Sample records for loran

  1. What You Should Know About Loran-C Receivers. Another Title in the Series "Marine Electronics."

    ERIC Educational Resources Information Center

    Panshin, Daniel A.

    This Extension Service publication from Oregon State University explains the Long Range Navigation or Loran system and what to look for in a Loran-C receiver. There are two Loran systems, Loran-A and Loran-C, the latter of which will be completed by 1980. The Loran-C system operates at 100 kiloHertz and a ship at sea can be navigated by analyzing…

  2. Modeling and Measurement of Electromagnetic Fields Near LORAN-C and OMEGA Stations

    DTIC Science & Technology

    1987-06-15

    radial guy anchor point Figure 11. Nantucket LORAN NEC wire model 24 (625’ monopole ) Figure 12. Nantucket LORAN NEC model (top view, 25 numbered...LORAN measured vs. predicted H fields 28 Figure 16. Dana LORAN measured vs. predicted E fields 29 Figure 17. Seneca LORAN NEC wire model (700’ monopole ...antenna 4. Power outputs and rms-to-peak ratios for 625 23 foot monopoles 5. NEC predicted electric field strengths for 31 625 foot LORAN-C monopoles 6

  3. 75 FR 997 - Record of Decision (ROD) on the U.S. Coast Guard Long Range Aids to Navigation (Loran-C) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ... first developed during World War II and operated by the USCG. The current Loran-C system is a low... the Loran-C radionavigation signal by October 1, 2010. ADDRESSES: To view the ROD or the Final PEIS... the Loran-C radionavigation signal by October 1, 2010. The Final PEIS on the future of the USCG Loran...

  4. 75 FR 42819 - Airborne Area Navigation Equipment Using Loran-C Inputs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... Using Loran-C Inputs AGENCY: Federal Aviation Administration (FAA), DOT ACTION: Notice of cancellation of: (1) Loran-C navigation system Technical Standard Orders (TSO); and (2) the revocation of Loran-C... the cancellation of Technical Standard Order (TSO) C-60, Airborne Area Navigation Equipment Using...

  5. 75 FR 22674 - Airborne Area Navigation Equipment Using Loran-C Inputs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Using Loran-C Inputs AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of cancellation of: (1) Loran-C navigation system Technical Standard Orders (TSO); and (2) the revocation of Loran-C... the cancellation of Technical Standard Order (TSO) C-60, Airborne Area Navigation Equipment Using...

  6. 75 FR 998 - Terminate Long Range Aids to Navigation (Loran-C) Signal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ... to Navigation (Loran-C) Signal AGENCY: U.S. Coast Guard, DHS. ACTION: Notice. SUMMARY: On October 28... Act allows for the termination of the Loran-C system subject to the Coast Guard certifying that termination of the Loran-C signal will not adversely impact the safety of maritime navigation and the...

  7. Initial flight test of a Loran-C receiver/data collection system

    NASA Technical Reports Server (NTRS)

    Fischer, J. P.; Nickum, J. D.

    1978-01-01

    Development of a low cost Loran C receiver for general aviation use is discussed. The preparation and procedure of a flight test conducted with a receiver design which utilizes a phase locked loop oscillator to track the Loran C signals is described. It is indicated that such a receiver is a viable alternative for future work in developing a low cost Loran-C navigator.

  8. Time synchronization of NASA tracking stations via LORAN-C

    NASA Technical Reports Server (NTRS)

    Mazur, W. E., Jr.

    1973-01-01

    A report is presented of the results observed in comparison between LORAN-C and accurate portable clocks carried to the stations of NASA's world-wide space tracking and data network. It is believed that such information can provide a meaningful determination of the accuracy of the LORAN-C technique. The investigation shows the need for the employment of portable clocks during, or shortly after the installation of LORAN-C receivers.

  9. 75 FR 1799 - Terminate Long Range Aids to Navigation (Loran-C) Signal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... to Navigation (Loran-C) Signal AGENCY: U.S. Coast Guard, DHS. ACTION: Notice; correction. SUMMARY... 998). The document announced termination of the Long Range Aids to Navigation (Loran-C) Signal...

  10. FAA Loran early implementation project

    DOT National Transportation Integrated Search

    1990-03-01

    The Early Implementation Project (EIP), established by FAA Administrator Admiral : Donald C. Engen, was the initial step in the process of Loran integration into the : National Airsace System (NAS). The EIP was designed to give the FAA and the Loran ...

  11. All chain Loran-C time synchronization

    NASA Technical Reports Server (NTRS)

    Sherman, H. T.

    1973-01-01

    A program is in progress to implement coordinated universal time (UTC) synchronization on all Loran-C transmissions. The present capability is limited to five Loran-C chains in which the tolerance is twenty-five microseconds with respect to UTC. Upon completion of the program, the transmissions of all Loran-C chains will be maintained within five microseconds of UTC. The improvement plan consists of equipping selected Loran-C transmitting stations for greater precision of frequency standard adjustment and improved monitoring capability. External time monitor stations will utilize television time transfer techniques with nearby SATCOM terminals where practicable, thus providing the requisite traceability to the Naval Observatory. The monitor equipment groups and the interrelationships with the ground station equipment are discussed. After a brief review of control doctrine, forth-coming improvements to transmitting stations and how the time monitor and navigation equipments will complement each other resulting in improved service to all users of the Loran-C system are described.

  12. Loran-C digital word generator for use with a KIM-1 microprocessor system

    NASA Technical Reports Server (NTRS)

    Nickum, J. D.

    1977-01-01

    The problem of translating the time of occurrence of received Loran-C pulses into a time, referenced to a particular period of occurrence is addressed and applied to the design of a digital word generator for a Loran-C sensor processor package. The digital information from this word generator is processed in a KIM-1 microprocessor system which is based on the MOS 6502 CPU. This final system will consist of a complete time difference sensor processor for determining position information using Loran-C charts. The system consists of the KIM-1 microprocessor module, a 4K RAM memory board, a user interface, and the Loran-C word generator.

  13. 14 CFR 170.23 - LORAN-C establishment criteria.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... quality and accuracy to pass an FAA flight inspection. (4) It must be possible to remove, mark, or light... ratio of the present value of the LORAN-C life-cycle benefits (PVB) to the present value of LORAN-C life...

  14. 14 CFR 170.23 - LORAN-C establishment criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ratio of the present value of the LORAN-C life-cycle benefits (PVB) to the present value of LORAN-C life-cycle costs (PVC): PVB/PVC ≥ 1.0 (c) The criteria do not cover all situations that may arise and are not...

  15. 14 CFR 170.23 - LORAN-C establishment criteria.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ratio of the present value of the LORAN-C life-cycle benefits (PVB) to the present value of LORAN-C life-cycle costs (PVC): PVB/PVC ≥ 1.0 (c) The criteria do not cover all situations that may arise and are not...

  16. Guidelines for the Design of GPS and LORAN Receiver Controls and Displays

    DOT National Transportation Integrated Search

    1995-03-01

    Long range navigation (Loran) and global positioning system (GPS) receivers are widely used in aviation. The Loran and GPS receivers are similar in size and function but derive their navigation signals from different sources. The design of the contro...

  17. Test Results for Developing Revised LORAN-C Protection Criteria

    DOT National Transportation Integrated Search

    1985-11-01

    This report presents the results obtained from a series of tests and related analyses studying the effect of harmful RF interference on LORAN-C receivers. The effects of interference in the 70 to 130 kHz band on typical LORAN-C receivers were assesse...

  18. Investigation of air transportation technology at Massachusetts Institute of Technology, 1984

    NASA Technical Reports Server (NTRS)

    Simpson, Robert W.

    1987-01-01

    Three projects sponsored by the Joint University Program at MIT are summarized. Two projects were focussed on the potential application of Loran-C in flying nonprecision approaches to general aviation runways, and the third project involved research on aircraft icing. In one Loran-C project, Aircraft Approach Guidance Using Relative Loran-C Navigation, the concept was flight tested. It used the difference in TD's from those of the touchdown point to simplify and speed navigation computer processing and took advantage of the short term accuracy of less than 100 feet for Loran-C. The goal of the project, Probabilistic Modelling of Loran-C Error for Nonprecision Approaches, was to develop a mathematical model which would predict the probability that an approach flown to a runway with a particular Loran-C receiver would fall within a given standard. The Aircraft Icing project focussed on measurement of droplet trajectories and droplet impingement/runback characteristics and measurement of real time ice accretion using ultrasonic pulse echo techniques.

  19. Phase-locked tracking loops for LORAN-C

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1978-01-01

    Portable battery operated LORAN-C receivers were fabricated to evaluate simple envelope detector methods with hybrid analog to digital phase locked loop sensor processors. The receivers are used to evaluate LORAN-C in general aviation applications. Complete circuit details are given for the experimental sensor and readout system.

  20. Loran-C time difference calculations

    NASA Technical Reports Server (NTRS)

    Fischer, J. P.

    1978-01-01

    Some of the simpler mathematical equations which may be used in Loran-C navigation calculations were examined. A technique is presented to allow Loran-C time differences to be predicted at a location. This is useful for receiver performance work, and a tool for more complex calculations, such as position fixing.

  1. An analysis of the adaptability of Loran-C to air navigation

    NASA Technical Reports Server (NTRS)

    Littlefield, J. A.

    1981-01-01

    The sources of position errors characteristics of the Loran-C navigation system were identified. Particular emphasis was given to their point on entry as well as their elimination. It is shown that the ratio of realized accuracy to theoretical accuracy of the Loran-C is highly receiver dependent.

  2. Effects of Primary Power Transmission Lines on the Performance of Loran-C Receivers in Experimental Terrestrial Applications

    DOT National Transportation Integrated Search

    1979-07-01

    Tests were conducted to measure the effect generated by high-voltage transmission lines with and without supervisory carrier signals on the performance of typical LORAN-C receivers which might be used for land vehicle applications of the LORAN-C Navi...

  3. 14 CFR 170.23 - LORAN-C establishment criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) NAVIGATIONAL FACILITIES ESTABLISHMENT AND DISCONTINUANCE CRITERIA FOR AIR TRAFFIC CONTROL...-cost ratio equals or exceeds one). As defined in § 170.3 of this part, the benefit-cost ratio is the ratio of the present value of the LORAN-C life-cycle benefits (PVB) to the present value of LORAN-C life...

  4. 14 CFR 170.23 - LORAN-C establishment criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ratio of the present value of the LORAN-C life-cycle benefits (PVB) to the present value of LORAN-C life-cycle costs (PVC): PVB/PVC ≥ 1.0 (c) The criteria do not cover all situations that may arise and are not... acceptable for instrument flight rules operations as a result of an airport airspace analysis conducted in...

  5. Loran-C flight data base

    NASA Technical Reports Server (NTRS)

    Lilley, R. W.

    1979-01-01

    Loran-C time-difference data were collected on January 9, 1979 during a flight from Athens, Ohio to Madison VOR in Connecticut, thence to Millville VOR in New Jersey, and a landing at Atlantic City NAFEC. Portions of the return trip to Athens, Ohio were also recorded. Loran-C GRI data frames were recorded using the 99600 U. S. Northeast Loran chain stations Seneca/Nantucket (TDA) and Seneca/Carolina Beach (TDB). The GRI sequence number TDA and TDB were recorded as integer numbers, with the TD's in integer microseconds. Actual time-of-day can be determined from the data start time, plus the time per GRI and the sequence number. The low cost Loran-C receiver was used to obtain the time-difference data for each GRI. Data was recorded on digital magnetic tape and post-processed into latitude and longitude using an IBM system/370 computer.

  6. Satellite Navigation Backup Study

    DTIC Science & Technology

    2007-09-19

    uro pe Eu rop...nd s To tal E uro pe Eu rop e A C Eu rop e G A Eu rop e G ov /St nd s D/D/I GPS/INS eLORAN Figure 6-14: Assessment Results – Solution Preference...LORAN for RNP 0.3 Approach: The Preliminary Conclusions of LORAN Integrity Performance Panel (LORIPP); Sherman Lo , Per Enge, Ben Peterson,

  7. Loran-C performance assurance assessment program

    NASA Technical Reports Server (NTRS)

    Lilley, Robert W.; Brooks, N. Kent

    1992-01-01

    The Federal Aviation Administration (FAA) has accepted the Loran-C navigation system as a supplemental navigation aid for enroute use. Extension of Loran-C utilization to instrument approaches requires establishment of a process by which the current level of performance of the system is always known by the pilot. This system 'integrity' translates into confidence that, if the system is made available to the pilot, the guidance will be correct. Early in the consideration of Loran-C for instrument approaches, the Loran-C Planning Work-Group (LPW) was formed with membership from the FAA, the US Coast Guard, various state governments, aviation users, equipment manufacturers and technical experts. The group was hosted and co-chaired by the National Association of State Aviation Officials (NASAO). This forum was ideal for identification of system integrity issues and for finding the correct process for their resolution. Additionally, the Wild Goose Association (WGA), which is the international Loran-C technical and user forum, regularly brings together members of the FAA, Coast Guard, and the scientific community. Papers and discussions from WGA meetings have been helpful. Given here is a collection of the issues in which Ohio University became involved. Issues definition and resolution are included along with the recommendations in those areas where resolution is not yet complete.

  8. Summary of paper: Area navigation implementation for a microcomputer-based Loran-C receiver

    NASA Technical Reports Server (NTRS)

    Oguri, Fujiko

    1987-01-01

    The development of an area navigation program and the implementation of this software on a microcomputer-based Loran-C receiver to provide high-quality, practical area navigation information for general aviation are described. This software provides range and bearing angle to a selected waypoint, cross-track error, course deviation indication (CDI), ground speed, and estimated time of arrival at the waypoint. The range/bearing calculation, using an elliptical Earth model, provides very good accuracy; the error does not exceed more than -.012 nm (range) or 0.09 degree (bearing) for a maximum range to 530 nm. The alpha-beta filtering is applied in order to reduce the random noise on Loran-C raw data and in the ground speed calculation. Due to alpha-beta filtering, the ground speed calculation has good stability for constant or low-accelerative flight. The execution time of this software is approximately 0.2 second. Flight testing was done with a prototype Loran-C front-end receiver, with the Loran-C area navigation software demonstrating the ability to provide navigation for the pilot to any point in the Loran-C coverage area in true area navigation fashion without line-of-sight and range restriction typical of VOR area navigation.

  9. A microcomputer-based position updating system for general aviation utilizing Loran-C

    NASA Technical Reports Server (NTRS)

    Fischer, J. P.

    1982-01-01

    Modern digital electronic technology is used to produce a device to convert LORAN C to useful pilot information using a simple software algebra and low cost microprocessor devices. Results indicate that the processor based LORAN C navigator has an accuracy of 1.0 nm or less over an area typically covered by a triad of Loran C stations and can execute a position update in less than 0.2 seconds. The system was tested in 30 hours of flight and proved that it can give reliable and accurate navigation information. Methods of converting time differences to position, design considerations for the microcomputer system, and the system for coordinate conversion are discussed. Testing with predetermined points and possible fixes for errors are also considered.

  10. Computing LORAN time differences with an HP-25 hand calculator

    NASA Technical Reports Server (NTRS)

    Jones, E. D.

    1978-01-01

    A program for an HP-25 or HP-25C hand calculator that will calculate accurate LORAN-C time differences is described and presented. The program is most useful when checking the accuracy of a LORAN-C receiver at a known latitude and longitude without the aid of an expensive computer. It can thus be used to compute time differences for known landmarks or waypoints to predict in advance the approximate readings during a navigation mission.

  11. Area navigation implementation for a microcomputer-based LORAN-C receiver

    NASA Technical Reports Server (NTRS)

    Oguri, F.

    1983-01-01

    Engineering performed to make LORAN-C a more useful and practical navigation system for general aviation is described. Development of new software, and implementation of this software on a (MOS6502) microcomputer to provide high quality practical area navigation information directly to the pilot and considered. Flight tests were performed specifically to examine the efficacy of this new software. Final results were exceptionally good and clearly demonstrate the merits of this new LORAN-C area navigation system.

  12. Performance Trials of an Integrated Loran/GPS/IMU Navigation System, Part 1

    DTIC Science & Technology

    2005-01-27

    differences are used to correct the grid values in the absence of a local ASF monitor station . Performance of the receiver using different ASF grids...United States is served by the North American Loran-C system made up of 29 stations organized into 10 chains (see Figure 1). Loran coverage is...the absence of a local ASF monitor station . Performance of the receiver using different ASF grids and interpolation techniques and corrected using the

  13. LORAN-C data reduction at the US Naval Observatory

    NASA Technical Reports Server (NTRS)

    Chadsey, Harold

    1992-01-01

    As part of its mission and in cooperation with the U.S. Coast Guard, the U.S. Naval Observatory (USNO) monitors and reports the timing of the LORAN-C chains. The procedures for monitoring and processing the reported values have evolved with advances in monitoring equipment, computer interfaces and PCs. This paper discusses the current standardized procedures used by USNO to sort the raw data according to Group Repetition Interval (GRI) rate, to fit and smooth the data points, and, for chains remotely monitored, to tie the values to the USNO Master Clock. The results of these procedures are the LORAN time of transmission values, as references to UTC(USNO) (Universal Coordinated Time) for all LORAN chains. This information is available to users via USNO publications and the USNO Automated Data Service (ADS).

  14. Preliminary Analysis of LORAN-C System Reliability for Civil Aviation.

    DTIC Science & Technology

    1981-09-01

    overviev of the analysis technique. Section 3 describes the computerized LORAN-C coverage model which is used extensively in the reliability analysis...Xth Plenary Assembly, Geneva, 1963, published by International Telecomunications Union. S. Braff, R., Computer program to calculate a Karkov Chain Reliability Model, unpublished york, MITRE Corporation. A-1 I.° , 44J Ili *Y 0E 00 ...F i8 1110 Prelim inary Analysis of Program Engineering & LORAN’C System ReliabilityMaintenance Service i ~Washington. D.C.

  15. Loran-C Signal Stability Study: Saint Marys River

    DTIC Science & Technology

    1982-12-01

    located at Plumbrook , Ohio. During the ,. Supplemental LOP experiment, the station at Gordon Lake, Ontario transmitted * signals as the 8970-Z baseline...PaZe 1-1 St. Marys River Loran-C Mini-Chain 1-6 2-1 Great Lakes Loran-C Chain Northern Stations 2-1 2-2 St. Marys River Stability Study Monitor Sites 2-2...attempt an educated guess, however, it would soon become apparent that the number of stations required to satisfy "potential needs" in all HHE areas

  16. Human Factors for Loran-C Receivers

    DOT National Transportation Integrated Search

    1990-04-01

    Loran-C is an inexpensive, compact, and functionally powerful area navigation system. : The application of this system to aeronautical navigation is an exciting occurrence for : general aviation pilots. In the cockpit these systems simplify and incre...

  17. Flight evaluation of LORAN-C in the State of Vermont

    NASA Technical Reports Server (NTRS)

    Mackenzie, F. D.; Lytle, C. D.

    1981-01-01

    A flight evaluation of LORAN C as a supplement to existing navigation aids for general aviation aircraft, particularly in mountainous regions of the United States and where VOR coverage is limited was conducted. Flights, initiated in the summer months, extend through four seasons and practically all weather conditions typical of northeastern U.S. operations. Assessment of all the data available indicates that LORAN C signals are suitable as a means of navigation during enroute, terminal and nonprecision approach operations and the performance exceeds the minimum accuracy criteria.

  18. On time scales and time synchronization using LORAN-C as a time reference signal

    NASA Technical Reports Server (NTRS)

    Chi, A. R.

    1974-01-01

    The long term performance of the eight LORAN-C chains is presented in terms of the Coordinated Universal Time (UTC) of the U.S. Naval Observatory (USNO); and the use of the LORAN-C navigation system for maintaining the user's clock to a UTC scale is described. The atomic time scale and the UTC of several national laboratories and observatories relative to the international atomic time are reported. Typical performance of several NASA tracking station clocks, relative to the USNO master clock, is also presented.

  19. Loran-Based Buoy Position Auditing Systems - Analytical Evaluation

    DOT National Transportation Integrated Search

    1980-02-01

    An analytic evaluation and comparison of the following candidate Buoy Position Auditing System (BPAS) configurations is presented in this report: transmission of digital Time Difference (TD) data from a Loran-C receiver on the buoy, retransmission of...

  20. Pilot GPS LORAN Receiver Programming Performance A Laboratory Evaluation

    DOT National Transportation Integrated Search

    1994-02-01

    This study was designed to explore GPS/LORAN receiver programming performance under : simulated flight conditions. The programming task consisted of entering, editing, and : verifying a four-waypoint flight plan. The task demands were manipulated by ...

  1. Loran-C RFI Measured in Los Angeles, California

    DOT National Transportation Integrated Search

    1980-10-01

    Radio noise and RFI at and near frequencies employed by Loran-C radio navigation systems were investigated in portions of Los Angeles, California. Emphasis was placed on the definition of the detailed time and frequency domain structure of noise and ...

  2. Loran Automatic Vehicle Monitoring System, Phase I : Volume 2. Appendices.

    DOT National Transportation Integrated Search

    1977-08-01

    Presents results of the evaluation phase of a two phase program to develop an Automatic Vehicle Monitoring (AVM) system for the Southern California Rapid Transit District in Los Angeles, California. Tests were previously conducted on a Loran based lo...

  3. Determination of LORAN-C/GPS Human Factors Issues

    DOT National Transportation Integrated Search

    1993-04-01

    Discussions were held with a variety of private, Coast Guard, and off shore airplane : and helicopter pilots who use Loran-C for navigation. These discussions revealed a : number of problems concerning the design and use of' the controls and displays...

  4. Bibliography and Comments on Loran-C Ground Wave Propagation

    DOT National Transportation Integrated Search

    1977-12-01

    The report contains a selected bibliography of work dealing with ground wave propagation of Loran-C signals. The selected works include reports of both theoretical and measurement activities over both water and land. A summary of and comments on Lora...

  5. Circuit Methods for VLF Antenna Couplers. [for use in Loran or Omega receiver systems

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1977-01-01

    The limitations of different E-field antenna coupler or preamplifier circuits are presented. All circuits were evaluated using actual Loran or Omega signals. Electric field whip or wire antennas are the simplest types which can be used for reception of VLF signals in the 10 to 100 kHz range. JFET or MOSFET transistors provide impedance transformation and some voltage gain in simple circuits where the power for operating the preamplifier uses the same coaxial cable that feeds the signal back to the receiver. The circuit techniques provide useful alternative methods for Loran-Omega receiver system designers.

  6. Preliminary description of the area navigation software for a microcomputer-based Loran-C receiver

    NASA Technical Reports Server (NTRS)

    Oguri, F.

    1983-01-01

    The development of new software implementation of this software on a microcomputer (MOS 6502) to provide high quality navigation information is described. This software development provides Area/Route Navigation (RNAV) information from Time Differences (TDs) in raw form using an elliptical Earth model and a spherical model. The software is prepared for the microcomputer based Loran-C receiver. To compute navigation infomation, a (MOS 6502) microcomputer and a mathematical chip (AM 9511A) were combined with the Loran-C receiver. Final data reveals that this software does indeed provide accurate information with reasonable execution times.

  7. Loran Automatic Vehicle Monitoring System, Phase I : Volume 1. Test Results.

    DOT National Transportation Integrated Search

    1977-08-01

    Presents results of the evaluation phase of a two phase program to develop an Automatic Vehicle Monitoring (AVM) system for the Southern California Rapid Transit District in Los Angeles, California. Tests were previously conducted on a Loran based lo...

  8. 14 CFR 170.25 - LORAN-C discontinuance criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 170.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... nonprecision approach may be subject to discontinuance when the present value of the continued maintenance costs (PVCM) of the LORAN-C approach exceed the present value of its remaining life-cycle benefits (PVB...

  9. Survey of State-of-the-Art LORAN-C Receivers

    DOT National Transportation Integrated Search

    1984-01-01

    This report is a summary of the state-of-the-art in LORAN-C receiver design (April 1984). The data sources were manufacturers, designers, and trade literature. Every effort was made to accurately depict the status of receiver design activity in the m...

  10. Benefits and Costs of Loran-C Expansion in the Hawaiian Islands

    DOT National Transportation Integrated Search

    1992-12-01

    This study assesses the benefits and costs to the marine community of the expansion and/or retention of the Central Pacific LORAN-C chain. Included are projections through the year 2000 for user and government costs and benefits, user populations, tr...

  11. Benefits and Costs of Loran-C Expansion into the Eastern Caribbean

    DOT National Transportation Integrated Search

    1981-01-01

    This study assesses the benefits and costs to the marine community of various LORAN-C alternatives for possible expansion into the Eastern Caribbean. Also considered, but at a lesser level of detail, is the application of Differential Omega as an add...

  12. Testing a Mobile Version of a Cross-Chain Loran Atmospheric (M-CLASS) Sounding System.

    NASA Astrophysics Data System (ADS)

    Rust, W. David; Burgess, Donald W.; Maddox, Robert A.; Showell, Lester C.; Marshall, Thomas C.; Lauritsen, Dean K.

    1990-02-01

    We have Rested the NCAR Cross-Chain LORAN Atmospheric Sounding System (CLASS) in a fully mobile configuration, which we call M-CLASS. The sondes use LORAN-C navigation signals to allow calculation of balloon position and horizontal winds. In nonstormy environments, thermodynamics and wind data were almost always of high quality. Besides providing special soundings for operational forecasts and research programs, a major feature of mobile ballooning with M-CLASS is the ability to obtain additional data by flying other instruments on the balloons. We flew an electric field meter, along with a sonde, into storms on 8 of the initial 47 test flights in the spring of 1987. In storms, pressure, temperature, humidity, and wind data were of good quality about 80%, 75%, 60%, and 40% of the time, respectively. In a flight into a mesocyclone, we measured electric fields as high as 135 kV/m (at 10 km MSL) in a region of negative charge. The electric field data from several storms allow a quantitative assessment of conditions that accompany loss of LORAN data. LORAN tracking was lost at a median field of about 16 kV/m, and it returned at a median field of about 7 kV/m. Corona discharge from the LORAN antenna on the sonde was a cause of the loss of LORAN. We provided our early-afternoon M-CLASS test soundings to the National Weather Service Forecast Office in Norman, Oklahoma, in near real-time via amateur packet radio and also to the National Severe Storms Forecast Center. These soundings illustrate the potential for improving operational forecasts. Other test flights showed that M-CLASS data can provide high-resolution information on evolution of the Great Plains low-level jet stream. Our intercept of Hurricane Gilbert provided M-CLASS soundings in the right quadrant of the storm. We observed substantial wind shear in the lowest levels of the soundings around the time tornadoes were reported in south Texas. This intercept demonstrated the feasibility of taking M-CLASS data during the landfall phase of hurricanes and tropical storms.

  13. Broadcasting GPS integrity information using Loran-C

    NASA Astrophysics Data System (ADS)

    Lo, Sherman Chih

    The United States Federal Aviation Administration (FAA) will adopt the Global Positioning System (GPS) as its primary navigation systems for aviation as stated by the Federal Radionavigation Plans (FRP) of 1996 and 1999. The FRP also proposes the reduction or termination of some existing radionavigation system in favor of GPS and satellite navigation. It may be beneficial to retain some of these existing terrestrial navigation systems if they can provide increased safety and redundancy to the GPS based architecture. One manner in which this can be done is by using or creating a data link on these existing radionavigation systems. These systems thus can provide both navigation and an additional broadcast of GPS integrity information. This thesis examines the use of terrestrial data links to provide Wide Area Augmentation System (WAAS) based GPS integrity information for aviation. The thesis focuses on using Loran-C to broadcast WAAS data. Analysis and experimental results demonstrating the capabilities of these designs are also discussed. Using Loran for this purpose requires increasing its data capacity. Many Loran modulation schemes are developed and analyzed. The data rates developed significantly increased the Loran data capacity. However, retaining compatibility with Loran legacy users resulted in data rates below the WARS data rate of 250 bps. As a result, this thesis also examines means of reducing the data requirements for WAAS information. While higher data rates offer improved performance and compatibility with WAAS, this thesis demonstrates that higher rates incur greater interference. Therefore, this work develops and considers a 108 bps and 167 bps Loran GPS integrity channel (LOGIC) design. The performance of the two designs illustrates some of the advantages and disadvantages of using a higher data rate. Analysis demonstrated means of maintaining integrity with these low data rate systems and determined the theoretical capabilities of the systems. The system was tested empirically by developing software that generated the LOGIC message and applied these messages to a GPS user. The resulting 108 bps and 167 bps systems demonstrated capability to provide lateral navigation/vertical navigation (LNAV/VNAV) and approach with vertical guidance (APV) respectively.

  14. Performance of Loran-C chains relative to UTC

    NASA Technical Reports Server (NTRS)

    Chi, A. R.

    1974-01-01

    The long term performance of the eight Loran-C chains in terms of the Coordinated Universal Time (UTC) of the U.S. Naval Observatory (USNO) and the use of the Loran-C navigation system to maintain the user's clock to a UTC scale, are examined. The atomic time (AT) scale and the UTC of several national laboratories and observatories relative to the international atomic time (TAI) are presented. In addition, typical performance of several NASA tracking station clocks, relative to the USNO master clock, is also presented. Recent revision of the Coordinated Universal Time (UTC) by the International Radio Consultative Committee (CCIR) is given in an appendix.

  15. Interference and Noise in and Adjacent to the Loran-C Spectrum at Airports

    DOT National Transportation Integrated Search

    1980-05-01

    Electrical noise and interference in the LORAN-C frequency band was measured at two rural airports in Vermont and a major airport in Boston, Mass. The purpose of the test program was to determine the potential interfering sources that could affect th...

  16. Costs and Benefits of a Mid-Continent Expansion of Loran-C

    DOT National Transportation Integrated Search

    1979-03-01

    Loran-C chains currently in operation or approved for construction will soon cover not only the U.S. coastal and Great Lakes waters, but also 63 percent of the land area and 92 percent of the population of the contiguous 48 states. The mid-continent ...

  17. Relationships between U.S. Naval Observatory, LORAN-C and the Defense Satellite Communication System

    NASA Technical Reports Server (NTRS)

    Charron, L. G.

    1982-01-01

    The methods used in forming time scales for distant sites monitoring LORAN-C are addressed. The time transfers obtained via the defense satellite communication system (DSCS) and the data provided by this system used to calibrate these remote time scales are emphasized. The errors involved are discussed.

  18. Test Plan for Experimental Measurements of Radio Noise and Electromagnetic Interference at Logan and Burlington Airports

    DOT National Transportation Integrated Search

    1979-10-01

    A test plan is designed to" (a) evaluate the performance of several types of LORAN-C receivers in the vicinity of both a large metropolitan and a small rural airport, (b) measure the electromagnetic interference in the LORAN-C band (100+/-50 KHZ) at ...

  19. Design and operation of a Loran-C time reference station

    NASA Technical Reports Server (NTRS)

    Putkovich, K.

    1974-01-01

    Some of the practical questions that arise when one decides to use Loran-C in a time reference system are explored. An extensive effort is made to provide basic, practical information on establishing and operating a reference station. Four areas were covered: (1) the design, configuration and operational concepts which should be considered prior to establishing and operating a reference station using Loran-C, (2) the options and tradeoffs available regarding capabilities, cost, size, versatility, ease of operation, etc., that are available to the designer, (3) what measurements are made, how they are made and what they mean, and (4) the experience the U.S. Naval Observatory Time Service Division has had in the design and operation of such stations.

  20. Loran-C time management

    NASA Technical Reports Server (NTRS)

    Justice, Charles; Mason, Norm; Taggart, Doug

    1994-01-01

    As of 1 Oct. 1993, the US Coast Guard (USCG) supports and operates fifteen Loran-C chains. With the introduction of the Global Positioning Systems (GPS) and the termination of the Department of Defense (DOD) overseas need for Loran-C, the USCG will cease operating the three remaining overseas chains by 31 Dec. 1994. Following this date, the USCG Loran-C system will consist of twelve chains. Since 1971, management of time synchronization of the Loran-C system has been conducted under a Memorandum of Agreement between the US Naval Observatory (USNO) and the USCG. The requirement to maintain synchronization with Coordinated Universal Time (UTC) was initially specified as +/- 25 microseconds. This tolerance was rapidly lowered to +/- 2.5 microseconds in 1974. To manage this synchronization requirement, the USCG incorporated administrative practices which kept the USNO appraised of all aspects of the master timing path. This included procedures for responding to timing path failures, timing adjustments, and time steps. Conducting these aspects of time synchronization depended on message traffic between the various master stations and the USNO. To determine clock adjustment the USCG relied upon the USNO's Series 4 and 100 updates so that the characteristics of the master clock could be plotted and controls appropriately applied. In 1987, Public Law 100-223, under the Airport and Airway Improvement Act Amendment, reduced the synchronization tolerance to approximately 100 nanoseconds for chains serving the National Airspace System (NAS). This action caused changes in the previous administrative procedures and techniques. The actions taken by the USCG to meet the requirements of this law are presented.

  1. Modified timing module for Loran-C receiver

    NASA Technical Reports Server (NTRS)

    Lilley, R. W.

    1983-01-01

    Full hardware documentation is provided for the circuit card implementing the Loran-C timing loop, and the receiver event-mark and re-track functions. This documentation is to be combined with overall receiver drawings to form the as-built record for this device. Computer software to support this module is integrated with the remainder of the receiver software, in the LORPROM program.

  2. LORAN-C LATITUDE-LONGITUDE CONVERSION AT SEA: PROGRAMMING CONSIDERATIONS.

    USGS Publications Warehouse

    McCullough, James R.; Irwin, Barry J.; Bowles, Robert M.

    1985-01-01

    Comparisons are made of the precision of arc-length routines as computer precision is reduced. Overland propagation delays are discussed and illustrated with observations from offshore New England. Present practice of LORAN-C error budget modeling is then reviewed with the suggestion that additional terms be considered in future modeling. Finally, some detailed numeric examples are provided to help with new computer program checkout.

  3. Realtime mitigation of GPS SA errors using Loran-C

    NASA Technical Reports Server (NTRS)

    Braasch, Soo Y.

    1994-01-01

    The hybrid use of Loran-C with the Global Positioning System (GPS) was shown capable of providing a sole-means of enroute air radionavigation. By allowing pilots to fly direct to their destinations, use of this system is resulting in significant time savings and therefore fuel savings as well. However, a major error source limiting the accuracy of GPS is the intentional degradation of the GPS signal known as Selective Availability (SA). SA-induced position errors are highly correlated and far exceed all other error sources (horizontal position error: 100 meters, 95 percent). Realtime mitigation of SA errors from the position solution is highly desirable. How that can be achieved is discussed. The stability of Loran-C signals is exploited to reduce SA errors. The theory behind this technique is discussed and results using bench and flight data are given.

  4. When Soldiers Speak Out: A Survey of Provisions Limiting Freedom of Speech in the Military

    DTIC Science & Technology

    2007-01-01

    When Soldiers Speak Out: A Survey of Provisions Limiting Freedom of Speech in the Military JOHN LORAN KIEL, JR. © 2007 John Loran Kiel, Jr. “The war...When Soldiers Speak Out: ASurvey of Provisions Limiting Freedom of Speech in the Military 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...refusal to deploy to Iraq. As service members become more vocal about the war, commanders need to become more familiar with how freedom of speech is

  5. Loran digital phase-locked loop and RF front-end system error analysis

    NASA Technical Reports Server (NTRS)

    Mccall, D. L.

    1979-01-01

    An analysis of the system performance of the digital phase locked loops (DPLL) and RF front end that are implemented in the MINI-L4 Loran receiver is presented. Three of the four experiments deal with the performance of the digital phase locked loops. The other experiment deals with the RF front end and DPLL system error which arise in the front end due to poor signal to noise ratios. The ability of the DPLLs to track the offsets is studied.

  6. Loran-C Signal Stability Study. Northeast and Southeast U.S

    DTIC Science & Technology

    1983-08-01

    station would solve the problems along the Texas coast. The report shows that the repeatable accuracy of existing Loran-C Is better than 40-mpte--. 2...receivers are located at "unmanned" sites with the readings being sent to chain control stations (e.g., Seneca, Middletown) via phone lines. Thus...for a type A installation, we simply install equipment at the control station to "listen in" on the existing phone line and gather and store the data to

  7. Method to improve accuracy of positioning object by eLoran system with applying standard Kalman filter

    NASA Astrophysics Data System (ADS)

    Grunin, A. P.; Kalinov, G. A.; Bolokhovtsev, A. V.; Sai, S. V.

    2018-05-01

    This article reports on a novel method to improve the accuracy of positioning an object by a low frequency hyperbolic radio navigation system like an eLoran. This method is based on the application of the standard Kalman filter. Investigations of an affection of the filter parameters and the type of the movement on accuracy of the vehicle position estimation are carried out. Evaluation of the method accuracy was investigated by separating data from the semi-empirical movement model to different types of movements.

  8. Frequency stabilization for mobile satellite terminals via LORAN

    NASA Technical Reports Server (NTRS)

    Ernst, Gregory J.; Kee, Steven M.; Marquart, Robert C.

    1990-01-01

    Digital satellite communication systems require careful management of frequency stability. Historically, frequency stability has been accomplished by continuously powered, high cost, high performance reference oscillators. Today's low cost mobile satellite communication equipment must operate under wide ranging environmental conditions, stabilize quickly after application of power, and provide adequate performance margin to overcome RF link impairments unique to the land mobile environment. Methods for frequency stabilization in land mobile applications must meet these objectives without incurring excessive performance degradation. A frequency stabilization scheme utilizing the LORAN (Long Range Navigation) system is presented.

  9. PILOT: A Precision Intercoastal Loran Translocator. Volume 3. Software.

    DTIC Science & Technology

    1982-03-01

    includes a second loran receiver (for cross chain operation), an interface or modem for remotely entering TD bias values, and a printer. b. The nucleus...developing an interface board to connect to the ship’s gyro, and a TD bias modem or box, replacing the large general purpose keyboard with a small predefined...The PILOT program has divided this memory into 8K of RAM and 56K of EPROM. Of the 56K bytes of EPROM, 40K are HP code and 16K are PILOT code (see Fig. 3

  10. Investigation of air transportation technology at Massachusetts Institute of Technology, 1985

    NASA Technical Reports Server (NTRS)

    Simpson, Robert W.

    1987-01-01

    Two areas of research are discussed, an investigation into runway approach flying with Loran C and a series of research topics in the development of experimental validation of methodologies to support aircraft icing analysis. Flight tests with the Loran C led to the conclusion that it is a suitable system for non-precision approaches, and that time-difference corrections made every eight weeks in the instrument approach plates will produce acceptable errors. In the area of aircraft icing analysis, wind tunnel and flight test results are discussed.

  11. Results of the second flight test of the Loran-C receiver/data collection system

    NASA Technical Reports Server (NTRS)

    Fischer, J. P.

    1979-01-01

    The components of the Loran-C navigation system which were developed thus far are a phase-locked-loop receiver and a microcomputer development system. The microcomputer is being used as a means of testing and implementing software to handle sensor control and navigation calculations. Currently, the microcomputer is being used to collect and record data from the receiver in addition to development work. With these components, it was possible to record receiver data over a period of time and then reduce this data to obtain statistical information. It was particularly interesting to load the equipment developed in the laboratory into an aircraft and collect data while in flight. For initial flight tests, some important considerations were how well the entire system will perform in the field, signal strength levels while on the ground and in the air, the amount of noise present, changing of signal-to-noise ratio for various aircraft configurations and maneuvers, receiver overloading due to other equipment and antennas, and the overall usefulness of Loran-C as a navigation aid.

  12. Predicting radiative heat transfer in thermochemical nonequilibrium flow fields. Theory and user's manual for the LORAN code

    NASA Technical Reports Server (NTRS)

    Chambers, Lin Hartung

    1994-01-01

    The theory for radiation emission, absorption, and transfer in a thermochemical nonequilibrium flow is presented. The expressions developed reduce correctly to the limit at equilibrium. To implement the theory in a practical computer code, some approximations are used, particularly the smearing of molecular radiation. Details of these approximations are presented and helpful information is included concerning the use of the computer code. This user's manual should benefit both occasional users of the Langley Optimized Radiative Nonequilibrium (LORAN) code and those who wish to use it to experiment with improved models or properties.

  13. Stand-alone development system using a KIM-1 microcomputer module

    NASA Technical Reports Server (NTRS)

    Nickum, J. D.

    1978-01-01

    A small microprocessor-based system designed to: contain all or most of the interface hardware, designed to be easy to access and modify the hardware, to be capable of being strapped to the seat of a small general aviation aircraft, and to be independent of the aircraft power system is described. The system is used to develop a low cost Loran C sensor processor, but is designed such that the Loran interface boards may be removed and other hardware interfaces inserted into the same connectors. This flexibility is achieved through memory-mapping techniques into the microprocessor.

  14. Design considerations for a LORAN-C timing receiver in a hostile signal to noise environment

    NASA Technical Reports Server (NTRS)

    Porter, J. W.; Bowell, J. R.; Price, G. E.

    1981-01-01

    The environment in which a LORAN-C Timing Receiver may function effectively depends to a large extent on the techniques utilized to insure that interfering signals within the pass band of the unit are neutralized. The baseline performance manually operated timing receivers is discussed and the basic design considerations and necessary parameters for an automatic unit utilizing today's technology are established. Actual performance data is presented comparing the results obtained from a present generation timing receiver against a new generation microprocessor controlled automatic acquisition receiver. The achievements possible in a wide range of signal to noise situations are demonstrated.

  15. A micro-computer-based system to compute magnetic variation

    NASA Technical Reports Server (NTRS)

    Kaul, Rajan

    1987-01-01

    A mathematical model of magnetic variation in the continental United States was implemented in the Ohio University Loran-C receiver. The model is based on a least squares fit of a polynomial function. The implementation on the microprocessor based Loran-C receiver is possible with the help of a math chip which performs 32 bit floating point mathematical operations. A Peripheral Interface Adapter is used to communicate between the 6502 based microcomputer and the 9511 math chip. The implementation provides magnetic variation data to the pilot as a function of latitude and longitude. The model and the real time implementation in the receiver are described.

  16. Reliable Location-Based Services from Radio Navigation Systems

    PubMed Central

    Qiu, Di; Boneh, Dan; Lo, Sherman; Enge, Per

    2010-01-01

    Loran is a radio-based navigation system originally designed for naval applications. We show that Loran-C’s high-power and high repeatable accuracy are fantastic for security applications. First, we show how to derive a precise location tag—with a sensitivity of about 20 meters—that is difficult to project to an exact location. A device can use our location tag to block or allow certain actions, without knowing its precise location. To ensure that our tag is reproducible we make use of fuzzy extractors, a mechanism originally designed for biometric authentication. We build a fuzzy extractor specifically designed for radio-type errors and give experimental evidence to show its effectiveness. Second, we show that our location tag is difficult to predict from a distance. For example, an observer cannot predict the location tag inside a guarded data center from a few hundreds of meters away. As an application, consider a location-aware disk drive that will only work inside the data center. An attacker who steals the device and is capable of spoofing Loran-C signals, still cannot make the device work since he does not know what location tag to spoof. We provide experimental data supporting our unpredictability claim. PMID:22163532

  17. Reliable location-based services from radio navigation systems.

    PubMed

    Qiu, Di; Boneh, Dan; Lo, Sherman; Enge, Per

    2010-01-01

    Loran is a radio-based navigation system originally designed for naval applications. We show that Loran-C's high-power and high repeatable accuracy are fantastic for security applications. First, we show how to derive a precise location tag--with a sensitivity of about 20 meters--that is difficult to project to an exact location. A device can use our location tag to block or allow certain actions, without knowing its precise location. To ensure that our tag is reproducible we make use of fuzzy extractors, a mechanism originally designed for biometric authentication. We build a fuzzy extractor specifically designed for radio-type errors and give experimental evidence to show its effectiveness. Second, we show that our location tag is difficult to predict from a distance. For example, an observer cannot predict the location tag inside a guarded data center from a few hundreds of meters away. As an application, consider a location-aware disk drive that will only work inside the data center. An attacker who steals the device and is capable of spoofing Loran-C signals, still cannot make the device work since he does not know what location tag to spoof. We provide experimental data supporting our unpredictability claim.

  18. A micro-computer based system to compute magnetic variation

    NASA Technical Reports Server (NTRS)

    Kaul, R.

    1984-01-01

    A mathematical model of magnetic variation in the continental United States (COT48) was implemented in the Ohio University LORAN C receiver. The model is based on a least squares fit of a polynomial function. The implementation on the microprocessor based LORAN C receiver is possible with the help of a math chip, Am9511 which performs 32 bit floating point mathematical operations. A Peripheral Interface Adapter (M6520) is used to communicate between the 6502 based micro-computer and the 9511 math chip. The implementation provides magnetic variation data to the pilot as a function of latitude and longitude. The model and the real time implementation in the receiver are described.

  19. High-resolution seismic-reflection profiles collected aboard R/V James M. Gilliss Cruise GS-7903-3, over the Atlantic Continental Slope and Rise off New England

    USGS Publications Warehouse

    Bailey, Norman G.; Aaron, John M.

    1982-01-01

    During June 1979, the U.S. Geological Survey (USGS) collected 4,032 km of single-channel seismic-reflection data from the Atlantic Continental Slope and Rise off New England. The work was conducted aboard R/V JAMES M. GILLISS (cruise GS-7903-3). The purpose of the cruise was to determine the characteristics of mass sediment movement on the Continental Slope, and to study and correlate the stratigraphy of the Jurassic and Cretaceous strata lying north and south of the New England seamount chain.Seismic instrumentation included 40-in3, 160-in3, and 500-in3 airguns; a Teledyne 800-joule minisparker system; a 3-5-kHz to 7-kHz, hull-mounted tunable transducer; and a 7-channel analog tape recorder.Navigation control during the cruise was provided by a Western Integrated Navigation System capable of integrating satellite, rho-rho Loran-C, hyperbolic Loran-C, gyro compass, and doppler speed-log position data. The prime navigation sensor was the rho-rho Loran-C automatically recorded at 20-second intervals and manually plotted every 15 minutes, backed up by hyperbolic Loran-C fixes automatically recorded every 5 minutes.Of the 4,032 km of data collected, 3,257 km of 3-5-kHz, minisparker and 40-in3 airgun were for the sediment-slump studand the other 775 km of 3-5-kHz, minis parker, 160-in3 air gun and 500-in3 airgun were for the deep stratigraphy study. Overall, the quality of the data is excellent with good resolution and penetration.The original data may be examined at the U.S. Geological Survey, Woods Hole, MA 02543. Copies of the data can be purchased only from the National Geophysical and Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder, CO 80303 (303-497-6338).

  20. Loran-C monitor correlation over a 92-mile baseline in Ohio

    NASA Technical Reports Server (NTRS)

    Lilley, Robert W.; Edwards, Jamie S.

    1988-01-01

    Two Loran C monitors, at Galion and Athens, Ohio, were operated over a one-year period, measuring chain 9960 Time Delay (TD) and Signal to Noise Ratio (SNR). Analysis of data concentrated on correlation of short term TD variations during the winter months of 1985 to 86, over the 92 nm baseline. Excellent correlation was found, with slight additional improvement possible if local temperature is also included in the analysis. Although SNR and TD effects were suspected during the presence of thunderstorms near the monitors, the scope of the study did not permit storm by storm analysis. A computer tape data base of all measurements was produced, with measurements at both sites included. Data recording and analysis concentrated on the fall and winter months of September 1985 to February 1986.

  1. Institute of Navigation, Annual Meeting, 47th, Williamsburg, VA, June 10-12, 1991, Proceedings

    NASA Astrophysics Data System (ADS)

    1991-11-01

    The present volume of navigation and exploration discusses space exploration, mapping and geodesy, aircraft navigation, undersea navigation, land and vehicular location, international and legal aspects of navigation, the history of navigation technology and applications, Loran development and implementation, GPS and GLONASS developments, and search and rescue. Topics addressed include stabilization of low orbiting spacecraft using GPS, the employment of laser navigation for automatic rendezvous and docking systems, enhanced pseudostatic processing, and the expanding role of sensor fusion. Attention is given to a gravity-aided inertial navigation system, recent developments in aviation products liability and navigation, the ICAO future air navigation system, and Loran's implementation in NAS. Also discussed are Inmarsat integrated navigation/communication activities, the GPS program status, the evolution of military GPS technology into the Navcore V receiver engine, and Sarsat location algorithms.

  2. Flight Evaluation of LORAN-C in the State of Vermont

    DOT National Transportation Integrated Search

    1981-09-01

    The Transportation Systems Center, Langley Research Center, the Federal Aviation Administration, and the Agency of Transportation, State of Vermont conducted a program sponsored by the Research and Special Programs Administration of the Department of...

  3. Evaluation of the accuracy of LF and TV synchronization techniques inChina via portable clock.

    NASA Astrophysics Data System (ADS)

    Miao, Y.-R.; Pan, X.-P.; Song, J.-A.; Bian, Y.-J.; Luo, D.-C.; Zhuang, Q.-X.

    Shanxi, Beijing and Shanghai observatories cooperated with the U. S. Naval Observatory in making two portable clock experiments in 1981 and 1982. A high performance cesium clock was compared with the 1 pps signals from master clock, Loran-C receiver and TV Line-6 receiver in different observatories. The comparison of the experimental results with the prediction of the time delay between transmitter and each observatory indicates that the accuracy of LF synchronization technique in China can reach ±1 μs, timing precision is 0.05 - 0.2 μs at a distance of 2000 km. (It has been shown that there is a systematic error in the Daily Relative Phase Values, Ser. 4 of the U. S. Naval Observatory for the Northwest Pacific Loran-C chain.) For passive CCTV synchronization, timing accuracy is 2 μs or better and daily frequency calibration precision is (2 - 20)×10-13.

  4. Independent Assessment Team (IAT) Summary of Initial Findings on eLoran

    DOT National Transportation Integrated Search

    2009-01-01

    IAT Conclusions and Major Recommendation (see report charts 4, 10, 37, and 38): Reasonable assurance of national PNT availability is prudent and responsible policy, needed for ubiquitous, critical safety of life and national and economic security, as...

  5. Multisensor signal processing techniques (hybrid GPS Loran-C with RAIM)

    DOT National Transportation Integrated Search

    1991-09-01

    One of the major elements in alleviating existing problems in en route airspace is : to allow more aircraft to traverse a given volume of airspace. Recent developments : in navigation systems will support this effort by enabling user preferred routes...

  6. Benefits and Costs of LORAN-C Expansion into the Eastern Caribbean.

    DTIC Science & Technology

    1981-01-01

    exported by Caribbean islands are sugar, citrus, rice, bananas , avocados, green coffee, and papaya. However, despite the fact that the Caribbean...Capt. Leon Flowers , Nassau, Bahamas 5. MARITIME ORGANIZATIONS o Maritime Transportation Research Board, Mr. Dave Mellor, Washington, D.C. o National

  7. 50 CFR 660.719 - Scientific observers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... communications equipment and navigation equipment as necessary to perform observer duties. (4) Allowing the observer access to VMS units to verify operation, obtain data, and use the communication capabilities of... loran coordinates, upon request by the observer. (6) Providing sea turtle, marine mammal, or sea bird...

  8. Two-Way Time Transfer via Geostationary Satellites NRC/NBS, NRC/USNO and NBS/USNO via Hermes and NRC/LPTF (France) via Symphonie

    NASA Technical Reports Server (NTRS)

    Costain, C.; Boulanger, J. S.; Daams, H.; Hanson, D. W.; Beehler, R. E.; Clements, A. J.; Davis, D. D.; Klepczynski, W. J.; Veenstra, L. B.; Kaiser, J.

    1979-01-01

    In most of the experiments, 1 pps pulses of the station atomic clocks were exchanged between the partners, and a cubic equation was fitted to the 1000 to 2000 second measurements. The equations were exchanged and substracted to obtain the time difference of the stations. The standard deviation in the fit of the equations varied, depending on conditions, from 1.5 ns to 16 ns. For the last month of the Hermes experiment, a 1 MHz signal was used, giving a standard deviation of 0.18 ns. The comparison of the time scales via satellite and via Loran-C (BIH Circular D) show clearly that some Loran-C links are very good, but that the NBS link varies by 1 micron s. Via the satellite the frequencies of the time scales can be compared with an accuracy of 2 x 10 to the minus 14 power.

  9. Recent developments of Loran-C in Europe

    NASA Technical Reports Server (NTRS)

    Leschiutta, Sigfrido; Rubiola, Enrico

    1990-01-01

    Even if recent developments, both technical and political, are affecting the satellite Global Positioning System (GPS) and GLONASS navigation systems, alone, in conjunction, or with a possible civilian overlay via INMARSAT or other satellites, time has proven that Loran-C can still be a viable solution for many problems. The aims here are twofold, to present a panorama of the most recent developments in the world and mostly in Europe, and to consider some technical aspects of two problems regarding the Mediterranean Sea chain. This chain is based on four stations, two in Italy, one in Spain and one in Turkey. The fate of the station in Turkey is known, in the sense that this station will not operate when the U.S. support will cease; the future of the Spanish station is not yet known, while Italy has expressed its intention to operate the two remaining stations. Consequently two problems need to be solved to assure at least the coverage of Italy and of the eastern Mediterranean Sea.

  10. Inertial Navigation System Standardized Software Development. Volume 1. Introduction and Summary

    DTIC Science & Technology

    1976-06-01

    the Loran receiver, the Tacan receiver, the Omega receiver, the satelite based instrumentation, the multimode radar, the star tracker and the visual...accelerometer scale factor, and the barometric altimeter bias. The accuracy (1o values) of typical navigation-aid measurements (other than satelite derived

  11. Loran-C Signal Stability Study: St. Lawrence Seaway

    DTIC Science & Technology

    1982-07-01

    call this the " porno movie syndrome.’) If, several years from now, we think of another analysis technique, we can immediately apply it. There will...d -S ccr ,,. * -. . WE O- W K D-4. 20. . ...... I s 41 in Ado " 4- f . 4.......... ......... ................. ..... ... .... . .. .. .. . .. . . Li

  12. Benefit-cost assessment of the use of LORAN to mitigate GPS vulnerability for positioning, navigation, and timing services

    DOT National Transportation Integrated Search

    2004-03-30

    In 2001, a Volpe Center study assessed the vulnerability of the transportation system to : loss of the Global Positioning System (GPS).1 Subsequent to this assessment, the : Secretary of the U.S. Department of Transportation initiated an examination ...

  13. Loran-C flight test software

    NASA Technical Reports Server (NTRS)

    Nickum, J. D.

    1978-01-01

    The software package developed for the KIM-1 Micro-System and the Mini-L PLL receiver to simplify taking flight test data is described along with the address and data bus buffers used in the KIM-1 Micro-system. The interface hardware and timing are also presented to describe completely the software programs.

  14. Application of Loran-C Positioning to Hydrographic Surveying

    DTIC Science & Technology

    1979-09-01

    planes. There are attendant problems with logistics, land use permits and vandalism . In addition, situations arise where the geometric confimuration of the...or reference, a listin- of 7eon raphic position, the observed TDs and respective values has teen apnended to this report. 36 Tests with the ship

  15. 50 CFR 622.4 - Permits and fees.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) and 28°35.1′ N. lat. (due east of the NASA Vehicle Assembly Building, Cape Canaveral, FL), a... LORAN or Global Positioning System equipment; (2) Shows the site on a chart in sufficient detail to... application form, showing that applicable eligibility requirements of paragraph (a)(2) of this section have...

  16. Joint University Program for Air Transportation Research, 1985

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    Air transportation research being carried on at the Massachusetts Institute of Technology, Princeton University, and Ohio University is discussed. Global Positioning System experiments, Loran-C monitoring, inertial navigation, the optimization of aircraft trajectories through severe microbursts, fault tolerant flight control systems, and expert systems for air traffic control are among the topics covered.

  17. Data reduction software for LORAN-C flight test evaluation

    NASA Technical Reports Server (NTRS)

    Fischer, J. P.

    1979-01-01

    A set of programs designed to be run on an IBM 370/158 computer to read the recorded time differences from the tape produced by the LORAN data collection system, convert them to latitude/longitude and produce various plotting input files are described. The programs were written so they may be tailored easily to meet the demands of a particular data reduction job. The tape reader program is written in 370 assembler language and the remaining programs are written in standard IBM FORTRAN-IV language. The tape reader program is dependent upon the recording format used by the data collection system and on the I/O macros used at the computing facility. The other programs are generally device-independent, although the plotting routines are dependent upon the plotting method used. The data reduction programs convert the recorded data to a more readily usable form; convert the time difference (TD) numbers to latitude/longitude (lat/long), to format a printed listing of the TDs, lat/long, reference times, and other information derived from the data, and produce data files which may be used for subsequent plotting.

  18. 33 CFR 164.72 - Navigational-safety equipment, charts or maps, and publications required on towing vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., either a LORAN-C receiver or a satellite navigational system such as the Global Positioning System (GPS... the following navigational-safety equipment: (1) Marine radar. By August 2, 1997, a marine radar that meets the following applicable requirements: (i) For a vessel of less than 300 tons gross tonnage that...

  19. DC-to-DC power supply for light aircraft flight testing

    NASA Technical Reports Server (NTRS)

    Yost, S. R.

    1980-01-01

    The power supply unit was developed to serve as the power source for a loran-C receiver. The power supply can be connected directly to the aircraft's electrical system, and is compatible with either 14 or 28 volt electrical systems. Design specifications are presented for the unit along with a description of the circuit design.

  20. 47 CFR 87.475 - Frequencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) LORAN-C is a long range navigation system which operates in the 90-110 kHz band. (2) Radiobeacon... station. Radiobeacons operate in the bands 190-285 kHz; 325-435 kHz; 510-525 kHz; and 525-535 kHz. Radiobeacons may be authorized, primarily for off-shore use, in the band 525-535 kHz on a non-interference...

  1. HHE/LORAN-C Surveying.

    DTIC Science & Technology

    1982-11-01

    N* I. Khednipin.CeldegN. CG-D-Y4-82 4. Id ed I.ld j. D* NIUVin 1982U /LIAC WH ,. Peb- olm..,, Cede 9. Pwmln,, OWe, .omee . en Adoe., 10 . Wei Uat Me... 10 PRE-SURVEY PLANNING ..a-C ..hin.at.......................... 11 Overviewon of S ..... ........... 1......... ... .16 R eWaypoint Defintion...TDSS Statistics Summary.. ....................... 29 9 Example of Range-Range Waypoint Calculation.................30 10 Summary of Range-Range Waypoint

  2. System Safety and the Coast Guard Lighter-Than-Air System Project.

    DTIC Science & Technology

    1983-12-01

    and daymarks, and numerous Loran and Omega stations which provide far- reaching continuous electronic navigation for ships and aircraft. 2. Enforcement...Coast Guard inspects bridges, issues permits to insure that marine needs are met, promulgates regulations for drawbridges , and supervises...research and development, personnel, civil rights, legal, engineering , fiscal and supply, health care, and intelligence/security programs. [Ref. 3: pp. 13

  3. Report on the lunar ranging at McDonald Observatory, 1 February - 31 May 1976

    NASA Technical Reports Server (NTRS)

    Palm, C. S.; Wiant, J. R.

    1976-01-01

    The four spring lunations produced 105 acquisitions, including the 2000th range measurement made at McDonald Observatory. Statistics were normal for the spring months. Laser and electronics problems are noted. The Loran-C station delay was corrected. Preliminary doubles data is shown. New magnetic tape data formats are presented. R and D efforts include a new laser modification design.

  4. Oceanology in Denmark

    DTIC Science & Technology

    1974-12-01

    plus 19 new "miniaturized" sailing or yachting charts. For Greenland, there are 143 coastal, normal and Loran charts. The Oceanographic Section was...from a marine disaster. The Sound (Oresund) is a sewage outlet for 36 Danish municipalities, and for at least the same number on the Swedish coast. In...normal flushing of pollutants from the Baltic, could substantially change the ecology of the area. Treatment plants for sewage outlets are now being

  5. PTTI Capabilities of the Modernized LORAN System

    DTIC Science & Technology

    2008-12-01

    Cape Elizabeth LCCS Carolina Beach 9960-Y Dana 9960-Z Seneca 9960-M LSU 9960-T Sandy Hook Plumbrook Dunbar Forest LCCS Transmitting Station ...reference clocks at the individual transmitting stations , the intra-chain timing between stations , and the overall system synchronization to UTC. Each... station has three cesium clocks installed, and new Time and Frequency Equipment (TFE) was installed at the stations , beginning in the spring of 2003

  6. Balloon-Supported Loran Antenna, New Hardware for Tethered Balloons, and Payloads Used in BAMM Flights.

    DTIC Science & Technology

    1980-02-28

    containing a command receiver, batteries, and a differential- pressure switch , all located immediately below the confluence point, with long leads and a...should break free, or during normal deflation at take- down. Purpose of the differential- pressure switch was to momentarily open the valves if the...otherwise was completely different. A differential- pressure switch of the type formerly used in the command package, but without the long pressure

  7. The Antiaircraft Journal. Volume 93, Number 2, March-April 1950

    DTIC Science & Technology

    1950-04-01

    equipment. c. Aurora Borealis . d. Loran. 69. Only experienced men should attempt to repair radar . sets for, in addition to being a complex instrument...Defense Program. The Station Hospital at Fort Rosecrans, California, now provides facilities for San Diego reservists. Cells that were formerly used...RCH-APRIL, 1950 67. Pulse duration distortion causes targets to appear longer in range. 68. So far as is publicly known, the Aurora Borealis has no

  8. Loran C Coverage in Alaska after Dual Rating Port Clarence

    DTIC Science & Technology

    1988-06-01

    Desired flight altitudes were 1000 feet above ground level . Due to the limited number of airports which could support the aircraft and logistics, a higher...designed to evaluate the feasibility of adding LORSTA Port Clarence as a secondary on the Gulf of Alaska chain. Signal strength and noise levels were...altitude was necessary for fuel efficiency. The higher altitudes allowed longer flight segments. The target altitude was 17,000 feet mean sea level

  9. North Pacific Omega Navigation System Validation.

    DTIC Science & Technology

    1981-12-31

    based upon comparisons with "Loran-C, radar and visual" whose absolute accuracy as references could not be assessed. Similarly, the M/S Nopal Lane...Mellon ..................................... A-82 A5.1.5 M/S Nopal Lane ................... ......... .... .. A-83 A5.1.6 Submarine Omega Performance...A-39 A2-23 OmegaNaph an o Signal Coverage................ o........ A-40 A2-27 Ositaeuion fPSibl Moaverfene ... or.... o .. ga A4 N225

  10. Alternate Hybrid Power Sources for Remote Site Applications.

    DTIC Science & Technology

    1981-02-01

    Fuel for remote LORAN-C sites is often acquired at higher costs in foreign spot markets . The effective fuel cost including the expense associated with...primary purpose of FPUP is to provide market support for manufacturers of solar cells and systems by encouraging federal agencies to utilize photo...supplied to them. 84 If 10,000 units were manufactured each year for the residential market with 10 kWh peak power and 25 kWh of usable energy stored in

  11. Satellite-aided coastal zone monitoring and vessel traffic system

    NASA Technical Reports Server (NTRS)

    Baker, J. L.

    1981-01-01

    The development and demonstration of a coastal zone monitoring and vessel traffic system is described. This technique uses a LORAN-C navigational system and relays signals via the ATS-3 satellite to a computer driven color video display for real time control. Multi-use applications of the system to search and rescue operations, coastal zone management and marine safety are described. It is emphasized that among the advantages of the system are: its unlimited range; compatibility with existing navigation systems; and relatively inexpensive cost.

  12. Personnel Radiation Exposure Associated With X-Rays Emanating from U.S. Coast Guard LORAN High Voltage Vacuum Tube Transmitter Units

    DTIC Science & Technology

    2011-07-01

    dosimeter program. Unfortunately, this limited personnel monitoring program did not address the case of an individual who may have performed...and forearms; feet and ankles 18 ¾ Skin of whole body 7 ½ The USCG does maintain a small radiation personnel dosimeter monitoring program for x...ray technicians at USCG medical clinics (USCG, 2006). This medical clinic dosimeter program reflects a civilian standard of practice, where the x-ray

  13. NASA tracking ship navigation systems

    NASA Technical Reports Server (NTRS)

    Mckenna, J. J.

    1976-01-01

    The ship position and attitude measurement system that was installed aboard the tracking ship Vanguard is described. An overview of the entire system is given along with a description of how precise time and frequency is utilized. The instrumentation is broken down into its basic components. Particular emphasis is given to the inertial navigation system. Each navigation system used, a mariner star tracker, navigation satellite system, Loran C and OMEGA in conjunction with the inertial system is described. The accuracy of each system is compared along with their limitations.

  14. A Prototype Cesium Clock Ensemble for The Loran-C Radionavigation System

    DTIC Science & Technology

    2008-12-01

    ability to discipline using all-in-view GNSS and Two-Way Satellite Time and Frequency Transfer ( TWSTFT ). I. INTRODUCTION In the mid-1990s, the Coast...the clock weighting to favor the “best” oscillator(s) or switch the AOG discipline source to use an external source of timing such as GPS or TWSTFT ...cesium trio ensemble; however, it may also use external sources such as GPS or TWSTFT . Control: The field in the lower right corner of the GUI

  15. Nonequilibrium radiative heating prediction method for aeroassist flowfields with coupling to flowfield solvers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hartung, Lin C.

    1991-01-01

    A method for predicting radiation adsorption and emission coefficients in thermochemical nonequilibrium flows is developed. The method is called the Langley optimized radiative nonequilibrium code (LORAN). It applies the smeared band approximation for molecular radiation to produce moderately detailed results and is intended to fill the gap between detailed but costly prediction methods and very fast but highly approximate methods. The optimization of the method to provide efficient solutions allowing coupling to flowfield solvers is discussed. Representative results are obtained and compared to previous nonequilibrium radiation methods, as well as to ground- and flight-measured data. Reasonable agreement is found in all cases. A multidimensional radiative transport method is also developed for axisymmetric flows. Its predictions for wall radiative flux are 20 to 25 percent lower than those of the tangent slab transport method, as expected, though additional investigation of the symmetry and outflow boundary conditions is indicated. The method was applied to the peak heating condition of the aeroassist flight experiment (AFE) trajectory, with results comparable to predictions from other methods. The LORAN method was also applied in conjunction with the computational fluid dynamics (CFD) code LAURA to study the sensitivity of the radiative heating prediction to various models used in nonequilibrium CFD. This study suggests that radiation measurements can provide diagnostic information about the detailed processes occurring in a nonequilibrium flowfield because radiation phenomena are very sensitive to these processes.

  16. The 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L. (Editor)

    1990-01-01

    Papers presented at the 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting are compiled. The following subject areas are covered: Rb, Cs, and H-based frequency standards and cryogenic and trapped-ion technology; satellite laser tracking networks, GLONASS timing, intercomparison of national time scales and international telecommunications; telecommunications, power distribution, platform positioning, and geophysical survey industries; military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, LORAN, and synchronous communication satellites.

  17. International time and frequency comparison using very long baseline interferometer

    NASA Astrophysics Data System (ADS)

    Hama, Shinichi; Yoshino, Taizoh; Kiuchi, Hitoshi; Morikawa, Takao; Sato, Tokuo

    VLBI time comparison experiments using the Kashima station of the Radio Research Laboratory and the Richmond and Maryland Point stations of the U.S. Naval Observatory have been performed since April 1985. A precision of 0.2 ns for the clock offset and 0.2 ps/s for the clock rate have been achieved, and good agreement has been found with GPS results for clock offset. Much higher precision has been found for VLBI time and frequency comparison than that possible with conventional portable clock or Loran-C methods.

  18. Evaluation of Various Navigation System Concepts

    DTIC Science & Technology

    1982-03-01

    Naigatimon aar01 N DAutomatic x xx Parallel 0fn x x x x x’ "OLeg t dung. n Mrankuhld M ni raia x N x to~g TAN is I OmuI,2 2mN 0 x "to - - -x...and must permit design of indicators and controls which can be directly interpreted or operated by the pilot at his normal station aboard the...the responsibility of control. The organization that controls the system can theoretically limit access to the system. Because VOVO/DME, Loran-C, and

  19. Commutated automatic gain control system

    NASA Technical Reports Server (NTRS)

    Yost, S. R.

    1982-01-01

    The commutated automatic gain control (AGC) system was designed and built for the prototype Loran-C receiver is discussed. The current version of the prototype receiver, the Mini L-80, was tested initially in 1980. The receiver uses a super jolt microcomputer to control a memory aided phase loop (MAPLL). The microcomputer also controls the input/output, latitude/longitude conversion, and the recently added AGC system. The AGC control adjusts the level of each station signal, such that the early portion of each envelope rise is about at the same amplitude in the receiver envelope detector.

  20. High-resolution seismic-reflection profiles from the R/V Columbus Iselin, cruise CI 7-78-2, over the continental shelf and slope in the Georges Bank area

    USGS Publications Warehouse

    Bailey, Norman G.; Aaron, John M.

    1982-01-01

    In September 1978, the U. S. Geological Survey (USGS) collected 5,029 km of single-channel seismic-reflection data from the Georges Bank area of the Atlantic Continental Shelf and Slope during the R/V COLUMBUS ISELIN cruise CI 7-78-2. The purpose of the cruise was to determine the location and frequency of mass sediment movement and other geologic hazards along the Continental Slope.Navigation of the COLUMBUS ISELIN was by LORAN-C; position fixes were automatically recorded at 5-minute intervals and manually plotted and recorded at 15-minute intervals. The navigation equipment included a Northstar 6000 LORAN receiver and a Texas Instruments Silent 700 tape and paper recorder.The seismic equipment consisted of a 40-in3 airgun, a 5-in3 airgun, a Teledyne 600-joule mnisparker, and ORE (Ocean Research Equipment Inc.) 3.5-kHz transducer. The seismic profiles obtained were recorded on paper by EPC (EPC Labs Inc.) recorders and on magnetic tape by a 7-channel analog tape recorder. Overall, the data quality is excellent, and penetration and resolution are good although in some areas, the underlying structure was obscured by rough topography.The original records may be viewed at the USGS office in Woods Hole, Massachusetts. Microfilm copies of the data may be purchased only from the National Geophysical and Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder, CO 80303 (Telephone: 303-497-6338).

  1. Automatic Pulse Shaping with the AN/FPN-42 and AN/FPN-44A Loran-C transmitters

    DTIC Science & Technology

    1992-12-01

    with antenna simulator, pair 30. (a) TDW and (b) RF pulse. 39 CLOSEUP: POWER SPECTRUM OF TOW & RF (PAIR 30), 47 XMTR 190 17025 " 3 0 4 0 5 6 Sapl numbr... iec X 1e-6 (a) Phase Vf Selected Parameter 0.057 0.5 ... .. . . . ......... .... .. . ............... ,.. ...-.. . , .... celurro, 3 0.0517...PAIR 7 1), "SA XMTR ISO IS 25 30 35 40 4 0 55 60 Sample number, k Figure 3.15c: Closeup of power spectrum, 144A, pair 71i. 77 POLE/ZERO PLOT (PAIR 71

  2. The 25th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L. (Editor)

    1994-01-01

    Papers in the following categories are presented: recent developments in rubidium, cesium, and hydrogen-based frequency standards, and in cryogenic and trapped-ion technology; international and transnational applications of precise time and time interval (PTTI) technology with emphasis on satellite laser tracking networks, GLONASS timing, intercomparison of national time scales and international telecommunication; applications of PTTI technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; application of PTTI technology to evolving military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, LORAN, and synchronous communications satellites.

  3. Commutated automatic gain control system

    NASA Technical Reports Server (NTRS)

    Yost, S. R.

    1982-01-01

    A commutated automatic gain control (AGC) system was designed and built for a prototype Loran C receiver. The receiver uses a microcomputer to control a memory aided phase-locked loop (MAPLL). The microcomputer also controls the input/output, latitude/longitude conversion, and the recently added AGC system. The circuit designed for the AGC is described, and bench and flight test results are presented. The AGC circuit described actually samples starting at a point 40 microseconds after a zero crossing determined by the software lock pulse ultimately generated by a 30 microsecond delay and add network in the receiver front end envelope detector.

  4. A Survey of State-of-the-Art LORAN-C Receivers.

    DTIC Science & Technology

    1984-06-01

    urvey/monitor, (T)ining, (Land, (O)therl h(inches). 7.6i N(inches). 7.5 D(inches). 12.6 VOLUM(cu.in.) 667 WEIGHT (lb): 18.1 TENP RANGE ( dog F): -67.170...Iaches): 2.8- W~inches): 12 VOLUM kv.ia.): 369 MuIGTY (2b): 6 TRW RANGS ( dog P): 3.*12z INPU VOLTACE: 4.5-50 OE RWQIRUNT (watts): g-12 DISPLAY TYPE: 2...Dinches). v4L0N(cu.in.)• WRIGHT (lb): 4.8 TEMP RANGE ( dog F): -4,+130 INPUT VOLTAGE: 10-45 POWER RRQUIRBNBNT (Watts): DISPLAY TYPE: A-N. LED, DOT

  5. VLF P-Static Noise Reduction In Aircraft. Volume I. Current Knowledge.

    DTIC Science & Technology

    1980-09-01

    Probe Mounted on DC-3 N7AP with Protective Cover Removed. A companion unit is mounted on the underside of the aircraft. -19- 1I b. Dayton-Aircraft...NTIS/PS-78/0532 and NTIS/PS-77/0337. For the companion Published Search of the NTIS Data Base, see NTIS/PS-79/0523. F1381 D2 NTIS/PS-79/0523/5ST Loran...79 152p Supersedes NTIS/P -78/0531 and NTIS/PS-77/0336. For the companion Published Search of the Engineering Index Data Base. see NTIS/PS-79/0524

  6. Minisparker profiles from Jeffreys Ledge and adjacent areas in the western Gulf of Maine

    USGS Publications Warehouse

    Eskenasy, Diane M.; Bailey, Norman G.

    1980-01-01

    A total of 250 kilometers of single-channel seismic-reflection data (28 minisparker profiles) were collected in the coastal waters of Massachusetts, north of and immediately south of Cape Ann, and on the western flank of Jeffreys Ledge, western Gulf of Maine, during the September 1978 cruise of the R/V ASTERIAS. The survey was conducted by the U.S. Geological Survey as part of the Massachusetts Cooperative Marine Geologic Program.The seismic systems used included a 1Del Norte minisparker and streamer, an Energy International Streamer, and EPC 3200 and 4100 recorders. Navigational control was established by Radar and Loran-C. The Loran-C navigation data were recorded on a Northstar 6000 system.The purpose of the cruise was to discover the significance and extent of the folded and faulted internal reflections that were first noticed on the esternmost tip of Jeffreys Ledge in line 14 of esternmost tip of Jeffreys Ledge in line 14 of rninisparker data from the 1976 R/V FAY 023 cruise.Sixteen northwest-trending lines were run off Cape Ann to investigate the deformed reflectors, now thought to represent a moraine formed by readvance of continental ice over the last glacial marine Presurnpscot Formation. Lines north and south of Cape Ann were run to locate the offshore extension of the Clinton-Newbury and Bloody Bluff fault systems.The original records can be studied at the U.S. Geological Survey offices at Woods Hole, Mass. Microfilm copies of the records can be purchased only from the National Geophysical and Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broadway; Boulder, CO 80303 (303-497-6338)

  7. Building and Testing a Portable VLF Receiver

    NASA Technical Reports Server (NTRS)

    McLaughlin, Robert; Krause, L.

    2014-01-01

    Unwanted emissions or signal noise is a major problem for VLF radio receivers. These can occur from man made sources such as power line hum, which can be prevalent for many harmonics after the fundamental 50 or 60 Hz AC source or from VLF radio transmissions such as LORAN, used for navigation and communications. Natural emissions can also be detrimental to the quality of recordings as some of the more interesting natural emissions such as whistlers or auroral chorus may be drowned out by the more common sferic emissions. VLF receivers must selectively filter out unwanted emissions and amplify the filtered signal to a record-able level without degrading the quality.

  8. Atlantic and Mediterranean Tables of Communication Station Azimuths and LORAN-C Station Azimuths and Distances.

    DTIC Science & Technology

    1979-11-01

    4441* .411(( ..*4.6** 00 00 11 (C) 0941 , o c01 M 0 m a 9C N444** coo*4 *44 * *4p4 0C m m . LOC - .8 *410.4 1-12 "N*4 ".-1 1* 0.1-8(1. " - a 01...4r Zfl -1 1 -1 .N 0 0 O ’oC . - T ~ ~ ~ ~ ~ N N P.Pl rw r 4p -- -D- -ccgo Q --(. 0-o - - - . cc0 00 Go~ ~ o0t GDC 0a r- N.*Or I*OI- o."~ aL~04 0 YNV

  9. A comparative analysis of area navigation systems in general aviation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dodge, S. M.

    1973-01-01

    Radio navigation systems which offer the capabilities of area navigation to general aviation operators are discussed. The systems considered are: (1) the VORTAC system, (2) the Loran-C system, and (3) the Differential Omega system. The inital analyses are directed toward a comparison of the systems with respect to their compliance to specified performance parameters and to the cost effectiveness of each system in relation to those specifications. Further analyses lead to the development of system cost sensitivity charts, and the employment of these charts allows conclusions to be drawn relative to the cost-effectiveness of the candidate navigation system.

  10. Some implications of reciprocity for two-way clock synchronization

    NASA Technical Reports Server (NTRS)

    Jespersen, J. L.

    1979-01-01

    The difficulties related to propagation perturbances in one-way and two-way methods for the synchronization of remote clocks are defined, and a possible means of circumventing these problems in the two-way method is suggested. In the two-way method, if signals are launched from two sources, A and B, then the two signals arriving at A and B will be displaced in arrival time by an amount that is equal to the difference in launch times of the two signals. Thus, the only condition to comparing clocks is that the medium be isotropic. The practice implementation of this is explored theoretically, in some detail, with respect to the Loran-C navigation system.

  11. Single-channel seismic-reflection profiles and sidescan-sonar records collected by the R/V Neecho, cruise NE 79-06, on the inner shelf east of Cape Cod, Massachusetts

    USGS Publications Warehouse

    Twichell, David C.

    1981-01-01

    Cruise NE 79-06 of the R/V NEECHO was conducted by the U.S. Geological Survey during September 27-0ctober 3, 1979, in the nearshore zone (3-30 m water depth) seaward of Coast Guard Beach and the northern part of Orleans Beach, east of Cape Cod, Massachusetts. The purpose of the study was to map the types and extent of nearshore bed forms and to define the late Pleistocene and Holocene history of the area.The equipment used on this cruise consisted of an EG&G Uniboom, Raytheon echo sounder, and Edo Western sidescan-sonar system. The Uniboom data were mostly filtered to 400-4000 Hz and were recorded at a 1/4-s sweep rate. The 60-kHz echo-sounding data were recorded on a 6-in strip chart on which the depth was calibrated in feet. The sidescan sonar had an operating frequency of 100 kHz and was set to scan 50 m or 100 m to each side of the towed fish. All three data types were collected along 153 km of trackline.Navigation during the survey was by Loran-C and Motorola miniranger systems. Two shore stations were set up for the miniranger system and fixes were collected at either 1- or 2-min intervals. This system malfunctioned during parts of the survey, and during these times navigation was by Loran-C using a Northstar system.The original records can be seen and studied at the U.S. Geological Survey Data Library at Woods Hole, MA 02543. Microfilm copies of the subbottom, echo-sounding, and sidescan-sonar records can be purchased only from the National Geophysical and Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder, CO 80303, (303-497-6338).

  12. Pilot factors guidelines for the operational inspection of navigation systems

    NASA Technical Reports Server (NTRS)

    Sadler, J. F.; Boucek, G. P.

    1988-01-01

    A computerized human engineered inspection technique is developed for use by FAA inspectors in evaluating the pilot factors aspects of aircraft navigation systems. The short title for this project is Nav Handbook. A menu-driven checklist, computer program and data base (Human Factors Design Criteria) were developed and merged to form a self-contained, portable, human factors inspection checklist tool for use in a laboratory or field setting. The automated checklist is tailored for general aviation navigation systems and can be expanded for use with other aircraft systems, transports or military aircraft. The Nav Handbook inspection concept was demonstrated using a lap-top computer and an Omega/VLF CDU. The program generates standardized inspection reports. Automated checklists for LORAN/C and R NAV were also developed. A Nav Handbook User's Guide is included.

  13. Proceedings of the 30th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

    NASA Technical Reports Server (NTRS)

    Breakiron, Lee A. (Editor)

    1999-01-01

    This document is a compilation of technical papers presented at the 30th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting held 1-3 December 1998 at the Hyatt Regency Hotel at Reston Town Center, Reston, Virginia. Papers are in the following categories: 1) Recent developments in rubidium, cesium, and hydrogen-based atomic frequency standards, and in trapped-ion and space clock technology; 2) National and international applications of PTTI technology with emphasis on GPS and GLONASS timing, atomic time scales, and telecommunications; 3) Applications of PTTI technology to evolving military navigation and communication systems; geodesy; aviation; and pulsars; and 4) Dissemination of precise time and frequency by means of GPS, geosynchronous communication satellites, computer networks, WAAS, and LORAN.

  14. The U.S. Federal Radionavigation Plan

    NASA Astrophysics Data System (ADS)

    Shirer, Heywood O.

    The author presents an overview of the 1990 Federal Radionavigation Plan (FRP) policy and a discussion of the status of GPS (Global Positioning System), Loran-C, Omega, VOR/DME (VHF omnidirectional range/distance measuring equipment), VORTAC, TACAN, MLS (Microwave Landing System), ILS (instrument landing systems), Transit, and radiobeacons. The 1990 FRP contains significant changes regarding several of the radionavigation systems. It is concluded that it is difficult at best to ascertain the post-GPS final systems mix of federally provided radionavigation systems. The phase-out dates of other systems in favor of GPS still remain soft. Many uncertainties remain until the capabilities of GPS are verified for all classes of users. The federal radionavigation planning process accommodates such uncertainties, keeping pace with the constantly changing radionavigation user profile and rapid advancements in system technology.

  15. The 26th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard (Editor)

    1995-01-01

    This document is a compilation of technical papers presented at the 26th Annual PTTI Applications and Planning Meeting. Papers are in the following categories: (1) Recent developments in rubidium, cesium, and hydrogen-based frequency standards, and in cryogenic and trapped-ion technology; (2) International and transnational applications of Precise Time and Time Interval technology with emphasis on satellite laser tracking, GLONASS timing, intercomparison of national time scales and international telecommunications; (3) Applications of Precise Time and Time Interval technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; (4) Applications of PTTI technology to evolving military communications and navigation systems; and (5) Dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, LORAN, and synchronous communications satellites.

  16. Geostar - Navigation location system

    NASA Astrophysics Data System (ADS)

    Keyser, Donald A.

    The author describes the Radiodetermination Satellite Service (RDSS). The initial phase of the RDSS provides for a unique service enabling central offices and headquarters to obtain position-location information and receive short digital messages from mobile user terminals throughout the contiguous United States, southern Canada, and northern Mexico. The system employs a spread-spectrum, CDMA modulation technique allowing multiple customers to use the system simultaneously, without preassigned coordination with fellow users. Position location is currently determined by employing an existing radio determination receiver, such as Loran-C, GPS, or Transit, in the mobile user terminal. In the early 1990s position location will be determined at a central earth station by time-differential ranging of the user terminals via two or more geostationary satellites. A brief overview of the RDSS system architecture is presented with emphasis on the user terminal and its diverse applications.

  17. Demonstration of intercontinental DSN clock synchronization by VLBI

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.

    1973-01-01

    The prototype system for Deep Space Network clock synchronization by VLBI has been demonstrated to operate successfully over intercontinental baselines in a series of experiments between Deep Space Stations at Madrid, Spain, and Goldstone, California. As predicted by analysis and short baseline demonstration, the system achieves reliable synchronization between 26m and 64m antenna stations with 17 and 37K nominal system temperatures using under one million bits of data from each station. Semi-real-time operation is feasible since this small amount of data can be transmitted to JPL and processed within minutes. The system resolution is 50 to 400ns, depending on the amount of data processed and the source intensity. The accuracy is believed to be comparable to the resolution, although it could be independently confirmed to only about 5 microseconds using LORAN C.

  18. 27th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L. (Editor)

    1996-01-01

    This document is a compilation of technical papers presented at the 27th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, held November 29 - December 1, 1995 at San Diego, CA. Papers are in the following categories: Recent developments in rubidium, cesium, and hydrogen-based frequency standards; and in cryogenic and trapped-ion technology; International and transnational applications of PTTI technology with emphasis on satellite laser tracking, GLONASS timing, intercomparison of national time scales and international telecommunications; Applications of PTTI technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; Applications of PTTI technology to evolving military communications and navigation systems; and Dissemination of precise time and frequency by means of Global Positioning System (GPS), Global Satellite Navigation System (GLONASS), MILSTAR, LORAN, and synchronous communications satellites.

  19. Digital seismic-reflection data from western Rhode Island Sound, 1980

    USGS Publications Warehouse

    McMullen, K.Y.; Poppe, L.J.; Soderberg, N.K.

    2009-01-01

    During 1980, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey in western Rhode Island Sound aboard the Research Vessel Neecho. Data from this survey were recorded in analog form and archived at the USGS Woods Hole Science Center's Data Library. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and converted to Tagged Image File Format (TIFF) images and SEG-Y data files. Navigation data were converted from U.S. Coast Guard Long Range Aids to Navigation (LORAN-C) time delays to latitudes and longitudes, which are available in Environmental Systems Research Institute, Inc. (ESRI) shapefile format and as eastings and northings in space-delimited text format.

  20. Description and evaluation of the Acoustic Profiling of Ocean Currents (APOC) system used on R. V. Oceanus cruise 96 on 11-22 May 1981

    NASA Technical Reports Server (NTRS)

    Joyce, T. M.; Rintoul, S. R., Jr.; Barbour, R. L.

    1982-01-01

    The underway current profiling system which consists of a microprocessor controlled data logger that collects and formats data from a four beam Ametek-Straza 300 kHz acoustic Doppler current profiler, heading from the ship's gyrocompass, and navigation information from a Loran-C receiver and a satellite navigation unit is discussed. Data are recorded on magnetic tape and real time is calculated. Time averaging is required to remove effects of ship motion. An intercomparison is made with a moored vector measuring current meter (VMCM). The mean difference in hourly averaged APOC and VMCM currents over the four hour intercomparison is a few mm s minus including: two Gulf Stream crossings, a warm core ring survey, and shallow water in a frontal zone to the east of Nantucket Shoals.

  1. ERICA plans for winter storms field study

    NASA Astrophysics Data System (ADS)

    Hadlock, Ron

    The Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA) field study will be conducted between December 1, 1988, and February 28, 1989. The oceanic area that is approximately bounded by t he Gulf Stream and North America, from coastal Carolina to just east of Newfoundland, will be the region for special observations obtained by recently developed measurement systems, including high-resolution and safe Loran-C dropwindsondes, CLASS rawinsondes, an array of drifting data buoys, and multiple airborne Doppler radars. The special observations will be acquired within a framework of all conventional operational data available for the eastern United States and Canada, including that from the National Weather Service's land sites (plus supplemental rawinsonde observations), ocean platforms, U.S. Air Force WC-130 National Winter Storms Operations Plan reconnaissance flights, and civilian and military weather satellites. Satellite imagery and soundings willl be available in real time and archived through facilities of NOAA and the military.

  2. NASA/Cousteau ocean bathymetry experiment. Remote bathymetry using high gain LANDSAT data

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.

    1976-01-01

    Satellite remote bathymetry was varified to 22 m depths where water clarity was defined by alpha = .058 1/m and bottom reflection, r(b), was 26%. High gain band 4 and band 5 CCT data from LANDSAT 1 was used for a test site in the Bahama Islands and near Florida. Near Florida where alpha = .11 1/m and r(b) = 20%, depths to 10 m were verified. Depth accuracies within 10% rms were achieved. Position accuracies within one LANDSAT pixel were obtained by reference to the Transit navigation satellites. The Calypso and the Beayondan, two ships, were at anchor on each of the seven days during LANDSAT 1 and 2 overpasses: LORAN C position information was used when the ships were underway making depth transects. Results are expected to be useful for updating charts showing shoals hazardous to navigation or in monitoring changes in nearshore topography.

  3. En route position and time control of aircraft using Kalman filtering of radio aid data

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Christensen, J. V.

    1973-01-01

    Fixed-time-of-arrival (FTA) guidance and navigation is investigated as a possible technique capable of operation within much more stringent en route separation standards and offering significant advantages in safety, higher traffic densities, and improved scheduling reliability, both en route and in the terminal areas. This study investigated the application of FTA guidance previously used in spacecraft guidance. These FTA guidance techniques have been modified and are employed to compute the velocity corrections necessary to return an aircraft to a specified great-circle reference path in order to exercise en route time and position control throughout the entire flight. The necessary position and velocity estimates to accomplish this task are provided by Kalman filtering of data from Loran-C, VORTAC/TACAN, Doppler radar, radio or barometric altitude,and altitude rate. The guidance and navigation system was evaluated using a digital simulation of the cruise phase of supersonic and subsonic flights between San Francisco and New York City, and between New York City and London.

  4. A description of QUALCOMM Automatic Satellite Position Reporting (QASPR(R)) for mobile communications

    NASA Technical Reports Server (NTRS)

    Ames, William G.

    1990-01-01

    Two satellite position reporting has been introduced into the OmniTRACS mobile satellite communication system. This system significantly improves position reporting reliability and accuracy while simplifying the terminal's hardware. The positioning technique uses the original OmniTRACS TDMA timing signal formats in the forward and return link directions plus an auxiliary, low power forward link signal through a second satellite to derive distance values. The distances are then converted into the mobile terminal's latitude and longitude in real time. A minor augmentation of the spread spectrum profile of the return link allowed the resolution of periodic ambiguities. The system also locates the two satellites in real time with fixed platforms in known locations using identical mobile terminal hardware. Initial accuracies of 1/4 mile have been realized uniformly throughout the USA using a satellite separation of 22 degrees and there are no dead zones, skywaves, or cycle slips as found in terrestrial systems like LORAN-C.

  5. A description of QUALCOMM Automatic Satellite Position Reporting (QASPR(R)) for mobile communications

    NASA Astrophysics Data System (ADS)

    Ames, William G.

    Two satellite position reporting has been introduced into the OmniTRACS mobile satellite communication system. This system significantly improves position reporting reliability and accuracy while simplifying the terminal's hardware. The positioning technique uses the original OmniTRACS TDMA timing signal formats in the forward and return link directions plus an auxiliary, low power forward link signal through a second satellite to derive distance values. The distances are then converted into the mobile terminal's latitude and longitude in real time. A minor augmentation of the spread spectrum profile of the return link allowed the resolution of periodic ambiguities. The system also locates the two satellites in real time with fixed platforms in known locations using identical mobile terminal hardware. Initial accuracies of 1/4 mile have been realized uniformly throughout the USA using a satellite separation of 22 degrees and there are no dead zones, skywaves, or cycle slips as found in terrestrial systems like LORAN-C.

  6. Maintenance of time and frequency in the Jet Propulsion Laboratory's Deep Space Network using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Clements, P. A.; Borutzki, S. E.; Kirk, A.

    1984-01-01

    The Deep Space Network (DSN), managed by the Jet Propulsion Laboratory for NASA, must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. Various methods are used to coordinate the clocks among the three tracking complexes. These methods include Loran-C, TV Line 10, Very Long Baseline Interferometry (VLBI), and the Global Positioning System (GPS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN Frequency and Timing System (DFT). Areas of discussion are: (1) a brief history of the GPS timing receivers in the DSN, (2) a description of the data and information flow, (3) data on the performance of the DSN master clocks and GPS measurement system, and (4) a description of hydrogen maser frequency steering using these data.

  7. Ship navigation using Navstar GPS - An application study

    NASA Technical Reports Server (NTRS)

    Mohan, S. N.

    1982-01-01

    Ocean current measurement applications in physical oceanography require knowledge of inertial ship velocity to a precision of 1-2 cm/sec over a typical five minute averaging interval. The navigation accuracy must be commensurate with data precision obtainable from ship borne acoustic profilers used in sensing ocean currents. The Navstar Global Positioning System is viewed as a step in user technological simplification, extension in coverage availability, and enhancement in performance accuracy as well as reliability over the existing systems, namely, Loran-C, Transit, and Omega. Error analyses have shown the possibility of attaining the 1-2 cm/sec accuracy during active GPS coverage at a data rate of four position fixes per minute under varying sea-states. This paper is intended to present results of data validation exercises leading to design of an experiment at sea for deployment of both a GPS y-set and a direct Doppler measurement system as the autonomous navigation system used in conjunction with an acoustic Doppler as the sensor for ocean current measurement.

  8. Automation of Precise Time Reference Stations (PTRS)

    NASA Astrophysics Data System (ADS)

    Wheeler, P. J.

    1985-04-01

    The U.S. Naval Observatory is presently engaged in a program of automating precise time stations (PTS) and precise time reference stations (PTBS) by using a versatile mini-computer controlled data acquisition system (DAS). The data acquisition system is configured to monitor locally available PTTI signals such as LORAN-C, OMEGA, and/or the Global Positioning System. In addition, the DAS performs local standard intercomparison. Computer telephone communications provide automatic data transfer to the Naval Observatory. Subsequently, after analysis of the data, results and information can be sent back to the precise time reference station to provide automatic control of remote station timing. The DAS configuration is designed around state of the art standard industrial high reliability modules. The system integration and software are standardized but allow considerable flexibility to satisfy special local requirements such as stability measurements, performance evaluation and printing of messages and certificates. The DAS operates completely independently and may be queried or controlled at any time with a computer or terminal device (control is protected for use by authorized personnel only). Such DAS equipped PTS are operational in Hawaii, California, Texas and Florida.

  9. The Genesis of Atlantic Lows Experiment: The Planetary-Boundary-Layer Subprogram of GALE.

    NASA Astrophysics Data System (ADS)

    Raman, Sethu; Riordan, Allen J.

    1988-02-01

    The Genesis of Atlantic Lows Experiment (GALE), focused an intensive data-gathering effort along the mid-Atlantic coast of the United States from 15 January through 15 March 1986. Here, the general objectives and experimental layout are described with special emphasis on the planetary-boundary-layer (PBL) component of GALE.Instrumentation is described for buoys, ships, research aircraft, and towers. The networks of the cross-chain long range aid to navigation (LORAN) atmospheric sounding system (CLASS) and the portable automated mesonet (PAM II) are described and their impact on the operation of GALE is outlined. Special use of dual-Doppler radar to obtain detailed wind measurements in the PBL is discussed.Preliminary analyses for a selected observational period are given. Detailed observations of the offshore coastal front reveal direct mesoscale circulations imbedded in the frontal zone. Later in the period, during an intense cold-air outbreak, sensible-heat and latent-heat fluxes over the coastal ocean each attain values of about 500 W · m2. Coordinated aircraft operations are outlined for this case and a few early findings are given.

  10. Ocean Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Johnson, B.; Cavanaugh, J.; Smith, J.; Esaias, W.

    1988-01-01

    The Ocean Data Acquisition System (ODAS) is a low cost instrument with potential commercial application. It is easily mounted on a small aircraft and flown over the coastal zone ocean to remotely measure sea surface temperature and three channels of ocean color information. From this data, chlorophyll levels can be derived for use by ocean scientists, fisheries, and environmental offices. Data can be transmitted to shipboard for real-time use with sea truth measurements, ocean productivity estimates and fishing fleet direction. The aircraft portion of the system has two primary instruments: an IR radiometer to measure sea surface temperature and a three channel visible spectro-radiometer for 460, 490, and 520 nm wavelength measurements from which chlorophyll concentration can be derived. The aircraft package contains a LORAN-C unit for aircraft location information, clock, on-board data processor and formatter, digital data storage, packet radio terminal controller, and radio transceiver for data transmission to a ship. The shipboard package contains a transceiver, packet terminal controller, data processing and storage capability, and printer. Both raw data and chlorophyll concentrations are available for real-time analysis.

  11. Evaluation of a GPS used in conjunction with aerial telemetry

    USGS Publications Warehouse

    Olexa, E.M.; Gogan, P.J.P.; Podruzny, K.M.; Eiler, John; Alcorn, Doris J.; Neuman, Michael R.

    2001-01-01

    We investigated the use of a non-correctable Global Positioning System (NGPS) in association with aerial telemetry to determine animal locations. Average error was determined for 3 components of the location process: use of a NGPS receiver on the ground, use of a NGPS receiver in a aircraft while flying over a visual marker, and use of the same receiver while flying over a location determined by standard aerial telemetry. Average errors were 45.3, 88.1 and 137.4 m, respectively. A directional bias of <35 m was present for the telemetry component only. Tests indicated that use of NGPS to determine aircraft, and thereby animal, location is an efficient alternative to interpolation from topographic maps. This method was more accurate than previously reported Long-Range Navigation system, version C (LORAN-C) and Argos satellite telemetry. It has utility in areas where animal-borne GPS receivers are not practical due to a combination of topography, canopy coverage, weight or cost of animal-borne GPS units. Use of NGPS technology in conjunction with aerial telemetry will provide the location accuracy required for identification of gross movement patterns and coarse-grained habitat use.

  12. A note on the proposed UK VHF radar

    NASA Technical Reports Server (NTRS)

    Hall, A. J.

    1984-01-01

    The proposal for the establishment of a VHF radar in the UK is still under active consideration, although for financial reasons no start has yet been made on an installation. Several changes have been made to the scheme as described and these are listed. (1) The initial installation will be suitable for stratosphere-troposphere (ST) operation only using 64 antennas and 2 power modules. (2) An existing site is being examined on the west coast of Wales, which because it is a former Loran ground station is provided with the buildings, power and communications facilities to enable a radar to be assembled much more quickly than a green field site would allow. Because the site is not within a mountain valley as originally intended, careful early attention will have to be given to the possible problems of local interference and sea-surface returns. (3) Preliminary discussions with the UK licensing authorities suggest that a frequency of 47 MHz is more likely than 50 MHz. (4) Minor changes are planned in the antenna array connection scheme of the 400-element mesosphere-stratosphere-troposphere (MST) array to allow more precise sidelobe suppression to be achieved in the receive mode.

  13. Seismic-reflection data on the eastern U.S. continental shelf acquired by M. V. L'OLONNOIS as part of the Atlantic Margin Coring Project (AMCOR) of the U.S. Geological Survey, July-September 1976

    USGS Publications Warehouse

    Robb, James M.

    1980-01-01

    In 1976 the U.S. Geological Survey undertook a program to sample the eastern United States Shelf for stratigraphic information by drilling a set of core holes. Results of this Atlantic Margin Coring Program (AMCOR) have been reported by Hathaway and others. Sites were chosen from seismic-reflection data and were reviewed by a safety panel to minimize the risk of penetrating any hydrocarbon accumulation which might lead to environmental contamination.The M-V-L'OLONNOIS, the service ship for the drilling operation, was fitted with seismic-reflection profiling equipment (listed below), to run seismic-reflection profiles before drilling began on each hole. This provided additional assurance that no closed structures would be penetrated and allowed minor adjustment with the site selection. A total of 491 km of high-resolution seismic profiles was collected on 22 sites.Equipment used (specifics for each site noted on records): Bolt Air Guns 1-40 cubic inch chambers EPC Recorder Teledyne Minisparker (last two sites) Navigation used two Internav 101 Loran-C receivers.

  14. Multichannel seismic-reflection data collected in 1980 in the eastern Chukchi Sea

    USGS Publications Warehouse

    Grantz, Arthur; Mann, Dennis M.; May, Steven D.

    1986-01-01

    The U.S. Geological Survey (USGS) collected approximately 2,652 km of 24-channel seismic-reflection data in early September, 1980, over the continental shelf in the eastern Chukchi Sea (Fig. 1). The profiles were collected on the USGS Research Vessel S.P. Lee. The seismic energy source consisted of a tuned array of five airguns with a total volume of 1213 cubic inches of air compressed to approximately 1900 psi. The recording system consisted of a 24-channel, 2400 meter long streamer with a group interval of 100 m, and a GUS (Global Universal Science) model 4200 digital recording instrument. Shots were fired every 50 meters. Navigational control for the survey was provided by a Magnavox integrated navigation system using transit satellites and doppler-sonar augmented by Loran C (Rho-Rho). A 2-millisecond sampling rate was used in the field; the data were later desampled to 4-milliseconds during the demultiplexing process. 8 seconds data length was recorded. Processing was done at the USGS Pacific Marine Geology Multichannel Processing Center in Menlo Park, California, in the sequence: editing-demultiplexing, velocity analysis, CDP stacking, deconvolution-filtering, and plotting on an electrostatic plotter. Plate 1 is a trackline chart showing shotpoint navigation.

  15. Instrumentation for optical ocean remote sensing

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1991-01-01

    Instruments used in ocean color remote sensing algorithm development, validation, and data acquisition which have the potential for further commercial development and marketing are discussed. The Ocean Data Acquisition System (ODAS) is an aircraft-borne radiometer system suitable for light aircraft, which has applications for rapid measurement of chlorophyll pigment concentrations along the flight line. The instrument package includes a three channel radiometer system for upwelling radiance, an infrared temperature sensor, a three-channel downwelling irradiance sensor, and Loran-C navigation. Data are stored on a PC and processed to transects or interpolated 'images' on the ground. The instrument has been in operational use for two and one half years. The accuracy of pigment concentrations from the instrument is quite good, even in complex Chesapeake Bay waters. To help meet the requirement for validation of future satellite missions, a prototype air-deployable drifting buoy for measurement of near-surface upwelled radiance in multiple channnels is undergoing test deployment. The optical drifter burst samples radiance, stores and processes the data, and uses the Argos system as a data link. Studies are underway to explore the limits to useful lifetime with respect to power and fouling.

  16. Maintenance of Time and Frequency in the DSN Using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Clements, P. A.; Kirk, A.; Borutzki, S. E.

    1985-01-01

    The Deep Space Network must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. The DSN has three tracking complexes, located approximately equidistantly around the Earth. Various methods are used to coordinate the clocks among the three complexes. These methods include Loran-C, TV Line 10, very long baseline interferometry (VLBI), and the Global Positioning System (GPS). The GPS is becoming increasingly important because of the accuracy, precision, and rapid availability of the data; GPS receivers have been installed at each of the DSN complexes and are used to obtain daily time offsets between the master clock at each site and UTC(USNO/NBS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN frequency and timing system (DFT). A brief history of the GPS timing receivers in the DSN, a description of the data and information flow, data on the performance of the DSN master clocks and GPS measurement system, and a description of hydrogen maser frequency steering using these data are presented.

  17. Single-channel seismic-reflection profiles from Massachusetts coastal waters and the western part of Georges Bank

    USGS Publications Warehouse

    Eskenasy, Diane M.

    1980-01-01

    The U.S. Geological Survey collected approximately 1,200 km each of airgun and minisparker single-channel seismic-reflection profiles during the R/V FAY cruise 023 in September 1976. The purpose of the 6-day cruise was to study the shallow sedimentary structure south and east of southern Massachusetts and to obtain magnetic and gravity data in these areas and in the vicinity of Great South Channel and Cape Ann. The survey was conducted by the U.S. Geo­logical Survey as part of the Massachusetts Cooperative Marine Geologic Program.Seismic instruments used include a 1Teledyne 600-joule minisparker system and a 20-in3 airgun system. Navigational data during the cruise were obtained by the use of an Integrated Navigation System, which included the following sub­systems:Teledyne Loran-C for both range-range and hyperbofic positions;Magnovox s'atellite receiver;Sperry Mark-29 gyrocompass; andHewlett-Packard 21 MX computer system with dual 9-track magnetic tape recording.The original records may be studied at the U.S. Geological Survey offices in Woods Hole, Mass. Copies of the records can be purchased only from the National Geophysical and Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder CO 80303- (303-497-6338).

  18. Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)

    2001-01-01

    Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.

  19. High-resolution seismic-reflection data collected on R/V S.P. LEE: L9-84-CP, Marshall Islands to Hawaii

    USGS Publications Warehouse

    Schwab, William C.; Bailey, Norman G.

    1984-01-01

    The U.S. Geological Survey (USGS) R/V S.P. LEE (cruise L9-84-CP) left Majuro, Radak chain of the Marshall Islands on July 28, 1984, cruised over the Mid-Pacific Mountains, and reached Hawaii on August 15, 1984. The main objectives of the cruise were to study the distribution and composition of ferromanganese-oxide crusts in the Marshall Islands and to retrieve a current meter/sediment trap mooring deployed in October 1983 on Horizon Guyot, Mid-Pacific Mountains (USGS LS-83-HW cruise). The quality of the geophysical data collected is generally good. However, the declivity of some seamount, atoll, and guyot flanks are too large to allow high-quality resolution from the surface-towed systems that were used.The navigation system used was an integrated satellite-navigation/LORAN-C (in Mid-Pacific Mountains)/dead-reckoning system that was updated by radar when possible. A total of 5410 km of 12-kHz and 3.5-kHz seismic-reflection data and 730 km of 80-in3 to 148-in3 airgun seismic-reflection data were collected. The original records can be seen and studied at the USGS offices at Woods Hole, MA 02543. Microfilm copies of the seismic-reflection data can be purchased only from the National Geophysical Data Center, NOAA/EDIS/NGDC, 325 Broadway, Boulder, CO 80303.

  20. Seismic-reflection and sidescan-sonar data collected off eastern Cape Cod, Massachusetts, during April 1979

    USGS Publications Warehouse

    Knebel, Harley J.

    1981-01-01

    The U.S. Geological Survey collected 98 line kilometers of single-channel seismic-reflection profiles and sidescan sonar records on the inner shelf of eastern Cape Cod, Massachusetts, during April 1979. The data were obtained during cruise NE-1-79 of the R/V NEECHO. The purposes of the survey were: (1) to study the development of barrier islands; (2) to document the frequency and rate of migration of inlets that breach barrier islands; and (3) to define the characteristics of shoreface ridges on a barrier island.he survey uti I ized two acoustic systems. Information about the bottom was obtained by using an EDO Western model 606 sidescan-sonar system (100 kHz). Profiles of the subbottom were collected by an EG&G Uni boom transducer (400-4,000 Hz) and a Del Norte streamer. Positional control for al I track! ines was provided by a shore-based Miniranger system and by LORAN-C.The quality of the records generally is very good. However, subbottom penetration did vary somewhat from place to place during the survey due to the nature of the bottom sediments and to the presence or absence of buried channels.The original records may be examined at the U.S. Geological Survey, Woods Hole, MA 02543. Microfilm copies of the data are avai I able for purchase from the National Geophysical pnd Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder, CO 80303 (303-497-6338).

  1. Sidescan-sonar data collected during May 1978 from the southern New England continental shelf

    USGS Publications Warehouse

    McClennen, Charles E.

    1981-01-01

    Sidescan-sonar data were collected aboard R/V WESTWARD (Cruise W-39-4) during May 1978 by the U.S. Geological Survey using an Ocean Research Equipment System. Navigation in the study area was by Loran C. The 368 kilometers of survey were conducted in Block Island Sound, in Rhode Island Sound, and over the mid-Continental Shelf south of Block Island and Martha's Vineyard.Although the records are generally of good quality, variable ship speeds were caused by changes of wind and sail. Thus, care must be used in dimensional and orientation analysis of the bed-form features observed on the records.On the midshelf, three bottom types were observed: 1) smooth, featureless sea floor, 2) elongated bodies of megaripples, and 3) ground-fishing trawler marks. The distribution of the .features seems to be related to current velocity, grain-size distribution, water depth, and fishing intensity. The midshelf survey results are discussed with cruise data of R/V CAPE HENLOPEN (also collected in the spring of 1978) \\ by Twichell and others.The sonographs from Block Island and Rhode Island Sounds show a pattern indicative of a till cap atop a submerged part of the coastal end moraine, as well as the megarippled and smooth sea floor.The original records may be examined in the U.S. Geological Survey offices in Woods Hole, Mass. Copies of the records can be purchased only from the National Geophysical and Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621 , 325 Broadway, Boulder, CO 80303 (303-497-6338).

  2. The propagation characteristics of electromagnetic waves through plasma in the near-field region of low-frequency loop antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, DongLin, E-mail: donglinliu@stu.xidian.edu.cn; Li, XiaoPing; Xie, Kai

    2015-10-15

    A high-speed vehicle flying through the atmosphere between 100 and 20 km may suffer from a “communication blackout.” In this paper, a low frequency system with an on-board loop antenna to receive signals is presented as a potential blackout mitigation method. Because the plasma sheath is in the near-field region of the loop antenna, the traditional scattering matrix method that is developed for the far-field region may overestimate the electromagnetic (EM) wave's attenuation. To estimate the EM wave's attenuation in the near-field region, EM interference (EMI) shielding theory is introduced. Experiments are conducted, and the results verify the EMI shielding theory'smore » effectiveness. Simulations are also conducted with different plasma parameters, and the results obtained show that the EM wave's attenuation in the near-field region is far below than that in the far-field region. The EM wave's attenuation increases with the increase in electron density and decreases with the increase in collision frequency. The higher the frequency, the larger is the EM wave's attenuation. During the entire re-entry phase of a RAM-C module, the EM wave's attenuations are below 10 dB for EM waves with a frequency of 1 MHz and below 1 dB for EM waves with a frequency of 100 kHz. Therefore, the low frequency systems (e.g., Loran-C) may provide a way to transmit some key information to high-speed vehicles even during the communication “blackout” period.« less

  3. High-resolution seismic-reflection profiling data from the inner continental shelf of southeastern Massachusetts

    USGS Publications Warehouse

    O'Hara, Charles J.

    1980-01-01

    Six hundred-seventy kilometers of closely spaced high-resolution seismic-­reflection data have been collected from eastern Rhode Island Sound and Vineyard Sound, Mass, by the U.S. Geological Survey in cooperation with the Massachusetts Department of Public Works. These data were obtained during the June 1975 cruise of the R/V ASTERIAS as part of a continuing regional study of the Massachusetts offshore area to assess potential mineral resources, to evaluate environmental impact of mining of resources and of offshore disposal of solid waste and harbor dredge-spoil materials, and to map the offshore geology and shallow structure.The data were obtained by using a surface-towed EG&G Unit Pulse Boomer* (300 joules: 400 Hz-8kHz frequency) sound source. Reflected acoustic energy was detected by a 4.6-m, a-element hydrophone array, was amplified, was actively filtered (400 Hz-4kHz bandpass), and was graphically displayed on an EPC* dry paper recorder at a 0.25-second sweep rate. System resolution was generally 1 to 1.5 m. Navigational control was provided by Loran C (posi­tional accuracy within 0.2 km) and was supplemented by radar and visual fixes. Positional information was logged at 15-minute intervals and at major course changes.The original records may be examined at the Data Library, U.S. Geological Survey, Woods Hole, MA 02543. Microfilm copies of the data are available for purchase from the National Geophysical and Solar-Terrestrial Data Center (NGSDC), Boulder, CO 80302.

  4. A real-time prediction of UTC

    NASA Technical Reports Server (NTRS)

    Thomas, Claudine; Allan, David W.

    1994-01-01

    The reference time scale for all scientific and technologic applications on the Earth, the Universal Coordinated Time (UTC), must be as stable, reliable, and accurate as possible. With this in view the BIPM and before it the BIH, have always calculated and then disseminated UTC with a delay of about 80 days. There are three fundamental reasons for doing this: (1) It takes some weeks for data, gathered from some 200 clocks spread world-wide, to be collected and for errors to be eliminated; (2) changes in clock rates can only be measured with high precision well after the fact; and (3) the measurement noise originating in time links, in particular using Loran-C, is smoothed out only when averaging over an extended period. Until mid-1992, the ultimate stability of UTC was reached at averaging times of about 100 days and corresponded to an Allan deviation sigma(sub y)(tau) of about 1,5x10(exp -14) then compared to the best primary clock in the world, the PTB CS2. For several years now, a predicted UTC has been computed by the USNO through an extrapolation of the values as published in deferred time by the BIPM. This is made available through the USNO Series 4, through the USNO Automated Data Service, and through GPS signals. Due to the instability of UTC, the poor predictability of the available clocks, and the intentional SA degradation of GPS signals, the real-time access to this extrapolated UTC has represented the true deferred-time UTC only to within several hundreds of nanoseconds.

  5. Geodesy and astrometry by transatlantic long base line interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, W.H.; Langley, R.B.; Petrachenko, W.T.

    1979-01-10

    We report geodetic and astrometric results from the analysis of fringe frequency observations from a series of three long base line interferometry (LBI) experiments carried out in 1973 between the 46-m antenna of the Algonquin Radio Observatory, Lake Traverse, Canada, and the 25-m antenna at Chilbolton Field Station, Chilbolton, England. The rms deviation from the mean of the estimates of the length and orientation of the 5251-km equatorial component of the base line from all three experiments is 1.05-m and 0.015'', respectively. The experiments also yielded positions of five extragalactic radio sources. The reported positions, each of which is frommore » only a single experiment, have uncertainties of about 0.2'' in declination (except for low declination sources) and about 0.01 s in right ascension. The LBI determination of the length and orientation of the equatorial component of the base line is compared to the corresponding values derived from Naval Weapons Laboratory 9D (NWL-9D) coorinates for the antennae. The two length measurements agree in scale within quoted experimental errors; however, the NWL-9D coordinate frame is found to be rotated 0.867'' +- 0.1'' to the east relative to the average terrestrial frame of the Bureau Internationale de l'Heure (BIH),(LBI coordinate frame). This is in good agreement with the expected misalignment of 0.65'' +- 0.2''. The differences in the rates of the clocks used at each end of the base line were also determined and compared to Loran-C observations.« less

  6. High-resolution seismic-reflection profiles and sidescan-sonar records collected on Block Island Sound by U.S. Geological Survey, R/V ASTERIAS, cruise AST 81-2

    USGS Publications Warehouse

    Needell, S. W.; Lewis, R.S.

    1982-01-01

    Cruise AST 81-2 was conducted aboard the R/V ASTERIAS during September 10-18, 1981, in Block Island Sound by the U.S. Geological Survey. It was funded in part by the Connecticut Geological and Natural History Survey. The purpose of the study was to define and map the geology and shallow structure, to determine the geologic framework and late Tertiary to Holocene history, and to identify and map any potential geologic hazards of Block Island Sound.The survey was conducted using an EG&G Uniboom seismic system and an EDO Western sidescan-sonar system. Seismic signals were band-passed between 400 and 4,000 Hz and were recorded at a quarter-second sweep rate. Sidescan sonographs were collected at a 100-m scan range to each side of the ship track. In all, 702 km of seismic-reflection profiles and 402 km of sidescan-sonar records were collected. Navigation was by Loran-C, and the ship position was recorded at 5-minute intervals. Seismic-reflection profiling is continuous and good in quality. Sidescan-sonar records are varied in quality; coverage was intermittent and eventu­ally terminated owing to difficulties with the recorder.Original records can be seen and studied at the U.S. Geological Survey Data Library at Woods Hole, MA 02543. Microfilm copies of the seismic-reflection pro­files and the sidescan sonographs can be purchased only from the National Geo­physical and Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broad­way, Boulder, CO 80303 (telephone 303-497-6338).

  7. High-resolution seismic-reflection profiles collected by the R/V Columbus Iselin, cruise CI 7807-1, in the Baltimore Canyon outer continental shelf area, offshore New Jersey

    USGS Publications Warehouse

    Robb, James M.

    1980-01-01

    High-resolution seismic-reflection profiles were collected by the U.S. Geological Survey (USGS) aboard R/V COLUMBUS ISELIN, cruise 7807-1, from 18 August to 4 September 1978 over the Continental Slope of the Eastern United States between Wilmington and Hudson Canyons. These data were acquired as part of a study to determine potential geologic hazards to petroleum development of the Baltimore Canyon trough area. On this cruise, the Continental Slope between Lindenkohl and Carteret Canyons was surveyed along lines spaced one-half nautical mile apart to study the size and distribution of mass-wasting features as a guide to assess the importance of mass wasting processes on the Continental Slope. The seismic-reflection profiles were placed to complement other data gathered previously by the USGS.Track-line distances totaled 2,050 km of 40-in3 air-gun (with wave shaper) profiles, 2,100 km of 800-J sparker data, and 2,100 km of 3 .5-kHz data. The air-gun and sparker profiles are of high quality, but the 3.5-kHz system did not function well and achieved no subbottom penetration. The side-scan sonar system was operated along the uppermost Continental Slope to investigate its potential for use in this environment. Data were acquired over 22 km of ship's track.Navigation was by Loran-C (5-minute fix interval).The original records can be examined at the U.S. Geological Survey offices in Woods Hole, Massachusetts 02543. Microfilm copies of the data are available for purchase from the National Geophysical and Solar-Terrestrial Data Center (NGSDC), Boulder, Colorado 80303.

  8. Single-channel seismic-reflection profiles and sidescan sonar records collected during May 15-20, 1978, on the southern New England continental shelf

    USGS Publications Warehouse

    Twichell, David C.

    1980-01-01

    The U.S. Geological Survey completed a cruise aboard the R/V CAPE HENLOPEN during May 15-20, 1978, to map the surface character, thickness and extent of the fine-grained.sediment deposit that covers an area 100 x 200 km on the southern New England Continental Shelf. The study area lies between Great South Channel to the east and Black Channel to the west, and extends from the 50-m isobath to the shelf edge.Single-channel high-resolution seismic-reflection profiles and echo-sounding profiles were collected along 941 km of trackline, sidescan sonar records were collected along 673 km of trackline. The subbottom profiles were collected by using a Huntec*system that was towed at midwater depths. Filters were set at 1 to 7 kHz. Echo-sounding records were collected by using a 60 kHz EDO Western system. A Klein stdescan sonar, set to scan 100 m to either side of the towed fish, was used to collect the sonographs.Navigation during the survey was done by the scientific staff using Loran-C equipment. Fixes were recorded and logged at least every 15 minutes; after the cruise, they were digitized and stored on magnetic tape.The original records can be seen and studied at the U.S. Geological Survey Data Library at Woods Hole, MA 02543. Microfilm copies of the subbottom, echo­sounding, and sidescan sonar records collected during the cruise can be purchased from the National Geophysical and Solar-Terrestrial Data Center, NOAA (National Oceanic ancl Atmosphere Administration), Boulder, CO 80302.

  9. High-resolution seismic-reflection profiles collected by the R/V James M. Gilliss, cruise GS 7903-4, in the Baltimore Canyon outer continental shelf area, offshore New Jersey

    USGS Publications Warehouse

    Robb, James M.

    1980-01-01

    High-resolution seismic-reflection profiles were collected by the U.S. Geological Survey (USGS) aboard R/V JAMES M. GILLIS (cruise GS 7903-4) from 27 June to 11 July 1979 over the Continental Slope of the Eastern United States between Lindenkohl and Hudson Canyons. These data were acquired as part of a study to determine potential geologic hazards to petroleum development of the Baltimore Canyon trough area. On this cruise, the Continental Slope between Carteret and South Toms Canyons was surveyed along lines spaced one-half nautical mile apart to study the size and distribution of mass-wasting features as a guide to assess the importance of mass-wasting processes on the Continental Slope. The seimsic-reflection profiles were placed to complement other data gathered previously by the USGS and to continue a survey grid begun in 1978 aboard the R/V COLUMBUS !SELIN, cruise CI 7807-1.Track-line distances totaled 1,555 km of 40-in3 air-gun (with wave shaper) profiles, 1, 750 km of 800-J sparker data, and 1,780 km of 3 .5-kHz data. All data are of high quality. A side-scan sonar system was operated briefly along the uppermost Continental Slope to acquire data over 70 km of ship's track. In addition, experimental profiling data were collected from a hydrophone towed at depth over the midslope on the end of the side-scan cable; the surface-towed sparker was used as a sound source. High-resolution profiles were collected by this method over 105 km of track.Navigation was by Loran-C (5-minute fix interval) and satellite.The original data may be inspected at the offices of the U.S. Geological Survey in Woods Hole, Massachusetts 02543. Microfilm copies of the data from this cruise are available for purchase from the National Geophysical and Solar-Terrestrial Data Center (NGSDC), Boulder, Colorado 80303.

  10. 3.5-kHz Data Collected in the Wilmington Canyon Area During 1980, Endeavor Cruise 80-EN-056

    USGS Publications Warehouse

    McGregor, B.A.

    1982-01-01

    During 1980, geophysical data were collected seaward of New Jersey in the vicinity of Wilmington Canyon on three cruises, GYRE 80-G-7B, GYRE 80-G-BB, and ENDEAVOR 80-EN-056 (discussed here). The objectives of these surveys of the Continental Slope and upper Rise, including Wilmington Canyon and the adjacent margin, were to extend existing geophysical coverage to the south of Wilmington Canyon and to provide detailed geologic and geophysical data on the poss.ible origin and evolution of submarine canyons and on sediment transport and other processes within the canyon domain. The geology of this area near Wilmington Canyon was discussed by McGregor, Stubblefield, and others and Stubblefield and others.On ENDEAVOR Cruise 80-EN-056, during October 9-10, 1980, a series of 3.5-kHz profiles was collected. The objective of acquiring these data was to supplement data from GYRE 80-G-7B so that a bathymetric map based on 1-km-spaced grid of data could be constructed. The 3.5-k.Hz system consisted of a hull-mounted transducer and a signal correlator. Ship's speed during the survey was 10 knots (18 km/hr). Data were recorded on a strip chart at a 1-second sweep rate. Navigational control for the cruise was based on Loran C. All times given on the data and navigation plots are in Greenwich mean time (GMT or Z).The quality of the records is very good, although time marks had to be added manually. Maximum subbottom penetration was approximately 100 m.Original records may be viewed at the u.s. Geological Survey, Woods Hole, MA 02543. Microfilms of the data and 1:40,000 scale trackcharts can be purchased only from the National Geophysical and Solar-Terrestr.ial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder, Colorado, 80303 (303-497-6338).

  11. Atmospheric parameterization schemes for satellite cloud property retrieval during FIRE IFO 2

    NASA Technical Reports Server (NTRS)

    Titlow, James; Baum, Bryan A.

    1993-01-01

    Satellite cloud retrieval algorithms generally require atmospheric temperature and humidity profiles to determine such cloud properties as pressure and height. For instance, the CO2 slicing technique called the ratio method requires the calculation of theoretical upwelling radiances both at the surface and a prescribed number (40) of atmospheric levels. This technique has been applied to data from, for example, the High Resolution Infrared Radiometer Sounder (HIRS/2, henceforth HIRS) flown aboard the NOAA series of polar orbiting satellites and the High Resolution Interferometer Sounder (HIS). In this particular study, four NOAA-11 HIRS channels in the 15-micron region are used. The ratio method may be applied to various channel combinations to estimate cloud top heights using channels in the 15-mu m region. Presently, the multispectral, multiresolution (MSMR) scheme uses 4 HIRS channel combination estimates for mid- to high-level cloud pressure retrieval and Advanced Very High Resolution Radiometer (AVHRR) data for low-level (is greater than 700 mb) cloud level retrieval. In order to determine theoretical upwelling radiances, atmospheric temperature and water vapor profiles must be provided as well as profiles of other radiatively important gas absorber constituents such as CO2, O3, and CH4. The assumed temperature and humidity profiles have a large effect on transmittance and radiance profiles, which in turn are used with HIRS data to calculate cloud pressure, and thus cloud height and temperature. For large spatial scale satellite data analysis, atmospheric parameterization schemes for cloud retrieval algorithms are usually based on a gridded product such as that provided by the European Center for Medium Range Weather Forecasting (ECMWF) or the National Meteorological Center (NMC). These global, gridded products prescribe temperature and humidity profiles for a limited number of pressure levels (up to 14) in a vertical atmospheric column. The FIRE IFO 2 experiment provides an opportunity to investigate current atmospheric profile parameterization schemes, compare satellite cloud height results using both gridded products (ECMWF) and high vertical resolution sonde data from the National Weather Service (NWS) and Cross Chain Loran Atmospheric Sounding System (CLASS), and suggest modifications in atmospheric parameterization schemes based on these results.

  12. A Precision, Low-Cost GPS-Based Transmitter Synchronization Scheme for Improved AM Reception

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen Fulton; Moore, Anthony

    2009-01-01

    This paper describes a highly accurate carrier-frequency synchronization scheme for actively, automatically locking multiple, remotely located AM broadcast transmitters to a common frequency/timing reference source such as GPS. The extremely tight frequency lock (to {approx}1 part in 10{sup 9} or better) permits the effective elimination of audible and even sub-audible beats between the local (desired) station's carrier signal and the distant stations carriers, usually received via skywave propagation during the evening and nighttime hours. These carrier-beat components cause annoying modulations of the desired station's audio at the receiver and concurrent distortion of the audio modulation from the distant station(s) andmore » often cause listeners to ldquotune outrdquo due to the low reception quality. Significant reduction or elimination of the beats and related effects will greatly enlarge the effective (interference-limited) listening area of the desired station (from 4 to 10 times as indicated in our tests) and simultaneously reduce the corresponding interference of the local transmitter to the distant stations as well. In addition, AM stereo (CQUAM) reception will be particularly improved by minimizing the phase shifts induced by co-channel interfering signals; hybrid digital (HD) signals will also benefit via reduction in beats from analog signals. The automatic frequency-control hardware described is inexpensive ($1000-$2000), requires no periodic recalibration, has essentially zero long-term drift, and could employ alternate wide-area frequency references of suitable accuracy, including broadcasts from WWVB, LORAN-C, and equivalent sources. The basic configuration of the GPS-disciplined oscillator which solves this problem is extremely simple. The main oscillator is a conventional high-stability quartz-crystal type. To counter long- term drifts, the oscillator is slightly adjusted to track a high-precision source of standard frequency obtained from a specialized GPS receiver (or other source), usually at 10.000 MHz. This very stable local reference frequency is then used as a clock for a standard digitally implemented frequency synthesizer, which is programmed to generate the specific carrier frequency desired. The stability of the disciplining source, typically {approx}1 part in 10{sup 9} to 10{sup 11}, is thus transferred to the final AM transmitter carrier output frequency.« less

  13. Attu, Alaska

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Attu, the westernmost Aleutian island, is nearly 1760 km from the Alaskan mainland and 1200 km northeast of the northernmost of the Japanese Kurile Islands. Attu is about 32 by 56 km in size, and is today the home of a small number of U. S. Coast Guard personnel operating a Loran station. The weather on Attu is typical of Aleutian weather in general...cloudy, rain, fog, and occasional high winds. The weather becomes progressively worse as you travel from the easternmost islands to the west. On Attu, five or six days a week are likely to be rainy, with hardly more than eight or ten clear days a year. The image was acquired July 4, 2000, covers an area of 31.2 by 61.1 km, and is centered near 52.8 degrees north latitude, 173 degrees east longitude.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 31.2 by 61.1 kilometers (19.3 by 37.9 miles) Location: 52.8 degrees North latitude, 173 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: July 4, 2000

  14. The use of aircraft and satellite remote sensing of phytoplankton chlorophyll concentrations in case 2 estuarine waters of the Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Harding, Lawrence W., Jr.

    1989-01-01

    Two projects using remote sensing of phytoplankton chlorophyll concentrations in the Chesapeake Bay estuary were proposed. The first project used aircraft remote sensing with a compact radiometer system developed at NASA's Goddard Space Flight Center (GSFC), the Ocean Data Acquisition System (ODAS). ODAS includes three radiometers at 460, 490, and 520 nm, an infrared temperature sensor (PRT-5), Loran-C for navigation, and a data acquisition system using a PC and mass storage device. This instrument package can be flown in light aircraft at relatively low expense, permitting regular and frequent flights. Sixteen flights with ODAS were completed using the Virginia Institute of Marine Science's De Havilland 'Beaver'. The goal was to increase spatial and temporal resolution in assaying phytoplankton pigment concentrations in the Chesapeake. At present, analysis is underway of flight data collected between March and July 1989. The second project focused on satellite data gathered with the Nimbus-7 Coastal Zone Color Scanner (CZSC) between late 1978 and mid 1986. The problem in using CZSC data for the Chesapeake Bay is that the optical characteristics of this (and many) coastal and estuarine waters are distinct from those of the open ocean for which algorithms for computing pigment concentrations were developed. The successful use of CZCS data for the estuary requires development of site-specific algorithms and analytical approaches. Of principal importance in developing site-specific procedures is the availability of in-situ data on pigment concentrations. A significant data set was acquired from EPA's Chesapeake Bay Program in Annapolis, Maryland, and clear satellite scenes are being analyzed for which same-day sea truth measurements of pigment were obtained. Both the University of Miami and GSFC Seapak systems are being used in this effort. The main finding to date is an expected one, i.e., the algorithms developed for oceanic waters are inadequate to compute pigment concentrations for the Case 2 waters of the Chesapeake Bay. One reason is the overestimation of aerosol radiances by assuming that water-leaving radiance in Band 4 of CZCS (670 nm) is zero, an assumption that is invalid for the Bay. This prompted any attempts to iterative procedures for estimating the proportion of the Band 4 radiance that is actually attributable to aerosol by estimating the water-leaving component using optical data. A cruise on the Chesapeake the week of 7 August 1989 was conducted to collect additional optical data necessary to this task.

  15. Mid-range sidescan-sonar images covering parts of proposed tracts for OCS lease sale 56 and contiguous areas, Manteo, Cape Fear, and adjacent quadrangles off North Carolina

    USGS Publications Warehouse

    Popenoe, Peter; Cashman, K.V.; Chayes, Dale; Ryan, William B. F.

    1981-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Bureau of Land Management (BLM) and the Lamont-Doherty Geological Observatory (LDGO), collected 335 km of mid-range sidescan-sonar data in some of the tracts proposed for inclusion in Federal OCS (Outer Continental Shelf) Oil and Gas Lease Sale 56 and in some contiguous areas (R.V. GYRE, September 18-25, 1980 [GYRE 80-9, leg 1]). The data were collected by use of the Sea Mark I mid-range sidescan-sonar system designed by International Submarine Technology, Ltd. (IST). This system surveys a swath having a width of approximately 2-1/2 km on each side of the deep-towed fish. Transducers were towed about 300 m above the bottom on a neutrally bouyant vehicle at a speed of 1-1/2 to 2 knots. Transducers were pulsed at 4-second intervals at a frequency of 27 kHz on one side and 30 kHz on the other. Data recorded on seven EPC recorders aboard ship included slant-range corrected port channel, starboard channel, and port and starboard channels; uncorrected port channel, starboard channel, and port and starboard channels, and a 3.5-kHz tuned-transducer record of the bottom. Fish height or the altitude above the bottom was recorded on a strip-chart recorder. Distance of the fish from the ship (slant range) was recorded by use of a sled-mounted 4.5-kHz transducer.Data recorded on sonograms lagged the 3.5-kHz tuned-transducer record and ship navigational fix by as much as 1 hour (2 km) owing to tow-cable length (up to 5 km). Navigation of the ship was by Loran-C at a 5-minute fix interval, supplemented by satellite fixes.Data are of excellent quality and bottom features several meters high and about 6-12 m wide can be identified. Figures 1 and 2 show the location of track lines in the Manteo (NI 18-2) quadrangle just east of Cape Hatteras where the upper slope within proposed lease tract areas was surveyed. Figures 3 and 4 show track lines in the Cape Fear (NI 18-7) and contiguous quandrangles where data were recorded over the outer Blake Plateau, the Continental Slope, and the upper Continental Rise.The original records may be examined at the U.S. Survey, Woods Hole, MA 02543. Microfilm copies of the data are available for purchase only from the National Geophysical and Solar-Terrestrial Data c,nt er, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder, CO 80303 (303-497-6338).

  16. Multichannel seismic-reflection profiles collected in 1979 aboard M/V Seismic Explorer on the western Florida shelf

    USGS Publications Warehouse

    Ball, M.M.; Soderberg, N.K.

    1989-01-01

    In August 1979, the U.S. Geological Survey (USGS) aboard the M/V SEISMIC EXPLORER of Seismic Explorations International (SEI), ran 17 lines (1,270 km) of multichannel, seismic-reflection profiles on the western Florida Shelf. The main features of the SEI system were (1) a digital recorder with an instantaneous-floating-point-gain constant of 24 dB, (2) a 64-channel hydrophone streamer, 3,200 m long, and (3) a 21-airgun array that had a total volume of 2,000 in and a pressure of 2,000 psi. Sampling interval was array to the center of the farthest phone group was 3,338 m and to the nearest phone group, 188 m. Shot points were 5O m apart to obtain a 32-fold stack. Navigation was by an integrated satellite/Loran/doppler-sonar system.The SEI data were processed by Geophysical Data Processing Center, Inc. of Houston, Texas. Processing procedures were standard with the following exceptions: (1) a deringing deconvolution that had a 128-ms operator length was done prior to stacking. (2) a time-variant predictive deconvolution that had a filter operator length of 100 ms and automatic picking of the second zero-crossing was applied after stacking to further suppress multiple energy. (3) Velocity analyses were performed every 3 km, using a technique that included the determination and consideration of both the amount and direction of apparent dip. (4) Automatic gain ranging using a 750-ms window was applied pre- and post-stack. ( 5) Lines affected by sea floor's angle of slope were deconvolved again before stacking and time-variant filter parameters were adjusted to follow the sea-floor geometry.The data taken with the 3,200-m streamer and 2,000 in3 airgun array, aboard M/V SEISMIC EXPLORER (Arabic numerals) are vastly superior to those obtained by R/V GYRE using a much smaller streamer and source (Roman numerals). The former consistently show coherent primary events from within the units underlying the Mesozoic section on the western Florida Shelf, while the latter tend to do so only in the inshore area where pre-Mesozoic basement occurs at depths of less than 2 km. The R/V GYRE data were open filed previously (Ball and others, 1987). A synthesis of both sets of data is included in Ball and others (1988).Reflectors correlate to the full 8-s duration of recording time. A number of lines were restarted due to equipment failure; no areas were omitted, however, shotpoints overlap. The original records may be seen at the USGS branch of Atlantic marine geology offices in Woods Hole, Mass. Copies of the multichannel data may be purchased only from the National Geophysical Data Center, NOAA, Code E64, 325 Broadway, Boulder, CO 80303 (tel. 303/497-6345).

  17. A Precision, Low-Cost GPS-Based Synchronization Scheme for Improved AM Reception.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen Fulton; Moore, Anthony

    2009-01-01

    This paper describes a highly accurate carrier-frequency synchronization scheme for actively, automatically locking multiple, remotely located AM broadcast transmitters to a common frequency/timing reference source such as GPS. The extremely tight frequency lock (to ~1 part in 109 or better) permits the effective elimination of audible and even sub-audible beats between the local (desired) station s carrier signal and the distant stations carriers, usually received via skywave propagation during the evening and nighttime hours. These carrier-beat components cause annoying modulations of the desired station s audio at the receiver and concurrent distortion of the audio modulation from the distant station(s)more » and often cause listeners to tune out due to the poor reception quality. Significant reduction or elimination of the beats and related effects will greatly enlarge the effective (interference-limited) listening area of the desired station (from 4 to 10 times as indicated in our tests) and simultaneously reduce the corresponding interference of the local transmitter to the distant stations as well. In addition, AM stereo (CQUAM) reception will be particularly improved by minimizing the phase shifts induced by co-channel interfering signals; HD will also benefit via reduction in beats from analog signals. The automatic frequency-control hardware described is inexpensive ($1-2K), requires no periodic recalibration, has essentially zero long-term drift, and could employ alternate wide-area frequency references of suitable accuracy, including broadcasts from WWVB, LORAN-C, and equivalent sources. The basic configuration of the GPS-disciplined oscillator which solves this problem is extremely simple. The main oscillator is a conventional high-stability quartz-crystal type. To counter long-term drifts, the oscillator is slightly adjusted to track a high-precision source of standard frequency obtained from a specialized GPS receiver (or other source), usually at 10.000 MHz. This very stable local reference frequency is then used as a clock for a standard digitally implemented frequency synthesizer, which is programmed to generate the specific (AM broadcast) transmitter carrier frequency desired. The stability of the disciplining source, typically ~ 1 part in 109 to 1011, is thus transferred to the final AM transmitter carrier output frequency. Generally, an AM radio listener during the evening and nighttime hours, and to a lesser extent in the early morning, receives undesired skywave signals from several distant stations as well as the desired local (groundwave) signal. If all of these signals are within about 0.01-0.001 Hz of each other, any resulting carrier beats will be of such long periods that the beats will be effectively suppressed by the action of the receiver s AGC circuitry and thus be unnoticeable to the listener. Many modern, synthesizer-based transmitters can directly lock to the precision disciplined 10-MHz source, while older units usually require references at either1 e, 2 e, or 4 e the final frequency. In these latter cases, the existing transmitter crystal can usually be satisfactorily pulled via injection locking. The effectiveness of the synchronization concept to reduce interference effects was demonstrated in a laboratory test setup. Many hours of careful subjective listening were conducted, with the two interfering units both precisely on-frequency with the main unit (synchronous operation) and with the two interferers at various frequency offsets, from below 1 Hz to above 10 Hz.« less

  18. Obituary: R(oyal) Glenn Hall, 1921-2004

    NASA Astrophysics Data System (ADS)

    McCarthy, Dennis Dean

    2004-12-01

    R. Glenn Hall died on 25 June 2004 following a battle with prostate cancer. His contributions to the determination of the frequency corresponding to an energy level transition in the Cesium atom led to the definition of the length of the second and formed the basis for precise modern timekeeping. Glenn was born on 23 June 1921 in Koloa, Hawaii, and together with a brother and three sisters, grew up in Albion, Michigan. His father was a professor of political science at Albion College. He graduated from Park College in Parkville, Missouri with a degree in mathematics in 1941. He served as a corpsman in the U. S. Navy during World War II, and went on to earn a PhD at the University of Chicago in 1949. Glenn joined the faculty at the University of Chicago as an instructor from 1949 through 1952 and became a research associate there in 1953. While at the U. of Chicago he worked extensively on mass ratios of binary stars, binary star orbits and the determination of stellar parallaxes. In 1953 Glenn came to the U. S. Naval Observatory (USNO) where he became the Assistant Director of the Time Service Division. His early work at the Naval Observatory was related to the determination of Ephemeris Time (ET) from photographic observations of the Moon with respect to background stars. This work provided a time scale more uniform than that based on the Earth's rotation, which was the internationally accepted time scale at the time. As a result, the International Astronomical Union in 1955 redefined the second to be the second as determined from Ephemeris Time. In June 1955, L. Essen and J.V.L. Parry placed in operation a Cesium beam atomic standard at the National Physical Laboratory in Teddington, England. William Markowitz (1907-1998), the director of the Time Service, and Hall together with Essen and Parry then began the work leading to the determination of the frequency of the Cesium atom in terms of the second of the seasonally corrected time scale determined from the Earth's rotation and also in terms of Ephemeris Time. The former was accomplished using the observations of stars with the Photographic Zenith Tube (PZT) and the latter from the photographic observations of the Moon. These same investigators later calibrated the frequency in terms of the ET second using observations made with the USNO dual-rate Moon camera over the period 1955.50 to 1958.25. In a paper published in Physical Review Letters in 1958 the cesium frequency was found to be 9 192 631 770 Hz with a probable error of ±20 Hz. In 1967 the 13th General Conference on Weights and Measures adopted the atomic second as the unit of time in the International System of Units. It was defined as "the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom." Therefore, the second of atomic time, the basis for all modern timekeeping, is in principle equivalent to the second of Ephemeris Time. Glenn went on to lead an international program of Moon-camera observations for the International Geophysical Year in 1957-58 that was extended into the 1960's. His other work at the U. S. Naval Observatory was concerned with the operation of programs using the Danjon astrolabes and PZTs to determine the variations in the Earth's rotation. He also worked with Markowitz to investigate improvements in electronic time transfer techniques using artificial satellites and Loran-C. Other investigations were concerned with the calibration of Hydrogen masers and the formation of time scales. Hall was a member of the American Astronomical Society and the International Astronomical Union. He retired from the USNO in 1982, and enjoyed an active retirement. He traveled widely, often returning to Hawaii, and pursued his many hobbies: he was an avid bridge player; he had a long interest in stamp collecting and maintained a large garden. In 1943 he was married to Mary Mowry. They had three children. A daughter, Anne preceded him in death in 1997. His wife and two sons, Thomas, and Robert, and two grandchildren, Garrett and Tarek, survive him. Glenn's scientific work was characterized by a clear analytical sense in the treatment of data. He possessed an ability to recognize systematic phenomena in time series data that were not always evident to his colleagues. This quality together with his friendly, unflappable nature made him a key individual at the Naval Observatory where he could always be approached for his friendly technical advice.

Top