residues on the β1α1 and β2α2 loops, and highlight the multiple roles that the β1α1 loop plays in IGPS catalysis. Thus, substitution of covarying residues in the active-site β1α1 and β2α2 loops of indole-3-glycerol phosphate synthase results in functional, structural, and dynamic changes, highlighting the multiple roles that the β1α1 loop plays in enzyme catalysis and the importance of regulating the structural dynamics of this loop through noncovalent interactions with nearby structural elements. PMID:24403092
NASA Astrophysics Data System (ADS)
Agarwal, Sonya; Döring, Kristina; Gierusz, Leszek A.; Iyer, Pooja; Lane, Fiona M.; Graham, James F.; Goldmann, Wilfred; Pinheiro, Teresa J. T.; Gill, Andrew C.
2015-10-01
The β2-α2 loop of PrPC is a key modulator of disease-associated prion protein misfolding. Amino acids that differentiate mouse (Ser169, Asn173) and deer (Asn169, Thr173) PrPC appear to confer dramatically different structural properties in this region and it has been suggested that amino acid sequences associated with structural rigidity of the loop also confer susceptibility to prion disease. Using mouse recombinant PrP, we show that mutating residue 173 from Asn to Thr alters protein stability and misfolding only subtly, whilst changing Ser to Asn at codon 169 causes instability in the protein, promotes oligomer formation and dramatically potentiates fibril formation. The doubly mutated protein exhibits more complex folding and misfolding behaviour than either single mutant, suggestive of differential effects of the β2-α2 loop sequence on both protein stability and on specific misfolding pathways. Molecular dynamics simulation of protein structure suggests a key role for the solvent accessibility of Tyr168 in promoting molecular interactions that may lead to prion protein misfolding. Thus, we conclude that ‘rigidity’ in the β2-α2 loop region of the normal conformer of PrP has less effect on misfolding than other sequence-related effects in this region.
Loop diuretics inhibit cholinergic and noncholinergic nerves in guinea pig airways.
Elwood, W; Lötvall, J O; Barnes, P J; Chung, K F
1991-06-01
Furosemide, a loop diuretic, is known to inhibit the response to a variety of indirect bronchial challenges in humans but does not inhibit bronchoconstriction induced by inhaled methacholine or histamine. We have investigated the effects of the two loop diuretics, furosemide (10(-6) to 10(-3) M) and bumetanide (10(-7) to 10(-4) M), on airway smooth muscle contraction in vitro induced by electrical field stimulation (EFS), or exogenously applied acetylcholine (ACh) or substance P (SP) in guinea pig tracheal and bronchial smooth muscle strips pretreated with indomethacin (10(-5) M) and propranolol (10(-6) M). Both furosemide and bumetanide caused a concentration-dependent inhibition of cholinergically mediated neural contraction in the trachea. The effect of furosemide was not influenced by the presence of airway epithelium. Furthermore, both furosemide and bumetanide inhibited in a concentration-dependent fashion nonadrenergic, noncholinergic (NANC) contraction induced by electrical field stimulation of bronchi pretreated with atropine (10(-5) M). Neither drug at the highest concentration inhibited the responses to exogenous acetylcholine (10(-8) to 10(-2) M) or substance P (10(-9) to 10(-5) M). Thus loop diuretics inhibit the neurally induced contraction of guinea pig airways without a direct effect on airway smooth muscle. We conclude that loop diuretics inhibit both cholinergic and excitatory NANC neurotransmission in guinea pig airways and that this effect may be related to their inhibitory effects on the sodium-potassium-chloride cotransporter.
Crystal defect studies using x-ray diffuse scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, B.C.
1980-01-01
Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation intomore » dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.« less
How to use the Standard Model effective field theory
Henning, Brian; Lu, Xiaochuan; Murayama, Hitoshi
2016-01-06
Here, we present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on a given UV model. We give a detailed explanation for calculating the effective action up to one-loop order in a manifestly gauge covariant fashion. This covariant derivative expansion method dramatically simplifies the process of matching a UV model with the SM EFT, and also makes available a universal formalism that is easy to use for a variety of UVmore » models. A few general aspects of RG running effects and choosing operator bases are discussed. Finally, we provide mapping results between the bosonic sector of the SM EFT and a complete set of precision electroweak and Higgs observables to which present and near future experiments are sensitive. Many results and tools which should prove useful to those wishing to use the SM EFT are detailed in several appendices.« less
Kuchnir, M.; Mills, F.E.
1984-09-28
A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.
Kuchnir, Moyses; Mills, Frederick E.
1987-01-01
A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.
Furosemide suppresses ileal and colonic contractility via interactions with GABA-A receptor in mice.
Kaewsaro, Kannaree; Nualplub, Suparp; Bumrungsri, Sara; Khuituan, Pissared
2017-11-01
The loop diuretic furosemide has an action to inhibit Na + -K + -2Cl - co-transporter at the thick ascending limb of Henle's loop resulting in diuresis. Furosemide also has the non-diuretic effects by binding to GABA-A receptor which may involve the gastrointestinal tract. The aim of this study was to investigate the effects of furosemide on smooth muscle contractions in mice ileum and proximal colon. Each intestinal segment suspended in an organ bath was connected to a force transducer. Signal output of mechanical activity was amplified and recorded for analysis using PowerLab System. After equilibration, the intestine was directly exposed to furosemide, GABA, GABA-A receptor agonist (muscimol), or muscarinic receptor antagonist (atropine). Furosemide (50, 100 and 500 μmol L -1 ) acutely reduced the amplitude of ileal and colonic contraction. In the ileum, 1 mmol L -1 GABA and 10-60 μmol L -1 muscimol significantly increased the amplitude, whereas in the colon, 50-100 mmol L -1 GABA and 60 μmol L -1 muscimol decreased the contractions. The contractions were also significantly suppressed by atropine. To investigate the mechanisms underlying the inhibiting effect of furosemide, furosemide was added to the organ bath prior to the addition of muscimol or atropine. A comparison of furosemide combined with muscimol or atropine group and furosemide group showed no significant difference of the ileal contraction, but the amplitude of colonic contraction significantly decreased when compared to adding furosemide alone. These results suggest that furosemide can reduce the ileal and proximal colonic contraction mediated by blocking and supporting of GABA-A receptor, respectively, resulting in decreased acetylcholine release. © 2017 John Wiley & Sons Australia, Ltd.
Muralidharan, Vignesh; Balasubramani, Pragathi P; Chakravarthy, V Srinivasa; Gilat, Moran; Lewis, Simon J G; Moustafa, Ahmed A
2016-01-01
Experimental data show that perceptual cues can either exacerbate or ameliorate freezing of gait (FOG) in Parkinson's Disease (PD). For example, simple visual stimuli like stripes on the floor can alleviate freezing whereas complex stimuli like narrow doorways can trigger it. We present a computational model of the cognitive and motor cortico-basal ganglia loops that explains the effects of sensory and cognitive processes on FOG. The model simulates strong causative factors of FOG including decision conflict (a disagreement of various sensory stimuli in their association with a response) and cognitive load (complexity of coupling a stimulus with downstream mechanisms that control gait execution). Specifically, the model simulates gait of PD patients (freezers and non-freezers) as they navigate a series of doorways while simultaneously responding to several Stroop word cues in a virtual reality setup. The model is based on an actor-critic architecture of Reinforcement Learning involving Utility-based decision making, where Utility is a weighted sum of Value and Risk functions. The model accounts for the following experimental data: (a) the increased foot-step latency seen in relation to high conflict cues, (b) the high number of motor arrests seen in PD freezers when faced with a complex cue compared to the simple cue, and (c) the effect of dopamine medication on these motor arrests. The freezing behavior arises as a result of addition of task parameters (doorways and cues) and not due to inherent differences in the subject group. The model predicts a differential role of risk sensitivity in PD freezers and non-freezers in the cognitive and motor loops. Additionally this first-of-its-kind model provides a plausible framework for understanding the influence of cognition on automatic motor actions in controls and Parkinson's Disease.
Muralidharan, Vignesh; Balasubramani, Pragathi P.; Chakravarthy, V. Srinivasa; Gilat, Moran; Lewis, Simon J. G.; Moustafa, Ahmed A.
2017-01-01
Experimental data show that perceptual cues can either exacerbate or ameliorate freezing of gait (FOG) in Parkinson's Disease (PD). For example, simple visual stimuli like stripes on the floor can alleviate freezing whereas complex stimuli like narrow doorways can trigger it. We present a computational model of the cognitive and motor cortico-basal ganglia loops that explains the effects of sensory and cognitive processes on FOG. The model simulates strong causative factors of FOG including decision conflict (a disagreement of various sensory stimuli in their association with a response) and cognitive load (complexity of coupling a stimulus with downstream mechanisms that control gait execution). Specifically, the model simulates gait of PD patients (freezers and non-freezers) as they navigate a series of doorways while simultaneously responding to several Stroop word cues in a virtual reality setup. The model is based on an actor-critic architecture of Reinforcement Learning involving Utility-based decision making, where Utility is a weighted sum of Value and Risk functions. The model accounts for the following experimental data: (a) the increased foot-step latency seen in relation to high conflict cues, (b) the high number of motor arrests seen in PD freezers when faced with a complex cue compared to the simple cue, and (c) the effect of dopamine medication on these motor arrests. The freezing behavior arises as a result of addition of task parameters (doorways and cues) and not due to inherent differences in the subject group. The model predicts a differential role of risk sensitivity in PD freezers and non-freezers in the cognitive and motor loops. Additionally this first-of-its-kind model provides a plausible framework for understanding the influence of cognition on automatic motor actions in controls and Parkinson's Disease. PMID:28119584
DNA looping by FokI: the impact of twisting and bending rigidity on protein-induced looping dynamics
Laurens, Niels; Rusling, David A.; Pernstich, Christian; Brouwer, Ineke; Halford, Stephen E.; Wuite, Gijs J. L.
2012-01-01
Protein-induced DNA looping is crucial for many genetic processes such as transcription, gene regulation and DNA replication. Here, we use tethered-particle motion to examine the impact of DNA bending and twisting rigidity on loop capture and release, using the restriction endonuclease FokI as a test system. To cleave DNA efficiently, FokI bridges two copies of an asymmetric sequence, invariably aligning the sites in parallel. On account of the fixed alignment, the topology of the DNA loop is set by the orientation of the sites along the DNA. We show that both the separation of the FokI sites and their orientation, altering, respectively, the twisting and the bending of the DNA needed to juxtapose the sites, have profound effects on the dynamics of the looping interaction. Surprisingly, the presence of a nick within the loop does not affect the observed rigidity of the DNA. In contrast, the introduction of a 4-nt gap fully relaxes all of the torque present in the system but does not necessarily enhance loop stability. FokI therefore employs torque to stabilise its DNA-looping interaction by acting as a ‘torsional’ catch bond. PMID:22373924
In-Silico Identification Of Micro-Loops In Myelodysplastic Syndromes
NASA Astrophysics Data System (ADS)
Beck, Dominik; Brandl, Miriam; Pham, Tuan D.; Chang, Chung-Che; Zhou, Xiaobo
2011-06-01
Micro-loops are regulatory network motifs that leverage transcriptional and posttranscriptional control to effectively regulate the transcriptome. In this paper a regulatory network for Myelodysplastic Syndromes (MDSs) was constructed from the literature and publicly available data sources. The network was filtered using data from deep-sequencing of small RNAs, exon and microarrays. Motif discovery showed that micro-loops might exist in MDS. We further used the identified micro-loops and performed basic network analysis to identify the known disease gene RUNX1/AML, as well as miRNA family hsa-mir-181. This suggested that the concept of micro-loops can be applied to enhance disease gene identification and biomarker discovery.
Effect of Variable Emittance Coatings on the Operation of a Miniature Loop Heat Pipe
NASA Technical Reports Server (NTRS)
Douglas, Donya M.; Ku, Jentung; Ottenstein, Laura; Swanson, Theodore; Hess, Steve; Darrin, Ann
2005-01-01
Abstract. As the size of spacecraft shrink to accommodate small and more efficient instruments, smaller launch vehicles, and constellation missions, all subsystems must also be made smaller. Under NASA NFL4 03-OSS-02, Space Technology-8 (ST 8), NASA Goddard Space Flight Center and Jet Propulsion Laboratory jointly conducted a Concept Definition study to develop a miniature loop heat pipe (MLHP) thermal management system design suitable for future small spacecraft. The proposed MLHP thermal management system consists of a miniature loop heat pipe (LHP) and deployable radiators that are coated with variable emittance coatings (VECs). As part of the Phase A study and proof of the design concept, variable emittance coatings were integrated with a breadboard miniature loop heat pipe. The miniature loop heat pipe was supplied by the Jet Propulsion Laboratory (PL), while the variable emittance technology were supplied by Johns Hopkins University Applied Physics Laboratory and Sensortex, Inc. The entire system was tested under vacuum at various temperature extremes and power loads. This paper summarizes the results of this testing and shows the effect of the VEC on the operation of a miniature loop heat pipe.
Closed-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.
1997-01-01
ABSTRACT Closed-loop HIRF experiments were performed on a fault tolerant flight control computer (FCC) at the NASA Langley Research Center. The FCC used in the experiments was a quad-redundant flight control computer executing B737 Autoland control laws. The FCC was placed in one of the mode-stirred reverberation chambers in the HIRF Laboratory and interfaced to a computer simulation of the B737 flight dynamics, engines, sensors, actuators, and atmosphere in the Closed-Loop Systems Laboratory. Disturbances to the aircraft associated with wind gusts and turbulence were simulated during tests. Electrical isolation between the FCC under test and the simulation computer was achieved via a fiber optic interface for the analog and discrete signals. Closed-loop operation of the FCC enabled flight dynamics and atmospheric disturbances affecting the aircraft to be represented during tests. Upset was induced in the FCC as a result of exposure to HIRF, and the effect of upset on the simulated flight of the aircraft was observed and recorded. This paper presents a description of these closed- loop HIRF experiments, upset data obtained from the FCC during these experiments, and closed-loop effects on the simulated flight of the aircraft.
Combination pipe-rupture mitigator and in-vessel core catcher. [LMFBR
Tilbrook, R.W.; Markowski, F.J.
1982-03-09
A device is described which mitigates against the effects of a failed coolant loop in a nuclear reactor by restricting the outflow of coolant from the reactor through the failed loop and by retaining any particulated debris from a molten core which may result from coolant loss or other cause. The device reduces the reverse pressure drop through the failed loop by limiting the access of coolant in the reactor to the inlet of the failed loop. The device also spreads any particulated core debris over a large area to promote cooling.
Combination pipe rupture mitigator and in-vessel core catcher
Tilbrook, Roger W.; Markowski, Franz J.
1983-01-01
A device which mitigates against the effects of a failed coolant loop in a nuclear reactor by restricting the outflow of coolant from the reactor through the failed loop and by retaining any particulated debris from a molten core which may result from coolant loss or other cause. The device reduces the reverse pressure drop through the failed loop by limiting the access of coolant in the reactor to the inlet of the failed loop. The device also spreads any particulated core debris over a large area to promote cooling.
Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.
2017-09-01
The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (<600 K), which consists of <110> dumbbells and <111> crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [hkl] interstitial loop within the family of loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress directionmore » and the orientation of the <111> crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.« less
Grunseich, Christopher; Wang, Isabel X; Watts, Jason A; Burdick, Joshua T; Guber, Robert D; Zhu, Zhengwei; Bruzel, Alan; Lanman, Tyler; Chen, Kelian; Schindler, Alice B; Edwards, Nancy; Ray-Chaudhury, Abhik; Yao, Jianhua; Lehky, Tanya; Piszczek, Grzegorz; Crain, Barbara; Fischbeck, Kenneth H; Cheung, Vivian G
2018-02-01
R-loops are three-stranded nucleic acid structures found abundantly and yet often viewed as by-products of transcription. Studying cells from patients with a motor neuron disease (amyotrophic lateral sclerosis 4 [ALS4]) caused by a mutation in senataxin, we uncovered how R-loops promote transcription. In ALS4 patients, the senataxin mutation depletes R-loops with a consequent effect on gene expression. With fewer R-loops in ALS4 cells, the expression of BAMBI, a negative regulator of transforming growth factor β (TGF-β), is reduced; that then leads to the activation of the TGF-β pathway. We uncovered that genome-wide R-loops influence promoter methylation of over 1,200 human genes. DNA methyl-transferase 1 favors binding to double-stranded DNA over R-loops. Thus, in forming R-loops, nascent RNA blocks DNA methylation and promotes further transcription. Hence, our results show that nucleic acid structures, in addition to sequences, influence the binding and activity of regulatory proteins. Copyright © 2017 Elsevier Inc. All rights reserved.
RECQ-like helicases Sgs1 and BLM regulate R-loop-associated genome instability.
Chang, Emily Yun-Chia; Novoa, Carolina A; Aristizabal, Maria J; Coulombe, Yan; Segovia, Romulo; Chaturvedi, Richa; Shen, Yaoqing; Keong, Christelle; Tam, Annie S; Jones, Steven J M; Masson, Jean-Yves; Kobor, Michael S; Stirling, Peter C
2017-12-04
Sgs1, the orthologue of human Bloom's syndrome helicase BLM, is a yeast DNA helicase functioning in DNA replication and repair. We show that SGS1 loss increases R-loop accumulation and sensitizes cells to transcription-replication collisions. Yeast lacking SGS1 accumulate R-loops and γ-H2A at sites of Sgs1 binding, replication pausing regions, and long genes. The mutation signature of sgs1 Δ reveals copy number changes flanked by repetitive regions with high R-loop-forming potential. Analysis of BLM in Bloom's syndrome fibroblasts or by depletion of BLM from human cancer cells confirms a role for Sgs1/BLM in suppressing R-loop-associated genome instability across species. In support of a potential direct effect, BLM is found physically proximal to DNA:RNA hybrids in human cells, and can efficiently unwind R-loops in vitro. Together, our data describe a conserved role for Sgs1/BLM in R-loop suppression and support an increasingly broad view of DNA repair and replication fork stabilizing proteins as modulators of R-loop-mediated genome instability. © 2017 Chang et al.
Effects of cosmic string velocities and the origin of globular clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ling; Yamanouchi, Shoma; Brandenberger, Robert, E-mail: ling.lin2@mail.mcgill.ca, E-mail: shoma.yamanouchi@mail.mcgill.ca, E-mail: rhb@physics.mcgill.ca
2015-12-01
With the hypothesis that cosmic string loops act as seeds for globular clusters in mind, we study the role that velocities of these strings will play in determining the mass distribution of globular clusters. Loops with high enough velocities will not form compact and roughly spherical objects and can hence not be the seeds for globular clusters. We compute the expected number density and mass function of globular clusters as a function of both the string tension and the peak loop velocity, and compare the results with the observational data on the mass distribution of globular clusters in our Milkymore » Way. We determine the critical peak string loop velocity above which the agreement between the string loop model for the origin of globular clusters (neglecting loop velocities) and observational data is lost.« less
Longobardo, G S; Evangelisti, C J; Cherniack, N S
2008-02-01
Increased loop gain (a function of both controller gain and plant gain), which results in instability in feedback control, is of major importance in producing recurrent central apnoeas during sleep but its role in causing obstructive apnoeas is not clear. The purpose of this study was to investigate the role of loop gain in producing obstructive sleep apnoeas. Owing to the complexity of factors that may operate to produce obstruction during sleep, we used a mathematical model to sort them out. The model used was based on our previous model of neurochemical control of breathing, which included the effects of chemical stimuli and changes in alertness on respiratory pattern generator activity. To this we added a model of the upper airways that contained a narrowed section which behaved as a compressible elastic tube and was tethered during inspiration by the contraction of the upper airway dilator muscles. These muscles in the model, as in life, responded to changes in hypoxia, hypercapnia and alertness in a manner similar to the action of the chest wall muscles, opposing the compressive action caused by the negative intraluminal pressure generated during inspiration which was magnified by the Bernoulli Effect. As the velocity of inspiratory airflow increased, with sufficiently large increase in airflow velocity, obstruction occurred. Changes in breathing after sleep onset were simulated. The simulations showed that increases in controller gain caused the more rapid onset of obstructive apnoeas. Apnoea episodes were terminated by arousal. With a constant controller gain, as stiffness decreased, obstructed breaths appeared and periods of obstruction recurred longer after sleep onset before disappearing. Decreased controller gain produced, for example, by breathing oxygen eliminated the obstructive apnoeas resulting from moderate reductions in constricted segment stiffness. This became less effective as stiffness was reduced more. Contraction of the upper airway muscles with hypercapnia and hypoxia could prevent obstructed apnoeas with moderate but not with severe reductions in stiffness. Increases in controller gain, as might occur with hypoxia, converted obstructive to central apnoeas. Breathing CO2 eliminated apnoeas when the activity of the upper airway muscles was considered to change as a function of CO2 to some exponent. Low arousal thresholds and increased upper airway resistance are two factors that promoted the occurrence and persistence of obstructive sleep apnoeas.
Crystal structure of di-methyl-formamidium bis-(tri-fluoro-methane-sulfon-yl)amide: an ionic liquid.
Cardenas, Allan Jay P; O'Hagan, Molly
2016-09-01
At 100 K, the title mol-ecular salt, C 3 H 8 NO + ·C 2 F 6 NO 4 S 2 - , has ortho-rhom-bic ( P 2 1 2 1 2 1 ) symmetry; the amino H atom of bis-(tri-fluoro-methane-sulfon-yl)amine (HNTf 2 ) was transferred to the basic O atom of di-methyl-formamide (DMF) when the ionic liquid components were mixed. The structure displays an O-H⋯N hydrogen bond, which links the cation to the anion, which is reinforced by a non-conventional C-H⋯O inter-action, generating an R 2 2 (7) loop. A further very weak C-H⋯O inter-action generates an [001] chain.
Diverse Actions and Target-Site Selectivity of Neonicotinoids: Structural Insights
Matsuda, Kazuhiko; Kanaoka, Satoshi; Akamatsu, Miki; Sattelle, David B.
2009-01-01
The nicotinic acetylcholine receptors (nAChRs) are targets for human and veterinary medicines as well as insecticides. Subtype-selectivity among the diverse nAChR family members is important for medicines targeting particular disorders, and pest-insect selectivity is essential for the development of safer, environmentally acceptable insecticides. Neonicotinoid insecticides selectively targeting insect nAChRs have important applications in crop protection and animal health. Members of this class exhibit strikingly diverse actions on their nAChR targets. Here we review the chemistry and diverse actions of neonicotinoids on insect and mammalian nAChRs. Electrophysiological studies on native nAChRs and on wild-type and mutagenized recombinant nAChRs have shown that basic residues particular to loop D of insect nAChRs are likely to interact electrostatically with the nitro group of neonicotinoids. In 2008, the crystal structures were published showing neonicotinoids docking into the acetylcholine binding site of molluscan acetylcholine binding proteins with homology to the ligand binding domain (LBD) of nAChRs. The crystal structures showed that 1) glutamine in loop D, corresponding to the basic residues of insect nAChRs, hydrogen bonds with the NO2 group of imidacloprid and 2) neonicotinoid-unique stacking and CH-π bonds at the LBD. A neonicotinoid-resistant strain obtained by laboratory-screening has been found to result from target site mutations, and possible reasons for this are also suggested by the crystal structures. The prospects of designing neonicotinoids that are safe not only for mammals but also for beneficial insects such as honey bees (Apis mellifera) are discussed in terms of interactions with non-α nAChR subunits. PMID:19321668
Ingemarsdotter, Carin K; Zeng, Jingwei; Long, Ziqi; Lever, Andrew M L; Kenyon, Julia C
2018-03-14
NSC260594, a quinolinium derivative from the NCI diversity set II compound library, was previously identified in a target-based assay as an inhibitor of the interaction between the HIV-1 (ψ) stem-loop 3 (SL3) RNA and Gag. This compound was shown to exhibit potent antiviral activity. Here, the effects of this compound on individual stages of the viral lifecycle were examined by qRT-PCR, ELISA and Western blot, to see if its actions were specific to the viral packaging stage. The structural effects of NSC260594 binding to the HIV-1 gRNA were also examined by SHAPE and dimerization assays. Treatment of cells with NSC260594 did not reduce the number of integration events of incoming virus, and treatment of virus producing cells did not affect the level of intracellular Gag protein or viral particle release as determined by immunoblot. However, NSC260594 reduced the incorporation of gRNA into virions by up to 82%, without affecting levels of gRNA inside the cell. This reduction in packaging correlated closely with the reduction in infectivity of the released viral particles. To establish the structural effects of NSC260594 on the HIV-1 gRNA, we performed SHAPE analyses to pinpoint RNA structural changes. NSC260594 had a stabilizing effect on the wild type RNA that was not confined to SL3, but that was propagated across the structure. A packaging mutant lacking SL3 did not show this effect. NSC260594 acts as a specific inhibitor of HIV-1 RNA packaging. No other viral functions are affected. Its action involves preventing the interaction of Gag with SL3 by stabilizing this small RNA stem-loop which then leads to stabilization of the global packaging signal region (psi or ψ). This confirms data, previously only shown in analyses of isolated SL3 oligonucleotides, that SL3 is structurally labile in the presence of Gag and that this is critical for the complete psi region to be able to adopt different conformations. Since replication is otherwise unaffected by NSC260594 the flexibility of SL3 appears to be a unique requirement for genome encapsidation and identifies this process as a highly specific drug target. This study is proof of principle that development of a new class of antiretroviral drugs that specifically target viral packaging by binding to the viral genomic RNA is achievable.
Santaniello, Sabato; McCarthy, Michelle M; Montgomery, Erwin B; Gale, John T; Kopell, Nancy; Sarma, Sridevi V
2015-02-10
High-frequency deep brain stimulation (HFS) is clinically recognized to treat parkinsonian movement disorders, but its mechanisms remain elusive. Current hypotheses suggest that the therapeutic merit of HFS stems from increasing the regularity of the firing patterns in the basal ganglia (BG). Although this is consistent with experiments in humans and animal models of Parkinsonism, it is unclear how the pattern regularization would originate from HFS. To address this question, we built a computational model of the cortico-BG-thalamo-cortical loop in normal and parkinsonian conditions. We simulated the effects of subthalamic deep brain stimulation both proximally to the stimulation site and distally through orthodromic and antidromic mechanisms for several stimulation frequencies (20-180 Hz) and, correspondingly, we studied the evolution of the firing patterns in the loop. The model closely reproduced experimental evidence for each structure in the loop and showed that neither the proximal effects nor the distal effects individually account for the observed pattern changes, whereas the combined impact of these effects increases with the stimulation frequency and becomes significant for HFS. Perturbations evoked proximally and distally propagate along the loop, rendezvous in the striatum, and, for HFS, positively overlap (reinforcement), thus causing larger poststimulus activation and more regular patterns in striatum. Reinforcement is maximal for the clinically relevant 130-Hz stimulation and restores a more normal activity in the nuclei downstream. These results suggest that reinforcement may be pivotal to achieve pattern regularization and restore the neural activity in the nuclei downstream and may stem from frequency-selective resonant properties of the loop.
Santaniello, Sabato; McCarthy, Michelle M.; Montgomery, Erwin B.; Gale, John T.; Kopell, Nancy; Sarma, Sridevi V.
2015-01-01
High-frequency deep brain stimulation (HFS) is clinically recognized to treat parkinsonian movement disorders, but its mechanisms remain elusive. Current hypotheses suggest that the therapeutic merit of HFS stems from increasing the regularity of the firing patterns in the basal ganglia (BG). Although this is consistent with experiments in humans and animal models of Parkinsonism, it is unclear how the pattern regularization would originate from HFS. To address this question, we built a computational model of the cortico-BG-thalamo-cortical loop in normal and parkinsonian conditions. We simulated the effects of subthalamic deep brain stimulation both proximally to the stimulation site and distally through orthodromic and antidromic mechanisms for several stimulation frequencies (20–180 Hz) and, correspondingly, we studied the evolution of the firing patterns in the loop. The model closely reproduced experimental evidence for each structure in the loop and showed that neither the proximal effects nor the distal effects individually account for the observed pattern changes, whereas the combined impact of these effects increases with the stimulation frequency and becomes significant for HFS. Perturbations evoked proximally and distally propagate along the loop, rendezvous in the striatum, and, for HFS, positively overlap (reinforcement), thus causing larger poststimulus activation and more regular patterns in striatum. Reinforcement is maximal for the clinically relevant 130-Hz stimulation and restores a more normal activity in the nuclei downstream. These results suggest that reinforcement may be pivotal to achieve pattern regularization and restore the neural activity in the nuclei downstream and may stem from frequency-selective resonant properties of the loop. PMID:25624501
Space Station evolution study oxygen loop closure
NASA Technical Reports Server (NTRS)
Wood, M. G.; Delong, D.
1993-01-01
In the current Space Station Freedom (SSF) Permanently Manned Configuration (PMC), physical scars for closing the oxygen loop by the addition of oxygen generation and carbon dioxide reduction hardware are not included. During station restructuring, the capability for oxygen loop closure was deferred to the B-modules. As such, the ability to close the oxygen loop in the U.S. Laboratory module (LAB A) and the Habitation A module (HAB A) is contingent on the presence of the B modules. To base oxygen loop closure of SSF on the funding of the B-modules may not be desirable. Therefore, this study was requested to evaluate the necessary hooks and scars in the A-modules to facilitate closure of the oxygen loop at or subsequent to PMC. The study defines the scars for oxygen loop closure with impacts to cost, weight and volume and assesses the effects of byproduct venting. In addition, the recommended scenarios for closure with regard to topology and packaging are presented.
Loop-the-Loop: An Easy Experiment, A Challenging Explanation
NASA Astrophysics Data System (ADS)
Asavapibhop, B.; Suwonjandee, N.
2010-07-01
A loop-the-loop built by the Institute for the Promotion of Teaching Science and Technology (IPST) was used in Thai high school teachers training program to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. We took videos using high speed camera to record the motions of a spherical steel ball moving down the aluminum inclined track at different released positions. The ball then moved into the circular loop and underwent a projectile motion upon leaving the track. We then asked the teachers to predict the landing position of the ball if we changed the height of the whole loop-the-loop system. We also analyzed the videos using Tracker, a video analysis software. It turned out that most teachers did not realize the effect of the friction between the ball and the track and could not obtain the correct relationship hence their predictions were inconsistent with the actual landing positions of the ball.
Mastering the management system.
Kaplan, Robert S; Norton, David P
2008-01-01
Companies have always found it hard to balance pressing operational concerns with long-term strategic priorities. The tension is critical: World-class processes won't lead to success without the right strategic direction, and the best strategy in the world will get nowhere without strong operations to execute it. In this article, Kaplan, of Harvard Business School, and Norton, founder and director of the Palladium Group, explain how to effectively manage both strategy and operations by linking them tightly in a closed-loop management system. The system comprises five stages, beginning with strategy development, which springs from a company's mission, vision, and value statements, and from an analysis of its strengths, weaknesses, and competitive environment. In the next stage, managers translate the strategy into objectives and initiatives with strategy maps, which organize objectives by themes, and balanced scorecards, which link objectives to performance metrics. Stage three involves creating an operational plan to accomplish the objectives and initiatives; it includes targeting process improvements and preparing sales, resource, and capacity plans and dynamic budgets. Managers then put plans into action, monitoring their effectiveness in stage four. They review operational, environmental, and competitive data; assess progress; and identify barriers to execution. In the final stage, they test the strategy, analyzing cost, profitability, and correlations between strategy and performance. If their underlying assumptions appear faulty, they update the strategy, beginning another loop. The authors present not only a comprehensive blueprint for successful strategy execution but also a managerial tool kit, illustrated with examples from HSBC Rail, Cigna Property and Casualty, and Store 24. The kit incorporates leading management experts' frameworks, outlining where they fit into the management cycle.
NASA Astrophysics Data System (ADS)
Laming, J. Martin
2017-08-01
We investigate in more detail the origin of chromospheric Alfvén waves that give rise to the separation of ions and neutrals—the first ionization potential (FIP) effect—through the action of the ponderomotive force. In open field regions, we model the dependence of fractionation on the plasma upflow velocity through the chromosphere for both shear (or planar) and torsional Alfvén waves of photospheric origin. These differ mainly in their parametric coupling to slow mode waves. Shear Alfvén waves appear to reproduce observed fractionations for a wider range of model parameters and present less of a “fine-tuning” problem than do torsional waves. In closed field regions, we study the fractionations produced by Alfvén waves with photospheric and coronal origins. Waves with a coronal origin, at or close to resonance with the coronal loop, offer a significantly better match to observed abundances than do photospheric waves, with shear and torsional waves in such a case giving essentially indistinguishable fractionations. Such coronal waves are likely the result of a nanoflare coronal heating mechanism that, as well as heating coronal plasmas, releases Alfvén waves that can travel down to loop footpoints and cause FIP fractionation through the ponderomotive force as they reflect from the chromosphere back into the corona.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laming, J. Martin, E-mail: laming@nrl.navy.mil
We investigate in more detail the origin of chromospheric Alfvén waves that give rise to the separation of ions and neutrals—the first ionization potential (FIP) effect—through the action of the ponderomotive force. In open field regions, we model the dependence of fractionation on the plasma upflow velocity through the chromosphere for both shear (or planar) and torsional Alfvén waves of photospheric origin. These differ mainly in their parametric coupling to slow mode waves. Shear Alfvén waves appear to reproduce observed fractionations for a wider range of model parameters and present less of a “fine-tuning” problem than do torsional waves. Inmore » closed field regions, we study the fractionations produced by Alfvén waves with photospheric and coronal origins. Waves with a coronal origin, at or close to resonance with the coronal loop, offer a significantly better match to observed abundances than do photospheric waves, with shear and torsional waves in such a case giving essentially indistinguishable fractionations. Such coronal waves are likely the result of a nanoflare coronal heating mechanism that, as well as heating coronal plasmas, releases Alfvén waves that can travel down to loop footpoints and cause FIP fractionation through the ponderomotive force as they reflect from the chromosphere back into the corona.« less
Chen, Qian; Sun, Jiaqiang; Zhai, Qingzhe; Zhou, Wenkun; Qi, Linlin; Xu, Li; Wang, Bao; Chen, Rong; Jiang, Hongling; Qi, Jing; Li, Xugang; Palme, Klaus; Li, Chuanyou
2011-01-01
The root stem cell niche, which in the Arabidopsis thaliana root meristem is an area of four mitotically inactive quiescent cells (QCs) and the surrounding mitotically active stem cells, is critical for root development and growth. We report here that during jasmonate-induced inhibition of primary root growth, jasmonate reduces root meristem activity and leads to irregular QC division and columella stem cell differentiation. Consistently, jasmonate reduces the expression levels of the AP2-domain transcription factors PLETHORA1 (PLT1) and PLT2, which form a developmentally instructive protein gradient and mediate auxin-induced regulation of stem cell niche maintenance. Not surprisingly, the effects of jasmonate on root stem cell niche maintenance and PLT expression require the functioning of MYC2/JASMONATE INSENSITIVE1, a basic helix-loop-helix transcription factor that involves versatile aspects of jasmonate-regulated gene expression. Gel shift and chromatin immunoprecipitation experiments reveal that MYC2 directly binds the promoters of PLT1 and PLT2 and represses their expression. We propose that MYC2-mediated repression of PLT expression integrates jasmonate action into the auxin pathway in regulating root meristem activity and stem cell niche maintenance. This study illustrates a molecular framework for jasmonate-induced inhibition of root growth through interaction with the growth regulator auxin. PMID:21954460
Kinetics of interior loop formation in semiflexible chains.
Hyeon, Changbong; Thirumalai, D
2006-03-14
Loop formation between monomers in the interior of semiflexible chains describes elementary events in biomolecular folding and DNA bending. We calculate analytically the interior distance distribution function for semiflexible chains using a mean field approach. Using the potential of mean force derived from the distance distribution function we present a simple expression for the kinetics of interior looping by adopting Kramers theory. For the parameters, that are appropriate for DNA, the theoretical predictions in comparison with the case are in excellent agreement with explicit Brownian dynamics simulations of wormlike chain (WLC) model. The interior looping times (tauIC) can be greatly altered in the cases when the stiffness of the loop differs from that of the dangling ends. If the dangling end is stiffer than the loop then tauIC increases for the case of the WLC with uniform persistence length. In contrast, attachment of flexible dangling ends enhances rate of interior loop formation. The theory also shows that if the monomers are charged and interact via screened Coulomb potential then both the cyclization (tauc) and interior looping (tauIC) times greatly increase at low ionic concentration. Because both tauc and tauIC are determined essentially by the effective persistence length [lp(R)] we computed lp(R) by varying the range of the repulsive interaction between the monomers. For short range interactions lp(R) nearly coincides with the bare persistence length which is determined largely by the backbone chain connectivity. This finding rationalizes the efficacy of describing a number of experimental observations (response of biopolymers to force and cyclization kinetics) in biomolecules using WLC model with an effective persistence length.
Closed-loop endo-atmospheric ascent guidance for reusable launch vehicle
NASA Astrophysics Data System (ADS)
Sun, Hongsheng
This dissertation focuses on the development of a closed-loop endo-atmospheric ascent guidance algorithm for the 2nd generation reusable launch vehicle. Special attention has been given to the issues that impact on viability, complexity and reliability in on-board implementation. The algorithm is called once every guidance update cycle to recalculate the optimal solution based on the current flight condition, taking into account atmospheric effects and path constraints. This is different from traditional ascent guidance algorithms which operate in a simple open-loop mode inside atmosphere, and later switch to a closed-loop vacuum ascent guidance scheme. The classical finite difference method is shown to be well suited for fast solution of the constrained optimal three-dimensional ascent problem. The initial guesses for the solutions are generated using an analytical vacuum optimal ascent guidance algorithm. Homotopy method is employed to gradually introduce the aerodynamic forces to generate the optimal solution from the optimal vacuum solution. The vehicle chosen for this study is the Lockheed Martin X-33 lifting-body reusable launch vehicle. To verify the algorithm presented in this dissertation, a series of open-loop and closed-loop tests are performed for three different missions. Wind effects are also studied in the closed-loop simulations. For comparison, the solutions for the same missions are also obtained by two independent optimization softwares. The results clearly establish the feasibility of closed-loop endo-atmospheric ascent guidance of rocket-powered launch vehicles. ATO cases are also tested to assess the adaptability of the algorithm to autonomously incorporate the abort modes.
Hutsell, Blake A.; Blough, Bruce E.; Poklis, Justin L.; Negus, S. Stevens
2015-01-01
Background: Chronic amphetamine treatment decreases cocaine consumption in preclinical and human laboratory studies and in clinical trials. Lisdexamfetamine is an amphetamine prodrug in which L-lysine is conjugated to the terminal nitrogen of d-amphetamine. Prodrugs may be advantageous relative to their active metabolites due to slower onsets and longer durations of action; however, lisdexamfetamine treatment’s efficacy in decreasing cocaine consumption is unknown. Methods: This study compared lisdexamfetamine and d-amphetamine effects in rhesus monkeys using two behavioral procedures: (1) a cocaine discrimination procedure (training dose = 0.32mg/kg cocaine, i.m.); and (2) a cocaine-versus-food choice self-administration procedure. Results: In the cocaine-discrimination procedure, lisdexamfetamine (0.32–3.2mg/kg, i.m.) substituted for cocaine with lower potency, slower onset, and longer duration of action than d-amphetamine (0.032–0.32mg/kg, i.m.). Consistent with the function of lisdexamfetamine as an inactive prodrug for amphetamine, the time course of lisdexamfetamine effects was related to d-amphetamine plasma levels by a counter-clockwise hysteresis loop. In the choice procedure, cocaine (0–0.1mg/kg/injection, i.v.) and food (1g banana-flavored pellets) were concurrently available, and cocaine maintained a dose-dependent increase in cocaine choice under baseline conditions. Treatment for 7 consecutive days with lisdexamfetamine (0.32–3.2mg/kg/day, i.m.) or d-amphetamine (0.032–0.1mg/kg/h, i.v.) produced similar dose-dependent rightward shifts in cocaine dose-effect curves and decreases in preference for 0.032mg/kg/injection cocaine. Conclusions: Lisdexamfetamine has a slower onset and longer duration of action than amphetamine but retains amphetamine’s efficacy to reduce the choice of cocaine in rhesus monkeys. These results support further consideration of lisdexamfetamine as an agonist-based medication candidate for cocaine addiction. PMID:25618405
Perception-action map learning in controlled multiscroll systems applied to robot navigation.
Arena, Paolo; De Fiore, Sebastiano; Fortuna, Luigi; Patané, Luca
2008-12-01
In this paper a new technique for action-oriented perception in robots is presented. The paper starts from exploiting the successful implementation of the basic idea that perceptual states can be embedded into chaotic attractors whose dynamical evolution can be associated with sensorial stimuli. In this way, it can be possible to encode, into the chaotic dynamics, environment-dependent patterns. These have to be suitably linked to an action, executed by the robot, to fulfill an assigned mission. This task is addressed here: the action-oriented perception loop is closed by introducing a simple unsupervised learning stage, implemented via a bio-inspired structure based on the motor map paradigm. In this way, perceptual meanings, useful for solving a given task, can be autonomously learned, based on the environment-dependent patterns embedded into the controlled chaotic dynamics. The presented framework has been tested on a simulated robot and the performance have been successfully compared with other traditional navigation control paradigms. Moreover an implementation of the proposed architecture on a Field Programmable Gate Array is briefly outlined and preliminary experimental results on a roving robot are also reported.
NASA Technical Reports Server (NTRS)
Hicks, John W.; Moulton, Bryan J.
1988-01-01
The camber control loop of the X-29A FSW aircraft was designed to furnish the optimum L/D for trimmed, stabilized flight. A marked difference was noted between automatic wing camber control loop behavior in dynamic maneuvers and in stabilized flight conditions, which in turn affected subsonic aerodynamic performance. The degree of drag level increase was a direct function of maneuver rate. Attention is given to the aircraft flight drag polar effects of maneuver dynamics in light of wing camber control loop schedule. The effect of changing camber scheduling to better track the optimum automatic camber control L/D schedule is discussed.
Metrics for Systems Thinking in the Human Dimension
2016-11-01
corpora of documents. 2 Methodology Overview We present a human-in-the- loop methodology that assists researchers and analysts by characterizing...supervised learning methods. Building on this foundation, we present an unsupervised, human-in-the- loop methodology that utilizes topic models to...the definition of strong systems thinking and in the interpretation of topics, but this is what makes the human-in-the- loop methodology so effective
Self-Organized Stationary States of Tokamaks
Jardin, S. C.; Ferraro, N.; Krebs, I.
2015-11-17
We demonstrate that in a 3D resistive magnetohydrodynamic (MHD) simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to non-linearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary non-sawtoothing “hybrid” discharges, often referred to as “flux-pumping”.
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Anfinogentov, S.; Nisticò, G.; Goddard, C. R.; Nakariakov, V. M.
2017-04-01
Context. The strong damping of kink oscillations of coronal loops can be explained by mode coupling. The damping envelope depends on the transverse density profile of the loop. Observational measurements of the damping envelope have been used to determine the transverse loop structure which is important for understanding other physical processes such as heating. Aims: The general damping envelope describing the mode coupling of kink waves consists of a Gaussian damping regime followed by an exponential damping regime. Recent observational detection of these damping regimes has been employed as a seismological tool. We extend the description of the damping behaviour to account for additional physical effects, namely a time-dependent period of oscillation, the presence of additional longitudinal harmonics, and the decayless regime of standing kink oscillations. Methods: We examine four examples of standing kink oscillations observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). We use forward modelling of the loop position and investigate the dependence on the model parameters using Bayesian inference and Markov chain Monte Carlo (MCMC) sampling. Results: Our improvements to the physical model combined with the use of Bayesian inference and MCMC produce improved estimates of model parameters and their uncertainties. Calculation of the Bayes factor also allows us to compare the suitability of different physical models. We also use a new method based on spline interpolation of the zeroes of the oscillation to accurately describe the background trend of the oscillating loop. Conclusions: This powerful and robust method allows for accurate seismology of coronal loops, in particular the transverse density profile, and potentially reveals additional physical effects.
Dridi, Kaouthar; Amara, Sawsan; Bezzine, Sofiane; Rodriguez, Jorge A; Carrière, Frédéric; Gaussier, Hélène
2013-07-01
Structural studies on pancreatic lipase have revealed a complex architecture of surface loops surrounding the enzyme active site and potentially involved in interactions with lipids. Two of them, the lid and beta loop, expose a large hydrophobic surface and are considered as acyl chain binding sites based on their interaction with an alkyl phosphonate inhibitor. While the role of the lid in substrate recognition and selectivity has been extensively studied, the implication of beta9 loop in acyl chain stabilization remained hypothetical. The characterization of an enzyme with a natural deletion of the lid, guinea pig pancreatic lipase-related protein 2 (GPLRP2), suggests however an essential contribution of the beta9 loop in the stabilization of the acyl enzyme intermediate formed during the lipolysis reaction. A GPLRP2 mutant with a seven-residue deletion of beta9 loop (GPLRP2-deltabeta9) was produced and its enzyme activity was measured using various substrates (triglycerides, monoglycerides, galactolipids, phospholipids, vinyl esters) with short, medium and long acyl chains. Whatever the substrate tested, GPLRP2-deltabeta9 activity is drastically reduced compared to that of wild-type GPLRP2 and this effect is more pronounced as the length of substrate acyl chain increases. Changes in relative substrate selectivity and stereoselectivity remained however weak. The deletion within beta9 loop has also a negative effect on the rate of enzyme inhibition by alkyl phosphonates. All these findings indicate that the reduced enzyme turnover observed with GPLRP2-deltabeta9 results from a weaker stabilization of the acyl enzyme intermediate due to a loss of hydrophobic interactions.
Excitation of flare-induced waves in coronal loops and the effects of radiative cooling
NASA Astrophysics Data System (ADS)
Provornikova, Elena; Ofman, Leon; Wang, Tongjiang
2018-01-01
EUV imaging observations from several space missions (SOHO/EIT, TRACE, and SDO/AIA) have revealed a presence of propagating intensity disturbances in solar coronal loops. These disturbances are typically interpreted as slow magnetoacoustic waves. However, recent spectroscopic observations with Hinode/EIS of active region loops revealed that the propagating intensity disturbances are associated with intermittent plasma upflows (or jets) at the footpoints which are presumably generated by magnetic reconnection. For this reason, whether these disturbances are waves or periodic flows is still being studied. This study is aimed at understanding the physical properties of observed disturbances by investigating the excitation of waves by hot plasma injections from below and the evolution of flows and wave propagation along the loop. We expand our previous studies based on isothermal 3D MHD models of an active region to a more realistic model that includes full energy equation accounting for the effects of radiative losses. Computations are initialized with an equilibrium state of a model active region using potential (dipole) magnetic field, gravitationally stratified density and temperature obtained from the polytropic equation of state. We model an impulsive injection of hot plasma into the steady plasma outflow along the loops of different temperatures, warm (∼1 MK) and hot (∼6 MK). The simulations show that hot jets launched at the coronal base excite slow magnetoacoustic waves that propagate to high altitudes along the loops, while the injected hot flows decelerate rapidly with heights. Our results support that propagating disturbances observed in EUV are mainly the wave features. We also find that the effect of radiative cooling on the damping of slow-mode waves in 1-6 MK coronal loops is small, in agreement with the previous conclusion based on 1D MHD models.
String loops in the field of braneworld spherically symmetric black holes and naked singularities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuchlík, Z.; Kološ, M., E-mail: zdenek.stuchlik@fpf.slu.cz, E-mail: martin.kolos@fpf.slu.cz
We study motion of current-carrying string loops in the field of braneworld spherically symmetric black holes and naked singularities. The spacetime is described by the Reissner-Nordström geometry with tidal charge b reflecting the non-local tidal effects coming from the external dimension; both positive and negative values of the spacetime parameter b are considered. We restrict attention to the axisymmetric motion of string loops when the motion can be fully governed by an appropriately defined effective potential related to the energy and angular momentum of the string loops. In dependence on these two constants of the motion, the string loops canmore » be captured, trapped, or can escape to infinity. In close vicinity of stable equilibrium points at the centre of trapped states the motion is regular. We describe how it is transformed to chaotic motion with growing energy of the string loop. In the field of naked singularities the trapped states located off the equatorial plane of the system exist and trajectories unable to cross the equatorial plane occur, contrary to the trajectories in the field of black holes where crossing the equatorial plane is always admitted. We concentrate our attention to the so called transmutation effect when the string loops are accelerated in the deep gravitational field near the black hole or naked singularity by transforming the oscillatory energy to the energy of the transitional motion. We demonstrate that the influence of the tidal charge can be substantial especially in the naked singularity spacetimes with b > 1 where the acceleration to ultrarelativistic velocities with Lorentz factor γ ∼ 100 can be reached, being more than one order higher in comparison with those obtained in the black hole spacetimes.« less
Ortho stops marketing Lippes Loop; cites economic factors.
1985-11-01
Ortho Pharmaceutical Corporation has stopped marketing the Lippes Loop IUD, the only inert IUD currently available in the US. The firm cited "economic considerations" as its reason. Linda Organ, company spokeswoman, told Contraceptive Technology Update (CTU) that the number of women using IUDs has declined in the past few years and, as a result, Ortho's Lippes Loop sales dropped. Most physicians, according to Organ, currently prescribe copper-bearing IUDs. Few devices have been studied as thoroughly before marketing as the Lippes Loop, according to its developer, Dr. Jack Lippes. Lippes told CTU that the Population Council analyzed 40,000 women from 1962 to 1968 and "found no trouble with the Loop." Lippes attributes Ortho's recent decision to 2 factors: the IUD has been only "marginally profitable" and the problems of A.H. Robins with the Dalkon Shield has most likely had an effect; and the US Food and Drug Administration (FDA) published a proposed rule in August 1985 that would require any company wanting to manufacture and market IUDs like the Lippes Loop to submit a premarketing approval application to that agency. In effect, the FDA's rule would only apply to the Lippes Loop. Under the proposed rule, any company wanting to market Lippes Loops, or any nondrug IUD, would have to submit an application to the FDA with a detailed discussion and supporting clinical studies addressing the following concerns: pelvic actinomycosis; tubal infertility; duration that the IUD should remain in situ; and safety of leaving the IUD in situ when contraception is no longer indicated. According to Lillian Yin, FDA device evaluation, the clinical effectiveness and most of the safety issues regarding inert IUDs have been thoroughly covered in published data. She told CTU that "most of the information needed is straightforward, but the part that's new involves the long term use infection rate." Yin indicated that the FDA received a letter from Ortho advising the agency of the company's decision to discontinue selling the loop. That decision, according to Organ, is not based on new study information about inert versus copper bearing IUDs. The company sent a letter to physicians on April 15 advising them of revisions in Lippes Loop patient and physician information materials. The added information is cited.
NASA Astrophysics Data System (ADS)
Yue, Fengfa; Li, Xingfei; Chen, Cheng; Tan, Wenbin
2017-12-01
In order to improve the control accuracy and stability of opto-electronic tracking system fixed on reef or airport under friction and external disturbance conditions, adaptive integral backstepping sliding mode control approach with friction compensation is developed to achieve accurate and stable tracking for fast moving target. The nonlinear observer and slide mode controller based on modified LuGre model with friction compensation can effectively reduce the influence of nonlinear friction and disturbance of this servo system. The stability of the closed-loop system is guaranteed by Lyapunov theory. The steady-state error of the system is eliminated by integral action. The adaptive integral backstepping sliding mode controller and its performance are validated by a nonlinear modified LuGre dynamic model of the opto-electronic tracking system in simulation and practical experiments. The experiment results demonstrate that the proposed controller can effectively realise the accuracy and stability control of opto-electronic tracking system.
Magnetic properties and antitumor effect of nanocomplexes of iron oxide and doxorubicin.
Orel, Valerii; Shevchenko, Anatoliy; Romanov, Andriy; Tselepi, Marina; Mitrelias, Thanos; Barnes, Crispin H W; Burlaka, Anatoliy; Lukin, Sergey; Shchepotin, Igor
2015-01-01
We present a technology and magneto-mechanical milling chamber for the magneto-mechano-chemical synthesis (MMCS) of magneto-sensitive complex nanoparticles (MNC) comprising nanoparticles Fe3O4 and anticancer drug doxorubicin (DOXO). Magnetic properties of MNC were studied with vibrating magnetometer and electron paramagnetic resonance. Under the influence of mechano-chemical and MMCS, the complex show a hysteresis curve, which is typical for soft ferromagnetic materials. We also demonstrate that Lewis lung carcinoma had a hysteresis loop typical for a weak soft ferromagnet in contrast to surrounding tissues, which were diamagnetic. Combined action of constant magnetic field and radio frequency moderate inductive hyperthermia (RFH) below 40°C and MNC was found to induce greater antitumor and antimetastatic effects as compared to conventional DOXO. Radiospectroscopy shows minimal activity of FeS-protein electron transport chain of mitochondria, and an increase in the content of non-heme iron complexes with nitric oxide in the tumor tissues under the influence of RFH and MNC. Copyright © 2015 Elsevier Inc. All rights reserved.
Polyakov loop fluctuations in the presence of external fields
NASA Astrophysics Data System (ADS)
Lo, Pok Man; Szymański, Michał; Redlich, Krzysztof; Sasaki, Chihiro
2018-06-01
We study the implications of the spontaneous and explicit Z(3) center symmetry breaking for the Polyakov loop susceptibilities. To this end, ratios of the susceptibilities of the real and imaginary parts, as well as of the modulus of the Polyakov loop are computed within an effective model using a color group integration scheme. We show that the essential features of the lattice QCD results of these ratios can be successfully captured by the effective approach. Furthermore we discuss a novel scaling relation in one of these ratios involving the explicit breaking field, volume, and temperature.
On the heating mechanism of magnetic flux loops in the solar atmosphere
NASA Technical Reports Server (NTRS)
Song, M. T.; Wu, S. T.
1984-01-01
An investigation is conducted of physical heating mechanisms due to the ponderomotive forces exerted by turbulent waves along the solar atmosphere's curved magnetic flux loops. Results indicate that the temperature difference between the inside and outside of the flux loop can be classified into three parts, two of which represent the cooling or heating effect exerted by the ponderomotive force, while the third is the heating effect due to turbulent energy conversion from the localized plasma. This heating mechanism is used to illustrate solar atmospheric heating by means of an example that leads to the formulation of plages.
Two-loop virtual top-quark effect on Higgs-boson decay to bottom quarks.
Butenschön, Mathias; Fugel, Frank; Kniehl, Bernd A
2007-02-16
In most of the mass range encompassed by the limits from the direct search and the electroweak precision tests, the Higgs boson of the standard model preferably decays to bottom quarks. We present, in analytic form, the dominant two-loop electroweak correction, of O(GF2mt4), to the partial width of this decay. It amplifies the familiar enhancement due to the O(GFmt2) one-loop correction by about +16% and thus more than compensates the screening by about -8% through strong-interaction effects of order O(alphasGFmt2).
The Feeling of Action Tendencies: On the Emotional Regulation of Goal-Directed Behavior
Lowe, Robert; Ziemke, Tom
2011-01-01
In this article, we review the nature of the functional and causal relationship between neurophysiologically/psychologically generated states of emotional feeling and action tendencies and extrapolate a novel perspective. Emotion theory, over the past century and beyond, has tended to regard feeling and action tendency as independent phenomena: attempts to outline the functional and causal relationship that exists between them have been framed therein. Classically, such relationships have been viewed as unidirectional, but an argument for bidirectionality rooted in a dynamic systems perspective has gained strength in recent years whereby the feeling–action tendency relationship is viewed as a composite whole. On the basis of our review of somatic–visceral theories of feelings, we argue that feelings are grounded upon neural-dynamic representations (elevated and stable activation patterns) of action tendency. Such representations amount to predictions updated by cognitive and bodily feedback. Specifically, we view emotional feelings as minimalist predictions of the action tendency (what the agent is physiologically and cognitively primed to do) in a given situation. The essence of this point is captured by our exposition of action tendency prediction–feedback loops which we consider, above all, in the context of emotion regulation, and in particular, of emotional regulation of goal-directed behavior. The perspective outlined may be of use to emotion theorists, computational modelers, and roboticists. PMID:22207854
The effect of compressive viscosity and thermal conduction on the longitudinal MHD waves
NASA Astrophysics Data System (ADS)
Bahari, K.; Shahhosaini, N.
2018-05-01
longitudinal Magnetohydrodynamic (MHD) oscillations have been studied in a slowly cooling coronal loop, in the presence of thermal conduction and compressive viscosity, in the linear MHD approximation. WKB method has been used to solve the governing equations. In the leading order approximation the dispersion relation has been obtained, and using the first order approximation the time dependent amplitude has been determined. Cooling causes the oscillations to amplify and damping mechanisms are more efficient in hot loops. In cool loops the oscillation amplitude increases with time but in hot loops the oscillation amplitude decreases with time. Our conclusion is that in hot loops the efficiency of the compressive viscosity in damping longitudinal waves is comparable to that of the thermal conduction.