Sample records for loop experimental facility

  1. Energy Systems Integration Facility to Transform U.S. Energy Infrastructure

    Science.gov Websites

    operations center. Fully integrated with hardware-in-the-loop at power capabilities, an experimental hardware- and systems-in-the-loop capability. Hardware-in-the-Loop at Power ESIF Snapshot Cost : $135M 2013 Hardware-in-the-loop simulation is not a new concept, but adding megawatt-scale power takes

  2. Closed Loop Experiment Manager (CLEM)-An Open and Inexpensive Solution for Multichannel Electrophysiological Recordings and Closed Loop Experiments.

    PubMed

    Hazan, Hananel; Ziv, Noam E

    2017-01-01

    There is growing need for multichannel electrophysiological systems that record from and interact with neuronal systems in near real-time. Such systems are needed, for example, for closed loop, multichannel electrophysiological/optogenetic experimentation in vivo and in a variety of other neuronal preparations, or for developing and testing neuro-prosthetic devices, to name a few. Furthermore, there is a need for such systems to be inexpensive, reliable, user friendly, easy to set-up, open and expandable, and possess long life cycles in face of rapidly changing computing environments. Finally, they should provide powerful, yet reasonably easy to implement facilities for developing closed-loop protocols for interacting with neuronal systems. Here, we survey commercial and open source systems that address these needs to varying degrees. We then present our own solution, which we refer to as Closed Loop Experiments Manager (CLEM). CLEM is an open source, soft real-time, Microsoft Windows desktop application that is based on a single generic personal computer (PC) and an inexpensive, general-purpose data acquisition board. CLEM provides a fully functional, user-friendly graphical interface, possesses facilities for recording, presenting and logging electrophysiological data from up to 64 analog channels, and facilities for controlling external devices, such as stimulators, through digital and analog interfaces. Importantly, it includes facilities for running closed-loop protocols written in any programming language that can generate dynamic link libraries (DLLs). We describe the application, its architecture and facilities. We then demonstrate, using networks of cortical neurons growing on multielectrode arrays (MEA) that despite its reliance on generic hardware, its performance is appropriate for flexible, closed-loop experimentation at the neuronal network level.

  3. Closed Loop Experiment Manager (CLEM)—An Open and Inexpensive Solution for Multichannel Electrophysiological Recordings and Closed Loop Experiments

    PubMed Central

    Hazan, Hananel; Ziv, Noam E.

    2017-01-01

    There is growing need for multichannel electrophysiological systems that record from and interact with neuronal systems in near real-time. Such systems are needed, for example, for closed loop, multichannel electrophysiological/optogenetic experimentation in vivo and in a variety of other neuronal preparations, or for developing and testing neuro-prosthetic devices, to name a few. Furthermore, there is a need for such systems to be inexpensive, reliable, user friendly, easy to set-up, open and expandable, and possess long life cycles in face of rapidly changing computing environments. Finally, they should provide powerful, yet reasonably easy to implement facilities for developing closed-loop protocols for interacting with neuronal systems. Here, we survey commercial and open source systems that address these needs to varying degrees. We then present our own solution, which we refer to as Closed Loop Experiments Manager (CLEM). CLEM is an open source, soft real-time, Microsoft Windows desktop application that is based on a single generic personal computer (PC) and an inexpensive, general-purpose data acquisition board. CLEM provides a fully functional, user-friendly graphical interface, possesses facilities for recording, presenting and logging electrophysiological data from up to 64 analog channels, and facilities for controlling external devices, such as stimulators, through digital and analog interfaces. Importantly, it includes facilities for running closed-loop protocols written in any programming language that can generate dynamic link libraries (DLLs). We describe the application, its architecture and facilities. We then demonstrate, using networks of cortical neurons growing on multielectrode arrays (MEA) that despite its reliance on generic hardware, its performance is appropriate for flexible, closed-loop experimentation at the neuronal network level. PMID:29093659

  4. Posttest examination of Sodium Loop Safety Facility experiments. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, J.W.

    In-reactor, safety experiments performed in the Sodium Loop Safety Facility (SLSF) rely on comprehensive posttest examinations (PTE) to characterize the postirradiation condition of the cladding, fuel, and other test-subassembly components. PTE information and on-line instrumentation data, are analyzed to identify the sequence of events and the severity of the accident for each experiment. Following in-reactor experimentation, the SLSF loop and test assembly are transported to the Hot Fuel Examination Facility (HFEF) for initial disassembly. Goals of the HFEF-phase of the PTE are to retrieve the fuel bundle by dismantling the loop and withdrawing the test assembly, to assess the macro-conditionmore » of the fuel bundle by nondestructive examination techniques, and to prepare the fuel bundle for shipment to the Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory.« less

  5. Strategic need for a multi-purpose thermal hydraulic loop for support of advanced reactor technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, James E.; Sabharwall, Piyush; Yoon, Su -Jong

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs)more » at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.« less

  6. Neutron Source Facility Training Simulator Based on EPICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Young Soo; Wei, Thomas Y.; Vilim, Richard B.

    A plant operator training simulator is developed for training the plant operators as well as for design verification of plant control system (PCS) and plant protection system (PPS) for the Kharkov Institute of Physics and Technology Neutron Source Facility. The simulator provides the operator interface for the whole plant including the sub-critical assembly coolant loop, target coolant loop, secondary coolant loop, and other facility systems. The operator interface is implemented based on Experimental Physics and Industrial Control System (EPICS), which is a comprehensive software development platform for distributed control systems. Since its development at Argonne National Laboratory, it has beenmore » widely adopted in the experimental physics community, e.g. for control of accelerator facilities. This work is the first implementation for a nuclear facility. The main parts of the operator interface are the plant control panel and plant protection panel. The development involved implementation of process variable database, sequence logic, and graphical user interface (GUI) for the PCS and PPS utilizing EPICS and related software tools, e.g. sequencer for sequence logic, and control system studio (CSS-BOY) for graphical use interface. For functional verification of the PCS and PPS, a plant model is interfaced, which is a physics-based model of the facility coolant loops implemented as a numerical computer code. The training simulator is tested and demonstrated its effectiveness in various plant operation sequences, e.g. start-up, shut-down, maintenance, and refueling. It was also tested for verification of the plant protection system under various trip conditions.« less

  7. An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoder Jr, Graydon L; Aaron, Adam M; Cunningham, Richard Burns

    2014-01-01

    The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during themore » development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.« less

  8. IFMIF: overview of the validation activities

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Arbeiter, F.; Cara, P.; Favuzza, P.; Furukawa, T.; Groeschel, F.; Heidinger, R.; Ibarra, A.; Matsumoto, H.; Mosnier, A.; Serizawa, H.; Sugimoto, M.; Suzuki, H.; Wakai, E.

    2013-11-01

    The Engineering Validation and Engineering Design Activities (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF), an international collaboration under the Broader Approach Agreement between Japan Government and EURATOM, aims at allowing a rapid construction phase of IFMIF in due time with an understanding of the cost involved. The three main facilities of IFMIF (1) the Accelerator Facility, (2) the Target Facility and (3) the Test Facility are the subject of validation activities that include the construction of either full scale prototypes or smartly devised scaled down facilities that will allow a straightforward extrapolation to IFMIF needs. By July 2013, the engineering design activities of IFMIF matured with the delivery of an Intermediate IFMIF Engineering Design Report (IIEDR) supported by experimental results. The installation of a Linac of 1.125 MW (125 mA and 9 MeV) of deuterons started in March 2013 in Rokkasho (Japan). The world's largest liquid Li test loop is running in Oarai (Japan) with an ambitious experimental programme for the years ahead. A full scale high flux test module that will house ∼1000 small specimens developed jointly in Europe and Japan for the Fusion programme has been constructed by KIT (Karlsruhe) together with its He gas cooling loop. A full scale medium flux test module to carry out on-line creep measurement has been validated by CRPP (Villigen).

  9. Post-Test Analysis of 11% Break at PSB-VVER Experimental Facility using Cathare 2 Code

    NASA Astrophysics Data System (ADS)

    Sabotinov, Luben; Chevrier, Patrick

    The best estimate French thermal-hydraulic computer code CATHARE 2 Version 2.5_1 was used for post-test analysis of the experiment “11% upper plenum break”, conducted at the large-scale test facility PSB-VVER in Russia. The PSB rig is 1:300 scaled model of VVER-1000 NPP. A computer model has been developed for CATHARE 2 V2.5_1, taking into account all important components of the PSB facility: reactor model (lower plenum, core, bypass, upper plenum, downcomer), 4 separated loops, pressurizer, horizontal multitube steam generators, break section. The secondary side is represented by recirculation model. A large number of sensitivity calculations has been performed regarding break modeling, reactor pressure vessel modeling, counter current flow modeling, hydraulic losses, heat losses. The comparison between calculated and experimental results shows good prediction of the basic thermal-hydraulic phenomena and parameters such as pressures, temperatures, void fractions, loop seal clearance, etc. The experimental and calculation results are very sensitive regarding the fuel cladding temperature, which show a periodical nature. With the applied CATHARE 1D modeling, the global thermal-hydraulic parameters and the core heat up have been reasonably predicted.

  10. Experimental and code simulation of a station blackout scenario for APR1400 with test facility ATLAS and MARS code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, X. G.; Kim, Y. S.; Choi, K. Y.

    2012-07-01

    A SBO (station blackout) experiment named SBO-01 was performed at full-pressure IET (Integral Effect Test) facility ATLAS (Advanced Test Loop for Accident Simulation) which is scaled down from the APR1400 (Advanced Power Reactor 1400 MWe). In this study, the transient of SBO-01 is discussed and is subdivided into three phases: the SG fluid loss phase, the RCS fluid loss phase, and the core coolant depletion and core heatup phase. In addition, the typical phenomena in SBO-01 test - SG dryout, natural circulation, core coolant boiling, the PRZ full, core heat-up - are identified. Furthermore, the SBO-01 test is reproduced bymore » the MARS code calculation with the ATLAS model which represents the ATLAS test facility. The experimental and calculated transients are then compared and discussed. The comparison reveals there was malfunction of equipments: the SG leakage through SG MSSV and the measurement error of loop flow meter. As the ATLAS model is validated against the experimental results, it can be further employed to investigate the other possible SBO scenarios and to study the scaling distortions in the ATLAS. (authors)« less

  11. NREL's Energy Systems Integration Facility Garners LEED® Platinum | News

    Science.gov Websites

    U.S. Green Building Council (USGBC), a non-profit organization dedicated to sustainable building experimental laboratories and several outdoor test beds, including an interactive hardware-in-the-loop system

  12. Review of hardware-in-the-loop simulation and its prospects in the automotive area

    NASA Astrophysics Data System (ADS)

    Fathy, Hosam K.; Filipi, Zoran S.; Hagena, Jonathan; Stein, Jeffrey L.

    2006-05-01

    Hardware-in-the-loop (HIL) simulation is rapidly evolving from a control prototyping tool to a system modeling, simulation, and synthesis paradigm synergistically combining many advantages of both physical and virtual prototyping. This paper provides a brief overview of the key enablers and numerous applications of HIL simulation, focusing on its metamorphosis from a control validation tool into a system development paradigm. It then describes a state-of-the art engine-in-the-loop (EIL) simulation facility that highlights the use of HIL simulation for the system-level experimental evaluation of powertrain interactions and development of strategies for clean and efficient propulsion. The facility comprises a real diesel engine coupled to accurate real-time driver, driveline, and vehicle models through a highly responsive dynamometer. This enables the verification of both performance and fuel economy predictions of different conventional and hybrid powertrains. Furthermore, the facility can both replicate the highly dynamic interactions occurring within a real powertrain and measure their influence on transient emissions and visual signature through state-of-the-art instruments. The viability of this facility for integrated powertrain system development is demonstrated through a case study exploring the development of advanced High Mobility Multipurpose Wheeled Vehicle (HMMWV) powertrains.

  13. IN-PILE CORROSION TEST LOOPS FOR AQUEOUS HOMOGENEOUS REACTOR SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, H.C.; Jenks, G.H.; Bohlmann, E.G.

    1960-12-21

    An in-pile corrosion test loop is described which is used to study the effect of reactor radiation on the corrosion of materials of construction and the chemical stability of fuel solutions of interest to the Aqueous Homogeneous Reactor Program at ORNL. Aqueous solutions of uranyl sulfate are circulated in the loop by means of a 5-gpm canned-rotor pump, and the pump loop is designed for operation at temperatures to 300 ts C and pressures to 2000 psia while exposed to reactor radiation in beam-hole facilities of the LITR and ORR. Operation of the first loop in-pile was begun in Octobermore » 1954, and since that time 17 other in-pile loop experiments were completed. Design criteria of the pump loop and its associated auxiliary equipment and instrumentation are described. In-pile operating procedures, safety features, and operating experience are presented. A cost summary of the design, fabrication, and installation of the loop and experimental facillties is also included. (auth)« less

  14. Effect of steam generator configuration in a loss of the RHR during mid-loop operation at PKL facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villanueva, J. F.; Carlos, S.; Martorell, S.

    The loss of the residual heat removal system in mid-loop conditions may occur with a non-negligible contribution to the plant risk, so the analysis of the accidental sequences and the actions to mitigate the accident are of great interest in shutdown conditions. In order to plan the appropriate measures to mitigate the accident is necessary to understand the thermal-hydraulic processes following the loss of the residual heat removal system during shutdown. Thus, transients of this kind have been simulated using best-estimate codes in different integral test facilities and compared with experimental data obtained in different facilities. In PKL (Primaerkreislauf-Versuchsanlage, primarymore » coolant loop test facility) test facility different series of experiments have been undertaken to analyze the plant response in shutdown. In this context, the E3 and F2 series consist of analyzing the loss of the residual heat removal system with a reduced inventory in the primary system. In particular, the experiments were developed to investigate the influence of the steam generators secondary side configuration on the plant response, what involves the consideration of different number of steam generators filled with water and ready for activation, on the heat transfer mechanisms inside the steam generators U-tubes. This work presents the results of such experiments calculated using, RELAP5/Mod 3.3. (authors)« less

  15. Evaluation of a Quartz Bourdon Pressure Gage of Wind Tunnel Mach Number Control System Application

    NASA Technical Reports Server (NTRS)

    Chapin, W. G.

    1986-01-01

    A theoretical and experimental study was undertaken to determine the feasibility of using the National Transonic Facility's high accuracy Mach number measurement system as part of a closed loop Mach number control system. The theoretical and experimental procedures described are applicable to the engineering design of pressure control systems. The results show that the dynamic response characteristics of the NTF Mach number gage (a Ruska DDR-6000 quartz absolute pressure gage) coupled to a typical length of pressure tubing were only marginally acceptable within a limited range of the facility's total pressure envelope and could not be used in the Mach number control system.

  16. Radiation Tolerant, Low Noise Phase Locked Loops in 65 nm CMOS Technology

    NASA Astrophysics Data System (ADS)

    Prinzie, Jeffrey; Christiansen, Jorgen; Moreira, Paulo; Steyaert, Michiel; Leroux, Paul

    2018-04-01

    This work presents an introduction to radiation hardened Phase Locked Loops (PLLs) for nuclear and high-energy physics application. An experimental circuit has been fabricated and irradiated with Xrays up to 600 Mrad. Heavy ions with an LET between 3.2 and 69.2 MeV.cm2/mg were used to verify the SEU cross section of the devices. A Two-photon Absorption (TPA) laser facility has been used to provide detailed results on the SEU sensitivity. The presented circuit employs TMR in the digital logic and an asynchronous phase-frequency detector (PFD) is presented. The PLL has a ringand LC-oscillator to be compared experimentally. The circuit has been fabricated in a 65 nm CMOS technology.

  17. Hardware in the Loop at Megawatt-Scale Power | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Hardware in the Loop at Megawatt-Scale Power Hardware in the Loop at Megawatt -Scale Power Hardware-in-the-loop simulation is not new, but the Energy System Integration Facility's -in-the-loop co-simulation. For more information, read the power hardware-in-the-loop factsheet. Text

  18. Cooling molten salt reactors using "gas-lift"

    NASA Astrophysics Data System (ADS)

    Zitek, Pavel; Valenta, Vaclav; Klimko, Marek

    2014-08-01

    This study briefly describes the selection of a type of two-phase flow, suitable for intensifying the natural flow of nuclear reactors with liquid fuel - cooling mixture molten salts and the description of a "Two-phase flow demonstrator" (TFD) used for experimental study of the "gas-lift" system and its influence on the support of natural convection. The measuring device and the application of the TDF device is described. The work serves as a model system for "gas-lift" (replacing the classic pump in the primary circuit) for high temperature MSR planned for hydrogen production. An experimental facility was proposed on the basis of which is currently being built an experimental loop containing the generator, separator bubbles and necessary accessories. This loop will model the removal of gaseous fission products and tritium. The cleaning of the fuel mixture of fluoride salts eliminates problems from Xenon poisoning in classical reactors.

  19. The effects of recycling loops in food waste management in Japan: based on the environmental and economic evaluation of food recycling.

    PubMed

    Takata, Miki; Fukushima, Kazuyo; Kino-Kimata, Noriko; Nagao, Norio; Niwa, Chiaki; Toda, Tatsuki

    2012-08-15

    In Japan, a revised Food Recycling Law went into effect in 2007 to promote a "recycling loop" that requires food industries to purchase farm products that are grown using food waste-derived compost/animal feed. To realize and expand food recycling, it is necessary to evaluate how the recycling facilities work in the recycling loop. The purpose of this study is to assess the environmental and economic efficiency of the food recycling facilities that are involved in the recycling loop, which are also known as looped facilities. The global warming potential and running cost of five looped facilities were evaluated by LCA (life cycle assessment) and LCC (life cycle cost) approaches: machine integrated compost, windrow compost, liquid feed, dry feed, and bio-gasification. The LCA results showed low total GHG (greenhouse gas) emissions of -126 and -49 kg-CO(2)/t-waste, respectively, for dry feed and bio-gasification facilities, due to a high substitution effect. The LCC study showed a low running cost for composting facilities of -15,648 and -18,955 yen/t-waste, respectively, due to high revenue from the food waste collection. It was found that the mandatory reporting of food waste emitters to the government increased collection fees; however, the collection fee in animal feed facilities was relatively low because food waste was collected at a low price or nutritious food waste was purchased to produce quality feed. In the characterisation survey of various treatment methods, the composting facilities showed a relatively low environmental impact and a high economic efficiency. Animal feed facilities had a wide distribution of the total GHG emissions, depending on both the energy usage during the drying process and the substitution effect, which were related to the water content of the food waste and the number of recycled products. In comparison with incineration, the majority of the food recycling facilities showed low GHG emissions and economic effectiveness. This paper also reported on the effects of recycling loops by comparing looped and non-looped animal feed facilities, and confirmed that the looped facilities were economically effective, due to an increased amount of food waste collection. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. TRAC-PF1 code verification with data from the OTIS test facility. [Once-Through Intergral System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childerson, M.T.; Fujita, R.K.

    1985-01-01

    A computer code (TRAC-PF1/MOD1) developed for predicting transient thermal and hydraulic integral nuclear steam supply system (NSSS) response was benchmarked. Post-small break loss-of-coolant accident (LOCA) data from a scaled, experimental facility, designated the One-Through Integral System (OTIS), were obtained for the Babcock and Wilcox NSSS and compared to TRAC predictions. The OTIS tests provided a challenging small break LOCA data set for TRAC verification. The major phases of a small break LOCA observed in the OTIS tests included pressurizer draining and loop saturation, intermittent reactor coolant system circulation, boiler-condenser mode, and the initial stages of refill. The TRAC code wasmore » successful in predicting OTIS loop conditions (system pressures and temperatures) after modification of the steam generator model. In particular, the code predicted both pool and auxiliary-feedwater initiated boiler-condenser mode heat transfer.« less

  1. The CABRI fast neutron Hodoscope: Renovation, qualification program and first results following the experimental reactor restart

    NASA Astrophysics Data System (ADS)

    Chevalier, V.; Mirotta, S.; Guillot, J.; Biard, B.

    2018-01-01

    The CABRI experimental pulse reactor, located at the Cadarache nuclear research center, southern France, is devoted to the study of Reactivity Initiated Accidents (RIA). For the purpose of the CABRI International Program (CIP), managed and funded by IRSN, in the framework of an OECD/NEA agreement, a huge renovation of the facility has been conducted since 2003. The Cabri Water Loop was then installed to ensure prototypical Pressurized Water Reactor (PWR) conditions for testing irradiated fuel rods. The hodoscope installed in the CABRI reactor is a unique online fuel motion monitoring system, operated by IRSN and dedicated to the measurement of the fast neutrons emitted by the tested rod during the power pulse. It is one of the distinctive features of the CABRI reactor facility, which is operated by CEA. The system is able to determine the fuel motion, if any, with a time resolution of 1 ms and a spatial resolution of 3 mm. The hodoscope equipment has been upgraded as well during the CABRI facility renovation. This paper presents the main outcomes achieved with the hodoscope since October 2015, date of the first criticality of the CABRI reactor in its new Cabri Water Loop configuration. Results obtained during reactor commissioning phase functioning, either in steady-state mode (at low and high power, up to 23 MW) or in transient mode (start-up, possibly beyond 20 GW), are discussed.

  2. Design and Testing of CO 2 Compression Using Supersonic Shock Wave Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, Aaron

    This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustionmore » technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.« less

  3. Once-through integral system (OTIS): Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gloudemans, J R

    1986-09-01

    A scaled experimental facility, designated the once-through integral system (OTIS), was used to acquire post-small break loss-of-coolant accident (SBLOCA) data for benchmarking system codes. OTIS was also used to investigate the application of the Abnormal Transient Operating Guidelines (ATOG) used in the Babcock and Wilcox (B and W) designed nuclear steam supply system (NSSS) during the course of an SBLOCA. OTIS was a single-loop facility with a plant to model power scale factor of 1686. OTIS maintained the key elevations, approximate component volumes, and loop flow resistances, and simulated the major component phenomena of a B and W raised-loop nuclearmore » plant. A test matrix consisting of 15 tests divided into four categories was performed. The largest group contained 10 tests and was defined to parametrically obtain an extensive set of plant-typical experimental data for code benchmarking. Parameters such as leak size, leak location, and high-pressure injection (HPI) shut-off head were individually varied. The remaining categories were specified to study the impact of the ATOGs (2 tests), to note the effect of guard heater operation on observed phenomena (2 tests), and to provide a data set for comparison with previous test experience (1 test). A summary of the test results and a detailed discussion of Test 220100 is presented. Test 220100 was the nominal or reference test for the parametric studies. This test was performed with a scaled 10-cm/sup 2/ leak located in the cold leg suction piping.« less

  4. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy.

    PubMed

    Seol, Daehee; Park, Seongjae; Varenyk, Olexandr V; Lee, Shinbuhm; Lee, Ho Nyung; Morozovska, Anna N; Kim, Yunseok

    2016-07-28

    Hysteresis loop analysis via piezoresponse force microscopy (PFM) is typically performed to probe the existence of ferroelectricity at the nanoscale. However, such an approach is rather complex in accurately determining the pure contribution of ferroelectricity to the PFM. Here, we suggest a facile method to discriminate the ferroelectric effect from the electromechanical (EM) response through the use of frequency dependent ac amplitude sweep with combination of hysteresis loops in PFM. Our combined study through experimental and theoretical approaches verifies that this method can be used as a new tool to differentiate the ferroelectric effect from the other factors that contribute to the EM response.

  5. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy

    PubMed Central

    Seol, Daehee; Park, Seongjae; Varenyk, Olexandr V.; Lee, Shinbuhm; Lee, Ho Nyung; Morozovska, Anna N.; Kim, Yunseok

    2016-01-01

    Hysteresis loop analysis via piezoresponse force microscopy (PFM) is typically performed to probe the existence of ferroelectricity at the nanoscale. However, such an approach is rather complex in accurately determining the pure contribution of ferroelectricity to the PFM. Here, we suggest a facile method to discriminate the ferroelectric effect from the electromechanical (EM) response through the use of frequency dependent ac amplitude sweep with combination of hysteresis loops in PFM. Our combined study through experimental and theoretical approaches verifies that this method can be used as a new tool to differentiate the ferroelectric effect from the other factors that contribute to the EM response. PMID:27466086

  6. The design of components for an advanced Rankine cycle test facility.

    NASA Technical Reports Server (NTRS)

    Bond, J. A.

    1972-01-01

    The design of a facility for testing components of an advanced Rankine cycle power system is summarized. The facility is a three-loop system in which lithium, potassium and NaK-78 are the working fluids of the primary, secondary and heat-rejection loops, respectively. Design bases and performance predictions for the major loop components, including the lithium heater and the potassium boiler, condenser and preheater, are outlined.

  7. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, Daehee; Park, Seongjae; Varenyk, Olexandr V.

    Hysteresis loop analysis via piezoresponse force microscopy (PFM) is typically performed to probe the existence of ferroelectricity at the nanoscale. But, such an approach is rather complex in accurately determining the pure contribution of ferroelectricity to the PFM. We suggest a facile method to discriminate the ferroelectric effect from the electromechanical (EM) response through the use of frequency dependent ac amplitude sweep with combination of hysteresis loops in PFM. This combined study through experimental and theoretical approaches verifies that this method can be used as a new tool to differentiate the ferroelectric effect from the other factors that contribute tomore » the EM response.« less

  8. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy

    DOE PAGES

    Seol, Daehee; Park, Seongjae; Varenyk, Olexandr V.; ...

    2016-07-28

    Hysteresis loop analysis via piezoresponse force microscopy (PFM) is typically performed to probe the existence of ferroelectricity at the nanoscale. But, such an approach is rather complex in accurately determining the pure contribution of ferroelectricity to the PFM. We suggest a facile method to discriminate the ferroelectric effect from the electromechanical (EM) response through the use of frequency dependent ac amplitude sweep with combination of hysteresis loops in PFM. This combined study through experimental and theoretical approaches verifies that this method can be used as a new tool to differentiate the ferroelectric effect from the other factors that contribute tomore » the EM response.« less

  9. Development of a hardware-in-the-loop testbed to demonstrate multiple spacecraft operations in proximity

    NASA Astrophysics Data System (ADS)

    Eun, Youngho; Park, Sang-Young; Kim, Geuk-Nam

    2018-06-01

    This paper presents a new state-of-the-art ground-based hardware-in-the-loop test facility, which was developed to verify and demonstrate autonomous guidance, navigation, and control algorithms for space proximity operations and formation flying maneuvers. The test facility consists of two complete spaceflight simulators, an aluminum-based operational arena, and a set of infrared motion tracking cameras; thus, the testbed is capable of representing space activities under circumstances prevailing on the ground. The spaceflight simulators have a maximum of five-degree-of-freedom in a quasi-momentum-free environment, which is produced by a set of linear/hemispherical air-bearings and a horizontally leveled operational arena. The tracking system measures the real-time three-dimensional position and attitude to provide state variables to the agents. The design of the testbed is illustrated in detail for every element throughout the paper. The practical hardware characteristics of the active/passive measurement units and internal actuators are identified in detail from various perspectives. These experimental results support the successful development of the entire facility and enable us to implement and verify the spacecraft proximity operation strategy in the near future.

  10. Pulse mitigation and heat transfer enhancement techniques. Volume 3: Liquid sodium heat transfer facility and transient response of sodium heat pipe to pulse forward and reverse heat load

    NASA Astrophysics Data System (ADS)

    Chow, L. C.; Hahn, O. J.; Nguyen, H. X.

    1992-08-01

    This report presents the description of a liquid sodium heat transfer facility (sodium loop) constructed to support the study of transient response of heat pipes. The facility, consisting of the loop itself, a safety system, and a data acquisition system, can be safely operated over a wide range of temperature and sodium flow rate. The transient response of a heat pipe to pulse heat load at the condenser section was experimentally investigated. A 0.457 m screen wick, sodium heat pipe with an outer diameter of 0.127 m was tested under different heat loading conditions. A major finding was that the heat pipe reversed under a pulse heat load applied at the condenser. The time of reversal was approximately 15 to 25 seconds. The startup of the heat pipe from frozen state was also studied. It was found that during the startup process, at least part of the heat pipe was active. The active region extended gradually down to the end of the condenser until all of the working fluid in the heat pipe was molten.

  11. Assessment of the MHD capability in the ATHENA code using data from the ALEX facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, P.A.

    1989-03-01

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility.

  12. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water.more » Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagier, B.; Rousset, B.; Hoa, C.

    Superconducting magnets used in tokamaks undergo periodic heat load caused by cycling plasma operations inducing AC losses, neutrons fluxes and eddy currents in magnet structures. In the cryogenic system of JT60-SA tokamak, the Auxiliary Cold Box (ACB) distributes helium from the refrigerator to the cryogenic users and in particular to the superconducting magnets. ACB comprises a saturated helium bath with immersed heat exchangers, extracting heat from independent cooling loops. The supercritical helium flow in each cooling loop is driven by a cold circulator. In order to safely operate the refrigerator during plasma pulses, the interface between the ACB and themore » refrigerator shall be as stable as possible, with well-balanced bath inlet and outlet mass flows during cycling operation. The solution presented in this paper relies on a combination of regulations to smooth pulsed heat loads and to keep a constant refrigeration power during all the cycle. Two smoothing strategies are presented, both regulating the outlet mass flow of the bath: the first one using the bath as a thermal buffer and the second one storing energy in the loop by varying the cold circulator speed. The bath outlet mass flow is also controlled by an immersed resistive heater which enables a constant evaporation rate in the bath when power coming from the loops is decreasing. The refrigeration power is controlled so that the compensating power remains within an acceptable margin. Experimental validation is achieved using the HELIOS facility. This facility running at CEA Grenoble since 2010 is a scaled down model of the ACB bath and Central Solenoid magnet cooling loop of the JT60-SA tokamak. Test results show performances and robustness of the regulations.« less

  14. Utilisation of the Magnetic Sensor in a Smartphone for Facile Magnetostatics Experiment: Magnetic Field Due to Electrical Current in Straight and Loop Wires

    ERIC Educational Resources Information Center

    Septianto, R. D.; Suhendra, D.; Iskandar, F.

    2017-01-01

    This paper reports on the result of a research into the utilisation of a smartphone for the study of magnetostatics on the basis of experiments. The use of such a device gives great measurement result and thus it can replace magnetic sensor tools that are relatively expensive. For the best experimental result, firstly the position of the magnetic…

  15. LOOP marine and estuarine monitoring program, 1978-95 : volume 5 : demersal nekton.

    DOT National Transportation Integrated Search

    1998-01-01

    The Louisiana Offshore Oil Port (LOOP) facilities in coastal Louisiana provide the United States with the country's only Superport for off-loading deep draft tankers. The facilities transport oil ashore through pipelines, and temporarily store oil be...

  16. Active vibration absorber for CSI evolutionary model: Design and experimental results

    NASA Technical Reports Server (NTRS)

    Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan

    1991-01-01

    The development of control of large flexible structures technology must include practical demonstration to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility was developed to study practical implementation of new control technologies under realistic conditions. The design is discussed of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. The primary performance objective considered is damping augmentation of the first nine structural modes. Comparison of experimental and predicted closed loop damping is presented, including test and simulation time histories for open and closed loop cases. Although the simulation and test results are not in full agreement, robustness of this design under model uncertainty is demonstrated. The basic advantage of this second order controller design is that the stability of the controller is model independent.

  17. Experimental study on heat transfer to supercritical water flowing through tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, M.; Gu, H.; Cheng, X.

    2012-07-01

    A test facility named SWAMUP (Supercritical Water Multi-Purpose Loop) has been constructed in Shanghai Jiao Tong Univ. to investigate heat transfer and pressure drop through tubes and rod bundles. SWAMUP is a closed loop with operating pressure up to 30 MPa, outlet-water temperature up to 550 deg. C, and mass flow rate up to 5 t/h. In this paper, experimental study has been carried out on heat transfer of supercritical water flowing vertically through tubes (ID=7.6 and 10 mm). A large number of test points in tubes has been obtained with a wide range of heat flux (200-1500 kw/m{sup 2})more » and mass flux (450-2000 kg/m{sup 2}s). Test results showed that heat transfer deterioration (HTD) caused by buoyancy effect only appears in upward flow and HTD caused by acceleration effect appears both in upward flow and downward flow. The heat transfer coefficients (HTC) produced in tube tests were compared with existing heat transfer correlations. (authors)« less

  18. Utilisation of the magnetic sensor in a smartphone for facile magnetostatics experiment: magnetic field due to electrical current in straight and loop wires

    NASA Astrophysics Data System (ADS)

    Septianto, R. D.; Suhendra, D.; Iskandar, F.

    2017-01-01

    This paper reports on the result of a research into the utilisation of a smartphone for the study of magnetostatics on the basis of experiments. The use of such a device gives great measurement result and thus it can replace magnetic sensor tools that are relatively expensive. For the best experimental result, firstly the position of the magnetic sensor in the smartphone has to be considered by way of value mapping of a magnetic field due to permanent magnet. The magnetostatics experiment investigated in this research was the measurement of magnetic field due to electrical currents in two shapes of wire, straight and looped. The current flow, the distance between the observation point and the wire, and the diameter of the loop were the variable parameters investigated to test the smartphone’s capabilities as a measurement tool. To evaluate the experimental results, the measured data were compared with theoretical values that were calculated by using both an analytical and a numerical approach. According to the experiment results, the measured data had good agreement with the results from the analytical and the numerical approach. This means that the use of the magnetic sensor in a smartphone in physics experiments is viable, especially for magnetic field measurement.

  19. Flow rate and temperature characteristics in steady state condition on FASSIP-01 loop during commissioning

    NASA Astrophysics Data System (ADS)

    Juarsa, M.; Giarno; Rohman, A. N.; Heru K., G. B.; Witoko, J. P.; Sony Tjahyani, D. T.

    2018-02-01

    The need for large-scale experimental facilities to investigate the phenomenon of natural circulation flow rate becomes a necessity in the development of nuclear reactor safety management. The FASSIP-01 loop has been built to determine the natural circulation flow rate performance in the large-scale media and aimed to reduce errors in the results for its application in the design of new generation reactors. The commissioning needs to be done to define the capability of the FASSIP-01 loop and to prescribe the experiment limitations. On this commissioning, two scenarios experimental method has been used. The first scenario is a static condition test which was conducted to verify measurement system response during 24 hours without electrical load in heater and cooler, there is water and no water inside the rectangular loop. Second scenario is a dynamics condition that aims to understand the flow rate, a dynamic test was conducted using heater power of 5627 watts and coolant flow rate in the HSS loop of 9.35 LPM. The result of this test shows that the temperature characterization on static test provide a recommendation, that the experiments should be done at night because has a better environmental temperature stability compared to afternoon, with stable temperature around 1°C - 3°C. While on the dynamic test, the water temperature difference between the inlet-outlets in the heater area is quite large, about 7 times the temperature difference in the cooler area. The magnitude of the natural circulation flow rate calculated is much larger at about 300 times compared to the measured flow rate with different flow rate profiles.

  20. Effects assessment of 10 functioning years on the main components of the molten salt PCS experimental facility of ENEA

    NASA Astrophysics Data System (ADS)

    Gaggioli, Walter; Di Ascenzi, Primo; Rinaldi, Luca; Tarquini, Pietro; Fabrizi, Fabrizio

    2016-05-01

    In the frame of the Solar Thermodynamic Laboratory, ENEA has improved CSP Parabolic Trough technologies by adopting new advanced solutions for linear tube receivers and by implementing a binary mixture of molten salt (60% NaNO3 and 40% KNO3) [1] as both heat transfer fluid and heat storage medium in solar field and in storage tanks, thus allowing the solar plants to operate at high temperatures up to 550°C. Further improvements have regarded parabolic mirror collectors, piping and process instrumentation. All the innovative components developed by ENEA, together with other standard parts of the plant, have been tested and qualified under actual solar operating conditions on the PCS experimental facility at the ENEA Casaccia Research Center in Rome (Italy). The PCS (Prova Collettori Solari, i.e. Test of Solar Collectors) facility is the main testing loop built by ENEA and it is unique in the world for what concerns the high operating temperature and the fluid used (mixture of molten salt). It consists in one line of parabolic trough collectors (test section of 100 m long life-size solar collectors) using, as heat transfer fluid, the aforesaid binary mixture of molten salt up to 10 bar, at high temperature in the range 270° and 550°C and a flow rate up to 6.5 kg/s. It has been working since early 2004 [2] till now; it consists in a unique closed loop, and it is totally instrumented. In this paper the effects of over ten years qualification tests on the pressurized tank will be presented, together with the characterization of the thermal losses of the piping of the molten salt circuit, and some observations performed on the PCS facility during its first ten years of operation.

  1. Optics Recycle Loop Strategy for NIF Operations above UV Laser-Induced Damage Threshold

    DOE PAGES

    Spaeth, M. L.; Wegner, P. J.; Suratwala, T. I.; ...

    2017-03-23

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) houses the world’s largest laser system, composed of 192 individual, 40-cm-aperture beamlines. The NIF laser routinely operates at ultraviolet (UV) fluences above 8 J/cm 2, more than twice the (3ω only) damage threshold of commercially available UV-grade fused silica. NIF is able to maintain such high fluence operation by using an optics recycling loop strategy. Successful operation of the loop relies on a number of technologies specifically developed for NIF. One of the most important is the capability developed by LLNL and their vendors for producing highly damage-resistant optics.more » Other technologies developed for the optics recycle loop raise the operating point of NIF by keeping damage growth in check. LLNL has demonstrated the capability to sustain UV fused silica optic recycling rates of up to 40 optics per week. The optics are ready for reinstallation after a 3-week trip through a recycle loop where the damage state of each optic is assessed and repaired. The impact of the optics recycle loop has been profound, allowing the experimental program to routinely employ energies and fluences that would otherwise have been unachievable. Without the recycle loop, it is likely that the NIF fluence would need to be kept below the UV threshold for damage growth, ~4 J/cm 2, thus keeping the energy delivered to the target significantly below 1 MJ. With the recycle loop implemented during the National Ignition Campaign, NIF can routinely deliver >1.8 MJ on target, an increase in operational capability of more than 100%. Finally, in this paper, the enabling technological advances, optical performance, and operational capability implications of the optics recycle loop are discussed.« less

  2. Optics Recycle Loop Strategy for NIF Operations above UV Laser-Induced Damage Threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaeth, M. L.; Wegner, P. J.; Suratwala, T. I.

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) houses the world’s largest laser system, composed of 192 individual, 40-cm-aperture beamlines. The NIF laser routinely operates at ultraviolet (UV) fluences above 8 J/cm 2, more than twice the (3ω only) damage threshold of commercially available UV-grade fused silica. NIF is able to maintain such high fluence operation by using an optics recycling loop strategy. Successful operation of the loop relies on a number of technologies specifically developed for NIF. One of the most important is the capability developed by LLNL and their vendors for producing highly damage-resistant optics.more » Other technologies developed for the optics recycle loop raise the operating point of NIF by keeping damage growth in check. LLNL has demonstrated the capability to sustain UV fused silica optic recycling rates of up to 40 optics per week. The optics are ready for reinstallation after a 3-week trip through a recycle loop where the damage state of each optic is assessed and repaired. The impact of the optics recycle loop has been profound, allowing the experimental program to routinely employ energies and fluences that would otherwise have been unachievable. Without the recycle loop, it is likely that the NIF fluence would need to be kept below the UV threshold for damage growth, ~4 J/cm 2, thus keeping the energy delivered to the target significantly below 1 MJ. With the recycle loop implemented during the National Ignition Campaign, NIF can routinely deliver >1.8 MJ on target, an increase in operational capability of more than 100%. Finally, in this paper, the enabling technological advances, optical performance, and operational capability implications of the optics recycle loop are discussed.« less

  3. High-Performance Computing Data Center Efficiency Dashboard | Computational

    Science.gov Websites

    recovery water (ERW) loop Heat exchanger for energy recovery Thermosyphon Heat exchanger between ERW loop and cooling tower loop Evaporative cooling towers Learn more about our energy-efficient facility

  4. Methods and systems for the production of hydrogen

    DOEpatents

    Oh, Chang H [Idaho Falls, ID; Kim, Eung S [Ammon, ID; Sherman, Steven R [Augusta, GA

    2012-03-13

    Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

  5. High-Performance Computing Data Center Waste Heat Reuse | Computational

    Science.gov Websites

    control room With heat exchangers, heat energy in the energy recovery water (ERW) loop becomes available to heat the facility's process hot water (PHW) loop. Once heated, the PHW loop supplies: Active loop in the courtyard of the ESIF's main entrance District heating loop: If additional heat is needed

  6. Natural circulation in a liquid metal one-dimensional loop

    NASA Astrophysics Data System (ADS)

    Tarantino, M.; De Grandis, S.; Benamati, G.; Oriolo, F.

    2008-06-01

    A wide use of pure lead, as well as its alloys (such as lead-bismuth, lead-lithium), is foreseen in several nuclear-related fields: it is studied as coolant in critical and sub-critical nuclear reactors, as spallation target for neutron generation in several applications and for tritium generation in fusion systems. In this framework, a new facility named NAtural CIrculation Experiment (NACIE), has been designed at ENEA-Brasimone Research Centre. NACIE is a rectangular loop, made by stainless steel pipes. It consists mainly of a cold and hot leg and an expansion tank installed on the top of the loop. A fuel bundle simulator, made by three electrical heaters placed in a triangular lattice, is located in the lower part of the cold leg, while a tube in tube heat exchanger is installed in the upper part of the hot leg. The adopted secondary fluid is THT oil, while the foreseen primary fluid for the tests is lead-bismuth in eutectic composition (LBE). The aim of the facility is to carry out experimental tests of natural circulation and collect data on the heat transfer coefficient (HTC) for heavy liquid metal flowing through rod bundles. The paper is focused on the preliminary estimation of the LBE flow rate along the loop. An analytical methodology has been applied, solving the continuity, momentum and energy transport equations under appropriate hypothesis. Moreover numerical simulations have been performed. The FLUENT 6.2 CFD code has been utilized for the numerical simulations. The main results carried out from the pre-tests simulations are illustrated in the paper, and a comparison with the theoretical estimations is done.

  7. Actively Controlled Landing Gear for Aircraft Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.

    1999-01-01

    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads using actively controlled landing gears. A facility has been developed to test various active landing gear control concepts and their performance. The facility uses a NAVY A6-intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented including modifications to actuate the gear externally and test data is used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  8. Assessment of the MHD capability in the ATHENA code using data from the ALEX (Argonne Liquid Metal Experiment) facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, P.A.

    1988-10-28

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility. 13 refs., 4more » figs., 2 tabs.« less

  9. Cryogenic Controls for Fermilab's Srf Cavities and Test Facility

    NASA Astrophysics Data System (ADS)

    Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.

    2008-03-01

    A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The Cryogenic Test Facility (CTF), located in a separate building 500 m away, supplies the facility with cryogens. The design incorporates ambient temperature pumping for superfluid helium production, as well as three 0.6 kW at 4.5 K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+™, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+™ allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+™ nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLCs by KOYO® are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

  10. Real-time data-intensive computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkinson, Dilworth Y., E-mail: dyparkinson@lbl.gov; Chen, Xian; Hexemer, Alexander

    2016-07-27

    Today users visit synchrotrons as sources of understanding and discovery—not as sources of just light, and not as sources of data. To achieve this, the synchrotron facilities frequently provide not just light but often the entire end station and increasingly, advanced computational facilities that can reduce terabytes of data into a form that can reveal a new key insight. The Advanced Light Source (ALS) has partnered with high performance computing, fast networking, and applied mathematics groups to create a “super-facility”, giving users simultaneous access to the experimental, computational, and algorithmic resources to make this possible. This combination forms an efficientmore » closed loop, where data—despite its high rate and volume—is transferred and processed immediately and automatically on appropriate computing resources, and results are extracted, visualized, and presented to users or to the experimental control system, both to provide immediate insight and to guide decisions about subsequent experiments during beamtime. We will describe our work at the ALS ptychography, scattering, micro-diffraction, and micro-tomography beamlines.« less

  11. VICTORIA Class Submarine Human-in-the-Loop Experimentation Plan

    DTIC Science & Technology

    2014-06-01

    1472G. VICTORIA Class Submarine Human-in-the-Loop Experimentation Plan and Preliminary Results © Her Majesty the Queen in Right of...19 th International Command and Control Research and Technology Symposium Title: VICTORIA Class Submarine Human-in-the-Loop...TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE VICTORIA Class Submarine Human-in-the-Loop Experimentation Plan 5a. CONTRACT

  12. Feasibility of MHD submarine propulsion. Phase II, MHD propulsion: Testing in a two Tesla test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doss, E.D.; Sikes, W.C.

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Teslamore » test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.« less

  13. Adaptive identification and control of structural dynamics systems using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Montgomery, R. C.; Williams, J. P.

    1985-01-01

    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.

  14. Experiment Needs and Facilities Study Appendix A Transient Reactor Test Facility (TREAT) Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The TREAT Upgrade effort is designed to provide significant new capabilities to satisfy experiment requirements associated with key LMFBR Safety Issues. The upgrade consists of reactor-core modifications to supply the physics performance needed for the new experiments, an Advanced TREAT loop with size and thermal-hydraulics capabilities needed for the experiments, associated interface equipment for loop operations and handling, and facility modifications necessary to accommodate operations with the Loop. The costs and schedules of the tasks to be accomplished under the TREAT Upgrade project are summarized. Cost, including contingency, is about 10 million dollars (1976 dollars). A schedule for execution ofmore » 36 months has been established to provide the new capabilities in order to provide timely support of the LMFBR national effort. A key requirement for the facility modifications is that the reactor availability will not be interrupted for more than 12 weeks during the upgrade. The Advanced TREAT loop is the prototype for the STF small-bundle package loop. Modified TREAT fuel elements contain segments of graphite-matrix fuel with graded uranium loadings similar to those of STF. In addition, the TREAT upgrade provides for use of STF-like stainless steel-UO{sub 2} TREAT fuel for tests of fully enriched fuel bundles. This report will introduce the Upgrade study by presenting a brief description of the scope, performance capability, safety considerations, cost schedule, and development requirements. This work is followed by a "Design Description". Because greatly upgraded loop performance is central to the upgrade, a description is given of Advanced TREAT loop requirements prior to description of the loop concept. Performance requirements of the upgraded reactor system are given. An extensive discussion of the reactor physics calculations performed for the Upgrade concept study is provided. Adequate physics performance is essential for performance of experiments with the Advanced TREAT loop, and the stress placed on these calculations reflects this. Additional material on performance and safety is provided. Backup calculations on calculations of plutonium-release limits are described. Cost and schedule information for the Upgrade are presented.« less

  15. High-Performance Computing Data Center Cooling System Energy Efficiency |

    Science.gov Websites

    approaches involve a cooling distribution unit (CDU) (2), which interfaces with the facility cooling loop and to the energy recovery water (ERW) loop (5), which is a closed-loop system. There are three heat rejection options for this IT load: When possible, heat energy from the energy recovery loop is transferred

  16. Systems Performance Laboratory | Energy Systems Integration Facility | NREL

    Science.gov Websites

    array access Small Commercial Power Hardware in the Loop The small commercial power-hardware-in-the-loop (PHIL) test bay is dedicated to small-scale power hardware-in-the-loop studies of inverters and other , natural gas supply Multi-Inverter Power Hardware in the Loop The multi-inverter test bay is dedicated to

  17. PBF Reactor Building (PER620). Cubicle 10. Camera facing southeast. Loop ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Cubicle 10. Camera facing southeast. Loop pressurizer on right. Other equipment includes loop strained, control valves, loop piping, pressurizer interchanger, and cleanup system cooler. High-density shielding brick walls. Photographer: Kirsh. Date: November 2, 1970. INEEL negative no. 70-4908 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  18. The Masdar Institute solar platform: A new research facility in the UAE for development of CSP components and thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Calvet, Nicolas; Martins, Mathieu; Grange, Benjamin; Perez, Victor G.; Belasri, Djawed; Ali, Muhammad T.; Armstrong, Peter R.

    2016-05-01

    Masdar Institute established a new solar platform dedicated to research and development of concentrated solar power (CSP), and thermal energy storage systems. The facility includes among others, state of the art solar resource assessment apparatuses, a 100 kW beam down CSP plant that has been adapted to research activity, one independent 100 kW hot-oil loop, and new thermal energy storage systems. The objective of this platform is to develop cost efficient CSP solutions, promote and test these technologies in extreme desert conditions, and finally develop local expertise. The purpose of this paper is not to present experimental results, but more to give a general overview of the different capabilities of the Masdar Institute Solar Platform.

  19. Modeling and Validation of a Navy A6-Intruder Actively Controlled Landing Gear System

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.

    1999-01-01

    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground-induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads by using actively controlled landing gear. A facility has been developed to test various active landing gear control concepts and their performance, The facility uses a Navy A6 Intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented, including modifications to actuate the gear externally, and test data are used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  20. Hardware Progress Made in the Early Flight Fission Test Facilities (EFF-TF) To Support Near-Term Space Fission Systems

    NASA Astrophysics Data System (ADS)

    Van Dyke, Melissa; Martin, James

    2005-02-01

    The NASA Marshall Space Flight Center's Early Flight Fission Test Facility (EFF-TF), provides a facility to experimentally evaluate nuclear reactor related thermal hydraulic issues through the use of non-nuclear testing. This facility provides a cost effective method to evaluate concepts/designs and support mitigation of developmental risk. Electrical resistance thermal simulators can be used to closely mimic the heat deposition of the fission process, providing axial and radial profiles. A number of experimental and design programs were underway in 2004 which include the following. Initial evaluation of the Department of Energy Los Alamos National Laboratory 19 module stainless steel/sodium heat pipe reactor with integral gas heat exchanger was operated at up to 17.5 kW of input power at core temperatures of 1000 K. A stainless steel sodium heat pipe module was placed through repeated freeze/thaw cyclic testing accumulating over 200 restarts to a temperature of 1000 K. Additionally, the design of a 37- pin stainless steel pumped sodium/potassium (NaK) loop was finalized and components procured. Ongoing testing at the EFF-TF is geared towards facilitating both research and development necessary to support future decisions regarding potential use of space nuclear systems for space exploration. All efforts are coordinated with DOE laboratories, industry, universities, and other NASA centers. This paper describes some of the 2004 efforts.

  1. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    -the-loop" (HIL) to connect physical devices to software models, EdgePower is drawing on NREL's are putting their controller into a synthetic environment that is called 'controller in-the-loop controller-in-the-loop platform allows us to observe the dynamics of these buildings as they implement the

  2. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    simulation and testing platforms from each organization. Power-hardware-in-the-loop technology at the power-hardware-in-the-loop and modeling capabilities together with real data from Duke Energy and GE's , communities, and microgrids. Hardware-in-the-loop testing for power systems will be used to verify the

  3. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    distribution feeder models for use in hardware-in-the-loop (HIL) experiments. Using this method, a full feeder ; proposes an additional control loop to improve frequency support while ensuring stable operation. The and Frequency Deviation," also proposes an additional control loop, this time to smooth the wind

  4. Demonstration of Standard HVAC Single-Loop Digital Control Systems

    DTIC Science & Technology

    1993-01-01

    AD-A265 372 T N FEAP-TR-FE-93/05 REPORT January 1993 FACILITIES ENGINEERING APPLICATIONS PROGRAM Demonstration of Standard HVAC Single-Loop Digital...AND DATES COVERED January 1993 Final 4. TITLE AND SUBTITLE [5. FUNDING NUMBERS Demonstration of Standard HVAC Single-Loop Digital Control Systems FEAP...conditioning ( HVAC ) control systems provide guidance on designing and specifying standard HVAC control systems that use single-loop digital controllers

  5. Verification of RELAP5-3D code in natural circulation loop as function of the initial water inventory

    NASA Astrophysics Data System (ADS)

    Bertani, C.; Falcone, N.; Bersano, A.; Caramello, M.; Matsushita, T.; De Salve, M.; Panella, B.

    2017-11-01

    High safety and reliability of advanced nuclear reactors, Generation IV and Small Modular Reactors (SMR), have a crucial role in the acceptance of these new plants design. Among all the possible safety systems, particular efforts are dedicated to the study of passive systems because they rely on simple physical principles like natural circulation, without the need of external energy source to operate. Taking inspiration from the second Decay Heat Removal system (DHR2) of ALFRED, the European Generation IV demonstrator of the fast lead cooled reactor, an experimental facility has been built at the Energy Department of Politecnico di Torino (PROPHET facility) to study single and two-phase flow natural circulation. The facility behavior is simulated using the thermal-hydraulic system code RELAP5-3D, which is widely used in nuclear applications. In this paper, the effect of the initial water inventory on natural circulation is analyzed. The experimental time behaviors of temperatures and pressures are analyzed. The experimental matrix ranges between 69 % and 93%; the influence of the opposite effects related to the increase of the volume available for the expansion and the pressure raise due to phase change is discussed. Simulations of the experimental tests are carried out by using a 1D model at constant heat power and fixed liquid and air mass; the code predictions are compared with experimental results. Two typical responses are observed: subcooled or two phase saturated circulation. The steady state pressure is a strong function of liquid and air mass inventory. The numerical results show that, at low initial liquid mass inventory, the natural circulation is not stable but pulsated.

  6. Integration of Hardware-in-the-loop Facilities Over the Internet

    DTIC Science & Technology

    2009-04-15

    This briefing discusses a hardware in loop vehicle simulator in Warren, Michigan that provides the driver with realistic power response from the Power and Energy Systems Integration Lab over the internet.

  7. Protein loop modeling using a new hybrid energy function and its application to modeling in inaccurate structural environments.

    PubMed

    Park, Hahnbeom; Lee, Gyu Rie; Heo, Lim; Seok, Chaok

    2014-01-01

    Protein loop modeling is a tool for predicting protein local structures of particular interest, providing opportunities for applications involving protein structure prediction and de novo protein design. Until recently, the majority of loop modeling methods have been developed and tested by reconstructing loops in frameworks of experimentally resolved structures. In many practical applications, however, the protein loops to be modeled are located in inaccurate structural environments. These include loops in model structures, low-resolution experimental structures, or experimental structures of different functional forms. Accordingly, discrepancies in the accuracy of the structural environment assumed in development of the method and that in practical applications present additional challenges to modern loop modeling methods. This study demonstrates a new strategy for employing a hybrid energy function combining physics-based and knowledge-based components to help tackle this challenge. The hybrid energy function is designed to combine the strengths of each energy component, simultaneously maintaining accurate loop structure prediction in a high-resolution framework structure and tolerating minor environmental errors in low-resolution structures. A loop modeling method based on global optimization of this new energy function is tested on loop targets situated in different levels of environmental errors, ranging from experimental structures to structures perturbed in backbone as well as side chains and template-based model structures. The new method performs comparably to force field-based approaches in loop reconstruction in crystal structures and better in loop prediction in inaccurate framework structures. This result suggests that higher-accuracy predictions would be possible for a broader range of applications. The web server for this method is available at http://galaxy.seoklab.org/loop with the PS2 option for the scoring function.

  8. Feasibility of MHD submarine propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doss, E.D.; Sikes, W.C.

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Teslamore » test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.« less

  9. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    photovoltaic (PV) energy for its power. PV inverter hardware-in the loop testing was conducted at NREL's Energy -scale power-hardware-in-the-loop testing at the ESIF, which allows researchers and manufacturers to test field. In addition, the CGI provides hardware-in-the-loop capability combined with NWTC dynamometers

  10. Microgrids | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Manager, Marine Corps Air Station (MCAS) Miramar Network Simulator-in-the-Loop Testing OMNeT++: simulates a network and links with real computers and virtual hosts. Power Hardware-in-the-Loop Simulation

  11. Aviation Human-in-the-Loop Simulation Studies: Experimental Planning, Design, and Data Management

    DTIC Science & Technology

    2014-01-01

    Aviation Human-in-the-Loop Simulation Studies: Experimental Planning, Design , and Data Management Kevin W. Williams1 Bonny Christopher2 Gena...Simulation Studies: Experimental Planning, Design , and Data Management January 2014 6. Performing Organization Code 7. Author(s) 8. Performing...describe the process by which we designed our human-in-the-loop (HITL) simulation study and the methodology used to collect and analyze the results

  12. Novel All Digital Ring Cavity Locking Servo

    NASA Astrophysics Data System (ADS)

    Baker, J.; Gallant, D.; Lucero, A.; Miller, H.; Stohs, J.

    We plan to use this servo in the new 50W 589-nm sodium guidestar laser to be installed in the AMOS facility in July 2010. Though the basic design is unchanged from the successful Hillman/Denman design, numerous improvements are being implemented in order to bring the device even further out of the lab and into the field. The basic building block of the Hillman/Denman design are two low noise master oscillators that are injected into higher power slave oscillators that are locked to the frequencies of the master oscillator cavities. In the previous system a traditional analog Pound-Drever-Hall (PDH) loop was employed to provide the frequency locking. Analog servos work well, in general, but robust locking for a complex set of multiply-interconnected PDH servos in the guidestar source challenges existing analog approaches. One of the significant changes demonstrated thus far is the implementation of an all-digital servo using only COTS components and a fast CISC processing architecture for orchestrating the basic PDH loops active within system. Compared to the traditionally used analog servo loops, an all-digital servo is a not only an orders-of-magnitude simpler servo loop to implement but the control loop can be modified by merely changing the computer code. Field conditions are often different from laboratory conditions, requiring subtle algorithm changes, and physical accessibility in the field is generally limited and difficult. Remotely implemented, trimmer-less and solderless servo upgrades are a much welcomed improvement in the field installed guidestar system. Also, OEM replacement of usual benchtop components saves considerable space and weight as well in the locking system. We will report on the details of the servo system and recent experimental results locking a master-slave laser oscillator system using the all-digital Pound-Drever-Hall loop.

  13. Vehicle Thermal Management Facilities | Transportation Research | NREL

    Science.gov Websites

    Management Facilities Vehicle Thermal Management Facilities Image of a building with two semi truck evaluation facilities to develop advanced thermal management technologies for vehicles. Vehicle Testing and apparatus. Combined fluid loops bench research apparatus in the Vehicle Thermal Management Laboratory. Photo

  14. A comparative approach to closed-loop computation.

    PubMed

    Roth, E; Sponberg, S; Cowan, N J

    2014-04-01

    Neural computation is inescapably closed-loop: the nervous system processes sensory signals to shape motor output, and motor output consequently shapes sensory input. Technological advances have enabled neuroscientists to close, open, and alter feedback loops in a wide range of experimental preparations. The experimental capability of manipulating the topology-that is, how information can flow between subsystems-provides new opportunities to understand the mechanisms and computations underlying behavior. These experiments encompass a spectrum of approaches from fully open-loop, restrained preparations to the fully closed-loop character of free behavior. Control theory and system identification provide a clear computational framework for relating these experimental approaches. We describe recent progress and new directions for translating experiments at one level in this spectrum to predictions at another level. Operating across this spectrum can reveal new understanding of how low-level neural mechanisms relate to high-level function during closed-loop behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Crack stability in a representative piping system under combined inertial and seismic/dynamic displacement-controlled stresses. Subtask 1.3 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, P.; Olson, R.; Wilkowski, O.G.

    1997-06-01

    This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked andmore » five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterton, Mike

    The Recovery Act: Districtwide Geothermal Heating Conversion project performed by the Blaine County School District was part of a larger effort by the District to reduce operating costs, address deferred maintenance items, and to improve the learning environment of the students. This project evaluated three options for the ground source which were Open-Loop Extraction/Re-injection wells, Closed-Loop Vertical Boreholes, and Closed-Loop Horizontal Slinky approaches. In the end the Closed-Loop Horizontal Slinky approach had the lowest total cost of ownership but the majority of the sites associated with this project did not have enough available ground area to install the system somore » the second lowest option was used (Open-Loop). In addition to the ground source, this project looked at ways to retrofit existing HVAC systems with new high efficiency systems. The end result was the installation of distributed waterto- air heat pumps with water-to-water heat pumps installed to act as boilers/chillers for areas with a high ventilation demand such as they gymnasiums. A number of options were evaluated and the lowest total cost of ownership approach was implemented in the majority of the facilities. The facilities where the lowest total cost of ownership approaches was not selected were done to maintain consistency of the systems from facility to facility. This project had a number of other benefits to the Blaine County public. The project utilizes guaranteed energy savings to justify the levy funds expended. The project also developed an educational dashboard that can be used in the classrooms and to educate the community on the project and its performance. In addition, the majority of the installation work was performed by contractors local to Blaine County which acted as an economic stimulus to the area during a period of recession.« less

  17. Take a Ride Along NIF’s Optics Recycle Loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouthillier, Lauren; Folta, Jim; Welday, Brian

    The National Ignition Facility uses over 40,000 optics to help guide 192 laser beams onto a target the size of a pencil eraser. Check out how the optics recycle loop repairs optics, saving time and money.

  18. Land and Undersea Field Testing of Very Low Frequency RF Antennas and Loop Transceivers

    DTIC Science & Technology

    2017-12-01

    VLF RF HARDWARE: SSC PACIFIC LOOP ANTENNAS ........................................... 4 2.3 EXPERIMENTAL CONCEPT...2.3 EXPERIMENTAL CONCEPT Figure 5 shows a drawing of a typical transmit/receive scenario. Each of the WFS units and loop antennas can both transmit...kilohertz is around 20 fT/root(Hz). One femtoTesla (fT) is equal to 10-15 Tesla. Our derived value is close to the 30 fT/root(Hz) value experimentally

  19. Dual-mode capability for hardware-in-the-loop

    NASA Astrophysics Data System (ADS)

    Vamivakas, A. N.; Jackson, Ron L.

    2000-07-01

    This paper details a Hardware-in-the-Loop Facility (HIL) developed for evaluation and verification of a missile system with dual mode capability. The missile has the capability of tracking and intercepting a target using either an RF antenna or an IR sensor. The testing of a dual mode system presents a significant challenge in the development of the HIL facility. An IR and RF target environment must be presented simultaneously to the missile under test. These targets, simulated by IR and RF sources, must be presented to the missile under test without interference from each other. The location of each source is critical in the development of the HIL facility. The requirements for building a HIL facility with dual mode capability and the methodology for testing the dual mode system are defined within this paper. Methods for the verification and validation of the facility are discussed.

  20. Experimental facility for the study of acoustic emission registered in the primary circuit components of WWER power units

    NASA Astrophysics Data System (ADS)

    Petrosyan, V. G.; Hovakimyan, T. H.; Yeghoyan, E. A.; Hovhannisyan, H. T.; Mayilyan, D. G.; Petrosyan, A. P.

    2017-01-01

    This paper is dedicated to the creation of a facility for the experimental study of a phenomenon of background acoustic emission (AE), which is detected in the main circulation loop (MCL) of WWER power units. The analysis of the operating principle and the design of a primary feed-and-blow down system (FB) deaerator of NPP as the most likely source of continuous acoustic emission is carried out. The experimental facility for the systematic study of a phenomenon of continuous AE is developed. A physical model of a thermal deaerator is designed and constructed. A thermal monitoring system is introduced. An automatic system providing acoustic signal registration in a low frequency (0.03-30 kHz) and high frequency (30-300 kHz) bands and study of its spectral characteristics is designed. Special software for recording and processing of digitized electrical sensor signals is developed. A separate and independent principle of study of the most probable processes responsible for the generation of acoustic emission signals in the deaerator is applied. Trial series of experiments and prechecks of acoustic signals in different modes of the deaerator model are conducted. Compliance of basic technological parameters with operating range of the real deaerator was provided. It is shown that the acoustic signal time-intensity curve has several typical regions. The pilot research showed an impact of various processes that come about during the operation of the deaerator physical model on the intensity of the AE signal. The experimental results suggest that the main sources of generation of the AE signals are the processes of steam condensation, turbulent flow of gas-vapor medium, and water boiling.

  1. LOOP marine and estuarine monitoring program, 1978-95 : volume 6 : sediment quality.

    DOT National Transportation Integrated Search

    1998-01-01

    The Louisiana Offshore Oil Port (LOOP) facilities in coastal Louisiana provide the United States with the country's only Superport for off-loading deep draft tankers. Sediment samples were collected quarterly from 1970 through 1995 at designated stat...

  2. RADON LEVELS AND ЕQUIVALENT DOSE RATES AT THE IRT-SOFIA RESEARCH REACTOR SITE.

    PubMed

    Krezhov, Kiril; Mladenov, Aleksander; Dimitrov, Dobromir

    2018-06-11

    Results from radon measurements by active sampling of indoor air in the buildings within the Nuclear Scientific Experimental and Educational Centre (NSEEC) protected site at the Institute for Nuclear Research and Nuclear Energy (INRNE) are presented. The inspected buildings included in this report are the IRT research reactor structure and several auxiliary formations wherein the laundry facilities and the gamma irradiator GOU-1 (60Co source) are installed as well as the Central Alarm Station (CAS) premises. Besides the reactor hall and the primary cooling loop area, special attention was given to the premises of the First Class Radiochemical Laboratory in the IRT reactor basement. Determination of radon concentration distribution in the premises of the constructions within the site is an important part of radiation surveillance during the operation and maintenance of the NSEEC facilities as well as for their involvement in the educational activities at INRNE.

  3. Compact Heat Exchanger Design and Testing for Advanced Reactors and Advanced Power Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaodong; Zhang, Xiaoqin; Christensen, Richard

    The goal of the proposed research is to demonstrate the thermal hydraulic performance of innovative surface geometries in compact heat exchangers used as intermediate heat exchangers (IHXs) and recuperators for the supercritical carbon dioxide (s-CO 2) Brayton cycle. Printed-circuit heat exchangers (PCHEs) are the primary compact heat exchangers of interest. The overall objectives are: To develop optimized PCHE designs for different working fluid combinations including helium to s-CO 2, liquid salt to s-CO 2, sodium to s-CO 2, and liquid salt to helium; To experimentally and numerically investigate thermal performance, thermal stress and failure mechanism of PCHEs under various transients;more » and To study diffusion bonding techniques for elevated-temperature alloys and examine post-test material integrity of the PCHEs. The project objectives were accomplished by defining and executing five different tasks corresponding to these specific objectives. The first task involved a thorough literature review and a selection of IHX candidates with different surface geometries as well as a summary of prototypic operational conditions. The second task involved optimization of PCHE design with numerical analyses of thermal-hydraulic performances and mechanical integrity. The subsequent task dealt with the development of testing facilities and engineering design of PCHE to be tested in s-CO 2 fluid conditions. The next task involved experimental investigation and validation of the thermal-hydraulic performances and thermal stress distribution of prototype PCHEs manufactured with particular surface geometries. The last task involved an investigation of diffusion bonding process and posttest destructive testing to validate mechanical design methods adopted in the design process. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed s-CO 2 test loop (STL) facility and s-CO 2 test facility at University of Wisconsin – Madison (UW).« less

  4. Model based multivariable controller for large scale compression stations. Design and experimental validation on the LHC 18KW cryorefrigerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonne, François; Bonnay, Patrick; Alamir, Mazen

    2014-01-29

    In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsedmore » heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less

  5. Model based multivariable controller for large scale compression stations. Design and experimental validation on the LHC 18KW cryorefrigerator

    NASA Astrophysics Data System (ADS)

    Bonne, François; Alamir, Mazen; Bonnay, Patrick; Bradu, Benjamin

    2014-01-01

    In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsed heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  6. Design and Theoretical Analysis of a Resonant Sensor for Liquid Density Measurement

    PubMed Central

    Zheng, Dezhi; Shi, Jiying; Fan, Shangchun

    2012-01-01

    In order to increase the accuracy of on-line liquid density measurements, a sensor equipped with a tuning fork as the resonant sensitive component is designed in this paper. It is a quasi-digital sensor with simple structure and high precision. The sensor is based on resonance theory and composed of a sensitive unit and a closed-loop control unit, where the sensitive unit consists of the actuator, the resonant tuning fork and the detector and the closed-loop control unit comprises precondition circuit, digital signal processing and control unit, analog-to-digital converter and digital-to-analog converter. An approximate parameters model of the tuning fork is established and the impact of liquid density, position of the tuning fork, temperature and structural parameters on the natural frequency of the tuning fork are also analyzed. On this basis, a tuning fork liquid density measurement sensor is developed. In addition, experimental testing on the sensor has been carried out on standard calibration facilities under constant 20 °C, and the sensor coefficients are calibrated. The experimental results show that the repeatability error is about 0.03% and the accuracy is about 0.4 kg/m3. The results also confirm that the method to increase the accuracy of liquid density measurement is feasible. PMID:22969378

  7. Design and theoretical analysis of a resonant sensor for liquid density measurement.

    PubMed

    Zheng, Dezhi; Shi, Jiying; Fan, Shangchun

    2012-01-01

    In order to increase the accuracy of on-line liquid density measurements, a sensor equipped with a tuning fork as the resonant sensitive component is designed in this paper. It is a quasi-digital sensor with simple structure and high precision. The sensor is based on resonance theory and composed of a sensitive unit and a closed-loop control unit, where the sensitive unit consists of the actuator, the resonant tuning fork and the detector and the closed-loop control unit comprises precondition circuit, digital signal processing and control unit, analog-to-digital converter and digital-to-analog converter. An approximate parameters model of the tuning fork is established and the impact of liquid density, position of the tuning fork, temperature and structural parameters on the natural frequency of the tuning fork are also analyzed. On this basis, a tuning fork liquid density measurement sensor is developed. In addition, experimental testing on the sensor has been carried out on standard calibration facilities under constant 20 °C, and the sensor coefficients are calibrated. The experimental results show that the repeatability error is about 0.03% and the accuracy is about 0.4 kg/m(3). The results also confirm that the method to increase the accuracy of liquid density measurement is feasible.

  8. An Experimental Investigation of Compressible Dynamic Stall on a Pitching Airfoil

    NASA Astrophysics Data System (ADS)

    Thorne, Katie; Bowles, Patrick

    2009-11-01

    A new facility has been designed and constructed at the University of Notre Dame to investigate dynamic stall on a 2-D pitching airfoil at high subsonic Mach numbers. This work is motivated by the need to investigate dynamic stall at conditions relevant to military helicopters. One focus of the experiments is to characterize the role of shock/boundary layer interactions during the pitching cycle. The new dynamic stall facility is integrated into a closed-loop, low turbulence wind tunnel capable of achieving test section Mach numbers in excess of M = 0.6. The design of the dynamic stall test section was focused on achieving reduced pitching frequencies of up to k = 0.2 and chord Reynolds numbers up to 5 x10^6. The facility has the unique ability to execute non-harmonic pitching motions through the use of an actuated pitch link mechanism. Optical access is provided to allow the use of high-speed and Schlieren imaging. Thirty-one flush mounted Kulite dynamic pressure transducers provide the instantaneous unsteady surface pressure distribution over the airfoil. Initial dynamic stall measurements obtained in the new facility will be described.

  9. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  10. LOOP marine and estuarine monitoring program, 1978-95 : volume 4 : zooplankton and ichthyoplankton.

    DOT National Transportation Integrated Search

    1998-01-01

    The Louisiana Offshore Oil Port (LOOP) facilities in coastal Louisiana provide the United States with the country's only Superport for off-loading deep draft tankers. The three single-point mooring (SPM) structures connected by pipelines to a platfor...

  11. Hypersonic Threats to the Homeland

    DTIC Science & Technology

    2017-03-28

    facilities. This defensive grid initiative can help stimulate R&D for hyper loop transportation and high speed railways for the aging infrastructure...Observe, Orient, Decide, Act (OODA) loop . In a tactical situation a warfighter makes decisions as he or she observes the environment; then the

  12. NaK loop testing of thermoelectric converter modules (SNAP program)

    NASA Technical Reports Server (NTRS)

    Johnson, J. L.

    1973-01-01

    The history of testing of compact tubular modules in flowing NaK loops is summarized. Test procedures, data handling, and instrument calibration are discussed. Also included is descriptive information of the test facilities, operational problems encountered, and some recommendations for testing.

  13. The Prevalence and Use of Walking Loops in Neighborhood Parks: A National Study.

    PubMed

    Cohen, Deborah A; Han, Bing; Evenson, Kelly R; Nagel, Catherine; McKenzie, Thomas L; Marsh, Terry; Williamson, Stephanie; Harnik, Peter

    2017-02-01

    Previous studies indicate that the design of streets and sidewalks can influence physical activity among residents. Park features also influence park use and park-based physical activity. Although individuals can walk on streets and sidewalks, walking loops in parks offer a setting to walk in nature and to avoid interruptions from traffic. Here we describe the use of walking loops in parks and compare the number of park users and their physical activity in urban neighborhood parks with and without walking loops. We analyzed data from the National Study of Neighborhood Parks in which a representative sample of neighborhood parks (n = 174) from 25 U.S. cities with > 100,000 population were observed systematically to document facilities and park users by age group and sex. We compared the number of people and their physical activity in parks with and without walking loops, controlling for multiple factors, including park size, facilities, and population density. Overall, compared with parks without walking loops, on average during an hourly observation, parks with walking loops had 80% more users (95% CI: 42, 139%), and levels of moderate-to-vigorous physical activity were 90% higher (95% CI: 49, 145%). The additional park use and park-based physical activity occurred not only on the walking loops but throughout the park. Walking loops may be a promising means of increasing population level physical activity. Further studies are needed to confirm a causal relationship. Citation: Cohen DA, Han B, Evenson KR, Nagel C, McKenzie TL, Marsh T, Williamson S, Harnik P. 2017. The prevalence and use of walking loops in neighborhood parks: a national study. Environ Health Perspect 125:170-174; http://dx.doi.org/10.1289/EHP293.

  14. The Prevalence and Use of Walking Loops in Neighborhood Parks: A National Study

    PubMed Central

    Cohen, Deborah A.; Han, Bing; Evenson, Kelly R.; Nagel, Catherine; McKenzie, Thomas L.; Marsh, Terry; Williamson, Stephanie; Harnik, Peter

    2016-01-01

    Background: Previous studies indicate that the design of streets and sidewalks can influence physical activity among residents. Park features also influence park use and park-based physical activity. Although individuals can walk on streets and sidewalks, walking loops in parks offer a setting to walk in nature and to avoid interruptions from traffic. Objectives: Here we describe the use of walking loops in parks and compare the number of park users and their physical activity in urban neighborhood parks with and without walking loops. Methods: We analyzed data from the National Study of Neighborhood Parks in which a representative sample of neighborhood parks (n = 174) from 25 U.S. cities with > 100,000 population were observed systematically to document facilities and park users by age group and sex. We compared the number of people and their physical activity in parks with and without walking loops, controlling for multiple factors, including park size, facilities, and population density. Results: Overall, compared with parks without walking loops, on average during an hourly observation, parks with walking loops had 80% more users (95% CI: 42, 139%), and levels of moderate-to-vigorous physical activity were 90% higher (95% CI: 49, 145%). The additional park use and park-based physical activity occurred not only on the walking loops but throughout the park. Conclusions: Walking loops may be a promising means of increasing population level physical activity. Further studies are needed to confirm a causal relationship. Citation: Cohen DA, Han B, Evenson KR, Nagel C, McKenzie TL, Marsh T, Williamson S, Harnik P. 2017. The prevalence and use of walking loops in neighborhood parks: a national study. Environ Health Perspect 125:170–174; http://dx.doi.org/10.1289/EHP293 PMID:27517530

  15. Real-time range generation for ladar hardware-in-the-loop testing

    NASA Astrophysics Data System (ADS)

    Olson, Eric M.; Coker, Charles F.

    1996-05-01

    Real-time closed loop simulation of LADAR seekers in a hardware-in-the-loop facility can reduce program risk and cost. This paper discusses an implementation of real-time range imagery generated in a synthetic environment at the Kinetic Kill Vehicle Hardware-in-the Loop facility at Eglin AFB, for the stimulation of LADAR seekers and algorithms. The computer hardware platform used was a Silicon Graphics Incorporated Onyx Reality Engine. This computer contains graphics hardware, and is optimized for generating visible or infrared imagery in real-time. A by-produce of the rendering process, in the form of a depth buffer, is generated from all objects in view during its rendering process. The depth buffer is an array of integer values that contributes to the proper rendering of overlapping objects and can be converted to range values using a mathematical formula. This paper presents an optimized software approach to the generation of the scenes, calculation of the range values, and outputting the range data for a LADAR seeker.

  16. Core characterization of the new CABRI Water Loop Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritter, G.; Rodiac, F.; Beretz, D.

    2011-07-01

    The CABRI experimental reactor is located at the Cadarache nuclear research center, southern France. It is operated by the Atomic Energy Commission (CEA) and devoted to IRSN (Institut de Radioprotection et de Surete Nucleaire) safety programmes. It has been successfully operated during the last 30 years, enlightening the knowledge of FBR and LWR fuel behaviour during Reactivity Insertion Accident (RIA) and Loss Of Coolant Accident (LOCA) transients in the frame of IPSN (Institut de Protection et de Surete Nucleaire) and now IRSN programmes devoted to reactor safety. This operation was interrupted in 2003 to allow for a whole facility renewalmore » programme for the need of the CABRI International Programme (CIP) carried out by IRSN under the OECD umbrella. The principle of operation of the facility is based on the control of {sup 3}He, a major gaseous neutron absorber, in the core geometry. The purpose of this paper is to illustrate how several dosimetric devices have been set up to better characterize the core during the upcoming commissioning campaign. It presents the schemes and tools dedicated to core characterization. (authors)« less

  17. Making Advanced Scientific Algorithms and Big Scientific Data Management More Accessible

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatakrishnan, S. V.; Mohan, K. Aditya; Beattie, Keith

    2016-02-14

    Synchrotrons such as the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory are known as user facilities. They are sources of extremely bright X-ray beams, and scientists come from all over the world to perform experiments that require these beams. As the complexity of experiments has increased, and the size and rates of data sets has exploded, managing, analyzing and presenting the data collected at synchrotrons has been an increasing challenge. The ALS has partnered with high performance computing, fast networking, and applied mathematics groups to create a"super-facility", giving users simultaneous access to the experimental, computational, and algorithmic resourcesmore » to overcome this challenge. This combination forms an efficient closed loop, where data despite its high rate and volume is transferred and processed, in many cases immediately and automatically, on appropriate compute resources, and results are extracted, visualized, and presented to users or to the experimental control system, both to provide immediate insight and to guide decisions about subsequent experiments during beam-time. In this paper, We will present work done on advanced tomographic reconstruction algorithms to support users of the 3D micron-scale imaging instrument (Beamline 8.3.2, hard X-ray micro-tomography).« less

  18. Screech tones from free and ducted supersonic jets

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W.; Ahuja, K. K.; Jones, R. R., III

    1994-01-01

    It is well known that screech tones from supersonic jets are generated by a feedback loop. The loop consists of three main components. They are the downstream propagating instability wave, the shock cell structure in the jet plume, and the feedback acoustic waves immediately outside the jet. Evidence will be presented to show that the screech frequency is largely controlled by the characteristics of the feedback acoustic waves. The feedback loop is driven by the instability wave of the jet. Thus the tone intensity and its occurrence are dictated by the characteristics of the instability wave. In this paper the dependence of the instability wave spectrum on the azimuthal mode number (axisymmetric or helical/flapping mode, etc.), the jet-to-ambient gas temperature ratio, and the jet Mach number are studied. The results of this study provide an explanation for the observed screech tone mode switch phenomenon (changing from axisymmetric to helical mode as Mach number increases) and the often-cited experimental observation that tone intensity reduces with increase in jet temperature. For ducted supersonic jets screech tones can also be generated by feedback loops formed by the coupling of normal duct modes to instability waves of the jet. The screech frequencies are dictated by the frequencies of the duct modes. Super resonance, resonance involving very large pressure oscillations, can occur when the feedback loop is powered by the most amplified instability wave. It is proposed that the observed large amplitude pressure fluctuations and tone in the test cells of Arnold Engineering Development Center were generated by super resonance. Estimated super-resonance frequency for a Mach 1.3 axisymmetric jet tested in the facility agrees well with measurement.

  19. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lal, Shankar, E-mail: shankar@rrcat.gov.in; Pant, K. K.

    2016-08-15

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday’s law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled withmore » β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.« less

  20. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    NASA Astrophysics Data System (ADS)

    Lal, Shankar; Pant, K. K.

    2016-08-01

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday's law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.

  1. Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: A test case of the Mars Express Phobos Flyby. II. Doppler tracking: Formulation of observed and computed values, and noise budget

    NASA Astrophysics Data System (ADS)

    Bocanegra-Bahamón, T. M.; Molera Calvés, G.; Gurvits, L. I.; Duev, D. A.; Pogrebenko, S. V.; Cimò, G.; Dirkx, D.; Rosenblatt, P.

    2018-01-01

    Context. Closed-loop Doppler data obtained by deep space tracking networks, such as the NASA Deep Space Network (DSN) and the ESA tracking station network (Estrack), are routinely used for navigation and science applications. By shadow tracking the spacecraft signal, Earth-based radio telescopes involved in the Planetary Radio Interferometry and Doppler Experiment (PRIDE) can provide open-loop Doppler tracking data only when the dedicated deep space tracking facilities are operating in closed-loop mode. Aims: We explain the data processing pipeline in detail and discuss the capabilities of the technique and its potential applications in planetary science. Methods: We provide the formulation of the observed and computed values of the Doppler data in PRIDE tracking of spacecraft and demonstrate the quality of the results using an experiment with the ESA Mars Express spacecraft as a test case. Results: We find that the Doppler residuals and the corresponding noise budget of the open-loop Doppler detections obtained with the PRIDE stations compare to the closed-loop Doppler detections obtained with dedicated deep space tracking facilities.

  2. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's integrated thermal distribution system consists of a thermal water loop connected to a research boiler and . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows

  3. Results of aircraft open-loop tests of an experimental magnetic leader cable system for guidance during roll-out and turnoff

    NASA Technical Reports Server (NTRS)

    Bundick, W. Thomas; Middleton, David B.; Poole, William L.

    1990-01-01

    An experimental magnetic leader cable (MLC) system designed to measure aircraft lateral displacement from centerline and heading relative to centerline during rollout, turnoff, and taxi was tested at NASA's Wallops Flight Facility using NASA's Transport System Research Vehicle (TSRV), a modified B-737. The MLC system consisted of ground equipment that produced a magnetic field about a wire along runway centerline and airborne equipment that detected the strength and direction of this field and computed displacement and heading. Results of these tests indicate that estimates of aircraft displacement from centerline produced by the magnetic leader cable system using either of the two algorithms appear to be adequate for use by an automatic control system during rollout, turnoff, and taxi. Estimates of heading, however, are not sufficiently accurate for use, probably because of distortion of the magnetic field by the metal aircraft.

  4. Experimental testing of prototype face gears for helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Handschuh, R.; Lewicki, D.; Bossler, R.

    1992-01-01

    An experimental program to test the feasibility of using face gears in a high-speed and high-power environment was conducted. Four face gear sets were tested, two sets at a time, in a closed-loop test stand at pinion rotational speeds to 19,100 rpm and to 271 kW. The test gear sets were one-half scale of the helicopter design gear set. Testing the gears at one-eighth power, the test gear set had slightly increased bending and compressive stresses when compared to the full scale design. The tests were performed in the LeRC spiral bevel gear test facility. All four sets of gears successfully ran at 100 percent of design torque and speed for 30 million pinion cycles, and two sets successfully ran at 200 percent of torque for an additional 30 million pinion cycles. The results, although limited, demonstrated the feasibility of using face gears for high-speed, high-load applications.

  5. A new TRNSYS component for parabolic trough collector simulation

    NASA Astrophysics Data System (ADS)

    Drosou, Vassiliki; Valenzuela, Loreto; Dimoudi, Argiro

    2018-03-01

    This study describes and evaluates a new simulation component for parabolic trough collectors (PTCs). The new simulation component is implemented in the TRNSYS software environment by means of new Type that is suitable for integration into the calculation of a whole concentrating solar thermal plant, in order to evaluate the energy production of a PTC. The main advantage of the new Type is that is derived from experimental data available on efficiency Test Reports, according to the current European and International standards, rather than the theoretical approach considered in the existing parabolic trough component of TRNSYS library. The performance of the new Type has been validated with real experimental data obtained from the DISS solar test loop in Plataforma Solar de Almería, Spain. The paper describes the modelling approach, presents the comparison of simulation results with measurements taken at the DISS facility and evaluates the results.

  6. Experimental Comparison of Face-Milled and Face-Hobbed Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Nanlawala, Michael; Hawkins, John M.; Mahan, Danny

    2001-01-01

    An experimental comparison of face-milled and face-hobbed spiral bevel gears was accomplished. The two differently manufactured spiral bevel gear types were tested in a closed-loop facility at NASA Glenn Research Center. Strain, vibration, and noise testing were completed at various levels of rotational speed and load. Tests were conducted from static (slow-roll) to 12600 rpm and up to 269 N-m (2380 in.-lb) pinion speed and load conditions. The tests indicated that the maximum stress recorded at the root locations had nearly the same values, however the stress distribution was different from the toe to the heel. Also, the alternating stress measured was higher for the face-milled pinion than that attained for the face-hobbed pinion (larger minimum stress). The noise and vibration results indicated that the levels measured for the face-hobbed components were less than those attained for the face-milled gears tested.

  7. Plant model of KIPT neutron source facility simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Wei, Thomas Y.; Grelle, Austin L.

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system ismore » coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.« less

  8. Hard real-time closed-loop electrophysiology with the Real-Time eXperiment Interface (RTXI)

    PubMed Central

    George, Ansel; Dorval, Alan D.; Christini, David J.

    2017-01-01

    The ability to experimentally perturb biological systems has traditionally been limited to static pre-programmed or operator-controlled protocols. In contrast, real-time control allows dynamic probing of biological systems with perturbations that are computed on-the-fly during experimentation. Real-time control applications for biological research are available; however, these systems are costly and often restrict the flexibility and customization of experimental protocols. The Real-Time eXperiment Interface (RTXI) is an open source software platform for achieving hard real-time data acquisition and closed-loop control in biological experiments while retaining the flexibility needed for experimental settings. RTXI has enabled users to implement complex custom closed-loop protocols in single cell, cell network, animal, and human electrophysiology studies. RTXI is also used as a free and open source, customizable electrophysiology platform in open-loop studies requiring online data acquisition, processing, and visualization. RTXI is easy to install, can be used with an extensive range of external experimentation and data acquisition hardware, and includes standard modules for implementing common electrophysiology protocols. PMID:28557998

  9. Smart Home Hardware-in-the-Loop Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Annabelle

    This presentation provides a high-level overview of NREL's smart home hardware-in-the-loop testing. It was presented at the Fourth International Workshop on Grid Simulator Testing of Energy Systems and Wind Turbine Powertrains, held April 25-26, 2017, hosted by NREL and Clemson University at the Energy Systems Integration Facility in Golden, Colorado.

  10. Simulation of a main steam line break with steam generator tube rupture using trace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallardo, S.; Querol, A.; Verdu, G.

    A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation ofmore » the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)« less

  11. Performance of a modified feedback loop adaptive array with TVRO satellite signals

    NASA Technical Reports Server (NTRS)

    Steadman, Karl N.; Gupta, Inder J.; Walton, Eric K.

    1990-01-01

    Performance of an experimental adaptive antenna array system is evaluated using television receive-only (TVRO) satellite signals. The experimental system is a sidelobe canceller with two auxiliary channels. Modified feedback loops are used to enhance the suppression of weak interfering signals. The modified feedback loops used two spatialy separated antennas, each with an individual amplifier for each auxiliary channel. Thus, the experimental system uses five antenna elements. Instead of using five separate antennas, a reflector antenna with multiple feeds is used to receive signals from various TVRO satellites. The details of the earth station are given. It is shown that the experimental system can null up to two signals originating from interfering TVRO satellites while receiving the signals from a desired TVRO satellite.

  12. Studies of uranium-sodium suspensions. Part I. Construction and operation of experimental loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bett, F L; Hilditch, R J; Mepham, R G

    1961-08-01

    An experimnental uranium- sodium suspension loop was operated for 4320 hr. The design, construction, commissioning, and operation of the loop to the point where a comnplete stable suspension was obtained is described.

  13. Improvements To Progressive Wave Tube Performance Through Closed-Loop Control

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2000-01-01

    This report documents recent improvements to the acoustic and thermal control systems of the Thermal Acoustic Fatigue Apparatus (TAFA), a progressive wave tube test facility at the NASA Langley Research Center, Hampton, Virginia. A brief summary of past acoustic performance is given first to serve as a basis for comparison with the new performance data using a multiple-input, closed-loop, narrow-band controller. Performance data in the form of test section acoustic power spectral densities and coherence are presented in three of six facility configurations for a variety of input spectra. Tested spectra include uniform, two cases of pink noise, three cases of narrow-band random, a simulated launch payload bay environment for an expendable launch vehicle, and a simulated external acoustic load for the aft section of a reusable launch vehicle. In addition, a new closed-loop temperature controller and thermocouple data acquisition system are described.

  14. Fast Bayesian experimental design: Laplace-based importance sampling for the expected information gain

    NASA Astrophysics Data System (ADS)

    Beck, Joakim; Dia, Ben Mansour; Espath, Luis F. R.; Long, Quan; Tempone, Raúl

    2018-06-01

    In calculating expected information gain in optimal Bayesian experimental design, the computation of the inner loop in the classical double-loop Monte Carlo requires a large number of samples and suffers from underflow if the number of samples is small. These drawbacks can be avoided by using an importance sampling approach. We present a computationally efficient method for optimal Bayesian experimental design that introduces importance sampling based on the Laplace method to the inner loop. We derive the optimal values for the method parameters in which the average computational cost is minimized according to the desired error tolerance. We use three numerical examples to demonstrate the computational efficiency of our method compared with the classical double-loop Monte Carlo, and a more recent single-loop Monte Carlo method that uses the Laplace method as an approximation of the return value of the inner loop. The first example is a scalar problem that is linear in the uncertain parameter. The second example is a nonlinear scalar problem. The third example deals with the optimal sensor placement for an electrical impedance tomography experiment to recover the fiber orientation in laminate composites.

  15. A CLOSED-LOOP BIODIESEL PRODUCTION AND RESEARCH FACILITY IN KEENE, NH

    EPA Science Inventory

    The main objectives during Phase I were to continue a Biodiesel Working Group, formalize the organizational structure of the Monadnock Biodiesel Collaborative, identify a possible facility location, secure funding, provide novel curriculum for Keene State College students, and...

  16. Investigation of air transportation technology at Ohio University, 1980. [general aviation aircraft and navigation aids

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. H.

    1981-01-01

    Specific configurations of first and second order all digital phase locked loops were analyzed for both ideal and additive gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation was evaluated along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop were consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application. For all cases tested, the experimental data showed close agreement with the analytical results indicating that the Markov chain model for first and second order digital phase locked loops are valid.

  17. Mathematical Modeling of Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.

    1998-01-01

    The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.

  18. RFI in hybrid loops - Simulation and experimental results.

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.

    1972-01-01

    A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.

  19. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; hide

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and Critical Heat Flux (CHF) phenomena.

  20. The role of the real-time simulation facility, SIMFAC, in the design, development and performance verification of the Shuttle Remote Manipulator System (SRMS) with man-in-the-loop

    NASA Technical Reports Server (NTRS)

    Mccllough, J. R.; Sharpe, A.; Doetsch, K. H.

    1980-01-01

    The SIMFAC has played a vital role in the design, development, and performance verification of the shuttle remote manipulator system (SRMS) to be installed in the space shuttle orbiter. The facility provides for realistic man-in-the-loop operation of the SRMS by an operator in the operator complex, a flightlike crew station patterned after the orbiter aft flight deck with all necessary man machine interface elements, including SRMS displays and controls and simulated out-of-the-window and CCTV scenes. The characteristics of the manipulator system, including arm and joint servo dynamics and control algorithms, are simulated by a comprehensive mathematical model within the simulation subsystem of the facility. Major studies carried out using SIMFAC include: SRMS parameter sensitivity evaluations; the development, evaluation, and verification of operating procedures; and malfunction simulation and analysis of malfunction performance. Among the most important and comprehensive man-in-the-loop simulations carried out to date on SIMFAC are those which support SRMS performance verification and certification when the SRMS is part of the integrated orbiter-manipulator system.

  1. 78 FR 69403 - South Tahoe Public Utility District; Notice of Preliminary Determination of a Qualifying Conduit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ...-diameter Diamond Valley Ranch Loop pipeline; (2) an approximately 22-foot-wide by 35-foot-long powerhouse... the 18-inch-diameter Diamond Valley Ranch Loop; and (4) appurtenant facilities. The proposed project..., canal, Y pipeline, aqueduct, flume, ditch, or similar manmade water conveyance that is operated for the...

  2. Performance of a modified feedback loop adaptive array with TVRO satellite signals

    NASA Technical Reports Server (NTRS)

    Steadman, K.; Gupta, I. J.; Walton, E. K.

    1990-01-01

    The performance of an experimental adaptive antenna array system is evaluated using television-receive-only (TVRO) satellite signals. The experimental system is a sidelobe canceler with two auxiliary channels. Modified feedback loops are used to enhance the suppression of weak interfering signals. The modified feedback loops use two spatially separate antennas, each with an individual amplifier for each auxiliary channel. Thus, the experimental system uses five antenna elements. Instead of using five separate antennas, a reflector antenna with multiple feeds is used to receive signals from various TVRO satellites. The details of the earth station are given. It is shown that the experimental system can null up to two signals originating from interfering TVRO satellites while receiving the signals from a desired TVRO satellite.

  3. Molten Chloride Salts for Heat Transfer in Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Ambrosek, James Wallace

    2011-12-01

    A forced convection loop was designed and constructed to examine the thermal-hydraulic performance of molten KCl-MgCl2 (68-32 at %) salt for use in nuclear co-generation facilities. As part of this research, methods for prediction of the thermo-physical properties of salt mixtures for selection of the coolant salt were studied. In addition, corrosion studies of 10 different alloys were exposed to the KCl-MgCl2 to determine a suitable construction material for the loop. Using experimental data found in literature for unary and binary salt systems, models were found, or developed to extrapolate the available experimental data to unstudied salt systems. These property models were then used to investigate the thermo-physical properties of the LINO3-NaNO3-KNO 3-Ca(NO3), system used in solar energy applications. Using these models, the density, viscosity, adiabatic compressibility, thermal conductivity, heat capacity, and melting temperatures of higher order systems can be approximated. These models may be applied to other molten salt systems. Coupons of 10 different alloys were exposed to the chloride salt for 100 hours at 850°C was undertaken to help determine with which alloy to construct the loop. Of the alloys exposed, Haynes 230 had the least amount of weight loss per area. Nickel and Hastelloy N performed best based on maximum depth of attack. Inconel 625 and 718 had a nearly uniform depletion of Cr from the surface of the sample. All other alloys tested had depletion of Cr along the grain boundaries. The Nb in Inconel 625 and 718 changed the way the Cr is depleted in these alloys. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. A high temperature pump, thermal flow meter, and pressure differential device was designed, constructed and tested for use in the loop, The heat transfer of the molten chloride salt was found to follow general correlations used to estimate the Nusselt number for water in both the forced convection laminar regime and in the mixed convection regime.

  4. Tritium Mitigation/Control for Advanced Reactor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaodong; Christensen, Richard; Saving, John P.

    A tritium removal facility, which is similar to the design used for tritium recovery in fusion reactors, is proposed in this study for fluoride-salt-cooled high-temperature reactors (FHRs) to result in a two-loop FHR design with the elimination of an intermediate loop. Using this approach, an economic benefit can potentially be obtained by removing the intermediate loop, while the safety concern of tritium release can be mitigated. In addition, an intermediate heat exchanger (IHX) that can yield a similar tritium permeation rate to the production rate of 1.9 Ci/day in a 1,000 MWe PWR needs to be designed to prevent themore » residual tritium that is not captured in the tritium removal system from escaping into the power cycle and ultimately the environment. The main focus of this study is to aid the mitigation of tritium permeation issue from the FHR primary side to significantly reduce the concentration of tritium in the secondary side and the process heat application side (if applicable). The goal of the research is to propose a baseline FHR system without the intermediate loop. The specific objectives to accomplish the goals are: To estimate tritium permeation behavior in FHRs; To design a tritium removal system for FHRs; To meet the same tritium permeation level in FHRs as the tritium production rate of 1.9 Ci/day in 1,000 MWe PWRs; To demonstrate economic benefits of the proposed FHR system via comparing with the three-loop FHR system. The objectives were accomplished by designing tritium removal facilities, developing a tritium analysis code, and conducting an economic analysis. In the fusion reactor community, tritium extraction has been widely investigated and researched. Borrowing the experiences from the fusion reactor community, a tritium control and mitigation system was proposed. Based on mass transport theories, a tritium analysis code was developed, and the tritium behaviors were analyzed using the developed code. Tritium removal facilities were designed and laboratory-scale experiments were proposed for the validation of the proposed tritium removal facilities.« less

  5. Open-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer

    NASA Technical Reports Server (NTRS)

    Koppen, Daniel M.

    1997-01-01

    During the third quarter of 1996, the Closed-Loop Systems Laboratory was established at the NASA Langley Research Center (LaRC) to study the effects of High Intensity Radiated Fields on complex avionic systems and control system components. This new facility provided a link and expanded upon the existing capabilities of the High Intensity Radiated Fields Laboratory at LaRC that were constructed and certified during 1995-96. The scope of the Closed-Loop Systems Laboratory is to place highly integrated avionics instrumentation into a high intensity radiated field environment, interface the avionics to a real-time flight simulation that incorporates aircraft dynamics, engines, sensors, actuators and atmospheric turbulence, and collect, analyze, and model aircraft performance. This paper describes the layout and functionality of the Closed-Loop Systems Laboratory, and the open-loop calibration experiments that led up to the commencement of closed-loop real-time flight experiments.

  6. Distributed Simulation Testing for Weapons System Performance of the F/A-18 and AIM-120 AMRAAM

    DTIC Science & Technology

    1998-01-01

    Support Facility (WSSF) at China Lake, CA and the AIM-120 Hardware in the Loop (HWIL) laboratory at Point Mugu, CA. The link was established in response to...ROCKET MOTOR TARGET DETECTION (FUZE) SEEKERIASSEMBLYWAH D . ANTENN ’ A TRA-kN.SiV, ITfrER’I" ACTUATOR ELECTRONICS DATA LIX -K PARAMETERS ADIMI20AI AIMI...test series. 3.2 Hardware in the Loop : The AMRAAM Hardware-In-the- Loop (HWIL) lab located at the Naval Air Warfare Center in Point Mugu, CA provides

  7. Numerical analysis of stress effects on Frank loop evolution during irradiation in austenitic Fe&z.sbnd;Cr&z.sbnd;Ni alloy

    NASA Astrophysics Data System (ADS)

    Tanigawa, Hiroyasu; Katoh, Yutai; Kohyama, Akira

    1995-08-01

    Effects of applied stress on early stages of interstitial type Frank loop evolution were investigated by both numerical calculation and irradiation experiments. The final objective of this research is to propose a comprehensive model of complex stress effects on microstructural evolution under various conditions. In the experimental part of this work, the microstructural analysis revealed that the differences in resolved normal stress caused those in the nucleation rates of Frank loops on {111} crystallographic family planes, and that with increasing external applied stress the total nucleation rate of Frank loops was increased. A numerical calculation was carried out primarily to evaluate the validity of models of stress effects on nucleation processes of Frank loop evolution. The calculation stands on rate equuations which describe evolution of point defects, small points defect clusters and Frank loops. The rate equations of Frank loop evolution were formulated for {111} planes, considering effects of resolved normal stress to clustering processes of small point defects and growth processes of Frank loops, separately. The experimental results and the predictions from the numerical calculation qualitatively coincided well with each other.

  8. Is the kinetoplast DNA a percolating network of linked rings at its critical point?

    NASA Astrophysics Data System (ADS)

    Michieletto, Davide; Marenduzzo, Davide; Orlandini, Enzo

    2015-05-01

    In this work we present a computational study of the kinetoplast genome, modelled as a large number of semiflexible unknotted loops, which are allowed to link with each other. As the DNA density increases, the systems shows a percolation transition between a gas of unlinked rings and a network of linked loops which spans the whole system. Close to the percolation transition, we find that the mean valency of the network, i.e. the average number of loops which are linked to any one loop, is around three, as found experimentally for the kinetoplast DNA (kDNA). Even more importantly, by simulating the digestion of the network by a restriction enzyme, we show that the distribution of oligomers, i.e. structures formed by a few loops which remain linked after digestion, quantitatively matches experimental data obtained from gel electrophoresis, provided that the density is, once again, close to the percolation transition. With respect to previous work, our analysis builds on a reduced number of assumptions, yet can still fully explain the experimental data. Our findings suggest that the kDNA can be viewed as a network of linked loops positioned very close to the percolation transition, and we discuss the possible biological implications of this remarkable fact.

  9. Behaviour of fractional loop delay zero crossing digital phase locked loop (FR-ZCDPLL)

    NASA Astrophysics Data System (ADS)

    Nasir, Qassim

    2018-01-01

    This article analyses the performance of the first-order zero crossing digital phase locked loops (FR-ZCDPLL) when fractional loop delay is added to loop. The non-linear dynamics of the loop is presented, analysed and examined through bifurcation behaviour. Numerical simulation of the loop is conducted to proof the mathematical analysis of the loop operation. The results of the loop simulation show that the proposed FR-ZCDPLL has enhanced the performance compared to the conventional zero crossing DPLL in terms of wider lock range, captured range and stable operation region. In addition, extensive experimental simulation was conducted to find the optimum loop parameters for different loop environmental conditions. The addition of the fractional loop delay network in the conventional loop also reduces the phase jitter and its variance especially when the signal-to-noise ratio is low.

  10. Electromagnetic geophysical tunnel detection experiments---San Xavier Mine Facility, Tucson, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayland, J.R.; Lee, D.O.; Shope, S.M.

    1991-02-01

    The objective of this work is to develop a general method for remotely sensing the presence of tunneling activities using one or more boreholes and a combination of surface sources. New techniques for tunnel detection and location of tunnels containing no metal and of tunnels containing only a small diameter wire have been experimentally demonstrated. A downhole magnetic dipole and surface loop sources were used as the current sources. The presence of a tunnel causes a subsurface scattering of the field components created by the source. Ratioing of the measured responses enhanced the detection and location capability over that producedmore » by each of the sources individually. 4 refs., 18 figs., 2 tabs.« less

  11. 75 FR 76973 - Florida Gas Transmission Company, LLC; Notice of Intent to Prepare an Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... loop \\1\\ in Miami-Dade County, Florida. The project would also include the installation of a pig... loop allows more gas to be moved through the system. \\2\\ A ``pig'' is a tool that is inserted into and... purposes. A pig launcher is an aboveground facility where pigs are inserted into the pipeline. The general...

  12. Energy Conversion Loop: A Testbed for Nuclear Hybrid Energy Systems Use in Biomass Pyrolysis

    NASA Astrophysics Data System (ADS)

    Verner, Kelley M.

    Nuclear hybrid energy systems are a possible solution for contemporary energy challenges. Nuclear energy produces electricity without greenhouse gas emissions. However, nuclear power production is not as flexible as electrical grids demand and renewables create highly variable electricity. Nuclear hybrid energy systems are able to address both of these problems. Wasted heat can be used in processes such as desalination, hydrogen production, or biofuel production. This research explores the possible uses of nuclear process heat in bio-oil production via biomass pyrolysis. The energy conversion loop is a testbed designed and built to mimic the heat from a nuclear reactor. Small scale biomass pyrolysis experiments were performed and compared to results from the energy conversion loop tests to determine future pyrolysis experimentation with the energy conversion loop. Further improvements must be made to the energy conversion loop before more complex experiments may be performed. The current conditions produced by the energy conversion loop are not conducive for current biomass pyrolysis experimentation.tion.

  13. Low Pressure Seeder Development for PIV in Large Scale Open Loop Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Schmit, Ryan

    2010-11-01

    A low pressure seeding techniques have been developed for Particle Image Velocimetry (PIV) in large scale wind tunnel facilities was performed at the Subsonic Aerodynamic Research Laboratory (SARL) facility at Wright-Patterson Air Force Base. The SARL facility is an open loop tunnel with a 7 by 10 foot octagonal test section that has 56% optical access and the Mach number varies from 0.2 to 0.5. A low pressure seeder sprayer was designed and tested in the inlet of the wind tunnel. The seeder sprayer was designed to produce an even and uniform distribution of seed while reducing the seeders influence in the test section. ViCount Compact 5000 using Smoke Oil 180 was using as the seeding material. The results show that this low pressure seeder does produce streaky seeding but excellent PIV images are produced.

  14. Power Hardware-in-the-Loop (PHIL) Testing Facility for Distributed Energy Storage (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer.J.; Lundstrom, B.; Simpson, M.

    2014-06-01

    The growing deployment of distributed, variable generation and evolving end-user load profiles presents a unique set of challenges to grid operators responsible for providing reliable and high quality electrical service. Mass deployment of distributed energy storage systems (DESS) has the potential to solve many of the associated integration issues while offering reliability and energy security benefits other solutions cannot. However, tools to develop, optimize, and validate DESS control strategies and hardware are in short supply. To fill this gap, NREL has constructed a power hardware-in-the-loop (PHIL) test facility that connects DESS, grid simulator, and load bank hardware to a distributionmore » feeder simulation.« less

  15. Post-test analysis of dryout test 7B' of the W-1 Sodium Loop Safety Facility Experiment with the SABRE-2P code. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, S.D.; Dearing, J.F.

    An understanding of conditions that may cause sodium boiling and boiling propagation that may lead to dryout and fuel failure is crucial in liquid-metal fast-breeder reactor safety. In this study, the SABRE-2P subchannel analysis code has been used to analyze the ultimate transient of the in-core W-1 Sodium Loop Safety Facility experiment. This code has a 3-D simple nondynamic boiling model which is able to predict the flow instability which caused dryout. In other analyses dryout has been predicted for out-of-core test bundles and so this study provides additional confirmation of the model.

  16. The conversion of a room temperature NaK loop to a high temperature MHD facility for Li/V blanket testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, C.B.; Haglund, R.C.; Miller, M.E.

    1996-12-31

    The Vanadium/Lithium system has been the recent focus of ANL`s Blanket Technology Pro-ram, and for the last several years, ANL`s Liquid Metal Blanket activities have been carried out in direct support of the ITER (International Thermonuclear Experimental Reactor) breeding blanket task area. A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the Near the development of insulator coatings. Design calculations, Hua and Gohar, show that an electrically insulating layer is necessary to maintain an acceptably low magneto-hydrodynamic (MHD) pressure drop in the current ITER design. Consequently, the decision was made to convert Argonne`s Liquid Metal EXperiment (ALEX) frommore » a 200{degrees}C NaK facility to a 350{degrees}C lithium facility. The upgraded facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups at Hartmann numbers (M) and interaction parameters (N) in the range of 10{sup 3} to 10{sup 5} in lithium at 350{degrees}C. Following completion of the upgrade work, a short performance test was conducted, followed by two longer multiple-hour, MHD tests, all at 230{degrees}C. The modified ALEX facility performed up to expectations in the testing. MHD pressure drop and test section voltage distributions were collected at Hartmann numbers of 1000.« less

  17. Conversion of a room temperature NaK loop to a high temperature MHD facility for Li/V blanket testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, C.B.; Haglund, R.C.; Miller, M.E.

    1996-12-31

    The Vanadium/Lithium system has been the recent focus of ANL`s Blanket Technology Program, and for the last several years, ANL`s Liquid Metal Blanket activities have been carried out in direct support of the ITER (International Thermonuclear Experimental Reactor) breeding blanket task area. A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the development of insulator coatings. Design calculations, Hua and Gohar, show that an electrically insulating layer is necessary to maintain an acceptably low magnetohydrodynamic (MHD) pressure drop in the current ITER design. Consequently, the decision was made to convert Argonne`s Liquid Metal EXperiment (ALEX) from a 200{degree}Cmore » NaK facility to a 350{degree}C lithium facility. The upgraded facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups at Hartmann numbers (M) and interaction parameters (N) in the range of 10{sup 3} to 10{sup 5} in lithium at 350{degree}C. Following completion of the upgrade work, a short performance test was conducted, followed by two longer, multiple-hour, MHD tests, all at 230{degree}C. The modified ALEX facility performed up to expectations in the testing. MHD pressure drop and test section voltage distributions were collected at Hartmann numbers of 1000. 4 refs., 2 figs.« less

  18. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 2; Validation Results

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, Goddard Space Fight Center has conducted a Thermal Loop experiment to advance the maturity of the Thermal Loop technology from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. The thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for the TRL 4 and TRL 5 validations, respectively, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. The MLHP demonstrated excellent performance during experimental tests and the analytical model predictions agreed very well with experimental data. All success criteria at various TRLs were met. Hence, the Thermal Loop technology has reached a TRL of 6. This paper presents the validation results, both experimental and analytical, of such a technology development effort.

  19. Analysis of frequency noise properties of 729nm extended cavity diode laser with unbalanced Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Pham, Tuan M.; Čížek, Martin; Hucl, Václav; Lazar, Josef; Hrabina, Jan; Řeřucha, Šimon; Lešundák, Adam; Obšil, Petr; Filip, Radim; Slodička, Lukáš; Číp, Ondřej

    2016-12-01

    We report on the frequency noise investigation of a linewidth-suppressed Extended Cavity Diode Laser (ECDL), working at 729 nm. Since the ECDL is intended as an excitation laser for the forbidden transition in a trapped and laser cooled 40Ca+ ion, an Hz-level linewidth is required. We present the experimental design that comprises a two-stage linewidth narrowing and a facility for frequency and noise analysis. The linewidth is first narrowed with a phase lock loop of the ECDL onto a selected component of an optical frequency comb where the frequency noise was suppressed with a fast electronic servo-loop controller that drives the laser injection current with a high bandwidth. The second stage comprises locking the laser onto a selected mode of a high-finesse passive optical cavity. The frequency analysis used an unbalanced Mach-Zehnder interferometer with a fiber spool inserted in the reference arm in order to give a general insight into the signal properties by mixing two separated beams, one of them delayed by the spool, and processing it with a spectral analyzer. Such a frequency noise analysis reveals what are the most significant noises contributions to the laser linewidth, which is a crucial information in field of ion trapping and cooling. The presented experimental results show the effect of the linewidth narrowing with the first stage, where the linewidth of ECDL was narrowed down to a kHz level.

  20. SLSF in-reactor local fault safety experiment P4. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, D. H.; Holland, J. W.; Braid, T. H.

    The Sodium Loop Safety Facility (SLSF), a major facility in the US fast-reactor safety program, has been used to simulate a variety of sodium-cooled fast reactor accidents. SLSF experiment P4 was conducted to investigate the behavior of a "worse-than-case" local fault configuration. Objectives of this experiment were to eject molten fuel into a 37-pin bundle of full-length Fast-Test-Reactor-type fuel pins form heat-generating fuel canisters, to characterize the severity of any molten fuel-coolant interaction, and to demonstrate that any resulting blockage could either be tolerated during continued power operation or detected by global monitors to prevent fuel failure propagation. The designmore » goal for molten fuel release was 10 to 30 g. Explusion of molten fuel from fuel canisters caused failure of adjacent pins and a partial flow channel blockage in the fuel bundle during full-power operation. Molten fuel and fuel debris also lodged against the inner surface of the test subassembly hex-can wall. The total fuel disruption of 310 g evaluated from posttest examination data was in excellent agreement with results from the SLSF delayed neutron detection system, but exceeded the target molten fuel release by an order of magnitude. This report contains a summary description of the SLSF in-reactor loop and support systems and the experiment operations. results of the detailed macro- and microexamination of disrupted fuel and metal and results from the analysis of the on-line experimental data are described, as are the interpretations and conclusions drawn from the posttest evaluations. 60 refs., 74 figs.« less

  1. The 400W at 1.8K Test Facility at CEA-Grenoble

    NASA Astrophysics Data System (ADS)

    Roussel, P.; Girard, A.; Jager, B.; Rousset, B.; Bonnay, P.; Millet, F.; Gully, P.

    2006-04-01

    A new test facility with a cooling capacity respectively of 400W at 1.8K or 800W at 4.5K, is now under nominal operation in SBT (Low Temperature Department) at CEA Grenoble. It has been recently used for thermohydraulic studies of two phase superfluid helium in autumn 2004. In the near future, this test bench will allow: - to test industrial components at 1.8K (magnets, cavities of accelerators) - to continue the present studies on thermohydraulics of two phase superfluid helium - to develop and simulate new cooling loops for ITER Cryogenics, and other applications such as high Reynolds number flows This new facility consists of a cold box connected to a warm compressor station (one subatmospheric oil ring pump in series with two screw compressors). The cold box, designed by AIR LIQUIDE, comprises two centrifugal cold compressors, a cold turbine, a wet piston expander, counter flow heat exchangers and two phase separators at 4.5K and 1.8K. The new facility uses a Programmable Logic Controller (PLC) connected to a bus for the measurements. The design is modular and will allow the use of saturated fluid flow (two phase flow at 1.8K or 4.5K) or single phase fluid forced flow. Experimental results and cooling capacity in different operation modes are detailed.

  2. An Experimental Study of Pressure Oscillation in a Capillary Pumped Loop with Multiple Evaporators and Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jen-Tung; Hoang, Triem T.

    1998-01-01

    The heat transport capability of a capillary pumped loop (CPL) is limited by the pressure drop that its evaporator wick can sustain. The pressure drop in a CPL is not constant even under seemingly steady operation, but rather exhibits an oscillatory behavior. A hydrodynamic theory based on a mass-spring-dashpot model was previously developed to predict the pressure oscillation in a CPL with a single evaporator and a single condenser. The theory states that the pressure oscillation is a function of physical dimensions of the CPL components and operating conditions. Experimental data agreed very well with theoretical predictions. The hydrodynamic stability theory has recently been extended to predict the pressure oscillations in CPLs with multiple evaporators and multiple condensers. Concurrently, an experimental study was conducted to verify the theory and to investigate the effects of various parameters on the pressure oscillation. Four evaporators with different wick properties were tested using a test loop containing two condenser plates. The test loop allowed the four evaporators to be tested in a single-pump, two-pump or four-pump configuration, and the two condenser plates to be plumbed either in parallel or in series. Test conditions included varying the power input, the reservoir set point temperature, the condenser sink temperature, and the flow resistance between the reservoir and the loop. Experimental results agreed well with theoretical predictions.

  3. The accomplishments of lithium target and test facility validation activities in the IFMIF/EVEDA phase

    NASA Astrophysics Data System (ADS)

    Arbeiter, Frederik; Baluc, Nadine; Favuzza, Paolo; Gröschel, Friedrich; Heidinger, Roland; Ibarra, Angel; Knaster, Juan; Kanemura, Takuji; Kondo, Hiroo; Massaut, Vincent; Saverio Nitti, Francesco; Miccichè, Gioacchino; O'hira, Shigeru; Rapisarda, David; Sugimoto, Masayoshi; Wakai, Eiichi; Yokomine, Takehiko

    2018-01-01

    As part of the engineering validation and engineering design activities (EVEDA) phase for the international fusion materials irradiation facility IFMIF, major elements of a lithium target facility and the test facility were designed, prototyped and validated. For the lithium target facility, the EVEDA lithium test loop was built at JAEA and used to test the stability (waves and long term) of the lithium flow in the target, work out the startup procedures, and test lithium purification and analysis. It was confirmed by experiments in the Lifus 6 plant at ENEA that lithium corrosion on ferritic martensitic steels is acceptably low. Furthermore, complex remote handling procedures for the remote maintenance of the target in the test cell environment were successfully practiced. For the test facility, two variants of a high flux test module were prototyped and tested in helium loops, demonstrating their good capabilities of maintaining the material specimens at the desired temperature with a low temperature spread. Irradiation tests were performed for heated specimen capsules and irradiation instrumentation in the BR2 reactor at SCK-CEN. The small specimen test technique, essential for obtaining material test results with limited irradiation volume, was advanced by evaluating specimen shape and test technique influences.

  4. Suggestions for Layout and Functional Behavior of Software-Based Voice Switch Keysets

    NASA Technical Reports Server (NTRS)

    Scott, David W.

    2010-01-01

    Marshall Space Flight Center (MSFC) provides communication services for a number of real time environments, including Space Shuttle Propulsion support and International Space Station (ISS) payload operations. In such settings, control team members speak with each other via multiple voice circuits or loops. Each loop has a particular purpose and constituency, and users are assigned listen and/or talk capabilities for a given loop based on their role in fulfilling the purpose. A voice switch is a given facility's hardware and software that supports such communication, and may be interconnected with other facilities switches to create a large network that, from an end user perspective, acts like a single system. Since users typically monitor and/or respond to several voice loops concurrently for hours on end and real time operations can be very dynamic and intense, it s vital that a control panel or keyset for interfacing with the voice switch be a servant that reduces stress, not a master that adds it. Implementing the visual interface on a computer screen provides tremendous flexibility and configurability, but there s a very real risk of overcomplication. (Remember how office automation made life easier, which led to a deluge of documents that made life harder?) This paper a) discusses some basic human factors considerations related to keysets implemented as application software windows, b) suggests what to standardize at the facility level and what to leave to the user's preference, and c) provides screen shot mockups for a robust but reasonably simple user experience. Concepts apply to keyset needs in almost any type of operations control or support center.

  5. The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility (AEF)

    DTIC Science & Technology

    2015-10-01

    ARL-TR-7506 ● OCT 2015 US Army Research Laboratory The Automation of the Transonic Experimental Facility (TEF) and the...Laboratory The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility (AEF) by Charith R Ranawake Weapons...To) 05/2015–08/2015 4. TITLE AND SUBTITLE The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility

  6. Gastric bypass: why Roux-en-Y? A review of experimental data.

    PubMed

    Collins, Brendan J; Miyashita, Tomoharu; Schweitzer, Michael; Magnuson, Thomas; Harmon, John W

    2007-10-01

    To highlight the clinical and experimental rationales that support why the Roux-en-Y limb is an important surgical principle for bariatric gastric bypass. We reviewed PubMed citations for open Roux-en-Y gastric bypass (RYGBP), laparoscopic RYGBP, loop gastric bypass, chronic alkaline reflux gastritis, and duodenoesophageal reflux. We reviewed clinical and experimental articles. Clinical articles included prospective, retrospective, and case series of patients undergoing RYGBP, laparoscopic RYGBP, or loop gastric bypass. Experimental articles that were reviewed included in vivo and in vitro models of chronic duodenoesophageal reflux and its effect on carcinogenesis. No formal data extraction was performed. We reviewed published operative times, lengths of stay, and anastomotic leak rates for laparoscopic RYGBP and loop gastric bypass. For in vivo and in vitro experimental models of duodenoesophageal reflux, we reviewed the kinetics and potential molecular mechanisms of carcinogenesis. Recent data suggest that laparoscopic loop gastric bypass, performed without the creation of a Roux-en-Y gastroenterostomy, is a faster surgical technique that confers similarly robust weight loss compared with RYGBP or laparoscopic RYGBP. In the absence of a Roux limb, the long-term effects of chronic alkaline reflux are unknown. Animal models and in vitro analyses of chronic alkaline reflux suggest a carcinogenic effect.

  7. A calibration loop to test hot-wire response under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Radulović, Ivana; Vukoslavčević, P. V.; Wallace, J. M.

    2004-11-01

    A calibration facility to test the response of hot-wires in CO2 flow under supercritical conditions has been designed and constructed. It is capable of inducing variable speeds at different temperatures and pressures in the ranges of 0.15 - 2 m/s, 15 - 70 deg. C and 1 - 100 bar. The facility is designed as a closed loop with a test section, pump, electrical heater, DC motor and different regulating and measuring devices. The test section is a small tunnel, with a diffuser, honeycomb, screens and a nozzle to provide a uniform flow with a low turbulence level. The speed variation is created by a sealed, magnetic driven gear pump, with a variable rpm DC motor. Using the electrical heater and regulating the amount of CO2 in the facility, the desired temperature and pressure can be reached. The dimensions of the instalation are minimized to reduce the heat, pump power required, and CO2 consumption and to optimize safety. Preliminary testing of a single hot-wire velocity sensor at constant pressure (80 bar) and variable speed and temperature will be briefly described. The hot-wire probes calibrated in this loop will be used to measure turbulence properties in supercritical CO2 in support of improved designs of nuclear reactors to be cooled by supercritical fluids.

  8. A Closed-Loop Hardware Simulation of Decentralized Satellite Formation Control

    NASA Technical Reports Server (NTRS)

    Ebimuma, Takuji; Lightsey, E. Glenn; Baur, Frank (Technical Monitor)

    2002-01-01

    In recent years, there has been significant interest in the use of formation flying spacecraft for a variety of earth and space science missions. Formation flying may provide smaller and cheaper satellites that, working together, have more capability than larger and more expensive satellites. Several decentralized architectures have been proposed for autonomous establishment and maintenance of satellite formations. In such architectures, each satellite cooperatively maintains the shape of the formation without a central supervisor, and processing only local measurement information. The Global Positioning System (GPS) sensors are ideally suited to provide such local position and velocity measurements to the individual satellites. An investigation of the feasibility of a decentralized approach to satellite formation flying was originally presented by Carpenter. He extended a decentralized linear-quadratic-Gaussian (LQG) framework proposed by Speyer in a fashion similar to an extended Kalman filter (EKE) which processed GPS position fix solutions. The new decentralized LQG architecture was demonstrated in a numerical simulation for a realistic scenario that is similar to missions that have been proposed by NASA and the U.S. Air Force. Another decentralized architecture was proposed by Park et al. using carrier differential-phase GPS (CDGPS). Recently, Busse et al demonstrated the decentralized CDGPS architecture in a hardware-in-the-loop simulation on the Formation Flying TestBed (FFTB) at Goddard Space Flight Center (GSFC), which features two Spirent Cox 16 channel GPS signal generator. Although representing a step forward by utilizing GPS signal simulators for a spacecraft formation flying simulation, only an open-loop performance, in which no maneuvers were executed based on the real-time state estimates, was considered. In this research, hardware experimentation has been extended to include closed-loop integrated guidance and navigation of multiple spacecraft formations using GPS receivers and real-time vehicle telemetry. A hardware closed-loop simulation has been performed using the decentralized LQG architecture proposed by Carpenter in the GPS test facility at the Center for Space Research (CSR). This is the first presentation using this type of hardware for demonstration of closed-loop spacecraft formation flying.

  9. Validation of the generalized model of two-phase thermosyphon loop based on experimental measurements of volumetric flow rate

    NASA Astrophysics Data System (ADS)

    Bieliński, Henryk

    2016-09-01

    The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.

  10. Cyclic softening based on dislocation annihilation at sub-cell boundary for SA333 Grade-6 C-Mn steel

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.; Gupta, S. K.

    2018-01-01

    In this work, the response of SA333 Grade-6 C-Mn steel subjected to uniaxial and in-phase biaxial tension-torsion cyclic loading is experimented and an attempt is made to model the material behaviour. Experimentally observed cyclic softening is modelled based on ‘dislocation annihilation at low angle grain boundary’, while Ohno-Wang kinematic hardening rule is used to simulate the stress-strain hysteresis loops. The relevant material parameters are extracted from the appropriate experimental results and metallurgical investigations. The material model is plugged as user material subroutine into ABAQUS FE platform to simulate pre-saturation low cycle fatigue loops with cyclic softening and other cyclic plastic behaviour under prescribed loading. The stress-strain hysteresis loops and peak stress with cycles were compared with the experimental results and good agreements between experimental and simulated results validated the material model.

  11. Closed Loop Two-Phase Thermosyphon of Small Dimensions: a Review of the Experimental Results

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro; Filippeschi, Sauro

    2012-06-01

    A bibliographical review on the heat and mass transfer in gravity assisted Closed Loop Two Phase Thermosyphons (CLTPT) with channels having a hydraulic diameter of the order of some millimetres and input power below 1 kW is proposed. The available experimental works in the literature are critically analysed in order to highlight the main results and the correlation between mass flow rate and heat input in natural circulation loops. A comparison of different experimental apparatuses and results is made. It is observed that the results are very different among them and in many cases the experimental data disagree with the conventional theory developed for an imposed flow rate. The paper analyses the main differences among the experimental devices and try to understand these disagreements. From the present analysis it is evident that further systematic studies are required to generate a meaningful body of knowledge of the heat and mass transport mechanism in these devices for practical applications in cooling devices or energy systems.

  12. Sub-Poissonian light and photocurrent shot-noise suppression in closed opto-electronic loop

    NASA Technical Reports Server (NTRS)

    Masalov, A. V.; Putilin, A. A.; Vasilyev, Michael V.

    1994-01-01

    We examine experimentally photocurrent noise reduction in the opto-electronic closed loop. Photocurrent noise density 12.5 dB below the shot-noise was observed. So large suppression was not reached in previous experiments and cannot be explained in terms of an ordinary sub-Poissonian light in the loop. We propose the concept of anticorrelation state for the description of light in the loop.

  13. Calculation of natural convection test at Phenix using the NETFLOW++ code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mochizuki, H.; Kikuchi, N.; Li, S.

    2012-07-01

    The present paper describes modeling and analyses of a natural convection of the pool-type fast breeder reactor Phenix. The natural convection test was carried out as one of the End of Life Tests of the Phenix. Objective of the present study is to assess the applicability of the NETFLOW++ code which has been verified thus far using various water facilities and validated using the plant data of the loop-type FBR 'Monju' and the loop-type experimental fast reactor 'Joyo'. The Phenix primary heat transport system is modeled based on the benchmark documents available from IAEA. The calculational model consists of onlymore » the primary heat transport system with boundary conditions on the secondary-side of IHX. The coolant temperature at the primary pump inlet, the primary coolant temperature at the IHX inlet and outlet, the secondary coolant temperatures and other parameters are calculated by the code where the heat transfer between the hot and cold pools is explicitly taken into account. A model including the secondary and tertiary systems was prepared, and the calculated results also agree well with the measured data in general. (authors)« less

  14. Formation of chromosomal domains in interphase by loop extrusion

    NASA Astrophysics Data System (ADS)

    Fudenberg, Geoffrey

    While genomes are often considered as one-dimensional sequences, interphase chromosomes are organized in three dimensions with an essential role for regulating gene expression. Recent studies have shown that Topologically Associating Domains (TADs) are fundamental structural and functional building blocks of human interphase chromosomes. Despite observations that architectural proteins, including CTCF, demarcate and maintain the borders of TADs, the mechanisms underlying TAD formation remain unknown. Here we propose that loop extrusion underlies the formation TADs. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops, but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. This process dynamically forms loops of various sizes within but not between TADs. Using polymer simulations, we find that loop extrusion can produce TADs as determined by our analyses of the highest-resolution experimental data. Moreover, we find that loop extrusion can explain many diverse experimental observations, including: the preferential orientation of CTCF motifs and enrichments of architectural proteins at TAD boundaries; TAD boundary deletion experiments; and experiments with knockdown or depletion of CTCF, cohesin, and cohesin-loading factors. Together, the emerging picture from our work is that TADs are formed by rapidly associating, growing, and dissociating loops, presenting a clear framework for understanding interphase chromosomal organization.

  15. CLOSED-LOOP TREATMENT OF ELECTROLYTIC AND ELECTROLESS NICKEL RINSE WATER BY POINT-OF-USE ION EXCHANGE: A CASE STUDY

    EPA Science Inventory

    Many recent pilot tests have demonstrated the benefits and cost effectiveness of point-of-use treatment technologies as opposed to centralized wastewater treatment for all sizes of plating facilities. A 9-month case study at a small plating facility in Cincinnati, OH utilizing po...

  16. Modeling the Lac repressor-operator assembly: The influence of DNA looping on Lac repressor conformation

    PubMed Central

    Swigon, David; Coleman, Bernard D.; Olson, Wilma K.

    2006-01-01

    Repression of transcription of the Escherichia coli Lac operon by the Lac repressor (LacR) is accompanied by the simultaneous binding of LacR to two operators and the formation of a DNA loop. A recently developed theory of sequence-dependent DNA elasticity enables one to relate the fine structure of the LacR–DNA complex to a wide range of heretofore-unconnected experimental observations. Here, that theory is used to calculate the configuration and free energy of the DNA loop as a function of its length and base-pair sequence, its linking number, and the end conditions imposed by the LacR tetramer. The tetramer can assume two types of conformations. Whereas a rigid V-shaped structure is observed in the crystal, EM images show extended forms in which two dimer subunits are flexibly joined. Upon comparing our computed loop configurations with published experimental observations of permanganate sensitivities, DNase I cutting patterns, and loop stabilities, we conclude that linear DNA segments of short-to-medium chain length (50–180 bp) give rise to loops with the extended form of LacR and that loops formed within negatively supercoiled plasmids induce the V-shaped structure. PMID:16785444

  17. Theoretical analysis, design and development of a 27-MHz folded loop antenna as a potential applicator in hyperthermia treatment.

    PubMed

    Kouloulias, Vassilis; Karanasiou, Irene; Giamalaki, Melina; Matsopoulos, George; Kouvaris, John; Kelekis, Nikolaos; Uzunoglu, Nikolaos

    2015-02-01

    A hyperthermia system using a folded loop antenna applicator at 27 MHz for soft tissue treatment was investigated both theoretically and experimentally to evaluate its clinical value. The electromagnetic analysis of a 27-MHz folded loop antenna for use in human tissue was based on a customised software tool and led to the design and development of the proposed hyperthermia system. The system was experimentally validated using specific absorption rate (SAR) distribution estimations through temperature distribution measurements of a muscle tissue phantom after electromagnetic exposure. Various scenarios for optimal antenna positioning were also performed. Comparison of the theoretical and experimental analysis results shows satisfactory agreement. The SAR level of 50% reaches 8 cm depth in the tissue phantom. Thus, based on the maximum observed SAR values that were of the order of 100 W/kg, the antenna specified is suitable for deep tumour heating. Theoretical and experimental SAR distribution results as derived from this study are in agreement. The proposed folded loop antenna seems appropriate for use in hyperthermia treatment, achieving proper planning and local treatment of deeply seated affected areas and lesions.

  18. Experimental Study of a Nitrogen Natural Circulation Loop at Low Heat Flux

    NASA Astrophysics Data System (ADS)

    Baudouy, B.

    2010-04-01

    A natural convection circulation loop in liquid nitrogen, i.e. an open thermosiphon flow configuration, has been investigated experimentally near atmospheric pressure. The experiments were conducted on a 2 m high loop with a copper tube of 10 mm inner diameter uniformly heated over a length of 0.95 m. Evolution of the total mass flow rate of the loop and the pressure difference along the tube are described. We also report the boiling curves where single phase and two-phase flows are identified with increasing heat flux. We focus our heat transfer analysis on the single phase regime where mixed convection is encountered. A heat transfer coefficient correlation is proposed. We also examine the boiling incipience as a function of the tube height.

  19. A novel feedforward compensation canceling input filter-regulator interaction

    NASA Technical Reports Server (NTRS)

    Kelkar, S. S.; Lee, F. C.

    1983-01-01

    The interaction between the input and the control loop of switching regulators often results in deterimental effects, such as loop instability, degradation of transient response, and audiosusceptibility, etc. The concept of pole-zero cancelation is employed to mitigate some of these detrimental effects and is implemented using a novel feedforward loop, in addition to existing feedback loops of a buck regulator. Experimental results are presented which show excellent correlation with theory.

  20. Dismantling of Loop-Type Channel Equipment of MR Reactor in NRC 'Kurchatov Institute' - 13040

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, Victor; Danilovich, Alexey; Zverkov, Yuri

    2013-07-01

    In 2009 the project of decommissioning of MR and RTF reactors was developed and approved by the Expert Authority of the Russian Federation (Gosexpertiza). The main objective of the decommissioning works identified in this project: - complete dismantling of reactor equipment and systems; - decontamination of reactor premises and site in accordance with the established sanitary and hygienic standards. At the preparatory stage (2008-2010) of the project the following works were executed: loop-type channels' dismantling in the storage pool; experimental fuel assemblies' removal from spent fuel repositories in the central hall; spent fuel assembly removal from the liquid-metal-cooled loop-type channelmore » of the reactor core and its placement into the SNF repository; and reconstruction of engineering support systems to the extent necessary for reactor decommissioning. The project assumes three main phases of dismantling and decontamination: - dismantling of equipment/pipelines of cooling circuits and loop-type channels, and auxiliary reactor equipment (2011-2012); - dismantling of equipment in underground reactor premises and of both MR and RTF in-vessel devices (2013-2014); - decontamination of reactor premises; rehabilitation of the reactor site; final radiation survey of reactor premises, loop-type channels and site; and issuance of the regulatory authorities' de-registration statement (2015). In 2011 the decommissioning license for the two reactors was received and direct MR decommissioning activities started. MR primary pipelines and loop-type facilities situated in the underground reactor hall were dismantled. Works were also launched to dismantle the loop-type channels' equipment in underground reactor premises; reactor buildings were reconstructed to allow removal of dismantled equipment; and the MR/RTF decommissioning sequence was identified. In autumn 2011 - spring 2012 results of dismantling activities performed are: - equipment from underground rooms (No. 66, 66A, 66B, 72, 64, 63) - as well as from water and gas loop corridors - was dismantled, with the total radwaste weight of 53 tons and the total removed activity of 5,0 x 10{sup 10} Bq; - loop-type channel equipment from underground reactor hall premises was dismantled; - 93 loop-type channels were characterized, chopped and removed, with radwaste of 2.6 x 10{sup 13} Bq ({sup 60}Co) and 1.5 x 10{sup 13} Bq ({sup 137}Cs) total activity removed from the reactor pool, fragmented and packaged. Some of this waste was placed into the high-level waste (HLW) repository of the Center. Dismantling works were executed with application of remotely operated mechanisms, which promoted decrease of radiation impact on the personnel. The average individual dose for the personnel was 1.9 mSv/year in 2011, and the collective dose is estimated as 0.0605 man x Sv/year. (authors)« less

  1. Development of a Simulation Capability for the Space Station Active Rack Isolation System

    NASA Technical Reports Server (NTRS)

    Johnson, Terry L.; Tolson, Robert H.

    1998-01-01

    To realize quality microgravity science on the International Space Station, many microgravity facilities will utilize the Active Rack Isolation System (ARIS). Simulation capabilities for ARIS will be needed to predict the microgravity environment. This paper discusses the development of a simulation model for use in predicting the performance of the ARIS in attenuating disturbances with frequency content between 0.01 Hz and 10 Hz. The derivation of the model utilizes an energy-based approach. The complete simulation includes the dynamic model of the ISPR integrated with the model for the ARIS controller so that the entire closed-loop system is simulated. Preliminary performance predictions are made for the ARIS in attenuating both off-board disturbances as well as disturbances from hardware mounted onboard the microgravity facility. These predictions suggest that the ARIS does eliminate resonant behavior detrimental to microgravity experimentation. A limited comparison is made between the simulation predictions of ARIS attenuation of off-board disturbances and results from the ARIS flight test. These comparisons show promise, but further tuning of the simulation is needed.

  2. Performance Evaluation of the International Space Station Flow Boiling and Condensation Experiment (FBCE) Test Facility

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad; Balasubramaniam, R.; Nahra, Henry; Mackey, Jeff; Hall, Nancy; Frankenfield, Bruce; Harpster, George; May, Rochelle; Mudawar, Issam; Kharangate, Chirag R.; hide

    2016-01-01

    A ground-based experimental facility to perform flow boiling and condensation experiments is built in support of the development of the long duration Flow Boiling and Condensation Experiment (FBCE) destined for operation on board of the International Space Station (ISS) Fluid Integrated Rack (FIR). We performed tests with the condensation test module oriented horizontally and vertically. Using FC-72 as the test fluid and water as the cooling fluid, we evaluated the operational characteristics of the condensation module and generated ground based data encompassing the range of parameters of interest to the condensation experiment to be performed on the ISS. During this testing, we also evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, and the heat loss from different components. In this presentation, we discuss representative results of performance testing of the FBCE flow loop. These results will be used in the refinement of the flight system design and build-up of the FBCE which is scheduled for flight in 2019.

  3. Tunable compensation of GVD-induced FM-AM conversion in the front end of high-power lasers.

    PubMed

    Li, Rao; Fan, Wei; Jiang, Youen; Qiao, Zhi; Zhang, Peng; Lin, Zunqi

    2017-02-01

    Group velocity dispersion (GVD) is one of the main factors leading to frequency modulation (FM) to amplitude modulation (AM) conversion in the front end of high-power lasers. In order to compensate the FM-AM modulation, the influence of GVD, which is mainly induced by the phase filter effect, is theoretically investigated. Based on the theoretical analysis, a high-precision, high-stability, tunable GVD compensatory using gratings is designed and experimentally demonstrated. The results indicate that the compensator can be implemented in high-power laser facilities to compensate the GVD of fiber with a length between 200-500 m when the bandwidth of a phase-modulated laser is 0.34 nm or 0.58 nm and the central wavelength is in the range of 1052.3217-1053.6008 nm. Due to the linear relationship between the dispersion and the spacing distance of the gratings, the compensator can easily achieve closed-loop feedback controlling. The proposed GVD compensator promises significant applications in large laser facilities, especially in the future polarizing fiber front end of high-power lasers.

  4. Hardware Progress Made in the Early Flight Fission Test Facilities (EFF-TF) To Support Near-Term Space Fission Systems

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Martin, James

    2005-01-01

    The EFF-TF provides a facility to experimentally evaluate thermal hydraulic issues through the use of highly effective non-nuclear testing. These techniques provide a rapid, more cost effective method of evaluating designs and support development risk mitigation when concerns are associated with non-nuclear aspects of space nuclear systems. For many systems, electrical resistance thermal simulators can be used to closely mimic the heat deposition of the fission process, providing axial and radial profiles. A number of experimental and design programs were underway in 2004. Initial evaluation of the SAFE-100a (19 module stainless steel/sodium heat pipe reactor with integral gas neat exchanger) was performed with tests up to 17.5 kW of input power at core temperatures of 1000 K. A stainless steel sodium SAFE-100 heat pipe module was placed through repeated freeze/thaw cyclic testing accumulating over 200 restarts to a temperature of 1000 K. Additionally, the design of a 37-fuel pin stainless steel pumped sodium/potassium (NaK) loop was finalized and components procured. Ongoing testing at the EFF-TF is geared towards facilitating both research and development necessary to field a near term space nuclear system. Efforts are coordinated with DOE laboratories, industry, universities, and other NASA centers. This paper describes some of the 2004 efforts.

  5. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalksy, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground-testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  6. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalosky, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  7. Center for Hybrid Communications and Networks

    DTIC Science & Technology

    2016-09-08

    Transmission loop experimental setup to study coded modulation and turbo equalization for metro and long-haul networks, 3) Experimental setup for...undertaking fundamental studies of QKD systems that use ( hyper -) entangled photon pairs or weak coherent states (WCS) as the quantum resources...onlinelibrary.wiley.com/doi/10.1002/047134608X.W8291/abstract] The real-time scope and AWG are also used in fiber-optics transmission loop experiment we

  8. Investigation of Natural Circulation Instability and Transients in Passively Safe Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, Mamoru

    The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results andmore » models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup power density on the flow instability. The experimental startup transient results showed the existence of three different flow instability mechanisms, i.e., flashing instability, condensation induced flow instability, and density wave oscillations. In addition, the void-reactivity feedback did not have significant effects on the flow instability during the startup transients for NMR-50. ii Several initial startup procedures with different power ramp rates were experimentally investigated to eliminate the flow instabilities observed from the startup transients. Particularly, the very slow startup transient and pressurized startup transient tests were performed and compared. It was found that the very slow startup transients by applying very small power density can eliminate the flashing oscillations in the single-phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. The initially pressurized startup procedure was tested to eliminate the flashing instability during the startup transients as well. The pressurized startup procedure included the initial pressurization, heat-up, and venting process. The startup transient tests showed that the pressurized startup procedure could eliminate the flow instability during the transition from single-phase flow to two-phase flow at low pressure conditions. The experimental results indicated that both startup procedures were applicable to the initial startup of NMR. However, the pressurized startup procedures might be preferred due to short operating hours required. In order to have a deeper understanding of natural circulation flow instability, the quasi-steady tests were performed using the test facility installed with preheater and subcooler. The effect of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback were investigated in the quasi-steady state tests. The experimental stability boundaries were determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. To predict the stability boundary theoretically, linear stability analysis in the frequency domain was performed at four sections of the natural circulation test loop. The flashing phenomena in the chimney section was considered as an axially uniform heat source. And the dimensionless characteristic equation of the pressure drop perturbation was obtained by considering the void fraction effect and outlet flow resistance in the core section. The theoretical flashing boundary showed some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium was recommended to improve the accuracy of flashing instability boundary. As another part of the funded research, flow instabilities of a PWR-type SMR under low pressure and low power conditions were investigated experimentally as well. The NuScale reactor design was selected as the prototype for the PWR-type SMR. In order to experimentally study the natural circulation behavior of NuScale iii reactor during accidental scenarios, detailed scaling analyses are necessary to ensure that the scaled phenomena could be obtained in a laboratory test facility. The three-level scaling method is used as well to obtain the scaling ratios derived from various non-dimensional numbers. The design of the ideally scaled facility (ISF) was initially accomplished based on these scaling ratios. Then the engineering scaled facility (ESF) was designed and constructed based on the ISF by considering engineering limitations including laboratory space, pipe size, and pipe connections etc. PWR-type SMR experiments were performed in this well-scaled test facility to investigate the potential thermal hydraulic flow instability during the blowdown events, which might occur during the loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) of the prototype PWR-type SMR. Two kinds of experiments, normal blowdown event and cold blowdown event, were experimentally investigated and compared with code predictions. The normal blowdown event was experimentally simulated since an initial condition where the pressure was lower than the designed pressure of the experiment facility, while the code prediction of blowdown started from the normal operation condition. Important thermal hydraulic parameters including reactor pressure vessel (RPV) pressure, containment pressure, local void fraction and temperature, pressure drop and natural circulation flow rate were measured and analyzed during the blowdown event. The pressure and water level transients are similar to the experimental results published by NuScale [51], which proves the capability of current loop in simulating the thermal hydraulic transient of real PWR-type SMR. During the 20000s blowdown experiment, water level in the core was always above the active fuel assemble during the experiment and proved the safety of natural circulation cooling and water recycling design of PWR-type SMR. Besides, pressure, temperature, and water level transient can be accurately predicted by RELAP5 code. However, the oscillations of natural circulation flow rate, water level and pressure drops were observed during the blowdown transients. This kind of flow oscillations are related to the water level and the location upper plenum, which is a path for coolant flow from chimney to steam generator and down comer. In order to investigate the transients start from the opening of ADS valve in both experimental and numerical way, the cold blow-down experiment is conducted. For the cold blowdown event, different from setting both reactor iv pressure vessel (RPV) and containment at high temperature and pressure, only RPV was heated close to the highest designed pressure and then open the ADS valve, same process was predicted using RELAP5 code. By doing cold blowdown experiment, the entire transients from the opening of ADS can be investigated by code and benchmarked with experimental data. Similar flow instability observed in the cold blowdown experiment. The comparison between code prediction and experiment data showed that the RELAP5 code can successfully predict the pressure void fraction and temperature transient during the cold blowdown event with limited error, but numerical instability exists in predicting natural circulation flow rate. Besides, the code is lack of capability in predicting the water level related flow instability observed in experiments.« less

  9. Performance improvement of a binary quantized all-digital phase-locked loop with a new aided-acquisition technique

    NASA Astrophysics Data System (ADS)

    Sandoz, J.-P.; Steenaart, W.

    1984-12-01

    The nonuniform sampling digital phase-locked loop (DPLL) with sequential loop filter, in which the correction sizes are controlled by the accumulated differences of two additional phase comparators, is graphically analyzed. In the absence of noise and frequency drift, the analysis gives some physical insight into the acquisition and tracking behavior. Taking noise into account, a mathematical model is derived and a random walk technique is applied to evaluate the rms phase error and the mean acquisition time. Experimental results confirm the appropriate simplifying hypotheses used in the numerical analysis. Two related performance measures defined in terms of the rms phase error and the acquisition time for a given SNR are used. These measures provide a common basis for comparing different digital loops and, to a limited extent, also with a first-order linear loop. Finally, the behavior of a modified DPLL under frequency deviation in the presence of Gaussian noise is tested experimentally and by computer simulation.

  10. Engineering the thermostability of β-glucuronidase from Penicillium purpurogenum Li-3 by loop transplant.

    PubMed

    Feng, Xudong; Tang, Heng; Han, Beijia; Zhang, Liang; Lv, Bo; Li, Chun

    2016-12-01

    In this study, we proposed a loop transplant strategy to improve the thermostability of Penicillium purpurogenum Li-3 β-glucuronidase expressed in Escherichia coli (abbreviated to PGUS-E). Firstly, three unstable surface loops of PGUS-E to be replaced were identified with regards to B-factor values and in-depth structure analysis: loops 205-211, 258-263, and 25-31. Then, based on B-factor analysis, eight stable loops for substitution were selected from two typical thermophilic glycosidases which had low homology with PGUS-E (less than 25 %). By analyzing the common features of these stable loops, it was found that they shared a common residue skeleton DXXTX(X)R, based on this, three chimera loops were also manually designed: RSQTSND, RSSTQRD, and DDQTSR. All these loops were introduced to replace the unstable loops of PGUS-E by homology structure modeling, and only mutants with increased hydrogen bonds number and good compatibility with the local mutated region were further subjected to experimental verification. By using this strategy, 10 mutants were experimentally generated, among which three mutants, M1, M3, and M8, were obtained which showed 11.8, 3.3, and 9.4 times higher half-life at 70 °C than that of wild-type (8.5 min). Finally, the MD simulation indicated that the increased hydrogen bonds, decreased flexibility of N-terminal, and increased π-π stacking interaction were responsible for the improved thermostability.

  11. Evaporation of binary mixtures in microgravity

    NASA Technical Reports Server (NTRS)

    Girgis, Morris; Matta, Nabil; Kolli, Kiran; Brown, Leon; Chubb, Kevin

    1995-01-01

    The motivation of this research is to obtain a better understanding of phase-change heat transfer within single and binary liquid meniscii, both in 1-g and 0-g environments. During phase 1 and part of phase 2, in a glass test cell with an inclined heated plate, 1-6 experiments on pentane with additions of decane up to 3% were conducted to determine the optimum concentration that will exhibit the maximum heat transfer and stability. During phase 2 emphasis was given to explore fundamental research issues and to ultimately develop a reliable capillary pumped loop (CPL) device for low gravity. In related experimental work, it was found that thermocapillary stresses near the contract line could result in a degraded wettability which ultimately could explain the observed failure of CPL devices in zero-gravity environment. Therefore, the current experimental effort investigates the effect of adding binary constituents in improving the thermocapillary characteristics near the contact line within the loop configuration. Achievements during second phase include: (1) Further enhancement of Central State University's Microgravity Laboratory by adding or improving upon capabilities of photography, video imaging, fluid visualization, and general experimental testing capabilities; (2) Experimental results for the inclined plate cell; (3) Modeling effort with a detailed scaling analysis; (4) Additional testing with a tube loop configuration to extend experimental work by Dickens, et al.; (5) Fabrication of a capillary loop to be tested using binary fluid (pentane/decane). The device that has been recently completed will be set up horizontally so that the effect of gravity on the performance is negligible. Testing will cover a wide range of parameters such as decane/pentane concentration, heat input value, heat input location (below or above meniscus), and loop temperature.

  12. Conceptual design of a thermalhydraulic loop for multiple test geometries at supercritical conditions named Supercritical Phenomena Experimental Test Apparatus (SPETA)

    NASA Astrophysics Data System (ADS)

    Adenariwo, Adepoju

    The efficiency of nuclear reactors can be improved by increasing the operating pressure of current nuclear reactors. Current CANDU-type nuclear reactors use heavy water as coolant at an outlet pressure of up to 11.5 MPa. Conceptual SuperCritical Water Reactors (SCWRs) will operate at a higher coolant outlet pressure of 25 MPa. Supercritical water technology has been used in advanced coal plants and its application proves promising to be employed in nuclear reactors. To better understand how supercritical water technology can be applied in nuclear power plants, supercritical water loops are used to study the heat transfer phenomena as it applies to CANDU-type reactors. A conceptual design of a loop known as the Supercritical Phenomena Experimental Apparatus (SPETA) has been done. This loop has been designed to fit in a 9 m by 2 m by 2.8 m enclosure that will be installed at the University of Ontario Institute of Technology Energy Research Laboratory. The loop include components to safely start up and shut down various test sections, produce a heat source to the test section, and to remove reject heat. It is expected that loop will be able to investigate the behaviour of supercritical water in various geometries including bare tubes, annulus tubes, and multi-element-type bundles. The experimental geometries are designed to match the fluid properties of Canadian SCWR fuel channel designs so that they are representative of a practical application of supercritical water technology in nuclear plants. This loop will investigate various test section orientations which are the horizontal, vertical, and inclined to investigate buoyancy effects. Frictional pressure drop effects and satisfactory methods of estimating hydraulic resistances in supercritical fluid shall also be estimated with the loop. Operating limits for SPETA have been established to be able to capture the important heat transfer phenomena at supercritical conditions. Heat balance and flow calculations have been done to appropriately size components in the loop. Sensitivity analysis has been done to find the optimum design for the loop.

  13. A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.

    PubMed

    Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A

    2005-11-01

    While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.

  14. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheryl Morton; Carl Baily; Tom Hill

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a lowtemperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less

  15. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less

  16. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    NASA Astrophysics Data System (ADS)

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.

    2006-01-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  17. PIV Uncertainty Methodologies for CFD Code Validation at the MIR Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabharwall, Piyush; Skifton, Richard; Stoots, Carl

    2013-12-01

    Currently, computational fluid dynamics (CFD) is widely used in the nuclear thermal hydraulics field for design and safety analyses. To validate CFD codes, high quality multi dimensional flow field data are essential. The Matched Index of Refraction (MIR) Flow Facility at Idaho National Laboratory has a unique capability to contribute to the development of validated CFD codes through the use of Particle Image Velocimetry (PIV). The significance of the MIR facility is that it permits non intrusive velocity measurement techniques, such as PIV, through complex models without requiring probes and other instrumentation that disturb the flow. At the heart ofmore » any PIV calculation is the cross-correlation, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. This image displacement is indicated by the location of the largest peak. In the MIR facility, uncertainty quantification is a challenging task due to the use of optical measurement techniques. Currently, this study is developing a reliable method to analyze uncertainty and sensitivity of the measured data and develop a computer code to automatically analyze the uncertainty/sensitivity of the measured data. The main objective of this study is to develop a well established uncertainty quantification method for the MIR Flow Facility, which consists of many complicated uncertainty factors. In this study, the uncertainty sources are resolved in depth by categorizing them into uncertainties from the MIR flow loop and PIV system (including particle motion, image distortion, and data processing). Then, each uncertainty source is mathematically modeled or adequately defined. Finally, this study will provide a method and procedure to quantify the experimental uncertainty in the MIR Flow Facility with sample test results.« less

  18. Qualitative thermal characterization and cooling of lithium batteries for electric vehicles

    NASA Astrophysics Data System (ADS)

    Mariani, A.; D'Annibale, F.; Boccardi, G.; Celata, G. P.; Menale, C.; Bubbico, R.; Vellucci, F.

    2014-04-01

    The paper deals with the cooling of batteries. The first step was the thermal characterization of a single cell of the module, which consists in the detection of the thermal field by means of thermographic tests during electric charging and discharging. The purpose was to identify possible critical hot points and to evaluate the cooling demand during the normal operation of an electric car. After that, a study on the optimal configuration to obtain the flattening of the temperature profile and to avoid hot points was executed. An experimental plant for cooling capacity evaluation of the batteries, using air as cooling fluid, was realized in our laboratory in ENEA Casaccia. The plant is designed to allow testing at different flow rate and temperatures of the cooling air, useful for the assessment of operative thermal limits in different working conditions. Another experimental facility was built to evaluate the thermal behaviour changes with water as cooling fluid. Experimental tests were carried out on the LiFePO4 batteries, under different electric working conditions using the two loops. In the future, different type of batteries will be tested and the influence of various parameters on the heat transfer will be assessed for possible optimal operative solutions.

  19. Recent Developments in Hardware-in-the-Loop Formation Navigation and Control

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason W.; Luquette, Richard J.

    2005-01-01

    The Formation Flying Test-Bed (FFTB) at NASA Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-tc-end guidance, navigation, and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, are reviewed with a focus on many recent improvements. Two significant upgrades to the FFTB are a message-oriented middleware (MOM) architecture, and a software crosslink for inter-spacecraft ranging. The MOM architecture provides a common messaging bus for software agents, easing integration, arid supporting the GSFC Mission Services Evolution Center (GMSEC) architecture via software bridge. Additionally, the FFTB s hardware capabilities are expanding. Recently, two Low-Power Transceivers (LPTs) with ranging capability have been introduced into the FFTB. The LPT crosslinks will be connected to a modified Crosslink Channel Simulator (CCS), which applies realistic space-environment effects to the Radio Frequency (RF) signals produced by the LPTs.

  20. A hybrid solution approach for a multi-objective closed-loop logistics network under uncertainty

    NASA Astrophysics Data System (ADS)

    Mehrbod, Mehrdad; Tu, Nan; Miao, Lixin

    2015-06-01

    The design of closed-loop logistics (forward and reverse logistics) has attracted growing attention with the stringent pressures of customer expectations, environmental concerns and economic factors. This paper considers a multi-product, multi-period and multi-objective closed-loop logistics network model with regard to facility expansion as a facility location-allocation problem, which more closely approximates real-world conditions. A multi-objective mixed integer nonlinear programming formulation is linearized by defining new variables and adding new constraints to the model. By considering the aforementioned model under uncertainty, this paper develops a hybrid solution approach by combining an interactive fuzzy goal programming approach and robust counterpart optimization based on three well-known robust counterpart optimization formulations. Finally, this paper compares the results of the three formulations using different test scenarios and parameter-sensitive analysis in terms of the quality of the final solution, CPU time, the level of conservatism, the degree of closeness to the ideal solution, the degree of balance involved in developing a compromise solution, and satisfaction degree.

  1. Expanding Hardware-in-the-Loop Formation Navigation and Control with Radio Frequency Crosslink Ranging

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason W.; Barbee, Brent W.; Baldwin, Philip J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility continues to evolve as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation, and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, are reviewed with a focus on recent improvements. With the most recent improvement, in support of Technology Readiness Level (TRL) 6 testing of the Inter-spacecraft Ranging and Alarm System (IRAS) for the Magnetospheric Multiscale (MMS) mission, the FFTB has significantly expanded its ability to perform realistic simulations that require Radio Frequency (RF) ranging sensors for relative navigation with the Path Emulator for RF Signals (PERFS). The PERFS, currently under development at NASA GSFC, modulates RF signals exchanged between spacecraft. The RF signals are modified to accurately reflect the dynamic environment through which they travel, including the effects of medium, moving platforms, and radiated power.

  2. A low noise and ultra-narrow bandwidth frequency-locked loop based on the beat method.

    PubMed

    Gao, Wei; Sui, Jianping; Chen, Zhiyong; Yu, Fang; Sheng, Rongwu

    2011-06-01

    A novel frequency-locked loop (FLL) based on the beat method is proposed in this paper. Compared with other frequency feedback loops, this FLL is a digital loop with simple structure and very low noise. As shown in the experimental results, this FLL can be used to reduce close-in phase noise on atomic frequency standards, through which a composite frequency standard with ultra-low phase noise and low cost can be easily realized.

  3. Efficient dynamic coherence transfer relying on offset locking using optical phase-locked loop

    NASA Astrophysics Data System (ADS)

    Xie, Weilin; Dong, Yi; Bretenaker, Fabien; Shi, Hongxiao; Zhou, Qian; Xia, Zongyang; Qin, Jie; Zhang, Lin; Lin, Xi; Hu, Weisheng

    2018-01-01

    We design and experimentally demonstrate a highly efficient coherence transfer based on composite optical phaselocked loop comprising multiple feedback servo loops. The heterodyne offset-locking is achieved by conducting an acousto-optic frequency shifter in combination with the current tuning and the temperature controlling of the semiconductor laser. The adaptation of the composite optical phase-locked loop enables the tight coherence transfer from a frequency comb to a semiconductor laser in a fully dynamic manner.

  4. Bayesian Action-Perception loop modeling: Application to trajectory generation and recognition using internal motor simulation

    NASA Astrophysics Data System (ADS)

    Gilet, Estelle; Diard, Julien; Palluel-Germain, Richard; Bessière, Pierre

    2011-03-01

    This paper is about modeling perception-action loops and, more precisely, the study of the influence of motor knowledge during perception tasks. We use the Bayesian Action-Perception (BAP) model, which deals with the sensorimotor loop involved in reading and writing cursive isolated letters and includes an internal simulation of movement loop. By using this probabilistic model we simulate letter recognition, both with and without internal motor simulation. Comparison of their performance yields an experimental prediction, which we set forth.

  5. Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance

    NASA Technical Reports Server (NTRS)

    Ricci, Stefano; Peeters, Bart; Fetter, Rebecca; Boland, Doug; Debille, Jan

    2008-01-01

    In the field of vibration testing, the interaction between the structure being tested and the instrumentation hardware used to perform the test is a critical issue. This is particularly true when testing massive structures (e.g. satellites), because due to physical design and manufacturing limits, the dynamics of the testing facility often couples with the test specimen one in the frequency range of interest. A further issue in this field is the standard use of a closed loop real-time vibration control scheme, which could potentially shift poles and change damping of the aforementioned coupled system. Virtual shaker testing is a novel approach to deal with these issues. It means performing a simulation which closely represents the real vibration test on the specific facility by taking into account all parameters which might impact the dynamic behavior of the specimen. In this paper, such a virtual shaker testing approach is developed. It consists of the following components: (1) Either a physical-based or an equation-based coupled electro-mechanical lumped parameter shaker model is created. The model parameters are obtained from manufacturer's specifications or by carrying out some dedicated experiments; (2) Existing real-time vibration control algorithm are ported to the virtual simulation environment; and (3) A structural model of the test object is created and after defining proper interface conditions structural modes are computed by means of the well-established Craig-Bampton CMS technique. At this stage, a virtual shaker test has been run, by coupling the three described models (shaker, control loop, structure) in a co-simulation routine. Numerical results have eventually been correlated with experimental ones in order to assess the robustness of the proposed methodology.

  6. STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Geoffrey; Jha, Shantenu; Ramakrishnan, Lavanya

    The Department of Energy (DOE) Office of Science (SC) facilities including accelerators, light sources and neutron sources and sensors that study, the environment, and the atmosphere, are producing streaming data that needs to be analyzed for next-generation scientific discoveries. There has been an explosion of new research and technologies for stream analytics arising from the academic and private sectors. However, there has been no corresponding effort in either documenting the critical research opportunities or building a community that can create and foster productive collaborations. The two-part workshop series, STREAM: Streaming Requirements, Experience, Applications and Middleware Workshop (STREAM2015 and STREAM2016), weremore » conducted to bring the community together and identify gaps and future efforts needed by both NSF and DOE. This report describes the discussions, outcomes and conclusions from STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop, the second of these workshops held on March 22-23, 2016 in Tysons, VA. STREAM2016 focused on the Department of Energy (DOE) applications, computational and experimental facilities, as well software systems. Thus, the role of “streaming and steering” as a critical mode of connecting the experimental and computing facilities was pervasive through the workshop. Given the overlap in interests and challenges with industry, the workshop had significant presence from several innovative companies and major contributors. The requirements that drive the proposed research directions, identified in this report, show an important opportunity for building competitive research and development program around streaming data. These findings and recommendations are consistent with vision outlined in NRC Frontiers of Data and National Strategic Computing Initiative (NCSI) [1, 2]. The discussions from the workshop are captured as topic areas covered in this report's sections. The report discusses four research directions driven by current and future application requirements reflecting the areas identified as important by STREAM2016. These include (i) Algorithms, (ii) Programming Models, Languages and Runtime Systems (iii) Human-in-the-loop and Steering in Scientific Workflow and (iv) Facilities.« less

  7. Optical injection phase-lock loops

    NASA Astrophysics Data System (ADS)

    Bordonalli, Aldario Chrestani

    Locking techniques have been widely applied for frequency synchronisation of semiconductor lasers used in coherent communication and microwave signal generation systems. Two main locking techniques, the optical phase-lock loop (OPLL) and optical injection locking (OIL) are analysed in this thesis. The principal limitations on OPLL performance result from the loop propagation delay, which makes difficult the implementation of high gain and wide bandwidth loops, leading to poor phase noise suppression performance and requiring the linewidths of the semiconductor laser sources to be less than a few megahertz for practical values of loop delay. The OIL phase noise suppression is controlled by the injected power. The principal limitations of the OIL implementation are the finite phase error under locked conditions and the narrow stable locking range the system provides at injected power levels required to reduce the phase noise output of semiconductor lasers significantly. This thesis demonstrates theoretically and experimentally that it is possible to overcome the limitations of OPLL and OIL systems by combining them, to form an optical injection phase-lock loop (OIPLL). The modelling of an OIPLL system is presented and compared with the equivalent OPLL and OIL results. Optical and electrical design of an homodyne OIPLL is detailed. Experimental results are given which verify the theoretical prediction that the OIPLL would keep the phase noise suppression as high as that of the OIL system over a much wider stable locking range, even with wide linewidth lasers and long loop delays. The experimental results for lasers with summed linewidth of 36 MHz and a loop delay of 15 ns showed measured phase error variances as low as 0.006 rad2 (500 MHz bandwidth) for locking bandwidths greater than 26 GHz, compared with the equivalent OPLL phase error variance of around 1 rad2 (500 MHz bandwidth) and the equivalent OIL locking bandwidth of less than 1.2 GHz.

  8. Macroscopic Floquet topological crystalline steel and superconductor pump

    NASA Astrophysics Data System (ADS)

    Rossi, Anna M. E. B.; Bugase, Jonas; Fischer, Thomas M.

    2017-08-01

    The transport of a macroscopic steel sphere and a superconducting sphere on top of two-dimensional periodic magnetic patterns is studied experimentally and compared with the theory and with experiments on topological transport of magnetic colloids. Transport of the steel and superconducting sphere is achieved by moving an external permanent magnet on a closed loop around the two-dimensional crystal. The transport is topological, i.e., the spheres are transported by a primitive unit vector of the lattice when the external magnet loop winds around specific directions. We experimentally determine the set of directions the loops must enclose for nontrivial transport of the spheres into various directions. We show that the loops can be used to sort steel and superconducting spheres. We show that the topological transport is robust with respect to the scale of the system and therefore speculate on its down scalability to the molecular scale.

  9. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    PubMed Central

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-01-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442

  10. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy.

    PubMed

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-07-18

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.

  11. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-07-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.

  12. Real-time Electrophysiology: Using Closed-loop Protocols to Probe Neuronal Dynamics and Beyond

    PubMed Central

    Linaro, Daniele; Couto, João; Giugliano, Michele

    2015-01-01

    Experimental neuroscience is witnessing an increased interest in the development and application of novel and often complex, closed-loop protocols, where the stimulus applied depends in real-time on the response of the system. Recent applications range from the implementation of virtual reality systems for studying motor responses both in mice1 and in zebrafish2, to control of seizures following cortical stroke using optogenetics3. A key advantage of closed-loop techniques resides in the capability of probing higher dimensional properties that are not directly accessible or that depend on multiple variables, such as neuronal excitability4 and reliability, while at the same time maximizing the experimental throughput. In this contribution and in the context of cellular electrophysiology, we describe how to apply a variety of closed-loop protocols to the study of the response properties of pyramidal cortical neurons, recorded intracellularly with the patch clamp technique in acute brain slices from the somatosensory cortex of juvenile rats. As no commercially available or open source software provides all the features required for efficiently performing the experiments described here, a new software toolbox called LCG5 was developed, whose modular structure maximizes reuse of computer code and facilitates the implementation of novel experimental paradigms. Stimulation waveforms are specified using a compact meta-description and full experimental protocols are described in text-based configuration files. Additionally, LCG has a command-line interface that is suited for repetition of trials and automation of experimental protocols. PMID:26132434

  13. NASA MSFC hardware in the loop simulations of automatic rendezvous and capture systems

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Naumann, Charles B.; Sutton, William; Bryan, Thomas C.

    1991-01-01

    Two complementary hardware-in-the-loop simulation facilities for automatic rendezvous and capture systems at MSFC are described. One, the Flight Robotics Laboratory, uses an 8 DOF overhead manipulator with a work volume of 160 by 40 by 23 feet to evaluate automatic rendezvous algorithms and range/rate sensing systems. The other, the Space Station/Station Operations Mechanism Test Bed, uses a 6 DOF hydraulic table to perform docking and berthing dynamics simulations.

  14. Estimating loop length from CryoEM images at medium resolutions.

    PubMed

    McKnight, Andrew; Si, Dong; Al Nasr, Kamal; Chernikov, Andrey; Chrisochoides, Nikos; He, Jing

    2013-01-01

    De novo protein modeling approaches utilize 3-dimensional (3D) images derived from electron cryomicroscopy (CryoEM) experiments. The skeleton connecting two secondary structures such as α-helices represent the loop in the 3D image. The accuracy of the skeleton and of the detected secondary structures are critical in De novo modeling. It is important to measure the length along the skeleton accurately since the length can be used as a constraint in modeling the protein. We have developed a novel computational geometric approach to derive a simplified curve in order to estimate the loop length along the skeleton. The method was tested using fifty simulated density images of helix-loop-helix segments of atomic structures and eighteen experimentally derived density data from Electron Microscopy Data Bank (EMDB). The test using simulated density maps shows that it is possible to estimate within 0.5 Å of the expected length for 48 of the 50 cases. The experiments, involving eighteen experimentally derived CryoEM images, show that twelve cases have error within 2 Å. The tests using both simulated and experimentally derived images show that it is possible for our proposed method to estimate the loop length along the skeleton if the secondary structure elements, such as α-helices, can be detected accurately, and there is a continuous skeleton linking the α-helices.

  15. A Numerical Study for Groundwater Flow, Heat and Solute Transport Associated with Operation of Open-loop Geothermal System in Alluvial Aquifer

    NASA Astrophysics Data System (ADS)

    Park, D. K.; Bae, G. O.; Lee, K. K.

    2014-12-01

    The open-loop geothermal system directly uses a relatively stable temperature of groundwater for cooling and heating in buildings and thus has been known as an eco-friendly, energy-saving, and cost-efficient technique. The facility for this system was installed at a site located near Paldang-dam in Han-river, Korea. Because of the well-developed alluvium, the site might be appropriate to application of this system requiring extraction and injection of a large amount of groundwater. A simple numerical experiment assuming various hydrogeologic conditions demonstrated that regional groundwater flow direction was the most important factor for efficient operation of facility in this site having a highly permeable layer. However, a comparison of river stage data and groundwater level measurements showed that the daily and seasonal controls of water level at Paldang-dam have had a critical influence on the regional groundwater flow in the site. Moreover, nitrate concentrations measured in the monitoring wells gave indication of the effect of agricultural activities around the facility on the groundwater quality. The facility operation, such as extraction and injection of groundwater, will obviously affect transport of the agricultural contaminant and, maybe, it will even cause serious problems in the normal operation. Particularly, the high-permeable layer in this aquifer must be a preferential path for quick spreadings of thermal and contaminant plumes. The objective of this study was to find an efficient, safe and stable operation plan of the open-loop geothermal system installed in this site having the complicated conditions of highly permeable layer, variable regional groundwater flow, and agricultural contamination. Numerical simulations for groundwater flow, heat and solute transport were carried out to analyze all the changes in groundwater level and flow, temperature, and quality according to the operation, respectively. Results showed that an operation plan for only the thermal efficiency of system cannot be the best in aspect of safe and stable operation related to groundwater quality. All these results concluded that it is essential to understand various and site-specific conditions of the site in a more integrated approach for the successful application of the open-loop geothermal system.

  16. Defining the Nature of Thermal Intermediate in 3 State Folding Proteins: Apoflavodoxin, a Study Case

    PubMed Central

    García-Fandiño, Rebeca; Bernadó, Pau; Ayuso-Tejedor, Sara; Sancho, Javier; Orozco, Modesto

    2012-01-01

    The early stages of the thermal unfolding of apoflavodoxin have been determined by using atomistic multi microsecond-scale molecular dynamics (MD) simulations complemented with a variety of experimental techniques. Results strongly suggest that the intermediate is reached very early in the thermal unfolding process and that it has the properties of an “activated” form of the native state, where thermal fluctuations in the loops break loop-loop contacts. The unrestrained loops gain then kinetic energy corrupting short secondary structure elements without corrupting the core of the protein. The MD-derived ensembles agree with experimental observables and draw a picture of the intermediate state inconsistent with a well-defined structure and characteristic of a typical partially disordered protein. Our results allow us to speculate that proteins with a well packed core connected by long loops might behave as partially disordered proteins under native conditions, or alternatively behave as three state folders. Small details in the sequence, easily tunable by evolution, can yield to one or the other type of proteins. PMID:22927805

  17. Analysis of laser energy characteristics of laser guided weapons based on the hardware-in-the-loop simulation system

    NASA Astrophysics Data System (ADS)

    Zhu, Yawen; Cui, Xiaohong; Wang, Qianqian; Tong, Qiujie; Cui, Xutai; Li, Chenyu; Zhang, Le; Peng, Zhong

    2016-11-01

    The hardware-in-the-loop simulation system, which provides a precise, controllable and repeatable test conditions, is an important part of the development of the semi-active laser (SAL) guided weapons. In this paper, laser energy chain characteristics were studied, which provides a theoretical foundation for the SAL guidance technology and the hardware-in-the-loop simulation system. Firstly, a simplified equation was proposed to adjust the radar equation according to the principles of the hardware-in-the-loop simulation system. Secondly, a theoretical model and calculation method were given about the energy chain characteristics based on the hardware-in-the-loop simulation system. We then studied the reflection characteristics of target and the distance between the missile and target with major factors such as the weather factors. Finally, the accuracy of modeling was verified by experiment as the values measured experimentally generally follow the theoretical results from the model. And experimental results revealed that ratio of attenuation of the laser energy exhibited a non-linear change vs. pulse number, which were in accord with the actual condition.

  18. Development of a Test Facility for Air Revitalization Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Lu, Sao-Dung; Lin, Amy; Campbell, Melissa; Smith, Frederick

    2006-01-01

    An active fault tolerant control (FTC) law is generally sensitive to false identification since the control gain is reconfigured for fault occurrence. In the conventional FTC law design procedure, dynamic variations due to false identification are not considered. In this paper, an FTC synthesis method is developed in order to consider possible variations of closed-loop dynamics under false identification into the control design procedure. An active FTC synthesis problem is formulated into an LMI optimization problem to minimize the upper bound of the induced-L2 norm which can represent the worst-case performance degradation due to false identification. The developed synthesis method is applied for control of the longitudinal motions of FASER (Free-flying Airplane for Subscale Experimental Research). The designed FTC law of the airplane is simulated for pitch angle command tracking under a false identification case.

  19. Analysis of first and second order binary quantized digital phase-locked loops for ideal and white Gaussian noise inputs

    NASA Technical Reports Server (NTRS)

    Blasche, P. R.

    1980-01-01

    Specific configurations of first and second order all digital phase locked loops are analyzed for both ideal and additive white gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation is presented along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop are consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application.

  20. Investigation of Low Power Operation in a Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Powers, Edward I. (Technical Monitor)

    2001-01-01

    This paper presents test results of an experimental study of low power operation in a loop heat pipe. The main objective was to demonstrate how changes in the vapor void fraction inside the evaporator core would affect the loop behavior, The fluid inventory and the relative tilt between the evaporator and the compensation chamber were varied so as to create different vapor void fractions in the evaporator core. The effect on the loop start-up, operating temperature, and capillary limit was investigated. Test results indicate that the vapor void fraction inside the evaporator core is the single most important factor in determining the loop operation at low powers.

  1. Biodegradation of paint stripper solvents in a modified gas lift loop bioreactor.

    PubMed

    Vanderberg-Twary, L; Steenhoudt, K; Travis, B J; Hanners, J L; Foreman, T M; Brainard, J R

    1997-07-05

    Paint stripping wastes generated during the decontamination and decommissioning of former nuclear facilities contain paint stripping organics (dichloromethane, 2-propanol, and methanol) and bulk materials containing paint pigments. It is desirable to degrade the organic residues as part of an integrated chemical-biological treatment system. We have developed a modified gas lift loop bioreactor employing a defined consortium of Rhodococcus rhodochrous strain OFS and Hyphomicrobium sp. DM-2 that degrades paint stripper organics. Mass transfer coefficients and kinetic constants for biodegradation in the system were determined. It was found that transfer of organic substrates from surrogate waste into the air and further into the liquid medium in the bioreactor were rapid processes, occurring within minutes. Monod kinetics was employed to model the biodegradation of paint stripping organics. Analysis of the bioreactor process was accomplished with BIOLAB, a mathematical code that simulates coupled mass transfer and biodegradation processes. This code was used to fit experimental data to Monod kinetics and to determine kinetic parameters. The BIOLAB code was also employed to compare activities in the bioreactor of individual microbial cultures to the activities of combined cultures in the bioreactor. This code is of benefit for further optimization and scale-up of the bioreactor for treatment of paint stripping and other volatile organic wastes in bulk materials.

  2. Development of a generic GMCC simulator.

    DOT National Transportation Integrated Search

    2001-11-01

    This document describes the development and current status of a high fidelity, human-in-the-loop simulator for Airway Facilities : Maintenance Control Centers and Operations Control Centers. Applications include Event Manager, Maintenance Automation ...

  3. Air-Ground Integration Experiment

    DOT National Transportation Integrated Search

    2002-01-01

    could potentially shift aircraft separation responsibility from air traffic controllers to flight crews creating a'shared-separation' : authority environment Areal-time, human-in-the-loop study was conducted using facilities at NASA Ames Research Cen...

  4. Energetics analysis of interstitial loops in single-phase concentrated solid-solution alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Xin; Niu, Liang-Liang; Wang, Shaoqing

    2018-04-01

    Systematic energetics analysis on the shape preference, relative stability and radiation-induced segregation of interstitial loops in nickel-containing single-phase concentrated solid-solution alloys have been conducted using atomistic simulations. It is shown that the perfect loops prefer rhombus shape for its low potential energy, while the Frank faulted loops favor ellipse for its low potential energy and the possible large configurational entropy. The decrease of stacking fault energy with increasing compositional complexity provides the energetic driving force for the formation of faulted loops, which, in conjunction with the kinetic factors, explains the experimental observation that the fraction of faulted loops rises with increasing compositional complexity. Notably, the kinetics is primarily responsible for the absence of faulted loops in nickel-cobalt with a very low stacking fault energy. We further demonstrate that the simultaneous nickel enrichment and iron/chromium depletion on interstitial loops can be fully accounted for by their energetics.

  5. Acquisition and Tracking Behavior of Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Viterbi, A. J.

    1958-01-01

    Phase-locked or APC loops have found increasing applications in recent years as tracking filters, synchronizing devices, and narrowband FM discriminators. Considerable work has been performed to determine the noise-squelching properties of the loop when it is operating in or near phase lock and is functioning as a linear coherent detector. However, insufficient consideration has been devoted to the non-linear behavior of the loop when it is out of lock and in the process of pulling in. Experimental evidence has indicated that there is a strong tendency for phase-locked loops to achieve lock under most circumstances. However, the analysis which has appeared in the literature iis limited to the acquisition of a constant frequency reference signal with only one phase-locked loop filter configuration. This work represents an investigation of frequency acquisition properties of phase-locked loops for a variety of reference-signal behavior and loop configurations

  6. Formation of prismatic loops from C15 Laves phase interstitial clusters in body-centered cubic iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng; Bai, Xian-Ming; Tonks, Michael R.

    2015-03-01

    This Letter reports the transition of C15 phase self-interstitial clusters to loops in body-centered-cubic Iron. Molecular dynamics simulations are performed to evaluate the relative stabilities of difference interstitial cluster configurations including C15 phase structure and <100> and <111>/2 loops. Within a certain size range, C15 cluster are found more stable than loops, and the relative stabilities are reversed beyond that range. In accordance to the crossover in relative stabilities, C15 clusters may grow by absorbing individual interstitials at small sizes and transitions into loops eventually. The transition takes place by nucleation and reaction of <111>/2 loop segments. These observations explainmore » the absence of C15 phase interstitial clusters predicted by density-functional-theory calculations in previous experimental observations. More importantly, the current results provide a new formation mechanism of <100> loops which requires no interaction of loops.« less

  7. Design and experimental evaluation of robust controllers for a two-wheeled robot

    NASA Astrophysics Data System (ADS)

    Kralev, J.; Slavov, Ts.; Petkov, P.

    2016-11-01

    The paper presents the design and experimental evaluation of two alternative μ-controllers for robust vertical stabilisation of a two-wheeled self-balancing robot. The controllers design is based on models derived by identification from closed-loop experimental data. In the first design, a signal-based uncertainty representation obtained directly from the identification procedure is used, which leads to a controller of order 29. In the second design the signal uncertainty is approximated by an input multiplicative uncertainty, which leads to a controller of order 50, subsequently reduced to 30. The performance of the two μ-controllers is compared with the performance of a conventional linear quadratic controller with 17th-order Kalman filter. A proportional-integral controller of the rotational motion around the vertical axis is implemented as well. The control code is generated using Simulink® controller models and is embedded in a digital signal processor. Results from the simulation of the closed-loop system as well as experimental results obtained during the real-time implementation of the designed controllers are given. The theoretical investigation and experimental results confirm that the closed-loop system achieves robust performance in respect to the uncertainties related to the identified robot model.

  8. Mercury regulation, fate, transport, transformation, and abatement within cement manufacturing facilities: review.

    PubMed

    Sikkema, Joel K; Alleman, James E; Ong, Say Kee; Wheelock, Thomas D

    2011-09-15

    The USEPA's 2010 mercury rule, which would reduce emissions from non-hazardous waste burning cement manufacturing facilities by an estimated 94%, represents a substantial regulatory challenge for the industry. These regulations, based on the performance of facilities that benefit from low concentrations of mercury in their feedstock and fuel inputs (e.g., limestone concentration was less than 25 ppb at each facility), will require non-compliant facilities to develop innovative controls. Control development is difficult because each facility's emissions must be assessed and simple correlation to mercury concentrations in limestone or an assumption of 'typically observed' mercury concentrations in inputs are unsupported by available data. Furthermore, atmospheric emissions are highly variable due to an internal control mechanism that captures and loops mercury between the high-temperature kiln and low-temperature raw materials mill. Two models have been reported to predict emissions; however, they have not been benchmarked against data from the internal components that capture mercury and do not distinguish between mercury species, which have different sorption and desorption properties. Control strategies include technologies applied from other industries and technologies developed specifically for cement facilities. Reported technologies, listed from highest to lowest anticipated mercury removal, include purge of collected dust or raw meal, changes in feedstocks and fuels, wet scrubbing, cleaning of mercury enriched dust, dry sorbent injection, and dry and semi-dry scrubbing. The effectiveness of these technologies is limited by an inadequate understanding of sorption, desorption, and mercury species involved in internal loop mercury control. To comply with the mercury rule and to improve current mercury control technologies and practices, research is needed to advance fundamental knowledge regarding mercury species sorption and desorption dynamics on materials within cement facilities. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Reliable design of a closed loop supply chain network under uncertainty: An interval fuzzy possibilistic chance-constrained model

    NASA Astrophysics Data System (ADS)

    Vahdani, Behnam; Tavakkoli-Moghaddam, Reza; Jolai, Fariborz; Baboli, Arman

    2013-06-01

    This article seeks to offer a systematic approach to establishing a reliable network of facilities in closed loop supply chains (CLSCs) under uncertainties. Facilities that are located in this article concurrently satisfy both traditional objective functions and reliability considerations in CLSC network designs. To attack this problem, a novel mathematical model is developed that integrates the network design decisions in both forward and reverse supply chain networks. The model also utilizes an effective reliability approach to find a robust network design. In order to make the results of this article more realistic, a CLSC for a case study in the iron and steel industry has been explored. The considered CLSC is multi-echelon, multi-facility, multi-product and multi-supplier. Furthermore, multiple facilities exist in the reverse logistics network leading to high complexities. Since the collection centres play an important role in this network, the reliability concept of these facilities is taken into consideration. To solve the proposed model, a novel interactive hybrid solution methodology is developed by combining a number of efficient solution approaches from the recent literature. The proposed solution methodology is a bi-objective interval fuzzy possibilistic chance-constraint mixed integer linear programming (BOIFPCCMILP). Finally, computational experiments are provided to demonstrate the applicability and suitability of the proposed model in a supply chain environment and to help decision makers facilitate their analyses.

  10. Overnight closed-loop insulin delivery with model predictive control: assessment of hypoglycemia and hyperglycemia risk using simulation studies.

    PubMed

    Wilinska, Malgorzata E; Budiman, Erwin S; Taub, Marc B; Elleri, Daniela; Allen, Janet M; Acerini, Carlo L; Dunger, David B; Hovorka, Roman

    2009-09-01

    Hypoglycemia and hyperglycemia during closed-loop insulin delivery based on subcutaneous (SC) glucose sensing may arise due to (1) overdosing and underdosing of insulin by control algorithm and (2) difference between plasma glucose (PG) and sensor glucose, which may be transient (kinetics origin and sensor artifacts) or persistent (calibration error [CE]). Using in silico testing, we assessed hypoglycemia and hyperglycemia incidence during over-night closed loop. Additionally, a comparison was made against incidence observed experimentally during open-loop single-night in-clinic studies in young people with type 1 diabetes mellitus (T1DM) treated by continuous SC insulin infusion. Simulation environment comprising 18 virtual subjects with T1DM was used to simulate overnight closed-loop study with a model predictive control (MPC) algorithm. A 15 h experiment started at 17:00 and ended at 08:00 the next day. Closed loop commenced at 21:00 and continued for 11 h. At 18:00, protocol included meal (50 g carbohydrates) accompanied by prandial insulin. The MPC algorithm advised on insulin infusion every 15 min. Sensor glucose was obtained by combining model-calculated noise-free interstitial glucose with experimentally derived transient and persistent sensor artifacts associated with FreeStyle Navigator (FSN). Transient artifacts were obtained from FSN sensor pairs worn by 58 subjects with T1DM over 194 nighttime periods. Persistent difference due to FSN CE was quantified from 585 FSN sensor insertions, yielding 1421 calibration sessions from 248 subjects with diabetes. Episodes of severe (PG < or = 36 mg/dl) and significant (PG < or = 45 mg/dl) hypoglycemia and significant hyperglycemia (PG > or = 300 mg/dl) were extracted from 18,000 simulated closed-loop nights. Severe hypoglycemia was not observed when FSN CE was less than 45%. Hypoglycemia and hyperglycemia incidence during open loop was assessed from 21 overnight studies in 17 young subjects with T1DM (8 males; 13.5 +/- 3.6 years of age; body mass index 21.0 +/- 4.0 kg/m2; duration diabetes 6.4 +/- 4.1 years; hemoglobin A1c 8.5% +/- 1.8%; mean +/- standard deviation) participating in the Artificial Pancreas Project at Cambridge. Severe and significant hypoglycemia during simulated closed loop occurred 0.75 and 17.11 times per 100 person years compared to 1739 and 3479 times per 100 person years during experimental open loop, respectively. Significant hyperglycemia during closed loop and open loop occurred 75 and 15,654 times per 100 person years, respectively. The incidence of severe and significant hypoglycemia reduced 2300- and 200-fold, respectively, during stimulated overnight closed loop with MPC compared to that observed during open-loop overnight clinical studies in young subjects with T1DM. Hyperglycemia was 200 times less likely. Overnight closed loop with the FSN and the MPC algorithm is expected to reduce substantially the risk of hypoglycemia and hyperglycemia. 2009 Diabetes Technology Society.

  11. The development of the MELiSSA Pilot Plant Facility

    NASA Astrophysics Data System (ADS)

    Godia, Francesc; Dussap, Claude-Gilles; Dixon, Mike; Peiro, Enrique; Fossen, Arnaud; Lamaze, Brigitte; Brunet, Jean; Demey, Dries; Mas-Albaigès, Joan L.

    MELiSSA (Micro-Ecological Life Support System Alternative) is a closed artificial ecosystem intended as a tool for the development of a bio-regenerative life support system for longterm manned missions. The MELiSSA loop is formed by five interconnected compartments, organized in three different loops (solid, liquid and gas). This compartments are microbial bioreactors and higher plant chambers. The MELiSSA Pilot Plant facility has been designed to achieve the preliminary terrestrial demonstration of the MELiSSA concept at pilot scale, using animals as a model for the crew compartent. The experience gained in the operation of such a facility will be highly relevant for planning future life support systems in Space. In this communication, the latests developments in the MELiSSA Pilot Plant will be reported. Particularly, the completion of the design phase and instalation of all the different compartments will be discussed in detail. Each of the compartments had to be designed and constructed according to very specific characteristics, associated to the biological systems to be cultured, as part of the complete MELiSSA loop (anerobic, oxygenic, thermophilic, heterotrophic, autotrophic, axenic, photosynthetic, etc.). Additionally, the sizing of each reactor (ranging from 8 to 100 Liters, depending of each particular compartment) should compile with the global integration scenario proposed, and with the final goal of connection of all compartments to provide a demonstration of the MELiSSA concept, and generate data for the design and operation of future biological life support systems.

  12. ANTARES: Spacecraft Simulation for Multiple User Communities and Facilities

    NASA Technical Reports Server (NTRS)

    Acevedo, Amanda; Berndt, Jon; Othon, William; Arnold, Jason; Gay, Robet

    2007-01-01

    The Advanced NASA Technology Architecture for Exploration Studies (ANTARES) simulation is the primary tool being used for requirements assessment of the NASA Orion spacecraft by the Guidance Navigation and Control (GN&C) teams at Johnson Space Center (JSC). ANTARES is a collection of packages and model libraries that are assembled and executed by the Trick simulation environment. Currently, ANTARES is being used for spacecraft design assessment, performance analysis, requirements validation, Hardware In the Loop (HWIL) and Human In the Loop (HIL) testing.

  13. Innovative hybrid pile oscillator technique in the Minerve reactor: open loop vs. closed loop

    NASA Astrophysics Data System (ADS)

    Geslot, Benoit; Gruel, Adrien; Bréaud, Stéphane; Leconte, Pierre; Blaise, Patrick

    2018-01-01

    Pile oscillator techniques are powerful methods to measure small reactivity worth of isotopes of interest for nuclear data improvement. This kind of experiments has long been implemented in the Mineve experimental reactor, operated by CEA Cadarache. A hybrid technique, mixing reactivity worth estimation and measurement of small changes around test samples is presented here. It was made possible after the development of high sensitivity miniature fission chambers introduced next to the irradiation channel. A test campaign, called MAESTRO-SL, took place in 2015. Its objective was to assess the feasibility of the hybrid method and investigate the possibility to separate mixed neutron effects, such as fission/capture or scattering/capture. Experimental results are presented and discussed in this paper, which focus on comparing two measurements setups, one using a power control system (closed loop) and another one where the power is free to drift (open loop). First, it is demonstrated that open loop is equivalent to closed loop. Uncertainty management and methods reproducibility are discussed. Second, results show that measuring the flux depression around oscillated samples provides valuable information regarding partial neutron cross sections. The technique is found to be very sensitive to the capture cross section at the expense of scattering, making it very useful to measure small capture effects of highly scattering samples.

  14. Unresolved fine-scale structure in solar coronal loop-tops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scullion, E.; Van der Voort, L. Rouppe; Wedemeyer, S.

    2014-12-10

    New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer substructures within coronal loop cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric Hα 656.28 nm spectral line core and wings can, under certainmore » circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in Hα) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal loop-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from loop-top to footpoint. We discover that coronal loop fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal loop cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal loops, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal loops.« less

  15. Fabry-Perot cavity cascaded sagnac loops for temperature and strain measurements

    NASA Astrophysics Data System (ADS)

    Shangguan, Chunmei; Zhang, Wen; Hei, Wei; Luo, Fei; Zhu, Lianqing

    2018-04-01

    The fabrication process and temperature and strain characterizations of an all-fiber sensor are presented. The sensing structure based on a Fabry-Perot cavity (FPC) and sagnac loops was proposed and experimentally demonstrated for measurements of temperature and strain. The FPC consists of a micropiece of chemical etched multimode fiber end face, welded with another single mode fiber. Then, the sagnac loops composed of polarization maintaining fiber was connected to the FPC. The sensor was fabricated and tested for temperature and strain. Experimental results show that sensitivity of temperature and strain is 0.71 ± 0.03 nm / ° C and 1.30 ± 0.01 pm / μɛ, respectively; the linearity are 0.9970 and 0.9996, respectively.

  16. Robust optical signal-to-noise ratio monitoring scheme using a phase-modulator-embedded fiber loop mirror.

    PubMed

    Ku, Yuen-Ching; Chan, Chun-Kit; Chen, Lian-Kuan

    2007-06-15

    We propose and experimentally demonstrate a novel in-band optical signal-to-noise ratio (OSNR) monitoring technique using a phase-modulator-embedded fiber loop mirror. This technique measures the in-band OSNR accurately by observing the output power of a fiber loop mirror filter, where the transmittance is adjusted by an embedded phase modulator driven by a low-frequency periodic signal. The measurement errors are less than 0.5 dB for an OSNR between 0 and 40 dB in a 10 Gbit/s non-return-to-zero system. This technique was also shown experimentally to have high robustness against various system impairments and high feasibility to be deployed in practical implementation.

  17. International Space Station Internal Thermal Control System Lab Module Simulator Build-Up and Validation

    NASA Technical Reports Server (NTRS)

    Wieland, Paul; Miller, Lee; Ibarra, Tom

    2003-01-01

    As part of the Sustaining Engineering program for the International Space Station (ISS), a ground simulator of the Internal Thermal Control System (ITCS) in the Lab Module was designed and built at the Marshall Space Flight Center (MSFC). To support prediction and troubleshooting, this facility is operationally and functionally similar to the flight system and flight-like components were used when available. Flight software algorithms, implemented using the LabVIEW(Registered Trademark) programming language, were used for monitoring performance and controlling operation. Validation testing of the low temperature loop was completed prior to activation of the Lab module in 2001. Assembly of the moderate temperature loop was completed in 2002 and validated in 2003. The facility has been used to address flight issues with the ITCS, successfully demonstrating the ability to add silver biocide and to adjust the pH of the coolant. Upon validation of the entire facility, it will be capable not only of checking procedures, but also of evaluating payload timelining, operational modifications, physical modifications, and other aspects affecting the thermal control system.

  18. Scaling analysis for the direct reactor auxiliary cooling system for FHRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Q.; Kim, I. H.; Sun, X.

    2015-04-01

    The Direct Reactor Auxiliary Cooling System (DRACS) is a passive residual heat removal system proposed for the Fluoride-salt-cooled High-temperature Reactor (FHR) that combines the coated particle fuel and graphite moderator with a liquid fluoride salt as the coolant. The DRACS features three natural circulation/convection loops that rely on buoyancy as the driving force and are coupled via two heat exchangers, namely, the DRACS heat exchanger and the natural draft heat exchanger. A fluidic diode is employed to minimize the parasitic flow into the DRACS primary loop and correspondingly the heat loss to the DRACS during reactor normal operation, and tomore » activate the DRACS in accidents when the reactor is shut down. While the DRACS concept has been proposed, there are no actual prototypic DRACS systems for FHRs built or tested in the literature. In this paper, a detailed scaling analysis for the DRACS is performed, which will provide guidance for the design of scaled-down DRACS test facilities. Based on the Boussinesq assumption and one-dimensional flow formulation, the governing equations are non-dimensionalized by introducing appropriate dimensionless parameters. The key dimensionless numbers that characterize the DRACS system are obtained from the non-dimensional governing equations. Based on the dimensionless numbers and non-dimensional governing equations, similarity laws are proposed. In addition, a scaling methodology has been developed, which consists of a core scaling and a loop scaling. The consistency between the core and loop scaling is examined via the reference volume ratio, which can be obtained from both the core and loop scaling processes. The scaling methodology and similarity laws have been applied to obtain a scientific design of a scaled-down high-temperature DRACS test facility.« less

  19. Flow and Heat Transfer Tests in New Loop at 2757 kPa (400 psi)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert

    2016-06-13

    A helium flow and heat transfer experiment has been designed for the new helium flow loop facility at LANL. This new facility is centered on an Aerzen GM 12.4 Root’s blower, selected for operation at higher pressure, up to 2757 kPa, and mass flow rate, up to 400 g/s. This replaces the previous Tuthill PD plus 3206 blower and loop limited to 2067 kPa (300 psi) and 100 g/s. The resistively heated test piece is comprised of 7 electric heaters with embedded thermocouples. The plant design for the Mo100 to Mo99 targets requires sharp bends and geometry changes in themore » helium flow tube immediately before and after the target. An idealized fully developed flow configuration with straight entry and exit will be tested and compared with an option that employs rectangular tubing to make the bend at a radius consistent with and practical for the actual plant design. The current plant design, with circular tubing and a sudden contraction to rectangular just prior to target entrance, will also be tested. This requires some modification of the test piece, as described in the report.« less

  20. TREAT Neutronics Analysis of Water-Loop Concept Accommodating LWR 9-rod Bundle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Connie M.; Woolstenhulme, Nicolas E.; Parry, James R.

    Abstract. Simulation of a variety of transient conditions has been successfully achieved in the Transient Reactor Test (TREAT) facility during operation between 1959 and 1994 to support characterization and safety analysis of nuclear fuels and materials. A majority of previously conducted tests were focused on supporting sodium-cooled fast reactor (SFR) designs. Experiments evolved in complexity. Simulation of thermal-hydraulic conditions expected to be encountered by fuels and materials in a reactor environment was realized in the development of TREAT sodium loop experiment vehicles. These loops accommodated up to 7-pin fuel bundles and served to simulate more closely the reactor environment whilemore » safely delivering large quantities of energy into the test specimen. Some of the immediate TREAT restart operations will be focused on testing light water reactor (LWR) accident tolerant fuels (ATF). Similar to the sodium loop objectives, a water loop concept, developed and analyzed in the 1990’s, aimed at achieving thermal-hydraulic conditions encountered in commercial power reactors. The historic water loop concept has been analyzed in the context of a reactivity insertion accident (RIA) simulation for high burnup LWR 2-pin and 3-pin fuel bundles. Findings showed sufficient energy could be deposited into the specimens for evaluation. Similar results of experimental feasibility for the water loop concept (past and present) have recently been obtained using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries. The old water loop concept required only two central TREAT core grid spaces. Preparation for future experiments has resulted in a modified water loop conceptual design designated the TREAT water environment recirculating loop (TWERL). The current TWERL design requires nine TREAT core grid spaces in order to place the water recirculating pump under the TREAT core. Due to the effectiveness of water moderation, neutronics analysis shows that removal of seven additional TREAT fuel elements to facilitate the experiment will not inhibit the ability to successfully simulate a RIA for the 2-pin or 3-pin bundle. This new water loop design leaves room for accommodating a larger fuel pin bundle than previously analyzed. The 7-pin fuel bundle in a hexagonal array with similar spacing of fuel pins in a SFR fuel assembly was considered the minimum needed for one central fuel pin to encounter the most correct thermal conditions. The 9-rod fuel bundle in a square array similar in spacing to pins in a LWR fuel assembly would be considered the LWR equivalent. MCNP analysis conducted on a preliminary LWR 9-rod bundle design shows that sufficient energy deposition into the central pin can be achieved well within range to investigate fuel and cladding performance in a simulated RIA. This is achieved by surrounding the flow channel with an additional annulus of water. Findings also show that a highly significant increase in TREAT to specimen power coupling factor (PCF) within the central pin can be achieved by surrounding the experiment with one to two rings of TREAT upgrade fuel assemblies. The experiment design holds promise for the performance evaluation of PWR fuel at extremely high burnup under similar reactor environment conditions.« less

  1. Spectral Structure Of Phase-Induced Intensity Noise In Recirculating Delay Lines

    NASA Astrophysics Data System (ADS)

    Tur, M.; Moslehi, B.; Bowers, J. E.; Newton, S. A.; Jackson, K. P.; Goodman, J. W.; Cutler, C. C.; Shaw, H. J.

    1983-09-01

    The dynamic range of fiber optic signal processors driven by relatively incoherent multimode semiconductor lasers is shown to be severely limited by laser phase-induced noise. It is experimentally demonstrated that while the noise power spectrum of differential length fiber filters is approximately flat, processors with recirculating loops exhibit noise with a periodically structured power spectrum with notches at zero frequency as well as at all other multiples of 1/(loop delay). The experimental results are aug-mented by a theoretical analysis.

  2. Initial Performance of the Keck AO Wavefront Controller System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansson, E M; Acton, D S; An, J R

    2001-03-01

    The wavefront controller for the Keck Observatory AO system consists of two separate real-time control loops: a tip-tilt control loop to remove tilt from the incoming wavefront, and a deformable mirror control loop to remove higher-order aberrations. In this paper, we describe these control loops and analyze their performance using diagnostic data acquired during the integration and testing of the AO system on the telescope. Disturbance rejection curves for the controllers are calculated from the experimental data and compared to theory. The residual wavefront errors due to control loop bandwidth are also calculated from the data, and possible improvements tomore » the controller performance are discussed.« less

  3. Non-active site mutations disturb the loop dynamics, dimerization, viral budding and egress of VP40 of the Ebola virus.

    PubMed

    Balmith, Marissa; Soliman, Mahmoud E S

    2017-02-28

    The first account of the dynamic features of the loop region of VP40 of the Ebola virus (EboV) using accelerated molecular dynamics (aMD) simulations is reported herein. Due to its major role in the Ebola life cycle, VP40 is considered a promising therapeutic target. The available experimental data on the N-terminal domain (NTD) loop indicates that mutations K127A, T129A and N130A demonstrate an unrecognized role for NTD-plasma membrane (PM) interaction for efficient VP40-PM localization, oligomerization, matrix assembly and egress. Despite experimental results, the molecular description of VP40 and the information it can provide still remain vague. Therefore, to gain further molecular insight into the effect of mutations on the loop region of VP40 and its effects on the overall protein conformation and VP40 dimerization, aMD simulations and post-dynamic analyses were employed for wildtype (WT) and mutant systems. The results showed significant variations in the presence of mutations as per RMSF, RMSD, R g , PCA and distance calculations in comparison to the WT. These results could provide researchers with insight with regards to the conformational aspects concerning VP40 and its close relation to the experimental data. We believe that the results presented in this study will ultimately provide a useful understanding of the structural landscape of the loop region of VP40, which would contribute towards the discovery of novel EboV inhibitors.

  4. An Environmental for Hardware-in-the-Loop Formation Navigation and Control

    NASA Technical Reports Server (NTRS)

    Burns, Rich; Naasz, Bo; Gaylor, Dave; Higinbotham, John

    2004-01-01

    Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the inclusion of GPS receiver hardware in the simulation loop. Support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented.

  5. Experimental Investigation of DC-Bias Related Core Losses in a Boost Inductor (Postprint)

    DTIC Science & Technology

    2014-08-01

    dc bias-flux conditions. These dc bias conditions result in distorted hysteresis loops , increased core losses, and have been shown to be independent...These dc bias conditions result in dis- torted hysteresis loops , increased core losses, and have been shown to be independent of core material. The...controllable converter load currents, this topology is ideal to study dc-related losses. Inductor core hysteresis loop characterization was accomplished

  6. Using Thermoelectric Coolers to Enhance Loop Heat Pipe Performance

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Butler, Dan; Ottenstein, Laura; Birur, Gajanana

    2005-01-01

    Contents include the following: Loop Heat Pipe (LHP) operating temperature. LHP start-up issues. How Thermoelectric Cooler (TECs) can enhance LHP performance: start-up; operating temperature control. Experimental studies: LHP with one evaporator and one condenser; LHP with two evaporators and two condensers. Conclusion.

  7. Open-loop radio science with a suppressed-carrier signal

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1980-01-01

    When a suppressed-carrier signal is squared, the carrier reappears in doubled form. An open-loop receiver can be used to deliver a recording of a band-limited waveform containing this carrier, whose amplitude and phase can be tracked by the radio science experimenter.

  8. An investigation of tritium transfer in reactor loops

    NASA Astrophysics Data System (ADS)

    Ilyasova, O. H.; Mosunova, N. A.

    2017-09-01

    The work is devoted to the important task of the numerical simulation and analysis of the tritium behaviour in the reactor loops. The simulation was carried out by HYDRA-IBRAE/LM code, which is being developed in Nuclear safety institute of the Russian Academy of Sciences. The code is intended for modeling of the liquid metal flow (sodium, lead and lead-bismuth) on the base of non-homogeneous and non-equilibrium two-fluid model. In order to simulate tritium transfer in the code, the special module has been developed. Module includes the models describing the main phenomena of tritium behaviour in reactor loops: transfer, permeation, leakage, etc. Because of shortage of the experimental data, a lot of analytical tests and comparative calculations were considered. Some of them are presented in this work. The comparison of estimation results and experimental and analytical data demonstrate not only qualitative but also good quantitative agreement. It is possible to confirm that HYDRA-IBRAE/LM code allows modeling tritium transfer in reactor loops.

  9. A reconfigurable visual-programming library for real-time closed-loop cellular electrophysiology

    PubMed Central

    Biró, István; Giugliano, Michele

    2015-01-01

    Most of the software platforms for cellular electrophysiology are limited in terms of flexibility, hardware support, ease of use, or re-configuration and adaptation for non-expert users. Moreover, advanced experimental protocols requiring real-time closed-loop operation to investigate excitability, plasticity, dynamics, are largely inaccessible to users without moderate to substantial computer proficiency. Here we present an approach based on MATLAB/Simulink, exploiting the benefits of LEGO-like visual programming and configuration, combined to a small, but easily extendible library of functional software components. We provide and validate several examples, implementing conventional and more sophisticated experimental protocols such as dynamic-clamp or the combined use of intracellular and extracellular methods, involving closed-loop real-time control. The functionality of each of these examples is demonstrated with relevant experiments. These can be used as a starting point to create and support a larger variety of electrophysiological tools and methods, hopefully extending the range of default techniques and protocols currently employed in experimental labs across the world. PMID:26157385

  10. X-38 Experimental Controls Laws

    NASA Technical Reports Server (NTRS)

    Munday, Steve; Estes, Jay; Bordano, Aldo J.

    2000-01-01

    X-38 Experimental Control Laws X-38 is a NASA JSC/DFRC experimental flight test program developing a series of prototypes for an International Space Station (ISS) Crew Return Vehicle, often called an ISS "lifeboat." X- 38 Vehicle 132 Free Flight 3, currently scheduled for the end of this month, will be the first flight test of a modem FCS architecture called Multi-Application Control-Honeywell (MACH), originally developed by the Honeywell Technology Center. MACH wraps classical P&I outer attitude loops around a modem dynamic inversion attitude rate loop. The dynamic inversion process requires that the flight computer have an onboard aircraft model of expected vehicle dynamics based upon the aerodynamic database. Dynamic inversion is computationally intensive, so some timing modifications were made to implement MACH on the slower flight computers of the subsonic test vehicles. In addition to linear stability margin analyses and high fidelity 6-DOF simulation, hardware-in-the-loop testing is used to verify the implementation of MACH and its robustness to aerodynamic and environmental uncertainties and disturbances.

  11. A Markov chain technique for determining the acquisition behavior of a digital tracking loop

    NASA Technical Reports Server (NTRS)

    Chadwick, H. D.

    1972-01-01

    An iterative procedure is presented for determining the acquisition behavior of discrete or digital implementations of a tracking loop. The technique is based on the theory of Markov chains and provides the cumulative probability of acquisition in the loop as a function of time in the presence of noise and a given set of initial condition probabilities. A digital second-order tracking loop to be used in the Viking command receiver for continuous tracking of the command subcarrier phase was analyzed using this technique, and the results agree closely with experimental data.

  12. Active Control of Thermal Convection in a Rectangular Loop by Changing its Spatial Orientation

    NASA Astrophysics Data System (ADS)

    Bratsun, Dmitry A.; Krasnyakov, Ivan V.; Zyuzgin, Alexey V.

    2018-02-01

    The problem of the automatic control of the fluid flow in a rectangular convective loop heated from below is studied theoretically and experimentally. The control is performed by using a feedback subsystem which changes the convection regimes by introducing small discrete changes in the spatial orientation of the loop with respect to gravity. We focus on effects that arise when the feedback controller operates with an unavoidable time delay, which is cause by the thermal inertia of the medium. The mathematical model of the phenomenon is developed. The dynamic regimes of the convection in the thermosyphon loop under control are studied. It is shown that the proposed control method can successfully stabilize not only a no-motion state of the fluid, but also time-dependent modes of convection including the irregular fluid flow at high values of the Rayleigh number. It is shown that the excessive gain of the proportional feedback can result in oscillations in the loop orientation exciting the unsteady convection modes. The comparison of the experimental data obtained for dielectric oil and dodecane with theory is given, and their good agreement is demonstrated.

  13. Tunable erbium-doped fiber laser based on optical fiber Sagnac interference loop with angle shift spliced polarization maintaining fibers

    NASA Astrophysics Data System (ADS)

    Ding, Zhenming; Wang, Zhaokun; Zhao, Chunliu; Wang, Dongning

    2018-05-01

    In this paper, we propose and experimentally demonstrate a tunable erbium-doped fiber laser (EDFL) with Sagnac interference loop with 45° angle shift spliced polarization maintaining fibers (PMFs). In the Sagnac loop, two PMFs with similar lengths. The Sagnac loop outputs a relatively complex interference spectrum since two beams transmitted in clockwise and counterclockwise encounter at the 3 dB coupler, interfere, and form two interference combs when the light transmitted in the Sagnac loop. The laser will excite and be stable when two interference lines in these two interference combs overlap together. Then by adjusting the polarization controller, the wide wavelength tuning is realized. Experimental results show that stable single wavelength laser can be realized in the wavelength range of 1585 nm-1604 nm under the pump power 157.1 mW. The side-mode suppression ratio is not less than 53.9 dB. The peak power fluctuation is less than 0.29 dB within 30 min monitor time and the side-mode suppression ratio is great than 57.49 dB when the pump power is to 222.7 mW.

  14. Active Control of Thermal Convection in a Rectangular Loop by Changing its Spatial Orientation

    NASA Astrophysics Data System (ADS)

    Bratsun, Dmitry A.; Krasnyakov, Ivan V.; Zyuzgin, Alexey V.

    2017-12-01

    The problem of the automatic control of the fluid flow in a rectangular convective loop heated from below is studied theoretically and experimentally. The control is performed by using a feedback subsystem which changes the convection regimes by introducing small discrete changes in the spatial orientation of the loop with respect to gravity. We focus on effects that arise when the feedback controller operates with an unavoidable time delay, which is cause by the thermal inertia of the medium. The mathematical model of the phenomenon is developed. The dynamic regimes of the convection in the thermosyphon loop under control are studied. It is shown that the proposed control method can successfully stabilize not only a no-motion state of the fluid, but also time-dependent modes of convection including the irregular fluid flow at high values of the Rayleigh number. It is shown that the excessive gain of the proportional feedback can result in oscillations in the loop orientation exciting the unsteady convection modes. The comparison of the experimental data obtained for dielectric oil and dodecane with theory is given, and their good agreement is demonstrated.

  15. Sequence-structure relationships in RNA loops: establishing the basis for loop homology modeling.

    PubMed

    Schudoma, Christian; May, Patrick; Nikiforova, Viktoria; Walther, Dirk

    2010-01-01

    The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence-structure relationships in loops. Loops differing by <25% in sequence identity fold into very similar structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts.

  16. Experimental and theoretical investigation of the magnetization dynamics of an artificial square spin ice cluster

    NASA Astrophysics Data System (ADS)

    Pohlit, Merlin; Stockem, Irina; Porrati, Fabrizio; Huth, Michael; Schröder, Christian; Müller, Jens

    2016-10-01

    We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamics of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.

  17. A Robust Inner and Outer Loop Control Method for Trajectory Tracking of a Quadrotor

    PubMed Central

    Xia, Dunzhu; Cheng, Limei; Yao, Yanhong

    2017-01-01

    In order to achieve the complicated trajectory tracking of quadrotor, a geometric inner and outer loop control scheme is presented. The outer loop generates the desired rotation matrix for the inner loop. To improve the response speed and robustness, a geometric SMC controller is designed for the inner loop. The outer loop is also designed via sliding mode control (SMC). By Lyapunov theory and cascade theory, the closed-loop system stability is guaranteed. Next, the tracking performance is validated by tracking three representative trajectories. Then, the robustness of the proposed control method is illustrated by trajectory tracking in presence of model uncertainty and disturbances. Subsequently, experiments are carried out to verify the method. In the experiment, ultra wideband (UWB) is used for indoor positioning. Extended Kalman Filter (EKF) is used for fusing inertial measurement unit (IMU) and UWB measurements. The experimental results show the feasibility of the designed controller in practice. The comparative experiments with PD and PD loop demonstrate the robustness of the proposed control method. PMID:28925984

  18. Simulation of German PKL refill/reflood experiment K9A using RELAP4/MOD7. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, M.T.; Davis, C.B.; Behling, S.R.

    This paper describes a RELAP4/MOD7 simulation of West Germany's Kraftwerk Union (KWU) Primary Coolant Loop (PKL) refill/reflood experiment K9A. RELAP4/MOD7, a best-estimate computer program for the calculation of thermal and hydraulic phenomena in a nuclear reactor or related system, is the latest version in the RELAP4 code development series. This study was the first major simulation using RELAP4/MOD7 since its release by the Idaho National Engineering Laboratory (INEL). The PKL facility is a reduced scale (1:134) representation of a typical West German four-loop 1300 MW pressurized water reactor (PWR). A prototypical scale of the total volume to power ratio wasmore » maintained. The test facility was designed specifically for an experiment simulating the refill/reflood phase of a Loss-of-Coolant Accident (LOCA).« less

  19. Corrosion detector apparatus for universal assessment of pollution in data centers

    DOEpatents

    Hamann, Hendrik F.; Klein, Levente I.

    2015-08-18

    A compact corrosion measurement apparatus and system includes an air fan, a corrosion sensor, a temperature sensor, a humidity sensor, a heater element, and an air flow sensor all under control to monitor and maintain constant air parameters in an environment and minimize environmental fluctuations around the corrosion sensor to overcome the variation commonly encountered in corrosion rate measurement. The corrosion measurement apparatus includes a structure providing an enclosure within which are located the sensors. Constant air flow and temperature is maintained within the enclosure where the corrosion sensor is located by integrating a variable speed air fan and a heater with the corresponding feedback loop control. Temperature and air flow control loops ensure that corrosivity is measured under similar conditions in different facilities offering a general reference point that allow a one to one comparison between facilities with similar or different pollution levels.

  20. Production Facility Prototype Blower 1000 Hour Test Results II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wass, Alexander Joseph; Woloshun, Keith Albert; Dale, Gregory E.

    Long duration tests of the Aerzen GM 12.4 roots style blower in a closed loop configuration provides valuable data and lessons learned for long-term operation at the Mo-99 production facility. The blower was operated in a closed loop configuration with the flow conditions anticipated in plant operation with a Mo-100 target inline. The additional thermal energy generated from beam heating of the Mo-100 disks were not included in these tests. Five 1000 hour tests have been completed since the first test was performed in January of 2016. All five 1000 hour tests have proven successful in exposing preventable issues relatedmore » to oil and helium leaks. All blower tests to this date have resulted in stable blower performance and consistency. A summary of the results for each test, including a review of the first and second tests, are included in this report.« less

  1. Solar water-heating system for the Ingham County geriatric medical care facility, Okemos, Michigan. Operational and maintenance instruction manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The objectives of the Ingham County Solar Project include: the demonstration of a major operational supplement to fossil fuels, thereby reducing the demand for non-renewable energy sources, demonstration of the economic and technical feasibility of solar systems as an important energy supplement over the expected life of the building, and to encourage Michigan industry to produce and incorporate solar systems in their own facility. The Ingham County solar system consists of approximately 10,000 square feet of solar collectors connected in a closed configuration loop. The primary loop solution is a mixture of water and propylene glycol which flows through themore » tube side of a heat exchanger connected to the primary storage tank. The heat energy which is supplied to the primary storage tank is subsequently utilized to increase the temperature of the laundry water, kitchen water, and domestic potable water.« less

  2. Phase-locked tracking loops for LORAN-C

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1978-01-01

    Portable battery operated LORAN-C receivers were fabricated to evaluate simple envelope detector methods with hybrid analog to digital phase locked loop sensor processors. The receivers are used to evaluate LORAN-C in general aviation applications. Complete circuit details are given for the experimental sensor and readout system.

  3. Structures and functions in the crowded nucleus: new biophysical insights

    NASA Astrophysics Data System (ADS)

    Hancock, Ronald

    2014-09-01

    Concepts and methods from the physical sciences have catalysed remarkable progress in understanding the cell nucleus in recent years. To share this excitement with physicists and encourage their interest in this field, this review offers an overview of how the physics which underlies structures and functions in the nucleus is becoming more clear thanks to methods which have been developed to simulate and study macromolecules, polymers, and colloids. The environment in the nucleus is very crowded with macromolecules, making entropic (depletion) forces major determinants of interactions. Simulation and experiments are consistent with their key role in forming membraneless compartments such as nucleoli, PML and Cajal bodies, and discrete "territories" for chromosomes. The chromosomes, giant linear polyelectrolyte polymers, exist in vivo in a state like a polymer melt. Looped conformations are predicted in crowded conditions, and have been confirmed experimentally and are central to the regulation of gene expression. Polymer theory has revealed how the chromosomes are so highly compacted in the nucleus, forming a "crumpled globule" with fractal properties which avoids knots and entanglements in DNA while allowing facile accessibility for its replication and transcription. Entropic repulsion between looped polymers can explain the confinement of each chromosome to a discrete region of the nucleus. Crowding and looping are predicted to facilitate finding the specific targets of factors which modulate activities of DNA. Simulation shows that entropic effects contribute to finding and repairing potentially lethal double-strand breaks in DNA by increasing the mobility of the broken ends, favouring their juxtaposition for repair. Signaling pathways are strongly influenced by crowding, which favours a processive mode of response (consecutive reactions without releasing substrates). This new information contributes to understanding the sometimes counter-intuitive consequences.

  4. Theoretical study of closed-loop recycling liquid-liquid chromatography and experimental verification of the theory.

    PubMed

    Kostanyan, Artak E; Erastov, Andrey A

    2016-09-02

    The non-ideal recycling equilibrium-cell model including the effects of extra-column dispersion is used to simulate and analyze closed-loop recycling counter-current chromatography (CLR CCC). Previously, the operating scheme with the detector located before the column was considered. In this study, analysis of the process is carried out for a more realistic and practical scheme with the detector located immediately after the column. Peak equation for individual cycles and equations describing the transport of single peaks and complex chromatograms inside the recycling closed-loop, as well as equations for the resolution between single solute peaks of the neighboring cycles, for the resolution of peaks in the recycling chromatogram and for the resolution between the chromatograms of the neighboring cycles are presented. It is shown that, unlike conventional chromatography, increasing of the extra-column volume (the recycling line length) may allow a better separation of the components in CLR chromatography. For the experimental verification of the theory, aspirin, caffeine, coumarin and the solvent system hexane/ethyl acetate/ethanol/water (1:1:1:1) were used. Comparison of experimental and simulated processes of recycling and distribution of the solutes in the closed-loop demonstrated a good agreement between theory and experiment. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Chlorine fate and transport in drinking water distribution systems: Results from experimental and modeling studies

    NASA Astrophysics Data System (ADS)

    Clark, Robert M.

    2011-12-01

    It has become generally accepted that water quality can deteriorate in a distribution system through microbiological and chemical reactions in the bulk phase and/or at the pipe wall. The most serious aspect of water quality deterioration in a network is the loss of the disinfectant residual that can weaken the barrier against microbial contamination. Studies have suggested that one factor contributing to the loss of disinfectant residuals is the reaction between bulk phase disinfectants and pipe wall material. Free chlorine loss in corroded metal and PVC pipes, subject to changes in velocity, was assessed during an experiment conducted under controlled conditions in a specially constructed pipe loop located at the US Environmental Protection Agency's (EPA's) Test and Evaluation (T&E) Facility in Cincinnati, Ohio (USA). These studies demonstrated that in older unlined metal pipes, the loss of chlorine residual increases with velocity but that wall demand in PVC was negligible.

  6. Origin and control of instability in SCR/triac three-phase motor controllers

    NASA Technical Reports Server (NTRS)

    Dearth, J. J.

    1982-01-01

    The energy savings and reactive power reduction functions initiated by the power factor controller (PFC) are discussed. A three-phase PFC with soft start is examined analytically and experimentally to determine how well it controls the open loop instability and other possible modes of instability. The detailed mechanism of the open loop instability is determined and shown to impose design constraints on the closed loop system. The design is shown to meet those constraints.

  7. Hardware-in-the-Loop Rendezvous Tests of a Novel Actuators Command Concept

    NASA Astrophysics Data System (ADS)

    Gomes dos Santos, Willer; Marconi Rocco, Evandro; Boge, Toralf; Benninghoff, Heike; Rems, Florian

    2016-12-01

    Integration, test and validation results, in a real-time environment, of a novel concept for spacecraft control are presented in this paper. The proposed method commands simultaneously a group of actuators optimizing a given set of objective functions based on a multiobjective optimization technique. Since close proximity maneuvers play an important role in orbital servicing missions, the entire GNC system has been integrated and tested at a hardware-in-the-loop (HIL) rendezvous and docking simulator known as European Proximity Operations Simulator (EPOS). During the test campaign at EPOS facility, a visual camera has been used to provide the necessary measurements for calculating the relative position with respect to the target satellite during closed-loop simulations. In addition, two different configurations of spacecraft control have been considered in this paper: a thruster reaction control system and a mixed actuators mode which includes thrusters, reaction wheels, and magnetic torqrods. At EPOS, results of HIL closed-loop tests have demonstrated that a safe and stable rendezvous approach can be achieved with the proposed GNC loop.

  8. Environmental Assessment of Proposed Wing Headquarters Facility at Pittsburgh International Airport Air Reserve Station, Pennsylvania

    DTIC Science & Technology

    2005-05-24

    of Intent to Dispose of Soil Contaminated by Virgin Petroleum or equivalent form would be completed. The proposed Wing HQ Facility would include the...quadrant of the base. The overhead feeder, which includes some underground segments , is operated as a closed double loop system and serves the...weekends, weather, and holidays ). Using data from the National Oceanic and Atmospheric Administration, the average soil percent moisture was estimated

  9. Advanced MOKE magnetometry in wide-field Kerr-microscopy

    NASA Astrophysics Data System (ADS)

    Soldatov, I. V.; Schäfer, R.

    2017-10-01

    The measurement of MOKE (Magneto-Optical Kerr Effect) magnetization loops in a wide-field Kerr microscope offers the advantage that the relevant domain images along the loop can be readily recorded. As the microscope's objective lens is exposed to the magnetic field, the loops are usually strongly distorted by non-linear Faraday rotations of the polarized light that occur in the objective lens and that are superimposed to the MOKE signal. In this paper, an experimental method, based on a motorized analyzer, is introduced which allows to compensate the Faraday contributions, thus leading to pure MOKE loops. A wide field Kerr microscope, equipped with this technology, works well as a laser-based MOKE magnetometer, additionally offering domain images and thus providing the basis for loop interpretation.

  10. 157. ARAIII Reactor building (ARA608) Main gas loop mechanical flow ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    157. ARA-III Reactor building (ARA-608) Main gas loop mechanical flow sheet. This drawing was selected as a typical example of mechanical arrangements within reactor building. Aerojet-general 880-area/GCRE-0608-50-013-102634. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  11. Kinetics of Internal-Loop Formation in Polypeptide Chains: A Simulation Study

    PubMed Central

    Doucet, Dana; Roitberg, Adrian; Hagen, Stephen J.

    2007-01-01

    The speed of simple diffusional motions, such as the formation of loops in the polypeptide chain, places one physical limit on the speed of protein folding. Many experimental studies have explored the kinetics of formation of end-to-end loops in polypeptide chains; however, protein folding more often requires the formation of contacts between interior points on the chain. One expects that, for loops of fixed contour length, interior loops will form more slowly than end-to-end loops, owing to the additional excluded volume associated with the “tails”. We estimate the magnitude of this effect by generating ensembles of randomly coiled, freely jointed chains, and then using the theory of Szabo, Schulten, and Schulten to calculate the corresponding contact formation rates for these ensembles. Adding just a few residues, to convert an end-to-end loop to an internal loop, sharply decreases the contact rate. Surprisingly, the relative change in rate increases for a longer loop; sufficiently long tails, however, actually reverse the effect and accelerate loop formation slightly. Our results show that excluded volume effects in real, full-length polypeptides may cause the rates of loop formation during folding to depart significantly from the values derived from recent loop-formation experiments on short peptides. PMID:17208979

  12. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback

    NASA Astrophysics Data System (ADS)

    Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.

    2018-02-01

    We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.

  13. Fiber-To-The-Home: Current Issues And Strategies For A Bell Operating Company

    NASA Astrophysics Data System (ADS)

    Engel, Joel

    1990-01-01

    This decade has seen extensive use of fiber in the telephone network. Fiber is already pervasive in interoffice facilities, and is now being introduced into the local loop, which represents 90% of telephone circuit miles. In the feeder portion of the loop, the connection between the central office and remote terminals, fiber has already made significant inroads. In fact, Ameritech has more route miles of fiber in each of its five states than is in the entire network of the interexchange carrier whose advertisements stress their use of fiber.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.

    This document presents the visual and ultrasonic PulseEcho critical velocity test results obtained from the System Performance test campaign that was completed in September 2012 with the Remote Sampler Demonstration (RSD)/Waste Feed Flow Loop cold-test platform located at the Monarch test facility in Pasco, Washington. This report is intended to complement and accompany the report that will be developed by WRPS on the design of the System Performance simulant matrix, the analysis of the slurry test sample concentration and particle size distribution (PSD) data, and the design and construction of the RSD/Waste Feed Flow Loop cold-test platform.

  15. ADVANCED CUTTINGS TRANSPORT STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi

    2004-07-31

    We have tested the loop elevation system. We raised the mast to approximately 25 to 30 degrees from horizontal. All went well. However, while lowering the mast, it moved laterally a couple of degrees. Upon visual inspection, severe spalling of the concrete on the face of the support pillar, and deformation of the steel support structure was observed. At this time, the facility is ready for testing in the horizontal position. A new air compressor has been received and set in place for the ACTS test loop. A new laboratory has been built near the ACTS test loop Roughened cupsmore » and rotors for the viscometer (RS300) were obtained. Rheologies of aqueous foams were measured using three different cup-rotor assemblies that have different surface roughness. The relationship between surface roughness and foam rheology was investigated. Re-calibration of nuclear densitometers has been finished. The re-calibration was also performed with 1% surfactant foam. A new cuttings injection system was installed at the bottom of the injection tower. It replaced the previous injection auger. A mechanistic model for cuttings transport with aerated mud has been developed. Cuttings transport mechanisms with aerated water at various conditions were experimentally investigated. A total of 39 tests were performed. Comparisons between the model predictions and experimental measurements show a satisfactory agreement. Results from the ultrasonic monitoring system indicated that we could distinguish between different sand levels. We also have devised ways to achieve consistency of performance by securing the sensors in the caps in exactly the same manner as long as the sensors are not removed from the caps. A preliminary test was conducted on the main flow loop at 100 gpm flow rate and 20 lb/min cuttings injection rate. The measured bed thickness using the ultrasonic method showed a satisfactory agreement with nuclear densitometer readings. Thirty different data points were collected after the test section was put into liquid holdup mode. Readings indicated 2.5 to 2.7 inches of sand. The corresponding nuclear densitometers readings were between 2.5 and 3.1 inches. Lab tests were conducted to check an on-line viewing system. Sharp images were obtained through a CCD camera with the use of a ring light or fiber light. A prototype device for measuring the average bubble size for the foam generator-viscometer was constructed from a 1/2 inch fitting. The new windowed cell has been received and installed on the ACTF Bubble Characterization Cart.« less

  16. Experimental Research on Seismic Performance of Four-Element Variable Cross-Sectional Concrete Filled Steel Tubular Laced Columns

    NASA Astrophysics Data System (ADS)

    Ou, Zhijing; Lin, Jianmao; Chen, Shengfu; Lin, Wen

    2017-10-01

    A total of 7 experimental tests were conducted to investigate seismic performance of four element variable cross-sectional Concrete Filled Steel Tubular (CFST) laced columns. The experimental parameters are longitudinal slope and arrangement type of lacing tubes. The rules on hysteresis loop, ductility, energy expenditure, and stiffness degradation of specimens are researched. Test results indicate that all specimens have good seismic performance; their hysteresis loops are full without obvious shrinkage. With the increase of longitudinal slope, the horizontal carrying capacity increases, energy dissipation capacity improve, and there is slightly increase in stiffness degradation. The influence of arrangement type of lacing tubes on displacement ductility of specimens is big.

  17. Hybrid force-velocity sliding mode control of a prosthetic hand.

    PubMed

    Engeberg, Erik D; Meek, Sanford G; Minor, Mark A

    2008-05-01

    Four different methods of hand prosthesis control are developed and examined experimentally. Open-loop control is shown to offer the least sensitivity when manipulating objects. Force feedback substantially improves upon open-loop control. However, it is shown that the inclusion of velocity and/or position feedback in a hybrid force-velocity control scheme can further improve the functionality of hand prostheses. Experimental results indicate that the sliding mode controller with force, position, and velocity feedback is less prone to unwanted force overshoot when initially grasping objects than the other controllers.

  18. Adaptive antenna arrays for satellite communication

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.

    1989-01-01

    The feasibility of using adaptive antenna arrays to provide interference protection in satellite communications was studied. The feedback loops as well as the sample matric inversion (SMI) algorithm for weight control were studied. Appropriate modifications in the two were made to achieve the required interference suppression. An experimental system was built to test the modified feedback loops and the modified SMI algorithm. The performance of the experimental system was evaluated using bench generated signals and signals received from TVRO geosynchronous satellites. A summary of results is given. Some suggestions for future work are also presented.

  19. Experimental and theoretical investigation of the magnetization dynamics of an artificial square spin ice cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohlit, Merlin, E-mail: pohlit@physik.uni-frankfurt.de; Porrati, Fabrizio; Huth, Michael

    We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamicsmore » of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.« less

  20. An all-digital phase-locked loop demodulator based on FPGA

    NASA Astrophysics Data System (ADS)

    Gong, X. F.; Cui, Z. D.

    2017-09-01

    This paper studied the principle of analogue phase-locked loop demodulation and work process of digital phase-locked loop. It is found that the higher the reference signal frequency is, the smaller the duty ratio of the discriminator output signal is. Carrier detection is achieved by using this relationship. The experimental results indicate that the demodulator based on the principle could realize high-quality transmission of digital signals and could be an effective FM communication mode for studying wireless transmission of digital signals.

  1. Removing left-right asymmetry in a Sagnac interferometer applied to cancel its reflectance dependence on birefringence.

    PubMed

    Golub, Ilya; Exir, Hourieh

    2013-05-01

    We present a left-right symmetry restoring method, which removes the detrimental birefringence in the single-mode fiber Sagnac interferometer, achieved with the aid of a half waveplate oriented at a specific angle. We show theoretically and demonstrate experimentally that adding a π-shift between clockwise and counterclockwise propagating, horizontally (in fiber loop plane) polarized field components, the Sagnac loop mirror's reflection becomes independent on birefringence of an element placed in the loop.

  2. Hydrogen maser frequency standard computer model for automatic cavity tuning servo simulations

    NASA Technical Reports Server (NTRS)

    Potter, P. D.; Finnie, C.

    1978-01-01

    A computer model of the JPL hydrogen maser frequency standard was developed. This model allows frequency stability data to be generated, as a function of various maser parameters, many orders of magnitude faster than these data can be obtained by experimental test. In particular, the maser performance as a function of the various automatic tuning servo parameters may be readily determined. Areas of discussion include noise sources, first-order autotuner loop, second-order autotuner loop, and a comparison of the loops.

  3. Electron Injection by E-Field Drift and its Application in Starting-up Tokamaks at Low Loop Voltage

    NASA Astrophysics Data System (ADS)

    Pan, Yuan; Yan, Xiao-Lin; Liu, Bao-Hua

    2003-05-01

    We propose an innovative method of electron injection by E-field drift into a plasma device and discuss its application in starting-up tokamak plasmas at low loop voltage. The experimental results obtained from HT-6M Tokamak are also presented. The breakdown loop voltage is obviously reduced and the discharge performance is improved by using the electron injection method. It could be applied to some other types of plasma device.

  4. Experimental study of high-performance cooling system pipeline diameter and working fluid amount

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan; Hrabovsky, Peter; Papučík, Štefan

    2016-03-01

    This work deals with heat transfer resulting from the operation of power electronic components. Heat is removed from the mounting plate, which is the evaporator of the loop thermosyphon to the condenser and by natural convection is transferred to ambient. This work includes proposal of cooling device - loop thermosyphon, with its construct and follow optimization of cooling effect. Optimization proceeds by selecting the quantity of working fluid and selection of diameters vapour line and liquid line of loop thermosyphon.

  5. Mitigating Communication Delays in Remotely Connected Hardware-in-the-loop Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cale, James; Johnson, Brian; Dall'Anese, Emiliano

    Here, this paper introduces a potential approach for mitigating the effects of communication delays between multiple, closed-loop hardware-in-the-loop experiments which are virtually connected, yet physically separated. The method consists of an analytical method for the compensation of communication delays, along with the supporting computational and communication infrastructure. The control design leverages tools for the design of observers for the compensation of measurement errors in systems with time-varying delays. The proposed methodology is validated through computer simulation and hardware experimentation connecting hardware-in-the-loop experiments conducted between laboratories separated by a distance of over 100 km.

  6. Mitigating Communication Delays in Remotely Connected Hardware-in-the-loop Experiments

    DOE PAGES

    Cale, James; Johnson, Brian; Dall'Anese, Emiliano; ...

    2018-03-30

    Here, this paper introduces a potential approach for mitigating the effects of communication delays between multiple, closed-loop hardware-in-the-loop experiments which are virtually connected, yet physically separated. The method consists of an analytical method for the compensation of communication delays, along with the supporting computational and communication infrastructure. The control design leverages tools for the design of observers for the compensation of measurement errors in systems with time-varying delays. The proposed methodology is validated through computer simulation and hardware experimentation connecting hardware-in-the-loop experiments conducted between laboratories separated by a distance of over 100 km.

  7. Implementing Audio Digital Feedback Loop Using the National Instruments RIO System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, G.; Byrd, J. M.

    2006-11-20

    Development of system for high precision RF distribution and laser synchronization at Berkeley Lab has been ongoing for several years. Successful operation of these systems requires multiple audio bandwidth feedback loops running at relatively high gains. Stable operation of the feedback loops requires careful design of the feedback transfer function. To allow for flexible and compact implementation, we have developed digital feedback loops on the National Instruments Reconfigurable Input/Output (RIO) platform. This platform uses an FPGA and multiple I/Os that can provide eight parallel channels running different filters. We present the design and preliminary experimental results of this system.

  8. An Environment for Hardware-in-the-Loop Formation Navigation and Control Simulation

    NASA Technical Reports Server (NTRS)

    Burns, Rich

    2004-01-01

    Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Testbed (FFTB) at NASA's Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the injection of GPS receiver hardware into the simulation loop, and support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described in detail. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described in detail. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented and results are analyzed.

  9. Numerical Simulation of Ground Coupling of Low Yield Nuclear Detonation

    DTIC Science & Technology

    2010-06-01

    Without nuclear testing, advanced simulation and experimental facilities, such as the National Ignition Facility ( NIF ), are essential to assuring...in planning future experimental work at NIF . 15. NUMBER OF PAGES 93 14. SUBJECT TERMS National Ignition Facility, GEODYN, Ground Coupling...simulation and experimental facilities, such as the National Ignition Facility ( NIF ), are essential to assuring safety, reliability, and effectiveness

  10. Qualification and characterization of electronics of the fast neutron Hodoscope detectors using neutrons from CABRI core

    NASA Astrophysics Data System (ADS)

    Mirotta, S.; Guillot, J.; Chevalier, V.; Biard, B.

    2018-01-01

    The study of Reactivity Initiated Accidents (RIA) is important to determine up to which limits nuclear fuels can withstand such accidents without clad failure. The CABRI International Program (CIP), conducted by IRSN under an OECD/NEA agreement, has been launched to perform representative RIA Integral Effect Tests (IET) on real irradiated fuel rods in prototypical Pressurized Water Reactors (PWR) conditions. For this purpose, the CABRI experimental pulse reactor, operated by CEA in Cadarache, France, has been strongly renovated, and equipped with a pressurized water loop. The behavior of the test rod, located in that loop in the center of the driver core, is followed in real time during the power transients thanks to the hodoscope, a unique online fuel motion monitoring system, and one of the major distinctive features of CABRI. The hodoscope measures the fast neutrons emitted by the tested rod during the power pulse with a complete set of 153 Fission Chambers and 153 Proton Recoil Counters. During the CABRI facility renovation, the electronic chain of these detectors has been upgraded. In this paper, the performance of the new system is presented describing gain calibration methodology in order to get maximal Signal/Noise ratio for amplification modules, threshold tuning methodology for the discrimination modules (old and new ones), and linear detectors response limit versus different reactor powers for the whole electronic chain.

  11. Software Tools for Developing and Simulating the NASA LaRC CMF Motion Base

    NASA Technical Reports Server (NTRS)

    Bryant, Richard B., Jr.; Carrelli, David J.

    2006-01-01

    The NASA Langley Research Center (LaRC) Cockpit Motion Facility (CMF) motion base has provided many design and analysis challenges. In the process of addressing these challenges, a comprehensive suite of software tools was developed. The software tools development began with a detailed MATLAB/Simulink model of the motion base which was used primarily for safety loads prediction, design of the closed loop compensator and development of the motion base safety systems1. A Simulink model of the digital control law, from which a portion of the embedded code is directly generated, was later added to this model to form a closed loop system model. Concurrently, software that runs on a PC was created to display and record motion base parameters. It includes a user interface for controlling time history displays, strip chart displays, data storage, and initializing of function generators used during motion base testing. Finally, a software tool was developed for kinematic analysis and prediction of mechanical clearances for the motion system. These tools work together in an integrated package to support normal operations of the motion base, simulate the end to end operation of the motion base system providing facilities for software-in-the-loop testing, mechanical geometry and sensor data visualizations, and function generator setup and evaluation.

  12. Loop gain stabilizing with an all-digital automatic-gain-control method for high-precision fiber-optic gyroscope.

    PubMed

    Zheng, Yue; Zhang, Chunxi; Li, Lijing; Song, Lailiang; Chen, Wen

    2016-06-10

    For a fiber-optic gyroscope (FOG) using electronic dithers to suppress the dead zone, without a fixed loop gain, the deterministic compensation for the dither signals in the control loop of the FOG cannot remain accurate, resulting in the dither residuals in the FOG rotation rate output and the navigation errors in the inertial navigation system. An all-digital automatic-gain-control method for stabilizing the loop gain of the FOG is proposed. By using a perturbation square wave to measure the loop gain of the FOG and adding an automatic gain control loop in the conventional control loop of the FOG, we successfully obtain the actual loop gain and make the loop gain converge to the reference value. The experimental results show that in the case of 20% variation in the loop gain, the dither residuals are successfully eliminated and the standard deviation of the FOG sampling outputs is decreased from 2.00  deg/h to 0.62  deg/h (sampling period 2.5 ms, 10 points smoothing). With this method, the loop gain of the FOG can be stabilized over the operation temperature range and in the long-time application, which provides a solid foundation for the engineering applications of the high-precision FOG.

  13. Investigation of the factors responsible for burns during MRI.

    PubMed

    Dempsey, M F; Condon, B; Hadley, D M

    2001-04-01

    Numerous reported burn injuries have been sustained during clinical MRI procedures. The aim of this study was to investigate the possible factors that may be responsible for such burns. Experiments were performed to investigate three possible mechanisms for causing heating in copper wire during MRI: direct electromagnetic induction in a conductive loop, induction in a resonant conducting loop, and electric field resonant coupling with a wire (the antenna effect). Maximum recorded temperature rises were 0.6 degrees C for the loop, 61.1 degrees C for the resonant loop, and 63.5 degrees C for the resonant antenna. These experimental findings suggest that, contrary to common belief, it is unlikely that direct induction in a conductive loop will result in thermal injury. Burn incidents are more likely to occur due to the formation of resonant conducting loops and from extended wires forming resonant antenna. The characteristics of resonance should be considered when formulating safety guidelines.

  14. Interaction of 〈1 0 0〉 dislocation loops with dislocations studied by dislocation dynamics in α-iron

    NASA Astrophysics Data System (ADS)

    Shi, X. J.; Dupuy, L.; Devincre, B.; Terentyev, D.; Vincent, L.

    2015-05-01

    Interstitial dislocation loops with Burgers vector of 〈1 0 0〉 type are formed in α-iron under neutron or heavy ion irradiation. As the density and size of these loops increase with radiation dose and temperature, these defects are thought to play a key role in hardening and subsequent embrittlement of iron-based steels. The aim of the present work is to study the pinning strength of the loops on mobile dislocations. Prior to run massive Dislocation Dynamics (DD) simulations involving experimentally representative array of radiation defects and dislocations, the DD code and its parameterization are validated by comparing the individual loop-dislocation reactions with those obtained from direct atomistic Molecular Dynamics (MD) simulations. Several loop-dislocation reaction mechanisms are successfully reproduced as well as the values of the unpinning stress to detach mobile dislocations from the defects.

  15. LOOP marine and estuarine monitoring program, 1978-95 : volume 2 : water chemistry.

    DOT National Transportation Integrated Search

    1998-01-01

    The proposed construction and use of facilities in an environmentally sensitive area led to questions about various consequential environmental impacts arising from the following activities: 1) oil storage caverns were created by leaching out a salt ...

  16. The flight robotics laboratory

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Williamson, Marlin J.; Glaese, John R.

    1988-01-01

    The Flight Robotics Laboratory of the Marshall Space Flight Center is described in detail. This facility, containing an eight degree of freedom manipulator, precision air bearing floor, teleoperated motion base, reconfigurable operator's console, and VAX 11/750 computer system, provides simulation capability to study human/system interactions of remote systems. The facility hardware, software and subsequent integration of these components into a real time man-in-the-loop simulation for the evaluation of spacecraft contact proximity and dynamics are described.

  17. A Dual-Loop Opto-Electronic Oscillator

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, L.; Ji, Y.; Lutes, G.; Tu, M.

    1998-07-01

    We describe and demonstrate a multiloop technique for single-mode selection in an opto-electronic oscillator (OEO). We present experimental results of a dual-loop OEO free running at 10 GHz that has the lowest phase noise (-140 dBc/Hz at 10 kHz from the carrier) of all free-running room-temperature oscillators to date.

  18. 90. ARAIII. GCRE reactor building (ARA608) mechanical loop pit. Shows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    90. ARA-III. GCRE reactor building (ARA-608) mechanical loop pit. Shows nitrogen gas compressor in foreground, piping installations on walls of pit, and other details. February 24, 1959. Ineel photo no. 59-880. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  19. Diagonal dominance for the multivariable Nyquist array using function minimization

    NASA Technical Reports Server (NTRS)

    Leininger, G. G.

    1977-01-01

    A new technique for the design of multivariable control systems using the multivariable Nyquist array method was developed. A conjugate direction function minimization algorithm is utilized to achieve a diagonal dominant condition over the extended frequency range of the control system. The minimization is performed on the ratio of the moduli of the off-diagonal terms to the moduli of the diagonal terms of either the inverse or direct open loop transfer function matrix. Several new feedback design concepts were also developed, including: (1) dominance control parameters for each control loop; (2) compensator normalization to evaluate open loop conditions for alternative design configurations; and (3) an interaction index to determine the degree and type of system interaction when all feedback loops are closed simultaneously. This new design capability was implemented on an IBM 360/75 in a batch mode but can be easily adapted to an interactive computer facility. The method was applied to the Pratt and Whitney F100 turbofan engine.

  20. Phase-lock-loop application for fiber optic receiver

    NASA Astrophysics Data System (ADS)

    Ruggles, Stephen L.; Wills, Robert W.

    1991-02-01

    Phase-locked loop circuits are frequently employed in communication systems. In recent years, digital phase-locked loop circuits were utilized in optical communications systems. In an optical transceiver system, the digital phase-locked loop circuit is connected to the output of the receiver to extract a clock signal from the received coded data (NRZ, Bi-Phase, or Manchester). The clock signal is then used to reconstruct or recover the original data from the coded data. A theoretical approach to the design of a digital phase-locked loop circuit operation at 1 and 50 MHz is described. Hardware implementation of a breadboard design to function at 1 MHz and a printed-circuit board designed to function at 50 MHz were assembled using emitter coupled logic (ECL) to verify experimentally the theoretical design.

  1. Phase-lock-loop application for fiber optic receiver

    NASA Technical Reports Server (NTRS)

    Ruggles, Stephen L.; Wills, Robert W.

    1991-01-01

    Phase-locked loop circuits are frequently employed in communication systems. In recent years, digital phase-locked loop circuits were utilized in optical communications systems. In an optical transceiver system, the digital phase-locked loop circuit is connected to the output of the receiver to extract a clock signal from the received coded data (NRZ, Bi-Phase, or Manchester). The clock signal is then used to reconstruct or recover the original data from the coded data. A theoretical approach to the design of a digital phase-locked loop circuit operation at 1 and 50 MHz is described. Hardware implementation of a breadboard design to function at 1 MHz and a printed-circuit board designed to function at 50 MHz were assembled using emitter coupled logic (ECL) to verify experimentally the theoretical design.

  2. Nonequilibrium Chromosome Looping via Molecular Slip Links

    NASA Astrophysics Data System (ADS)

    Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.

    2017-09-01

    We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.

  3. Analysis of the bacterial luciferase mobile loop by replica-exchange molecular dynamics.

    PubMed

    Campbell, Zachary T; Baldwin, Thomas O; Miyashita, Osamu

    2010-12-15

    Bacterial luciferase contains an extended 29-residue mobile loop. Movements of this loop are governed by binding of either flavin mononucleotide (FMNH2) or polyvalent anions. To understand this process, loop dynamics were investigated using replica-exchange molecular dynamics that yielded conformational ensembles in either the presence or absence of FMNH2. The resulting data were analyzed using clustering and network analysis. We observed the closed conformations that are visited only in the simulations with the ligand. Yet the mobile loop is intrinsically flexible, and FMNH2 binding modifies the relative populations of conformations. This model provides unique information regarding the function of a crystallographically disordered segment of the loop near the binding site. Structures at or near the fringe of this network were compatible with flavin binding or release. Finally, we demonstrate that the crystallographically observed conformation of the mobile loop bound to oxidized flavin was influenced by crystal packing. Thus, our study has revealed what we believe are novel conformations of the mobile loop and additional context for experimentally determined structures. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2004-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30,60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized information from psychological and medical testing, data on the knowledge, experience and skills of the applicants, and team building exercises. The design, development, buildup and operation of test hardware and documentation followed the established NASA processes and requirements for test buildup and operation.

  5. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized information from psychological and medical testing, data on the knowledge, experience and skills of the applicants, and team building exercises. The design, development, buildup and operation of test hardware and documentation followed the established NASA processes and requirements for test buildup and operation.

  6. Analytical and Experimental Evaluation of Digital Control Systems for the Semi-Span Super-Sonic Transport (S4T) Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D.; Christhilf, David; Perry, Boyd, III

    2012-01-01

    An important objective of the Semi-Span Super-Sonic Transport (S4T) wind tunnel model program was the demonstration of Flutter Suppression (FS), Gust Load Alleviation (GLA), and Ride Quality Enhancement (RQE). It was critical to evaluate the stability and robustness of these control laws analytically before testing them and experimentally while testing them to ensure safety of the model and the wind tunnel. MATLAB based software was applied to evaluate the performance of closed-loop systems in terms of stability and robustness. Existing software tools were extended to use analytical representations of the S4T and the control laws to analyze and evaluate the control laws prior to testing. Lessons were learned about the complex windtunnel model and experimental testing. The open-loop flutter boundary was determined from the closed-loop systems. A MATLAB/Simulink Simulation developed under the program is available for future work to improve the CPE process. This paper is one of a series of that comprise a special session, which summarizes the S4T wind-tunnel program.

  7. Experimental diagnostics and modeling of inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Pivac, Ivan; Šimić, Boris; Barbir, Frano

    2017-10-01

    Representation of fuel cell processes by equivalent circuit models, involving resistance and capacitance elements representing activation losses on both anode and cathode in series with resistance representing ohmic losses, cannot capture and explain the inductive loop that may show up at low frequencies in Nyquist diagram representation of the electrochemical impedance spectra. In an attempt to explain the cause of the low-frequency inductive loop and correlate it with the processes within the fuel cell electrodes, a novel equivalent circuit model of a Proton Exchange Membrane (PEM) fuel cell has been proposed and experimentally verified here in detail. The model takes into account both the anode and the cathode, and has an additional resonant loop on each side, comprising of a resistance, capacitance and inductance in parallel representing the processes within the catalyst layer. Using these additional circuit elements, more accurate and better fits to experimental impedance data in the wide frequency range at different current densities, cell temperatures, humidity of gases, air flow stoichiometries and backpressures were obtained.

  8. Accelerated Performance Testing on the 2006 NCAT Pavement Test Track

    DOT National Transportation Integrated Search

    2009-12-01

    The original National Center for Asphalt Technology (NCAT) Pavement Test Track was built in 2000 in Opelika, Alabama where it has served as a state-of-the-art, full-scale, closed-loop accelerated loading facility. The construction, operation, and res...

  9. Experimental investigation of control/display augmentation effects in a compensatory tracking task

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Schmidt, David K.

    1988-01-01

    The effects of control/display augmentation on human performance and workload have been investigated for closed-loop, continuous-tracking tasks by a real-time, man-in-the-loop simulation study. The experimental results obtained indicate that only limited improvement in actual tracking performance is obtainable through display augmentation alone; with a very high level of display augmentation, tracking error will actually deteriorate. Tracking performance improves when status information is furnished for reasonable levels of display quickening; again, very high quickening levels lead to tracking error deterioration due to the incompatibility between the status information and the quickened signal.

  10. A fast-locking PLL with all-digital locked-aid circuit

    NASA Astrophysics Data System (ADS)

    Kao, Shao-Ku; Hsieh, Fu-Jen

    2013-02-01

    In this article, a fast-locking phase-locked loop (PLL) with an all-digital locked-aid circuit is proposed and analysed. The proposed topology is based on two tuning loops: frequency and phase detections. A frequency detection loop is used to accelerate frequency locking time, and a phase detection loop is used to adjust fine phase errors between the reference and feedback clocks. The proposed PLL circuit is designed based on the 0.35 µm CMOS process with a 3.3 V supply voltage. Experimental results show that the locking time of the proposed PLL achieves a 87.5% reduction from that of a PLL without the locked-aid circuit.

  11. [Diuretics in acute kidney failure: useful or harmful?].

    PubMed

    Tataw, J; Saudan, P

    2011-03-02

    Loop diuretics are commonly prescribed within different clinical settings to prevent and or to treat acute renal failure. In most cases they facilitate fluid management following an increased urine output. Experimental models in animals revealed protective effects of loop diuretics in acute renal failure. Several clinical trials have failed to outline better outcomes associated with the use of diuretics in acute renal failure as there was no recovery in renal function nor a reduction in the number of dialysis sessions required. Glomerular filtration rate did not improve with the administration of loop diuretics after continuous renal replacement therapy. The administration of loop diuretics in the management of acute renal failure should be mainly restricted to patients with hypervolemia.

  12. Transition to Quantum Turbulence and the Propagation of Vortex Loops at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shinji; Adachi, Hiroyuki; Tsubota, Makoto

    2011-02-01

    We performed numerical simulation of the transition to quantum turbulence and the propagation of vortex loops at finite temperatures in order to understand the experiments using vibrating wires in superfluid 4He by Yano et al. We injected vortex rings to a finite volume in order to simulate emission of vortices from the wire. When the injected vortices are dilute, they should decay by mutual friction. When they are dense, however, vortex tangle are generated through vortex reconnections and emit large vortex loops. The large vortex loops can travel a long distance before disappearing, which is much different from the dilute case. The numerical results are consistent with the experimental results.

  13. Switchable dual-wavelength erbium-doped fiber laser based on the photonic crystal fiber loop mirror and chirped fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Guo; Lou, Shu-Qin; Wang, Li-Wen; Li, Hong-Lei; Guo, Tieying; Jian, Shui-Sheng

    2010-03-01

    The switchable dual-wavelength erbium-doped fiber laser (EDFL) with a two-mode photonic crystal fiber (PCF) loop mirror and a chirped fiber Bragg grating (CFBG) at room temperature is proposed and experimentally demonstrated. The two-mode PCF loop mirror is formed by inserting a piece of two-mode PCF into a Sagnac loop mirror, with the air-holes of the PCF intentionally collapsing at the splices. By adjusting the state of the polarization controller (PC) appropriately, the laser can be switched between the stable single- and dual-wavelength operations by means of the polarization hole burning (PHB) and spectral hole burning (SHB) effects.

  14. Scalable boson sampling with time-bin encoding using a loop-based architecture.

    PubMed

    Motes, Keith R; Gilchrist, Alexei; Dowling, Jonathan P; Rohde, Peter P

    2014-09-19

    We present an architecture for arbitrarily scalable boson sampling using two nested fiber loops. The architecture has fixed experimental complexity, irrespective of the size of the desired interferometer, whose scale is limited only by fiber and switch loss rates. The architecture employs time-bin encoding, whereby the incident photons form a pulse train, which enters the loops. Dynamically controlled loop coupling ratios allow the construction of the arbitrary linear optics interferometers required for boson sampling. The architecture employs only a single point of interference and may thus be easier to stabilize than other approaches. The scheme has polynomial complexity and could be realized using demonstrated present-day technologies.

  15. Non-linear control of a hydraulic piezo-valve using a generalised Prandtl-Ishlinskii hysteresis model

    NASA Astrophysics Data System (ADS)

    Stefanski, Frederik; Minorowicz, Bartosz; Persson, Johan; Plummer, Andrew; Bowen, Chris

    2017-01-01

    The potential to actuate proportional flow control valves using piezoelectric ceramics or other smart materials has been investigated for a number of years. Although performance advantages compared to electromagnetic actuation have been demonstrated, a major obstacle has proven to be ferroelectric hysteresis, which is typically 20% for a piezoelectric actuator. In this paper, a detailed study of valve control methods incorporating hysteresis compensation is made for the first time. Experimental results are obtained from a novel spool valve actuated by a multi-layer piezoelectric ring bender. A generalised Prandtl-Ishlinskii model, fitted to experimental training data from the prototype valve, is used to model hysteresis empirically. This form of model is analytically invertible and is used to compensate for hysteresis in the prototype valve both open loop, and in several configurations of closed loop real time control system. The closed loop control configurations use PID (Proportional Integral Derivative) control with either the inverse hysteresis model in the forward path or in a command feedforward path. Performance is compared to both open and closed loop control without hysteresis compensation via step and frequency response results. Results show a significant improvement in accuracy and dynamic performance using hysteresis compensation in open loop, but where valve position feedback is available for closed loop control the improvements are smaller, and so conventional PID control may well be sufficient. It is concluded that the ability to combine state-of-the-art multi-layer piezoelectric bending actuators with either sophisticated hysteresis compensation or closed loop control provides a route for the creation of a new generation of high performance piezoelectric valves.

  16. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    NASA Astrophysics Data System (ADS)

    Shi, Shanbin

    The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal-hydraulic and nuclear coupled startup transients are performed to investigate the flow instabilities at low pressure and low power conditions. Two different power ramps are chosen to study the effect of power density on the flow instability. The experimental startup transient tests show the existence of three different flow instability mechanisms during the low pressure startup transients, i.e., flashing instability, condensation induced instability, and density wave oscillations. Flashing instability in the chimney section of the test loop and density wave oscillation are the main flow instabilities observed when the system pressure is below 0.5 MPa. They show completely different type of oscillations, i.e., intermittent oscillation and sinusoidal oscillation, in void fraction profile during the startup transients. In order to perform nuclear-coupled startup transients with void reactivity feedback, the Point Kinetics model is utilized to calculate the transient power during the startup transients. In addition, the differences between the electric resistance heaters and typical fuel element are taken into account. The reactor power calculated shows some oscillations due to flashing instability during the transients. However, the void reactivity feedback does not have significant influence on the flow instability during the startup procedure for the NMR-50. Further investigation of very small power ramp on the startup transients is carried out for the thermal-hydraulic startup transients. It is found that very small power density can eliminate the flashing oscillation in the single phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. Furthermore, initially pressurized startup procedure is investigated to eliminate the main flow instabilities. The results show that the pressurized startup procedure can suppress the flashing instability at low pressure and low power conditions. In order to have a deep understanding of natural circulation flow instability, the quasi-steady tests are performed using the test facility installed with preheater and subcooler. The effects of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback are investigated in the quasi-steady state tests. The stability boundaries are determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. In order to predict the stability boundary theoretically, linear stability analysis in the frequency domain is performed at four sections of the loop. The flashing in the chimney is considered as an axially uniform heat source. The dimensionless characteristic equation of the pressure drop perturbation is obtained by considering the void fraction effect and outlet flow resistance in the chimney section. The flashing boundary shows some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium is recommended to improve the accuracy of flashing instability boundary.

  17. Closed-Loop Control for Sonic Fatigue Testing Systems

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Bossaert, Guido

    2001-01-01

    This article documents recent improvements to the acoustic control system of the Thermal Acoustic Fatigue Apparatus (TAFA), a progressive wave tube test facility at the NASA Langley Research Center, Hampton, VA. A brief summary of past acoustic performance is first given to serve as a basis of comparison with the new performance data using a multiple-input, closed-loop, narrow-band controller. Performance data in the form of test section acoustic power spectral densities and coherence are presented for a variety of input spectra including uniform, band-limited random and an expendable launch vehicle payload bay environment.

  18. Experimental control of a fluidic pinball using genetic programming

    NASA Astrophysics Data System (ADS)

    Raibaudo, Cedric; Zhong, Peng; Noack, Bernd R.; Martinuzzi, Robert J.

    2017-11-01

    The wake stabilization of a triangular cluster of three rotating cylinders was investigated in the present study. Experiments were performed at Reynolds number Re 6000, and compared with URANS-2D simulations at same flow conditions. 2D2C PIV measurements and constant temperature anemometry were used to characterize the flow without and with actuation. Open-loop actuation was first considered for the identification of particular control strategies. Machine learning control was also implemented for the experimental study. Linear genetic programming has been used for the optimization of open-loop parameters and closed-loop controllers. Considering a cost function J based on the fluctuations of the velocity measured by the hot-wire sensor, significant performances were achieved using the machine learning approach. The present work is supported by the senior author's (R. J. Martinuzzi) NSERC discovery Grant. C. Raibaudo acknowledges the financial support of the University of Calgary Eyes-High PDF program.

  19. 86. ARAIII. GCRE reactor building (ARA608) showing mechanical loop pit ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    86. ARA-III. GCRE reactor building (ARA-608) showing mechanical loop pit after building shell had been erected. Beyond pit are demineralized water surge tank and heat exchanger. Camera facing northeast. December 22, 1958. Ineel photo no. 58-6427. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  20. Analysis and design of a second-order digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Blasche, P. R.

    1979-01-01

    A specific second-order digital phase-locked loop (DPLL) was modeled as a first-order Markov chain with alternatives. From the matrix of transition probabilities of the Markov chain, the steady-state phase error of the DPLL was determined. In a similar manner the loop's response was calculated for a fading input. Additionally, a hardware DPLL was constructed and tested to provide a comparison to the results obtained from the Markov chain model. In all cases tested, good agreement was found between the theoretical predictions and the experimental data.

  1. Analysis of a novel sensor interrogation technique based on fiber cavity ring-down (CRD) loop and OTDR

    NASA Astrophysics Data System (ADS)

    Yüksel, Kivilcim; Yilmaz, Anil

    2018-07-01

    We present the analysis of a remote sensor based on fiber Cavity Ring-Down (CRD) loop interrogated by an Optical Time Domain Reflectometer (OTDR) taking into account both practical limitations and the related signal processing. A commercial OTDR is used for both pulse generation and sensor output detection. This allows obtaining a compact and simple design for intensity-based sensor applications. This novel sensor interrogation approach is experimentally demonstrated by placing a variable attenuator inside the fiber loop that mimics a sensor head.

  2. Theoretical and Experimental Investigation of the Performance of Shipborne Fixed Crossed Loop H/F D/F Applied to Aircraft Navigation

    DTIC Science & Technology

    1946-08-01

    porfoot roflootor in tbo ti/k band ....<> nt It is found gonaidoroily oaaior vhon dealing v-ith problem involving tho pick -up of loop ooricla to...froqtionoloa to ’tho axtroooa and noon of tho froqiionoy bond in oporational uso for aircraft. Tho lattor froquonoy \\ ms adopted for tho purpoao of...wave horizontal loop oscillator at 13*6 Ha/a, and,’ since the structure is broad, the resonance peak will be correspondingly wide and may reasonably

  3. 18 CFR 1304.205 - Other water-use facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... concrete boat launching ramp with associated driveway may be located within the access corridor... concrete is allowable; asphalt is not permitted. (b) Tables or benches for cleaning fish are permitted on... adjacent structures during winter drawdown. (h) Closed loop heat exchanges for residential heat pump...

  4. 18 CFR 1304.205 - Other water-use facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... concrete boat launching ramp with associated driveway may be located within the access corridor... concrete is allowable; asphalt is not permitted. (b) Tables or benches for cleaning fish are permitted on... adjacent structures during winter drawdown. (h) Closed loop heat exchanges for residential heat pump...

  5. 18 CFR 1304.205 - Other water-use facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... concrete boat launching ramp with associated driveway may be located within the access corridor... concrete is allowable; asphalt is not permitted. (b) Tables or benches for cleaning fish are permitted on... adjacent structures during winter drawdown. (h) Closed loop heat exchanges for residential heat pump...

  6. Development of a Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  7. Characterization of a Prototype Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for interspacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of the medium, moving platforms, and radiated power. The Path Emulator for Radio Frequency Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  8. System design description of forced-convection molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntley, W.R.; Silverman, M.D.

    1976-11-01

    Molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4 are high-temperature test facilities designed to evaluate corrosion and mass transfer of modified Hastelloy N alloys for future use in Molten-Salt Breeder Reactors. Salt is circulated by a centrifugal sump pump to evaluate material compatibility with LiF-BeF/sub 2/-ThF/sub 4/-UF/sub 4/ fuel salt at velocities up to 6 m/s (20 fps) and at salt temperatures from 566 to 705/sup 0/C (1050 to 1300/sup 0/F). The report presents the design description of the various components and systems that make up each corrosion facility, such as the salt pump, corrosion specimens, salt piping, main heaters, salt coolers,more » salt sampling equipment, and helium cover-gas system, etc. The electrical systems and instrumentation and controls are described, and operational procedures, system limitations, and maintenance philosophy are discussed.« less

  9. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

    1988-01-01

    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  10. La-CTP: Loop-Aware Routing for Energy-Harvesting Wireless Sensor Networks.

    PubMed

    Sun, Guodong; Shang, Xinna; Zuo, Yan

    2018-02-02

    In emerging energy-harvesting wireless sensor networks (EH-WSN), the sensor nodes can harvest environmental energy to drive their operation, releasing the user's burden in terms of frequent battery replacement, and even enabling perpetual sensing systems. In EH-WSN applications, usually, the node in energy-harvesting or recharging state has to stop working until it completes the energy replenishment. However, such temporary departures of recharging nodes severely impact the packet routing, and one immediate result is the routing loop problem. Controlling loops in connectivity-intermittent EH-WSN in an efficient way is a big challenge in practice, and so far, users still lack of effective and practicable routing protocols with loop handling. Based on the Collection Tree Protocol (CTP) widely used in traditional wireless sensor networks, this paper proposes a loop-aware routing protocol for real-world EH-WSNs, called La-CTP, which involves a new parent updating metric and a proactive, adaptive beaconing scheme to effectively suppress the occurrence of loops and unlock unavoidable loops, respectively. We constructed a 100-node testbed to evaluate La-CTP, and the experimental results showed its efficacy and efficiency.

  11. Thumb-loops up for catalysis: a structure/function investigation of a functional loop movement in a GH11 xylanase

    PubMed Central

    Paës, Gabriel; Cortés, Juan; Siméon, Thierry; O'Donohue, Michael J.; Tran, Vinh

    2012-01-01

    Dynamics is a key feature of enzyme catalysis. Unfortunately, current experimental and computational techniques do not yet provide a comprehensive understanding and description of functional macromolecular motions. In this work, we have extended a novel computational technique, which combines molecular modeling methods and robotics algorithms, to investigate functional motions of protein loops. This new approach has been applied to study the functional importance of the so-called thumb-loop in the glycoside hydrolase family 11 xylanase from Thermobacillus xylanilyticus (Tx-xyl). The results obtained provide new insight into the role of the loop in the glycosylation/deglycosylation catalytic cycle, and underline the key importance of the nature of the residue located at the tip of the thumb-loop. The effect of mutations predicted in silico has been validated by in vitro site-directed mutagenesis experiments. Overall, we propose a comprehensive model of Tx-xyl catalysis in terms of substrate and product dynamics by identifying the action of the thumb-loop motion during catalysis. PMID:24688637

  12. Design validation and performance of closed loop gas recirculation system

    NASA Astrophysics Data System (ADS)

    Kalmani, S. D.; Joshi, A. V.; Majumder, G.; Mondal, N. K.; Shinde, R. R.

    2016-11-01

    A pilot experimental set up of the India Based Neutrino Observatory's ICAL detector has been operational for the last 4 years at TIFR, Mumbai. Twelve glass RPC detectors of size 2 × 2 m2, with a gas gap of 2 mm are under test in a closed loop gas recirculation system. These RPCs are continuously purged individually, with a gas mixture of R134a (C2H2F4), isobutane (iC4H10) and sulphur hexafluoride (SF6) at a steady rate of 360 ml/h to maintain about one volume change a day. To economize gas mixture consumption and to reduce the effluents from being released into the atmosphere, a closed loop system has been designed, fabricated and installed at TIFR. The pressure and flow rate in the loop is controlled by mass flow controllers and pressure transmitters. The performance and integrity of RPCs in the pilot experimental set up is being monitored to assess the effect of periodic fluctuation and transients in atmospheric pressure and temperature, room pressure variation, flow pulsations, uniformity of gas distribution and power failures. The capability of closed loop gas recirculation system to respond to these changes is also studied. The conclusions from the above experiment are presented. The validations of the first design considerations and subsequent modifications have provided improved guidelines for the future design of the engineering module gas system.

  13. Utilization of municipal wastewater for cooling in thermoelectric power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safari, Iman; Walker, Michael E.; Hsieh, Ming-Kai

    2013-09-01

    A process simulation model has been developed using Aspen Plus® with the OLI (OLI System, Inc.) water chemistry model to predict water quality in the recirculating cooling loop utilizing secondary- and tertiary-treated municipal wastewater as the source of makeup water. Simulation results were compared with pilot-scale experimental data on makeup water alkalinity, loop pH, and ammonia evaporation. The effects of various parameters including makeup water quality, salt formation, NH 3 and CO 2 evaporation mass transfer coefficients, heat load, and operating temperatures were investigated. The results indicate that, although the simulation model can capture the general trends in the loopmore » pH, experimental data on the rates of salt precipitation in the system are needed for more accurate prediction of the loop pH. It was also found that stripping of ammonia and carbon dioxide in the cooling tower can influence the cooling loop pH significantly. The effects of the NH 3 mass transfer coefficient on cooling loop pH appear to be more significant at lower values (e.g., k NH3 < 4×10 -3 m/s) when the makeup water alkalinity is low (e.g., <90 mg/L as CaCO 3). The effect of the CO2 mass transfer coefficient was found to be significant only at lower alkalinity values (e.g., k CO2<4×10 -6 m/s).« less

  14. Experimental design for three-color and four-color gene expression microarrays.

    PubMed

    Woo, Yong; Krueger, Winfried; Kaur, Anupinder; Churchill, Gary

    2005-06-01

    Three-color microarrays, compared with two-color microarrays, can increase design efficiency and power to detect differential expression without additional samples and arrays. Furthermore, three-color microarray technology is currently available at a reasonable cost. Despite the potential advantages, clear guidelines for designing and analyzing three-color experiments do not exist. We propose a three- and a four-color cyclic design (loop) and a complementary graphical representation to help design experiments that are balanced, efficient and robust to hybridization failures. In theory, three-color loop designs are more efficient than two-color loop designs. Experiments using both two- and three-color platforms were performed in parallel and their outputs were analyzed using linear mixed model analysis in R/MAANOVA. These results demonstrate that three-color experiments using the same number of samples (and fewer arrays) will perform as efficiently as two-color experiments. The improved efficiency of the design is somewhat offset by a reduced dynamic range and increased variability in the three-color experimental system. This result suggests that, with minor technological improvements, three-color microarrays using loop designs could detect differential expression more efficiently than two-color loop designs. http://www.jax.org/staff/churchill/labsite/software Multicolor cyclic design construction methods and examples along with additional results of the experiment are provided at http://www.jax.org/staff/churchill/labsite/pubs/yong.

  15. An experimental and theoretical investigation of the liquefaction dynamics of a phase change material in a normal gravity environment

    NASA Technical Reports Server (NTRS)

    Bain, R. L.; Stermole, F. J.; Golden, J. O.

    1972-01-01

    Experimental and theoretical investigations were undertaken to determine the role of gravity-induced free convection upon the liquefaction dynamics of a cylindrical paraffin slab under normal gravity conditions. The experimental equipment consisted of a test cell, a fluid-loop heating system, and a multipoint recorder. The test chamber was annular in shape with an effective radius of 1.585 cm and a length of 5.08 cm. The heating chamber was a 1.906 cm diameter tube going through the center of the test chamber, and connected to the fluid loop heating system. All experimental runs were made with the longitudinal axis of the test cell in the vertical direction to insure that convection was not a function of the angular axis of the cell. Ten melting runs were made at various hot wall temperatures. Also, two pure conduction solidification runs were made to determine an experimental latent heat of fusion.

  16. Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana

    PubMed Central

    Locke, James C W; Kozma-Bognár, László; Gould, Peter D; Fehér, Balázs; Kevei, Éva; Nagy, Ferenc; Turner, Matthew S; Hall, Anthony; Millar, Andrew J

    2006-01-01

    Our computational model of the circadian clock comprised the feedback loop between LATE ELONGATED HYPOCOTYL (LHY), CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and TIMING OF CAB EXPRESSION 1 (TOC1), and a predicted, interlocking feedback loop involving TOC1 and a hypothetical component Y. Experiments based on model predictions suggested GIGANTEA (GI) as a candidate for Y. We now extend the model to include a recently demonstrated feedback loop between the TOC1 homologues PSEUDO-RESPONSE REGULATOR 7 (PRR7), PRR9 and LHY and CCA1. This three-loop network explains the rhythmic phenotype of toc1 mutant alleles. Model predictions fit closely to new data on the gi;lhy;cca1 mutant, which confirm that GI is a major contributor to Y function. Analysis of the three-loop network suggests that the plant clock consists of morning and evening oscillators, coupled intracellularly, which may be analogous to coupled, morning and evening clock cells in Drosophila and the mouse. PMID:17102804

  17. Asymmetric dual-loop feedback to suppress spurious tones and reduce timing jitter in self-mode-locked quantum-dash lasers emitting at 155 μm

    NASA Astrophysics Data System (ADS)

    Asghar, Haroon; McInerney, John G.

    2017-09-01

    We demonstrate an asymmetric dual-loop feedback scheme to suppress external cavity side-modes induced in self-mode-locked quantum-dash lasers with conventional single and dual-loop feedback. In this letter, we achieved optimal suppression of spurious tones by optimizing the length of second delay time. We observed that asymmetric dual-loop feedback, with large (~8x) disparity in cavity lengths, eliminates all external-cavity side-modes and produces flat RF spectra close to the main peak with low timing jitter compared to single-loop feedback. Significant reduction in RF linewidth and reduced timing jitter was also observed as a function of increased second feedback delay time. The experimental results based on this feedback configuration validate predictions of recently published numerical simulations. This interesting asymmetric dual-loop feedback scheme provides simplest, efficient and cost effective stabilization of side-band free optoelectronic oscillators based on mode-locked lasers.

  18. Testing of a Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers for Space Applications

    NASA Technical Reports Server (NTRS)

    Nagano, Hosei; Ku, Jentung

    2006-01-01

    Thermal performance of a miniature loop heat pipe (MLHP) with two evaporators and two condensers is described. A comprehensive test program, including start-up, high power, low power, power cycle, and sink temperature cycle tests, has been executed at NASA Goddard Space Flight Center for potential space applications. Experimental data showed that the loop could start with heat loads as low as 2W. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of l00W to 120W, and could recover from a dry-out by reducing the heat load to evaporators. Low power test results showed the loop could work stably for heat loads as low as 1 W to each evaporator. Excellent adaptability of the MLHP to rapid changes of evaporator power and sink temperature were also demonstrated.

  19. All-digital signal-processing open-loop fiber-optic gyroscope with enlarged dynamic range.

    PubMed

    Wang, Qin; Yang, Chuanchuan; Wang, Xinyue; Wang, Ziyu

    2013-12-15

    We propose and realize a new open-loop fiber-optic gyroscope (FOG) with an all-digital signal-processing (DSP) system where an all-digital phase-locked loop is employed for digital demodulation to eliminate the variation of the source intensity and suppress the bias drift. A Sagnac phase-shift tracking method is proposed to enlarge the dynamic range, and, with its aid, a new open-loop FOG, which can achieve a large dynamic range and high sensitivity at the same time, is realized. The experimental results show that compared with the conventional open-loop FOG with the same fiber coil and optical devices, the proposed FOG reduces the bias instability from 0.259 to 0.018 deg/h, and the angle random walk from 0.031 to 0.006 deg/h(1/2), moreover, enlarges the dynamic range to ±360 deg/s, exceeding the maximum dynamic range ±63 deg/s of the conventional open-loop FOG.

  20. Detection of low tension cosmic superstrings

    NASA Astrophysics Data System (ADS)

    Chernoff, David F.; Tye, S.-H. Henry

    2018-05-01

    Cosmic superstrings of string theory differ from conventional cosmic strings of field theory. We review how the physical and cosmological properties of the macroscopic string loops influence experimental searches for these relics from the epoch of inflation. The universe's average density of cosmic superstrings can easily exceed that of conventional cosmic strings having the same tension by two or more orders of magnitude. The cosmological behavior of the remnant superstring loops is qualitatively distinct because the string tension is exponentially smaller than the string scale in flux compactifications in string theory. Low tension superstring loops live longer, experience less recoil (rocket effect from the emission of gravitational radiation) and tend to cluster like dark matter in galaxies. Clustering enhances the string loop density with respect to the cosmological average in collapsed structures in the universe. The enhancement at the Sun's position is ~ 105. We develop a model encapsulating the leading order string theory effects, the current understanding of the string network loop production and the influence of cosmological structure formation suitable for forecasting the detection of superstring loops via optical microlensing, gravitational wave bursts and fast radio bursts. We evaluate the detection rate of bursts from cusps and kinks by LIGO- and LISA-like experiments. Clustering dominates rates for G μ < 10‑11.9 (LIGO cusp), G μ<10‑11.2 (LISA cusp), G μ < 10‑10.6 (LISA kink); we forecast experimentally accessible gravitational wave bursts for G μ>10‑14.2 (LIGO cusp), G μ>10‑15 (LISA cusp) and G μ>10‑ 14.1 (LISA kink).

  1. Buoyancy Driven Coolant Mixing Studies of Natural Circulation Flows at the ROCOM Test Facility Using ANSYS CFX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohne, Thomas; Kliem, Soren; Rohde, Ulrich

    2006-07-01

    Coolant mixing in the cold leg, downcomer and the lower plenum of pressurized water reactors is an important phenomenon mitigating the reactivity insertion into the core. Therefore, mixing of the de-borated slugs with the ambient coolant in the reactor pressure vessel was investigated at the four loop 1:5 scaled ROCOM mixing test facility. Thermal hydraulics analyses showed, that weakly borated condensate can accumulate in particular in the pump loop seal of those loops, which do not receive safety injection. After refilling of the primary circuit, natural circulation in the stagnant loops can re-establish simultaneously and the de-borated slugs are shiftedmore » towards the reactor pressure vessel (RPV). In the ROCOM experiments, the length of the flow ramp and the initial density difference between the slugs and the ambient coolant was varied. From the test matrix experiments with 0 resp. 2% density difference between the de-borated slugs and the ambient coolant were used to validate the CFD software ANSYS CFX. To model the effects of turbulence on the mean flow a higher order Reynolds stress turbulence model was employed and a mesh consisting of 6.4 million hybrid elements was utilized. Only the experiments and CFD calculations with modeled density differences show a stratification in the downcomer. Depending on the degree of density differences the less dense slugs flow around the core barrel at the top of the downcomer. At the opposite side the lower borated coolant is entrained by the colder safety injection water and transported to the core. The validation proves that ANSYS CFX is able to simulate appropriately the flow field and mixing effects of coolant with different densities. (authors)« less

  2. Component and Technology Development for Advanced Liquid Metal Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Mark

    2017-01-30

    The following report details the significant developments to Sodium Fast Reactor (SFR) technologies made throughout the course of this funding. This report will begin with an overview of the sodium loop and the improvements made over the course of this research to make it a more advanced and capable facility. These improvements have much to do with oxygen control and diagnostics. Thus a detailed report of advancements with respect to the cold trap, plugging meter, vanadium equilibration loop, and electrochemical oxygen sensor is included. Further analysis of the university’s moving magnet pump was performed and included in a section ofmore » this report. A continuous electrical resistance based level sensor was built and tested in the sodium with favorable results. Materials testing was done on diffusion bonded samples of metal and the results are presented here as well. A significant portion of this work went into the development of optical fiber temperature sensors which could be deployed in an SFR environment. Thus, a section of this report presents the work done to develop an encapsulation method for these fibers inside of a stainless steel capillary tube. High temperature testing was then done on the optical fiber ex situ in a furnace. Thermal response time was also explored with the optical fiber temperature sensors. Finally these optical fibers were deployed successfully in a sodium environment for data acquisition. As a test of the sodium deployable optical fiber temperature sensors they were installed in a sub-loop of the sodium facility which was constructed to promote the thermal striping effect in sodium. The optical fibers performed exceptionally well, yielding unprecedented 2 dimensional temperature profiles with good temporal resolution. Finally, this thermal striping loop was used to perform cross correlation velocimetry successfully over a wide range of flow rates.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Dezhi; Liu, Yixuan, E-mail: xuan61x@163.com; Guo, Zhanshe

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that themore » lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.« less

  4. Theory and experiment research for ultra-low frequency maglev vibration sensor.

    PubMed

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  5. Theory and experiment research for ultra-low frequency maglev vibration sensor

    NASA Astrophysics Data System (ADS)

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  6. Functional Loop Dynamics of the Streptavidin-Biotin Complex

    PubMed Central

    Song, Jianing; Li, Yongle; Ji, Changge; Zhang, John Z. H.

    2015-01-01

    Accelerated molecular dynamics (aMD) simulation is employed to study the functional dynamics of the flexible loop3-4 in the strong-binding streptavidin-biotin complex system. Conventional molecular (cMD) simulation is also performed for comparison. The present study reveals the following important properties of the loop dynamics: (1) The transition of loop3-4 from open to closed state is observed in 200 ns aMD simulation. (2) In the absence of biotin binding, the open-state streptavidin is more stable, which is consistent with experimental evidences. The free energy (ΔG) difference is about 5 kcal/mol between two states. But with biotin binding, the closed state is more stable due to electrostatic and hydrophobic interactions between the loop3-4 and biotin. (3) The closure of loop3-4 is concerted to the stable binding of biotin to streptavidin. When the loop3-4 is in its open-state, biotin moves out of the binding pocket, indicating that the interactions between the loop3-4 and biotin are essential in trapping biotin in the binding pocket. (4) In the tetrameric streptavidin system, the conformational change of the loop3-4 in each monomer is independent of each other. That is, there is no cooperative binding for biotin bound to the four subunits of the tetramer. PMID:25601277

  7. 40 CFR 264.1055 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Sampling connection systems... FACILITIES Air Emission Standards for Equipment Leaks § 264.1055 Standards: Sampling connection systems. (a) Each sampling connection system shall be equipped with a closed-purge, closed-loop, or closed-vent...

  8. 40 CFR 265.1055 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Sampling connection systems..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1055 Standards: Sampling connection systems. (a) Each sampling connection system shall be equipped with a closed-purge, closed-loop...

  9. 40 CFR 264.1055 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Sampling connection systems... FACILITIES Air Emission Standards for Equipment Leaks § 264.1055 Standards: Sampling connection systems. (a) Each sampling connection system shall be equipped with a closed-purge, closed-loop, or closed-vent...

  10. 40 CFR 265.1055 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Sampling connection systems..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1055 Standards: Sampling connection systems. (a) Each sampling connection system shall be equipped with a closed-purge, closed-loop...

  11. Experimental validation of the predicted binding site of Escherichia coli K1 outer membrane protein A to human brain microvascular endothelial cells: identification of critical mutations that prevent E. coli meningitis.

    PubMed

    Pascal, Tod A; Abrol, Ravinder; Mittal, Rahul; Wang, Ying; Prasadarao, Nemani V; Goddard, William A

    2010-11-26

    Escherichia coli K1, the most common cause of meningitis in neonates, has been shown to interact with GlcNAc1-4GlcNAc epitopes of Ecgp96 on human brain microvascular endothelial cells (HBMECs) via OmpA (outer membrane protein A). However, the precise domains of extracellular loops of OmpA interacting with the chitobiose epitopes have not been elucidated. We report the loop-barrel model of these OmpA interactions with the carbohydrate moieties of Ecgp96 predicted from molecular modeling. To test this model experimentally, we generated E. coli K1 strains expressing OmpA with mutations of residues predicted to be critical for interaction with the HBMEC and tested E. coli invasion efficiency. For these same mutations, we predicted the interaction free energies (including explicit calculation of the entropy) from molecular dynamics (MD), finding excellent correlation (R(2) = 90%) with experimental invasion efficiency. Particularly important is that mutating specific residues in loops 1, 2, and 4 to alanines resulted in significant inhibition of E. coli K1 invasion in HBMECs, which is consistent with the complete lack of binding found in the MD simulations for these two cases. These studies suggest that inhibition of the interactions of these residues of Loop 1, 2, and 4 with Ecgp96 could provide a therapeutic strategy to prevent neonatal meningitis due to E. coli K1.

  12. Response of an all digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Garodnick, J.; Greco, J.; Schilling, D. L.

    1974-01-01

    An all digital phase-locked loop (DPLL) is designed, analyzed, and tested. Three specific configurations are considered, generating first, second, and third order DPLL's; and it is found, using a computer simulation of a noise spike, and verified experimentally, that of these configurations the second-order system is optimum from the standpoint of threshold extension. This substantiates results obtained for analog PLL's.

  13. 158. ARAIII Reactor building (ARA608) Secondary cooling loop and piping ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    158. ARA-III Reactor building (ARA-608) Secondary cooling loop and piping plan. This drawing was selected as a typical example of piping arrangements within reactor building. Aerojet/general 880-area/GCRE-608-P-16. Date: February 1958. INeel index code no. 063-0608-50-013-102641. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  14. Some computational techniques for estimating human operator describing functions

    NASA Technical Reports Server (NTRS)

    Levison, W. H.

    1986-01-01

    Computational procedures for improving the reliability of human operator describing functions are described. Special attention is given to the estimation of standard errors associated with mean operator gain and phase shift as computed from an ensemble of experimental trials. This analysis pertains to experiments using sum-of-sines forcing functions. Both open-loop and closed-loop measurement environments are considered.

  15. Jefferson Lab Science: Present and Future

    DOE PAGES

    McKeown, Robert D.

    2015-02-12

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  16. Influence of the feedback loops in the trp operon of B. subtilis on the system dynamic response and noise amplitude.

    PubMed

    Zamora-Chimal, Criseida; Santillán, Moisés; Rodríguez-González, Jesús

    2012-10-07

    In this paper we introduce a mathematical model for the tryptophan operon regulatory pathway in Bacillus subtilis. This model considers the transcription-attenuation, and the enzyme-inhibition regulatory mechanisms. Special attention is paid to the estimation of all the model parameters from reported experimental data. With the aid of this model we investigate, from a mathematical-modeling point of view, whether the existing multiplicity of regulatory feedback loops is advantageous in some sense, regarding the dynamic response and the biochemical noise in the system. The tryptophan operon dynamic behavior is studied by means of deterministic numeric simulations, while the biochemical noise is analyzed with the aid of stochastic simulations. The model feasibility is tested comparing its stochastic and deterministic results with experimental reports. Our results for the wildtype and for a couple of mutant bacterial strains suggest that the enzyme-inhibition feedback loop, dynamically accelerates the operon response, and plays a major role in the reduction of biochemical noise. Also, the transcription-attenuation feedback loop makes the trp operon sensitive to changes in the endogenous tryptophan level, and increases the amplitude of the biochemical noise. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Properties of dynamic magnetic loss of ferrite

    NASA Astrophysics Data System (ADS)

    Saotome, Hideo; Azuma, Keisuke; Kizuka, Hiroki; Tanaka, Takuma

    2018-05-01

    The B-H loop of ferrite becomes narrower with a decrease in the excitation frequency. However, even at frequencies lower than 1 kHz, the B-H loop exhibits a certain minimum width, which is referred to as the (DC) hysteresis loop, and its area corresponds to the hysteresis loss. The dynamic magnetic loss is obtained by subtracting the hysteresis loss from the B-H loop area measured at a frequency above 1-10 kHz. The temperature characteristics of the hysteresis and dynamic magnetic losses are determined to be experimentally different, which suggests that the mechanism for the generation of dynamic magnetic loss is not exactly the same as that for the hysteresis loss. The dynamic magnetic loss is expressed using the dynamic magnetic loss parameter, which is a function of B and its time derivative, dB/dt. The dynamic magnetic loss parameter is measured under excitation with a rectangular waveform voltage. A ferrite core of TDK PC47 was used and the maximum magnetic flux density Bm, was set to 350 mT. The measured dynamic magnetic loss parameter was experimentally verified to be one of the intrinsic characteristics of ferrite and was also validated for cases of excitation with sinusoidal waveform voltages.

  18. Water cooling system for an air-breathing hypersonic test vehicle

    NASA Technical Reports Server (NTRS)

    Petley, Dennis H.; Dziedzic, William M.

    1993-01-01

    This study provides concepts for hypersonic experimental scramjet test vehicles which have low cost and low risk. Cryogenic hydrogen is used as the fuel and coolant. Secondary water cooling systems were designed. Three concepts are shown: an all hydrogen cooling system, a secondary open loop water cooled system, and a secondary closed loop water cooled system. The open loop concept uses high pressure helium (15,000 psi) to drive water through the cooling system while maintaining the pressure in the water tank. The water flows through the turbine side of the turbopump to pump hydrogen fuel. The water is then allowed to vent. In the closed loop concept high pressure, room temperature, compressed liquid water is circulated. In flight water pressure is limited to 6000 psi by venting some of the water. Water is circulated through cooling channels via an ejector which uses high pressure gas to drive a water jet. The cooling systems are presented along with finite difference steady-state and transient analysis results. The results from this study indicate that water used as a secondary coolant can be designed to increase experimental test time, produce minimum venting of fluid and reduce overall development cost.

  19. Using video modeling with substitutable loops to teach varied play to children with autism.

    PubMed

    Dupere, Sally; MacDonald, Rebecca P F; Ahearn, William H

    2013-01-01

    Children with autism often engage in repetitive play with little variation in the actions performed or items used. This study examined the use of video modeling with scripted substitutable loops on children's pretend play with trained and untrained characters. Three young children with autism were shown a video model of scripted toy play that included a substitutable loop that allowed various characters to perform the same actions and vocalizations. Three characters were modeled with the substitutable loop during training sessions, and 3 additional characters were present in the video but never modeled. Following video modeling, all the participants incorporated untrained characters into their play, but the extent to which they did so varied. © Society for the Experimental Analysis of Behavior.

  20. Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yue; Xu, Ke; Jiang, Weilin

    Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversalmore » curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.« less

  1. Experimental evidence for circular inference in schizophrenia

    PubMed Central

    Jardri, Renaud; Duverne, Sandrine; Litvinova, Alexandra S; Denève, Sophie

    2017-01-01

    Schizophrenia (SCZ) is a complex mental disorder that may result in some combination of hallucinations, delusions and disorganized thinking. Here SCZ patients and healthy controls (CTLs) report their level of confidence on a forced-choice task that manipulated the strength of sensory evidence and prior information. Neither group's responses can be explained by simple Bayesian inference. Rather, individual responses are best captured by a model with different degrees of circular inference. Circular inference refers to a corruption of sensory data by prior information and vice versa, leading us to ‘see what we expect' (through descending loops), to ‘expect what we see' (through ascending loops) or both. Ascending loops are stronger for SCZ than CTLs and correlate with the severity of positive symptoms. Descending loops correlate with the severity of negative symptoms. Both loops correlate with disorganized symptoms. The findings suggest that circular inference might mediate the clinical manifestations of SCZ. PMID:28139642

  2. A Looping-Based Model for Quenching Repression

    PubMed Central

    Pollak, Yaroslav; Goldberg, Sarah; Amit, Roee

    2017-01-01

    We model the regulatory role of proteins bound to looped DNA using a simulation in which dsDNA is represented as a self-avoiding chain, and proteins as spherical protrusions. We simulate long self-avoiding chains using a sequential importance sampling Monte-Carlo algorithm, and compute the probabilities for chain looping with and without a protrusion. We find that a protrusion near one of the chain’s termini reduces the probability of looping, even for chains much longer than the protrusion–chain-terminus distance. This effect increases with protrusion size, and decreases with protrusion-terminus distance. The reduced probability of looping can be explained via an eclipse-like model, which provides a novel inhibitory mechanism. We test the eclipse model on two possible transcription-factor occupancy states of the D. melanogaster eve 3/7 enhancer, and show that it provides a possible explanation for the experimentally-observed eve stripe 3 and 7 expression patterns. PMID:28085884

  3. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Bergner, F.; Gillemot, F.; Hernández-Mayoral, M.; Serrano, M.; Török, G.; Ulbricht, A.; Altstadt, E.

    2015-06-01

    Dislocation loops, nanovoids and Cu-rich clusters (CRPs) are known to represent obstacles for dislocation glide in neutron-irradiated reactor pressure vessel (RPV) steels, but a consistent experimental determination of the respective obstacle strengths is still missing. A set of Cu-bearing low-Ni RPV steels and model alloys was characterized by means of SANS and TEM in order to specify mean size and number density of loops, nanovoids and CRPs. The obstacle strengths of these families were estimated by solving an over-determined set of linear equations. We have found that nanovoids are stronger than loops and loops are stronger than CRPs. Nevertheless, CRPs contribute most to irradiation hardening because of their high number density. Nanovoids were only observed for neutron fluences beyond typical end-of-life conditions of RPVs. The estimates of the obstacle strength are critically compared with reported literature data.

  4. Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling

    DOE PAGES

    Cao, Yue; Xu, Ke; Jiang, Weilin; ...

    2015-07-03

    Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversalmore » curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.« less

  5. Experimental evidence for circular inference in schizophrenia.

    PubMed

    Jardri, Renaud; Duverne, Sandrine; Litvinova, Alexandra S; Denève, Sophie

    2017-01-31

    Schizophrenia (SCZ) is a complex mental disorder that may result in some combination of hallucinations, delusions and disorganized thinking. Here SCZ patients and healthy controls (CTLs) report their level of confidence on a forced-choice task that manipulated the strength of sensory evidence and prior information. Neither group's responses can be explained by simple Bayesian inference. Rather, individual responses are best captured by a model with different degrees of circular inference. Circular inference refers to a corruption of sensory data by prior information and vice versa, leading us to 'see what we expect' (through descending loops), to 'expect what we see' (through ascending loops) or both. Ascending loops are stronger for SCZ than CTLs and correlate with the severity of positive symptoms. Descending loops correlate with the severity of negative symptoms. Both loops correlate with disorganized symptoms. The findings suggest that circular inference might mediate the clinical manifestations of SCZ.

  6. Experimental evidence for circular inference in schizophrenia

    NASA Astrophysics Data System (ADS)

    Jardri, Renaud; Duverne, Sandrine; Litvinova, Alexandra S.; Denève, Sophie

    2017-01-01

    Schizophrenia (SCZ) is a complex mental disorder that may result in some combination of hallucinations, delusions and disorganized thinking. Here SCZ patients and healthy controls (CTLs) report their level of confidence on a forced-choice task that manipulated the strength of sensory evidence and prior information. Neither group's responses can be explained by simple Bayesian inference. Rather, individual responses are best captured by a model with different degrees of circular inference. Circular inference refers to a corruption of sensory data by prior information and vice versa, leading us to `see what we expect' (through descending loops), to `expect what we see' (through ascending loops) or both. Ascending loops are stronger for SCZ than CTLs and correlate with the severity of positive symptoms. Descending loops correlate with the severity of negative symptoms. Both loops correlate with disorganized symptoms. The findings suggest that circular inference might mediate the clinical manifestations of SCZ.

  7. Controlling the trajectories of bubble trains at a microfluidic junction

    NASA Astrophysics Data System (ADS)

    Parthiban, Pravien; Khan, Saif

    2011-11-01

    The increasing number of applications facilitated by digital microfluidic flows has resulted in a sustained interest in not only understanding the diverse, interesting and often complex dynamics associated with such flows in microchannel networks but also in developing facile strategies to control them. We find that there are readily accessible flow speeds wherein resistance to flow in microchannels decreases with an increase in the number of confined bubbles present, and exploit this intriguing phenomenon to sort all bubble of a train exclusively into one of the arms of a nominally symmetric microfluidic loop. We also demonstrate how the arm into which the train filters into can be chosen by applying a temporary external stimulus by means of an additional flow of the continuous liquid into one the arms of the loop. Furthermore, we show how by tuning the magnitude and period of this temporary stimulus we can switch controllably, the traffic of bubbles between both arms of the loop even when the loop is asymmetric. The results of this work should aid in developing viable methods to regulate traffic of digital flows in microfluidic networks.

  8. Unbiased, scalable sampling of protein loop conformations from probabilistic priors.

    PubMed

    Zhang, Yajia; Hauser, Kris

    2013-01-01

    Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion.

  9. Unbiased, scalable sampling of protein loop conformations from probabilistic priors

    PubMed Central

    2013-01-01

    Background Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Results Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Conclusion Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion. PMID:24565175

  10. The Affinity of the S9.6 Antibody for Double-Stranded RNAs Impacts the Accurate Mapping of R-Loops in Fission Yeast.

    PubMed

    Hartono, Stella R; Malapert, Amélie; Legros, Pénélope; Bernard, Pascal; Chédin, Frédéric; Vanoosthuyse, Vincent

    2018-02-02

    R-loops, which result from the formation of stable DNA:RNA hybrids, can both threaten genome integrity and act as physiological regulators of gene expression and chromatin patterning. To characterize R-loops in fission yeast, we used the S9.6 antibody-based DRIPc-seq method to sequence the RNA strand of R-loops and obtain strand-specific R-loop maps at near nucleotide resolution. Surprisingly, preliminary DRIPc-seq experiments identified mostly RNase H-resistant but exosome-sensitive RNAs that mapped to both DNA strands and resembled RNA:RNA hybrids (dsRNAs), suggesting that dsRNAs form widely in fission yeast. We confirmed in vitro that S9.6 can immuno-precipitate dsRNAs and provide evidence that dsRNAs can interfere with its binding to R-loops. dsRNA elimination by RNase III treatment prior to DRIPc-seq allowed the genome-wide and strand-specific identification of genuine R-loops that responded in vivo to RNase H levels and displayed classical features associated with R-loop formation. We also found that most transcripts whose levels were altered by in vivo manipulation of RNase H levels did not form detectable R-loops, suggesting that prolonged manipulation of R-loop levels could indirectly alter the transcriptome. We discuss the implications of our work in the design of experimental strategies to probe R-loop functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. University of Maryland MRSEC - For Members: Publications

    Science.gov Websites

    -MRSEC at the University of Maryland, DMR 0520471." Authors who use MRSEC Shared Experimental Facilities, should acknowledge the MRSEC-SEF: Authors who use MRSEC Shared Experimental Facilities and also Experimental Facilities, but do not receive other MRSEC support should still acknowledge the MRSEC-SEF: "

  12. Overview of the Neutron experimental facilities at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal

    2016-06-30

    This presentation gives an overview of the neutron experimental facilities at LANSCE. The layout is mentioned in detail, with a map of the south-side experimental facilities, information on Target-4 and the Lujan Center. Then it goes into detail about neutron sources, specifically continuous versus pulsed. Target 4 is then discussed. In conclusion, we have introduced the south-side experimental facilities in operation at LANSCE. 1L target and Target 4 provide complementary neutron energy spectra. Two spallation neutron sources taken together cover more than 11 orders of magnitude in neutron energy.

  13. Closed-loop, pilot/vehicle analysis of the approach and landing task

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.; Anderson, M. R.

    1985-01-01

    Optimal-control-theoretic modeling and frequency-domain analysis is the methodology proposed to evaluate analytically the handling qualities of higher-order manually controlled dynamic systems. Fundamental to the methodology is evaluating the interplay between pilot workload and closed-loop pilot/vehicle performance and stability robustness. The model-based metric for pilot workload is the required pilot phase compensation. Pilot/vehicle performance and loop stability is then evaluated using frequency-domain techniques. When these techniques were applied to the flight-test data for thirty-two highly-augmented fighter configurations, strong correlation was obtained between the analytical and experimental results.

  14. Frequency set on systems

    NASA Astrophysics Data System (ADS)

    Wilby, W. A.; Brett, A. R. H.

    Frequency set on techniques used in ECM applications include repeater jammers, frequency memory loops (RF and optical), coherent digital RF memories, and closed loop VCO set on systems. Closed loop frequency set on systems using analog phase and frequency locking are considered to have a number of cost and performance advantages. Their performance is discussed in terms of frequency accuracy, bandwidth, locking time, stability, and simultaneous signals. Some experimental results are presented which show typical locking performance. Future ECM systems might require a response to very short pulses. Acoustooptic and fiber-optic pulse stretching techniques can be used to meet such requirements.

  15. Virtual Induction Loops Based on Cooperative Vehicular Communications

    PubMed Central

    Gramaglia, Marco; Bernardos, Carlos J.; Calderon, Maria

    2013-01-01

    Induction loop detectors have become the most utilized sensors in traffic management systems. The gathered traffic data is used to improve traffic efficiency (i.e., warning users about congested areas or planning new infrastructures). Despite their usefulness, their deployment and maintenance costs are expensive. Vehicular networks are an emerging technology that can support novel strategies for ubiquitous and more cost-effective traffic data gathering. In this article, we propose and evaluate VIL (Virtual Induction Loop), a simple and lightweight traffic monitoring system based on cooperative vehicular communications. The proposed solution has been experimentally evaluated through simulation using real vehicular traces. PMID:23348033

  16. Tunable dual-wavelength fiber laser based on an MMI filter in a cascaded Sagnac loop interferometer

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Kang, Zexin; Qi, Yanhui; Jian, Shuisheng

    2014-04-01

    A widely tunable dual-wavelength erbium-doped fiber laser based on a cascaded Sagnac loop interferometer incorporating a multimode interference filter is proposed and experimentally demonstrated in this paper. The mode selection is implemented by using the cascaded Sagnac loop interferometer with two segments of polarization maintaining fibers, and the wavelength tuning was achieved by using the refractive index characteristic of multimode interference effects. The tunable dual-wavelength fiber laser has a wavelength tuning of about 40 nm with a signal-to-noise ratio of more than 50 dB.

  17. Suppression and enhancement of transcriptional noise by DNA looping

    NASA Astrophysics Data System (ADS)

    Vilar, Jose M. G.; Saiz, Leonor

    2014-06-01

    DNA looping has been observed to enhance and suppress transcriptional noise but it is uncertain which of these two opposite effects is to be expected for given conditions. Here, we derive analytical expressions for the main quantifiers of transcriptional noise in terms of the molecular parameters and elucidate the role of DNA looping. Our results rationalize paradoxical experimental observations and provide the first quantitative explanation of landmark individual-cell measurements at the single molecule level on the classical lac operon genetic system [Choi, L. Cai, K. Frieda, and X. S. Xie, Science 322, 442 (2008), 10.1126/science.1161427].

  18. A novel Cs-(129)Xe atomic spin gyroscope with closed-loop Faraday modulation.

    PubMed

    Fang, Jiancheng; Wan, Shuangai; Qin, Jie; Zhang, Chen; Quan, Wei; Yuan, Heng; Dong, Haifeng

    2013-08-01

    We report a novel Cs-(129)Xe atomic spin gyroscope (ASG) with closed-loop Faraday modulation method. This ASG requires approximately 30 min to start-up and 110 °C to operate. A closed-loop Faraday modulation method for measurement of the optical rotation was used in this ASG. This method uses an additional Faraday modulator to suppress the laser intensity fluctuation and Faraday modulator thermal induced fluctuation. We theoretically and experimentally validate this method in the Cs-(129)Xe ASG and achieved a bias stability of approximately 3.25 °∕h.

  19. Eglin virtual range database for hardware-in-the-loop testing

    NASA Astrophysics Data System (ADS)

    Talele, Sunjay E.; Pickard, J. W., Jr.; Owens, Monte A.; Foster, Joseph; Watson, John S.; Amick, Mary Amenda; Anthony, Kenneth

    1998-07-01

    Realistic backgrounds are necessary to support high fidelity hardware-in-the-loop testing. Advanced avionics and weapon system sensors are driving the requirement for higher resolution imagery. The model-test-model philosophy being promoted by the T&E community is resulting in the need for backgrounds that are realistic or virtual representations of actual test areas. Combined, these requirements led to a major upgrade of the terrain database used for hardware-in-the-loop testing at the Guided Weapons Evaluation Facility (GWEF) at Eglin Air Force Base, Florida. This paper will describe the process used to generate the high-resolution (1-foot) database of ten sites totaling over 20 square kilometers of the Eglin range. this process involved generating digital elevation maps from stereo aerial imagery and classifying ground cover material using the spectral content. These databases were then optimized for real-time operation at 90 Hz.

  20. Pretest analysis of natural circulation on the PWR model PACTEL with horizontal steam generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kervinen, T.; Riikonen, V.; Ritonummi, T.

    A new tests facility - parallel channel tests loop (PACTEL)- has been designed and built to simulate the major components and system behavior of pressurized water reactors (PWRs) during postulated small- and medium-break loss-of-coolant accidents. Pretest calculations have been performed for the first test series, and the results of these calculations are being used for planning experiments, for adjusting the data acquisition system, and for choosing the optimal position and type of instrumentation. PACTEL is a volumetrically scaled (1:305) model of the VVER-440 PWR. In all the calculated cases, the natural circulation was found to be effective in removing themore » heat from the core to the steam generator. The loop mass flow rate peaked at 60% mass inventory. The straightening of the loop seals increased the mass flow rate significantly.« less

  1. Characterisation of the physical composition and microbial community structure of biofilms within a model full-scale drinking water distribution system.

    PubMed

    Fish, Katherine E; Collins, Richard; Green, Nicola H; Sharpe, Rebecca L; Douterelo, Isabel; Osborn, A Mark; Boxall, Joby B

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important driver in material accumulation within the DWDS.

  2. Characterisation of the Physical Composition and Microbial Community Structure of Biofilms within a Model Full-Scale Drinking Water Distribution System

    PubMed Central

    Fish, Katherine E.; Collins, Richard; Green, Nicola H.; Sharpe, Rebecca L.; Douterelo, Isabel; Osborn, A. Mark; Boxall, Joby B.

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important driver in material accumulation within the DWDS. PMID:25706303

  3. A proof-of-principle simulation for closed-loop control based on preexisting experimental thalamic DBS-enhanced instrumental learning.

    PubMed

    Wang, Ching-Fu; Yang, Shih-Hung; Lin, Sheng-Huang; Chen, Po-Chuan; Lo, Yu-Chun; Pan, Han-Chi; Lai, Hsin-Yi; Liao, Lun-De; Lin, Hui-Ching; Chen, Hsu-Yan; Huang, Wei-Chen; Huang, Wun-Jhu; Chen, You-Yin

    Deep brain stimulation (DBS) has been applied as an effective therapy for treating Parkinson's disease or essential tremor. Several open-loop DBS control strategies have been developed for clinical experiments, but they are limited by short battery life and inefficient therapy. Therefore, many closed-loop DBS control systems have been designed to tackle these problems by automatically adjusting the stimulation parameters via feedback from neural signals, which has been reported to reduce the power consumption. However, when the association between the biomarkers of the model and stimulation is unclear, it is difficult to develop an optimal control scheme for other DBS applications, i.e., DBS-enhanced instrumental learning. Furthermore, few studies have investigated the effect of closed-loop DBS control for cognition function, such as instrumental skill learning, and have been implemented in simulation environments. In this paper, we proposed a proof-of-principle design for a closed-loop DBS system, cognitive-enhancing DBS (ceDBS), which enhanced skill learning based on in vivo experimental data. The ceDBS acquired local field potential (LFP) signal from the thalamic central lateral (CL) nuclei of animals through a neural signal processing system. A strong coupling of the theta oscillation (4-7 Hz) and the learning period was found in the water reward-related lever-pressing learning task. Therefore, the theta-band power ratio, which was the averaged theta band to averaged total band (1-55 Hz) power ratio, could be used as a physiological marker for enhancement of instrumental skill learning. The on-line extraction of the theta-band power ratio was implemented on a field-programmable gate array (FPGA). An autoregressive with exogenous inputs (ARX)-based predictor was designed to construct a CL-thalamic DBS model and forecast the future physiological marker according to the past physiological marker and applied DBS. The prediction could further assist the design of a closed-loop DBS controller. A DBS controller based on a fuzzy expert system was devised to automatically control DBS according to the predicted physiological marker via a set of rules. The simulated experimental results demonstrate that the ceDBS based on the closed-loop control architecture not only reduced power consumption using the predictive physiological marker, but also achieved a desired level of physiological marker through the DBS controller. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Slab track field test and demonstration program for shared freight and high-speed passenger service

    DOT National Transportation Integrated Search

    2010-08-01

    Two types of slab tracks were installed on the High Tonnage Loop at the Facility for Accelerated Service Testing. Direct fixation slab track (DFST) and independent dual block track (IDBT) were installed into a 5-degree curve with 4-inch superelevatio...

  5. Development of Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Capability 2 and Experimental Plans

    NASA Technical Reports Server (NTRS)

    Lehmer, R.; Ingram, C.; Jovic, S.; Alderete, J.; Brown, D.; Carpenter, D.; LaForce, S.; Panda, R.; Walker, J.; Chaplin, P.; hide

    2006-01-01

    The Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Project, an element cf NASA's Virtual Airspace Modeling and Simulation (VAMS) Project, has been developing a distributed simulation capability that supports an extensible and expandable real-time, human-in-the-loop airspace simulation environment. The VAST-RT system architecture is based on DoD High Level Architecture (HLA) and the VAST-RT HLA Toolbox, a common interface implementation that incorporates a number of novel design features. The scope of the initial VAST-RT integration activity (Capability 1) included the high-fidelity human-in-the-loop simulation facilities located at NASA/Ames Research Center and medium fidelity pseudo-piloted target generators, such as the Airspace Traffic Generator (ATG) being developed as part of VAST-RT, as well as other real-time tools. This capability has been demonstrated in a gate-to-gate simulation. VAST-RT's (Capability 2A) has been recently completed, and this paper will discuss the improved integration of the real-time assets into VAST-RT, including the development of tools to integrate data collected across the simulation environment into a single data set for the researcher. Current plans for the completion of the VAST-RT distributed simulation environment (Capability 2B) and its use to evaluate future airspace capacity enhancing concepts being developed by VAMS will be discussed. Additionally, the simulation environment's application to other airspace and airport research projects is addressed.

  6. ESF GROUND SUPPORT - MATERIAL DEDICATION ANALYSIS FOR STRUCTURAL STEEL AND ACCESSORIES FROM A COMMERCIAL GRADE SOURCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.D. Stine

    1996-01-23

    The purpose of this analysis is to select the critical characteristics to be verified for steel sets and accessories and the verification methods to be implemented through a material dedication process for the procurement and use of commercial grade structural steel sets and accessories (which have a nuclear safety function) to be used in ground support (with the exception of alcove ground support and alcove opening framing, which are not addressed in this analysis) for the Exploratory Studies Facility (ESF) Topopah Spring (TS) Loop. The ESF TS Loop includes the North Ramp, Main Drift, and South Ramp underground openings.

  7. DiTour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelaia, II, Thomas A.

    2014-06-05

    it is common for facilities to have a lobby with a display loop while also requiring an option for guided tours. Existing solutions have required expensive hardware and awkward software. Our solution is relative low cost as it runs on an iPad connected to an external monitor, and our software provides an intuitive touch interface. The media files are downloaded from a web server onto the device allowing a mobile option (e.g. displays at conferences). Media may include arbitrary sequences of images, movies or PDF documents. Tour guides can select different tracks of slides to display and the presentation willmore » return to the default loop after a timeout.« less

  8. Shortening a loop can increase protein native state entropy.

    PubMed

    Gavrilov, Yulian; Dagan, Shlomi; Levy, Yaakov

    2015-12-01

    Protein loops are essential structural elements that influence not only function but also protein stability and folding rates. It was recently reported that shortening a loop in the AcP protein may increase its native state conformational entropy. This effect on the entropy of the folded state can be much larger than the lower entropic penalty of ordering a shorter loop upon folding, and can therefore result in a more pronounced stabilization than predicted by polymer model for loop closure entropy. In this study, which aims at generalizing the effect of loop length shortening on native state dynamics, we use all-atom molecular dynamics simulations to study how gradual shortening a very long or solvent-exposed loop region in four different proteins can affect their stability. For two proteins, AcP and Ubc7, we show an increase in native state entropy in addition to the known effect of the loop length on the unfolded state entropy. However, for two permutants of SH3 domain, shortening a loop results only with the expected change in the entropy of the unfolded state, which nicely reproduces the observed experimental stabilization. Here, we show that an increase in the native state entropy following loop shortening is not unique to the AcP protein, yet nor is it a general rule that applies to all proteins following the truncation of any loop. This modification of the loop length on the folded state and on the unfolded state may result with a greater effect on protein stability. © 2015 Wiley Periodicals, Inc.

  9. The fractalline properties of experimentally simulated PWR fuel crud

    NASA Astrophysics Data System (ADS)

    Dumnernchanvanit, I.; Mishra, V. K.; Zhang, N. Q.; Robertson, S.; Delmore, A.; Mota, G.; Hussey, D.; Wang, G.; Byers, W. A.; Short, M. P.

    2018-02-01

    The buildup of fouling deposits on nuclear fuel rods, known as crud, continues to challenge the worldwide fleet of light water reactors (LWRs). Crud may cause serious operational problems for LWRs, including axial power shifts, accelerated fuel clad corrosion, increased primary circuit radiation dose rates, and in some instances has led directly to fuel failure. Numerous studies continue to attempt to model and predict the effects of crud, but each makes critical assumptions regarding how to treat the complex, porous microstructure of crud and its resultant effects on temperature, pressure, and crud chemistry. In this study, we demonstrate that crud is indeed a fractalline porous medium using flowing loop experiments, validating the most recent models of its effects on LWR fuel cladding. This crud is shown to match that in other LWR-prototypical facilities through a porosity-fractal dimension scaling law. Implications of this result range from post-mortem analysis of the effects of crud on reactor fuel performance, to utilizing crud's fractalline dimensions to quantify the effectiveness of anti-fouling measures.

  10. System design of a 1 MW north-facing, solid particle receiver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J.; Ho, C.

    Falling solid particle receivers (SPR) utilize small particles as a heat collecting medium within a cavity receiver structure. The components required to operate an SPR include the receiver (to heat the particles), bottom hopper (to catch the falling particles), particle lift elevator (to lift particles back to the top of the receiver), top hopper (to store particles before being dropped through the receiver), and ducting. In addition to the required components, there are additional features needed for an experimental system. These features include: a support structure to house all components, calibration panel to measure incident radiation, cooling loops, and sensorsmore » (flux gages, thermocouples, pressure gages). Each of these components had to be designed to withstand temperatures ranging from ambient to 700 °C. Thermal stresses from thermal expansion become a key factor in these types of high temperature systems. The SPR will be housing ~3000 kg of solid particles. The final system will be tested at the National Solar Thermal Test Facility in Albuquerque, NM.« less

  11. System design of a 1 MW north-facing, solid particle receiver

    DOE PAGES

    Christian, J.; Ho, C.

    2015-05-01

    Falling solid particle receivers (SPR) utilize small particles as a heat collecting medium within a cavity receiver structure. The components required to operate an SPR include the receiver (to heat the particles), bottom hopper (to catch the falling particles), particle lift elevator (to lift particles back to the top of the receiver), top hopper (to store particles before being dropped through the receiver), and ducting. In addition to the required components, there are additional features needed for an experimental system. These features include: a support structure to house all components, calibration panel to measure incident radiation, cooling loops, and sensorsmore » (flux gages, thermocouples, pressure gages). Each of these components had to be designed to withstand temperatures ranging from ambient to 700 °C. Thermal stresses from thermal expansion become a key factor in these types of high temperature systems. The SPR will be housing ~3000 kg of solid particles. The final system will be tested at the National Solar Thermal Test Facility in Albuquerque, NM.« less

  12. Post Flight Analysis Of SHEFEX I: Shock Tunnel Testing And Related CFD Analysis

    NASA Astrophysics Data System (ADS)

    Schramm, Jan Martinez; Barth, Tarik; Wagner, Alexander; Hannemann, Klaus

    2011-05-01

    The SHarp Edge Flight EXperiment (SHEFEX) program of the German Aerospace Center (DLR) is primarily focused on the investigation of the potential to utilise improved shapes for space vehicles by considering sharp edges and facetted surfaces. One goal is to set up a sky based test facility to gain knowledge of the physics of hypersonic flow, complemented by numerical analysis and ground based testing. Further, the series of SHEFEX flight experiments is an excellent test bed for new technological concepts and flight instrumentation, and it is a source of motivation for young scientist and engineers providing an excellent school for future space-program engineers and managers. After the successful first SHEFEX flight in October 2005, a second flight is scheduled for September 2011 and additional flights are planned for 2015 ff. With the SHEFEX-I flight and the subsequent numerical and experimental post flight analysis, DLR could for the first time close the loop between the three major disciplines of aerothermodynamic research namely CFD, ground based testing and flight.

  13. Test prediction for the German PKL Test K5A using RELAP4/MOD6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.S.; Haigh, W.S.; Sullivan, L.H.

    RELAP4/MOD6 is the most recent modification in the series of RELAP4 computer programs developed to describe the thermal-hydraulic conditions attendant to postulated transients in light water reactor systems. The major new features in RELAP4/MOD6 include best-estimate pressurized water reactor (PWR) reflood transient analytical models for core heat transfer, local entrainment, and core vapor superheat, and a new set of heat transfer correlations for PWR blowdown and reflood. These new features were used for a test prediction of the Kraftwerk Union three-loop PRIMAR KREISLAUF (PKL) Reflood Test K5A. The results of the prediction were in good agreement with the experimental thermalmore » and hydraulic system data. Comparisons include heater rod surface temperature, system pressure, mass flow rates, and core mixture level. It is concluded that RELAP4/MOD6 is capable of accurately predicting transient reflood phenomena in the 200% cold-leg break test configuration of the PKL reflood facility.« less

  14. An all digital phase locked loop for FM demodulation.

    NASA Technical Reports Server (NTRS)

    Greco, J.; Garodnick, J.; Schilling, D. L.

    1972-01-01

    A phase-locked loop designed with all-digital circuitry which avoids certain problems, and a digital voltage controlled oscillator algorithm are described. The system operates synchronously and performs all required digital calculations within one sampling period, thereby performing as a real-time special-purpose computer. The SNR ratio is computed for frequency offsets and sinusoidal modulation, and experimental results verify the theoretical calculations.

  15. Facility for generating crew waste water product for ECLSS testing

    NASA Technical Reports Server (NTRS)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  16. An assessment of the use of antimisting fuel in turbofan engines

    NASA Technical Reports Server (NTRS)

    Fiorentino, A.; Desaro, R.; Franz, T.

    1980-01-01

    The effects of antimisting kerosene on the performance of the components from the fuel system and the combustor of a JT8D aircraft engine were evaluated. The problems associated with antimisting kerosene were identified and the extent of shearing or degradation required to allow the engine components to achieve satisfactory operation were determined. The performance of the combustor was assessed in a high pressure facility and in an altitude relight/cold ignition facility. The performance of the fuel pump and control system was evaluated in an open loop simulation.

  17. Control of large flexible structures - An experiment on the NASA Mini-Mast facility

    NASA Technical Reports Server (NTRS)

    Hsieh, Chen; Kim, Jae H.; Liu, Ketao; Zhu, Guoming; Skelton, Robert E.

    1991-01-01

    The output variance constraint controller design procedure is integrated with model reduction by modal cost analysis. A procedure is given for tuning MIMO controller designs to find the maximal rms performance of the actual system. Controller designs based on a finite-element model of the system are compared with controller designs based on an identified model (obtained using the Q-Markov Cover algorithm). The identified model and the finite-element model led to similar closed-loop performance, when tested in the Mini-Mast facility at NASA Langley.

  18. Identification of nonlinear modes using phase-locked-loop experimental continuation and normal form

    NASA Astrophysics Data System (ADS)

    Denis, V.; Jossic, M.; Giraud-Audine, C.; Chomette, B.; Renault, A.; Thomas, O.

    2018-06-01

    In this article, we address the model identification of nonlinear vibratory systems, with a specific focus on systems modeled with distributed nonlinearities, such as geometrically nonlinear mechanical structures. The proposed strategy theoretically relies on the concept of nonlinear modes of the underlying conservative unforced system and the use of normal forms. Within this framework, it is shown that without internal resonance, a valid reduced order model for a nonlinear mode is a single Duffing oscillator. We then propose an efficient experimental strategy to measure the backbone curve of a particular nonlinear mode and we use it to identify the free parameters of the reduced order model. The experimental part relies on a Phase-Locked Loop (PLL) and enables a robust and automatic measurement of backbone curves as well as forced responses. It is theoretically and experimentally shown that the PLL is able to stabilize the unstable part of Duffing-like frequency responses, thus enabling its robust experimental measurement. Finally, the whole procedure is tested on three experimental systems: a circular plate, a chinese gong and a piezoelectric cantilever beam. It enable to validate the procedure by comparison to available theoretical models as well as to other experimental identification methods.

  19. The baryon vector current in the combined chiral and 1/Nc expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores-Mendieta, Ruben; Goity, Jose L

    2014-12-01

    The baryon vector current is computed at one-loop order in large-Nc baryon chiral perturbation theory, where Nc is the number of colors. Loop graphs with octet and decuplet intermediate states are systematically incorporated into the analysis and the effects of the decuplet-octet mass difference and SU(3) flavor symmetry breaking are accounted for. There are large-Nc cancellations between different one-loop graphs as a consequence of the large-Nc spin-flavor symmetry of QCD baryons. The results are compared against the available experimental data through several fits in order to extract information about the unknown parameters. The large-Nc baryon chiral perturbation theory predictions aremore » in very good agreement both with the expectations from the 1/Nc expansion and with the experimental data. The effect of SU(3) flavor symmetry breaking for the |Delta S|=1 vector current form factors f1(0) results in a reduction by a few percent with respect to the corresponding SU(3) symmetric values.« less

  20. Design Construction and Operation of a Supercritical Carbon Dioxide (sCO 2) Loop for Investigation of Dry Cooling and Natural Circulation Potential for Use in Advanced Small Modular Reactors Utilizing sCO 2 Power Conversion Cycles.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Bobby D.; Rodriguez, Salvador B.; Carlson, Matthew David

    This report outlines the work completed for a Laboratory Directed Research and Development project at Sandia National Laboratories from October 2012 through September 2015. An experimental supercritical carbon dioxide (sCO 2 ) loop was designed, built, and o perated. The experimental work demonstrated that sCO 2 can be uti lized as the working fluid in an air - cooled, natural circulation configuration to transfer heat from a source to the ultimate heat sink, which is the surrounding ambient environment in most ca ses. The loop was also operated in an induction - heated, water - cooled configuration that allows formore » measurements of physical parameters that are difficult to isolate in the air - cooled configuration. Analysis included the development of two computational flu id dynamics models. Future work is anticipated to answer questions that were not covered in this project.« less

  1. The free-energy cost of interaction between DNA loops.

    PubMed

    Huang, Lifang; Liu, Peijiang; Yuan, Zhanjiang; Zhou, Tianshou; Yu, Jianshe

    2017-10-03

    From the viewpoint of thermodynamics, the formation of DNA loops and the interaction between them, which are all non-equilibrium processes, result in the change of free energy, affecting gene expression and further cell-to-cell variability as observed experimentally. However, how these processes dissipate free energy remains largely unclear. Here, by analyzing a mechanic model that maps three fundamental topologies of two interacting DNA loops into a 4-state model of gene transcription, we first show that a longer DNA loop needs more mean free energy consumption. Then, independent of the type of interacting two DNA loops (nested, side-by-side or alternating), the promotion between them always consumes less mean free energy whereas the suppression dissipates more mean free energy. More interestingly, we find that in contrast to the mechanism of direct looping between promoter and enhancer, the facilitated-tracking mechanism dissipates less mean free energy but enhances the mean mRNA expression, justifying the facilitated-tracking hypothesis, a long-standing debate in biology. Based on minimal energy principle, we thus speculate that organisms would utilize the mechanisms of loop-loop promotion and facilitated tracking to survive in complex environments. Our studies provide insights into the understanding of gene expression regulation mechanism from the view of energy consumption.

  2. Numerical investigation of the relationship between magnetic stiffness and minor loop size in the HTS levitation system

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Li, Chengshan

    2017-10-01

    The effect of minor loop size on the magnetic stiffness has not been paid attention to by most researchers in experimental and theoretical studies about the high temperature superconductor (HTS) magnetic levitation system. In this work, we numerically investigate the average magnetic stiffness obtained by the minor loop traverses Δz (or Δx) varying from 0.1 mm to 2 mm in zero field cooling and field cooling regimes, respectively. The approximate values of the magnetic stiffness with zero traverse are obtained using the method of linear extrapolation. Compared with the average magnetic stiffness gained by any minor loop traverse, these approximate values are Not always close to the average magnetic stiffness produced by the smallest size of minor loops. The relative deviation ranges of average magnetic stiffness gained by the usually minor loop traverse (1 or 2 mm) are presented by the ratios of approximate values to average stiffness for different moving processes and two typical cooling conditions. The results show that most of average magnetic stiffness are remarkably influenced by the sizes of minor loop, which indicates that the magnetic stiffness obtained by a single minor loop traverse Δ z or Δ x, for example, 1 or 2 mm, can be generally caused a large deviation.

  3. The Trade-Off Mechanism in Mammalian Circadian Clock Model with Two Time Delays

    NASA Astrophysics Data System (ADS)

    Yan, Jie; Kang, Xiaxia; Yang, Ling

    Circadian clock is an autonomous oscillator which orchestrates the daily rhythms of physiology and behaviors. This study is devoted to explore how a positive feedback loop affects the dynamics of mammalian circadian clock. We simplify an experimentally validated mathematical model in our previous work, to a nonlinear differential equation with two time delays. This simplified mathematical model incorporates the pacemaker of mammalian circadian clock, a negative primary feedback loop, and a critical positive auxiliary feedback loop, Rev-erbα/Cry1 loop. We perform analytical studies of the system. Delay-dependent conditions for the asymptotic stability of the nontrivial positive steady state of the model are investigated. We also prove the existence of Hopf bifurcation, which leads to self-sustained oscillation of mammalian circadian clock. Our theoretical analyses show that the oscillatory regime is reduced upon the participation of the delayed positive auxiliary loop. However, further simulations reveal that the auxiliary loop can enable the circadian clock gain widely adjustable amplitudes and robust period. Thus, the positive auxiliary feedback loop may provide a trade-off mechanism, to use the small loss in the robustness of oscillation in exchange for adaptable flexibility in mammalian circadian clock. The results obtained from the model may gain new insights into the dynamics of biological oscillators with interlocked feedback loops.

  4. Atomistic study of the hardening of ferritic iron by Ni-Cr decorated dislocation loops

    NASA Astrophysics Data System (ADS)

    Bonny, G.; Bakaev, A.; Terentyev, D.; Zhurkin, E.; Posselt, M.

    2018-01-01

    The exact nature of the radiation defects causing hardening in reactor structural steels consists of several components that are not yet clearly determined. While generally, the hardening is attributed to dislocation loops, voids and secondary phases (radiation-induced precipitates), recent advanced experimental and computational studies point to the importance of solute-rich clusters (SRCs). Depending on the exact composition of the steel, SRCs may contain Mn, Ni and Cu (e.g. in reactor pressure vessel steels) or Ni, Cr, Si, Mn (e.g. in high-chromium steels for generation IV and fusion applications). One of the hypotheses currently implied to explain their formation is the process of radiation-induced diffusion and segregation of these elements to small dislocation loops (heterogeneous nucleation), so that the distinction between SRCs and loops becomes somewhat blurred. In this work, we perform an atomistic study to investigate the enrichment of loops by Ni and Cr solutes and their interaction with an edge dislocation. The dislocation loops decorated with Ni and Cr solutes are obtained by Monte Carlo simulations, while the effect of solute segregation on the loop's strength and interaction mechanism is then addressed by large scale molecular dynamics simulations. The synergy of the Cr-Ni interaction and their competition to occupy positions in the dislocation loop core are specifically clarified.

  5. Closed-Loop and Activity-Guided Optogenetic Control

    PubMed Central

    Grosenick, Logan; Marshel, James H.; Deisseroth, Karl

    2016-01-01

    Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals. PMID:25856490

  6. Hopf-link topological nodal-loop semimetals

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Xiong, Feng; Wan, Xiangang; An, Jin

    2018-04-01

    We construct a generic two-band model which can describe topological semimetals with multiple closed nodal loops. All the existing multi-nodal-loop semimetals, including the nodal-net, nodal-chain, and Hopf-link states, can be examined within the same framework. Based on a two-nodal-loop model, the corresponding drumhead surface states for these topologically different bulk states are studied and compared with each other. The connection of our model with Hopf insulators is also discussed. Furthermore, to identify experimentally these topologically different semimetal states, especially to distinguish the Hopf-link from unlinked ones, we also investigate their Landau levels. It is found that the Hopf-link state can be characterized by the existence of a quadruply degenerate zero-energy Landau band, regardless of the direction of the magnetic field.

  7. Stochastic gravitational wave background from light cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePies, Matthew R.; Hogan, Craig J.

    2007-06-15

    Spectra of the stochastic gravitational wave backgrounds from cosmic strings are calculated and compared with present and future experimental limits. Motivated by theoretical expectations of light cosmic strings in superstring cosmology, improvements in experimental sensitivity, and recent demonstrations of large, stable loop formation from a primordial network, this study explores a new range of string parameters with masses lighter than previously investigated. A standard 'one-scale' model for string loop formation is assumed. Background spectra are calculated numerically for dimensionless string tensions G{mu}/c{sup 2} between 10{sup -7} and 10{sup -18}, and initial loop sizes as a fraction of the Hubble radiusmore » {alpha} from 0.1 to 10{sup -6}. The spectra show a low frequency power-law tail, a broad spectral peak due to loops decaying at the present epoch (including frequencies higher than their fundamental mode, and radiation associated with cusps), and a flat (constant energy density) spectrum at high frequencies due to radiation from loops that decayed during the radiation-dominated era. The string spectrum is distinctive and unlike any other known source. The peak of the spectrum for light strings appears at high frequencies, significantly affecting predicted signals. The spectra of the cosmic string backgrounds are compared with current millisecond pulsar limits and Laser Interferometer Space Antenna (LISA) sensitivity curves. For models with large stable loops ({alpha}=0.1), current pulsar-timing limits exclude G{mu}/c{sup 2}>10{sup -9}, a much tighter limit on string tension than achievable with other techniques, and within the range of current models based on brane inflation. LISA may detect a background from strings as light as G{mu}/c{sup 2}{approx_equal}10{sup -16}, corresponding to field theory strings formed at roughly 10{sup 11} GeV.« less

  8. LM-research opportunities and activities at Beer-Sheva

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesin, S.

    1996-06-01

    Energy conversion concepts based on liquid metal (LM) magnetohydrodynamic (MHD) technology was intensively investigated at the Center for MHD Studies (CMHDS), in the Ben-Gurion University of the Negev in Israel. LMMHD energy conversion systems operate in a closed cycle as follows: heat intended for conversion into electricity is added to a liquid metal contained in a closed loop of pipes. The liquid metal is mixed with vapor or gas introduced from outside so that a two-phase mixture is formed. The gaseous phase performs a thermodynamic cycle, converting a certain amount of heat into mechanical energy of the liquid metal. Thismore » energy is converted into electrical power as the metal flows across a magnetic field in the MHD channel. Those systems where the expanding thermodynamic fluid performs work against gravitational forces (natural circulation loops) and using heavy liquid metals are named ETGAR systems. A number of different heavy-metal facilities have been specially constructed and tested with fluid combinations of mercury and steam, mercury and nitrogen, mercury and freon, lead-bismuth and steam, and lead and steam. Since the experimental investigation of such flows is a very difficult task and all the known measurment methods are incomplete and not fully reliable, a variety of experimental approaches have been developed. In most experiments, instantaneous pressure distribution along the height of the upcomer were measured and the average void fraction was calculated numerically using the one-dimensional equation for the two-phase flow. The research carried out at the CMHDS led to significant improvements in the characterization of the two-phase phenomena expected in the riser of ETGAR systems. One of the most important outcomes is the development of a new empirical correlation which enables the reliable prediction of the velocity ratio between the LM and the steam (slip), the friction factor, as well as of the steam void fraction distribution along the riser.« less

  9. Exploring the Dynamics of Propeller Loops in Human Telomeric DNA Quadruplexes Using Atomistic Simulations.

    PubMed

    Islam, Barira; Stadlbauer, Petr; Gil-Ley, Alejandro; Pérez-Hernández, Guillermo; Haider, Shozeb; Neidle, Stephen; Bussi, Giovanni; Banas, Pavel; Otyepka, Michal; Sponer, Jiri

    2017-06-13

    We have carried out a series of extended unbiased molecular dynamics (MD) simulations (up to 10 μs long, ∼162 μs in total) complemented by replica-exchange with the collective variable tempering (RECT) approach for several human telomeric DNA G-quadruplex (GQ) topologies with TTA propeller loops. We used different AMBER DNA force-field variants and also processed simulations by Markov State Model (MSM) analysis. The slow conformational transitions in the propeller loops took place on a scale of a few μs, emphasizing the need for long simulations in studies of GQ dynamics. The propeller loops sampled similar ensembles for all GQ topologies and for all force-field dihedral-potential variants. The outcomes of standard and RECT simulations were consistent and captured similar spectrum of loop conformations. However, the most common crystallographic loop conformation was very unstable with all force-field versions. Although the loss of canonical γ-trans state of the first propeller loop nucleotide could be related to the indispensable bsc0 α/γ dihedral potential, even supporting this particular dihedral by a bias was insufficient to populate the experimentally dominant loop conformation. In conclusion, while our simulations were capable of providing a reasonable albeit not converged sampling of the TTA propeller loop conformational space, the force-field description still remained far from satisfactory.

  10. Exploring the Dynamics of Propeller Loops in Human Telomeric DNA Quadruplexes Using Atomistic Simulations

    PubMed Central

    2017-01-01

    We have carried out a series of extended unbiased molecular dynamics (MD) simulations (up to 10 μs long, ∼162 μs in total) complemented by replica-exchange with the collective variable tempering (RECT) approach for several human telomeric DNA G-quadruplex (GQ) topologies with TTA propeller loops. We used different AMBER DNA force-field variants and also processed simulations by Markov State Model (MSM) analysis. The slow conformational transitions in the propeller loops took place on a scale of a few μs, emphasizing the need for long simulations in studies of GQ dynamics. The propeller loops sampled similar ensembles for all GQ topologies and for all force-field dihedral-potential variants. The outcomes of standard and RECT simulations were consistent and captured similar spectrum of loop conformations. However, the most common crystallographic loop conformation was very unstable with all force-field versions. Although the loss of canonical γ-trans state of the first propeller loop nucleotide could be related to the indispensable bsc0 α/γ dihedral potential, even supporting this particular dihedral by a bias was insufficient to populate the experimentally dominant loop conformation. In conclusion, while our simulations were capable of providing a reasonable albeit not converged sampling of the TTA propeller loop conformational space, the force-field description still remained far from satisfactory. PMID:28475322

  11. Coupling between Catalytic Loop Motions and Enzyme Global Dynamics

    PubMed Central

    Kurkcuoglu, Zeynep; Bakan, Ahmet; Kocaman, Duygu; Bahar, Ivet; Doruker, Pemra

    2012-01-01

    Catalytic loop motions facilitate substrate recognition and binding in many enzymes. While these motions appear to be highly flexible, their functional significance suggests that structure-encoded preferences may play a role in selecting particular mechanisms of motions. We performed an extensive study on a set of enzymes to assess whether the collective/global dynamics, as predicted by elastic network models (ENMs), facilitates or even defines the local motions undergone by functional loops. Our dataset includes a total of 117 crystal structures for ten enzymes of different sizes and oligomerization states. Each enzyme contains a specific functional/catalytic loop (10–21 residues long) that closes over the active site during catalysis. Principal component analysis (PCA) of the available crystal structures (including apo and ligand-bound forms) for each enzyme revealed the dominant conformational changes taking place in these loops upon substrate binding. These experimentally observed loop reconfigurations are shown to be predominantly driven by energetically favored modes of motion intrinsically accessible to the enzyme in the absence of its substrate. The analysis suggests that robust global modes cooperatively defined by the overall enzyme architecture also entail local components that assist in suitable opening/closure of the catalytic loop over the active site. PMID:23028297

  12. Capillary Limit in a Loop Heat Pipe with Dual Evaporators

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Birur, Gajanana; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper describes a study on the capillary limit of a loop heat pipe (LHP) with two evaporators and two condensers. Both theoretical analysis and experimental investigation are conducted. Tests include heat load to one evaporator only, even heat loads to both evaporators and uneven heat load to both evaporators. Results show that after the capillary limit is exceeded, vapor will penetrate through the wick of the weaker evaporator and the compensation chamber (CC) of that evaporator will control the loop operating temperature regardless of which CC has been in control prior to the event Because the evaporator can tolerate vapor bubbles, the loop may continue to work and reach a new steady state at a higher operating temperature. The loop may even function with a modest increase in the heat load past the capillary limit With a heat load to only one evaporator, the capillary limit can be identified by rapid increases in the operating temperature and in the temperature difference between the evaporator and the CC. However, it is more difficult to tell when the capillary limit is exceeded if heat loads are applied to both evaporators. In all cases, the loop can recover by reducing the heat load to the loop.

  13. La-CTP: Loop-Aware Routing for Energy-Harvesting Wireless Sensor Networks

    PubMed Central

    Sun, Guodong; Shang, Xinna; Zuo, Yan

    2018-01-01

    In emerging energy-harvesting wireless sensor networks (EH-WSN), the sensor nodes can harvest environmental energy to drive their operation, releasing the user’s burden in terms of frequent battery replacement, and even enabling perpetual sensing systems. In EH-WSN applications, usually, the node in energy-harvesting or recharging state has to stop working until it completes the energy replenishment. However, such temporary departures of recharging nodes severely impact the packet routing, and one immediate result is the routing loop problem. Controlling loops in connectivity-intermittent EH-WSN in an efficient way is a big challenge in practice, and so far, users still lack of effective and practicable routing protocols with loop handling. Based on the Collection Tree Protocol (CTP) widely used in traditional wireless sensor networks, this paper proposes a loop-aware routing protocol for real-world EH-WSNs, called La-CTP, which involves a new parent updating metric and a proactive, adaptive beaconing scheme to effectively suppress the occurrence of loops and unlock unavoidable loops, respectively. We constructed a 100-node testbed to evaluate La-CTP, and the experimental results showed its efficacy and efficiency. PMID:29393876

  14. Molecular dynamics simulation of hepatitis C virus IRES IIId domain: structural behavior, electrostatic and energetic analysis.

    PubMed

    Golebiowski, Jérôme; Antonczak, Serge; Di-Giorgio, Audrey; Condom, Roger; Cabrol-Bass, Daniel

    2004-02-01

    The dynamic behavior of the HCV IRES IIId domain is analyzed by means of a 2.6-ns molecular dynamics simulation, starting from an NMR structure. The simulation is carried out in explicit water with Na+ counterions, and particle-mesh Ewald summation is used for the electrostatic interactions. In this work, we analyze selected patterns of the helix that are crucial for IRES activity and that could be considered as targets for the intervention of inhibitors, such as the hexanucleotide terminal loop (more particularly its three consecutive guanines) and the loop-E motif. The simulation has allowed us to analyze the dynamics of the loop substructure and has revealed a behavior among the guanine bases that might explain the different role of the third guanine of the GGG triplet upon molecular recognition. The accessibility of the loop-E motif and the loop major and minor groove is also examined, as well as the effect of Na+ or Mg2+ counterion within the simulation. The electrostatic analysis reveals several ion pockets, not discussed in the experimental structure. The positions of these ions are useful for locating specific electrostatic recognition sites for potential inhibitor binding.

  15. Virtual grasping: closed-loop force control using electrotactile feedback.

    PubMed

    Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario

    2014-01-01

    Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  16. Numerical Analysis of a Flexible Dual Loop Coil and its Experimental Validation for pre-Clinical Magnetic Resonance Imaging of Rodents at 7 T

    NASA Astrophysics Data System (ADS)

    Solis-Najera, S.; Vazquez, F.; Hernandez, R.; Marrufo, O.; Rodriguez, A. O.

    2016-12-01

    A surface radio frequency coil was developed for small animal image acquisition in a pre-clinical magnetic resonance imaging system at 7 T. A flexible coil composed of two circular loops was developed to closely cover the object to be imaged. Electromagnetic numerical simulations were performed to evaluate its performance before the coil construction. An analytical expression of the mutual inductance for the two circular loops as a function of the separation between them was derived and used to validate the simulations. The RF coil is composed of two circular loops with a 5 cm external diameter and was tuned to 300 MHz and 50 Ohms matched. The angle between the loops was varied and the Q factor was obtained from the S11 simulations for each angle. B1 homogeneity was also evaluated using the electromagnetic simulations. The coil prototype was designed and built considering the numerical simulation results. To show the feasibility of the coil and its performance, saline-solution phantom images were acquired. A correlation of the simulations and imaging experimental results was conducted showing a concordance of 0.88 for the B1 field. The best coil performance was obtained at the 90° aperture angle. A more realistic phantom was also built using a formaldehyde-fixed rat phantom for ex vivo imaging experiments. All images showed a good image quality revealing clearly defined anatomical details of an ex vivo rat.

  17. Phonological loop affects children's interpretations of explicit but not ambiguous questions: Research on links between working memory and referent assignment.

    PubMed

    Meng, Xianwei; Murakami, Taro; Hashiya, Kazuhide

    2017-01-01

    Understanding the referent of other's utterance by referring the contextual information helps in smooth communication. Although this pragmatic referential process can be observed even in infants, its underlying mechanism and relative abilities remain unclear. This study aimed to comprehend the background of the referential process by investigating whether the phonological loop affected the referent assignment. A total of 76 children (43 girls) aged 3-5 years participated in a reference assignment task in which an experimenter asked them to answer explicit (e.g., "What color is this?") and ambiguous (e.g., "What about this?") questions about colorful objects. The phonological loop capacity was measured by using the forward digit span task in which children were required to repeat the numbers as an experimenter uttered them. The results showed that the scores of the forward digit span task positively predicted correct response to explicit questions and part of the ambiguous questions. That is, the phonological loop capacity did not have effects on referent assignment in response to ambiguous questions that were asked after a topic shift of the explicit questions and thus required a backward reference to the preceding explicit questions to detect the intent of the current ambiguous questions. These results suggest that although the phonological loop capacity could overtly enhance the storage of verbal information, it does not seem to directly contribute to the pragmatic referential process, which might require further social cognitive processes.

  18. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian

    The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. Themore » following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on plant parameters and the pump electrical signatures. Additionally, the reactor simulation is being used to generate normal operation data and data with instrumentation faults and process anomalies. A frequency controller was interfaced with the motor power supply in order to vary the electrical supply frequency. The experimental flow control loop was used to generate operational data under varying motor performance characteristics. Coolant leakage events were simulated by varying the bypass loop flow rate. The accuracy of motor power calculation was improved by incorporating the power factor, computed from motor current and voltage in each phase of the induction motor.- A variety of experimental runs were made for steady-state and transient pump operating conditions. Process, vibration, and electrical signatures were measured using a submersible pump with variable supply frequency. High correlation was seen between motor current and pump discharge pressure signal; similar high correlation was exhibited between pump motor power and flow rate. Wide-band analysis indicated high coherence (in the frequency domain) between motor current and vibration signals. - Wide-band operational data from a PWR were acquired from AMS Corporation and used to develop time-series models, and to estimate signal spectrum and sensor time constant. All the data were from different pressure transmitters in the system, including primary and secondary loops. These signals were pre-processed using the wavelet transform for filtering both low-frequency and high-frequency bands. This technique of signal pre-processing provides minimum distortion of the data, and results in a more optimal estimation of time constants of plant sensors using time-series modeling techniques.« less

  19. Design and Testing for a New Thermosyphon Irradiation Vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felde, David K.; Carbajo, Juan J.; McDuffee, Joel Lee

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) requires most materials and all fuel experiments to be placed in a pressure containment vessel to ensure that internal contaminants such as fission products cannot be released into the primary coolant. It also requires that all experiments be capable of withstanding various accident conditions (e.g., loss of coolant) without generating vapor bubbles on the surface of the experiment in the primary coolant. These requirements are intended to artificially increase experiment temperatures by introducing a barrier between the experimental materials and the HFIR coolant, and by reducing heatmore » loads to the HFIR primary coolant, thus ensuring that no boiling can occur. A proposed design for materials irradiation would remove these limitations by providing the required primary containment with an internal cooling flow. This would allow for experiments to be irradiated without concern for coolant contamination (e.g., from cladding failure of advanced fuel pins) or for specimen heat load. This report describes a new materials irradiation experiment design that uses a thermosyphon cooling system to allow experimental materials direct access to a liquid coolant. The new design also increases the range of conditions that can be tested in HFIR. This design will provide a unique capability to validate the performance of current and advanced fuels and materials. Because of limited supporting data for this kind of irradiation vehicle, a test program was initiated to obtain operating data that can be used to (1) qualify the vehicle for operation in HFIR and (2) validate computer models used to perform design- and safety-basis calculations. This report also describes the test facility and experimental data, and it provides a comparison of the experimental data to computer simulations. A total of 51 tests have been completed: four tests with pure steam, 12 tests with argon, and 35 tests with helium. A total of 10 tests were performed at subatmospheric pressure, and four of these were performed with pure steam. One test was conducted at a high power of 92.7 kW, six tests were HFIR startups, and two tests were HFIR loss of offsite power (LOOP). Pressures up to 10 MPa, vapor temperatures up to 583 K (310°C), and heater temperatures above 600 K (327°C) have been reached in these tests. Two computer programs, RELAP5-3D and TRACE, have been used to simulate the tests. The TRACE code has shown good agreement with the test data and has been used to model a variety of tests. This experimental facility has been very useful in demonstrating the viability of this new type of irradiation facility.« less

  20. NASA Lewis' Telescience Support Center Supports Orbiting Microgravity Experiments

    NASA Technical Reports Server (NTRS)

    Hawersaat, Bob W.

    1998-01-01

    The Telescience Support Center (TSC) at the NASA Lewis Research Center was developed to enable Lewis-based science teams and principal investigators to monitor and control experimental and operational payloads onboard the International Space Station. The TSC is a remote operations hub that can interface with other remote facilities, such as universities and industrial laboratories. As a pathfinder for International Space Station telescience operations, the TSC has incrementally developed an operational capability by supporting space shuttle missions. The TSC has evolved into an environment where experimenters and scientists can control and monitor the health and status of their experiments in near real time. Remote operations (or telescience) allow local scientists and their experiment teams to minimize their travel and maintain a local complement of expertise for hardware and software troubleshooting and data analysis. The TSC was designed, developed, and is operated by Lewis' Engineering and Technical Services Directorate and its support contractors, Analex Corporation and White's Information System, Inc. It is managed by Lewis' Microgravity Science Division. The TSC provides operational support in conjunction with the NASA Marshall Space Flight Center and NASA Johnson Space Center. It enables its customers to command, receive, and view telemetry; monitor the science video from their on-orbit experiments; and communicate over mission-support voice loops. Data can be received and routed to experimenter-supplied ground support equipment and/or to the TSC data system for display. Video teleconferencing capability and other video sources, such as NASA TV, are also available. The TSC has a full complement of standard services to aid experimenters in telemetry operations.

  1. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya

    2008-01-01

    This paper presents the development of the Thermal Loop experiment under NASA's New Millennium Program Space Technology 8 (ST8) Project. The Thermal Loop experiment was originally planned for validating in space an advanced heat transport system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers. Details of the thermal loop concept, technical advances and benefits, Level 1 requirements and the technology validation approach are described. An MLHP breadboard has been built and tested in the laboratory and thermal vacuum environments, and has demonstrated excellent performance that met or exceeded the design requirements. The MLHP retains all features of state-of-the-art loop heat pipes and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. In addition, an analytical model has been developed to simulate the steady state and transient operation of the MHLP, and the model predictions agreed very well with experimental results. A protoflight MLHP has been built and is being tested in a thermal vacuum chamber to validate its performance and technical readiness for a flight experiment.

  2. Smart monitoring system based on adaptive current control for superconducting cable test.

    PubMed

    Arpaia, Pasquale; Ballarino, Amalia; Daponte, Vincenzo; Montenero, Giuseppe; Svelto, Cesare

    2014-12-01

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, "Performance improvement of a measurement station for superconducting cable test," Rev. Sci. Instrum. 83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  3. Effect of thermal exposure in helium on mechanical properties and microstructure of 316L and P91

    NASA Astrophysics Data System (ADS)

    Kunzova, Klara; Berka, Jan; Siegl, Jan; Hausild, Petr

    2016-04-01

    In this paper, the effects of high temperature exposure in air as well as in impure He on mechanical properties of 316L and P91 steels were investigated. The experimental programme was part of material design of new experimental facility - high temperature helium loop. Some of the specimens were exposed in air at 750 °C for up to 1000 h. Another set of specimens were exposed in impure helium containing 1 ppmv CO2, 2 ppmv O2, 35 ppmv CH4, 250 ppmv CO and 400 ppmv H2 at 750 °C for up to 1000 h. Metalographical analysis, tensile tests, fracture toughness and hardness tests of exposed and non-exposed specimens were carried out. After the exposure both in air and He, the ultimate tensile strength of P91 decreased significantly more than that of 316L. After the exposure in He, the fracture toughness of 316L was reduced to 60% while fracture toughness of P91 showed no significant changes. The hardness of P91 decreased with exposure time in air. The measurement of the hardness of 316L was very scattered the most probably due to the heterogeneities in microstructure, the trend was not possible to evaluate.

  4. Numerical simulation of a full-loop circulating fluidized bed under different operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yupeng; Musser, Jordan M.; Li, Tingwen

    Both experimental and computational studies of the fluidization of high-density polyethylene (HDPE) particles in a small-scale full-loop circulating fluidized bed are conducted. Experimental measurements of pressure drop are taken at different locations along the bed. The solids circulation rate is measured with an advanced Particle Image Velocimetry (PIV) technique. The bed height of the quasi-static region in the standpipe is also measured. Comparative numerical simulations are performed with a Computational Fluid Dynamics solver utilizing a Discrete Element Method (CFD-DEM). This paper reports a detailed and direct comparison between CFD-DEM results and experimental data for realistic gas-solid fluidization in a full-loopmore » circulating fluidized bed system. The comparison reveals good agreement with respect to system component pressure drop and inventory height in the standpipe. In addition, the effect of different drag laws applied within the CFD simulation is examined and compared with experimental results.« less

  5. Conceptual design of a closed loop nutrient solution delivery system for CELSS implementation in a micro-gravity environment

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Oleson, Mel W.; Cullingford, Hatice S.

    1990-01-01

    Described here are the results of a study to develop a conceptual design for an experimental closed loop fluid handling system capable of monitoring, controlling, and supplying nutrient solution to higher plants. The Plant Feeder Experiment (PFE) is designed to be flight tested in a microgravity environment. When flown, the PFX will provide information on both the generic problems of microgravity fluid handling and the specific problems associated with the delivery of the nutrient solution in a microgravity environment. The experimental hardware is designed to fit into two middeck lockers on the Space Shuttle, and incorporates several components that have previously been flight tested.

  6. Treatment of low strains and long hold times in high temperature metal fatigue by strainrange partitioning

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Zab, R.

    1977-01-01

    A procedure for treating creep-fatigue for low strainranges and long hold times is outlined. A semi-experimental approach, wherein several cycles of the imposed loading is actually applied to a specimen in order to determine the stable hysteresis loop, can be very useful in the analysis. Because such tests require only a small fraction of the total failure time, they are not inherently prohibitive if experimental equipment is available. The need for accurate constitutive equations is bypassed because the material itself acts to translate the imposed loading into the responsive hysteresis loops. When strainrange partitioning has been applied in such cases very good results have been obtained.

  7. The 2 Degrees of Freedom facility in Firenze for the study of weak forces

    NASA Astrophysics Data System (ADS)

    Marconi, L.; Stanga, R.; Lorenzini, M.; Grimani, C.; Bassan, M.; Pucacco, G.; Di Fiore, L.; De Rosa, R.; Garufi, F.; Milano, L.

    2010-05-01

    The LISA test-mass (TM) is sensitive to weak forces along all 6 Degrees of Freedom (DoFs). Extensi ve ground test ing is required in order to evaluate the influence of cross-talks of read-outs and actuators operating on different DoFs. To best represent the flight conditions, we developed in Firenze a facility with 2 soft DoFs. Using this facility we measure the forces and stiffnesses acting simultaneously along the 2 soft DoFs, and, more specifically, we will be able to de b ug residual couplings between the TM and the capacitive position sensor that reads the TM position, and to measure actuation cross talks with closed feedback loop. The facility is now ready, and here we report on the co mmi ssioning test s, and on the first measurements.

  8. Neutron Electric Dipole Moment in the Standard Model: Complete Three-Loop Calculation of the Valence Quark Contributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czarnecki, A.; Krause, B.

    1997-06-01

    We present a complete three-loop calculation of the electric dipole moment of the u and d quarks in the standard model. For the d quark, more relevant for the experimentally important neutron electric dipole moment, we find cancellations which lead to an order of magnitude suppression compared with previous estimates. {copyright} {ital 1997} {ital The American Physical Society}

  9. Structural response synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozisik, H.; Keltie, R.F.

    The open loop control technique of predicting a conditioned input signal based on a specified output response for a second order system has been analyzed both analytically and numerically to gain a firm understanding of the method. Differences between this method of control and digital closed loop control using pole cancellation were investigated as a follow up to previous experimental work. Application of the technique to diamond turning using a fast tool is also discussed.

  10. Influence of cross-phase modulation in SPM-based nonlinear optical loop mirror

    NASA Astrophysics Data System (ADS)

    Pitois, Stéphane

    2005-09-01

    We study the role of cross-phase modulation (CPM) occurring between the two counter-propagating parts of a signal wave in a standard SPM-based nonlinear optical fiber loop mirror (NOLM). For pulse train with high duty-cycle, we experimentally observe the influence of cross-phase modulation on NOLM transmittivity. Finally, we propose a solution based on properly designed dispersion imbalanced NOLM to overcome undesirable CPM effects.

  11. Template-based modeling and ab initio refinement of protein oligomer structures using GALAXY in CAPRI round 30.

    PubMed

    Lee, Hasup; Baek, Minkyung; Lee, Gyu Rie; Park, Sangwoo; Seok, Chaok

    2017-03-01

    Many proteins function as homo- or hetero-oligomers; therefore, attempts to understand and regulate protein functions require knowledge of protein oligomer structures. The number of available experimental protein structures is increasing, and oligomer structures can be predicted using the experimental structures of related proteins as templates. However, template-based models may have errors due to sequence differences between the target and template proteins, which can lead to functional differences. Such structural differences may be predicted by loop modeling of local regions or refinement of the overall structure. In CAPRI (Critical Assessment of PRotein Interactions) round 30, we used recently developed features of the GALAXY protein modeling package, including template-based structure prediction, loop modeling, model refinement, and protein-protein docking to predict protein complex structures from amino acid sequences. Out of the 25 CAPRI targets, medium and acceptable quality models were obtained for 14 and 1 target(s), respectively, for which proper oligomer or monomer templates could be detected. Symmetric interface loop modeling on oligomer model structures successfully improved model quality, while loop modeling on monomer model structures failed. Overall refinement of the predicted oligomer structures consistently improved the model quality, in particular in interface contacts. Proteins 2017; 85:399-407. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Kissing loop interaction in adenine riboswitch: insights from umbrella sampling simulations.

    PubMed

    Di Palma, Francesco; Bottaro, Sandro; Bussi, Giovanni

    2015-01-01

    Riboswitches are cis-acting regulatory RNA elements prevalently located in the leader sequences of bacterial mRNA. An adenine sensing riboswitch cis-regulates adeninosine deaminase gene (add) in Vibrio vulnificus. The structural mechanism regulating its conformational changes upon ligand binding mostly remains to be elucidated. In this open framework it has been suggested that the ligand stabilizes the interaction of the distal "kissing loop" complex. Using accurate full-atom molecular dynamics with explicit solvent in combination with enhanced sampling techniques and advanced analysis methods it could be possible to provide a more detailed perspective on the formation of these tertiary contacts. In this work, we used umbrella sampling simulations to study the thermodynamics of the kissing loop complex in the presence and in the absence of the cognate ligand. We enforced the breaking/formation of the loop-loop interaction restraining the distance between the two loops. We also assessed the convergence of the results by using two alternative initialization protocols. A structural analysis was performed using a novel approach to analyze base contacts. Contacts between the two loops were progressively lost when larger inter-loop distances were enforced. Inter-loop Watson-Crick contacts survived at larger separation when compared with non-canonical pairing and stacking interactions. Intra-loop stacking contacts remained formed upon loop undocking. Our simulations qualitatively indicated that the ligand could stabilize the kissing loop complex. We also compared with previously published simulation studies. Kissing complex stabilization given by the ligand was compatible with available experimental data. However, the dependence of its value on the initialization protocol of the umbrella sampling simulations posed some questions on the quantitative interpretation of the results and called for better converged enhanced sampling simulations.

  13. Environmental Assessment for Renovation and Small Addition for AGE Facility MacDill AFB, Florida

    DTIC Science & Technology

    2005-05-01

    one lift station, all of the sanitary sewer lines have, in essence , at least one check valve to stop the inflow of floodwater to the WWTP. The...Force Base Installation Restoration Program 7621 Hillsborough Loop Dr. MacDill AFB, FL 33621-5207 Jasmine Raffington FL Coastal Management

  14. 78 FR 38078 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... SFP Purification Loop and recirculation and purification of the RWST water using the BARS is not... revise the minimum volume and low level setpoint on the Refueling Water Storage Tank. Because the... proposed change would revise Technical Specification 3.5.4, ``Refueling Water Storage Tank (RWST)'' such...

  15. 33 CFR 154.2104 - Pigging system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Pigging system. 154.2104 Section... Facilities-Vcs Design and Installation § 154.2104 Pigging system. (a) If a pigging system is used to clear... system (VCS), the pigging system must be designed with the following safety features: (1) A bypass loop...

  16. A dynamic motion simulator for future European docking systems

    NASA Technical Reports Server (NTRS)

    Brondino, G.; Marchal, PH.; Grimbert, D.; Noirault, P.

    1990-01-01

    Europe's first confrontation with docking in space will require extensive testing to verify design and performance and to qualify hardware. For this purpose, a Docking Dynamics Test Facility (DDTF) was developed. It allows reproduction on the ground of the same impact loads and relative motion dynamics which would occur in space during docking. It uses a 9 degree of freedom, servo-motion system, controlled by a real time computer, which simulates the docking spacecraft in a zero-g environment. The test technique involves and active loop based on six axis force and torque detection, a mathematical simulation of individual spacecraft dynamics, and a 9 degree of freedom servomotion of which 3 DOFs allow extension of the kinematic range to 5 m. The configuration was checked out by closed loop tests involving spacecraft control models and real sensor hardware. The test facility at present has an extensive configuration that allows evaluation of both proximity control and docking systems. It provides a versatile tool to verify system design, hardware items and performance capabilities in the ongoing HERMES and COLUMBUS programs. The test system is described and its capabilities are summarized.

  17. Multi-axis transient vibration testing of space objects: Test philosophy, test facility, and control strategy

    NASA Technical Reports Server (NTRS)

    Lachenmayr, Georg

    1992-01-01

    IABG has been using various servohydraulic test facilities for many years for the reproduction of service loads and environmental loads on all kinds of test objects. For more than 15 years, a multi-axis vibration test facility has been under service, originally designed for earthquake simulation but being upgraded to the demands of space testing. First tests with the DFS/STM showed good reproduction accuracy and demonstrated the feasibility of transient vibration testing of space objects on a multi-axis hydraulic shaker. An approach to structural qualification is possible by using this test philosophy. It will be outlined and its obvious advantages over the state-of-the-art single-axis test will be demonstrated by example results. The new test technique has some special requirements to the test facility exceeding those of earthquake testing. Most important is the high reproduction accuracy demanded for a sophisticated control system. The state-of-the-art approach of analog closed-loop control circuits for each actuator combined with a static decoupling network and an off-line iterative waveform control is not able to meet all the demands. Therefore, the future over-all control system is implemented as hierarchical full digital closed-loop system on a highly parallel transputer network. The innermost layer is the digital actuator controller, the second one is the MDOF-control of the table movement. The outermost layer would be the off-line iterative waveform control, which is dedicated only to deal with the interaction of test table and test object or non-linear effects. The outline of the system will be presented.

  18. Defect-induced change of temperature-dependent elastic constants in BCC iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, N.; Setyawan, W.; Zhang, S. H.

    2017-07-01

    The effects of radiation-induced defects (randomly distributed vacancies, voids, and interstitial dislocation loops) on temperature-dependent elastic constants, C11, C12, and C44 in BCC iron, are studied with molecular dynamics method. The elastic constants are found to decrease with increasing temperatures for all cases containing different defects. The presence of vacancies, voids, or interstitial loops further decreases the elastic constants. For a given number of point defects, the randomly distributed vacancies show the strongest effect compared to voids or interstitial loops. All these results are expected to provide useful information to combine with experimental results for further understanding of radiation damage.

  19. Experimental Verification of AUV (Autonomous Underwater Vehicle) Performance.

    DTIC Science & Technology

    1988-03-01

    7 3 First Order Plant Model 10 4 Closed Loop System Block Diagram 11 5 RLP[Kpz=l,U=0.5] 13 6 RLP[Kpz=I,U=I] 147 RLP[Kpz=0.5,U-0.5] 15 8 RLP[Kpz=0.5,U...circuit. The control circuit would then generate a radio control signal to maneuver the vehicle. 6 *’%4 MUMNT -. %Am -W’ This takes the man out of the loop ...angle, the constant Ky is 0.14i_" IN’ ft-lbf/rad. Estimated values of J and B were determined. The closed loop transfer function Go could then be

  20. Flow field in the wake of a bluff body driven through a steady recirculating flow

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.; Plesniak, Michael W.

    2015-02-01

    The wake produced by a bluff body driven through a steady recirculating flow is studied experimentally in a water facility using particle image velocimetry. The bluff body has a rectangular cross section of height, , and width, , such that the aspect ratio, AR = H/ D, is equal to 3. The motion of the bluff body is uniform and rectilinear, and corresponds to a Reynolds number based on width, Re D = 9,600. The recirculating flow is confined within a hemicylindrical enclosure and is generated by planar jets emanating from slots of width, , such that . Under these conditions, experiments are performed in a closed-loop facility that enables complete optical access to the near-wake. Velocity fields are obtained up to a distance of downstream of the moving body. Data include a selection of phase-averaged velocity fields representative of the wake for a baseline case (no recirculation) and an interaction case (with recirculation). Results indicate that the transient downwash flow typically observed in wakes behind finite bodies of small aspect ratio is significantly perturbed by the recirculating flow. The wake is displaced from the ground plane and exhibits a shorter recirculation zone downstream of the body. In summary, it was found that the interaction between a bluff body wake and a recirculating flow pattern alters profoundly the dynamics of the wake, which has implications on scalar transport in the wake.

  1. Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.

    PubMed

    Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert

    2015-01-01

    Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.

  2. Conformational energy landscape of the acyl pocket loop in acetylcholinesterase: a Monte Carlo-generalized Born model study.

    PubMed

    Carlacci, Louis; Millard, Charles B; Olson, Mark A

    2004-10-01

    The X-ray crystal structure of the reaction product of acetylcholinesterase (AChE) with the inhibitor diisopropylphosphorofluoridate (DFP) showed significant structural displacement in a loop segment of residues 287-290. To understand this conformational selection, a Monte Carlo (MC) simulation study was performed of the energy landscape for the loop segment. A computational strategy was applied by using a combined simulated annealing and room temperature Metropolis sampling approach with solvent polarization modeled by a generalized Born (GB) approximation. Results from thermal annealing reveal a landscape topology of broader basin opening and greater distribution of energies for the displaced loop conformation, while the ensemble average of conformations at 298 K favored a shift in populations toward the native by a free-energy difference in good agreement with the estimated experimental value. Residue motions along a reaction profile of loop conformational reorganization are proposed where Arg-289 is critical in determining electrostatic effects of solvent interaction versus Coulombic charging.

  3. NASA Advanced Radiator Technology Development

    NASA Astrophysics Data System (ADS)

    Koester, J. Kent; Juhasz, Albert J.

    1994-07-01

    A practical implementation of the two-phase working fluid of lithium and NaK has been developed experimentally for pumped loop radiator designs. The benefits of the high heat capacity and low mass of lithium have been integrated with the shutdown capability enabled by the low freezing temperature of NaK by mixing these liquid metals directly. The stable and reliable start up and shutdown of a lithium/NaK pumped loop has been demonstrated through the development of a novel lithium freeze-separation technique within the flowing header ducts. The results of a highly instrumented liquid metal test loop are presented in which both lithium fraction as well as loop gravitational effects were varied over a wide range of values. Diagnostics based on dual electric probes are presented in which the convective behavior of the lithium component is directly measured during loop operation. The uniform distribution of the lithium after a freeze separation is verified by neutron radiography. The operating regime for reliable freeze/thaw flow behavior is described in terms of correlations based on dimensional analysis.

  4. BOOK REVIEW: A First Course in Loop Quantum Gravity A First Course in Loop Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca

    2012-12-01

    Students who are interested in quantum gravity usually face the difficulty of working through a large amount of prerequisite material before being able to deal with actual quantum gravity. A First Course in Loop Quantum Gravity by Rodolfo Gambini and Jorge Pullin, aimed at undergraduate students, marvellously succeeds in starting from the basics of special relativity and covering basic topics in Hamiltonian dynamics, Yang Mills theory, general relativity and quantum field theory, ending with a tour on current (loop) quantum gravity research. This is all done in a short 173 pages! As such the authors cannot cover any of the subjects in depth and indeed this book should be seen more as a motivation and orientation guide so that students can go on to follow the hints for further reading. Also, as there are many subjects to cover beforehand, slightly more than half of the book is concerned with more general subjects (special and general relativity, Hamiltonian dynamics, constrained systems, quantization) before the starting point for loop quantum gravity, the Ashtekar variables, are introduced. The approach taken by the authors is heuristic and uses simplifying examples in many places. However they take care in motivating all the main steps and succeed in presenting the material pedagogically. Problem sets are provided throughout and references for further reading are given. Despite the shortness of space, alternative viewpoints are mentioned and the reader is also referred to experimental results and bounds. In the second half of the book the reader gets a ride through loop quantum gravity; the material covers geometric operators and their spectra, the Hamiltonian constraints, loop quantum cosmology and, more broadly, black hole thermodynamics. A glimpse of recent developments and open problems is given, for instance a discussion on experimental predictions, where the authors carefully point out the very preliminary nature of the results. The authors close with an 'open issues and controversies' section, addressing some of the criticism of loop quantum gravity and pointing to weak points of the theory. Again, readers aiming at starting research in loop quantum gravity should take this as a guide and motivation for further study, as many technicalities are naturally left out. In summary this book fully reaches the aim set by the authors - to introduce the topic in a way that is widely accessible to undergraduates - and as such is highly recommended.

  5. Fluid mechanics of fusion lasers. Final report, September 11, 1978-June 5, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shwartz, J; Kulkarny, V A; Ausherman, D A

    1980-01-01

    Flow loop components required to operate continuous-flow, repetitively-pulsed CO/sub 2/ and KrF laser drivers for ICF were identified and their performance requirements were specified. It was found that the laser flow loops can have a major effect on the laser beam quality and overall efficiency. The pressure wave suppressor was identified as the most critical flow loop component. The performance of vented side-wall suppressors was evaluated both analytically and experimentally and found capable of meeting the performance requirements of the CO/sub 2/ and KrF fusion lasers. All other laser flow loop components are essentially similar to those used in conventional,more » low speed wind tunnels and are therefore well characterized and can be readily incorporated into fusion laser flow systems designs.« less

  6. A circular polarization converter based on in-linked loop antenna frequency selective surface

    NASA Astrophysics Data System (ADS)

    Wang, Shen-Yun; Liu, Wei; Geyi, Wen

    2018-06-01

    In this paper, we report the design, fabrication and measurement of a circular polarization converter based on an in-linked loop-antenna frequency selective surface. The building unit cell is the in-linked loop-antenna module, which consists of same front and back planar loop antennas in-linked by a pair of through-via holes passing through a sandwiched perforated metal ground plane. The proposed device can achieve transmission polarization conversions from right- or left-handed circularly polarized waves to left- or right-handed ones, respectively, or vice versa. Simulation and experimental results show that it has relative conversion ratio of near unity at resonant frequency and very low Joule insertion loss in the operating frequency band. The proposed circular polarization converter may be applied to wireless systems where circular polarization diversity is needed.

  7. General view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent features of the engine assembly in this view are the Low-Pressure Fuel Turbopump Discharge Duct looping diagonally across the top of the assembly and connecting to the High-Pressure Fuel Turbopump, the Low-Pressure Oxidizer Turbopump (LPOTP) located center right of the assembly and the LPOTP Discharge Duct looping around from the pump to the underside of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. Local constraints on cosmic string loops from photometry and pulsar timing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pshirkov, M. S.; Tuntsov, A. V.; Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, 119992

    2010-04-15

    We constrain the cosmological density of cosmic string loops using two observational signatures--gravitational microlensing and the Kaiser-Stebbins effect. Photometry from RXTE and CoRoT space missions and pulsar timing from Parkes Pulsar Timing Array, Arecibo and Green Bank radio telescopes allow us to probe cosmic strings in a wide range of tensions G{mu}/c{sup 2}=10{sup -16} divide 10{sup -10}. We find that pulsar timing data provide the most stringent constraints on the abundance of light strings at the level {Omega}{sub s{approx}}10{sup -3}. Future observational facilities such as the Square Kilometer Array will allow one to improve these constraints by orders of magnitude.

  9. Evaluation of Cathode Air Flow Transients in a SOFC/GT Hybrid System Using Hardware in the Loop Simulation.

    PubMed

    Zhou, Nana; Yang, Chen; Tucker, David

    2015-02-01

    Thermal management in the fuel cell component of a direct fired solid oxide fuel cell gas turbine (SOFC/GT) hybrid power system can be improved by effective management and control of the cathode airflow. The disturbances of the cathode airflow were accomplished by diverting air around the fuel cell system through the manipulation of a hot-air bypass valve in open loop experiments, using a hardware-based simulation facility designed and built by the U.S. Department of Energy, National Energy Technology Laboratory (NETL). The dynamic responses of the fuel cell component and hardware component of the hybrid system were studied in this paper.

  10. A second-order all-digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.; Tegnelia, C. R.

    1974-01-01

    A simple second-order digital phase-locked loop has been designed to synchronize itself to a square-wave subcarrier. Analysis and experimental performance are given for both acquisition behavior and steady-state phase error performance. In addition, the damping factor and the noise bandwidth are derived analytically. Although all the data are given for the square-wave subcarrier case, the results are applicable to arbitrary subcarriers that are odd symmetric about their transition region.

  11. Human-In-The-Loop Experimental Research for Detect and Avoid

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria; Munoz, Cesar; Hagen, George; Narkawicz, Anthony; Upchurch, Jason; Comstock, James; Ghatas, Rania; Vincent, Michael; Chamberlain, James

    2015-01-01

    This paper describes a Detect and Avoid (DAA) concept for integration of UAS into the NAS developed by the National Aeronautics and Space Administration (NASA) and provides results from recent human-in-the-loop experiments performed to investigate interoperability and acceptability issues associated with these vehicles and operations. The series of experiments was designed to incrementally assess critical elements of the new concept and the enabling technologies that will be required.

  12. A looped-tube traveling-wave engine with liquid pistons

    NASA Astrophysics Data System (ADS)

    Hyodo, H.; Tamura, S.; Biwa, T.

    2017-09-01

    This report describes the operation of a liquid piston engine that uses thermoacoustic spontaneous oscillations of liquid and gas columns connected in series to form a loop. Analysis of the analogous mass-spring model and the numerical calculation based on hydrodynamic equations shows that the natural mode oscillations of the system allow the working gas to execute a Stirling thermodynamic cycle. Numerical results of the operating temperature difference were confirmed from experimentally obtained results.

  13. Plant-mimetic Heat Pipes for Operation with Large Inertial and Gravitational Stresses

    DTIC Science & Technology

    2015-08-07

    Pipes (SHLHP), we developed a set of mathematical models and experimental approaches. Our models provide design rules for heat transfer systems that could...number of fronts: 1) Design concepts and modeling tools: We have proposed a new design for loop heat pipes that operates with superheated liquid...and completed a mathematical model of steady state operation of such superheated loop heat pipes (SHLHP). We have also developed a transport theories

  14. Automated flight test management system

    NASA Technical Reports Server (NTRS)

    Hewett, M. D.; Tartt, D. M.; Agarwal, A.

    1991-01-01

    The Phase 1 development of an automated flight test management system (ATMS) as a component of a rapid prototyping flight research facility for artificial intelligence (AI) based flight concepts is discussed. The ATMS provides a flight engineer with a set of tools that assist in flight test planning, monitoring, and simulation. The system is also capable of controlling an aircraft during flight test by performing closed loop guidance functions, range management, and maneuver-quality monitoring. The ATMS is being used as a prototypical system to develop a flight research facility for AI based flight systems concepts at NASA Ames Dryden.

  15. Phonological loop affects children’s interpretations of explicit but not ambiguous questions: Research on links between working memory and referent assignment

    PubMed Central

    Murakami, Taro; Hashiya, Kazuhide

    2017-01-01

    Understanding the referent of other’s utterance by referring the contextual information helps in smooth communication. Although this pragmatic referential process can be observed even in infants, its underlying mechanism and relative abilities remain unclear. This study aimed to comprehend the background of the referential process by investigating whether the phonological loop affected the referent assignment. A total of 76 children (43 girls) aged 3–5 years participated in a reference assignment task in which an experimenter asked them to answer explicit (e.g., “What color is this?”) and ambiguous (e.g., “What about this?”) questions about colorful objects. The phonological loop capacity was measured by using the forward digit span task in which children were required to repeat the numbers as an experimenter uttered them. The results showed that the scores of the forward digit span task positively predicted correct response to explicit questions and part of the ambiguous questions. That is, the phonological loop capacity did not have effects on referent assignment in response to ambiguous questions that were asked after a topic shift of the explicit questions and thus required a backward reference to the preceding explicit questions to detect the intent of the current ambiguous questions. These results suggest that although the phonological loop capacity could overtly enhance the storage of verbal information, it does not seem to directly contribute to the pragmatic referential process, which might require further social cognitive processes. PMID:29088282

  16. Postural control model interpretation of stabilogram diffusion analysis

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.

    2000-01-01

    Collins and De Luca [Collins JJ. De Luca CJ (1993) Exp Brain Res 95: 308-318] introduced a new method known as stabilogram diffusion analysis that provides a quantitative statistical measure of the apparently random variations of center-of-pressure (COP) trajectories recorded during quiet upright stance in humans. This analysis generates a stabilogram diffusion function (SDF) that summarizes the mean square COP displacement as a function of the time interval between COP comparisons. SDFs have a characteristic two-part form that suggests the presence of two different control regimes: a short-term open-loop control behavior and a longer-term closed-loop behavior. This paper demonstrates that a very simple closed-loop control model of upright stance can generate realistic SDFs. The model consists of an inverted pendulum body with torque applied at the ankle joint. This torque includes a random disturbance torque and a control torque. The control torque is a function of the deviation (error signal) between the desired upright body position and the actual body position, and is generated in proportion to the error signal, the derivative of the error signal, and the integral of the error signal [i.e. a proportional, integral and derivative (PID) neural controller]. The control torque is applied with a time delay representing conduction, processing, and muscle activation delays. Variations in the PID parameters and the time delay generate variations in SDFs that mimic real experimental SDFs. This model analysis allows one to interpret experimentally observed changes in SDFs in terms of variations in neural controller and time delay parameters rather than in terms of open-loop versus closed-loop behavior.

  17. Loops determine the mechanical properties of mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Heermann, Dieter W.

    2013-03-01

    In mitosis, chromosomes undergo a condensation into highly compacted, rod-like objects. Many models have been put forward for the higher-order organization of mitotic chromosomes including radial loop and hierarchical folding models. Additionally, mechanical properties of mitotic chromosomes under different conditions were measured. However, the internal organization of mitotic chromosomes still remains unclear. Here we present a polymer model for mitotic chromosomes and show how chromatin loops play a major role for their mechanical properties. The key assumption of the model is the ability of the chromatin fibre to dynamically form loops with the help of binding proteins. Our results show that looping leads to a tight compaction and significantly increases the bending rigidity of chromosomes. Moreover, our qualitative prediction of the force elongation behaviour is close to experimental findings. This indicates that the internal structure of mitotic chromosomes is based on self-organization of the chromatin fibre. We also demonstrate how number and size of loops have a strong influence on the mechanical properties. We suggest that changes in the mechanical characteristics of chromosomes can be explained by an altered internal loop structure. YZ gratefully appreciates funding by the German National Academic Foundation (Studienstiftung des deutschen Volkes) and support by the Heidelberg Graduate School for Mathematical and Computational Methods in the Sciences (HGS MathComp).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng Xie; Hong Li; Jianzhu Cao

    A reform will be implemented in the helium purification system of the 10 MW High Temperature Gas-cooled Test Reactor (HTR-10) in China. The measurement of the gamma dose rates of facilities, including valves, pipes, dust filter, etc., in the purification system of the HTR-10, has been performed. The results indicated that most radiation nuclides are concentrated in the dust filter and facilities at the entrance of the helium purification system upstream of the dust filter. Other facilities have the same gamma dose rate level as the background. Based on the previous study and experiences in AVR, the measurement results canmore » be understood that the radioactive dust carried by the helium gas was filtered by the dust filter. It provides important insights for the decontamination and decommissioning of facilities in the primary loop, especially in the helium purification system of the HTR-10 as well as the High Temperature Reactor-Pebble bed Modules (HTR-PM). (authors)« less

  19. KSC-2011-1449

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  20. KSC-2011-1446

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  1. KSC-2011-1450

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, training takes place atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  2. KSC-2010-5310

    NASA Image and Video Library

    2010-10-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann

  3. KSC-2010-5308

    NASA Image and Video Library

    2010-10-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility is prepared to conduct a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann

  4. KSC-2011-1448

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  5. KSC-2010-5311

    NASA Image and Video Library

    2010-10-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann

  6. KSC-2011-1447

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training on a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  7. KSC-2010-5309

    NASA Image and Video Library

    2010-10-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann

  8. Numerical simulation of velocity and temperature fields in natural circulation loop

    NASA Astrophysics Data System (ADS)

    Sukomel, L. A.; Kaban'kov, O. N.

    2017-11-01

    Low flow natural circulation regimes are realized in many practical applications and the existence of the reliable engineering and design calculation methods of flows driven exclusively by buoyancy forces is an actual problem. In particular it is important for the analysis of start up regimes of passive safety systems of nuclear power plants. In spite of a long year investigations of natural circulation loops no suitable predicting recommendations for heat transfer and friction for the above regimes have been proposed for engineering practice and correlations for forced flow are commonly used which considerably overpredicts the real flow velocities. The 2D numerical simulation of velocity and temperature fields in circular tubes for laminar flow natural circulation with reference to the laboratory experimental loop has been carried out. The results were compared with the 1D modified model and experimental data obtained on the above loop. The 1D modified model was still based on forced flow correlations, but in these correlations the physical properties variability and the existence of thermal and hydrodynamic entrance regions are taken into account. The comparison of 2D simulation, 1D model calculations and the experimental data showed that even subject to influence of liquid properties variability and entrance regions on heat transfer and friction the use of 1D model with forced flow correlations do not improve the accuracy of calculations. In general, according to 2D numerical simulation the wall shear stresses are mainly affected by the change of wall velocity gradient due to practically continuous velocity profiles deformation along the whole heated zone. The form of velocity profiles and the extent of their deformation in its turn depend upon the wall heat flux density and the hydraulic diameter.

  9. Wavefront control in adaptive microscopy using Shack-Hartmann sensors with arbitrarily shaped pupils.

    PubMed

    Dong, Bing; Booth, Martin J

    2018-01-22

    In adaptive optical microscopy of thick biological tissue, strong scattering and aberrations can change the effective pupil shape by rendering some Shack-Hartmann spots unusable. The change of pupil shape leads to a change of wavefront reconstruction or control matrix that should be updated accordingly. Modified slope and modal wavefront control methods based on measurements of a Shack-Hartmann wavefront sensor are proposed to accommodate an arbitrarily shaped pupil. Furthermore, we present partial wavefront control methods that remove specific aberration modes like tip, tilt and defocus from the control loop. The proposed control methods were investigated and compared by simulation using experimentally obtained aberration data. The performance was then tested experimentally through closed-loop aberration corrections using an obscured pupil.

  10. Estimation of unsteady lift on a pitching airfoil from wake velocity surveys

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Panda, J.; Rumsey, C. L.

    1993-01-01

    The results of a joint experimental and computational study on the flowfield over a periodically pitched NACA0012 airfoil, and the resultant lift variation, are reported in this paper. The lift variation over a cycle of oscillation, and hence the lift hysteresis loop, is estimated from the velocity distribution in the wake measured or computed for successive phases of the cycle. Experimentally, the estimated lift hysteresis loops are compared with available data from the literature as well as with limited force balance measurements. Computationally, the estimated lift variations are compared with the corresponding variation obtained from the surface pressure distribution. Four analytical formulations for the lift estimation from wake surveys are considered and relative successes of the four are discussed.

  11. Improvements in flight table dynamic transparency for hardware-in-the-loop facilities

    NASA Astrophysics Data System (ADS)

    DeMore, Louis A.; Mackin, Rob; Swamp, Michael; Rusterholtz, Roger

    2000-07-01

    Flight tables are a 'necessary evil' in the Hardware-In-The- Loop (HWIL) simulation. Adding the actual or prototypic flight hardware to the loop, in order to increase the realism of the simulation, forces us to add motion simulation to the process. Flight table motion bases bring unwanted dynamics, non- linearities, transport delays, etc to an already difficult problem sometimes requiring the simulation engineer to compromise the results. We desire that the flight tables be 'dynamically transparent' to the simulation scenario. This paper presents a State Variable Feedback (SVF) control system architecture with feed-forward techniques that improves the flight table's dynamic transparency by significantly reducing the table's low frequency phase lag. We offer some actual results with existing flight tables that demonstrate the improved transparency. These results come from a demonstration conducted on a flight table in the KHILS laboratory at Eglin AFB and during a refurbishment of a flight table for the Boeing Company of St. Charles, Missouri.

  12. 76 FR 73609 - Cameron LNG, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... 3(a) of the Natural Gas Act (NGA) for authority to construct and operate a boil-off gas (BOG... install facilities consisting of a closed loop refrigeration system at the terminal to liquefy BOG and return such gas in the form of LNG to its storage tanks. Cameron states that the project will not require...

  13. 78 FR 39254 - Foreign-Trade Zone 84-Houston, Texas; Application for Expansion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... Witter Street at Bayou Street; Site 13 (18 acres)--Exel Logistics, Inc., 8833 City Park Loop Street; Site...). FTZ 84 currently consists of 25 sites (2,756.74 acres total) at port facilities, industrial parks and... Highway 225; Site 4 (3.47 acres)--Cargoways Logistics, 1201 Hahlo Street; Site 5 (7.53 acres)-- Timco...

  14. 78 FR 8492 - Foreign-Trade Zone 84-Houston, TX Application for Expansion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... Witter Street at Bayou Street; Site 13 (18 acres)--Exel Logistics, Inc., 8833 City Park Loop Street; Site..., industrial parks and warehouse facilities in Houston and the Harris County area. The sites--which are in... Basin, Highway 146 at Highway 225; Site 4 (4 acres)--Cargoways Logistics, 1201 Hahlo Street; Site 5 (8...

  15. New Platforms for Suborbital Astronomical Observations and In Situ Atmospheric Measurements: Spacecraft, Instruments, and Facilities

    NASA Astrophysics Data System (ADS)

    Rodway, K.; DeForest, C. E.; Diller, J.; Vilas, F.; Sollitt, L. S.; Reyes, M. F.; Filo, A. S.; Anderson, E.

    2014-12-01

    Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. The new commercial space industry is developing suborbital reusable launch vehicles (sRLV's) to provide low-cost, flexible, and frequent access to space at ~100 km altitude. In the case of XCOR Aerospace's Lynx spacecraft, the vehicle design and capabilities work well for hosting specially designed experiments that can be flown with a human-tended researcher or alone with the pilot on a customized mission. Some of the first-generation instruments and facilities that will conduct solar observations on dedicated Lynx science missions include the SwRI Solar Instrument Pointing Platform (SSIPP) and Atsa Suborbital Observatory, as well as KickSat sprites, which are picosatellites for in situ atmospheric and solar phenomena measurements. The SSIPP is a demonstration two-stage pointed solar observatory that operates inside the Lynx cockpit. The coarse pointing stage includes the pilot in the feedback loop, and the fine stage stabilizes the solar image to achieve arcsecond class pointing. SSIPP is a stepping-stone to future external instruments that can operate with larger apertures and shorter wavelengths in the solar atmosphere. The Planetary Science Institute's Atsa Suborbital Observatory combines the strengths of ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with either in-house facility instruments or user-provided instruments. The Atsa prototype is a proof of concept, hand-guided camera that mounts on the interior of the Lynx cockpit to test target acquisition and tracking for human-operated suborbital astronomy. KickSat sprites are mass-producible, one inch printed circuit boards (PCBs) populated by programmable off the shelf microprocessors and radios for real time data transmission. The sprite PCBs can integrate chip-based radiometers, magnetometers, accelerometers, etc. This low-cost, customizable platform provides researchers the ability to design immediately responsive, repeatable, high resolution experiments.

  16. Polarization Dependence Suppression of Optical Fiber Grating Sensor in a π-Shifted Sagnac Loop Interferometer

    PubMed Central

    Son, Jaebum; Lee, Min-Kyoung; Jeong, Myung Yung; Kim, Chang-Seok

    2010-01-01

    In the sensing applications of optical fiber grating, it is necessary to reduce the transmission-type polarization dependence to isolate the sensing parameter. It is experimentally shown that the polarization-dependent spectrum of acousto-optic long-period fiber grating sensors can be suppressed in the transmission port of a π-shifted Sagnac loop interferometer. General expressions for the transmittance and reflectance are derived for transmission-type, reflection-type, and partially reflecting/transmitting-type polarization-dependent optical devices. The compensation of polarization dependence through the counter propagation in the Sagnac loop interferometer is quantitatively measured for a commercial in-line polarizer and an acousto-optic long-period fiber grating sensor. PMID:22399884

  17. Hysteresis behaviors in a ferrimagnetic Ising nanotube with hexagonal core-shell structure

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Wang, Wei; Lv, Dan; Zhao, Xue-ru; Huang, Te; Wang, Ze-yuan

    2018-07-01

    Monte Carlo simulation has been employed to study the hysteresis behaviors of a ferrimagnetic mixed-spin (1, 3/2) Ising nanotube with hexagonal core-shell structure. The effects of different single-ion anisotropies, exchange couplings and temperature on the hysteresis loops of the system and sublattices are discussed in detail. Multiple hysteresis loops such as triple loops have been observed in the system under certain physical parameters. It is found that the anisotropy, the exchange coupling and the temperature strongly affect the coercivities and the remanences of the system and the sublattices. Comparing our results with other theoretical and experimental studies, a satisfactory agreement can be achieved qualitatively.

  18. Hysteresis compensation of piezoelectric deformable mirror based on Prandtl-Ishlinskii model

    NASA Astrophysics Data System (ADS)

    Ma, Jianqiang; Tian, Lei; Li, Yan; Yang, Zongfeng; Cui, Yuguo; Chu, Jiaru

    2018-06-01

    Hysteresis of piezoelectric deformable mirror (DM) reduces the closed-loop bandwidth and the open-loop correction accuracy of adaptive optics (AO) systems. In this work, a classical Prandtl-Ishlinskii (PI) model is employed to model the hysteresis behavior of a unimorph DM with 20 actuators. A modified control algorithm combined with the inverse PI model is developed for piezoelectric DMs. With the help of PI model, the hysteresis of the DM was reduced effectively from about 9% to 1%. Furthermore, open-loop regenerations of low-order aberrations with or without hysteresis compensation were carried out. The experimental results demonstrate that the regeneration accuracy with PI model compensation is significantly improved.

  19. Mechanism of Chromosomal Boundary Action: Roadblock, Sink, or Loop?

    PubMed Central

    Gohl, Daryl; Aoki, Tsutomu; Blanton, Jason; Shanower, Greg; Kappes, Gretchen; Schedl, Paul

    2011-01-01

    Boundary elements or insulators subdivide eukaryotic chromosomes into a series of structurally and functionally autonomous domains. They ensure that the action of enhancers and silencers is restricted to the domain in which these regulatory elements reside. Three models, the roadblock, sink/decoy, and topological loop, have been proposed to explain the insulating activity of boundary elements. Strong predictions about how boundaries will function in different experimental contexts can be drawn from these models. In the studies reported here, we have designed assays that test these predictions. The results of our assays are inconsistent with the expectations of the roadblock and sink models. Instead, they support the topological loop model. PMID:21196526

  20. Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation

    PubMed Central

    Lysyansky, Borys; Rosenblum, Michael; Pikovsky, Arkady; Tass, Peter A.

    2017-01-01

    High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS. PMID:28273176

  1. Run-time parallelization and scheduling of loops

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi; Baxter, Doug

    1988-01-01

    The class of problems that can be effectively compiled by parallelizing compilers is discussed. This is accomplished with the doconsider construct which would allow these compilers to parallelize many problems in which substantial loop-level parallelism is available but cannot be detected by standard compile-time analysis. We describe and experimentally analyze mechanisms used to parallelize the work required for these types of loops. In each of these methods, a new loop structure is produced by modifying the loop to be parallelized. We also present the rules by which these loop transformations may be automated in order that they be included in language compilers. The main application area of the research involves problems in scientific computations and engineering. The workload used in our experiment includes a mixture of real problems as well as synthetically generated inputs. From our extensive tests on the Encore Multimax/320, we have reached the conclusion that for the types of workloads we have investigated, self-execution almost always performs better than pre-scheduling. Further, the improvement in performance that accrues as a result of global topological sorting of indices as opposed to the less expensive local sorting, is not very significant in the case of self-execution.

  2. Fission Surface Power Technology Demonstration Unit Test Results

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.

  3. Fission Surface Power Technology Demonstration Unit Test Results

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven; Sanzi, James

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7% resulting in a net system power of 8.1 kW and a system level efficiency of 17.2%. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to GRC. The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3%. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 %.

  4. Experimental Verification of Application of Looped System and Centralized Voltage Control in a Distribution System with Renewable Energy Sources

    NASA Astrophysics Data System (ADS)

    Hanai, Yuji; Hayashi, Yasuhiro; Matsuki, Junya

    The line voltage control in a distribution network is one of the most important issues for a penetration of Renewable Energy Sources (RES). A loop distribution network configuration is an effective solution to resolve voltage and distribution loss issues concerned about a penetration of RES. In this paper, for a loop distribution network, the authors propose a voltage control method based on tap change control of LRT and active/reactive power control of RES. The tap change control of LRT takes a major role of the proposed voltage control. Additionally the active/reactive power control of RES supports the voltage control when voltage deviation from the upper or lower voltage limit is unavoidable. The proposed method adopts SCADA system based on measured data from IT switches, which are sectionalizing switch with sensor installed in distribution feeder. In order to check the validity of the proposed voltage control method, experimental simulations using a distribution system analog simulator “ANSWER” are carried out. In the simulations, the voltage maintenance capability in the normal and the emergency is evaluated.

  5. Experimental Apparatus for the Observation of the Topological Change Associated with Dynamical Monodromy

    NASA Astrophysics Data System (ADS)

    Salmon, Daniel; Nerem, M. Perry; Aubin, Seth; Delos, John

    Monodromy means ``once around a path,'' therefore systems that have non-trivial monodromy are systems such that, when taken around a closed circuit in some space, the system has changed state in some way. Classical systems that exhibit non-trivial Hamiltonian monodromy have action and angle variables that are multivalued functions. A family, or loop, of trajectories of this system has a topological change upon traversing a monodromy circuit. We present an experimental apparatus for observing this topological change. A family of particles moving in a cylindrically symmetric champagne-bottle potential exhibits non-trivial Hamiltonian monodromy. At the center of this system is a classically forbidden region. By following a monodromy circuit, a loop of initial conditions on one side of the forbidden region can be made to evolve continuously into a loop that surrounds the forbidden region. We realize this system using a spherical pendulum, having at its end a permanent magnet. Magnetic fields generated by coils can then be used to create the champagne-bottle potential, as well as drive the pendulum through the monodromy circuit.

  6. Optical phase locked loop for transparent inter-satellite communications.

    PubMed

    Herzog, F; Kudielka, K; Erni, D; Bächtold, W

    2005-05-16

    A novel type of optical phase locked loop (OPLL), optimized for homodyne inter-satellite communication, is presented. The loop employs a conventional 180? 3 dB optical hybrid and an AC-coupled balanced front end. No residual carrier transmission is required for phase locking. The loop accepts analog as well as digital data and various modulation formats. The only requirement to the transmitted user signal is a constant envelope. Phase error extraction occurs through applying a small sinusoidal local oscillator (LO) phase disturbance, while measuring its impact on the power of the baseband output signal. First experimental results indicate a receiver sensitivity of 36 photons/bit (-55.7 dBm) for a BER of 10 ;-9, when transmitting a PRBS-31 signal at a data rate of 400 Mbit/s. The system setup employs diode-pumped Nd:YAG lasers at a wavelength of 1.06 mum.

  7. Optical phase locked loop for transparent inter-satellite communications

    NASA Astrophysics Data System (ADS)

    Herzog, F.; Kudielka, K.; Erni, D.; Bächtold, W.

    2005-05-01

    A novel type of optical phase locked loop (OPLL), optimized for homodyne inter-satellite communication, is presented. The loop employs a conventional 180◦ 3 dB optical hybrid and an AC-coupled balanced front end. No residual carrier transmission is required for phase locking. The loop accepts analog as well as digital data and various modulation formats. The only requirement to the transmitted user signal is a constant envelope. Phase error extraction occurs through applying a small sinusoidal local oscillator (LO) phase disturbance, while measuring its impact on the power of the baseband output signal. First experimental results indicate a receiver sensitivity of 36 photons/bit (-55.7 dBm) for a BER of 10 ^-9, when transmitting a PRBS-31 signal at a data rate of 400 Mbit/s. The system setup employs diode-pumped Nd:YAG lasers at a wavelength of 1.06 μm.

  8. Assessment of the 3H and 7Be generation in the IFMIF lithium loop

    NASA Astrophysics Data System (ADS)

    Simakov, S. P.; Fischer, U.; von Möllendorff, U.

    2004-08-01

    A complete evaluation of the 7Be and tritium inventory induced in the IFMIF lithium loop by deuterons and neutrons was performed on the basis of 3D Monte Carlo calculations with the M CDeLicious code and evaluated d-Li and n-Li cross-section data. The associated reaction cross-sections and thick lithium target yields were checked against available experimental data. The IFMIF calculations showed that the deuteron beam will produce 1.5 g of 7Be and 6 g of 3H per full power year in the lithium jet. The tritium generation in the whole lithium loop due to neutron induced reactions is at a rate of 1.5 g/fpy. The radio-active decay results in an equilibrium concentration 0.3 mg of 7Be and 50 mg of 3H per 1 kg of circulating lithium if no radioactive products are removed from the loop.

  9. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenzel, R. L.; Urrutia, J. M.

    2016-08-15

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B{sub 0}. The other antenna is an elongated loop with dipole moment parallel to B{sub 0}. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that ofmore » the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.« less

  10. Miniature Fourier transform spectrometer with a dual closed-loop controlled electrothermal micromirror.

    PubMed

    Han, Fengtian; Wang, Wei; Zhang, Xiaoyang; Xie, Huikai

    2016-10-03

    A large piston-displacement electrothermal micromirror with closed-loop control of both piston scan and tilting of the mirror plate is demonstrated for use in a miniature Fourier transform spectrometer. Constant scan velocity in an ultra large piston scan range has been demonstrated by the proposed closed-loop piston control scheme which can be easily implemented without considerably increasing system complexity. The experimental results show that the usable linear scan range generated by the micromirror has been extended up to 505 μm. The measured spectral resolution in a compact spectrometer reaches 20 cm-1, or 0.57 nm at 532 nm wavelength. Compared to other presented systems, this microspectrometer will benefit from the closed-loop thermal actuator approach utilizing both the piston servo and tilt control to provide more consistent spectral response, improved spectral resolution and enhanced robustness to disturbances.

  11. A Review of Control Strategies in Closed-Loop Neuroprosthetic Systems

    PubMed Central

    Wright, James; Macefield, Vaughan G.; van Schaik, André; Tapson, Jonathan C.

    2016-01-01

    It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improved performance of tasks, better usability, and greater embodiment have all been reported in systems utilizing some form of feedback. However, the interdisciplinary work on neuroprosthetic systems can lead to miscommunication due to similarities in well-established nomenclature in different fields. Here we present a review of control strategies in existing experimental, investigational and clinical neuroprosthetic systems in order to establish a baseline and promote a common understanding of different feedback modes and closed-loop controllers. The first section provides a brief discussion of feedback control and control theory. The second section reviews the control strategies of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems, and assistive neurorobotic devices. The final section examines the different approaches to feedback in current neuroprosthetic and neurorobotic systems. PMID:27462202

  12. A proof for loop-law constraints in stoichiometric metabolic networks

    PubMed Central

    2012-01-01

    Background Constraint-based modeling is increasingly employed for metabolic network analysis. Its underlying assumption is that natural metabolic phenotypes can be predicted by adding physicochemical constraints to remove unrealistic metabolic flux solutions. The loopless-COBRA approach provides an additional constraint that eliminates thermodynamically infeasible internal cycles (or loops) from the space of solutions. This allows the prediction of flux solutions that are more consistent with experimental data. However, it is not clear if this approach over-constrains the models by removing non-loop solutions as well. Results Here we apply Gordan’s theorem from linear algebra to prove for the first time that the constraints added in loopless-COBRA do not over-constrain the problem beyond the elimination of the loops themselves. Conclusions The loopless-COBRA constraints can be reliably applied. Furthermore, this proof may be adapted to evaluate the theoretical soundness for other methods in constraint-based modeling. PMID:23146116

  13. Wavefront tilt feedforward for the formation interferometer testbad (FIT)

    NASA Technical Reports Server (NTRS)

    Shields, J. F.; Liewer, K.; Wehmeier, U.

    2002-01-01

    Separated spacecraft interferometry is a candidate architecture for several future NASA missions. The Formation Interferometer Testbed (FIT) is a ground based testbed dedicated to the validation of this key technology for a formation of two spacecraft. In separated spacecraft interferometry, the residual relative motion of the component spacecraft must be compensated for by articulation of the optical components. In this paper, the design of the FIT interferometer pointing control system is described. This control system is composed of a metrology pointing loop that maintains an optical link between the two spacecraft and two stellar pointing loops for stabilizing the stellar wavefront at both the right and left apertures of the instrument. A novel feedforward algorithm is used to decouple the metrology loop from the left side stellar loop. Experimental results from the testbed are presented that verify this approach and that fully demonstrate the performance of the algorithm.

  14. Design and simulation of a sensor for heliostat field closed loop control

    NASA Astrophysics Data System (ADS)

    Collins, Mike; Potter, Daniel; Burton, Alex

    2017-06-01

    Significant research has been completed in pursuit of capital cost reductions for heliostats [1],[2]. The camera array closed loop control concept has potential to radically alter the way heliostats are controlled and installed by replacing high quality open loop targeting systems with low quality targeting devices that rely on measurement of image position to remove tracking errors during operation. Although the system could be used for any heliostat size, the system significantly benefits small heliostats by reducing actuation costs, enabling large numbers of heliostats to be calibrated simultaneously, and enabling calibration of heliostats that produce low irradiance (similar or less than ambient light images) on Lambertian calibration targets, such as small heliostats that are far from the tower. A simulation method for the camera array has been designed and verified experimentally. The simulation tool demonstrates that closed loop calibration or control is possible using this device.

  15. Funding for LoopFest IV and RADCOR2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bern, Zvi

    This is a request for funds to help run two conferences: RADCOR2015 (the 12th International Symposium on Radiative Corrections) and LoopFest XIV (Radiative Corrections for the LHC and Future Colliders). These conferences will be jointly held June 15--19, 2015 at the Department of Physics and Astronomy at UCLA. These conferences are central to providing theoretical support to the experimental physics programs at particle colliders, including the Large Hadron Collider and possible future colliders.

  16. Global properties in an experimental realization of time-delayed feedback control with an unstable control loop.

    PubMed

    Höhne, Klaus; Shirahama, Hiroyuki; Choe, Chol-Ung; Benner, Hartmut; Pyragas, Kestutis; Just, Wolfram

    2007-05-25

    We demonstrate by electronic circuit experiments the feasibility of an unstable control loop to stabilize torsion-free orbits by time-delayed feedback control. Corresponding analytical normal form calculations and numerical simulations reveal a severe dependence of the basin of attraction on the particular coupling scheme of the control force. Such theoretical predictions are confirmed by the experiments and emphasize the importance of the coupling scheme for the global control performance.

  17. Experimental test of an eco-evolutionary dynamic feedback loop between evolution and population density in the green peach aphid.

    PubMed

    Turcotte, Martin M; Reznick, David N; Daniel Hare, J

    2013-05-01

    An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.

  18. Big Explosives Experimental Facility - BEEF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  19. Big Explosives Experimental Facility - BEEF

    ScienceCinema

    None

    2018-01-16

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  20. Hemodynamic and permeability characteristics of acute experimental necrotizing enterocolitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.J.; Adams, J.; Gu, X.A.

    1990-10-01

    We examined the local hemodynamic response of intestinal loops during acute necrotizing enterocolitis (NEC) in anesthetized rabbits. NEC was induced in ileal loops by transmural injection of a solution containing casein (10 mg/ml) and calcium gluconate (50 mg/ml) acidified to pH 4.0 with propionic or acetic acid. Control loops received casein only (pH 5.0). Mucosal damage was quantified by the blood-to-lumen movement of (51Cr)EDTA, fluid shifts into the lumen, and histology. Mean arterial pressure and loop blood flow were steady over the 3-hr period, loop fluid volume decreased, and there was no evidence of necrosis or epithelial damage. In loopsmore » receiving acidified casein and calcium gluconate, there was an immediate dramatic increase in loop blood flow that returned to baseline by 50 min. In addition, loop fluid volume was dramatically increased, necrosis was noted in the form of blunting and loss of villi, and sevenfold increase in (51Cr)EDTA permeability was evident. Administration of CV 1808 (30 mg/kg/hr), a selective adenosine2 agonist, which maintained and elevated loop blood flow throughout the 3 hr protocol, failed to alter the changes in loop fluid volume or prevent necrosis. Histamine levels in loop fluid levels were significantly elevated 20-30 min after NEC induction when compared to saline controls, indicating an early activation of mucosal defenses with this luminal insult. Thus, this model of NEC is characterized by a transient, acute hyperemia, increased intestinal permeability, and histamine release. As mucosal damage was independent of ischemia and could not be prevented by vasodilatory therapy, this model supports the clinical findings that NEC is correlated with luminal factors related to feeding and independent of cardiovascular stress.« less

  1. NASA/MSFC ground experiment for large space structure control verification

    NASA Technical Reports Server (NTRS)

    Waites, H. B.; Seltzer, S. M.; Tollison, D. K.

    1984-01-01

    Marshall Space Flight Center has developed a facility in which closed loop control of Large Space Structures (LSS) can be demonstrated and verified. The main objective of the facility is to verify LSS control system techniques so that on orbit performance can be ensured. The facility consists of an LSS test article which is connected to a payload mounting system that provides control torque commands. It is attached to a base excitation system which will simulate disturbances most likely to occur for Orbiter and DOD payloads. A control computer will contain the calibration software, the reference system, the alignment procedures, the telemetry software, and the control algorithms. The total system will be suspended in such a fashion that LSS test article has the characteristics common to all LSS.

  2. Advancing Sensor Technology for Aerospace Propulsion

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Mercer, Carolyn R.

    2002-01-01

    NASA's Stennis Space Center (SSC) and Glenn Research Center (GRC) participate in the development of technologies for propulsion testing and propulsion applications in air and space transportation. Future transportation systems and the test facilities needed to develop and sustain them are becoming increasingly complex. Sensor technology is a fundamental pillar that makes possible development of complex systems that must operate in automatic mode (closed loop systems), or even in assisted-autonomous mode (highly self-sufficient systems such as planetary exploration spacecraft). Hence, a great deal of effort is dedicated to develop new sensors and related technologies to be used in research facilities, test facilities, and in vehicles and equipment. This paper describes sensor technologies being developed and in use at SSC and GRC, including new technologies in integrated health management involving sensors, components, processes, and vehicles.

  3. Neutron scattering facilities at Chalk River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, T.M.; Powell, B.M.; Dolling, G.

    1995-12-31

    The Chalk River Laboratories of AECL Research provides neutron beams for research with the NRU reactor. The NRU reactor has eight reactor loops for engineering test experiments, 30 isotope irradiation sites and beam tubes, six of which feed the neutron scattering instruments. The peak thermal flux is 3 {times} 10{sup 14}n cm{sup {minus}2} s{sup {minus}1}. The neutron spectrometers are operated as national facilities for Canadian neutron scattering research. Since the research requirements for the Canadian nuclear industry are changing, and since the NRU reactor is unlikely to operate much beyond the year 2000, a new Irradiation Research Facility (IRF) ismore » being considered for start-up in the first decade of the next century. An outline is given of this proposed new neutron source.« less

  4. Second-order sliding mode control with experimental application.

    PubMed

    Eker, Ilyas

    2010-07-01

    In this article, a second-order sliding mode control (2-SMC) is proposed for second-order uncertain plants using equivalent control approach to improve the performance of control systems. A Proportional + Integral + Derivative (PID) sliding surface is used for the sliding mode. The sliding mode control law is derived using direct Lyapunov stability approach and asymptotic stability is proved theoretically. The performance of the closed-loop system is analysed through an experimental application to an electromechanical plant to show the feasibility and effectiveness of the proposed second-order sliding mode control and factors involved in the design. The second-order plant parameters are experimentally determined using input-output measured data. The results of the experimental application are presented to make a quantitative comparison with the traditional (first-order) sliding mode control (SMC) and PID control. It is demonstrated that the proposed 2-SMC system improves the performance of the closed-loop system with better tracking specifications in the case of external disturbances, better behavior of the output and faster convergence of the sliding surface while maintaining the stability. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Falcon: a highly flexible open-source software for closed-loop neuroscience.

    PubMed

    Ciliberti, Davide; Kloosterman, Fabian

    2017-08-01

    Closed-loop experiments provide unique insights into brain dynamics and function. To facilitate a wide range of closed-loop experiments, we created an open-source software platform that enables high-performance real-time processing of streaming experimental data. We wrote Falcon, a C++ multi-threaded software in which the user can load and execute an arbitrary processing graph. Each node of a Falcon graph is mapped to a single thread and nodes communicate with each other through thread-safe buffers. The framework allows for easy implementation of new processing nodes and data types. Falcon was tested both on a 32-core and a 4-core workstation. Streaming data was read from either a commercial acquisition system (Neuralynx) or the open-source Open Ephys hardware, while closed-loop TTL pulses were generated with a USB module for digital output. We characterized the round-trip latency of our Falcon-based closed-loop system, as well as the specific latency contribution of the software architecture, by testing processing graphs with up to 32 parallel pipelines and eight serial stages. We finally deployed Falcon in a task of real-time detection of population bursts recorded live from the hippocampus of a freely moving rat. On Neuralynx hardware, round-trip latency was well below 1 ms and stable for at least 1 h, while on Open Ephys hardware latencies were below 15 ms. The latency contribution of the software was below 0.5 ms. Round-trip and software latencies were similar on both 32- and 4-core workstations. Falcon was used successfully to detect population bursts online with ~40 ms average latency. Falcon is a novel open-source software for closed-loop neuroscience. It has sub-millisecond intrinsic latency and gives the experimenter direct control of CPU resources. We envisage Falcon to be a useful tool to the neuroscientific community for implementing a wide variety of closed-loop experiments, including those requiring use of complex data structures and real-time execution of computationally intensive algorithms, such as population neural decoding/encoding from large cell assemblies.

  6. Falcon: a highly flexible open-source software for closed-loop neuroscience

    NASA Astrophysics Data System (ADS)

    Ciliberti, Davide; Kloosterman, Fabian

    2017-08-01

    Objective. Closed-loop experiments provide unique insights into brain dynamics and function. To facilitate a wide range of closed-loop experiments, we created an open-source software platform that enables high-performance real-time processing of streaming experimental data. Approach. We wrote Falcon, a C++ multi-threaded software in which the user can load and execute an arbitrary processing graph. Each node of a Falcon graph is mapped to a single thread and nodes communicate with each other through thread-safe buffers. The framework allows for easy implementation of new processing nodes and data types. Falcon was tested both on a 32-core and a 4-core workstation. Streaming data was read from either a commercial acquisition system (Neuralynx) or the open-source Open Ephys hardware, while closed-loop TTL pulses were generated with a USB module for digital output. We characterized the round-trip latency of our Falcon-based closed-loop system, as well as the specific latency contribution of the software architecture, by testing processing graphs with up to 32 parallel pipelines and eight serial stages. We finally deployed Falcon in a task of real-time detection of population bursts recorded live from the hippocampus of a freely moving rat. Main results. On Neuralynx hardware, round-trip latency was well below 1 ms and stable for at least 1 h, while on Open Ephys hardware latencies were below 15 ms. The latency contribution of the software was below 0.5 ms. Round-trip and software latencies were similar on both 32- and 4-core workstations. Falcon was used successfully to detect population bursts online with ~40 ms average latency. Significance. Falcon is a novel open-source software for closed-loop neuroscience. It has sub-millisecond intrinsic latency and gives the experimenter direct control of CPU resources. We envisage Falcon to be a useful tool to the neuroscientific community for implementing a wide variety of closed-loop experiments, including those requiring use of complex data structures and real-time execution of computationally intensive algorithms, such as population neural decoding/encoding from large cell assemblies.

  7. Temperature dependence of looping rates in a short peptide.

    PubMed

    Roccatano, Danilo; Sahoo, Harekrushna; Zacharias, Martin; Nau, Werner M

    2007-03-15

    Knowledge of the influence of chain length and amino acid sequence on the structural and dynamic properties of small peptides in solution provides essential information on protein folding pathways. The combination of time-resolved optical spectroscopy and molecular dynamics (MD) simulation methods has become a powerful tool to investigate the kinetics of end-to-end collisions (looping rates) in short peptides, which are relevant in early protein folding events. We applied the combination of both techniques to study temperature-dependent (280-340 K) looping rates of the Dbo-AlaGlyGln-Trp-NH2 peptide, where Dbo represents a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine, which served as a fluorescent probe in the time-resolved spectroscopic experiments. The experimental looping rates increased from 4.8 x 10(7) s(-1) at 283 K to 2.0 x 10(8) s(-1) at 338 K in H2O. The corresponding Arrhenius plot provided as activation parameters Ea = 21.5 +/- 1.0 kJ mol(-1) and ln(A/s-1) = 26.8 +/- 0.2 in H2O. The results in D2O were consistent with a slight solvent viscosity effect, i.e., the looping rates were 10-20% slower. MD simulations were performed with the GROMOS96 force field in a water solvent model, which required first a parametrization of the synthetic amino acid Dbo. After corrections for solvent viscosity effects, the calculated looping rates varied from 1.5 x 10(8) s(-1) at 280 K to 8.2 x 10(8) s(-1) at 340 K in H2O, which was about four times larger than the experimental data. The calculated activation parameters were Ea = 24.7 +/- 1.5 kJ mol(-1) and ln(A/s(-1)) = 29.4 +/- 0.1 in H2O.

  8. A Hardware-in-the-Loop Testbed for Spacecraft Formation Flying Applications

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center (GSFC) is being developed as a modular, hybrid dynamic simulation facility employed for end-to-end guidance, navigation, and control (GN&C) analysis and design for formation flying clusters and constellations of satellites. The FFTB will support critical hardware and software technology development to enable current and future missions for NASA, other government agencies, and external customers for a wide range of missions, particularly those involving distributed spacecraft operations. The initial capabilities of the FFTB are based upon an integration of high fidelity hardware and software simulation, emulation, and test platforms developed at GSFC in recent years; including a high-fidelity GPS simulator which has been a fundamental component of the Guidance, Navigation, and Control Center's GPS Test Facility. The FFTB will be continuously evolving over the next several years from a too[ with initial capabilities in GPS navigation hardware/software- in-the- loop analysis and closed loop GPS-based orbit control algorithm assessment to one with cross-link communications and relative navigation analysis and simulation capability. Eventually the FFT13 will provide full capability to support all aspects of multi-sensor, absolute and relative position determination and control, in all (attitude and orbit) degrees of freedom, as well as information management for satellite clusters and constellations. In this paper we focus on the architecture for the FFT13 as a general GN&C analysis environment for the spacecraft formation flying community inside and outside of NASA GSFC and we briefly reference some current and future activities which will drive the requirements and development.

  9. Dynamics of the GB3 loop regions from MD simulation: how much of it is real?

    PubMed

    Li, Tong; Jing, Qingqing; Yao, Lishan

    2011-04-07

    A total of 1.1 μs of molecular dynamics (MD) simulations were performed to study the structure and dynamics of protein GB3. The simulation motional amplitude of the loop regions is generally overestimated in comparison with the experimental backbone N-H order parameters S(2). Two-state behavior is observed for several residues in these regions, with the minor state population in the range of 3-13%. Further inspection suggests that the (φ, ψ) dihedral angles of the minor states deviate from the GB3 experimental values, implying the existence of nonnative states. After fitting the MD trajectories of these residues to the NMR RDCs, the minor state populations are significantly reduced by at least 80%, suggesting that MD simulations are strongly biased toward the minor states, thus overestimating the dynamics of the loop regions. The optimized trajectories produce intra, sequential H(N)-H(α) RDCs and intra (3)J(HNHα) that are not included in the trajectories fitting for these residues that are closer to the experimental data. Unlike GB3, 0.55 μs MD simulations of protein ubiquitin do not show distinctive minor states, and the derived NMR order parameters are better converged. Our findings indicate that the artifacts of the simulations depend on the specific system studied and that one should be cautious interpreting the enhanced dihedral dynamics from long MD simulations.

  10. Evaluating the role of coherent delocalized phonon-like modes in DNA cyclization

    DOE PAGES

    Alexandrov, Ludmil B.; Rasmussen, Kim Ø.; Bishop, Alan R.; ...

    2017-08-29

    The innate flexibility of a DNA sequence is quantified by the Jacobson-Stockmayer’s J-factor, which measures the propensity for DNA loop formation. Recent studies of ultra-short DNA sequences revealed a discrepancy of up to six orders of magnitude between experimentally measured and theoretically predicted J-factors. These large differences suggest that, in addition to the elastic moduli of the double helix, other factors contribute to loop formation. We develop a new theoretical model that explores how coherent delocalized phonon-like modes in DNA provide single-stranded ”flexible hinges” to assist in loop formation. We also combine the Czapla-Swigon-Olson structural model of DNA with ourmore » extended Peyrard-Bishop-Dauxois model and, without changing any of the parameters of the two models, apply this new computational framework to 86 experimentally characterized DNA sequences. Our results demonstrate that the new computational framework can predict J-factors within an order of magnitude of experimental measurements for most ultra-short DNA sequences, while continuing to accurately describe the J-factors of longer sequences. Furthermore, we demonstrate that our computational framework can be used to describe the cyclization of DNA sequences that contain a base pair mismatch. Overall, our results support the conclusion that coherent delocalized phonon-like modes play an important role in DNA cyclization.« less

  11. Evaluating the role of coherent delocalized phonon-like modes in DNA cyclization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Ludmil B.; Rasmussen, Kim Ø.; Bishop, Alan R.

    The innate flexibility of a DNA sequence is quantified by the Jacobson-Stockmayer’s J-factor, which measures the propensity for DNA loop formation. Recent studies of ultra-short DNA sequences revealed a discrepancy of up to six orders of magnitude between experimentally measured and theoretically predicted J-factors. These large differences suggest that, in addition to the elastic moduli of the double helix, other factors contribute to loop formation. We develop a new theoretical model that explores how coherent delocalized phonon-like modes in DNA provide single-stranded ”flexible hinges” to assist in loop formation. We also combine the Czapla-Swigon-Olson structural model of DNA with ourmore » extended Peyrard-Bishop-Dauxois model and, without changing any of the parameters of the two models, apply this new computational framework to 86 experimentally characterized DNA sequences. Our results demonstrate that the new computational framework can predict J-factors within an order of magnitude of experimental measurements for most ultra-short DNA sequences, while continuing to accurately describe the J-factors of longer sequences. Furthermore, we demonstrate that our computational framework can be used to describe the cyclization of DNA sequences that contain a base pair mismatch. Overall, our results support the conclusion that coherent delocalized phonon-like modes play an important role in DNA cyclization.« less

  12. Simulation of sodium pumps for nuclear power plants. Technical report 1 Oct 80-1 May 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boadu, H.O.

    1981-05-01

    A single-phase pump model for analysis of transients in sodium cooled fast breeder nuclear power plants has been presented, where homologous characteristic curves are used to predict the behavior of the pump during operating transients. The pump model has been incorporated into BRENDA and FFTF; two system cases to simulate Clinch River Breeder Reactor Plant (CRBRP) and the Fast Flux Test Facility (FFTF) respectively. Two simulation test results for BRENDA which is one loop representation of a three loop plant have been presented. They are: (1) Primary pump coastdown to natural circulation coupled with scram failure, and (2) 10 percentmore » deviation of primary speed with plant controllers incorporated.« less

  13. Heat transfer measurements on an incidence-tolerant low pressure turbine blade in a high speed linear cascade at low to moderate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Moualeu, Leolein Patrick Gouemeni

    Runway-independent aircraft are expected to be the future for short-haul flights by improving air transportation and reducing area congestion encountered in airports. The Vehicle Systems Program of NASA identified a Large Civil Tilt-Rotor, equipped with variable-speed power-turbine engines, as the best concept. At cruise altitude, the engine rotor-speed will be reduced by as much as the 50% of take-off speed. The large incidence variation in the low pressure turbine associated with the change in speed can be detrimental to the engine performance. Low pressure turbine blades in cruise altitude are more predisposed to develop regions of boundary layer separation. Typical phenomenon such as impinging wakes on downstream blades and mainstream turbulences enhance the complexity of the flow in low pressure turbines. It is therefore important to be able to understand the flow behavior to accurately predict the losses. Research facilities are seldom able to experimentally reproduce low Reynolds numbers at relevant engine Mach number. Having large incidence swing as an additional parameter in the investigation of the boundary layer development, on a low pressure turbine blade, makes this topic unique and as a consequence requires a unique facility to conduct the experimental research. The compressible flow wind tunnel facility at the University of North Dakota had been updated to perform steady state experiments on a modular-cascade, designed to replicate a large variation of the incidence angles. The high speed and low Reynolds number facility maintained a sealed and closed loop configuration for each incidence angle. The updated facility is capable to produce experimental Reynolds numbers as low as 45,000 and as high as 570,000 at an exit Mach number of 0.72. Pressure and surface temperature measurements were performed at these low pressure turbine conditions. The present thesis investigates the boundary layer development on the surface of an Incidence-tolerant blade. The heat transfer approach is the method used to obtain knowledge of the state of the boundary layer on the surface of the blade. Pressure and temperature distributions are acquired for Reynolds numbers of 50,000, 66,000, 228,000, and 568,000 at an exit Mach number of 0.72, and Reynolds numbers of 228,000, and 568,000 at an exit Mach number of 0.35. These experimental flow conditions are conducted at different flow inlet angles of 40°, 34.2°, 28°, 18°, 8°, -2.6°, -12°, and -17°, and at two free-stream turbulence levels. Results of the analyses performed show that as the incidence angle decreases, a region of laminar separation bubble forms on the pressure surface and grows toward the trailing-edge. It is also noted that the position of the leading-edge moves as the incidence angle varies. A transitional flow is observed on both the pressure and suction surfaces, mainly at the two highest incidence angles, for the high turbulence case. This investigation also reveals that the Stanton number increases as the mainstream turbulence increases, and that the Stanton number at the leading-edge increases as the Reynolds number decreases, as it is documented in the literature.

  14. Binding of DNA hairpins to an assembler-strand as part of a primordial translation device

    NASA Astrophysics Data System (ADS)

    Baumann, Ulrich

    1987-09-01

    A crucial event in the process leading to the origin of life is the emergence of a simple translation device. To approach experimental realization of this device the binding ability of short DNA hairpins to complementary oligonucleotides fixed on a solid support was investigated. The binding is achieved by base pairing between the loop nucleotides of the hairpins containing different numbers of adenosine residues and oligothymidylates covalently linked to cellulose. The loop has to consist of at least five nucleotides to achieve binding. The exact number of established base pairs was determined in two ways. First, the elution temperatures of hairpins and those of oligoadenylates which had the length of the loop were compared. Secondly, the architecture of the loop was analyzed by means of the single-strand-specific nuclease from mung bean acting as structural probe. Onlyn-2 of n loop nucleotides of a hairpin are able to form base pairs. Therefore, a strong evidence for the formation of a triplet of base pairs between primeval tRNA and mRNA sufficient to stabilize the complex enzyme-free is given.

  15. Soliton concepts and protein structure

    NASA Astrophysics Data System (ADS)

    Krokhotin, Andrei; Niemi, Antti J.; Peng, Xubiao

    2012-03-01

    Structural classification shows that the number of different protein folds is surprisingly small. It also appears that proteins are built in a modular fashion from a relatively small number of components. Here we propose that the modular building blocks are made of the dark soliton solution of a generalized discrete nonlinear Schrödinger equation. We find that practically all protein loops can be obtained simply by scaling the size and by joining together a number of copies of the soliton, one after another. The soliton has only two loop-specific parameters, and we compute their statistical distribution in the Protein Data Bank (PDB). We explicitly construct a collection of 200 sets of parameters, each determining a soliton profile that describes a different short loop. The ensuing profiles cover practically all those proteins in PDB that have a resolution which is better than 2.0 Å, with a precision such that the average root-mean-square distance between the loop and its soliton is less than the experimental B-factor fluctuation distance. We also present two examples that describe how the loop library can be employed both to model and to analyze folded proteins.

  16. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1996-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  17. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1999-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  18. Bending and twisting the embryonic heart: a computational model for c-looping based on realistic geometry

    PubMed Central

    Shi, Yunfei; Yao, Jiang; Young, Jonathan M.; Fee, Judy A.; Perucchio, Renato; Taber, Larry A.

    2014-01-01

    The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and cytoskeletal contraction in the omphalomesenteric veins (primitive atria) and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test the physical plausibility of this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study. PMID:25161623

  19. Bending and twisting the embryonic heart: a computational model for c-looping based on realistic geometry.

    PubMed

    Shi, Yunfei; Yao, Jiang; Young, Jonathan M; Fee, Judy A; Perucchio, Renato; Taber, Larry A

    2014-01-01

    The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and cytoskeletal contraction in the omphalomesenteric veins (primitive atria) and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test the physical plausibility of this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study.

  20. Proline Restricts Loop I Conformation of the High Affinity WW Domain from Human Nedd4-1 to a Ligand Binding-Competent Type I β-Turn.

    PubMed

    Schulte, Marianne; Panwalkar, Vineet; Freischem, Stefan; Willbold, Dieter; Dingley, Andrew J

    2018-04-19

    Sequence alignment of the four WW domains from human Nedd4-1 (neuronal precursor cell expressed developmentally down-regulated gene 4-1) reveals that the highest sequence diversity exists in loop I. Three residues in this type I β-turn interact with the PPxY motif of the human epithelial Na + channel (hENaC) subunits, indicating that peptide affinity is defined by the loop I sequence. The third WW domain (WW3*) has the highest ligand affinity and unlike the other three hNedd4-1 WW domains or other WW domains studied contains the highly statistically preferred proline at the ( i + 1) position found in β-turns. In this report, molecular dynamics simulations and experimental data were combined to characterize loop I stability and dynamics. Exchange of the proline to the equivalent residue in WW4 (Thr) results in the presence of a predominantly open seven residue Ω loop rather than the type I β-turn conformation for the wild-type apo-WW3*. In the presence of the ligand, the structure of the mutated loop I is locked into a type I β-turn. Thus, proline in loop I ensures a stable peptide binding-competent β-turn conformation, indicating that amino acid sequence modulates local flexibility to tune binding preferences and stability of dynamic interaction motifs.

Top