NASA Astrophysics Data System (ADS)
Başkal, Sibel
2015-11-01
This book explains the Lorentz mathematical group in a language familiar to physicists. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group of the four-dimensional Minkowski space is still very strange to most present-day physicists. It plays an essential role in understanding particles moving at close to light speed and is becoming the essential language for quantum optics, classical optics, and information science. The book is based on papers and books published by the authors on the representations of the Lorentz group based on harmonic oscillators and their applications to high-energy physics and to Wigner functions applicable to quantum optics. It also covers the two-by-two representations of the Lorentz group applicable to ray optics, including cavity, multilayer and lens optics, as well as representations of the Lorentz group applicable to Stokes parameters and the Poincaré sphere on polarization optics.
Thomas precession, Wigner rotations and gauge transformations
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.; Son, D.
1987-01-01
The exact Lorentz kinematics of the Thomas precession is discussed in terms of Wigner's O(3)-like little group which describes rotations in the Lorentz frame in which the particle is at rest. A Lorentz-covariant form for the Thomas factor is derived. It is shown that this factor is a Lorentz-boosted rotation matrix, which becomes a gauge transformation in the infinite-momentum or zero-mass limit.
Cohen, Andrew G; Glashow, Sheldon L
2006-07-14
By very special relativity (VSR) we mean descriptions of nature whose space-time symmetries are certain proper subgroups of the Poincaré group. These subgroups contain space-time translations together with at least a two-parameter subgroup of the Lorentz group isomorphic to that generated by K(x) + J(y) and K(y)- J(x). We find that VSR implies special relativity (SR) in the context of local quantum field theory or of conservation. Absent both of these added hypotheses, VSR provides a simulacrum of SR for which most of the consequences of Lorentz invariance remain wholly or essentially intact, and for which many sensitive searches for departures from Lorentz invariance must fail. Several feasible experiments are discussed for which Lorentz-violating effects in VSR may be detectable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Andrew G.; Glashow, Sheldon L.
2006-07-14
By very special relativity (VSR) we mean descriptions of nature whose space-time symmetries are certain proper subgroups of the Poincare group. These subgroups contain space-time translations together with at least a two-parameter subgroup of the Lorentz group isomorphic to that generated by K{sub x}+J{sub y} and K{sub y}-J{sub x}. We find that VSR implies special relativity (SR) in the context of local quantum field theory or of CP conservation. Absent both of these added hypotheses, VSR provides a simulacrum of SR for which most of the consequences of Lorentz invariance remain wholly or essentially intact, and for which many sensitivemore » searches for departures from Lorentz invariance must fail. Several feasible experiments are discussed for which Lorentz-violating effects in VSR may be detectable.« less
q-Deformed Minkowski Algebra and Its Space-Time Lattice
NASA Astrophysics Data System (ADS)
Wess, J.
2Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Föhringer Ring 6, D-80805 MünchenAbstract. We have asked how the Heisenberg relations of space and time change if we replace the Lorentz group by a q-deformed Lorentz group (Lorek et al. 1997).
Inertial Frames Without the Relativity Principle: Breaking Lorentz Symmetry
NASA Astrophysics Data System (ADS)
Baccetti, Valentina; Tate, Kyle; Visser, Matt
2015-01-01
We investigate inertial frames in the absence of Lorentz invariance, reconsidering the usual group structure implied by the relativity principle. We abandon the relativity principle, discarding the group structure for the transformations between inertial frames, while requiring these transformations to be at least linear (to preserve homogeneity). In theories with a preferred frame (aether), the set of transformations between inertial frames forms a groupoid/pseudogroup instead of a group, a characteristic essential to evading the von Ignatowsky theorems. In order to understand the dynamics, we also demonstrate that the transformation rules for energy and momentum are in general affine. We finally focus on one specific and compelling model implementing a minimalist violation of Lorentz invariance.
Non-Abelian Gauge Theory in the Lorentz Violating Background
NASA Astrophysics Data System (ADS)
Ganai, Prince A.; Shah, Mushtaq B.; Syed, Masood; Ahmad, Owais
2018-03-01
In this paper, we will discuss a simple non-Abelian gauge theory in the broken Lorentz spacetime background. We will study the partial breaking of Lorentz symmetry down to its sub-group. We will use the formalism of very special relativity for analysing this non-Abelian gauge theory. Moreover, we will discuss the quantisation of this theory using the BRST symmetry. Also, we will analyse this theory in the maximal Abelian gauge.
Theoretical Studies of Lorentz and CPT Symmetry
NASA Technical Reports Server (NTRS)
Kostelecky, V. Alan
2005-01-01
The fundamental symmetries studied here are Lorentz and CPT invariance, which form a cornerstone of the relativistic quantum theories used in modern descriptions of nature. The results obtained during the reporting period focus on the idea, originally suggested by the P.I. and his group in the late 1980s, that observable CPT and Lorentz violation in nature might emerge from the qualitatively new physics expected to hold at the Planck scale. What follows is a summary of results obtained during the period of this grant.
Lorentz Invariance of Gravitational Lagrangians in the Space of Reference Frames
NASA Astrophysics Data System (ADS)
Cognola, G.
1980-06-01
The recently proposed theories of gravitation in the space of reference frames S are based on a Lagrangian invariant with respect to the homogeneous Lorentz group. However, in theories of this kind, the Lorentz invariance is not a necessary consequence of some physical principles, as in the theories formulated in space-time, but rather a purely esthetic request. In the present paper, we give a systematic method for the construction of gravitational theories in the space S, without assuming a priori the Lorentz invariance of the Lagrangian. The Einstein-Cartan equations of gravitation are obtained requiring only that the Lagrangian is invariant under proper rotations and has particular transformation properties under space reflections and space-time dilatations
Linear canonical transformations of coherent and squeezed states in the Wigner phase space
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.; Noz, Marilyn E.
1988-01-01
It is shown that classical linear canonical transformations are possible in the Wigner phase space. Coherent and squeezed states are shown to be linear canonical transforms of the ground-state harmonic oscillator. It is therefore possible to evaluate the Wigner functions for coherent and squeezed states from that for the harmonic oscillator. Since the group of linear canonical transformations has a subgroup whose algebraic property is the same as that of the (2+1)-dimensional Lorentz group, it may be possible to test certain properties of the Lorentz group using optical devices. A possible experiment to measure the Wigner rotation angle is discussed.
Weak Lie symmetry and extended Lie algebra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goenner, Hubert
2013-04-15
The concept of weak Lie motion (weak Lie symmetry) is introduced. Applications given exhibit a reduction of the usual symmetry, e.g., in the case of the rotation group. In this context, a particular generalization of Lie algebras is found ('extended Lie algebras') which turns out to be an involutive distribution or a simple example for a tangent Lie algebroid. Riemannian and Lorentz metrics can be introduced on such an algebroid through an extended Cartan-Killing form. Transformation groups from non-relativistic mechanics and quantum mechanics lead to such tangent Lie algebroids and to Lorentz geometries constructed on them (1-dimensional gravitational fields).
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.; Noz, Marilyn E.
1990-01-01
It is shown that the basic symmetry of two-mode squeezed states is governed by the group SP(4) in the Wigner phase space which is locally isomorphic to the (3 + 2)-dimensional Lorentz group. This symmetry, in the Schroedinger picture, appears as Dirac's two-oscillator representation of O(3,2). It is shown that the SU(2) and SU(1,1) interferometers exhibit the symmetry of this higher-dimensional Lorentz group. The mathematics of two-mode squeezed states is shown to be applicable to other branches of physics including thermally excited states in statistical mechanics and relativistic extended hadrons in the quark model.
Unified space--time trigonometry and its applications to relativistic kinematics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaccarini, A.
1973-06-15
A geometrical approach to relativistic kinematics is presented. Owing to a unified space-time trigonometry, the spherical trigonometry formalism may be used to describe and study the kinematics of any collision process. Lorentz transformations may thus lie treated as purely geometrical problems. A different way to define a unified trigonometry is also proposed, which is based on the spinor representation of the Lorentz group. This leads to a different and more general formalism than the former one. (auth)
NASA Astrophysics Data System (ADS)
Zhao, Chengliang; Cai, Yangjian
2011-05-01
Based on the generalized Huygens-Fresnel integral, propagation of partially coherent Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system in a turbulent atmosphere was investigated. Analytical propagation formulae were derived for the cross-spectral densities of partially coherent Lorentz and Lorentz-Gauss beams. As an application example, the focusing properties of partially coherent Gaussian, Lorentz and Lorentz-Gauss beams in a turbulent atmosphere and in free space were studied numerically and comparatively. It is found that the focusing properties of such beams are closely related to the initial coherence length and the structure constant of turbulence. By choosing a suitable initial coherence length, a partially coherent Lorentz beam can be focused more tightly than a Gaussian or Lorentz-Gauss beam in free space or in a turbulent atmosphere with small structure constant at the geometrical focal plane.
A Study of Gaugeon Formalism for QED in Lorentz Violating Background
NASA Astrophysics Data System (ADS)
Shah, Mushtaq B.; Ganai, Prince A.
2018-02-01
At the energy regimes close to Planck scales, the usual structure of Lorentz symmetry fails to address certain fundamental issues and eventually breaks down, thus paving the way for an alternative road map. It is thus argued that some subgroup of proper Lorentz group could stand consistent and might possibly help us to circumvent this problem. It is this subgroup that goes by the name of Very Special Relativity (VSR). Apart from violating rotational symmetry, VSR is believed to preserve the very tenets of special relativity. The gaugeon formalism due to type-I Yokoyama and type-II Izawa are found to be invariant under BRST symmetry. In this paper, we analyze the scope of this invariance in the scheme of VSR. Furthermore, we will obtain VSR modified Lagrangian density using path integral derivation. We will explore the consistency of VSR with regard to these theories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doria, R.
A fourth interpretation for the principle of light invariance is proposed. After Maxwell equations, relativity, Lorentz group, another possibility stands into consider the Lorentz group representations as species. By specie one means fields with same nature under light invariance. For instance, given a ((1/2),(1/2)) representation, instead of just one specific field, we should associate to it the potential fields specie. Thus, starting from such fields specie interpretation the features of a certain potential field A{sub {mu}I} will be determined in terms of its associated fields set {l_brace}A{sub {mu}I}{r_brace}, where I means a diversity index. It says that, the original fieldmore » equation to be searched for a given field description is that one corresponding to the associated group of fields, and not more, for the field being taken isolated. It introduces the meaning of parts enfolded in the whole through whole relativistic equations. There is a more primitive equation to be understood. Instead Maxwell equation this fourth light invariance interpretation is guiding us to a more basic equation describing a fields set {l_brace}A{sub {mu}I}{r_brace}. It will be entitled as Global Maxwell equation. Three steps are necessary for characterizing this Global Maxwell equation. The first one is to derive on abelian terms a generic expression for the fields set {l_brace}A{sub {mu}I}{r_brace}. Further, show the diversity between these associated fields. Prove that every field carries a different quantum number (spin, mass, charges; C, P, T, CPT). The third one is on the photon singularity. Being the light invariance porter, it should be distinguished from others fields. This is done through the group gauge directive symmetry and Noether current. A Global Lorentz force complements the Global Maxwell by introducing three types of force. The first one generalizes the usual Lorentz force while the last two introduce relationships between fields and masses and fields with fields. A Physics of Light is derived. Based on such interpretation relating fields with same Lorentz nature, the electromagnetism is enlarged. The electromagnetic phenomena is not more restricted to Maxwell and electric charge. It englobes Maxwell and produces new types of electromagnetic fields and sectors. It centers the photon at its origin, new aspects as photonic charges and selfinteracting photons are obtained. As a case of this new electromagnetic spectrum one can take the set {l_brace}{gamma}Z{sup 0},W{sup {+-}}{r_brace}. It provides an electromagnetism involving photonic, massive, neutral, electric charged sectors which may antecede the electroweak unification.« less
On holographic entanglement density
NASA Astrophysics Data System (ADS)
Gushterov, Nikola I.; O'Bannon, Andy; Rodgers, Ronnie
2017-10-01
We use holographic duality to study the entanglement entropy (EE) of Conformal Field Theories (CFTs) in various spacetime dimensions d, in the presence of various deformations: a relevant Lorentz scalar operator with constant source, a temperature T , a chemical potential μ, a marginal Lorentz scalar operator with source linear in a spatial coordinate, and a circle-compactified spatial direction. We consider EE between a strip or sphere sub-region and the rest of the system, and define the "entanglement density" (ED) as the change in EE due to the deformation, divided by the sub-region's volume. Using the deformed CFTs above, we show how the ED's dependence on the strip width or sphere radius, L, is useful for characterizing states of matter. For example, the ED's small- L behavior is determined either by the dimension of the perturbing operator or by the first law of EE. For Lorentz-invariant renormalization group (RG) flows between CFTs, the "area theorem" states that the coefficient of the EE's area law term must be larger in the UV than in the IR. In these cases the ED must therefore approach zero from below as L→∞. However, when Lorentz symmetry is broken and the IR fixed point has different scaling from the UV, we find that the ED often approaches the thermal entropy density from above, indicating area theorem violation.
Testing local Lorentz invariance with gravitational waves
Kostelecký, V. Alan; Mewes, Matthew
2016-04-20
The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation. (C) 2016 The Authors. Published by Elsevier B.V.
Lorentz violation and Faddeev-Popov ghosts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altschul, B.
2006-02-15
We consider how Lorentz-violating interactions in the Faddeev-Popov ghost sector will affect scalar QED. The behavior depends sensitively on whether the gauge symmetry is spontaneously broken. If the symmetry is not broken, Lorentz violations in the ghost sector are unphysical, but if there is spontaneous breaking, radiative corrections will induce Lorentz-violating and gauge-dependent terms in other sectors of the theory.
Direct terrestrial test of Lorentz symmetry in electrodynamics to 10-18
NASA Astrophysics Data System (ADS)
Nagel, Moritz; Parker, Stephen R.; Kovalchuk, Evgeny V.; Stanwix, Paul L.; Hartnett, John G.; Ivanov, Eugene N.; Peters, Achim; Tobar, Michael E.
2015-09-01
Lorentz symmetry is a foundational property of modern physics, underlying the standard model of particles and general relativity. It is anticipated that these two theories are low-energy approximations of a single theory that is unified and consistent at the Planck scale. Many unifying proposals allow Lorentz symmetry to be broken, with observable effects appearing at Planck-suppressed levels; thus, precision tests of Lorentz invariance are needed to assess and guide theoretical efforts. Here we use ultrastable oscillator frequency sources to perform a modern Michelson-Morley experiment and make the most precise direct terrestrial test to date of Lorentz symmetry for the photon, constraining Lorentz violating orientation-dependent relative frequency changes Δν/ν to 9.2+/-10.7 × 10-19 (95% confidence interval). This order of magnitude improvement over previous Michelson-Morley experiments allows us to set comprehensive simultaneous bounds on nine boost and rotation anisotropies of the speed of light, finding no significant violations of Lorentz symmetry.
NASA Astrophysics Data System (ADS)
Liu, Dajun; Wang, Guiqiu; Wang, Yaochuan
2018-01-01
Based on the Huygens-Fresnel integral and the relationship of Lorentz distribution and Hermite-Gauss function, the average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence have been investigated by using numerical examples. The influences of beam parameters and oceanic turbulence on the propagation properties are also discussed in details. It is shown that the partially coherent Lorentz-Gauss beam with smaller coherence length will spread faster in oceanic turbulence, and the stronger oceanic turbulence will accelerate the spreading of partially coherent Lorentz-Gauss beam in oceanic turbulence.
Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.
Zhou, Guoquan
2011-11-21
A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Zhang, Qi; Wu, Biao
2018-01-01
We present a theoretical framework for the dynamics of bosonic Bogoliubov quasiparticles. We call it Lorentz quantum mechanics because the dynamics is a continuous complex Lorentz transformation in complex Minkowski space. In contrast, in usual quantum mechanics, the dynamics is the unitary transformation in Hilbert space. In our Lorentz quantum mechanics, three types of state exist: space-like, light-like and time-like. Fundamental aspects are explored in parallel to the usual quantum mechanics, such as a matrix form of a Lorentz transformation, and the construction of Pauli-like matrices for spinors. We also investigate the adiabatic evolution in these mechanics, as well as the associated Berry curvature and Chern number. Three typical physical systems, where bosonic Bogoliubov quasi-particles and their Lorentz quantum dynamics can arise, are presented. They are a one-dimensional fermion gas, Bose-Einstein condensate (or superfluid), and one-dimensional antiferromagnet.
Lorentz violation, gravitoelectromagnetism and Bhabha scattering at finite temperature
NASA Astrophysics Data System (ADS)
Santos, A. F.; Khanna, Faqir C.
2018-04-01
Gravitoelectromagnetism (GEM) is an approach for the gravitation field that is described using the formulation and terminology similar to that of electromagnetism. The Lorentz violation is considered in the formulation of GEM that is covariant in its form. In practice, such a small violation of the Lorentz symmetry may be expected in a unified theory at very high energy. In this paper, a non-minimal coupling term, which exhibits Lorentz violation, is added as a new term in the covariant form. The differential cross-section for Bhabha scattering in the GEM framework at finite temperature is calculated that includes Lorentz violation. The Thermo Field Dynamics (TFD) formalism is used to calculate the total differential cross-section at finite temperature. The contribution due to Lorentz violation is isolated from the total cross-section. It is found to be small in magnitude.
Lorentz and CPT Tests with Atoms
NASA Astrophysics Data System (ADS)
Vargas Silva, Arnaldo J.
The prospects for using atomic-spectroscopy experiments to test Lorentz and CPT symmetry are investigated. Phenomenological models for Lorentz violation studied in this work include ones with contributions from all quadratic operators for a Dirac fermion in the Lagrange density of the Standard-Model Extension (SME), without restriction on the operator mass dimension. The systems considered include atoms composed of conventional matter, antimatter, and second-generation particles. Generic expressions for the Lorentz-violating energy shifts applicable to a broad range of atomic transitions are obtained. Signals for Lorentz violation that can in principle be studied in spectroscopic experiments are identified from the theoretical corrections to the spectrum. Some of these signals include sidereal and annual variations of atomic transition frequencies measured in a laboratory on the surface of the Earth. Other possibilities include effects produced by changing the orientation of the applied magnetic field or by realizing space-based experiments. Discrepancies in the experimental values for fundamental constants and energy levels based on self-consistent predictions from the Standard Model also offer potential signals for Lorentz violation. The sensitivities of different experiments to distinct sets of coefficients for Lorentz violation are considered. Using atoms composed of different particle species allows measurements of coefficients for Lorentz violation in different fermion sectors of the SME. Experiments comparing hydrogen and antihydrogen can discriminate between coefficients for Lorentz violation that are associated with CPT-odd or CPT-even operators. Additionally, certain systems and transitions are more sensitive to nonminimal operators, while others are particularly sensitive to minimal ones.
Localization of observables in the Rindler wedge
NASA Astrophysics Data System (ADS)
Asorey, M.; Balachandran, A. P.; Marmo, G.; de Queiroz, A. R.
2017-11-01
One of the striking features of QED is that charged particles create a coherent cloud of photons. The resultant coherent state vectors of photons generate a nontrivial representation of the localized algebra of observables that do not support a representation of the Lorentz group: Lorentz symmetry is spontaneously broken. We show in particular that Lorentz boost generators diverge in this representation, a result shown also by Balachandran et al. [Eur. Phys. J. C 75, 89 (2015), 10.1140/epjc/s10052-015-3305-0] (see also the work by Balachandran et al. [Mod. Phys. Lett. A 28, 1350028 (2013), 10.1142/S0217732313500284]. Localization of observables, for example in the Rindler wedge, uses Poincaré invariance in an essential way [Int. J. Geom. Methods Mod. Phys. 14, 1740008 (2017)., 10.1142/S0219887817400084]. Hence, in the presence of charged fields, the photon observables cannot be localized in the Rindler wedge. These observations may have a bearing on the black hole information loss paradox, as the physics in the exterior of the black hole has points of resemblance to that in the Rindler wedge.
Lorentz invariance with an invariant energy scale.
Magueijo, João; Smolin, Lee
2002-05-13
We propose a modification of special relativity in which a physical energy, which may be the Planck energy, joins the speed of light as an invariant, in spite of a complete relativity of inertial frames and agreement with Einstein's theory at low energies. This is accomplished by a nonlinear modification of the action of the Lorentz group on momentum space, generated by adding a dilatation to each boost in such a way that the Planck energy remains invariant. The associated algebra has unmodified structure constants. We also discuss the resulting modifications of field theory and suggest a modification of the equivalence principle which determines how the new theory is embedded in general relativity.
Lorentz-violating electrodynamics and the cosmic microwave background.
Kostelecký, V Alan; Mewes, Matthew
2007-07-06
Possible Lorentz-violating effects in the cosmic microwave background are studied. We provide a systematic classification of renormalizable and nonrenormalizable operators for Lorentz violation in electrodynamics and use polarimetric observations to search for the associated violations.
Tests of Lorentz Symmetry with Electrodynamics
NASA Astrophysics Data System (ADS)
Bailey, Quentin; Kostelecky, Alan
2004-05-01
Lorentz and CPT violation is a promising candidate signal for Planck-scale physics. Low-energy effects of Lorentz and CPT violation are described by the general theoretical framework called the Standard-Model Extension (SME). This talk focuses on Lorentz-violating effects arising in the limit of classical electrodynamics. Analysis of the theory shows that suitable experiments could improve by several orders of magnitude on the sensitivities achieved in modern Michelson-Morley and Kennedy-Thorndike tests.
Lorentz violation, gravitoelectromagnetic field and Bhabha scattering
NASA Astrophysics Data System (ADS)
Santos, A. F.; Khanna, Faqir C.
2018-01-01
Lorentz symmetry is a fundamental symmetry in the Standard Model (SM) and in General Relativity (GR). This symmetry holds true for all models at low energies. However, at energies near the Planck scale, it is conjectured that there may be a very small violation of Lorentz symmetry. The Standard Model Extension (SME) is a quantum field theory that includes a systematic description of Lorentz symmetry violations in all sectors of particle physics and gravity. In this paper, SME is considered to study the physical process of Bhabha Scattering in the Gravitoelectromagnetism (GEM) theory. GEM is an important formalism that is valid in a suitable approximation of general relativity. A new nonminimal coupling term that violates Lorentz symmetry is used in this paper. Differential cross-section for gravitational Bhabha scattering is calculated. The Lorentz violation contributions to this GEM scattering cross-section are small and are similar in magnitude to the case of the electromagnetic field.
Comment on 'Noncommutative gauge theories and Lorentz symmetry'
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iorio, Alfredo
2008-02-15
We show that Lorentz symmetry is generally absent for noncommutative (Abelian) gauge theories and obtain a compact formula for the divergence of the Noether currents that allows a thorough study of this instance of symmetry violation. We use that formula to explain why the results of ''Noncommutative gauge theories and Lorentz symmetry'', Phys. Rev. D 70, 125004 (2004) by R. Banerjee, B. Chakraborty, and K. Kumar, interpreted there as new criteria for Lorentz invariance, are in fact just a particular case of the general expression for Lorentz violation obtained here. Finally, it is suggested that the divergence formula should holdmore » in a vast class of cases, such as, for instance, the standard model extension.« less
Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence.
Liu, Dajun; Yin, Hongming; Wang, Guiqiu; Wang, Yaochuan
2017-11-01
The partially coherent Lorentz-Gauss vortex beam generated by a Schell-model source has been introduced. Based on the extended Huygens-Fresnel principle, the cross-spectral density function of a partially coherent Lorentz-Gauss vortex beam propagating in oceanic turbulence is derived. The influences of coherence length, topological charge M, and oceanic turbulence on the spreading properties and position of the coherence vortex for a partially coherent Lorentz-Gauss vortex beam are analyzed in detail. The results show that a partially coherent Lorentz-Gauss vortex beam propagating in stronger oceanic turbulence will evolve into a Gaussian-like beam more rapidly as the propagation distance increases, and the number of coherent vortices will change.
The Role of Magnetic Forces in Biology and Medicine
Roth, Bradley J
2011-01-01
The Lorentz force (the force acting on currents in a magnetic field) plays an increasingly larger role in techniques to image current and conductivity. This review will summarize several applications involving the Lorentz force, including 1) magneto-acoustic imaging of current, 2) “Hall effect” imaging, 3) ultrasonically-induced Lorentz force imaging of conductivity, 4) magneto-acoustic tomography with magnetic induction, and 5) Lorentz force imaging of action currents using magnetic resonance imaging. PMID:21321309
Lorentz covariance of loop quantum gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rovelli, Carlo; Speziale, Simone
2011-05-15
The kinematics of loop gravity can be given a manifestly Lorentz-covariant formulation: the conventional SU(2)-spin-network Hilbert space can be mapped to a space K of SL(2,C) functions, where Lorentz covariance is manifest. K can be described in terms of a certain subset of the projected spin networks studied by Livine, Alexandrov and Dupuis. It is formed by SL(2,C) functions completely determined by their restriction on SU(2). These are square-integrable in the SU(2) scalar product, but not in the SL(2,C) one. Thus, SU(2)-spin-network states can be represented by Lorentz-covariant SL(2,C) functions, as two-component photons can be described in the Lorentz-covariant Gupta-Bleulermore » formalism. As shown by Wolfgang Wieland in a related paper, this manifestly Lorentz-covariant formulation can also be directly obtained from canonical quantization. We show that the spinfoam dynamics of loop quantum gravity is locally SL(2,C)-invariant in the bulk, and yields states that are precisely in K on the boundary. This clarifies how the SL(2,C) spinfoam formalism yields an SU(2) theory on the boundary. These structures define a tidy Lorentz-covariant formalism for loop gravity.« less
Constraining Lorentz Violation in Electroweak Physics
NASA Astrophysics Data System (ADS)
Lehnert, Ralf
2018-01-01
For practical reasons, the majority of past Lorentz tests has involved stable or quasistable particles, such as photons, neutrinos, electrons, protons, and neutrons. Similar efforts in the electroweak sector have only recently taken shape. Within this context, Lorentz-violation searches in the Standard-Model Extension’s Z-Boson sector will be discussed. It is argued that existing precision data on polarized electron-electron scattering can be employed to extract the first conservative two-sided limits on Lorentz breakdown in this sector at the level of 10-7.
Lorentz-violating gravitoelectromagnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Quentin G.
2010-09-15
The well-known analogy between a special limit of general relativity and electromagnetism is explored in the context of the Lorentz-violating standard-model extension. An analogy is developed for the minimal standard-model extension that connects a limit of the CPT-even component of the electromagnetic sector to the gravitational sector. We show that components of the post-Newtonian metric can be directly obtained from solutions to the electromagnetic sector. The method is illustrated with specific examples including static and rotating sources. Some unconventional effects that arise for Lorentz-violating electrostatics and magnetostatics have an analog in Lorentz-violating post-Newtonian gravity. In particular, we show that evenmore » for static sources, gravitomagnetic fields arise in the presence of Lorentz violation.« less
Lorentz violation and deep inelastic scattering
Kostelecký, V. Alan; Lunghi, E.; Vieira, A. R.
2017-03-28
We study the effects of quark-sector Lorentz violation on deep inelastic electron–proton scattering. Here, we show that existing data can be used to establish first constraints on numerous coefficients for Lorentz violation in the quark sector at an estimated sensitivity of parts in a million.
Superconducting-Gravimeter Tests of Local Lorentz Invariance
NASA Astrophysics Data System (ADS)
Flowers, Natasha A.; Goodge, Casey; Tasson, Jay D.
2017-11-01
Superconducting-gravimeter measurements are used to test the local Lorentz invariance of the gravitational interaction and of matter-gravity couplings. The best laboratory sensitivities to date are achieved via a maximum-reach analysis for 13 Lorentz-violating operators, with some improvements exceeding an order of magnitude.
Superconducting-Gravimeter Tests of Local Lorentz Invariance.
Flowers, Natasha A; Goodge, Casey; Tasson, Jay D
2017-11-17
Superconducting-gravimeter measurements are used to test the local Lorentz invariance of the gravitational interaction and of matter-gravity couplings. The best laboratory sensitivities to date are achieved via a maximum-reach analysis for 13 Lorentz-violating operators, with some improvements exceeding an order of magnitude.
An arena for model building in the Cohen-Glashow very special relativity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikh-Jabbari, M. M., E-mail: jabbari@theory.ipm.ac.i; Tureanu, A., E-mail: anca.tureanu@helsinki.f
2010-02-15
The Cohen-Glashow Very Special Relativity (VSR) algebra is defined as the part of the Lorentz algebra which upon addition of CP or T invariance enhances to the full Lorentz group, plus the space-time translations. We show that noncommutative space-time, in particular noncommutative Moyal plane, with light- like noncommutativity provides a robust mathematical setting for quantum field theories which are VSR invariant and hence set the stage for building VSR invariant particle physics models. In our setting the VSR invariant theories are specified with a single deformation parameter, the noncommutativity scale {Lambda}{sub NC}. Preliminary analysis with the available data leads tomore » {Lambda}{sub NC} {>=} 1-10 TeV.« less
Traces of Lorentz symmetry breaking in a hydrogen atom at ground state
NASA Astrophysics Data System (ADS)
Borges, L. H. C.; Barone, F. A.
2016-02-01
Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.
Hendrik Antoon Lorentz: his role in physics and society.
Berends, Frits
2009-04-22
Hendrik Antoon Lorentz (1853-1928) was appointed in 1878 to a chair of theoretical physics at the University of Leiden, one of the first of such chairs in the world. A few years later Heike Kamerlingh Onnes became his experimental colleague, after vehement discussions in the faculty. Lorentz strongly supported Kamerlingh Onnes then, and proved subsequently to be an ideal colleague. With Lorentz's electron theory the classical theory of electromagnetism obtained its final form, at the time often called the Maxwell-Lorentz theory. In this theory the Zeeman effect could be explained: the first glimpse of the electron. The Nobel Prize followed in 1902. The Lorentz transformation, established in 1904, preceded the special theory of relativity. Later on, Lorentz played a much admired role in the debate on the new developments in physics, in particular as chairman of a series of Solvay conferences. Gradually his stature outside of physics grew, both nationally as chairman of the Zuiderzee committee and internationally as president of the International Commission on Intellectual Cooperation of the League of Nations. At his funeral the overwhelming tribute was the recognition of his unique greatness. Einstein said about him 'He meant more to me personally than anyone else I have met on my life's journey'.
Hendrik Antoon Lorentz: his role in physics and society
NASA Astrophysics Data System (ADS)
Berends, Frits
2009-04-01
Hendrik Antoon Lorentz (1853-1928) was appointed in 1878 to a chair of theoretical physics at the University of Leiden, one of the first of such chairs in the world. A few years later Heike Kamerlingh Onnes became his experimental colleague, after vehement discussions in the faculty. Lorentz strongly supported Kamerlingh Onnes then, and proved subsequently to be an ideal colleague. With Lorentz's electron theory the classical theory of electromagnetism obtained its final form, at the time often called the Maxwell-Lorentz theory. In this theory the Zeeman effect could be explained: the first glimpse of the electron. The Nobel Prize followed in 1902. The Lorentz transformation, established in 1904, preceded the special theory of relativity. Later on, Lorentz played a much admired role in the debate on the new developments in physics, in particular as chairman of a series of Solvay conferences. Gradually his stature outside of physics grew, both nationally as chairman of the Zuiderzee committee and internationally as president of the International Commission on Intellectual Cooperation of the League of Nations. At his funeral the overwhelming tribute was the recognition of his unique greatness. Einstein said about him 'He meant more to me personally than anyone else I have met on my life's journey'.
Equilibria of a charged artificial satellite subject to gravitational and Lorentz torques
NASA Astrophysics Data System (ADS)
Abdel-Aziz, Yehia A.; Shoaib, Muhammad
2014-07-01
The attitude dynamics of a rigid artificial satellite subject to a gravity gradient and Lorentz torques in a circular orbit are considered. Lorentz torque is developed on the basis of the electrodynamic effects of the Lorentz force acting on the charged satellite's surface. We assume that the satellite is moving in a Low Earth Orbit in the geomagnetic field, which is considered to be a dipole. Our model of torque due to the Lorentz force is developed for an artificial satellite with a general shape, and the nonlinear differential equations of Euler are used to describe its attitude orientation. All equilibrium positions are determined and conditions for their existence are obtained. The numerical results show that the charge q and radius ρ0 of the center of charge for the satellite provide a certain type of semi-passive control for the attitude of the satellite. The technique for this kind of control would be to increase or decrease the electrostatic screening on the satellite. The results obtained confirm that the change in charge can affect the magnitude of the Lorentz torque, which can also affect control of the satellite. Moreover, the relationship between magnitude of the Lorentz torque and inclination of the orbit is investigated.
Lorentz Atom Revisited by Solving the Abraham-Lorentz Equation of Motion
NASA Astrophysics Data System (ADS)
Bosse, Jürgen
2017-08-01
By solving the non-relativistic Abraham-Lorentz (AL) equation, I demonstrate that the AL equation of motion is not suited for treating the Lorentz atom, because a steady-state solution does not exist. The AL equation serves as a tool, however, for deducing the appropriate parameters Ω and Γ to be used with the equation of forced oscillations in modelling the Lorentz atom. The electric polarisability, which many authors "derived" from the AL equation in recent years, is shown to violate Kramers-Kronig relations rendering obsolete the extracted photon-absorption rate, for example. Fortunately, errors turn out to be small quantitatively, as long as the light frequency ω is neither too close to nor too far from the resonance frequency Ω. The polarisability and absorption cross section are derived for the Lorentz atom by purely classical reasoning and are shown to agree with the quantum mechanical calculations of the same quantities. In particular, oscillator parameters Ω and Γ deduced by treating the atom as a quantum oscillator are found to be equivalent to those derived from the classical AL equation. The instructive comparison provides a deep insight into understanding the great success of Lorentz's model that was suggested long before the advent of quantum theory.
Projective interpretation of some doubly special relativity theories
NASA Astrophysics Data System (ADS)
Jafari, N.; Shariati, A.
2011-09-01
A class of projective actions of the orthogonal group on the projective space is being studied. It is shown that the Fock-Lorentz and Magueijo-Smolin transformations known as doubly special relativity are such transformations. The formalism easily leads to new types of transformations.
Neutrinos as Probes of Lorentz Invariance
Díaz, Jorge S.
2014-01-01
Neutrinos can be used to search for deviations from exact Lorentz invariance. The worldwide experimental program in neutrino physics makes these particles a remarkable tool to search for a variety of signals that could reveal minute relativity violations. This paper reviews the generic experimental signatures of the breakdown of Lorentz symmetry in the neutrino sector.
Constraining Anisotropic Lorentz Violation via the Spectral-lag Transition of GRB 160625B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Jun-Jie; Wu, Xue-Feng; Shao, Lang
Violations of Lorentz invariance can lead to an energy-dependent vacuum dispersion of light, which results in arrival-time differences of photons with different energies arising from a given transient source. In this work, direction-dependent dispersion constraints are obtained on nonbirefringent Lorentz-violating effects using the observed spectral lags of the gamma-ray burst GRB 160625B. This burst has unusually large high-energy photon statistics, so we can obtain constraints from the true spectral time lags of bunches of high-energy photons rather than from the rough time lag of a single highest-energy photon. Also, GRB 160625B is the only burst to date having a well-definedmore » transition from positive lags to negative lags, providing a unique opportunity to distinguish Lorentz-violating effects from any source-intrinsic time lag in the emission of photons of different energy bands. Our results place comparatively robust two-sided constraints on a variety of isotropic and anisotropic coefficients for Lorentz violation, including the first bounds on Lorentz-violating effects from operators of mass dimension 10 in the photon sector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakke, K., E-mail: kbakke@fisica.ufpb.br; Belich, H., E-mail: belichjr@gmail.com
2016-10-15
Based on the Standard Model Extension, we investigate relativistic quantum effects on a scalar particle in backgrounds of the Lorentz symmetry violation defined by a tensor field. We show that harmonic-type and linear-type confining potentials can stem from Lorentz symmetry breaking effects, and thus, relativistic bound state solutions can be achieved. We first analyse a possible scenario of the violation of the Lorentz symmetry that gives rise to a harmonic-type potential. In the following, we analyse another possible scenario of the breaking of the Lorentz symmetry that induces both harmonic-type and linear-type confining potentials. In this second case, we alsomore » show that not all values of the parameter associated with the intensity of the electric field are permitted in the search for polynomial solutions to the radial equation, where the possible values of this parameter are determined by the quantum numbers of the system and the parameters associated with the violation of the Lorentz symmetry.« less
Alternative theories of gravity and Lorentz violation
NASA Astrophysics Data System (ADS)
Xu, Rui; Foster, Joshua; Kostelecky, V. Alan
2017-01-01
General relativity has achieved many successes, including the prediction of experimental results. However, its incompatibility with quantum theory remains an obstacle. By extending the foundational properties of general relativity, alternative theories of gravity can be constructed. In this talk, we focus on fermion couplings in the weak-gravity limit of certain alternative theories of gravity. Under suitable experimental circumstances, some of these couplings match terms appearing in the gravitational SME, which is a general framework describing violations of local Lorentz invariance. Existing limits on Lorentz violation can therefore be used to constrain certain Lorentz-invariant alternative theories of gravity.
Constraints on the bulk Lorentz factor of gamma-ray bursts with the detection rate by Fermi LAT
NASA Astrophysics Data System (ADS)
Chen, Ye; Liu, Ruo-Yu; Wang, Xiang-Yu
2018-05-01
The bulk Lorentz factor(Γ) of the outflow is an essential parameter to understanding the physics of gamma-ray burst (GRB). Informations about the Lorentz factors of some individual GRBs have been obtained from the spectral features of the high-energy gamma-ray emissions (>100 MeV), assuming that the spectral breaks or cutoffs are due to the pair-production attenuation (i.e., γγ → e+e-). In this paper, we attempt to interpret the dependence of the LAT detection rate of GRBs on the number of high-energy gamma-rays, taking into account the attenuation effect. We first simulate a long-GRB sample with Monte Carlo method using the luminosity function, rate distribution with redshift and properties of the GRB spectrum. To characterize the distribution of the Lorentz factors, we assume that the Lorentz factors follow the relation Γ =Γ _0E_iso,52k, where Eiso, 52 is the isotropic photon energy in unit of 1052erg. After taking into account the attenuation effect related with the above Lorentz factor distribution, we are able to reproduce the LAT-detected rate of GRBs as the function of the number of gamma-rays for suitable choice of the values of Γ0 and k. The result suggests that the distribution of the bulk Lorentz factor for the majority of GRBs is in the range of 50 - 250.
Constraints onthe bulk Lorentz factor of gamma-ray burstswith the detection rate by Fermi LAT
NASA Astrophysics Data System (ADS)
Chen, Ye; Liu, Ruo-Yu; Wang, Xiang-Yu
2018-07-01
The bulk Lorentz factor (Γ) of the outflow is an essential parameter for understanding the physics of gamma-ray burst (GRB). Informations about the Lorentz factors of some individual GRBs have been obtained from the spectral features of the high-energy gamma-ray emissions (>100 MeV), assuming that the spectral breaks or cutoffs are due to the pair-production attenuation (i.e. γγ → e+e-). In this paper, we attempt to interpret the dependence of the Large Area Telescope (LAT) detection rate of GRBs on the number of high-energy gamma-rays, taking into account the attenuation effect. We first simulate a long-GRB sample with Monte Carlo method using the luminosity function, rate distribution with redshift, and properties of the GRB spectrum. To characterize the distribution of the Lorentz factors, we assume that the Lorentz factors follow the relation Γ =Γ _0E_{iso, 52}k, where Eiso,52 is the isotropic photon energy in unit of 1052 erg. After taking into account the attenuation effect related with the above Lorentz factor distribution, we are able to reproduce the LAT-detected rate of GRBs as the function of the number of gamma-rays for suitable choice of the values of Γ0 and k. The result suggests that the distribution of the bulk Lorentz factor for the majority of GRBs is in the range of 50-250.
NASA Astrophysics Data System (ADS)
Bailey, Quentin G.
2007-08-01
This work explores the theoretical and experimental aspects of Lorentz violation in gravity. A set of modified Einstein field equations is derived from the general Lorentz-violating Standard-Model Extension (SME). Some general theoretical implications of these results are discussed. The experimental consequences for weak-field gravitating systems are explored in the Earth- laboratory setting, the solar system, and beyond. The role of spontaneous Lorentz-symmetry breaking is discussed in the context of the pure-gravity sector of the SME. To establish the low-energy effective Einstein field equations, it is necessary to take into account the dynamics of 20 coefficients for Lorentz violation. As an example, the results are compared with bumblebee models, which are general theories of vector fields with spontaneous Lorentz violation. The field equations are evaluated in the post- newtonian limit using a perfect fluid description of matter. The post-newtonian metric of the SME is derived and compared with some standard test models of gravity. The possible signals for Lorentz violation due to gravity-sector coefficients are studied. Several new effects are identified that have experimental implications for current and future tests. Among the unconventional effects are a new type of spin precession for a gyroscope in orbit and a modification to the local gravitational acceleration on the Earth's surface. These and other tests are expected to yield interesting sensitivities to dimensionless gravity- sector coefficients.
Thomas precession and squeezed states of light
NASA Technical Reports Server (NTRS)
Han, D.; Hardekopf, E. E.; Kim, Y. S.
1989-01-01
The Lorentz group, which is the language of special relativity, is a useful theoretical toll in modern optics. Optics experiments can therefore serve as analog computers for special relativity. Possible optics experiments involving squeezed states are discussed in connection with the Thomas precession and the Wigner rotation.
Properties of TEM standing waves with E||B
NASA Astrophysics Data System (ADS)
Zaghloul, H.; Buckmaster, H. A.
This paper summarizes the known properties of E∥B TEM standing waves and shows that for such waves (i) E and B cannot be linearly polarized, (ii) E ≠ αB where α is a constant (iii) it is impossible to find a Lorentz frame where E>B, (iv) direction of the propagation vector cannot be inferred from the fields at one point of the space, (v) their behaviour under Lorentz, parity, time-reversal and gauge transformations is proper, (vi) both Lorentz invariants E2 - B2 and E·B are nonzero, (vii) the magnetic helicity may be nonzero, (viii) the magnetic field may be force-free, and (ix) kμFμv ≠ 0. It also shows how electromagnetic waves can be classified using Lorentz invariants. Cet article résume les qualités connues des ondes stationnaires E∥B TEM et montre que pour des ondes parallèles (i) E et B ne peuvent pas être polarisées linéairement, (ii) E ≠ αB où a est une constante, (iii) il est impossible de trouver une construction de Lorentz où E>B, (iv) la direction de propagation d'un vecteur ne peut pas être déduite des opérations à un point d'intervalle, (v) leur conduite sous Lorentz, parité, temps inverse et transformations de jauge est propre, (vi) les deux invariants de Lorentz E2 - B2 et E·B sont non nulles (vii) l'hélice magnétique peut être non nulle (viii) l'opération magnétique peut être de force libre et (ix) KμFμ v ≠ 0. Ceci montre aussi comment les ondes électromagnétiques peuvent être classifiées, en employant les invariants de Lorentz.
Low-energy Lorentz violation from high-energy modified dispersion in inertial and circular motion
NASA Astrophysics Data System (ADS)
Louko, Jorma; Upton, Samuel D.
2018-01-01
We consider an Unruh-DeWitt detector in inertial and circular motion in Minkowski spacetime of arbitrary dimension, coupled to a quantized scalar field with the Lorentz-violating dispersion relation ω =|k |f (|k |/M⋆) , where M⋆ is the Lorentz-breaking scale. Assuming that f dips below unity somewhere, we show that an inertial detector experiences large low-energy Lorentz violations in all spacetime dimensions greater than two, generalizing previous results in four dimensions. For a detector in circular motion, we show that a similar low-energy Lorentz violation occurs in three spacetime dimensions, and we lay the analytic groundwork for examining circular motion in all dimensions greater than three, generalizing previous work by Stargen, Kajuri and Sriramkumar in four dimensions. The circular motion results may be relevant for the prospects of observing the circular motion Unruh effect in analogue laboratory systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubtsov, Grigory; Satunin, Petr; Sibiryakov, Sergey, E-mail: grisha@ms2.inr.ac.ru, E-mail: satunin@ms2.inr.ac.ru, E-mail: Sergey.Sibiryakov@cern.ch
2017-05-01
Parameterizing hypothetical violation of Lorentz invariance at high energies using the framework of effective quantum field theory, we discuss its effect on the formation of atmospheric showers by very-high-energy gamma rays. In the scenario where Lorentz invariance violation leads to a decrease of the photon velocity with energy the formation of the showers is suppressed compared to the Lorentz invariant case. Absence of such suppression in the high-energy part of spectrum of the Crab nebula measured independently by HEGRA and H.E.S.S. collaborations is used to set lower bounds on the energy scale of Lorentz invariance violation. These bounds are competitivemore » with the strongest existing constraints obtained from timing of variable astrophysical sources and the absorption of TeV photons on the extragalactic background light. They will be further improved by the next generation of multi-TeV gamma-ray observatories.« less
Effect of bulk Lorentz violation on anisotropic brane cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydari-Fard, Malihe, E-mail: heydarifard@qom.ac.ir
2012-04-01
The effect of Lorentz invariance violation in cosmology has attracted a considerable amount of attention. By using a dynamical vector field assumed to point in the bulk direction, with Lorentz invariance holding on the brane, we extend the notation of Lorentz violation in four dimensions Jacobson to a five-dimensional brane-world. We obtain the general solution of the field equations in an exact parametric form for Bianchi type I space-time, with perfect fluid as a matter source. We show that the brane universe evolves from an isotropic/anisotropic state to an isotropic de Sitter inflationary phase at late time. The early timemore » behavior of anisotropic brane universe is largely dependent on the Lorentz violating parameters β{sub i},i = 1,2,3 and the equation of state of the matter, while its late time behavior is independent of these parameters.« less
NASA Astrophysics Data System (ADS)
Field, J. H.
2006-06-01
It is demonstrated how the right-hand sides of the Lorentz transformation equations may be written, in a Lorentz-invariant manner, as 4-vector scalar products. This implies the existence of invariant length intervals analogous to invariant proper time intervals. An important distinction between the physical meanings of the space time and energy momentum 4-vectors is pointed out. The formalism is shown to provide a short derivation of the Lorentz force law of classical electrodynamics, and the conventional definition of the magnetic field, in terms of spatial derivatives of the 4-vector potential, as well as the Faraday Lenz law and the Gauss law for magnetic fields. The connection between the Gauss law for the electric field and the electrodynamic Ampère law, due to the 4-vector character of the electromagnetic potential, is also pointed out.
Testing local Lorentz invariance with short-range gravity
Kostelecký, V. Alan; Mewes, Matthew
2017-01-10
The Newton limit of gravity is studied in the presence of Lorentz-violating gravitational operators of arbitrary mass dimension. The linearized modified Einstein equations are obtained and the perturbative solutions are constructed and characterized. We develop a formalism for data analysis in laboratory experiments testing gravity at short range and demonstrate that these tests provide unique sensitivity to deviations from local Lorentz invariance.
Baryogenesis in Lorentz-violating gravity theories
NASA Astrophysics Data System (ADS)
Sakstein, Jeremy; Solomon, Adam R.
2017-10-01
Lorentz-violating theories of gravity typically contain constrained vector fields. We show that the lowest-order coupling of such vectors to U (1)-symmetric scalars can naturally give rise to baryogenesis in a manner akin to the Affleck-Dine mechanism. We calculate the cosmology of this new mechanism, demonstrating that a net B - L can be generated in the early Universe, and that the resulting baryon-to-photon ratio matches that which is presently observed. We discuss constraints on the model using solar system and astrophysical tests of Lorentz violation in the gravity sector. Generic Lorentz-violating theories can give rise to the observed matter-antimatter asymmetry without violating any current bounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakke, K., E-mail: kbakke@fisica.ufpb.br; Furtado, C., E-mail: furtado@fisica.ufpb.br; Belich, H., E-mail: belichjr@gmail.com
2016-09-15
From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the violation of the Lorentz symmetry and write an effective metric for the cosmic string spacetime. Then, we investigate the arising of an analogue of the Anandan quantum phase for a relativistic Dirac neutral particle with a permanent magnetic dipole moment in the cosmic string spacetime under Lorentz symmetry breaking effects. Besides, we analyse the influence of the effects of the Lorentz symmetry violation and the topology of the defect on the Aharonov–Casher geometric quantum phase in the nonrelativistic limit.
Searching for photon-sector Lorentz violation using gravitational-wave detectors
NASA Astrophysics Data System (ADS)
Kostelecký, V. Alan; Melissinos, Adrian C.; Mewes, Matthew
2016-10-01
We study the prospects for using interferometers in gravitational-wave detectors as tools to search for photon-sector violations of Lorentz symmetry. Existing interferometers are shown to be exquisitely sensitive to tiny changes in the effective refractive index of light occurring at frequencies around and below the microhertz range, including at the harmonics of the frequencies of the Earth's sidereal rotation and annual revolution relevant for tests of Lorentz symmetry. We use preliminary data obtained by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2006-2007 to place constraints on coefficients for Lorentz violation in the photon sector exceeding current limits by about four orders of magnitude.
Diffusion limit of Lévy-Lorentz gas is Brownian motion
NASA Astrophysics Data System (ADS)
Magdziarz, Marcin; Szczotka, Wladyslaw
2018-07-01
In this paper we analyze asymptotic behaviour of a stochastic process called Lévy-Lorentz gas. This process is aspecial kind of continuous-time random walk in which walker moves in the fixed environment composed of scattering points. Upon each collision the walker performs a flight to the nearest scattering point. This type of dynamics is observed in Lévy glasses or long quenched polymers. We show that the diffusion limit of Lévy-Lorentz gas with finite mean distance between scattering centers is the standard Brownian motion. Thus, for long times the behaviour of the Lévy-Lorentz gas is close to the diffusive regime.
P, C and T: Different Properties on the Kinematical Level
NASA Astrophysics Data System (ADS)
Dvoeglazov, Valeriy V.
2018-04-01
We study the discrete symmetries (P,C and T) on the kinematical level within the extended Poincaré Group. On the basis of the Silagadze research, we investigate the question of the definitions of the discrete symmetry operators both on the classical level, and in the secondary-quantization scheme. We study the physical contents within several bases: light-front formulation, helicity basis, angular momentum basis, and so on, on several practical examples. We analize problems in construction of the neutral particles in the the (1/2, 0) + (0, 1/2) representation, the (1, 0) + (0, 1) and the (1/2, 1/2) representations of the Lorentz Group. As well known, the photon has the quantum numbers 1‑, so the (1, 0) + (0, 1) representation of the Lorentz group is relevant to its description. We have ambiguities in the definitions of the corresponding operators P, C; T, which lead to different physical consequences. It appears that the answers are connected with the helicity basis properties, and commutations/anticommutations of the corresponding operators, P, C, T, and C 2, P 2, (CP)2 properties. This contribution is the review paper of my previous work [2, 3].
NASA Technical Reports Server (NTRS)
Bhansali, Vineer
1993-01-01
Assuming trivial action of Euclidean translations, the method of induced representations is used to derive a correspondence between massless field representations transforming under the full generalized even dimensional Lorentz group, and highest weight states of the relevant little group. This gives a connection between 'helicity' and 'chirality' in all dimensions. Restrictions on 'gauge independent' representations for physical particles that this induction imposes are also stated.
Testing Special Relativity at High Energies with Astrophysical Sources
NASA Technical Reports Server (NTRS)
Stecker, F. W.
2007-01-01
Since the group of Lorentz boosts is unbounded, there is a question as to whether Lorentz invariance (LI) holds to infinitely short distances. However, special and general relativity may break down at the Planck scale. Various quantum gravity scenarios such as loop quantum gravity, as well as some forms of string theory and extra dimension models may imply Lorentz violation (LV) at ultrahigh energies. The Gamma-Ray Large Area Space Telescope (GLAST), to be launched in mid-December, will measure the spectra of distant extragalactic sources of high energy gamma-rays, particularly active galactic nuclei and gamma-ray bursts. GLAST can look for energy-dependent gamma-ray propagation effects from such sources as a signal of Lorentz invariance violation. These sources may also exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions with low energy photons having a flux level as determined by various astronomical observations. With LV the threshold for such interactions can be significantly raised, changing the predicted absorption turnover in the observed spectrum of the sources. Stecker and Glashow have shown that the existence such absorption features in the spectra of extragalactic sources puts constraints on LV. Such constraints have important implications for some quantum gravity and large extra dimension models. Future spaceborne detectors dedicated to measuring gamma-ray polarization can look for birefringence effects as a possible signal of loop quantum gravity. A very small LV may also result in the modification or elimination of the GZK effect, thus modifying the spectrum of ultrahigh energy cosmic rays. This possibility can be explored with ground-based arrays such as Auger or with a space based detector system such as the proposed OWL satellite mission.
Testing Lorentz invariance violations in the tritium beta-decay anomaly
NASA Astrophysics Data System (ADS)
Carmona, J. M.; Cortés, J. L.
2000-11-01
We consider a Lorentz non-invariant dispersion relation for the neutrino, which would produce unexpected effects with neutrinos of few eV, exactly where the tritium beta-decay anomaly is found. We use this anomaly to put bounds on the violation of Lorentz invariance. We discuss other consequences of this non-invariant dispersion relation in neutrino experiments and high-energy cosmic-ray physics.
Measurement of the Lorentz-FitzGerald body contraction
NASA Astrophysics Data System (ADS)
Rafelski, Johann
2018-02-01
A complete foundational discussion of acceleration in the context of Special Relativity (SR) is presented. Acceleration allows the measurement of a Lorentz-FitzGerald body contraction created. It is argued that in the back scattering of a probing laser beam from a relativistic flying electron cloud mirror generated by an ultra-intense laser pulse, a first measurement of a Lorentz-FitzGerald body contraction is feasible.
Lorentz, the Solvay Councils and the Physics Institute
NASA Astrophysics Data System (ADS)
Berends, Frits A.
2015-09-01
This paper describes the crucial role which Lorentz played in shaping and continuing the Solvay Councils and the Physics Institute. At the same time it will become clear that Lorentz* intensive involvement in these activities added significantly to his influence on, and recognition in, the international physics community. The first Solvay Council in 1911 was an initiative of the German physical chemist Walther Nernst. It was generously supported by the wealthy industrialist and philantropist Ernest Solvay. About five months before the Council*s start Nernst invited Lorentz to chair the meeting. That was no simple task in view of the fundamental problem of the quanta and the practical problem of communication in different languages. Lorentz*s way of presiding the conference impressed all participants. When, after the meeting, Solvay was willing to support research in the field, it was only natural to ask Lorentz for a plan. Within two months Lorentz provided Solvay with a draft which would serve as an outline for the statutes of an institute. The international Solvay Institute of Physics was founded on 1 May 1912. It would support research proposals in a specified field and would regularly organize Councils. An international scientific committee would decide on grants which could be requested from everywhere. Between the Institute*s beginnings and the outbreak of WWI, 97 requests were considered and 40 proposals - originating from 7 countries - were accepted. A second Council took place in 1913. Lorentz was given the possibility to spend considerable time on chairing the scientific committee when in 1912 his full time professorship in Leiden was changed into a part-time one. During WWI Lorentz maintained contacts with Solvay and with several of his foreign colleagues in the countries at war. He tried to remain objective, impartial and helpful, and did not lose hope that pre-war international scientific relations would eventually be re-established. After the war he had to accept the Allied exclusion of the scientists of the Central Powers, but considered this a temporary necessity which should be lifted as soon as possible. He therefore advocated the continuation of the Solvay Physics Institute. At the time, this idea was far from obvious, but it was endorsed by Solvay. After two Councils without participants from the Central Powers the administrative committee decided in 1926 to lift this exclusion for the fifth Council, and to accept the idea of inviting Einstein to become a member of the scientific committee. This happened after a visit of Lorentz to King Albert in order to explain the intentions of the committee. Thus, the way was paved for a truly international Council in 1927.
Very special relativity as relativity of dark matter: the Elko connection
NASA Astrophysics Data System (ADS)
Ahluwalia, D. V.; Horvath, S. P.
2010-11-01
In the very special relativity (VSR) proposal by Cohen and Glashow, it was pointed out that invariance under HOM (2) is both necessary and sufficient to explain the null result of the Michelson-Morely experiment. It is the quantum field theoretic demand of locality, or the requirement of P, T, CP, or CT invariance, that makes invariance under the Lorentz group a necessity. Originally it was conjectured that VSR operates at the Planck scale; we propose that the natural arena for VSR is at energies similar to the standard model, but in the dark sector. To this end we provide an ab initio spinor representation invariant under the SIM (2) avatar of VSR and construct a mass dimension one fermionic quantum field of spin one half. This field turns out to be a very close sibling of Elko and it exhibits the same striking property of intrinsic darkness with respect to the standard model fields. In the new construct, the tension between Elko and Lorentz symmetries is fully resolved. We thus entertain the possibility that the symmetries underlying the standard model matter and gauge fields are those of Lorentz, while the event space underlying the dark matter and the dark gauge fields supports the algebraic structure underlying VSR.
Improved test of Lorentz invariance in electrodynamics
NASA Astrophysics Data System (ADS)
Wolf, Peter; Bize, Sébastien; Clairon, André; Santarelli, Giorgio; Tobar, Michael E.; Luiten, André N.
2004-09-01
We report new results of a test of Lorentz invariance based on the comparison of a cryogenic sapphire microwave resonator and a hydrogen-maser. The experimental results are shown together with an extensive analysis of systematic effects. Previously, this experiment has set the most stringent constraint on Kennedy-Thorndike type violations of Lorentz invariance. In this work we present new data and interpret our results in the general Lorentz violating extension of the standard model of particle physics (SME). Within the photon sector of the SME, our experiment is sensitive to seven SME parameters. We marginally improve present limits on four of these, and by a factor seven to ten on the other three.
Strong binary pulsar constraints on Lorentz violation in gravity.
Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico
2014-04-25
Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.
Convexity and concavity constants in Lorentz and Marcinkiewicz spaces
NASA Astrophysics Data System (ADS)
Kaminska, Anna; Parrish, Anca M.
2008-07-01
We provide here the formulas for the q-convexity and q-concavity constants for function and sequence Lorentz spaces associated to either decreasing or increasing weights. It yields also the formula for the q-convexity constants in function and sequence Marcinkiewicz spaces. In this paper we extent and enhance the results from [G.J.O. Jameson, The q-concavity constants of Lorentz sequence spaces and related inequalities, Math. Z. 227 (1998) 129-142] and [A. Kaminska, A.M. Parrish, The q-concavity and q-convexity constants in Lorentz spaces, in: Banach Spaces and Their Applications in Analysis, Conference in Honor of Nigel Kalton, May 2006, Walter de Gruyter, Berlin, 2007, pp. 357-373].
Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lehmann, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.
2010-12-01
A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillation models, derivable from extensions to the standard model, allow for neutrino oscillations that depend on the neutrino’s direction of propagation. No such direction-dependent variation was found. A discrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Because of the unique high energy reach of IceCube, it was possible to improve constraints on certain Lorentz-violating oscillations by 3 orders of magnitude with respect to limits set by other experiments.
NASA Astrophysics Data System (ADS)
Leon, David; Kaufman, Jonathan; Keating, Brian; Mewes, Matthew
2017-01-01
One of the most powerful probes of new physics is the polarized cosmic microwave background (CMB). The detection of a nonzero polarization angle rotation between the CMB surface of last scattering and today could provide evidence of Lorentz-violating physics. The purpose of this paper is two-fold. First, we review one popular mechanism for polarization rotation of CMB photons: the pseudo-Nambu-Goldstone boson (PNGB). Second, we propose a method to use the POLARBEAR experiment to constrain Lorentz-violating physics in the context of the Standard Model Extension (SME), a framework to standardize a large class of potential Lorentz-violating terms in particle physics.
Searching for photon-sector Lorentz violation using gravitational-wave detectors
Kostelecký, V. Alan; Melissinos, Adrian C.; Mewes, Matthew
2016-08-04
Here, we study the prospects for using interferometers in gravitational-wave detectors as tools to search for photon-sector violations of Lorentz symmetry. Existing interferometers are shown to be exquisitely sensitive to tiny changes in the effective refractive index of light occurring at frequencies around and below the microhertz range, including at the harmonics of the frequencies of the Earth's sidereal rotation and annual revolution relevant for tests of Lorentz symmetry. We use preliminary data obtained by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2006-2007 to place constraints on coefficients for Lorentz violation in the photon sector exceeding current limits by aboutmore » four orders of magnitude.« less
Battat, James B R; Chandler, John F; Stubbs, Christopher W
2007-12-14
We present constraints on violations of Lorentz invariance based on archival lunar laser-ranging (LLR) data. LLR measures the Earth-Moon separation by timing the round-trip travel of light between the two bodies and is currently accurate to the equivalent of a few centimeters (parts in 10(11) of the total distance). By analyzing this LLR data under the standard-model extension (SME) framework, we derived six observational constraints on dimensionless SME parameters that describe potential Lorentz violation. We found no evidence for Lorentz violation at the 10(-6) to 10(-11) level in these parameters. This work constitutes the first LLR constraints on SME parameters.
Discovery of Lorentz-violating type II Weyl fermions in LaAlGe
Xu, Su-Yang; Alidoust, Nasser; Chang, Guoqing; Lu, Hong; Singh, Bahadur; Belopolski, Ilya; Sanchez, Daniel S.; Zhang, Xiao; Bian, Guang; Zheng, Hao; Husanu, Marious-Adrian; Bian, Yi; Huang, Shin-Ming; Hsu, Chuang-Han; Chang, Tay-Rong; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Strocov, Vladimir N.; Lin, Hsin; Jia, Shuang; Hasan, M. Zahid
2017-01-01
In quantum field theory, Weyl fermions are relativistic particles that travel at the speed of light and strictly obey the celebrated Lorentz symmetry. Their low-energy condensed matter analogs are Weyl semimetals, which are conductors whose electronic excitations mimic the Weyl fermion equation of motion. Although the traditional (type I) emergent Weyl fermions observed in TaAs still approximately respect Lorentz symmetry, recently, the so-called type II Weyl semimetal has been proposed, where the emergent Weyl quasiparticles break the Lorentz symmetry so strongly that they cannot be smoothly connected to Lorentz symmetric Weyl particles. Despite some evidence of nontrivial surface states, the direct observation of the type II bulk Weyl fermions remains elusive. We present the direct observation of the type II Weyl fermions in crystalline solid lanthanum aluminum germanide (LaAlGe) based on our photoemission data alone, without reliance on band structure calculations. Moreover, our systematic data agree with the theoretical calculations, providing further support on our experimental results. PMID:28630919
Hadronic Lorentz violation in chiral perturbation theory including the coupling to external fields
NASA Astrophysics Data System (ADS)
Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.
2018-05-01
If any violation of Lorentz symmetry exists in the hadron sector, its ultimate origins must lie at the quark level. We continue the analysis of how the theories at these two levels are connected, using chiral perturbation theory. Considering a 2-flavor quark theory, with dimension-4 operators that break Lorentz symmetry, we derive a low-energy theory of pions and nucleons that is invariant under local chiral transformations and includes the coupling to external fields. The pure meson and baryon sectors, as well as the couplings between them and the couplings to external electromagnetic and weak gauge fields, contain forms of Lorentz violation which depend on linear combinations of quark-level coefficients. In particular, at leading order the electromagnetic couplings depend on the very same combinations as appear in the free particle propagators. This means that observations of electromagnetic processes involving hadrons—such as vacuum Cerenkov radiation, which may be allowed in Lorentz-violating theories—can only reliably constrain certain particular combinations of quark coefficients.
Acoustic Tests of Lorentz Symmetry Using Quartz Oscillators
Lo, Anthony; Haslinger, Philipp; Mizrachi, Eli; ...
2016-02-24
Here we propose and demonstrate a test of Lorentz symmetry based on new, compact, and reliable quartz oscillator technology. Violations of Lorentz invariance in the matter and photon sector of the standard model extension generate anisotropies in particles’ inertial masses and the elastic constants of solids, giving rise to measurable anisotropies in the resonance frequencies of acoustic modes in solids. A first realization of such a “phonon-sector” test of Lorentz symmetry using room-temperature stress-compensated-cut crystals yields 120 h of data at a frequency resolution of 2.4 × 10 -15 and a limit ofmore » $$\\bar{c}$$ $$n\\atop{Q}$$ = (- 1.8 ± 2.2) × 10 -14 GeV on the most weakly constrained neutron-sector c coefficient of the standard model extension. Future experiments with cryogenic oscillators promise significant improvements in accuracy, opening up the potential for improved limits on Lorentz violation in the neutron, proton, electron, and photon sector.« less
Search for Lorentz Violation in a Short-Range Gravity Experiment
NASA Astrophysics Data System (ADS)
Bennett, D.; Skavysh, V.; Long, J.
2011-12-01
An experimental test of the Newtonian inverse square law at short range has been used to set limits on Lorentz violation in the pure gravity sector of the Standard-Model Extension. On account of the planar test mass geometry, nominally null with respect to 1/r2 forces, the limits derived for the SME coefficients of Lorentz violation are on the order bar sJK ˜ 104 .
Global Dirac bispinor entanglement under Lorentz boosts
NASA Astrophysics Data System (ADS)
Bittencourt, Victor A. S. V.; Bernardini, Alex E.; Blasone, Massimo
2018-03-01
The effects of Lorentz boosts on the quantum entanglement encoded by a pair of massive spin-1/2 particles are described according to the Lorentz covariant structure described by Dirac bispinors. The quantum system considered incorporates four degrees of freedom: two of them related to the bispinor intrinsic parity and the other two related to the bispinor spin projection, i.e., the Dirac particle helicity. Because of the natural multipartite structure involved, the Meyer-Wallach global measure of entanglement is preliminarily used for computing global quantum correlations, while the entanglement separately encoded by spin degrees of freedom is measured through the negativity of the reduced two-particle spin-spin state. A general framework to compute the changes on quantum entanglement induced by a boost is developed and then specialized to describe three particular antisymmetric two-particle states. According to the results obtained, two-particle spin-spin entanglement cannot be created by the action of a Lorentz boost in a spin-spin separable antisymmetric state. On the other hand, the maximal spin-spin entanglement encoded by antisymmetric superpositions is degraded by Lorentz boosts driven by high-speed frame transformations. Finally, the effects of boosts on chiral states are shown to exhibit interesting invariance properties, which can only be obtained through such a Lorentz covariant formulation of the problem.
Mansuripur, Masud
2012-05-11
The Lorentz law of force is the fifth pillar of classical electrodynamics, the other four being Maxwell's macroscopic equations. The Lorentz law is the universal expression of the force exerted by electromagnetic fields on a volume containing a distribution of electrical charges and currents. If electric and magnetic dipoles also happen to be present in a material medium, they are traditionally treated by expressing the corresponding polarization and magnetization distributions in terms of bound-charge and bound-current densities, which are subsequently added to free-charge and free-current densities, respectively. In this way, Maxwell's macroscopic equations are reduced to his microscopic equations, and the Lorentz law is expected to provide a precise expression of the electromagnetic force density on material bodies at all points in space and time. This Letter presents incontrovertible theoretical evidence of the incompatibility of the Lorentz law with the fundamental tenets of special relativity. We argue that the Lorentz law must be abandoned in favor of a more general expression of the electromagnetic force density, such as the one discovered by Einstein and Laub in 1908. Not only is the Einstein-Laub formula consistent with special relativity, it also solves the long-standing problem of "hidden momentum" in classical electrodynamics.
NASA Astrophysics Data System (ADS)
Wang, Yuan-Zhu; Wang, Hao; Zhang, Shuai; Liang, Yun-Feng; Jin, Zhi-Ping; He, Hao-Ning; Liao, Neng-Hui; Fan, Yi-Zhong; Wei, Da-Ming
2017-02-01
GRB 160625B is an extremely bright outburst with well-monitored afterglow emission. The geometry-corrected energy is high, up to ˜5.2 × 1052 erg or even ˜8 × 1052 erg, rendering it the most energetic GRB prompt emission recorded so far. We analyzed the time-resolved spectra of the prompt emission and found that in some intervals there were likely thermal-radiation components and the high energy emission was characterized by significant cutoff. The bulk Lorentz factors of the outflow material are estimated accordingly. We found out that the Lorentz factors derived in the thermal-radiation model are consistent with the luminosity-Lorentz factor correlation found in other bursts, as well as in GRB 090902B for the time-resolved thermal-radiation components, while the spectral cutoff model yields much lower Lorentz factors that are in tension with the constraints set by the electron pair Compton scattering process. We then suggest that these spectral cutoffs are more likely related to the particle acceleration process and that one should be careful in estimating the Lorentz factors if the spectrum cuts at a rather low energy (e.g., ˜tens of MeV). The nature of the central engine has also been discussed, and a stellar-mass black hole is favored.
Testing Relativity with Electrodynamics
NASA Astrophysics Data System (ADS)
Bailey, Quentin; Kostelecky, Alan
2004-04-01
Lorentz and CPT violation is a promising candidate signal for Planck-scale physics. Low-energy effects of Lorentz and CPT violation are described by the general theoretical framework called the Standard-Model Extension (SME). This talk focuses on Lorentz-violating effects arising in the classical electrodynamics limit of the SME. Analysis of the theory shows that suitable experiments could improve by several orders of magnitude certain sensitivities achieved in modern Michelson-Morley and Kennedy-Thorndike tests.
NASA Astrophysics Data System (ADS)
Li, Yi-Ling; Liu, Zhen-Bo; Ma, Qing-Yu; Guo, Xia-Sheng; Zhang, Dong
2010-08-01
Magnetoacoustic tomography with magnetic induction has shown potential applications in imaging the electrical impedance for biological tissues. We present a novel methodology for the inverse problem solution of the 2-D Lorentz force distribution reconstruction based on the acoustic straight line propagation theory. The magnetic induction and acoustic generation as well as acoustic detection are theoretically provided as explicit formulae and also validated by the numerical simulations for a multilayered cylindrical phantom model. The reconstructed 2-D Lorentz force distribution reveals not only the conductivity configuration in terms of shape and size but also the amplitude value of the Lorentz force in the examined layer. This study provides a basis for further study of conductivity distribution reconstruction of MAT-MI in medical imaging.
Tests of Lorentz invariance with atomic clocks
NASA Astrophysics Data System (ADS)
Mohan, Lakshmi
Lorentz invariance has been the cornerstone of special relativity. Recent theories have been proposed which suggest violations of Lorentz invariance. Experiments have been conducted using clocks that place the strictest limits on these theories. The thesis focuses on the Mansouri and Sexl formulation and I calculate using this framework the Doppler effect, Compton effect, Maxwell's equations, Hydrogen energy levels and other effects. I conclude the thesis by suggesting a possible method of testing my results using atomic clocks.
Experimental calibration procedures for rotating Lorentz-force flowmeters
Hvasta, M. G.; Slighton, N. T.; Kolemen, E.; ...
2017-07-14
Rotating Lorentz-force flowmeters are a novel and useful technology with a range of applications in a variety of different industries. However, calibrating these flowmeters can be challenging, time-consuming, and expensive. In this paper, simple calibration procedures for rotating Lorentz-force flowmeters are presented. These procedures eliminate the need for expensive equipment, numerical modeling, redundant flowmeters, and system down-time. Finally, the calibration processes are explained in a step-by-step manner and compared to experimental results.
Experimental calibration procedures for rotating Lorentz-force flowmeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hvasta, M. G.; Slighton, N. T.; Kolemen, E.
Rotating Lorentz-force flowmeters are a novel and useful technology with a range of applications in a variety of different industries. However, calibrating these flowmeters can be challenging, time-consuming, and expensive. In this paper, simple calibration procedures for rotating Lorentz-force flowmeters are presented. These procedures eliminate the need for expensive equipment, numerical modeling, redundant flowmeters, and system down-time. Finally, the calibration processes are explained in a step-by-step manner and compared to experimental results.
Lorentz-boosted evanescent waves
NASA Astrophysics Data System (ADS)
Bliokh, Konstantin Y.
2018-06-01
Polarization, spin, and helicity are important properties of electromagnetic waves. It is commonly believed that helicity is invariant under the Lorentz transformations. This is indeed so for plane waves and their localized superpositions. However, this is not the case for evanescent waves, which are well-defined only in a half-space, and are characterized by complex wave vectors. Here we describe transformations of evanescent electromagnetic waves and their polarization/spin/helicity properties under the Lorentz boosts along the three spatial directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuan-Zhu; Wang, Hao; Zhang, Shuai
2017-02-10
GRB 160625B is an extremely bright outburst with well-monitored afterglow emission. The geometry-corrected energy is high, up to ∼5.2 × 10{sup 52} erg or even ∼8 × 10{sup 52} erg, rendering it the most energetic GRB prompt emission recorded so far. We analyzed the time-resolved spectra of the prompt emission and found that in some intervals there were likely thermal-radiation components and the high energy emission was characterized by significant cutoff. The bulk Lorentz factors of the outflow material are estimated accordingly. We found out that the Lorentz factors derived in the thermal-radiation model are consistent with the luminosity-Lorentz factormore » correlation found in other bursts, as well as in GRB 090902B for the time-resolved thermal-radiation components, while the spectral cutoff model yields much lower Lorentz factors that are in tension with the constraints set by the electron pair Compton scattering process. We then suggest that these spectral cutoffs are more likely related to the particle acceleration process and that one should be careful in estimating the Lorentz factors if the spectrum cuts at a rather low energy (e.g., ∼tens of MeV). The nature of the central engine has also been discussed, and a stellar-mass black hole is favored.« less
Lorentz-Symmetry Test at Planck-Scale Suppression With a Spin-Polarized 133Cs Cold Atom Clock.
Pihan-Le Bars, H; Guerlin, C; Lasseri, R-D; Ebran, J-P; Bailey, Q G; Bize, S; Khan, E; Wolf, P
2018-06-01
We present the results of a local Lorentz invariance (LLI) test performed with the 133 Cs cold atom clock FO2, hosted at SYRTE. Such a test, relating the frequency shift between 133 Cs hyperfine Zeeman substates with the Lorentz violating coefficients of the standard model extension (SME), has already been realized by Wolf et al. and led to state-of-the-art constraints on several SME proton coefficients. In this second analysis, we used an improved model, based on a second-order Lorentz transformation and a self-consistent relativistic mean field nuclear model, which enables us to extend the scope of the analysis from purely proton to both proton and neutron coefficients. We have also become sensitive to the isotropic coefficient , another SME coefficient that was not constrained by Wolf et al. The resulting limits on SME coefficients improve by up to 13 orders of magnitude the present maximal sensitivities for laboratory tests and reach the generally expected suppression scales at which signatures of Lorentz violation could appear.
Special Relativity in Week One: 3) Introducing the Lorentz Contraction
NASA Astrophysics Data System (ADS)
Huggins, Elisha
2011-05-01
This is the third of four articles on teaching special relativity in the first week of an introductory physics course.1,2 With Einstein's second postulate that the speed of light is the same to all observers, we could use the light pulse clock to introduce time dilation. But we had difficulty introducing the Lorentz contraction until we saw the movie "Time Dilation, an Experiment with Mu-Mesons" by David Frisch and James Smith.3,4 The movie demonstrates that time dilation and the Lorentz contraction are essentially two sides of the same coin. Here we take the muon's point of view for a more intuitive understanding of the Lorentz contraction, and use the results of the movie to provide an insight into the way we interpret experimental results involving special relativity.
Casimir force in a Lorentz violating theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Mariana; Turan, Ismail
2006-08-01
We study the effects of the minimal extension of the standard model including Lorentz violation on the Casimir force between two parallel conducting plates in the vacuum. We provide explicit solutions for the electromagnetic field using scalar field analogy, for both the cases in which the Lorentz violating terms come from the CPT-even or CPT-odd terms. We also calculate the effects of the Lorentz violating terms for a fermion field between two parallel conducting plates and analyze the modifications of the Casimir force due to the modifications of the Dirac equation. In all cases under consideration, the standard formulas formore » the Casimir force are modified by either multiplicative or additive correction factors, the latter case exhibiting different dependence on the distance between the plates.« less
Gauge invariance for a whole Abelian model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauca, J.; Doria, R.; Soares, W.
Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the ((1/2),(1/2)) representation there is a fields family {l_brace}A{sub {mu}I}{r_brace} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is themore » effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.« less
Lorentz Invariance:. Present Experimental Status
NASA Astrophysics Data System (ADS)
Lämmerzahl, Claus
2006-02-01
Being one of the pillars of modern physics, Lorentz invariance has to be tested as precisely as possible. We review the present status of laboratory tests of Lorentz invariance. This includes the tests of properties of light propagation which are covered by the famous Michelson-Morley, Kennedy-Thorndike, and Ives-Stilwell experiments, as well as tests on dynamical properties of matter as, e.g., tests exploring the maximum velocity of massive particles or tests of the isotropy of quantum particles in Hughes-Drever experiments.
Lorentz symmetry violation with higher-order operators and renormalization
NASA Astrophysics Data System (ADS)
Nascimento, J. R.; Petrov, A. Yu; Reyes, C. M.
2018-01-01
Effective field theory has shown to be a powerful method in searching for quantum gravity effects and in particular for CPT and Lorentz symmetry violation. In this work we study an effective field theory with higher-order Lorentz violation, specifically we consider a modified model with scalars and modified fermions interacting via the Yukawa coupling. We study its renormalization properties, that is, its radiative corrections and renormalization conditions in the light of the requirements of having a finite and unitary S-matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, A.F., E-mail: alesandroferreira@fisica.ufmt.br; Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road Victoria, BC; Khanna, Faqir C., E-mail: khannaf@uvic.ca
Dynamics between particles is governed by Lorentz and CPT symmetry. There is a violation of Parity (P) and CP symmetry at low levels. The unified theory, that includes particle physics and quantum gravity, may be expected to be covariant with Lorentz and CPT symmetry. At high enough energies, will the unified theory display violation of any symmetry? The Standard Model Extension (SME), with Lorentz and CPT violating terms, has been suggested to include particle dynamics. The minimal SME in the pure photon sector is considered in order to calculate the Casimir effect at finite temperature.
Black Hole Thermodynamics and Lorentz Symmetry
NASA Astrophysics Data System (ADS)
Jacobson, Ted; Wall, Aron C.
2010-08-01
Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.
On systems having Poincaré and Galileo symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, Peter, E-mail: peter.holland@gtc.ox.ac.uk
Using the wave equation in d≥1 space dimensions it is illustrated how dynamical equations may be simultaneously Poincaré and Galileo covariant with respect to different sets of independent variables. This provides a method to obtain dynamics-dependent representations of the kinematical symmetries. When the field is a displacement function both symmetries have a physical interpretation. For d=1 the Lorentz structure is utilized to reveal hitherto unnoticed features of the non-relativistic Chaplygin gas including a relativistic structure with a limiting case that exhibits the Carroll group, and field-dependent symmetries and associated Noether charges. The Lorentz transformations of the potentials naturally associated withmore » the Chaplygin system are given. These results prompt the search for further symmetries and it is shown that the Chaplygin equations support a nonlinear superposition principle. A known spacetime mixing symmetry is shown to decompose into label-time and superposition symmetries. It is shown that a quantum mechanical system in a stationary state behaves as a Chaplygin gas. The extension to d>1 is used to illustrate how the physical significance of the dual symmetries is contingent on the context by showing that Maxwell’s equations exhibit an exact Galileo covariant formulation where Lorentz and gauge transformations are represented by field-dependent symmetries. A natural conceptual and formal framework is provided by the Lagrangian and Eulerian pictures of continuum mechanics.« less
Spontaneous breaking of Lorentz invariance, black holes and perpetuum mobile of the 2nd kind
NASA Astrophysics Data System (ADS)
Dubovsky, S. L.; Sibiryakov, S. M.
2006-07-01
We study the effect of spontaneous breaking of Lorentz invariance on black hole thermodynamics. We consider a scenario where Lorentz symmetry breaking manifests itself by the difference of maximal velocities attainable by particles of different species in a preferred reference frame. The Lorentz breaking sector is represented by the ghost condensate. We find that the notions of black hole entropy and temperature loose their universal meaning. In particular, the standard derivation of the Hawking radiation yields that a black hole does emit thermal radiation in any given particle species, but with temperature depending on the maximal attainable velocity of this species. We demonstrate that this property implies violation of the second law of thermodynamics, and hence, allows construction of a perpetuum mobile of the 2nd kind. We discuss possible interpretation of these results.
Detecting Lorentz Violations with Gravitational Waves From Black Hole Binaries
NASA Astrophysics Data System (ADS)
Sotiriou, Thomas P.
2018-01-01
Gravitational wave observations have been used to test Lorentz symmetry by looking for dispersive effects that are caused by higher order corrections to the dispersion relation. In this Letter I argue on general grounds that, when such corrections are present, there will also be a scalar excitation. Hence, a smoking-gun observation of Lorentz symmetry breaking would be the direct detection of scalar waves that travel at a speed other than the speed of the standard gravitational wave polarizations or the speed of light. Interestingly, in known Lorentz-breaking gravity theories the difference between the speeds of scalar and tensor waves is virtually unconstrained, whereas the difference between the latter and the speed of light is already severely constrained by the coincident detection of gravitational waves and gamma rays from a binary neutron star merger.
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2014-12-01
The Lorentz force acting on an electrostatically charged spacecraft as it moves through the planetary magnetic field could be utilized as propellantless electromagnetic propulsion for orbital maneuvering, such as spacecraft formation establishment and formation reconfiguration. By assuming that the Earth's magnetic field could be modeled as a tilted dipole located at the center of Earth that corotates with Earth, a dynamical model that describes the relative orbital motion of Lorentz spacecraft is developed. Based on the proposed dynamical model, the energy-optimal open-loop trajectories of control inputs, namely, the required specific charges of Lorentz spacecraft, for Lorentz-propelled spacecraft formation establishment or reconfiguration problems with both fixed and free final conditions constraints are derived via Gauss pseudospectral method. The effect of the magnetic dipole tilt angle on the optimal control inputs and the relative transfer trajectories for formation establishment or reconfiguration is also investigated by comparisons with the results derived from a nontilted dipole model. Furthermore, a closed-loop integral sliding mode controller is designed to guarantee the trajectory tracking in the presence of external disturbances and modeling errors. The stability of the closed-loop system is proved by a Lyapunov-based approach. Numerical simulations are presented to verify the validity of the proposed open-loop control methods and demonstrate the performance of the closed-loop controller. Also, the results indicate the dipole tilt angle should be considered when designing control strategies for Lorentz-propelled spacecraft formation establishment or reconfiguration.
Optimal Lorentz-augmented spacecraft formation flying in elliptic orbits
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2015-06-01
An electrostatically charged spacecraft accelerates as it moves through the Earth's magnetic field due to the induced Lorentz force, providing a new means of propellantless electromagnetic propulsion for orbital maneuvers. The feasibility of Lorentz-augmented spacecraft formation flying in elliptic orbits is investigated in this paper. Assuming the Earth's magnetic field as a tilted dipole corotating with Earth, a nonlinear dynamical model that characterizes the orbital motion of Lorentz spacecraft in the vicinity of arbitrary elliptic orbits is developed. To establish a predetermined formation configuration at given terminal time, pseudospectral method is used to solve the optimal open-loop trajectories of hybrid control inputs consisted of Lorentz acceleration and thruster-generated control acceleration. A nontilted dipole model is also introduced to analyze the effect of dipole tilt angle via comparisons with the tilted one. Meanwhile, to guarantee finite-time convergence and system robustness against external perturbations, a continuous fast nonsingular terminal sliding mode controller is designed and the closed-loop system stability is proved by Lyapunov theory. Numerical simulations substantiate the validity of proposed open-loop and closed-loop control schemes, and the results indicate that an almost propellantless formation establishment can be achieved by choosing appropriate objective function in the pseudospectral method. Furthermore, compared to the nonsingular terminal sliding mode controller, the closed-loop controller presents superior convergence rate with only a bit more control effort. And the proposed controller can be applied in other Lorentz-augmented relative orbital control problems.
One-loop renormalization of Lorentz and C P T -violating scalar field theory in curved spacetime
NASA Astrophysics Data System (ADS)
Netto, Tibério de Paula
2018-03-01
The one-loop divergences for the scalar field theory with Lorentz and/or C P T breaking terms are obtained in curved spacetime. We analyze two separate cases: a minimal coupled scalar field with gravity and a nonminimal one. For the minimal case with a real scalar field, the counterterms are evaluated in a nonperturbative form in the C P T -even parameter through a redefinition of a space-time metric. In the most complicated case of a complex scalar field nonminimally interacting with gravity, the solution for the divergences is obtained in the first order in the weak Lorentz violating parameter. The necessary form of the vacuum counterterms indicate the most important structures of Lorentz and C P T violations in the pure gravitational sector of the theory. The conformal theory limit is also analyzed. It turns out that if we allow the violating fields to transform, the classical conformal invariance of massless scalar fields can be maintained in the ξ =1 /6 case. At a quantum level, the conformal symmetry is violated by a trace anomaly. As a result, the conformal anomaly and the anomaly induced effective action are evaluated in the presence of extra Lorentz- and/or C P T -violating parameters. Such gravitational effective action is important for cosmological applications and can be used for searching of Lorentz violation in the primordial Universe in the cosmological perturbations, especially gravitational waves.
Structural aspects of Lorentz-violating quantum field theory
NASA Astrophysics Data System (ADS)
Cambiaso, M.; Lehnert, R.; Potting, R.
2018-01-01
In the last couple of decades the Standard Model Extension has emerged as a fruitful framework to analyze the empirical and theoretical extent of the validity of cornerstones of modern particle physics, namely, of Special Relativity and of the discrete symmetries C, P and T (or some combinations of these). The Standard Model Extension allows to contrast high-precision experimental tests with posited alterations representing minute Lorentz and/or CPT violations. To date no violation of these symmetry principles has been observed in experiments, mostly prompted by the Standard-Model Extension. From the latter, bounds on the extent of departures from Lorentz and CPT symmetries can be obtained with ever increasing accuracy. These analyses have been mostly focused on tree-level processes. In this presentation I would like to comment on structural aspects of perturbative Lorentz violating quantum field theory. I will show that some insight coming from radiative corrections demands a careful reassessment of perturbation theory. Specifically I will argue that both the standard renormalization procedure as well as the Lehmann-Symanzik-Zimmermann reduction formalism need to be adapted given that the asymptotic single-particle states can receive quantum corrections from Lorentz-violating operators that are not present in the original Lagrangian.
Covariant n/sup 2/-plet mass formulas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, A.
Using a generalized internal symmetry group analogous to the Lorentz group, we have constructed a covariant n/sup 2/-plet mass operator. This operator is built as a scalar matrix in the (n;n*) representation, and its SU(n) breaking parameters are identified as intrinsic boost ones. Its basic properties are: covariance, Hermiticity, positivity, charge conjugation, quark contents, and a self-consistent n/sup 2/-1, 1 mixing. The GMO and the Okubo formulas are obtained by considering two different limits of the same generalized mass formula.
Lorentz symmetry violation in the fermion number anomaly with the chiral overlap operator
NASA Astrophysics Data System (ADS)
Makino, Hiroki; Morikawa, Okuto
2016-12-01
Recently, Grabowska and Kaplan proposed a four-dimensional lattice formulation of chiral gauge theories on the basis of a chiral overlap operator. We compute the classical continuum limit of the fermion number anomaly in this formulation. Unexpectedly, we find that the continuum limit contains a term which is not Lorentz invariant. The term is, however, proportional to the gauge anomaly coefficient, and thus the fermion number anomaly in this lattice formulation automatically restores the Lorentz-invariant form when and only when the anomaly cancellation condition is met.
A comparison of Lorentz, planetary gravitational, and satellite gravitational resonances
NASA Technical Reports Server (NTRS)
Hamilton, Douglas P.
1994-01-01
We consider a charged dust grain whose orbital motion is dominated by a planet's point-source gravity, but perturbed by higher-order terms in the planet's gravity field as well as by the Lorentz force arising from an asymmetric planetary magnetic field. Perturbations to Keplerian orbits due to a nonspherical gravity field are expressed in the traditional way: in terms of a disturbing function which can be expanded in a series of spherical harmonics (W. M. Kaula, 1966). In order to calculate the electromagnetic perturbation, we first write the Lorentz force in terms of the orbital elements and then substitute it into Gauss' perturbation equations. We use our result to derive strengths of Lorentz resonances and elucidate their properties. In particular, we compare Lorentz resonances to two types of gravitational resonances: those arising from periodic tugs of a satellite and those due to the attraction of an arbitrarily shaped planet. We find that Lorentz resonances share numerous properties with their gravitational counterparts and show, using simple physical arguments, that several of these patterns are fundamental, applying not only to our expansions, but to all quantities expressed in terms of orbital elements. Some of these patterns have been previously called 'd'Alembert rules' for satellite resonances. Other similarities arise because, to first-order in the perturbing force, the three problems share an integral of the motion. Yet there are also differences; for example, first-order inclination resonances exist for perturbations arising from planetary gravity and from the Lorentz force, but not for those due to an orbiting satellite. Finally, we provide a heuristic treatment of a particle's orbital evolution under the influence of drag and resonant forces. Particles brought into mean-motion resonances experience either trapping or resonant 'jumps,' depending on the direction from which the resonance is approached. We show that this behavior does not depend on the details of the perturbing force but rather is fundamental to all mean-motion resonances.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2011-01-01
High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10-35 m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations ofthe spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV at a proton Lorentz factor of -2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.
Angular momentum conservation law in light-front quantum field theory
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.
2017-03-31
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3, the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED andmore » QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less
The origins of length contraction: I. The FitzGerald-Lorentz deformation hypothesis
NASA Astrophysics Data System (ADS)
Brown, Harvey R.
2001-10-01
"Can there be some point in the theory of Mr. Michelson's experiment which has yet been overlooked?" H. A. Lorentz, letter to Lord Rayleigh, August 1892. One of the widespread confusions concerning the history of the 1887 Michelson-Morley experiment has to do with the initial explanation of this celebrated null result due independently to FitzGerald and Lorentz. In neither case was a strict, longitudinal length contraction hypothesis invoked, as is commonly supposed. Lorentz postulated, particularly in 1895, any one of a certain family of possible deformation effects for rigid bodies in motion, including purely transverse alteration, and expansion as well as contraction; FitzGerald may well have had the same family in mind. A careful analysis of the Michelson-Morley experiment (which reveals a number of serious inadequacies in many textbook treatments) indeed shows that strict contraction is not required.
Constraints on Lorentz violation from gravitational Cerenkov radiation
Kostelecký, V. Alan; Tasson, Jay D.
2015-08-31
Limits on gravitational Cerenkov radiation by cosmic rays are obtained and used to constrain coefficients for Lorentz violation in the gravity sector associated with operators of even mass dimensions, including orientation-dependent effects. We use existing data from cosmic-ray telescopes to obtain conservative two-sided constraints on 80 distinct Lorentz-violating operators of dimensions four, six, and eight, along with conservative one-sided constraints on three others. Existing limits on the nine minimal operators at dimension four are improved by factors of up to a billion, while 74 of our explicit limits represent stringent first constraints on nonminimal operators. As a result, prospects aremore » discussed for future analyses incorporating effects of Lorentz violation in the matter sector, the role of gravitational Cerenkov radiation by high-energy photons, data from gravitational-wave observatories, the tired-light effect, and electromagnetic Cerenkov radiation by gravitons.« less
Giant plasmonic mode splitting in THz metamaterials mediated by coupling with Lorentz phonon mode
NASA Astrophysics Data System (ADS)
Yu, Leilei; Huang, Yuanyuan; Liu, Changji; Hu, Fangrong; Jin, Yanping; Yan, Yi; Xu, Xinlong
2018-04-01
Giant plasmonic mode splitting has been observed in THz metamaterials due to the mediation by the Lorentz phonon dielectric material. This splitting mode is confirmed by the surface current distribution, indicating that plasmonic modes behave like dipole resonances, while the phonon mode behaves like multipole resonance due to coupling. The splitting of the plasmonic modes demonstrates an anti-crossing behavior with the change in Lorentz central frequency, which suggests that there is energy redistribution between plasmon and phonon modes. Similar to the Stark effect, the splitting frequency difference increases with the increasing direct current dielectric function. We also propose an interaction Hamiltonian to understand the physical mechanism of the plasmonic splitting. Furthermore, the splitting is convincible for small Lorentz dielectrics such as sugar and amino acid in the THz region, which could be used for biomolecular sensing applications.
Angular momentum conservation law in light-front quantum field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3, the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED andmore » QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less
Angular momentum conservation law in light-front quantum field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QEDmore » and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less
Effect of the Lorentz force on on-off dynamo intermittency.
Alexakis, Alexandros; Ponty, Yannick
2008-05-01
An investigation of the dynamo instability close to the threshold produced by an ABC forced flow is presented. We focus on the on-off intermittency behavior of the dynamo and the countereffect of the Lorentz force in the nonlinear stage of the dynamo. The Lorentz force drastically alters the statistics of the turbulent fluctuations of the flow and reduces their amplitude. As a result, much longer bursts (on phases) are observed than is expected based on the amplitude of the fluctuations in the kinematic regime of the dynamo. For large Reynolds numbers, the duration time of the on phase follows a power law distribution, while for smaller Reynolds numbers the Lorentz force completely kills the noise and the system transits from a chaotic state into a laminar time periodic flow. The behavior of the on-off intermittency as the Reynolds number is increased is also examined. The connections with dynamo experiments and theoretical modeling are discussed.
Long-Range Self-Assembly via the Mutual Lorentz Force of Plasmon Radiation.
Ji, Haojie; Trevino, Jacob; Tu, Raymond; Knapp, Ellen; McQuade, James; Yurkiv, Vitaliy; Mashayek, Farzad; Vuong, Luat T
2018-04-11
Long-range interactions often proceed as a sequence of hopping through intermediate, statistically favored events. Here, we demonstrate predictable mechanical dynamics of particles that arise from the Lorentz force between plasmons. Even if the radiation is weak, the nonconservative Lorentz force produces stable locations perpendicular to the plasmon oscillation; over time, distinct patterns emerge. Experimentally, linearly polarized light illumination leads to the formation of 80 nm diameter Au nanoparticle chains, perpendicularly aligned, with lengths that are orders of magnitude greater than their plasmon near-field interaction. There is a critical intensity threshold and optimal concentration for observing self-assembly.
Limits on Lorentz Invariance Violation from Coulomb Interactions in Nuclei and Atoms.
Flambaum, V V; Romalis, M V
2017-04-07
Anisotropy in the speed of light that has been constrained by Michelson-Morley-type experiments also generates anisotropy in the Coulomb interactions. This anisotropy can manifest itself as an energy anisotropy in nuclear and atomic experiments. Here the experimental limits on Lorentz violation in _{10}^{21}Ne are used to improve the limits on Lorentz symmetry violations in the photon sector, namely, the anisotropy of the speed of light and the Coulomb interactions, by 7 orders of magnitude in comparison with previous experiments: the speed of light is isotropic to a part in 10^{28}.
Spectra of Lorentz-violating Dirac bound states in a cylindrical well
NASA Astrophysics Data System (ADS)
Xiao, Zhi
2016-12-01
In the presence of the Lorentz-violating bμ coefficient, the spectra of bound states for a Dirac particle in a cylindric well are changed. Compared to the Lorentz invariant (LI) spectrum, the Lorentz violation deviation becomes significant when eigenenergy E is sufficiently close to the critical values ±m , where m is the particle's mass. The detailed profile of the deviation depends on the observer Lorentz nature of bμ. We discussed three types of bμ configuration. When bμ=(0 ,0 ,0 ,bZ) is parallel to the well axis, the would be degenerate LI spectra split into two subspectra, reminiscent of the Zeeman splitting in the presence of a weak magnetic field. Depending on the relative sign of bZ accompanying mass m in the dispersion relation, the spectrum extends or shrinks in the allowed eigenenergy region. When bμ is a radial [bμ=(0 ,b cos ϕ ,b sin ϕ ,0 ) ] or purely timelike vector [bμ=(bT,0 →)], the spin-up and down components are coupled together, and there is no splitting. However, the monotonic increasing behavior of well depth V0 with the decrease of eigenenergy E is slightly changed when E is sufficiently close to -m .
Galloway, Benjamin R.; Popmintchev, Dimitar; Pisanty, Emilio; ...
2016-09-09
Here, we present a semi-classical study of the effects of the Lorentz force on electrons during high harmonic generation in the soft and hard X-ray regions driven by near- and mid-infrared lasers with wavelengths from 0.8 to 20 μm, and at intensities below 10 15 W/cm 2. The transverse extent of the longitudinal Lorentz drift is compared for both Gaussian focus and waveguide geometries. Both geometries exhibit a longitudinal electric field component that cancels the magnetic Lorentz drift in some regions of the focus, once each full optical cycle. We show that the Lorentz force contributes a super-Gaussian scaling whichmore » acts in addition to the dominant high harmonic flux scaling of λ -(5-6) due to quantum diffusion. We predict that the high harmonic yield will be reduced for driving wavelengths > 6 μm, and that the presence of dynamic spatial mode asymmetries results in the generation of both even and odd harmonic orders. Remarkably, we show that under realistic conditions, the recollision process can be controlled and does not shut off completely even for wavelengths >10 μm and recollision energies greater than 15 keV.« less
NASA Technical Reports Server (NTRS)
Schaffer, L.; Burns, J. A.
1995-01-01
Dust grains in planetary rings acquire stochastically fluctuating electric charges as they orbit through any corotating magnetospheric plasma. Here we investigate the nature of this stochastic charging and calculate its effect on the Lorentz resonance (LR). First we model grain charging as a Markov process, where the transition probabilities are identified as the ensemble-averaged charging fluxes due to plasma pickup and photoemission. We determine the distribution function P(t;N), giving the probability that a grain has N excess charges at time t. The autocorrelation function tau(sub q) for the strochastic charge process can be approximated by a Fokker-Planck treatment of the evolution equations for P(t; N). We calculate the mean square response to the stochastic fluctuations in the Lorentz force. We find that transport in phase space is very small compared to the resonant increase in amplitudes due to the mean charge, over the timescale that the oscillator is resonantly pumped up. Therefore the stochastic charge variations cannot break the resonant interaction; locally, the Lorentz resonance is a robust mechanism for the shaping of etheral dust ring systems. Slightly stronger bounds on plasma parameters are required when we consider the longer transit times between Lorentz resonances.
NASA Astrophysics Data System (ADS)
Altschul, Brett D.
2007-06-01
All the physics we observe in our world is underlain by special relativity, a theory that has survived for more than a hundred years, in many respects completely intact. Yet despite its status as the most stringently tested theory in all of physics, special relativity is still frequently questioned. In the last decade and a half, many scientists have come to believe that special relativity, as Einstein formulated it, will need to be modified to accommodate a quantum theory of gravity. {\\it Special Relativity: Will it Survive the Next 101 Years?} is a volume intended to introduce the reader to this new and still slightly controversial area of research. The book is divided into four parts. The first part is essentially historical. It consists of an essay discussing Einstein's work in the context of contemporary technological developments and a amusing note by R W P Drever on a precision Lorentz test that he performed literally in his backyard. These set the stage for the more modern material that follows. Part II discusses the theory of relativity and its mathematical foundations, from completely modern perspectives. There is much here that may be new even for experts on special relativity, and a significant level of mathematical sophistication on the part of the reader is assumed. A number of the lectures delve into the crucial question of how special relativity and its generalizations can be combined with quantum mechanics. The third part discusses theoretical models of Lorentz violation, and all the important paradigms that appear in the current literature are considered. These include the standard model extension (an effective field theory), modified dispersion relations and 'double special relativity', and noncommutative geometry. These lectures generally delve into less detail than those in part II; the focus is on helping the reader digest the new principles that must arise in theories without Lorentz symmetry. The final part of the volume covers current experimental tests of special relativity, especially state-of-the-art versions of 'classic' tests of rotation and boost invariance. These include Michelson-Morley experiments with high-finesse optical resonators, two-species atomic clock comparisons, and direct measurements of Doppler shifts in the radiation of moving atoms. If there is a weakness in the overall presentation, it lies in the selection of material covered. {\\it Special Relativity} is more of a volume of conference proceedings than a truly cohesive set of lecture notes. This is most evident in the section on experimental tests of Lorentz invariance, which includes contributions from three different experimental groups working on optical resonator measurements. Impressive as these experiments are, this repetitive coverage is not necessary. And at the same time, there is no detailed coverage of astrophysical tests of Lorentz invariance, even though the tightest absolute bounds on deviations from relativity come from astrophysical polarimetry. However, taken as a whole, the volume presents an excellent survey of current research on Lorentz symmetry. Most of the book should be accessible to graduate students and researchers who are interested in the field but with little previous exposure to it. However, the mathematical level does vary quite a bit from one article to the next; especially in part II, facility with a fair number of mathematical physics concepts may be required. The coverage is broad enough that even an active researcher working on special relativity and possible modifications thereto will almost certainly find new material in this volume, and most of the authors provide abundant references, which should be quite valuable in a field with as many counterintuitive features as Lorentz violation research.
Tests of Lorentz and CPT Invariance in Space
NASA Technical Reports Server (NTRS)
Mewes, Matthew
2003-01-01
I give a brief overview of recent work concerning possible signals of Lorentz violation in sensitive clock-based experiments in space. The systems under consideration include atomic clocks and electromagnetic resonators of the type planned for flight on the International Space Station.
Three kinds of particles on a single rationally parameterized world line
NASA Astrophysics Data System (ADS)
Kassandrov, V. V.; Markova, N. V.
2016-10-01
We consider the light cone (`retardation') equation (LCE) of an inertially moving observer and a single worldline parameterized by arbitrary rational functions. Then a set of apparent copies, R- or C-particles, defined by the (real or complex conjugate) roots of the LCE will be detected by the observer. For any rational worldline the collective R-C dynamics is manifestly Lorentz-invariant and conservative; the latter property follows directly from the structure of Vieta formulas for the LCE roots. In particular, two Lorentz invariants, the square of total 4-momentum and total rest mass, are distinct and both integer-valued. Asymptotically, at large values of the observer's proper time, one distinguishes three types of the LCE roots and associated R-C particles, with specific locations and evolutions; each of three kinds of particles can assemble into compact large groups - clusters. Throughout the paper, we make no use of differential equations of motion, field equations, etc.: the collective R-C dynamics is purely algebraic
Medium generated gap in gravity and a 3D gauge theory
NASA Astrophysics Data System (ADS)
Gabadadze, Gregory; Older, Daniel
2018-05-01
It is well known that a physical medium that sets a Lorentz frame generates a Lorentz-breaking gap for a graviton. We examine such generated "mass" terms in the presence of a fluid medium whose ground state spontaneously breaks spatial translation invariance in d =D +1 spacetime dimensions, and for a solid in D =2 spatial dimensions. By requiring energy positivity and subluminal propagation, certain constraints are placed on the equation of state of the medium. In the case of D =2 spatial dimensions, classical gravity can be recast as a Chern-Simons gauge theory, and motivated by this we recast the massive theory of gravity in AdS3 as a massive Chern-Simons gauge theory with an unusual mass term. We find that in the flat space limit the Chern-Simons theory has a novel gauge invariance that mixes the kinetic and mass terms, and enables the massive theory with a noncompact internal group to be free of ghosts and tachyons.
A Useful Device for Illustrating the Lorentz Transformations
ERIC Educational Resources Information Center
Cortini, Giulio
1972-01-01
A graphical representation is proposed as a teaching device which can be useful in order to obtain a good intuitive grasp of the physical meaning of the Lorentz transformations. The connection between the time dilation and the desynchronization of clocks is particularly discussed. (Author/PR)
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, F. W.
2011-01-01
High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35)m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and y-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future.
A New Limit on Planck Scale Lorentz Violation from Gamma-ray Burst Polarization
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2011-01-01
Constraints on possible Lorentz invariance violation (UV) to first order in E/M(sub Plank) for photons in the framework of effective field theory (EFT) are discussed, taking cosmological factors into account. Then. using the reported detection of polarized soft gamma-ray emission from the gamma-ray burst GRB041219a that is indicative' of an absence of vacuum birefringence, together with a very recent improved method for estimating the redshift of the burst, we derive constraints on the dimension 5 Lorentz violating modification to the Lagrangian of an effective local QFT for QED. Our new constraints are more than five orders of magnitude better than recent constraints from observations of the Crab Nebula.. We obtain the upper limit on the Lorentz violating dimension 5 EFT parameter absolute value of zeta of 2.4 x 10(exp -15), corresponding to a constraint on the dimension 5 standard model extension parameter. Kappa (sup 5) (sub (v)oo) much less than 4.2 X 10(exp -3)4 / GeV.
Lorentz symmetry violation and UHECR experiments
NASA Astrophysics Data System (ADS)
Gonzalez-Mestres, L.
2001-08-01
Lorentz symmetry violation (LSV) at Planck scale can be tested through ultra-high energy cosmic rays (UHECR). We discuss deformed Lorentz symmetry (DLS) and energy non-conservation (ENC) patterns where the effective LSV parameter varies like the square of the momentum scale (e.g. quadratically de-formed relativistic kinematics, QDRK). In such patterns, a ≈ 106 LSV at Planck scale would be enough to produce observable effects on the properties of cosmic rays at the ≈ 1020 eV scale: absence of GZK cutoff, stability of unstable particles, lower interaction rates, kinematical failure of any parton model and of standard formulae for Lorentz contraction and time dilation... Its phenomeno-logical implications are compatible with existing data. Precise signatures are discussed in several patterns. If the effective LSV or ENC parameter is taken to vary linearly with the momentum scale (e.g. linearly deformed relativistic kinematics, LDRK), contradictions seem to arise with UHECR data. Conse-quences are important for UHECR and high-energy gamma-ray exper iments, as well as for high-energy cosmic rays and gravitational waves.
Emergence of nonwhite noise in Langevin dynamics with magnetic Lorentz force
NASA Astrophysics Data System (ADS)
Chun, Hyun-Myung; Durang, Xavier; Noh, Jae Dong
2018-03-01
We investigate the low mass limit of Langevin dynamics for a charged Brownian particle driven by a magnetic Lorentz force. In the low mass limit, velocity variables relaxing quickly are coarse-grained out to yield effective dynamics for position variables. Without the Lorentz force, the low mass limit is equivalent to the high friction limit. Both cases share the same Langevin equation that is obtained by setting the mass to zero. The equivalence breaks down in the presence of the Lorentz force. The low mass limit cannot be achieved by setting the mass to zero. The limit is also distinct from the large friction limit. We derive the effective equations of motion in the low mass limit. The resulting stochastic differential equation involves a nonwhite noise whose correlation matrix has antisymmetric components. We demonstrate the importance of the nonwhite noise by investigating the heat dissipation by a driven Brownian particle, where the emergent nonwhite noise has a physically measurable effect.
Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.
2001-01-01
The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using the VPS process to form anode sections for a Lorentz force accelerator from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and accelerates the metal powder onto the mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the anode. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of the Lorentz force accelerator.
NASA Astrophysics Data System (ADS)
Sachdeva, Nishtha; Subramanian, Prasad; Vourlidas, Angelos; Bothmer, Volker
2017-09-01
We seek to quantify the relative contributions of Lorentz forces and aerodynamic drag on the propagation of solar coronal mass ejections (CMEs). We use Graduated Cylindrical Shell (GCS) model fits to a representative set of 38 CMEs observed with the Solar and Heliospheric Observatory (SOHO) and the Solar and Terrestrial Relations Observatory (STEREO) spacecraft. We find that the Lorentz forces generally peak between 1.65 and 2.45 R⊙ for all CMEs. For fast CMEs, Lorentz forces become negligible in comparison to aerodynamic drag as early as 3.5 - 4 R⊙. For slow CMEs, however, they become negligible only by 12 - 50 R⊙. For these slow events, our results suggest that some of the magnetic flux might be expended in CME expansion or heating. In other words, not all of it contributes to the propagation. Our results are expected to be important in building a physical model for understanding the Sun-Earth dynamics of CMEs.
A strong astrophysical constraint on the violation of special relativity by quantum gravity.
Jacobson, T; Liberati, S; Mattingly, D
2003-08-28
Special relativity asserts that physical phenomena appear the same to all unaccelerated observers. This is called Lorentz symmetry and relates long wavelengths to short ones: if the symmetry is exact it implies that space-time must look the same at all length scales. Several approaches to quantum gravity, however, suggest that there may be a microscopic structure of space-time that leads to a violation of Lorentz symmetry. This might arise because of the discreteness or non-commutivity of space-time, or through the action of extra dimensions. Here we determine a very strong constraint on a type of Lorentz violation that produces a maximum electron speed less than the speed of light. We use the observation of 100-MeV synchrotron radiation from the Crab nebula to improve the previous limit by a factor of 40 million, ruling out this type of Lorentz violation, and thereby providing an important constraint on theories of quantum gravity.
Lorentz-violating modification of Dirac theory based on spin-nondegenerate operators
NASA Astrophysics Data System (ADS)
Reis, J. A. A. S.; Schreck, M.
2017-04-01
The Standard Model extension (SME) parametrizes all possible Lorentz-violating contributions to the Standard Model and general relativity. It can be considered as an effective framework to describe possible quantum-gravity effects for energies much below the Planck energy. In the current paper, the spin-nondegenerate operators of the SME fermion sector are the focus. The propagators, energies, and solutions to the modified Dirac equation are obtained for several families of coefficients including nonminimal ones. The particle energies and spinors are computed at first order in Lorentz violation and, with the optical theorem, they are shown to be consistent with the propagators. The optical theorem is then also used to derive the matrices formed from a spinor and its Dirac conjugate at all orders in Lorentz violation. The results are the first explicit ones derived for the spin-nondegenerate operators. They will prove helpful for future phenomenological calculations in the SME that rely on the footing of quantum field theory.
Lorentz force particle analyzer
NASA Astrophysics Data System (ADS)
Wang, Xiaodong; Thess, André; Moreau, René; Tan, Yanqing; Dai, Shangjun; Tao, Zhen; Yang, Wenzhi; Wang, Bo
2016-07-01
A new contactless technique is presented for the detection of micron-sized insulating particles in the flow of an electrically conducting fluid. A transverse magnetic field brakes this flow and tends to become entrained in the flow direction by a Lorentz force, whose reaction force on the magnetic-field-generating system can be measured. The presence of insulating particles suspended in the fluid produce changes in this Lorentz force, generating pulses in it; these pulses enable the particles to be counted and sized. A two-dimensional numerical model that employs a moving mesh method demonstrates the measurement principle when such a particle is present. Two prototypes and a three-dimensional numerical model are used to demonstrate the feasibility of a Lorentz force particle analyzer (LFPA). The findings of this study conclude that such an LFPA, which offers contactless and on-line quantitative measurements, can be applied to an extensive range of applications. These applications include measurements of the cleanliness of high-temperature and aggressive molten metal, such as aluminum and steel alloys, and the clean manufacturing of semiconductors.
Gamma-Ray, Cosmic Ray and Neutrino Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd
2011-01-01
High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35) m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV of at a proton Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.
Use of the Lorentz-operator in relativistic quantum mechanics to guarentee a single-energy root
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritchie, A B
1998-08-01
The Lorentz-operator form of relativistic quantum mechanics, with relativistic wave equation i{h_bar}{partial_derivative}{psi}/{partial_derivative}t=(mc{sup 2}{gamma}+e{Phi}){psi}, is implemented to guarantee a single-energy root. The Lorentz factor as modified by Pauli's ansatz is given by {gamma}={radical}1+[{rvec {sigma}}{center_dot}(i{h_bar}{rvec {del}}+(e/c){rvec A})]{sup 2}/m{sup 2}c{sup 2}, such that the theory is appropriate for electrons. Magnetic fine structure in the Lorentz relativistic wave equation emerges on the use of an appropriate operator form of the Lienard-Wiechert four- potential ({Phi},{rvec A}) from electromagnetic theory. Although computationally more intensive the advantage of the theory is the elimination of the negative-root of the energy and an interpretation of the wave function basedmore » on a one-particle, positive definite probability density like that of nonrelativistic quantum mechanics.« less
Lorentz microscopy sheds light on the role of dipolar interactions in magnetic hyperthermia
NASA Astrophysics Data System (ADS)
Campanini, M.; Ciprian, R.; Bedogni, E.; Mega, A.; Chiesi, V.; Casoli, F.; de Julián Fernández, C.; Rotunno, E.; Rossi, F.; Secchi, A.; Bigi, F.; Salviati, G.; Magén, C.; Grillo, V.; Albertini, F.
2015-04-01
Monodispersed Fe3O4 nanoparticles with comparable size distributions have been synthesized by two different synthesis routes, co-precipitation and thermal decomposition. Thanks to the different steric stabilizations, the described samples can be considered as a model system to investigate the effects of magnetic dipolar interactions on the aggregation states of the nanoparticles. Moreover, the presence of magnetic dipolar interactions can strongly affect the nanoparticle efficiency as a hyperthermic mediator. In this paper, we present a novel way to visualize and map the magnetic dipolar interactions in different kinds of nanoparticle aggregates by the use of Lorentz microscopy, an easy and reliable in-line electron holographic technique. By exploiting Lorentz microscopy, which is complementary to the magnetic measurements, it is possible to correlate the interaction degrees of magnetic nanoparticles with their magnetic behaviors. In particular, we demonstrate that Lorentz microscopy is successful in visualizing the magnetic configurations stabilized by dipolar interactions, thus paving the way to the comprehension of the power loss mechanisms for different nanoparticle aggregates.Monodispersed Fe3O4 nanoparticles with comparable size distributions have been synthesized by two different synthesis routes, co-precipitation and thermal decomposition. Thanks to the different steric stabilizations, the described samples can be considered as a model system to investigate the effects of magnetic dipolar interactions on the aggregation states of the nanoparticles. Moreover, the presence of magnetic dipolar interactions can strongly affect the nanoparticle efficiency as a hyperthermic mediator. In this paper, we present a novel way to visualize and map the magnetic dipolar interactions in different kinds of nanoparticle aggregates by the use of Lorentz microscopy, an easy and reliable in-line electron holographic technique. By exploiting Lorentz microscopy, which is complementary to the magnetic measurements, it is possible to correlate the interaction degrees of magnetic nanoparticles with their magnetic behaviors. In particular, we demonstrate that Lorentz microscopy is successful in visualizing the magnetic configurations stabilized by dipolar interactions, thus paving the way to the comprehension of the power loss mechanisms for different nanoparticle aggregates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00273g
Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale
NASA Astrophysics Data System (ADS)
Gorbunov, Dmitry S.; Sibiryakov, Sergei M.
2005-09-01
We present an extension of the Randall-Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam-Veltman-Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances.
Lorentz Body Force Induced by Traveling Magnetic Fields
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.
2003-01-01
The Lorentz force induced by a traveling magnetic field (TMF) in a cylindrical container has been calculated. The force can be used to control flow in dectrically conducting melts and the direction of the magnetic field and resulting flow can be reversed. A TMF can be used to partially cancel flow driven by buoyancy. The penetration of the field into the cylinder decreases as the frequency increases, and there exists an optimal value of frequency for which the resulting force is a maximum. Expressions for the Lorentz force in the limiting cases of low frequency and infinite cylinder are also given and compared to the numerical calculations.
Cherenkov-like emission of Z bosons
NASA Astrophysics Data System (ADS)
Colladay, D.; Noordmans, J. P.; Potting, R.
2017-07-01
We study CPT and Lorentz violation in the electroweak gauge sector of the Standard Model in the context of the Standard-Model Extension (SME). In particular, we show that any non-zero value of a certain relevant Lorentz violation parameter that is thus far unbounded by experiment would imply that for sufficiently large energies one of the helicity modes of the Z boson should propagate with spacelike four-momentum and become stable against decay in vacuum. In this scenario, Cherenkov-like radiation of Z bosons by ultra-high-energy cosmic-ray protons becomes possible. We deduce a bound on the Lorentz violation parameter from the observational data on ultra-high energy cosmic rays.
Lorentz- and CPT-symmetry studies in subatomic physics
NASA Astrophysics Data System (ADS)
Lehnert, Ralf
2016-12-01
Subatomic systems provide an exquisite test bench for spacetime symmetries. This work motivates such measurements, reviews the effective field theory test framework for the description of Lorentz and CPT violation, and employs this framework to study the phenomenology of spacetime-symmetry breaking in various subatomic systems.
Lorentz and diffeomorphism violations in linearized gravity
NASA Astrophysics Data System (ADS)
Kostelecký, V. Alan; Mewes, Matthew
2018-04-01
Lorentz and diffeomorphism violations are studied in linearized gravity using effective field theory. A classification of all gauge-invariant and gauge-violating terms is given. The exact covariant dispersion relation for gravitational modes involving operators of arbitrary mass dimension is constructed, and various special limits are discussed.
Performance of a small wind powered water pumping system
USDA-ARS?s Scientific Manuscript database
Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...
NASA Astrophysics Data System (ADS)
Dai, Wei-Ming; Guo, Zong-Kuan; Cai, Rong-Gen; Zhang, Yuan-Zhong
2017-06-01
We investigate constraints on Lorentz invariance violation in the neutrino sector from a joint analysis of big bang nucleosynthesis and the cosmic microwave background. The effect of Lorentz invariance violation during the epoch of big bang nucleosynthesis changes the predicted helium-4 abundance, which influences the power spectrum of the cosmic microwave background at the recombination epoch. In combination with the latest measurement of the primordial helium-4 abundance, the Planck 2015 data of the cosmic microwave background anisotropies give a strong constraint on the deformation parameter since adding the primordial helium measurement breaks the degeneracy between the deformation parameter and the physical dark matter density.
Limits on Lorentz violation in gravity from worldwide superconducting gravimeters
NASA Astrophysics Data System (ADS)
Shao, Cheng-Gang; Chen, Ya-Fen; Sun, Rong; Cao, Lu-Shuai; Zhou, Min-Kang; Hu, Zhong-Kun; Yu, Chenghui; Müller, Holger
2018-01-01
We have investigated Lorentz violation through analyzing tides-subtracted gravity data measured by superconducting gravimeters. At the level of precision of superconducting gravimeters, we have brought up and resolved an existing issue of accuracy due to unaccounted local tidal effects in previous solid-earth tidal model used. Specifically, we have taken local tides into account with a brand new first-principles tidal model with ocean tides included, as well as removed potential bias from local tides by using a worldwide array of 12 superconducting gravimeters. Compared with previous test with local gravimeters, a more accurate and competitive bound on space-space components of gravitational Lorentz violation has been achieved up to the order of 10-10.
NASA Astrophysics Data System (ADS)
Donoghue, John F.
2017-08-01
In the description of general covariance, the vierbein and the Lorentz connection can be treated as independent fundamental fields. With the usual gauge Lagrangian, the Lorentz connection is characterized by an asymptotically free running coupling. When running from high energy, the coupling gets large at a scale which can be called the Planck mass. If the Lorentz connection is confined at that scale, the low energy theory can have the Einstein Lagrangian induced at low energy through dimensional transmutation. However, in general there will be new divergences in such a theory and the Lagrangian basis should be expanded. I construct a conformally invariant model with a larger basis size which potentially may have the same property.
Spinor Structure and Internal Symmetries
NASA Astrophysics Data System (ADS)
Varlamov, V. V.
2015-10-01
Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries P, T and their combination PT are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation C is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation C allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincaré group and SU(3)-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of SU(3)). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of SU(3)-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann-Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.
A simple derivation of Lorentz self-force
NASA Astrophysics Data System (ADS)
Haque, Asrarul
2014-09-01
We derive the Lorentz self-force for a charged particle in arbitrary non-relativistic motion by averaging the retarded fields. The derivation is simple and at the same time pedagogically accessible. We obtain the radiation reaction for a charged particle moving in a circle. We pin down the underlying concept of mass renormalization.
Dynamical Lorentz symmetry breaking in 3D and charge fractionalization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charneski, B.; Gomes, M.; Silva, A. J. da
2009-03-15
We analyze the breaking of Lorentz invariance in a 3D model of fermion fields self-coupled through four-fermion interactions. The low-energy limit of the theory contains various submodels which are similar to those used in the study of graphene or in the description of irrational charge fractionalization.
Lorentz Contraction and Current-Carrying Wires
ERIC Educational Resources Information Center
van Kampen, Paul
2008-01-01
The force between two parallel current-carrying wires is investigated in the rest frames of the ions and the electrons. A straightforward Lorentz transformation shows that what appears as a purely magnetostatic force in the ion frame appears as a combined magnetostatic and electrostatic force in the electron frame. The derivation makes use of a…
Constraints on relativity violations from gamma-ray bursts.
Kostelecký, V Alan; Mewes, Matthew
2013-05-17
Tiny violations of the Lorentz symmetry of relativity and the associated discrete CPT symmetry could emerge in a consistent theory of quantum gravity such as string theory. Recent evidence for linear polarization in gamma-ray bursts improves existing sensitivities to Lorentz and CPT violation involving photons by factors ranging from ten to a million.
A More Intuitive Version of the Lorentz Velocity Addition Formula
ERIC Educational Resources Information Center
Devlin, John F.
2009-01-01
The Lorentz velocity addition formula for one-dimensional motion presents a number of problems for beginning students of special relativity. In this paper we suggest a simple rewrite of the formula that is easier for students to memorize and manipulate, and furthermore is more intuitive in understanding the correction necessary when adding…
Searching for New Physics with Ultrahigh Energy Cosmic Rays
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.; Scully, Sean T.
2009-01-01
Ultrahigh energy cosmic rays that produce giant extensive showers of charged particles and photons when they interact in the Earth's atmosphere provide a unique tool to search for new physics. Of particular interest is the possibility of detecting a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10 (exp -35) m. We discuss here the possible signature of Lorentz invariance violation on the spectrum of ultrahigh energy cosmic rays as compared with present observations of giant air showers. We also discuss the possibilities of using more sensitive detection techniques to improve searches for Lorentz invariance violation in the future. Using the latest data from the Pierre Auger Observatory, we derive a best fit to the LIV parameter of 3 .0 + 1.5 - 3:0 x 10 (exp -23) ,corresponding to an upper limit of 4.5 x 10-23 at a proton Lorentz factor of approximately 2 x 10(exp 11) . This result has fundamental implications for quantum gravity models.
Twofold symmetries of the pure gravity action
Cheung, Clifford; Remmen, Grant N.
2017-01-25
Here, we recast the action of pure gravity into a form that is invariant under a twofold Lorentz symmetry. To derive this representation, we construct a general parameterization of all theories equivalent to the Einstein-Hilbert action up to a local field redefinition and gauge fixing. We then exploit this freedom to eliminate all interactions except those exhibiting two sets of independently contracted Lorentz indices. The resulting action is local, remarkably simple, and naturally expressed in a field basis analogous to the exponential parameterization of the nonlinear sigma model. The space of twofold Lorentz invariant field redefinitions then generates an infinitemore » class of equivalent representations. By construction, all off-shell Feynman diagrams are twofold Lorentz invariant while all on-shell tree amplitudes are automatically twofold gauge invariant. We extend our results to curved spacetime and calculate the analogue of the Einstein equations. Finally, while these twofold invariances are hidden in the canonical approach of graviton perturbation theory, they are naturally expected given the double copy relations for scattering amplitudes in gauge theory and gravity.« less
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2012-01-01
High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approx.10(exp -35) m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approx. 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future. I will also discuss how the LIV formalism casts doubt on the OPERA superluminal neutrino claim.
Lorentz force detuning analysis of the Spallation Neutron Source (SNS) accelerating cavities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, R.R.; Matsumoto, K. Y.; Ciovati, G.
2001-01-01
The Spallation Neutron Source (SNS) project incorporates a superconducting radio-frequency (SRF) accelerator for the final section of the pulsed mode linac. Cavities with geometrical {beta} values of {beta}=0.61 and {beta}=0.81 are utilized in the SRF section, and are constructed out of thin-walled niobium with stiffener rings welded between the cells near the iris. The welded titanium helium vessel and tuner assembly restrains the cavity beam tubes. Cavities with {beta} values less than one have relatively steep and flat side-walls making the cavities susceptible to Lorentz force detuning. In addition, the pulsed RF induces cyclic Lorentz pressures that mechanically excite themore » cavities, producing a dynamic Lorentz force detuning different from a continuous RF system. The amplitude of the dynamic detuning for a given cavity design is a function of the mechanical damping, stiffness of the tuner/helium vessel assembly, RF pulse profile, and the RF pulse rate. This paper presents analysis and testing results to date, and indicates areas where more investigation is required.« less
Minkowski spacetime and Lorentz invariance: The cart and the horse or two sides of a single coin?
NASA Astrophysics Data System (ADS)
Acuña, Pablo
2016-08-01
Michel Janssen and Harvey Brown have driven a prominent recent debate concerning the direction of an alleged arrow of explanation between Minkowski spacetime and Lorentz invariance of dynamical laws in special relativity. In this article, I critically assess this controversy with the aim of clarifying the explanatory foundations of the theory. First, I show that two assumptions shared by the parties-that the dispute is independent of issues concerning spacetime ontology, and that there is an urgent need for a constructive interpretation of special relativity-are problematic and negatively affect the debate. Second, I argue that the whole discussion relies on a misleading conception of the link between Minkowski spacetime structure and Lorentz invariance, a misconception that in turn sheds more shadows than light on our understanding of the explanatory nature and power of Einstein's theory. I state that the arrow connecting Lorentz invariance and Minkowski spacetime is not explanatory and unidirectional, but analytic and bidirectional, and that this analytic arrow grounds the chronogeometric explanations of physical phenomena that special relativity offers.
Twofold symmetries of the pure gravity action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Clifford; Remmen, Grant N.
Here, we recast the action of pure gravity into a form that is invariant under a twofold Lorentz symmetry. To derive this representation, we construct a general parameterization of all theories equivalent to the Einstein-Hilbert action up to a local field redefinition and gauge fixing. We then exploit this freedom to eliminate all interactions except those exhibiting two sets of independently contracted Lorentz indices. The resulting action is local, remarkably simple, and naturally expressed in a field basis analogous to the exponential parameterization of the nonlinear sigma model. The space of twofold Lorentz invariant field redefinitions then generates an infinitemore » class of equivalent representations. By construction, all off-shell Feynman diagrams are twofold Lorentz invariant while all on-shell tree amplitudes are automatically twofold gauge invariant. We extend our results to curved spacetime and calculate the analogue of the Einstein equations. Finally, while these twofold invariances are hidden in the canonical approach of graviton perturbation theory, they are naturally expected given the double copy relations for scattering amplitudes in gauge theory and gravity.« less
Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.
2004-01-01
The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center, working with the Jet Propulsion Laboratory, has developed and demonstrated a fabrication technique using the VPS process to form anode and cathode sections for a Lorentz force accelerator made from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and deposits the molten metal powder onto a mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions for the inside surface of the anode or cathode of the accelerator. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of Lorentz force accelerator components.
An Investigation of Spontaneous Lorentz Violation and Cosmic Inflation
NASA Astrophysics Data System (ADS)
Tam, Heywood
2010-12-01
In this thesis we re-examine two established ideas in theoretical physics: Lorentz invariance and cosmic inflation. In the first four chapters, we (i) propose a way to hide large extra dimensions by coupling standard model fields with Lorentz-violating tensor fields with expectation values along the extra dimensions; (ii) examine the stability of theories in which Lorentz invariance is spontaneously broken by fixed-norm 'aether' fields; (iii) investigate the phenomenological properties of the sigma-model aether theory; and (iv) explore the implications of an alternative theory of gravity in which the graviton arises from the Goldstone modes of a two-index symmetric aether field. In the final chapter, we examine the horizon and flatness problems using the canonical measure (developed by Gibbons, Hawking, and Stewart) on the space of solutions to Einstein's equations. We find that the flatness problem does not exist, while the homogeneity of our universe does represent a substantial fine-tuning. Based on the assumption of unitary evolution (Liouville's theorem), we further dispute the widely accepted claim that inflation makes our universe more natural.
Magnetohydrodynamic drag reduction and its efficiency
NASA Astrophysics Data System (ADS)
Shatrov, V.; Gerbeth, G.
2007-03-01
We present results of direct numerical simulations of a turbulent channel flow influenced by electromagnetic forces. The magnetohydrodynamic Lorentz force is created by the interaction of a steady magnetic field and electric currents fed to the fluid via electrodes placed at the wall surface. Two different cases are considered. At first, a time-oscillating electric current and a steady magnetic field create a spanwise time-oscillating Lorentz force. In the second case, a stationary electric current and a steady magnetic field create a steady, mainly streamwise Lorentz force. Besides the viscous drag, the importance of the electromagnetic force acting on the wall is figured out. Regarding the energetic efficiency, it is demonstrated that in all cases a balance between applied and flow-induced electric currents improves the efficiency significantly. But even then, the case of a spanwise oscillating Lorentz force remains with a very low efficiency, whereas for the self-propelled regime in the case of a steady streamwise force, much higher efficiencies are found. Still, no set of parameters has yet been found for which an energetic breakthrough, i.e., a saved power exceeding the used power, is reached.
Betrouche, Malika; Maamache, Mustapha; Choi, Jeong Ryeol
2013-01-01
We investigate the Lorentz-covariant deformed algebra for Dirac oscillator problem, which is a generalization of Kempf deformed algebra in 3 + 1 dimension of space-time, where Lorentz symmetry are preserved. The energy spectrum of the system is analyzed by taking advantage of the corresponding wave functions with explicit spin state. We obtained entirely new results from our development based on Kempf algebra in comparison to the studies carried out with the non-Lorentz-covariant deformed one. A novel result of this research is that the quantized relativistic energy of the system in the presence of minimal length cannot grow indefinitely as quantum number n increases, but converges to a finite value, where c is the speed of light and β is a parameter that determines the scale of noncommutativity in space. If we consider the fact that the energy levels of ordinary oscillator is equally spaced, which leads to monotonic growth of quantized energy with the increment of n, this result is very interesting. The physical meaning of this consequence is discussed in detail. PMID:24225900
Betrouche, Malika; Maamache, Mustapha; Choi, Jeong Ryeol
2013-11-14
We investigate the Lorentz-covariant deformed algebra for Dirac oscillator problem, which is a generalization of Kempf deformed algebra in 3 + 1 dimension of space-time, where Lorentz symmetry are preserved. The energy spectrum of the system is analyzed by taking advantage of the corresponding wave functions with explicit spin state. We obtained entirely new results from our development based on Kempf algebra in comparison to the studies carried out with the non-Lorentz-covariant deformed one. A novel result of this research is that the quantized relativistic energy of the system in the presence of minimal length cannot grow indefinitely as quantum number n increases, but converges to a finite value, where c is the speed of light and β is a parameter that determines the scale of noncommutativity in space. If we consider the fact that the energy levels of ordinary oscillator is equally spaced, which leads to monotonic growth of quantized energy with the increment of n, this result is very interesting. The physical meaning of this consequence is discussed in detail.
Convectively driven decadal zonal accelerations in Earth's fluid core
NASA Astrophysics Data System (ADS)
More, Colin; Dumberry, Mathieu
2018-04-01
Azimuthal accelerations of cylindrical surfaces co-axial with the rotation axis have been inferred to exist in Earth's fluid core on the basis of magnetic field observations and changes in the length-of-day. These accelerations have a typical timescale of decades. However, the physical mechanism causing the accelerations is not well understood. Scaling arguments suggest that the leading order torque averaged over cylindrical surfaces should arise from the Lorentz force. Decadal fluctuations in the magnetic field inside the core, driven by convective flows, could then force decadal changes in the Lorentz torque and generate zonal accelerations. We test this hypothesis by constructing a quasi-geostrophic model of magnetoconvection, with thermally driven flows perturbing a steady, imposed background magnetic field. We show that when the Alfvén number in our model is similar to that in Earth's fluid core, temporal fluctuations in the torque balance are dominated by the Lorentz torque, with the latter generating mean zonal accelerations. Our model reproduces both fast, free Alfvén waves and slow, forced accelerations, with ratios of relative strength and relative timescale similar to those inferred for the Earth's core. The temporal changes in the magnetic field which drive the time-varying Lorentz torque are produced by the underlying convective flows, shearing and advecting the magnetic field on a timescale associated with convective eddies. Our results support the hypothesis that temporal changes in the magnetic field deep inside Earth's fluid core drive the observed decadal zonal accelerations of cylindrical surfaces through the Lorentz torque.
Lorentz violating Julia-Toulouse mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaete, Patricio; Wotzasek, Clovis; Instituto de Fisica, Universidade Federal do Rio de Janeiro
2007-03-01
We study a Lorentz invariance violating extension for the pure photonic sector of the standard model. A phenomenological proposal is made for the condensation of topological defects in the presence of a constant rank-m tensor in the context of the Julia-Toulouse mechanism. Possible physical consequences leading to direct measurable effects over the confining properties of the elementary particles are explored.
Lorentz Contraction, Bell's Spaceships and Rigid Body Motion in Special Relativity
ERIC Educational Resources Information Center
Franklin, Jerrold
2010-01-01
The meaning of Lorentz contraction in special relativity and its connection with Bell's spaceships parable is discussed. The motion of Bell's spaceships is then compared with the accelerated motion of a rigid body. We have tried to write this in a simple form that could be used to correct students' misconceptions due to conflicting earlier…
On the consequences of strong stable stratification at the top of earth's outer core
NASA Technical Reports Server (NTRS)
Bloxham, Jeremy
1990-01-01
The consequences of strong stable stratification at the top of the earth's fluid outer core are considered, concentrating on the generation of the geomagnetic secular variation. It is assumed that the core near the core-mantle boundary is both strongly stably stratified and free of Lorentz forces: it is found that this set of assumptions severely limits the class of possible motions, none of which is compatible with the geomagnetic secular variation. Relaxing either assumption is adequate: tangentially geostrophic flows are consistent with the secular variation if the assumption that the core is strongly stably stratified is relaxed (while retaining the assumption that Lorentz forces are negligible); purely toroidal flows may explain the secular variation if Lorentz forces are included.
Active control and synchronization chaotic satellite via the geomagnetic Lorentz force
NASA Astrophysics Data System (ADS)
Abdel-Aziz, Yehia
2016-07-01
The use of geomagnetic Lorentz force is considered in this paper for the purpose of satellite attitude control. A satellite with an electrostatic charge will interact with the Earth's magnetic field and experience the Lorentz force. An analytical attitude control and synchronization two identical chaotic satellite systems with different initial condition Master/ Slave are proposed to allows a charged satellite remains near the desired attitude. Asymptotic stability for the closed-loop system are investigated by means of Lyapunov stability theorem. The control feasibility depend on the charge requirement. Given a significantly and sufficiently accurate insertion, a charged satellite could maintains the desired attitude orientation without propellant. Simulations is performed to prove the efficacy of the proposed method.
NASA Technical Reports Server (NTRS)
Hinata, S.
1989-01-01
An approximate analytic solution of a set of nonlinear model alpha-omega-dynamo equations is obtained. The reaction of the Lorentz force on the velocity shear which stretches and, hence, amplifies the magnetic field is incorporated into the model. To single out the effect of the Lorentz force on the omega-effect, the effect of the Lorentz force on the alpha-effect is neglected in this study. The solution represents a nonlinear oscillation with the amplitude and period determined by the dynamo number N. The amplitude is proportional to N - 1, while the period is almost exactly the same as the dissipation time of the unstable mode (proportional to N).
Cosmology from a gauge induced gravity
NASA Astrophysics Data System (ADS)
Falciano, F. T.; Sadovski, G.; Sobreiro, R. F.; Tomaz, A. A.
2017-09-01
The main goal of the present work is to analyze the cosmological scenario of the induced gravity theory developed in previous works. Such a theory consists on a Yang-Mills theory in a four-dimensional Euclidian spacetime with { SO}(m,n) such that m+n=5 and m\\in {0,1,2} as its gauge group. This theory undergoes a dynamical gauge symmetry breaking via an Inönü-Wigner contraction in its infrared sector. As a consequence, the { SO}(m,n) algebra is deformed into a Lorentz algebra with the emergency of the local Lorentz symmetries and the gauge fields being identified with a vierbein and a spin connection. As a result, gravity is described as an effective Einstein-Cartan-like theory with ultraviolet correction terms and a propagating torsion field. We show that the cosmological model associated with this effective theory has three different regimes. In particular, the high curvature regime presents a de Sitter phase which tends towards a Λ CDM model. We argue that { SO}(m,n) induced gravities are promising effective theories to describe the early phase of the universe.
Higgs mechanism for gravity. II. Higher spin connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boulanger, Nicolas; Kirsch, Ingo; Jefferson Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
We continue the work of [Phys. Rev. D 72, 024001 (2005)] in which gravity is considered as the Goldstone realization of a spontaneously broken diffeomorphism group. We complete the discussion of the coset space Diff (d,R)/SO(1,d-1) formed by the d-dimensional group of analytic diffeomorphisms and the Lorentz group. We find that this coset space is parametrized by coordinates, a metric, and an infinite tower of higher-spin or generalized connections. We then study effective actions for the corresponding symmetry breaking which gives mass to the higher spin connections. Our model predicts that gravity is modified at high energies by the exchangemore » of massive higher spin particles.« less
NASA Astrophysics Data System (ADS)
Li, Kai; Liu, Jun; Liu, Weiqiang
2017-04-01
As a novel thermal protection technique for hypersonic vehicles, Magnetohydrodynamic (MHD) heat shield system has been proved to be of great intrinsic value in the hypersonic field. In order to analyze the thermal protection mechanisms of such a system, a physical model is constructed for analyzing the effect of the Lorentz force components in the counter and normal directions. With a series of numerical simulations, the dominating Lorentz force components are analyzed for the MHD heat flux mitigation in different regions of a typical reentry vehicle. Then, a novel magnetic field with variable included angle between magnetic induction line and streamline is designed, which significantly improves the performance of MHD thermal protection in the stagnation and shoulder areas. After that, the relationships between MHD shock control and MHD thermal protection are investigated, based on which the magnetic field above is secondarily optimized obtaining better performances of both shock control and thermal protection. Results show that the MHD thermal protection is mainly determined by the Lorentz force's effect on the boundary layer. From the stagnation to the shoulder region, the flow deceleration effect of the counter-flow component is weakened while the flow deflection effect of the normal component is enhanced. Moreover, there is no obviously positive correlation between the MHD shock control and thermal protection. But once a good Lorentz force's effect on the boundary layer is guaranteed, the thermal protection performance can be further improved with an enlarged shock stand-off distance by strengthening the counter-flow Lorentz force right after shock.
Gluon amplitudes as 2 d conformal correlators
NASA Astrophysics Data System (ADS)
Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew
2017-10-01
Recently, spin-one wave functions in four dimensions that are conformal primaries of the Lorentz group S L (2 ,C ) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wave functions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2 d CFT. The Britto-Cachazo-Feng-Witten (BCFW) recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.
Special Relativity in Week One: 3) Introducing the Lorentz Contraction
ERIC Educational Resources Information Center
Huggins, Elisha
2011-01-01
This is the third of four articles on teaching special relativity in the first week of an introductory physics course. With Einstein's second postulate that the speed of light is the same to all observers, we could use the light pulse clock to introduce time dilation. But we had difficulty introducing the Lorentz contraction until we saw the movie…
Torsional Oscillations with Lorentz Force
ERIC Educational Resources Information Center
Gluck, Paul
2007-01-01
We have built a device that uses the Lorentz force on a current-carrying wire situated in a magnetic field, F = I L x B, in order to demonstrate a slowly varying alternating current by means of an optical lever. The apparatus consists of a horseshoe magnet, a length of thin enamel-coated wire (ours was 0.3 mm thick), a signal generator, a…
Search for Violations of Lorentz Invariance and CPT Symmetry in B_{(s)}^{0} Mixing.
Aaij, R; Abellán Beteta, C; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hongming, L; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusardi, N; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Müller, D; Müller, J; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen-Mau, C; Niess, V; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parker, W; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Romanovsky, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefkova, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhong, L; Zhukov, V; Zucchelli, S
2016-06-17
Violations of CPT symmetry and Lorentz invariance are searched for by studying interference effects in B^{0} mixing and in B_{s}^{0} mixing. Samples of B^{0}→J/ψK_{S}^{0} and B_{s}^{0}→J/ψK^{+}K^{-} decays are recorded by the LHCb detector in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb^{-1}. No periodic variations of the particle-antiparticle mass differences are found, consistent with Lorentz invariance and CPT symmetry. Results are expressed in terms of the standard model extension parameter Δa_{μ} with precisions of O(10^{-15}) and O(10^{-14}) GeV for the B^{0} and B_{s}^{0} systems, respectively. With no assumption on Lorentz (non)invariance, the CPT-violating parameter z in the B_{s}^{0} system is measured for the first time and found to be Re(z)=-0.022±0.033±0.005 and Im(z)=0.004±0.011±0.002, where the first uncertainties are statistical and the second systematic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katori, Teppei
2008-12-01
The Mini-Booster neutrino experiment (MiniBooNE) at Fermi National Accelerator Laboratory (Fermilab) is designed to search for v μ → v e appearance neutrino oscillations. Muon neutrino charged-current quasi-elastic (CCQE) interactions (v μ + n → μ + p) make up roughly 40% of our data sample, and it is used to constrain the background and cross sections for the oscillation analysis. Using high-statistics MiniBooNE CCQE data, the muon-neutrino CCQE cross section is measured. The nuclear model is tuned precisely using the MiniBooNE data. The measured total cross section is σ = (1.058 ± 0.003 (stat) ± 0.111 (syst)) x 10more » -38 cm 2 at the MiniBooNE muon neutrino beam energy (700-800 MeV). v e appearance candidate data is also used to search for Lorentz violation. Lorentz symmetry is one of the most fundamental symmetries in modern physics. Neutrino oscillations offer a new method to test it. We found that the MiniBooNE result is not well-described using Lorentz violation, however further investigation is required for a more conclusive result.« less
Optical flashes from internal pairs formed in gamma-ray burst afterglows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panaitescu, A.
We develop a numerical formalism for calculating the distribution with energy of the (internal) pairs formed in a relativistic source from unscattered MeV–TeV photons. For gamma-ray burst (GRB) afterglows, this formalism is more suitable if the relativistic reverse shock that energizes the ejecta is the source of the GeV photons. The number of pairs formed is set by the source GeV output (calculated from the Fermi-LAT fluence), the unknown source Lorentz factor, and the unmeasured peak energy of the LAT spectral component. We show synchrotron and inverse-Compton light curves expected from pairs formed in the shocked medium and identify some criteria for testing a pair origin of GRB optical counterparts. Pairs formed in bright LAT afterglows with a Lorentz factor in the few hundreds may produce bright optical counterparts (more » $$R\\lt 10$$) lasting for up to one hundred seconds. As a result, the number of internal pairs formed from unscattered seed photons decreases very strongly with the source Lorentz factor, thus bright GRB optical counterparts cannot arise from internal pairs if the afterglow Lorentz factor is above several hundreds.« less
Lorentz violation and generalized uncertainty principle
NASA Astrophysics Data System (ADS)
Lambiase, Gaetano; Scardigli, Fabio
2018-04-01
Investigations on possible violation of Lorentz invariance have been widely pursued in the last decades, both from theoretical and experimental sides. A comprehensive framework to formulate the problem is the standard model extension (SME) proposed by A. Kostelecky, where violation of Lorentz invariance is encoded into specific coefficients. Here we present a procedure to link the deformation parameter β of the generalized uncertainty principle to the SME coefficients of the gravity sector. The idea is to compute the Hawking temperature of a black hole in two different ways. The first way involves the deformation parameter β , and therefore we get a deformed Hawking temperature containing the parameter β . The second way involves a deformed Schwarzschild metric containing the Lorentz violating terms s¯μ ν of the gravity sector of the SME. The comparison between the two different techniques yields a relation between β and s¯μ ν. In this way bounds on β transferred from s¯μ ν are improved by many orders of magnitude when compared with those derived in other gravitational frameworks. Also the opposite possibility of bounds transferred from β to s¯μ ν is briefly discussed.
Transverse forces on a vortex in lattice models of superfluids
NASA Astrophysics Data System (ADS)
Sonin, E. B.
2013-12-01
The paper derives the transverse forces (the Magnus and the Lorentz forces) in the lattice models of superfluids in the continuous approximation. The continuous approximation restores translational invariance absent in the original lattice model, but the theory is not Galilean invariant. As a result, calculation of the two transverse forces on the vortex, Magnus force and Lorentz force, requires the analysis of two balances, for the true momentum of particles in the lattice (Magnus force) and for the quasimomentum (Lorentz force) known from the Bloch theory of particles in the periodic potential. While the developed theory yields the same Lorentz force, which was well known before, a new general expression for the Magnus force was obtained. The theory demonstrates how a small Magnus force emerges in the Josephson-junction array if the particle-hole symmetry is broken. The continuous approximation for the Bose-Hubbard model close to the superfluid-insulator transition was developed, which was used for calculation of the Magnus force. The theory shows that there is an area in the phase diagram for the Bose-Hubbard model, where the Magnus force has an inverse sign with respect to that which is expected from the sign of velocity circulation.
Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables
Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji; ...
2016-03-14
We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relationsmore » for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.« less
Optical flashes from internal pairs formed in gamma-ray burst afterglows
Panaitescu, A.
2015-06-09
We develop a numerical formalism for calculating the distribution with energy of the (internal) pairs formed in a relativistic source from unscattered MeV–TeV photons. For gamma-ray burst (GRB) afterglows, this formalism is more suitable if the relativistic reverse shock that energizes the ejecta is the source of the GeV photons. The number of pairs formed is set by the source GeV output (calculated from the Fermi-LAT fluence), the unknown source Lorentz factor, and the unmeasured peak energy of the LAT spectral component. We show synchrotron and inverse-Compton light curves expected from pairs formed in the shocked medium and identify some criteria for testing a pair origin of GRB optical counterparts. Pairs formed in bright LAT afterglows with a Lorentz factor in the few hundreds may produce bright optical counterparts (more » $$R\\lt 10$$) lasting for up to one hundred seconds. As a result, the number of internal pairs formed from unscattered seed photons decreases very strongly with the source Lorentz factor, thus bright GRB optical counterparts cannot arise from internal pairs if the afterglow Lorentz factor is above several hundreds.« less
Poincaré gauge gravity: An emergent scenario
NASA Astrophysics Data System (ADS)
Chkareuli, J. L.
2017-04-01
The Poincaré gauge gravity (PGG) with the underlying vector fields of tetrads and spin-connections is perhaps the best theory candidate for gravitation to be unified with the other three elementary forces of nature. There is a clear analogy between the local frame in PGG and the local internal symmetry space in the Standard Model. As a result, the spin-connection fields, gauging the local frame Lorentz symmetry group S O (1 ,3 )LF , appear in PGG much as photons and gluons appear in SM. We propose that such an analogy may follow from their common emergent nature allowing us to derive PGG in the same way as conventional gauge theories. In essence, we start with an arbitrary theory of some vector and fermion fields which possesses only global spacetime symmetries, such as Lorentz and translational invariance, in flat Minkowski space. The two vector field multiplets involved are proposed to belong, respectively, to the adjoint (Aμi j) and vector (eμi) representations of the starting global Lorentz symmetry. We show that if these prototype vector fields are covariantly constrained, Aμi jAij μ=±MA2 and eμieiμ=±Me2 , thus causing a spontaneous violation of the accompanying global symmetries (MA ,e are their proposed violation scales), then the only possible theory compatible with these length-preserving constraints is turned out to be the gauge invariant PGG, while the corresponding massless (pseudo)Goldstone modes are naturally collected in the emergent gauge fields of tetrads and spin-connections. In a minimal theory case being linear in a curvature we unavoidably come to the Einstein-Cartan theory. The extended theories with propagating spin-connection and tetrad modes are also considered and their possible unification with the Standard Model is briefly discussed.
New test of Lorentz symmetry using ultrahigh-energy cosmic rays
NASA Astrophysics Data System (ADS)
Anchordoqui, Luis A.; Soriano, Jorge F.
2018-02-01
We propose an innovative test of Lorentz symmetry by observing pairs of simultaneous parallel extensive air showers produced by the fragments of ultrahigh-energy cosmic ray nuclei which disintegrated in collisions with solar photons. We show that the search for a cross-correlation of showers in arrival time and direction becomes background free for an angular scale ≲3 ° and a time window O (10 s ) . We also show that if the solar photo-disintegration probability of helium is O (10-5.5) then the hunt for spatiotemporal coincident showers could be within range of existing cosmic ray facilities, such as the Pierre Auger Observatory. We demonstrate that the actual observation of a few events can be used to constrain Lorentz violating dispersion relations of the nucleon.
Kim, Taeho Roy; Phatak, Charudatta; Petford-Long, Amanda K.; ...
2017-10-23
In order to increase the storage density of hard disk drives, a detailed understanding of the magnetic structure of the granular magnetic layer is essential. Here, we demonstrate an experimental procedure of imaging recorded bits on heat-assisted magnetic recording (HAMR) media in cross section using Lorentz transmission electron microscopy (TEM). With magnetic force microscopy and focused ion beam (FIB), we successfully targeted a single track to prepare cross-sectional TEM specimens. Then, we characterized the magnetic structure of bits with their precise location and orientation using Fresnel mode of Lorentz TEM. Here, this method can promote understanding of the correlation betweenmore » bits and their material structure in HAMR media to design better the magnetic layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Taeho Roy; Phatak, Charudatta; Petford-Long, Amanda K.
In order to increase the storage density of hard disk drives, a detailed understanding of the magnetic structure of the granular magnetic layer is essential. Here, we demonstrate an experimental procedure of imaging recorded bits on heat-assisted magnetic recording (HAMR) media in cross section using Lorentz transmission electron microscopy (TEM). With magnetic force microscopy and focused ion beam (FIB), we successfully targeted a single track to prepare cross-sectional TEM specimens. Then, we characterized the magnetic structure of bits with their precise location and orientation using Fresnel mode of Lorentz TEM. Here, this method can promote understanding of the correlation betweenmore » bits and their material structure in HAMR media to design better the magnetic layer.« less
NASA Astrophysics Data System (ADS)
Abe, K.; Amey, J.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Ban, S.; Barbato, F. C. T.; Barbi, M.; Barker, G. J.; Barr, G.; Barry, C.; Bartet-Friburg, P.; Batkiewicz, M.; Berardi, V.; Berkman, S.; Bhadra, S.; Bienstock, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buizza Avanzini, M.; Calland, R. G.; Campbell, T.; Cao, S.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Chappell, A.; Checchia, C.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Coplowe, D.; Cremonesi, L.; Cudd, A.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Denner, P. F.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K. E.; Dumarchez, J.; Dunkman, M.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S. G.; Giganti, C.; Gizzarelli, F.; Golan, T.; Gonin, M.; Grant, N.; Hadley, D. R.; Haegel, L.; Haigh, J. T.; Hamilton, P.; Hansen, D.; Harada, J.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hiramoto, A.; Hirota, S.; Hogan, M.; Holeczek, J.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Knight, A.; Knox, A.; Kobayashi, T.; Koch, L.; Koga, T.; Konaka, A.; Kondo, K.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kowalik, K.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Lamoureux, M.; Larkin, E.; Lasorak, P.; Laveder, M.; Lawe, M.; Lazos, M.; Licciardi, M.; Lindner, T.; Liptak, Z. J.; Litchfield, R. P.; Li, X.; Longhin, A.; Lopez, J. P.; Lou, T.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Maret, L.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Morrison, J.; Mueller, Th. A.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakanishi, Y.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Novella, P.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Patel, N. D.; Paudyal, P.; Pavin, M.; Payne, D.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radermacher, T.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rojas, P.; Rondio, E.; Rossi, B.; Roth, S.; Rubbia, A.; Ruggeri, A. C.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Stewart, T.; Stowell, P.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tamura, R.; Tanaka, H. K.; Tanaka, H. A.; Terhorst, D.; Terri, R.; Thakore, T.; Thompson, L. F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Vilela, C.; Vladisavljevic, T.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Wret, C.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration
2017-06-01
A class of extensions of the Standard Model allows Lorentz and C P T violations, which can be identified by the observation of sidereal modulations in the neutrino interaction rate. A search for such modulations was performed using the T2K on-axis near detector. Two complementary methods were used in this study, both of which resulted in no evidence of a signal. Limits on associated Lorentz and C P T -violating terms from the Standard Model extension have been derived by taking into account their correlations in this model for the first time. These results imply such symmetry violations are suppressed by a factor of more than 1 020 at the GeV scale.
The Historical Origins of Spacetime
NASA Astrophysics Data System (ADS)
Walter, Scott
The idea of spacetime investigated in this chapter, with a view toward understanding its immediate sources and development, is the one formulated and proposed by Hermann Minkowski in 1908. Until recently, the principle source used to form historical narratives of Minkowski's discovery of spacetime has been Minkowski's own discovery account, outlined in the lecture he delivered in Cologne, entitled Space and time [1]. Minkowski's lecture is usually considered as a bona fide first-person narrative of lived events. According to this received view, spacetime was a natural outgrowth of Felix Klein's successful project to promote the study of geometries via their characteristic groups of transformations. Or as Minkowski expressed the same basic thought himself, the theory of relativity discovered by physicists in 1905 could just as well have been proposed by some late-nineteenth-century mathematician, by simply reflecting upon the groups of transformations that left invariant the form of the equation of a propagating light wave. Minkowski's publications and research notes provide a contrasting picture of the discovery of spacetime, in which group theory plays no direct part. In order to relate the steps of Minkowski's discovery, we begin with an account of Poincaré's theory of gravitation, where Minkowski found some of the germs of spacetime. Poincaré's geometric interpretation of the Lorentz transformation is examined, along with his reasons for not pursuing a four-dimensional vector calculus. In the second section, Minkowski's discovery and presentation of the notion of a world line in spacetime is presented. In the third and final section, Poincaré's and Minkowski's diagrammatic interpretations of the Lorentz transformation are compared.
ERIC Educational Resources Information Center
De Luca, R.
2009-01-01
It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity v[subscript A] under the influence of a transverse magnetic field B[subscript 0], an electromotive force generator can be conceived. In fact, the Lorentz force…
Prospects for testing Lorentz and CPT symmetry with antiprotons
NASA Astrophysics Data System (ADS)
Vargas, Arnaldo J.
2018-03-01
A brief overview of the prospects of testing Lorentz and CPT symmetry with antimatter experiments is presented. The models discussed are applicable to atomic spectroscopy experiments, Penning-trap experiments and gravitational tests. Comments about the sensitivity of the most recent antimatter experiments to the models reviewed here are included. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.
The SME gauge sector with minimum length
NASA Astrophysics Data System (ADS)
Belich, H.; Louzada, H. L. C.
2017-12-01
We study the gauge sector of the Standard Model Extension (SME) with the Lorentz covariant deformed Heisenberg algebra associated to the minimum length. In order to find and estimate corrections, we clarify whether the violation of Lorentz symmetry and the existence of a minimum length are independent phenomena or are, in some way, related. With this goal, we analyze the dispersion relations of this theory.
NASA Astrophysics Data System (ADS)
Meyer, Harvey B.
2017-09-01
We present a Lorentz-covariant, Euclidean coordinate-space expression for the hadronic vacuum polarisation, the Adler function and the leading hadronic contribution to the anomalous magnetic moment of the muon. The representation offers a high degree of flexibility for an implementation in lattice QCD. We expect it to be particularly helpful for the quark-line disconnected contributions.
ERIC Educational Resources Information Center
Guasti, M. Fernandez; Zagoya, C.
2009-01-01
The Lorentz length contraction for a rod in uniform motion is derived performing two measurements at arbitrary times. Provided that the velocity of the rod is known, this derivation does not require the simultaneous measurement of two events. It thus avoids uncomfortable superluminal relationships. Furthermore, since the observer's simultaneous…
Constaints on Lorentz symmetry violations using lunar laser ranging observations
NASA Astrophysics Data System (ADS)
Bourgoin, Adrien
2016-12-01
General Relativity (GR) and the standard model of particle physics provide a comprehensive description of the four interactions of nature. A quantum gravity theory is expected to merge these two pillars of modern physics. From unification theories, such a combination would lead to a breaking of fundamental symmetry appearing in both GR and the standard model of particle physics as the Lorentz symmetry. Lorentz symmetry violations in all fields of physics can be parametrized by an effective field theory framework called the standard-model extension (SME). Local Lorentz Invariance violations in the gravitational sector should impact the orbital motion of bodies inside the solar system, such as the Moon. Thus, the accurate lunar laser ranging (LLR) data can be analyzed in order to study precisely the lunar motion to look for irregularities. For this purpose, ELPN (Ephéméride Lunaire Parisienne Numérique), a new lunar ephemeris has been integrated in the SME framework. This new numerical solution of the lunar motion provides time series dated in temps dynamique barycentrique (TDB). Among that series, we mention the barycentric position and velocity of the Earth-Moon vector, the lunar libration angles, the time scale difference between the terrestrial time and TDB and partial derivatives integrated from variational equations. ELPN predictions have been used to analyzed LLR observations. In the GR framework, the residuals standard deviations has turned out to be the same order of magnitude compare to those of INPOP13b and DE430 ephemerides. In the framework of the minimal SME, LLR data analysis provided constraints on local Lorentz invariance violations. Spetial attention was paid to analyze uncertainties to provide the most realistic constraints. Therefore, in a first place, linear combinations of SME coefficients have been derived and fitted to LLR observations. In a second time, realistic uncertainties have been determined with a resampling method. LLR data analysis did not reveal local Lorentz invariance vio lations arising on the lunar orbit. Therefore, GR predictions are recovered with absolute precisions of the order of 10-9 to 10-12.
NASA Astrophysics Data System (ADS)
Hernández, Daniel; Boeck, Thomas; Karcher, Christian; Wondrak, Thomas
2018-01-01
Lorentz force velocimetry (LFV) is a contactless velocity measurement technique for electrically conducting fluids. When a liquid metal or a molten glass flows through an externally applied magnetic field, eddy currents and a flow-braking force are generated inside the liquid. This force is proportional to the velocity or flow rate of the fluid and, due to Newton’s third law, a force of the same magnitude but in opposite direction acts on the source of the applied magnetic field which in our case are permanent magnets. According to Ohm’s law for moving conductors at low magnetic Reynolds numbers, an electric potential is induced which ensures charge conservation. In this paper, we analyze the contribution of the induced electric potential to the total Lorentz force by considering two different scenarios: conducting walls of finite thickness and aspect ratio variation of the cross-section of the flow. In both the cases, the force component generated by the electric potential is always in the opposite direction to the total Lorentz force. This force component is sensitive to the electric boundary conditions of the flow of which insulating and perfectly conducting walls are the two limiting cases. In the latter case, the overall electric resistance of the system is minimized, resulting in a considerable increase in the measured Lorentz force. Additionally, this force originating from the electric potential also decays when the aspect ratio of the cross-section of the flow is changed. Hence, the sensitivity of the measurement technique is enhanced by either increasing wall conductivity or optimizing the aspect ratio of the cross-section of the flow.
NASA Astrophysics Data System (ADS)
Minissale, Marco; Pardanaud, Cedric; Bisson, Régis; Gallais, Laurent
2017-11-01
The knowledge of optical properties of tungsten at high temperatures is of crucial importance in fields such as nuclear fusion and aerospace applications. The optical properties of tungsten are well known at room temperature, but little has been done at temperatures between 300 K and 1000 K in the visible and near-infrared domains. Here, we investigate the temperature dependence of tungsten reflectivity from the ambient to high temperatures (<1000 K) in the 500-1050 nm spectral range, a region where interband transitions make a strong contribution. Experimental measurements, performed via a spectroscopic system coupled with laser remote heating, show that tungsten’s reflectivity increases with temperature and wavelength. We have described these dependences through a Fresnel and two Lorentz-Drude models. The Fresnel model accurately reproduces the experimental curve at a given temperature, but it is able to simulate the temperature dependency of reflectivity only thanks to an ad hoc choice of temperature formulae for the refractive indexes. Thus, a less empirical approach, based on Lorentz-Drude models, is preferred to describe the interaction of light and charge carriers in the solid. The first Lorentz-Drude model, which includes a temperature dependency on intraband transitions, fits experimental results only qualitatively. The second Lorentz-Drude model includes in addition a temperature dependency on interband transitions. It is able to reproduce the experimental results quantitatively, highlighting a non-trivial dependence of interband transitions as a function of temperature. Eventually, we use these temperature dependent Lorentz-Drude models to evaluate the total emissivity of tungsten from 300 K to 3500 K, and we compare our experimental and theoretical findings with previous results.
a Triangular Deformation of the Two-Dimensional POINCARÉ Algebra
NASA Astrophysics Data System (ADS)
Khorrami, M.; Shariati, A.; Abolhassani, M. R.; Aghamohammadi, A.
Contracting the h-deformation of SL(2, ℝ), we construct a new deformation of two-dimensional Poincaré's algebra, the algebra of functions on its group and its differential structure. It is seen that these dual Hopf algebras are isomorphic to each other. It is also shown that the Hopf algebra is triangular, and its universal R-matrix is also constructed explicitly. We then find a deformation map for the universal enveloping algebra, and at the end, give the deformed mass shells and Lorentz transformation.
Markov Property of the Conformal Field Theory Vacuum and the a Theorem.
Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo
2017-06-30
We use strong subadditivity of entanglement entropy, Lorentz invariance, and the Markov property of the vacuum state of a conformal field theory to give new proof of the irreversibility of the renormalization group in d=4 space-time dimensions-the a theorem. This extends the proofs of the c and F theorems in dimensions d=2 and d=3 based on vacuum entanglement entropy, and gives a unified picture of all known irreversibility theorems in relativistic quantum field theory.
NASA Astrophysics Data System (ADS)
Belich, H.; Bakke, K.
2015-07-01
We start by investigating the arising of a spin-orbit coupling and a Darwin-type term that stem from Lorentz symmetry breaking effects in the CPT-odd sector of the Standard Model Extension. Then, we establish a possible scenario of the violation of the Lorentz symmetry that gives rise to a linear confining potential and an effective electric field in which determines the spin-orbit coupling for a neutral particle analogous to the Rashba coupling [E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960)]. Finally, we confine the neutral particle to a quantum dot [W.-C. Tan and J. C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)] and analyze the influence of the linear confining potential and the spin-orbit coupling on the spectrum of energy.
Classical and special relativity in four steps
NASA Astrophysics Data System (ADS)
Browne, K. M.
2018-03-01
The most fundamental and pedagogically useful path to the space-time transformations of both classical and special relativity is to postulate the principle of relativity, derive the generalised or Ignatowsky transformation which contains both, then apply two different second postulates that give either the Galilean or Lorentz transformation. What is new here is (a) a simple two-step derivation of the Ignatowsky transformation, (b) a second postulate of universal time which yields the Galilean transformation, and (c) a different second postulate of finite universal lightspeed to give the Lorentz transformation using a simple Ignatowsky transformation of a light wave. This method demonstrates that the fundamental difference between Galilean and Lorentz transformations is not that lightspeed is universal (which is true for both) but whether the model requires lightspeed to be infinite or finite (as once mentioned by Einstein).
The effect of Lorentz-like force on collective flows of K + in Au+Au collisions at 1.5 GeV/nucleon
NASA Astrophysics Data System (ADS)
Du, YuShan; Wang, YongJia; Li, QingFeng; Liu, Ling
2018-06-01
Producing kaon mesons in heavy-ion collisions at beam energies below their threshold energy is an important way to investigate the properties of dense nuclear matter. In this study, based on the newly updated version of the ultrarelativistic quantum molecular dynamics model, we introduce the kaon-nucleon (KN) potential, including both the scalar and vector (also dubbed Lorentz-like) aspects. We revisit the influence of the KN potential on the collective flow of K + mesons produced in Au+Au collisions at E lab = 1.5 GeV/nucleon and find that the contribution of the newly included Lorentz-like force is very important, particulary for describing the directed flow of K +. Finally, the corresponding KaoS data of both directed and elliptic flows can be simultaneously reproduced well.
New Frontiers in Analyzing Dynamic Group Interactions: Bridging Social and Computer Science
Lehmann-Willenbrock, Nale; Hung, Hayley; Keyton, Joann
2017-01-01
This special issue on advancing interdisciplinary collaboration between computer scientists and social scientists documents the joint results of the international Lorentz workshop, “Interdisciplinary Insights into Group and Team Dynamics,” which took place in Leiden, The Netherlands, July 2016. An equal number of scholars from social and computer science participated in the workshop and contributed to the papers included in this special issue. In this introduction, we first identify interaction dynamics as the core of group and team models and review how scholars in social and computer science have typically approached behavioral interactions in groups and teams. Next, we identify key challenges for interdisciplinary collaboration between social and computer scientists, and we provide an overview of the different articles in this special issue aimed at addressing these challenges. PMID:29249891
New Frontiers in Analyzing Dynamic Group Interactions: Bridging Social and Computer Science.
Lehmann-Willenbrock, Nale; Hung, Hayley; Keyton, Joann
2017-10-01
This special issue on advancing interdisciplinary collaboration between computer scientists and social scientists documents the joint results of the international Lorentz workshop, "Interdisciplinary Insights into Group and Team Dynamics," which took place in Leiden, The Netherlands, July 2016. An equal number of scholars from social and computer science participated in the workshop and contributed to the papers included in this special issue. In this introduction, we first identify interaction dynamics as the core of group and team models and review how scholars in social and computer science have typically approached behavioral interactions in groups and teams. Next, we identify key challenges for interdisciplinary collaboration between social and computer scientists, and we provide an overview of the different articles in this special issue aimed at addressing these challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shaojie, E-mail: wangsj@ustc.edu.cn
It is found that the Lorentz force generated by the magnetic drift drives a generic plasma pinch flux of particle, energy and momentum through the Stokes-Einstein relation. The proposed theoretical model applies for both electrons and ions, trapped particles, and passing particles. An anomalous parallel current pinch due to the electrostatic turbulence with long parallel wave-length is predicted.
A six degree-of-freedom Lorentz vibration isolator with nonlinear controller
NASA Astrophysics Data System (ADS)
Fenn, Ralph C.
1992-05-01
The results of a phase 2 Small Business Innovation Research Program sponsored by MSFC are presented. Technology is developed for isolating acceleration sensitive microgravity experiments from structural vibration of a spacecraft, such as a space station. Two hardware articles are constructed: a six degree of freedom Lorentz force isolation and a one degree of freedom low acceleration testbed capable of tests at typical experiment accelerations.
Prospects for testing Lorentz and CPT symmetry with antiprotons.
Vargas, Arnaldo J
2018-03-28
A brief overview of the prospects of testing Lorentz and CPT symmetry with antimatter experiments is presented. The models discussed are applicable to atomic spectroscopy experiments, Penning-trap experiments and gravitational tests. Comments about the sensitivity of the most recent antimatter experiments to the models reviewed here are included.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Author(s).
Neutrino velocity and local Lorentz invariance
NASA Astrophysics Data System (ADS)
Cardone, Fabio; Mignani, Roberto; Petrucci, Andrea
2015-09-01
We discuss the possible violation of local Lorentz invariance (LLI) arising from a faster-than-light neutrino speed. A toy calculation of the LLI violation parameter δ, based on the (disclaimed) OPERA data, suggests that the values of δ are determined by the interaction involved, and not by the energy range. This hypothesis is further corroborated by the analysis of the more recent results of the BOREXINO, LVD and ICARUS experiments.
Early afterglows in wind environments revisited
NASA Astrophysics Data System (ADS)
Zou, Y. C.; Wu, X. F.; Dai, Z. G.
2005-10-01
When a cold shell sweeps up the ambient medium, a forward shock and a reverse shock will form. We analyse the reverse-forward shocks in a wind environment, including their dynamics and emission. An early afterglow is emitted from the shocked shell, e.g. an optical flash may emerge. The reverse shock behaves differently in two approximations: the relativistic and Newtonian cases, which depend on the parameters, e.g. the initial Lorentz factor of the ejecta. If the initial Lorentz factor is much less than 114E1/453Δ-1/40,12A-1/4*,-1, the early reverse shock is Newtonian. This may take place for the wider of a two-component jet, an orphan afterglow caused by a low initial Lorentz factor and so on. The synchrotron self-absorption effect is significant especially for the Newtonian reverse shock case, as the absorption frequency νa is larger than the cooling frequency νc and the minimum synchrotron frequency νm for typical parameters. For the optical to X-ray band, the flux is nearly unchanged with time during the early period, which may be a diagnostic for the low initial Lorentz factor of the ejecta in a wind environment. We also investigate the early light curves with different wind densities and compare them with those in the interstellar medium model.
Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2.
Yan, Mingzhe; Huang, Huaqing; Zhang, Kenan; Wang, Eryin; Yao, Wei; Deng, Ke; Wan, Guoliang; Zhang, Hongyun; Arita, Masashi; Yang, Haitao; Sun, Zhe; Yao, Hong; Wu, Yang; Fan, Shoushan; Duan, Wenhui; Zhou, Shuyun
2017-08-15
Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. Although Lorentz invariance is required in high energy physics, it is not necessarily obeyed in condensed matter physics, and thus Lorentz-violating type-II Weyl/Dirac fermions could be realized in topological semimetals. The recent realization of type-II Weyl fermions raises the question whether their spin-degenerate counterpart-type-II Dirac fermions-can be experimentally realized too. Here, we report the experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe 2 single crystal. Angle-resolved photoemission spectroscopy measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the Γ-A direction, confirming PtTe 2 as a type-II Dirac semimetal. Our results provide opportunities for investigating novel quantum phenomena (e.g., anisotropic magneto-transport) and topological phase transition.Whether the spin-degenerate counterpart of Lorentz-violating Weyl fermions, the Dirac fermions, can be realized remains as an open question. Here, Yan et al. report experimental evidence of such type-II Dirac fermions in bulk PtTe 2 single crystal with a pair of strongly tilted Dirac cones.
Internal shocks in microquasar jets with a continuous Lorentz factor modulation
NASA Astrophysics Data System (ADS)
Pjanka, Patryk; Stone, James M.
2018-06-01
We perform relativistic hydrodynamic simulations of internal shocks formed in microquasar jets by continuous variation of the bulk Lorentz factor, in order to investigate the internal shock model. We consider one-, two-, and flicker noise 20-mode variability. We observe emergence of a forward-reverse shock structure for each peak of the Lorentz factor modulation. The high pressure in the shocked layer launches powerful outflows perpendicular to the jet beam into the ambient medium. These outflows dominate the details of the jet's kinetic energy thermalization. They are responsible for mixing between the jet and the surrounding medium and generate powerful shocks in the latter. These results do not concur with the popular picture of well-defined internal shells depositing energy as they collide within the confines of the jet, in fact collisions between internal shells themselves are quite rare in our continuous formulation of the problem. For each of our simulations, we calculate the internal energy deposited in the system, the `efficiency' of this deposition (defined as the ratio of internal to total flow energy), and the maximum temperature reached in order to make connections to emission mechanisms. We probe the dependence of these diagnostics on the Lorentz factor variation amplitudes, modulation frequencies, as well as the initial density ratio between the jet and the ambient medium.
A Quantum Simulation on the Emergence of Lorentz Invariance
NASA Astrophysics Data System (ADS)
Zueco, David; Quijandría, Fernando; Blas, Diego; Pujòlas, Oriol
2014-03-01
Lorentz invariance (LI) is one of the best tested symmetries of Nature. It is natural to think that LI is a fundamental property. However, this does not need to be so. In fact, it could be an emergent symmetry in the low energy world. One motivation on Lorentz-violating theories may come from consistent non-relativistic models of gravity, where LI appears at low energies. The basic approach is by taking two interacting quantum fields. The bare (uncoupled fields) have different light velocities, say v1 and v2. The coupling tends to ``synchronize'' those velocities providing a common light velocity: the LI emergence. So far, only perturbative calculations are available. In this perturbative regime the emergence of LI is too slow. Therefore it is mandatory going beyond perturbative calculations. In this talk I will discuss that such models for emergent Lorentz Invariance can be simulated in an analog quantum simulator. In 1+1 dimensions two transmission lines coupled trough Josephson Junctions do the job. We show that the emergence can be checked by measuring photon correlations. Everything within the state of the art in circuit QED. We show that our proposal can provide a definite answer about the LI emergence hypothesis in the strong coupling regime.
Covariant fields on anti-de Sitter spacetimes
NASA Astrophysics Data System (ADS)
Cotăescu, Ion I.
2018-02-01
The covariant free fields of any spin on anti-de Sitter (AdS) spacetimes are studied, pointing out that these transform under isometries according to covariant representations (CRs) of the AdS isometry group, induced by those of the Lorentz group. Applying the method of ladder operators, it is shown that the CRs with unique spin are equivalent with discrete unitary irreducible representations (UIRs) of positive energy of the universal covering group of the isometry one. The action of the Casimir operators is studied finding how the weights of these representations (reps.) may depend on the mass and spin of the covariant field. The conclusion is that on AdS spacetime, one cannot formulate a universal mass condition as in special relativity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado-Acosta, E. G.; Napsuciale, Mauro; Rodriguez, Simon
We develop a second order formalism for massive spin 1/2 fermions based on the projection over Poincare invariant subspaces in the ((1/2),0)+(0,(1/2)) representation of the homogeneous Lorentz group. Using the U(1){sub em} gauge principle we obtain a second order description for the electromagnetic interactions of a spin 1/2 fermion with two free parameters, the gyromagnetic factor g and a parameter {xi} related to odd-parity Lorentz structures. We calculate Compton scattering in this formalism. In the particular case g=2, {xi}=0, and for states with well-defined parity, we recover Dirac results. In general, we find the correct classical limit and a finitemore » value r{sub c}{sup 2} for the forward differential cross section, independent of the photon energy and of the value of the parameters g and {xi}. The differential cross section vanishes at high energies for all g, {xi} except in the forward direction. The total cross section at high energies vanishes only for g=2, {xi}=0. We argue that this formalism is more convenient than Dirac theory in the description of low energy electromagnetic properties of baryons and illustrate the point with the proton case.« less
Coupled oscillators and Feynman's three papers
NASA Astrophysics Data System (ADS)
Kim, Y. S.
2007-05-01
According to Richard Feynman, the adventure of our science of physics is a perpetual attempt to recognize that the different aspects of nature are really different aspects of the same thing. It is therefore interesting to combine some, if not all, of Feynman's papers into one. The first of his three papers is on the "rest of the universe" contained in his 1972 book on statistical mechanics. The second idea is Feynman's parton picture which he presented in 1969 at the Stony Brook conference on high-energy physics. The third idea is contained in the 1971 paper he published with his students, where they show that the hadronic spectra on Regge trajectories are manifestations of harmonic-oscillator degeneracies. In this report, we formulate these three ideas using the mathematics of two coupled oscillators. It is shown that the idea of entanglement is contained in his rest of the universe, and can be extended to a space-time entanglement. It is shown also that his parton model and the static quark model can be combined into one Lorentz-covariant entity. Furthermore, Einstein's special relativity, based on the Lorentz group, can also be formulated within the mathematical framework of two coupled oscillators.
The origin of the energy-momentum conservation law
NASA Astrophysics Data System (ADS)
Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.
2017-09-01
The interplay between the action-reaction principle and the energy-momentum conservation law is revealed by the examples of the Maxwell-Lorentz and Yang-Mills-Wong theories, and general relativity. These two statements are shown to be equivalent in the sense that both hold or fail together. Their mutual agreement is demonstrated most clearly in the self-interaction problem by taking account of the rearrangement of degrees of freedom appearing in the action of the Maxwell-Lorentz and Yang-Mills-Wong theories. The failure of energy-momentum conservation in general relativity is attributed to the fact that this theory allows solutions having nontrivial topologies. The total energy and momentum of a system with nontrivial topological content prove to be ambiguous, coordinatization-dependent quantities. For example, the energy of a Schwarzschild black hole may take any positive value greater than, or equal to, the mass of the body whose collapse is responsible for forming this black hole. We draw the analogy to the paradoxial Banach-Tarski theorem; the measure becomes a poorly defined concept if initial three-dimensional bounded sets are rearranged in topologically nontrivial ways through the action of free non-Abelian isometry groups.
Fractional Fourier transform of Lorentz-Gauss vortex beams
NASA Astrophysics Data System (ADS)
Zhou, GuoQuan; Wang, XiaoGang; Chu, XiuXiang
2013-08-01
An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.
Testing Lorentz and C P T invariance with ultracold neutrons
NASA Astrophysics Data System (ADS)
Martín-Ruiz, A.; Escobar, C. A.
2018-05-01
In this paper we investigate, within the standard model extension framework, the influence of Lorentz- and C P T -violating terms on gravitational quantum states of ultracold neutrons. Using a semiclassical wave packet, we derive the effective nonrelativistic Hamiltonian which describes the neutrons vertical motion by averaging the contributions from the perpendicular coordinates to the free falling axis. We compute the physical implications of the Lorentz- and C P T -violating terms on the spectra. The comparison of our results with those obtained in the GRANIT experiment leads to an upper bound for the symmetries-violation cμν n coefficients. We find that ultracold neutrons are sensitive to the ain and ein coefficients, which thus far are unbounded by experiments in the neutron sector. We propose two additional problems involving ultracold neutrons which could be relevant for improving our current bounds; namely, gravity-resonance spectroscopy and neutron whispering gallery wave.
Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure.
Šantić, N; Dubček, T; Aumiler, D; Buljan, H; Ban, T
2015-09-02
Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries.
Lorentz-invariant three-vectors and alternative formulation of relativistic dynamics
NASA Astrophysics Data System (ADS)
Rȩbilas, Krzysztof
2010-03-01
Besides the well-known scalar invariants, there also exist vectorial invariants in special relativity. It is shown that the three-vector (dp⃗/dt)∥+γv(dp⃗/dt)⊥ is invariant under the Lorentz transformation. The subscripts ∥ and ⊥ denote the respective components with respect to the direction of the velocity of the body v⃗, and p⃗ is the relativistic momentum. We show that this vector is equal to a force F⃗R, which satisfies the classical Newtonian law F⃗R=ma⃗R in the instantaneous inertial rest frame of an accelerating body. Therefore, the relation F⃗R=(dp⃗/dt)∥+γv(dp⃗/dt)⊥, based on the Lorentz-invariant vectors, may be used as an invariant (not merely a covariant) relativistic equation of motion in any inertial system of reference. An alternative approach to classical electrodynamics based on the invariant three-vectors is proposed.
Test of Lorentz and CPT violation with short baseline neutrino oscillation excesses
NASA Astrophysics Data System (ADS)
MiniBooNE Collaboration; Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Huelsnitz, W.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.
2013-01-01
The sidereal time dependence of MiniBooNE νe and ν appearance data is analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov-Smirnov (K-S) test shows both the νe and ν appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the νe appearance data prefer a sidereal time-independent solution, and the ν appearance data slightly prefer a sidereal time-dependent solution. Limits of order 10-20 GeV are placed on combinations of SME coefficients. These limits give the best limits on certain SME coefficients for νμ→νe and ν→ν oscillations. The fit values and limits of combinations of SME coefficients are provided.
Model-independent constraints on Lorentz invariance violation via the cosmographic approach
NASA Astrophysics Data System (ADS)
Zou, Xiao-Bo; Deng, Hua-Kai; Yin, Zhao-Yu; Wei, Hao
2018-01-01
Since Lorentz invariance plays an important role in modern physics, it is of interest to test the possible Lorentz invariance violation (LIV). The time-lag (the arrival time delay between light curves in different energy bands) of Gamma-ray bursts (GRBs) has been extensively used to this end. However, to our best knowledge, one or more particular cosmological models were assumed a priori in (almost) all of the relevant works in the literature. So, this makes the results on LIV in those works model-dependent and hence not so robust in fact. In the present work, we try to avoid this problem by using a model-independent approach. We calculate the time delay induced by LIV with the cosmic expansion history given in terms of cosmography, without assuming any particular cosmological model. Then, we constrain the possible LIV with the observational data, and find weak hints for LIV.
Cold Atom Clock Test of Lorentz Invariance in the Matter Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Peter; Chapelet, Frederic; Bize, Sebastien
2006-02-17
We report on a new experiment that tests for a violation of Lorentz invariance (LI), by searching for a dependence of atomic transition frequencies on the orientation of the spin of the involved states (Hughes-Drever type experiment). The atomic frequencies are measured using a laser cooled {sup 133}Cs atomic fountain clock, operating on a particular combination of Zeeman substates. We analyze the results within the framework of the Lorentz violating standard model extension (SME), where our experiment is sensitive to a largely unexplored region of the SME parameter space, corresponding to first measurements of four proton parameters and improvements bymore » 11 and 13 orders of magnitude on the determination of four others. In spite of the attained uncertainties, and of having extended the search into a new region of the SME, we still find no indication of LI violation.« less
Towards metering tap water by Lorentz force velocimetry
NASA Astrophysics Data System (ADS)
Vasilyan, Suren; Ebert, Reschad; Weidner, Markus; Rivero, Michel; Halbedel, Bernd; Resagk, Christian; Fröhlich, Thomas
2015-11-01
In this paper, we present enhanced flow rate measurement by applying the contactless Lorentz Force Velocimetry (LFV) technique. Particularly, we show that the LFV is a feasible technique for metering the flow rate of salt water in a rectangular channel. The measurements of the Lorentz forces as a function of the flow rate are presented for different electrical conductivities of the salt water. The smallest value of conductivity is achieved at 0.06 S·m-1, which corresponds to the typical value of tap water. In comparison with previous results, the performance of LFV is improved by approximately 2 orders of magnitude by means of a high-precision differential force measurement setup. Furthermore, the sensitivity curve and the calibration factor of the flowmeter are provided based on extensive measurements for the flow velocities ranging from 0.2 to 2.5 m·s-1 and conductivities ranging from 0.06 to 10 S·m-1.
Free Quantum Field Theory from Quantum Cellular Automata
NASA Astrophysics Data System (ADS)
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro
2015-10-01
After leading to a new axiomatic derivation of quantum theory (see D'Ariano et al. in Found Phys, 2015), the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles (linearity, unitarity, locality, homogeneity, isotropy, and minimality of dimension), the automata theory is quantum ab-initio, and does not assume Lorentz covariance and mechanical notions. Being discrete it can describe localized states and measurements (unmanageable by quantum field theory), solving all the issues plaguing field theory originated from the continuum. These features make the theory an ideal framework for quantum gravity, with relativistic covariance and space-time emergent solely from the interactions, and not assumed a priori. The paper presents a synthetic derivation of the automata theory, showing how the principles lead to a description in terms of a quantum automaton over a Cayley graph of a group. Restricting to Abelian groups we show how the automata recover the Weyl, Dirac and Maxwell dynamics in the relativistic limit. We conclude with some new routes about the more general scenario of non-Abelian Cayley graphs. The phenomenology arising from the automata theory in the ultra-relativistic domain and the analysis of corresponding distorted Lorentz covariance is reviewed in Bisio et al. (Found Phys 2015, in this same issue).
Using the Cycloid as an Introduction to Transformations of E and B Fields
NASA Astrophysics Data System (ADS)
Frodyma, Marc; Le, My Phuong
2018-05-01
The transformations of electric and magnetic fields are usually introduced by viewing systems such as a long, straight current-carrying wire and a parallel plate capacitor in two different reference frames. These well-known examples show that magnetism is a necessary consequence of augmenting electrostatics with relativity. Because they require the full apparatus of Lorentz contraction and Lorentz transformation of forces, they are often postponed until the upper-division undergraduate electrodynamics course.
The Correlated Jacobi and the Correlated Cauchy-Lorentz Ensembles
NASA Astrophysics Data System (ADS)
Wirtz, Tim; Waltner, Daniel; Kieburg, Mario; Kumar, Santosh
2016-01-01
We calculate the k-point generating function of the correlated Jacobi ensemble using supersymmetric methods. We use the result for complex matrices for k=1 to derive a closed-form expression for the eigenvalue density. For real matrices we obtain the density in terms of a twofold integral that we evaluate numerically. For both expressions we find agreement when comparing with Monte Carlo simulations. Relations between these quantities for the Jacobi and the Cauchy-Lorentz ensemble are derived.
Einstein and Lorentz: The structure of a scientific revolution
NASA Astrophysics Data System (ADS)
Brouwer, W.
1980-06-01
In a course entitled ''Revolutions in Physics'' a number of episodes in the history of physics are examined, in order to test the theories of Kuhn, Popper, Lakatos, and others, with regard to any common structure exhibited by the various revolutions that physics has undergone. The conflict between Lorentz's Electron Theory and Einstein's Special Relativity becomes a major focal point in the second half of the course for the models of scientific revolutions that are studied.
On the theory of time dilation in chemical kinetics
NASA Astrophysics Data System (ADS)
Baig, Mirza Wasif
2017-10-01
The rates of chemical reactions are not absolute but their magnitude depends upon the relative speeds of the moving observers. This has been proved by unifying basic theories of chemical kinetics, which are transition state theory, collision theory, RRKM and Marcus theory, with the special theory of relativity. Boltzmann constant and energy spacing between permitted quantum levels of molecules are quantum mechanically proved to be Lorentz variant. The relativistic statistical thermodynamics has been developed to explain quasi-equilibrium existing between reactants and activated complex. The newly formulated Lorentz transformation of the rate constant from Arrhenius equation, of the collision frequency and of the Eyring and Marcus equations renders the rate of reaction to be Lorentz variant. For a moving observer moving at fractions of the speed of light along the reaction coordinate, the transition state possess less kinetic energy to sweep translation over it. This results in the slower transformation of reactants into products and in a stretched time frame for the chemical reaction to complete. Lorentz transformation of the half-life equation explains time dilation of the half-life period of chemical reactions and proves special theory of relativity and presents theory in accord with each other. To demonstrate the effectiveness of the present theory, the enzymatic reaction of methylamine dehydrogenase and radioactive disintegration of Astatine into Bismuth are considered as numerical examples.
Force, torque, linear momentum, and angular momentum in classical electr odynamics
NASA Astrophysics Data System (ADS)
Mansuripur, Masud
2017-10-01
The classical theory of electrodynamics is built upon Maxwell's equations and the concepts of electromagnetic (EM) field, force, energy, and momentum, which are intimately tied together by Poynting's theorem and by the Lorentz force law. Whereas Maxwell's equations relate the fields to their material sources, Poynting's theorem governs the flow of EM energy and its exchange between fields and material media, while the Lorentz law regulates the back-and-forth transfer of momentum between the media and the fields. An alternative force law, first proposed by Einstein and Laub, exists that is consistent with Maxwell's equations and complies with the conservation laws as well as with the requirements of special relativity. While the Lorentz law requires the introduction of hidden energy and hidden momentum in situations where an electric field acts on a magnetized medium, the Einstein-Laub (E-L) formulation of EM force and torque does not invoke hidden entities under such circumstances. Moreover, total force/torque exerted by EM fields on any given object turns out to be independent of whether the density of force/torque is evaluated using the law of Lorentz or that of Einstein and Laub. Hidden entities aside, the two formulations differ only in their predicted force and torque distributions inside matter. Such differences in distribution are occasionally measurable, and could serve as a guide in deciding which formulation, if either, corresponds to physical reality.
Effect of VSR invariant Chern-Simons Lagrangian on photon polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayak, Alekha C.; Verma, Ravindra K.; Jain, Pankaj, E-mail: acnayak@iitk.ac.in, E-mail: ravindkv@iitk.ac.in, E-mail: pkjain@iitk.ac.in
2015-07-01
We propose a generalization of the Chern-Simons (CS) Lagrangian which is invariant under the SIM(2) transformations but not under the full Lorentz group. The generalized lagrangian is also invariant under a SIM(2) gauge transformation. We study the effect of such a term on radiation propagating over cosmological distances. We find that the dominant effect of this term is to produce circular polarization as radiation propagates through space. We use the circular polarization data from distant radio sources in order to impose a limit on this term.
Effect of VSR invariant Chern-Simons Lagrangian on photon polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayak, Alekha C.; Verma, Ravindra K.; Jain, Pankaj
We propose a generalization of the Chern-Simons (CS) Lagrangian which is invariant under the SIM(2) transformations but not under the full Lorentz group. The generalized lagrangian is also invariant under a SIM(2) gauge transformation. We study the effect of such a term on radiation propagating over cosmological distances. We find that the dominant effect of this term is to produce circular polarization as radiation propagates through space. We use the circular polarization data from distant radio sources in order to impose a limit on this term.
Translation invariant time-dependent massive gravity: Hamiltonian analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mourad, Jihad; Steer, Danièle A.; Noui, Karim, E-mail: mourad@apc.univ-paris7.fr, E-mail: karim.noui@lmpt.univ-tours.fr, E-mail: steer@apc.univ-paris7.fr
2014-09-01
The canonical structure of the massive gravity in the first order moving frame formalism is studied. We work in the simplified context of translation invariant fields, with mass terms given by general non-derivative interactions, invariant under the diagonal Lorentz group, depending on the moving frame as well as a fixed reference frame. We prove that the only mass terms which give 5 propagating degrees of freedom are the dRGT mass terms, namely those which are linear in the lapse. We also complete the Hamiltonian analysis with the dynamical evolution of the system.
Aspects of T-Dually Extended Superspaces
NASA Astrophysics Data System (ADS)
Polacek, Martin
This dissertation is divided into three main parts where we derive various properties of the T-dually extended superspaces. In the first part we reformulate the manifestly T-dual description of the massless sector of the closed bosonic string, directly from the geometry associated with the (left and right) affine Lie algebra of the coset space Poincare/Lorentz. This construction initially doubles not only the (space-time) coordinates for translations but also those for Lorentz transformations (and their "dual"). As a result, the Lorentz connection couples directly to the string (as does the vielbein), rather than being introduced indirectly through covariant derivatives as previously. This not only reproduces the old definition of T-dual torsion, but automatically gives a general, covariant definition of T-dual curvature (but still with some undetermined connections). In the second part we give the manifestly T-dual formulation of the massless sector of the classical 3D Type II superstring in off-shell 3D N = 2 superspace, including the action. It has a simple relation to the known superspace of 4D N = 1 supergravity in 4D M-theory via 5D F-theory. The pre-potential appears as part of the vielbein, without derivatives. In the last and the most involved part we find the pre-potential in the superspace with AdS5 x S5 background. The pre-potential appears as part of the vielbeins, without derivatives. In both subspaces (AdS5 and S 5) we use Poincare coordinates. We pick one bulk coordinate in AdS5 and one bulk coordinate in S 5 to define the space-cone gauge. Such space-cone gauge destroys the bulk Lorentz covariance. However, it still preserves boundary Lorentz covariance (and gives projective superspace) SO ( 3, 1) ⊗ SO (4) and so symmetries of boundary CFT are manifest.
Torque balance, Taylor's constraint and torsional oscillations in a numerical model of the geodynamo
NASA Astrophysics Data System (ADS)
Dumberry, Mathieu; Bloxham, Jeremy
2003-11-01
Theoretical considerations and observations suggest that, to a first approximation, the Earth's dynamo is in a quasi-Taylor state, where the axial Lorentz torque on cylindrical surfaces co-axial with the rotation axis vanishes, except for the part involved in torsional oscillations. The latter are rigid azimuthal accelerations of cylindrical surfaces which oscillate with typical periods of decades. We present a solution of a numerical model of the geodynamo in which rigid accelerations of cylinder surfaces are observed. The underlying dynamic state in the model is not a Taylor state because the Reynolds stresses and viscous torque remain large and provide an effective way to balance a large Lorentz torque. This is a consequence of the limited parameter regime which can be attained numerically. Nevertheless, departures in the torque equilibrium are primarily counterbalanced by rigid accelerations of cylindrical surfaces, which, in turn, excite rigid azimuthal oscillations of the surfaces. We show that the azimuthal motion is indeed quasi-rigid, though the torsional oscillations that are produced in the model probably differ from those in the Earth's core because of the large influence of the Reynolds stresses on their dynamics. We also show that the continual excitation of rigid cylindrical accelerations is produced by the advection of the non-axisymmetric structure of the fields by a mean differential rotation of the cylindrical surfaces which produces disconnections and reconnections and continual fluctuations in the Lorentz torque and Reynolds stresses. We propose that the torque balance in Earth's core may evolve in a similar chaotic fashion, except that the influence of the Reynolds stresses is probably weaker. If this is the case, the Lorentz torque on a cylindrical surface is continually fluctuating, even though its time-averaged value vanishes and satisfies Taylor's constraint. Rigid accelerations of cylindrical surfaces are continually excited by the fluctuations in the Lorentz torque, and the torsional oscillations observed in the geomagnetic data are a mixture of forced and free oscillations.
Effective Chern-Simons actions of particles coupled to 3D gravity
NASA Astrophysics Data System (ADS)
Trześniewski, Tomasz
2018-03-01
Point particles in 3D gravity are known to behave as topological defects, while gravitational field can be expressed as the Chern-Simons theory of the appropriate local isometry group of spacetime. In the case of the Poincaré group, integrating out the gravitational degrees of freedom it is possible to obtain the effective action for particle dynamics. We review the known results, both for single and multiple particles, and attempt to extend this approach to the (anti-)de Sitter group, using the factorizations of isometry groups into the double product of the Lorentz group and AN (2) group. On the other hand, for the de Sitter group one can also perform a contraction to the semidirect product of AN (2) and the translation group. The corresponding effective action curiously describes a Carrollian particle with the AN (2) momentum space. We derive this contraction in a more rigorous manner and further explore its properties, including a generalization to the multiparticle case.
Electromagnetic plane-wave pulse transmission into a Lorentz half-space.
Cartwright, Natalie A
2011-12-01
The propagation of an electromagnetic plane-wave signal obliquely incident upon a Lorentz half-space is studied analytically. Time-domain asymptotic expressions that increase in accuracy with propagation distance are derived by application of uniform saddle point methods on the Fourier-Laplace integral representation of the transmitted field. The results are shown to be continuous in time and comparable with numerical calculations of the field. Arrival times and angles of refraction are given for prominent transient pulse features and the steady-state signal.
Lorentz-violating SO(3) model: Discussing unitarity, causality, and 't Hooft-Polyakov monopoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarpelli, A.P. Baeta; Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ; Helayeel-Neto, J.A.
2006-05-15
In this paper, we extend the analysis of the Lorentz-violating Quantum Electrodynamics to the non-Abelian case: an SO(3) Yang-Mills Lagrangian with the addition of the non-Abelian Chern-Simons-type term. We consider the spontaneous symmetry breaking of the model and inspect its spectrum in order to check if unitarity and causality are respected. An analysis of the topological structure is also carried out and we show that a 't Hooft-Polyakov solution for monopoles is still present.
Tests of CPT, Lorentz invariance and the WEP with antihydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzscheiter, M.H.; ATHENA Collaboration
1999-03-01
Antihydrogen atoms, produced near rest, trapped in a magnetic well, and cooled to the lowest possible temperature (kinetic energy) could provide an extremely powerful tool for the search of violations of CPT and Lorentz invariance. Equally well, such a system could be used for searches of violations of the Weak Equivalence Principle (WEP) at high precision. The author describes his plans to form a significant number of cold, trapped antihydrogen atoms for comparative precision spectroscopy of hydrogen and antihydrogen and comment on possible first experiments.
Wavelets and spacetime squeeze
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.; Noz, Marilyn E.
1993-01-01
It is shown that the wavelet is the natural language for the Lorentz covariant description of localized light waves. A model for covariant superposition is constructed for light waves with different frequencies. It is therefore possible to construct a wave function for light waves carrying a covariant probability interpretation. It is shown that the time-energy uncertainty relation (Delta(t))(Delta(w)) is approximately 1 for light waves is a Lorentz-invariant relation. The connection between photons and localized light waves is examined critically.
Generalized uncertainty principles and quantum field theory
NASA Astrophysics Data System (ADS)
Husain, Viqar; Kothawala, Dawood; Seahra, Sanjeev S.
2013-01-01
Quantum mechanics with a generalized uncertainty principle arises through a representation of the commutator [x^,p^]=if(p^). We apply this deformed quantization to free scalar field theory for f±=1±βp2. The resulting quantum field theories have a rich fine scale structure. For small wavelength modes, the Green’s function for f+ exhibits a remarkable transition from Lorentz to Galilean invariance, whereas for f- such modes effectively do not propagate. For both cases Lorentz invariance is recovered at long wavelengths.
NASA Astrophysics Data System (ADS)
Hossenfelder, Sabine
2014-07-01
The idea that Lorentz-symmetry in momentum space could be modified but still remain observer-independent has received quite some attention in the recent years. This modified Lorentz-symmetry, which has been argued to arise in Loop Quantum Gravity, is being used as a phenomenological model to test possibly observable effects of quantum gravity. The most pressing problem in these models is the treatment of multi-particle states, known as the 'soccer-ball problem'. This article briefly reviews the problem and the status of existing solution attempts.
Lorentz Force Detuning Analysis of the SNS Accelerating Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Mitchell; K. Matsumoto; G. Ciovati
2001-09-01
The Spallation Neutron Source (SNS) project incorporates a superconducting radio-frequency (SRF) accelerator for the final section of the pulsed mode linac Cavities with geometrical {beta} values of {beta} = 0.61 and {beta} = 0.81 are utilized in the SRF section, and are constructed out of thin-walled niobium with stiffener rings welded between the cells near the iris. The welded titanium helium vessel and tuner assembly restrains the cavity beam tubes Cavities with {beta} values less than one have relatively steep and flat side-walls making the cavities susceptible to Ised RF induces cyclic Lorentz pressures that mechanically excite the cavities, producingmore » a dynamic Lorentz force detuning different from a continuous RF system. The amplitude of the dynamic detuning for a given cavity design is a function of the mechanical damping, stiffness of the tuner/helium vessel assembly, RF pulse profile, and the RF pulse rate. This paper presents analysis and testing results to date, and indicates areas where more investigation is required.« less
Theoretically Investigating the Nature of Spacetime- A grand definition of what clocks measure
NASA Astrophysics Data System (ADS)
Egie, Meru
Einstein's special theory of relativity established time as a dimension of reality, explaining physically the mathematical stipulations of Lorentz transformation equations that are required to keep the validity of Maxwell's equations of light and explain the null result of Michelson-Morley experiment. Our current understanding of time is relativistic, that is time is not absolute but runs differently depending on the frame of reference, yet this description uncovers so little about the fundamental reality of time. Using mathematical arguments derived from a simple thought experiment, both Lorentz transformation equations and Einstein's far reaching conclusions of his 1905 paper on the electrodynamics of moving bodies are obtained with arguments that suggest no prior knowledge of both Einstein and Lorentz works. This work attempts uncovering the fundamental nature of what clocks measure and a major implication of this is that the fourth dimension could just be a persistent illusion caused by the existence of space. Gratitude to Mr. Jon Egie for his support and Aghogo Rita for her listening ears.
Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction
NASA Astrophysics Data System (ADS)
Rovelli, Carlo; Speziale, Simone
2003-03-01
A Planck-scale minimal observable length appears in many approaches to quantum gravity. It is sometimes argued that this minimal length might conflict with Lorentz invariance, because a boosted observer can see the minimal length further Lorentz contracted. We show that this is not the case within loop quantum gravity. In loop quantum gravity the minimal length (more precisely, minimal area) does not appear as a fixed property of geometry, but rather as the minimal (nonzero) eigenvalue of a quantum observable. The boosted observer can see the same observable spectrum, with the same minimal area. What changes continuously in the boost transformation is not the value of the minimal length: it is the probability distribution of seeing one or the other of the discrete eigenvalues of the area. We discuss several difficulties associated with boosts and area measurement in quantum gravity. We compute the transformation of the area operator under a local boost, propose an explicit expression for the generator of local boosts, and give the conditions under which its action is unitary.
Spinor description of D = 5 massless low-spin gauge fields
NASA Astrophysics Data System (ADS)
Uvarov, D. V.
2016-07-01
Spinor description for the curvatures of D = 5 Yang-Mills, Rarita-Schwinger and gravitational fields is elaborated. Restrictions imposed on the curvature spinors by the dynamical equations and Bianchi identities are analyzed. In the absence of sources symmetric curvature spinors with 2s indices obey first-order equations that in the linearized limit reduce to Dirac-type equations for massless free fields. These equations allow for a higher-spin generalization similarly to 4d case. Their solution in the form of the integral over Lorentz-harmonic variables parametrizing coset manifold {SO}(1,4)/({SO}(1,1)× {ISO}(3)) isomorphic to the three-sphere is considered. Superparticle model that contains such Lorentz harmonics as dynamical variables, as well as harmonics parametrizing the two-sphere {SU}(2)/U(1) is proposed. The states in its spectrum are given by the functions on S 3 that upon integrating over the Lorentz harmonics reproduce on-shell symmetric curvature spinors for various supermultiplets of D = 5 space-time supersymmetry.
Tests of local Lorentz invariance violation of gravity in the standard model extension with pulsars.
Shao, Lijing
2014-03-21
The standard model extension is an effective field theory introducing all possible Lorentz-violating (LV) operators to the standard model and general relativity (GR). In the pure-gravity sector of minimal standard model extension, nine coefficients describe dominant observable deviations from GR. We systematically implemented 27 tests from 13 pulsar systems to tightly constrain eight linear combinations of these coefficients with extensive Monte Carlo simulations. It constitutes the first detailed and systematic test of the pure-gravity sector of minimal standard model extension with the state-of-the-art pulsar observations. No deviation from GR was detected. The limits of LV coefficients are expressed in the canonical Sun-centered celestial-equatorial frame for the convenience of further studies. They are all improved by significant factors of tens to hundreds with existing ones. As a consequence, Einstein's equivalence principle is verified substantially further by pulsar experiments in terms of local Lorentz invariance in gravity.
Test of Lorentz and CPT violation with short baseline neutrino oscillation excesses
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Huelsnitz, W.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration
2013-01-01
The sidereal time dependence of MiniBooNE νe and νbare appearance data is analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov-Smirnov (K-S) test shows both the νe and νbare appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the νe appearance data prefer a sidereal time-independent solution, and the νbare appearance data slightly prefer a sidereal time-dependent solution. Limits of order 10-20 GeV are placed on combinations of SME coefficients. These limits give the best limits on certain SME coefficients for νμ →νe and νbarμ →νbare oscillations. The fit values and limits of combinations of SME coefficients are provided.
Dimensional study of the dynamical arrest in a random Lorentz gas.
Jin, Yuliang; Charbonneau, Patrick
2015-04-01
The random Lorentz gas (RLG) is a minimal model for transport in heterogeneous media. Upon increasing the obstacle density, it exhibits a growing subdiffusive transport regime and then a dynamical arrest. Here, we study the dimensional dependence of the dynamical arrest, which can be mapped onto the void percolation transition for Poisson-distributed point obstacles. We numerically determine the arrest in dimensions d=2-6. Comparison of the results with standard mode-coupling theory reveals that the dynamical theory prediction grows increasingly worse with d. In an effort to clarify the origin of this discrepancy, we relate the dynamical arrest in the RLG to the dynamic glass transition of the infinite-range Mari-Kurchan-model glass former. Through a mixed static and dynamical analysis, we then extract an improved dimensional scaling form as well as a geometrical upper bound for the arrest. The results suggest that understanding the asymptotic behavior of the random Lorentz gas may be key to surmounting fundamental difficulties with the mode-coupling theory of glasses.
Electronic polarizability of light crude oil from optical and dielectric studies
NASA Astrophysics Data System (ADS)
George, A. K.; Singh, R. N.
2017-07-01
In the present paper we report the temperature dependence of density, refractive indices and dielectric constant of three samples of crude oils. The API gravity number estimated from the temperature dependent density studies revealed that the three samples fall in the category of light oil. The measured data of refractive index and the density are used to evaluate the polarizability of these fluids. Molar refractive index and the molar volume are evaluated through Lorentz-Lorenz equation. The function of the refractive index, FRI , divided by the mass density ρ, is a constant approximately equal to one-third and is invariant with temperature for all the samples. The measured values of the dielectric constant decrease linearly with increasing temperature for all the samples. The dielectric constant estimated from the refractive index measurements using Lorentz-Lorentz equation agrees well with the measured values. The results are promising since all the three measured properties complement each other and offer a simple and reliable method for estimating crude oil properties, in the absence of sufficient data.
Motion of a Rigid Body in a Special Lorentz Gas: Loss of Memory Effect
NASA Astrophysics Data System (ADS)
Koike, Kai
2018-06-01
Linear motion of a rigid body in a special kind of Lorentz gas is mathematically analyzed. The rigid body moves against gas drag according to Newton's equation. The gas model is a special Lorentz gas consisting of gas molecules and background obstacles, which was introduced in Tsuji and Aoki (J Stat Phys 146:620-645, 2012). The specular boundary condition is imposed on the resulting kinetic equation. This study complements the numerical study by Tsuji and Aoki cited above—although the setting in this paper is slightly different from theirs, qualitatively the same asymptotic behavior is proved: The velocity V(t) of the rigid body decays exponentially if the obstacles undergo thermal motion; if the obstacles are motionless, then the velocity V(t) decays algebraically with a rate t^{- 5} independent of the spatial dimension. This demonstrates the idea that interaction of the molecules with the background obstacles destroys the memory effect due to recollision.
Effective dynamics of a classical point charge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polonyi, Janos, E-mail: polonyi@iphc.cnrs.fr
2014-03-15
The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham–Lorentz force is recovered and its similarity to quantum anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-polemore » of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out. -- Highlights: •Extension of the classical action principle for dissipative systems. •New derivation of the Abraham–Lorentz force for a point charge. •Absence of a runaway solution of the Abraham–Lorentz force. •Acausality in classical electrodynamics. •Renormalization of classical electrodynamics of point charges.« less
NASA Astrophysics Data System (ADS)
Li, Zaoyang; Qi, Xiaofang; Liu, Lijun; Zhou, Genshu
2018-02-01
The alternating current (AC) in the resistance heater for generating heating power can induce a magnetic field in the silicon melt during directional solidification (DS) of silicon ingots. We numerically study the influence of such a heater-generating magnetic field on the silicon melt flow and temperature distribution in an industrial DS process. 3D simulations are carried out to calculate the Lorentz force distribution as well as the melt flow and heat transfer in the entire DS furnace. The pattern and intensity of silicon melt flow as well as the temperature distribution are compared for cases with and without Lorentz force. The results show that the Lorentz force induced by the heater-generating magnetic field is mainly distributed near the top and side surfaces of the silicon melt. The melt flow and temperature distribution, especially those in the upper part of the silicon region, can be influenced significantly by the magnetic field.
Approaching a realistic force balance in geodynamo simulations
Yadav, Rakesh K.; Gastine, Thomas; Christensen, Ulrich R.; Wolk, Scott J.; Poppenhaeger, Katja
2016-01-01
Earth sustains its magnetic field by a dynamo process driven by convection in the liquid outer core. Geodynamo simulations have been successful in reproducing many observed properties of the geomagnetic field. However, although theoretical considerations suggest that flow in the core is governed by a balance between Lorentz force, rotational force, and buoyancy (called MAC balance for Magnetic, Archimedean, Coriolis) with only minute roles for viscous and inertial forces, dynamo simulations must use viscosity values that are many orders of magnitude larger than in the core, due to computational constraints. In typical geodynamo models, viscous and inertial forces are not much smaller than the Coriolis force, and the Lorentz force plays a subdominant role; this has led to conclusions that these simulations are viscously controlled and do not represent the physics of the geodynamo. Here we show, by a direct analysis of the relevant forces, that a MAC balance can be achieved when the viscosity is reduced to values close to the current practical limit. Lorentz force, buoyancy, and the uncompensated (by pressure) part of the Coriolis force are of very similar strength, whereas viscous and inertial forces are smaller by a factor of at least 20 in the bulk of the fluid volume. Compared with nonmagnetic convection at otherwise identical parameters, the dynamo flow is of larger scale and is less invariant parallel to the rotation axis (less geostrophic), and convection transports twice as much heat, all of which is expected when the Lorentz force strongly influences the convection properties. PMID:27790991
NASA Astrophysics Data System (ADS)
Kislat, Fabian; Krawczynski, Henric
2017-04-01
Lorentz invariance is the fundamental symmetry of Einstein's theory of special relativity and has been tested to a great level of detail. However, theories of quantum gravity at the Planck scale indicate that Lorentz symmetry may be broken at that scale, motivating further tests. While the Planck energy is currently unreachable by experiment, tiny residual effects at attainable energies can become measurable when photons propagate over sufficiently large distances. The Standard-Model extension (SME) is an effective field-theory approach to describe low-energy effects of quantum gravity theories. Lorentz- and C P T -symmetry-violating effects are introduced by adding additional terms to the Standard-Model Lagrangian. These terms can be ordered by the mass dimension of the corresponding operator, and the leading terms of interest have dimension d =5 . Effects of these operators are a linear variation of the speed of light with photon energy, and a rotation of the linear polarization of photons quadratic in photon energy, as well as anisotropy. We analyze optical polarization data from 72 active galactic nuclei and GRBs and derive the first set of limits on all 16 coefficients of mass dimension d =5 of the SME photon sector. Our constraints imply a lower limit on the energy scale of quantum gravity of 1 06 times the Planck energy, severely limiting the phase space for any theory that predicts a rotation of the photon polarization quadratic in energy.
NASA Astrophysics Data System (ADS)
Yazdanpanah, J.
2018-02-01
In this paper, we present a new description of self-consistent wake excitation by an intense short laser pulse, based on applying the quasi-static approximation (slow variations of the pulse-envelope) in the instantaneous Lorentz-boosted pulse co-moving frame (PCMF), and best verify our results through comparison with particle-in-cell simulations. According to this theory, the plasma motion can be treated perturbatively in the PCMF due to its high initial-velocity and produces a quasi-static wakefield in this frame. The pulse envelope, on the other hand, is governed by a form of the Schrödinger equation in the PCMF, in which the wakefield acts as an effective potential. In this context, pulse evolutions are characterized by local conservation laws resulted from this equation and subjected to Lorentz transformation into the laboratory frame. Using these conservation laws, precise formulas are obtained for spatiotemporal pulse evolutions and related wakefield variations at initial stages, and new equations are derived for instantaneous group velocity and carrier frequency. In addition, based on properties of the Schrödinger equation, spectral-evolutions of the pulse are described and the emergence of an anomalous dispersion branch with linear relation ω ≈ ck (c is the light speed) is predicted. Our results are carefully discussed versus previous publications and the significance of our approach is described by showing almost all suggestive definitions of group-velocity based on energy arguments fail to reproduce our formula and correctly describe the instantaneous pulse-velocity.
Fluorescence spectral properties of stomach tissues with pathology
NASA Astrophysics Data System (ADS)
Giraev, K. M.; Ashurbekov, N. A.; Lahina, M. A.
2012-05-01
Steady-state fluorescence and diffuse reflection spectra are measured for in vivo normal and pathological (chronic atrophic and ulcerating defects, malignant neoplasms) stomach mucous lining tissues. The degree of distortion of the fluorescence spectra is estimated taking light scattering and absorption into account. A combination of Gauss and Lorentz functions is used to decompose the fluorescence spectra. Potential groups of fluorophores are determined and indices are introduced to characterize the dynamics of their contributions to the resultant spectra as pathologies develop. Reabsorption is found to quench the fluorescence of structural proteins by as much as a factor of 3, while scattering of the light can increase the fluorescence intensity of flavin and prophyrin groups by as much as a factor of 2.
Examples of the Zeroth Theorem of the History of Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, J.D.
2007-08-24
The zeroth theorem of the history of science, enunciated byE. P. Fischer, states that a discovery (rule,regularity, insight) namedafter someone (often) did not originate with that person. I present fiveexamples from physics: the Lorentz condition partial muAmu = 0 definingthe Lorentz gauge of the electromagnetic potentials; the Dirac deltafunction, delta(x); the Schumann resonances of the earth-ionospherecavity; the Weizsacker-Williams method of virtual quanta; the BMTequation of spin dynamics. I give illustrated thumbnail sketches of boththe true and reputed discoverers and quote from their "discovery"publications.
Quantization of Space-like States in Lorentz-Violating Theories
NASA Astrophysics Data System (ADS)
Colladay, Don
2018-01-01
Lorentz violation frequently induces modified dispersion relations that can yield space-like states that impede the standard quantization procedures. In certain cases, an extended Hamiltonian formalism can be used to define observer-covariant normalization factors for field expansions and phase space integrals. These factors extend the theory to include non-concordant frames in which there are negative-energy states. This formalism provides a rigorous way to quantize certain theories containing space-like states and allows for the consistent computation of Cherenkov radiation rates in arbitrary frames and avoids singular expressions.
Leading-order classical Lagrangians for the nonminimal standard-model extension
NASA Astrophysics Data System (ADS)
Reis, J. A. A. S.; Schreck, M.
2018-03-01
In this paper, we derive the general leading-order classical Lagrangian covering all fermion operators of the nonminimal standard-model extension (SME). Such a Lagrangian is considered to be the point-particle analog of the effective field theory description of Lorentz violation that is provided by the SME. At leading order in Lorentz violation, the Lagrangian obtained satisfies the set of five nonlinear equations that govern the map from the field theory to the classical description. This result can be of use for phenomenological studies of classical bodies in gravitational fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toyama, F.M.; Nogami, Y.; Zhao, Z.
1993-02-01
For the Dirac equation in one space dimension with a potential of the Lorentz scalar type, we present a complete solution for the problem of constructing a transparent potential. This is a relativistic extension of the Kay-Moses method which was developed for the nonrelativistic Schroedinger equation. There is an infinite family of transparent potentials. The potentials are all related to solutions of a class of coupled, nonlinear Dirac equations. In addition, it is argued that an admixture of a Lorentz vector component in the potential impairs perfect transparency.
Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials
NASA Astrophysics Data System (ADS)
von Blanckenhagen, Bernhard; Tonova, Diana; Ullmann, Jens
2002-06-01
Recent progress in ellipsometry instrumentation permits precise measurement and characterization of optical coating materials in the deep-UV wavelength range. Dielectric coating materials exhibit their first electronic interband transition in this spectral range. The Tauc-Lorentz model is a powerful tool with which to parameterize interband absorption above the band edge. The application of this model for the parameterization of the optical absorption of TiO2, Ta2O5, HfO2, Al2O3, and LaF3 thin-film materials is described.
Synthesis and characterization of Mn-Bi alloy
NASA Astrophysics Data System (ADS)
Mishra, Ashutosh; Patil, Harsha; Jain, G.; Mishra, N.
2012-06-01
High purity MnBi low temperature phase has been prepared and analyzed using X-ray diffraction, Lorentz-Polarization Factor and Fourier transforms infrared measurement. After synthesis of samples structural characterization has done on samples by X-ray diffraction, which shows that after making the bulk sample is in no single phase MnBi has been prepared by sintering Mn and Bi powders. By Lorentz-Polarization Factor is affecting the relative intensity of diffraction lines on a powder form. And by FTIR which shows absorption peaks of MnBi alloys.
Causality as an emergent macroscopic phenomenon: The Lee-Wick O(N) model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grinstein, Benjamin; O'Connell, Donal; Wise, Mark B.
2009-05-15
In quantum mechanics the deterministic property of classical physics is an emergent phenomenon appropriate only on macroscopic scales. Lee and Wick introduced Lorentz invariant quantum theories where causality is an emergent phenomenon appropriate for macroscopic time scales. In this paper we analyze a Lee-Wick version of the O(N) model. We argue that in the large-N limit this theory has a unitary and Lorentz invariant S matrix and is therefore free of paradoxes in scattering experiments. We discuss some of its acausal properties.
NASA Astrophysics Data System (ADS)
Membiela, Federico Agustín; Bellini, Mauricio
2010-02-01
Using a semiclassical approach to Gravitoelectromagnetic Inflation (GEMI), we study the origin and evolution of seminal inflaton and electromagnetic fields in the early inflationary universe from a 5D vacuum state. The difference with other previous works is that in this one we use a Lorentz gauge. Our formalism is naturally not conformal invariant on the effective 4D de Sitter metric, which make possible the super adiabatic amplification of magnetic field modes during the early inflationary epoch of the universe on cosmological scales.
Black hole entropy and Lorentz-diffeomorphism Noether charge
NASA Astrophysics Data System (ADS)
Jacobson, Ted; Mohd, Arif
2015-12-01
We show that, in the first or second order orthonormal frame formalism, black hole entropy is the horizon Noether charge for a combination of diffeomorphism and local Lorentz symmetry involving the Lie derivative of the frame. The Noether charge for diffeomorphisms alone is unsuitable, since a regular frame cannot be invariant under the flow of the Killing field at the bifurcation surface. We apply this formalism to Lagrangians polynomial in wedge products of the frame field 1-form and curvature 2-form, including general relativity, Lovelock gravity, and "topological" terms in four dimensions.
Vacuum Cherenkov radiation for Lorentz-violating fermions
NASA Astrophysics Data System (ADS)
Schreck, M.
2017-11-01
The current work focuses on the process of vacuum Cherenkov radiation for Lorentz-violating fermions that are described by the minimal standard-model extension (SME). To date, most considerations of this important hypothetical process have been restricted to Lorentz-violating photons, as the necessary theoretical tools for the SME fermion sector have not been available. With their development in a very recent paper, we are now in a position to compute the decay rates based on a modified Dirac theory. Two realizations of the Cherenkov process are studied. In the first scenario, the spin projection of the incoming fermion is assumed to be conserved, and in the second, the spin projection is allowed to flip. The first type of process is shown to be still forbidden for the dimensionful a and b coefficients where there are strong indications that it is energetically disallowed for the H coefficients, as well. However, it is rendered possible for the dimensionless c , d , e , f , and g coefficients. For large initial fermion energies, the decay rates for the c and d coefficients were found to grow linearly with momentum and to be linearly suppressed by the smallness of the Lorentz-violating coefficient where for the e , f , and g coefficients this suppression is even quadratic. The decay rates vanish in the vicinity of the threshold, as expected. The decay including a fermion spin-flip plays a role for the spin-nondegenerate operators and it was found to occur for the dimensionful b and H coefficients as well as for the dimensionless d and g . The characteristics of this process differ much from the properties of the spin-conserving one, e.g., there is no threshold. Based on experimental data of ultra-high-energy cosmic rays, new constraints on Lorentz violation in the quark sector are obtained from the thresholds. However, it does not seem to be possible to derive bounds from the spin-flip decays. This work reveals the usefulness of the quantum field theoretic methods recently developed to study the phenomenology of high-energy fermions within the framework of the SME.
Takatsuka, Kazuo
2017-02-28
The Longuet-Higgins (Berry) phase arising from nonadiabatic dynamics and the Aharonov-Bohm phase associated with the dynamics of a charged particle in the electromagnetic vector potential are well known to be individually a manifestation of a class of the so-called geometrical phase. We herein discuss another similarity between the force working on a charged particle moving in a magnetic field, the Lorentz force, and a force working on nuclei while passing across a region where they have a strong quantum mechanical kinematic (nonadiabatic) coupling with electrons in a molecule. This kinematic force is indeed akin to the Lorentz force in that its magnitude is proportional to the velocity of the relevant nuclei and works in the direction perpendicular to its translational motion. Therefore this Lorentz-like nonadiabatic force is realized only in space of more or equal to three dimensions, thereby highlighting a truly multi-dimensional effect of nonadiabatic interaction. We investigate its physical significance qualitatively in the context of breaking of molecular spatial symmetry, which is not seen otherwise without this force. This particular symmetry breaking is demonstrated in application to a coplanar collision between a planar molecule and an atom sharing the same plane. We show that the atom is guided by this force to the direction out from the plane, resulting in a configuration that distinguishes one side of the mirror plane from the other. This can serve as a trigger for the dynamics towards molecular chirality.
Lorentz symmetry breaking in a cosmological context
NASA Astrophysics Data System (ADS)
Gresham, Moira I.
This thesis is comprised primarily of work from three independent papers, written in collaboration with Sean Carroll, Tim Dulaney, and Heywood Tam. The original motivation for the projects undertaken came from revisiting the standard assumption of spatial isotropy during inflation. Each project relates to the spontaneous breaking of Lorentz symmetry---in early Universe cosmology or in the context of effective field theory, in general. Chapter 1 is an introductory chapter that provides context for the thesis. Chapter 2 is an investigation of the stability of theories in which Lorentz invariance is spontaneously broken by fixed-norm vector "aether" fields. It is shown that models with generic kinetic terms are plagued either by ghosts or by tachyons, and are therefore physically unacceptable. Chapter 3 is an investigation of the phenomenological properties of the one low-energy effective theory of spontaneous Lorentz symmetry breaking found in the previous chapter to have a globally bounded Hamiltonian and a perturbatively stable vacuum---the theory in which the Lagrangian takes the form of a sigma model. In chapter 4 cosmological perturbations in a dynamical theory of inflation in which an Abelian gauge field couples directly to the inflaton are examined. The dominant effects of a small, persistent anisotropy on the primordial gravitational wave and curvature perturbation power spectra are found using the "in-in" formalism of perturbation theory. It is found that the primordial power spectra of cosmological perturbations gain significant direction dependence and that the fractional direction dependence of the tensor power spectrum is suppressed in comparison to that of the scalar power spectrum.
A limit on the variation of the speed of light arising from quantum gravity effects
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2009-10-28
A cornerstone of Einstein's special relativity is Lorentz invariance—the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l Planck ≈ 1.62 x 10 -33 cm or E Planck = M Planckc 2 ≈ 1.22 x 10 19 GeV), at which quantum effects are expected to strongly affect the nature of space–time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale.more » A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in γ-ray burst (GRB) light-curves. In this paper, we report the detection of emission up to ~31 GeV from the distant and short GRB 090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E Planck on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l Planck/1.2 on the length scale of the effect). Finally, our results disfavour quantum-gravity theories in which the quantum nature of space–time on a very small scale linearly alters the speed of light.« less
A limit on the variation of the speed of light arising from quantum gravity effects.
Abdo, A A; Ackermann, M; Ajello, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Bloom, E D; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burgess, J M; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaplin, V; Charles, E; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Connaughton, V; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dingus, B L; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Fishman, G; Focke, W B; Foschini, L; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Gibby, L; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Granot, J; Greiner, J; Grenier, I A; Grondin, M-H; Grove, J E; Grupe, D; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hoversten, E A; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Kippen, R M; Knödlseder, J; Kocevski, D; Kouveliotou, C; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McBreen, S; McEnery, J E; McGlynn, S; Mészáros, P; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Petrosian, V; Piron, F; Porter, T A; Preece, R; Rainò, S; Ramirez-Ruiz, E; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Stecker, F W; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Toma, K; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Uehara, T; Usher, T L; van der Horst, A J; Vasileiou, V; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Wang, P; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M
2009-11-19
A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximately 1.62 x 10(-33) cm or E(Planck) = M(Planck)c(2) approximately 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves. Here we report the detection of emission up to approximately 31 GeV from the distant and short GRB 090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories in which the quantum nature of space-time on a very small scale linearly alters the speed of light.
Implications of an Absolute Simultaneity Theory for Cosmology and Universe Acceleration
Kipreos, Edward T.
2014-01-01
An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift–distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe. PMID:25536116
Energy scale of Lorentz violation in Rainbow Gravity
NASA Astrophysics Data System (ADS)
Nilsson, Nils A.; Dąbrowski, Mariusz P.
2017-12-01
We modify the standard relativistic dispersion relation in a way which breaks Lorentz symmetry-the effect is predicted in a high-energy regime of some modern theories of quantum gravity. We show that it is possible to realise this scenario within the framework of Rainbow Gravity which introduces two new energy-dependent functions f1(E) and f2(E) into the dispersion relation. Additionally, we assume that the gravitational constant G and the cosmological constant Λ also depend on energy E and introduce the scaling function h(E) in order to express this dependence. For cosmological applications we specify the functions f1 and f2 in order to fit massless particles which allows us to derive modified cosmological equations. Finally, by using Hubble+SNIa+BAO(BOSS+Lyman α)+CMB data, we constrain the energy scale ELV to be at least of the order of 1016 GeV at 1 σ which is the GUT scale or even higher 1017 GeV at 3 σ. Our claim is that this energy can be interpreted as the decoupling scale of massless particles from spacetime Lorentz violating effects.
A MAD Explanation for the Correlation between Bulk Lorentz Factor and Minimum Variability Timescale
NASA Astrophysics Data System (ADS)
Lloyd-Ronning, Nicole; Lei, Wei-hua; Xie, Wei
2018-04-01
We offer an explanation for the anti-correlation between the minimum variability timescale (MTS) in the prompt emission light curve of gamma-ray bursts (GRBs) and the estimated bulk Lorentz factor of these GRBs, in the context of a magnetically arrested disk (MAD) model. In particular, we show that previously derived limits on the maximum available energy per baryon in a Blandford-Znajek jet leads to a relationship between the characteristic MAD timescale in GRBs and the maximum bulk Lorentz factor: tMAD∝Γ-6, somewhat steeper than (although within the error bars of) the fitted relationship found in the GRB data. Similarly, the MAD model also naturally accounts for the observed anti-correlation between MTS and gamma-ray luminosity L in the GRB data, and we estimate the accretion rates of the GRB disk (given these luminosities) in the context of this model. Both of these correlations (MTS - Γ and MTS - L) are also observed in the AGN data, and we discuss the implications of our results in the context of both GRB and blazar systems.
Temperature-driven band inversion in Pb 0.77 Sn 0.23 Se : Optical and Hall effect studies
Anand, Naween; Buvaev, Sanal; Hebard, A. F.; ...
2014-12-23
Optical and Hall-effect measurements have been performed on single crystals of Pb₀.₇₇Sn₀.₂₃Se, a IV-VI mixed chalcogenide. The temperature dependent (10–300 K) reflectance was measured over 40–7000 cm⁻¹ (5–870 meV) with an extension to 15,500 cm⁻¹ (1.92 eV) at room temperature. The reflectance was fit to the Drude-Lorentz model using a single Drude component and several Lorentz oscillators. The optical properties at the measured temperatures were estimated via Kramers-Kronig analysis as well as by the Drude-Lorentz fit. The carriers were p-type with the carrier density determined by Hall measurements. A signature of valence intraband transition is found in the low-energy opticalmore » spectra. It is found that the valence-conduction band transition energy as well as the free carrier effective mass reach minimum values at 100 K, suggesting temperature-driven band inversion in the material. Thus, density function theory calculation for the electronic band structure also make similar predictions.« less
Implications of an absolute simultaneity theory for cosmology and universe acceleration.
Kipreos, Edward T
2014-01-01
An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.
Electrodeless plasma thrusters for spacecraft: A review
NASA Astrophysics Data System (ADS)
Bathgate, S. N.; Bilek, M. M. M.; McKenzie, D. R.
2017-08-01
The physics of electrodeless electric thrusters that use directed plasma to propel spacecraft without employing electrodes subject to plasma erosion is reviewed. Electrodeless plasma thrusters are potentially more durable than presently deployed thrusters that use electrodes such as gridded ion, Hall thrusters, arcjets and resistojets. Like other plasma thrusters, electrodeless thrusters have the advantage of reduced fuel mass compared to chemical thrusters that produce the same thrust. The status of electrodeless plasma thrusters that could be used in communications satellites and in spacecraft for interplanetary missions is examined. Electrodeless thrusters under development or planned for deployment include devices that use a rotating magnetic field; devices that use a rotating electric field; pulsed inductive devices that exploit the Lorentz force on an induced current loop in a plasma; devices that use radiofrequency fields to heat plasmas and have magnetic nozzles to accelerate the hot plasma and other devices that exploit the Lorentz force. Using metrics of specific impulse and thrust efficiency, we find that the most promising designs are those that use Lorentz forces directly to expel plasma and those that use magnetic nozzles to accelerate plasma.
NASA Astrophysics Data System (ADS)
Pihan-Le Bars, H.; Guerlin, C.; Lasseri, R.-D.; Ebran, J.-P.; Bailey, Q. G.; Bize, S.; Khan, E.; Wolf, P.
2017-04-01
We introduce an improved model that links the frequency shift of the 133Cs hyperfine Zeeman transitions |F =3 ,mF ⟩↔|F =4 ,mF ⟩ to the Lorentz-violating Standard Model extension (SME) coefficients of the proton and neutron. The new model uses Lorentz transformations developed to second order in boost and additionally takes the nuclear structure into account, beyond the simple Schmidt model used previously in Standard Model extension analyses, thereby providing access to both proton and neutron SME coefficients including the isotropic coefficient c˜T T. Using this new model in a second analysis of the data delivered by the FO2 dual Cs/Rb fountain at Paris Observatory and previously analyzed in [1], we improve by up to 13 orders of magnitude the present maximum sensitivities for laboratory tests [2] on the c˜Q, c˜T J, and c˜T T coefficients for the neutron and on the c˜Q coefficient for the proton, reaching respectively 10-20, 10-17, 10-13, and 10-15 GeV .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji
We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relationsmore » for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.« less
Optical parameters of Ge15Sb5Se80 and Ge15Sb5Te80 from ellipsometric measurements
NASA Astrophysics Data System (ADS)
Abdel-Wahab, F.; Ashraf, I. M.; Alomairy, S. E.
2018-02-01
The optical properties of Ge15Sb5Se80 (GSS) and Ge15Sb5Te80 (GST) films prepared by thermal evaporation method were investigated in the photon energy range from 0.9 eV to 5 eV by using a variable-angle spectroscopic ellipsometer. Combinations of multiple Gaussian, and Tauc-Lorentz or Cody-Lorentz dispersion functions are used to fit the experimental data. The models' parameters (Lorentz oscillator amplitude, resonance energy, oscillator width, optical band gap, and Urbach energy) of both GSS and GST films were calculated. Refractive indices and extinction coefficients of the films were determined. Analysis of the absorption coefficient shows that the optical absorption edge of GSS and GST films to be 1.6 eV and 0.89 eV, respectively. Manca's relation based on mean bond energy and the bond statistics of chemically ordered model (COM) and random covalent network model (CRNM) is applied for the estimation of the optical band gap (Eg) of the investigated films. A good agreement between experimental and calculated Eg is obtained.
Evaluation of actuators for the SDOF and MDOF active microgravity isolation systems
NASA Technical Reports Server (NTRS)
1993-01-01
The University of Virginia examined the design of actuators for both single-degree-of-freedom (SDOF) and multiple-degree-of-freedom (MDOF) active microgravity isolation systems. For SDOF systems, two actuators were considered: a special large gap magnetic actuator and a large stroke Lorentz actuator. The magnetic actuator was viewed to be of greater difficulty than the Lorentz actuator with little compelling technical advantage and was dropped from consideration. A Lorentz actuator was designed and built for the SDOF test rig using magnetic circuit and finite element analysis. The design and some experimental results are discussed. The University also examined the design of actuators for MDOF isolation systems. This includes design of an integrated 1 cm gap 6-DOF noncontacting magnetic suspension system and of a 'coarse' follower which permits the practical extension of magnetic suspension to large strokes. The proposed 'coarse' actuator was a closed kinematic chain manipulator known as a Stewart Platform. The integration of the two isolation systems together, the isolation tasks assigned to each, and possible control architectures were also explored. The results of this research are examined.
Development and Comparison of Mechanical Structures for FNAL 15 T Nb$$_3$$Sn Dipole Demonstrator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novitski, I.; Zlobin, A. V.
2016-11-08
Main design challenges for 15 T accelerator magnets are large Lorentz forces at this field level. The large Lorentz forces generate high stresses in the coil and mechanical structure and, thus, need stress control to maintain them at the acceptable level for brittle Nb3Sn coils and other elements of magnet mechanical structure. To provide these conditions and achieve the design field in the FNAL 15 T dipole demonstrator, several mechanical structures have been developed and analysed. The possibilities and limitations of these designs are discussed in this paper
Phenomenological constraints on A N in p ↑ p → π X from Lorentz invariance relations
Gamberg, Leonard; Kang, Zhong-Bo; Pitonyak, Daniel; ...
2017-04-27
Here, we present a new analysis of A N in p ↑ p → πX within the collinear twist-3 factorization formalism. We incorporate recently derived Lorentz invariance relations into our calculation and focus on input from the kinematical twist-3 functions, which are weighted integrals of transverse momentum dependent (TMD) functions. Particularly, we use the latest extractions of the Sivers and Collins functions with TMD evolution to compute certain terms in AN . Consequently, we are able to constrain the remaining contributions from the lesser known dynamical twist-3 correlators.
NASA Astrophysics Data System (ADS)
Yamamoto, Kazuo; Hogg, Charles R.; Yamamuro, Saeki; Hirayama, Tsukasa; Majetich, Sara A.
2011-02-01
Dipolar ferromagnetism formed in Fe3O4 nanoparticle arrays is revealed by Fresnel Lorentz microscopy and electron holography. Dipolar domain walls do not lie preferentially along macrograin boundaries but depend on the overall shape of the assembly, meaning magnetostatic energy dominates. The domain structures are imaged at different temperatures for both monolayer and bilayer arrays. The domain wall contrast in the monolayer region is visible until 575 °C, and the magnetic order parameter steeply drops toward the temperature. In the bilayer region, finer and more complicated domains are formed.
Lorentz Symmetry Violations from Matter-Gravity Couplings with Lunar Laser Ranging
NASA Astrophysics Data System (ADS)
Bourgoin, A.; Le Poncin-Lafitte, C.; Hees, A.; Bouquillon, S.; Francou, G.; Angonin, M.-C.
2017-11-01
The standard-model extension (SME) is an effective field theory framework aiming at parametrizing any violation to the Lorentz symmetry (LS) in all sectors of physics. In this Letter, we report the first direct experimental measurement of SME coefficients performed simultaneously within two sectors of the SME framework using lunar laser ranging observations. We consider the pure gravitational sector and the classical point-mass limit in the matter sector of the minimal SME. We report no deviation from general relativity and put new realistic stringent constraints on LS violations improving up to 3 orders of magnitude previous estimations.
NASA Astrophysics Data System (ADS)
Berruto, G.; Madan, I.; Murooka, Y.; Vanacore, G. M.; Pomarico, E.; Rajeswari, J.; Lamb, R.; Huang, P.; Kruchkov, A. J.; Togawa, Y.; LaGrange, T.; McGrouther, D.; Rønnow, H. M.; Carbone, F.
2018-03-01
We demonstrate that light-induced heat pulses of different duration and energy can write Skyrmions in a broad range of temperatures and magnetic field in FeGe. Using a combination of camera-rate and pump-probe cryo-Lorentz transmission electron microscopy, we directly resolve the spatiotemporal evolution of the magnetization ensuing optical excitation. The Skyrmion lattice was found to maintain its structural properties during the laser-induced demagnetization, and its recovery to the initial state happened in the sub-μ s to μ s range, depending on the cooling rate of the system.
Liberati, Stefano; Maccione, Luca; Sotiriou, Thomas P
2012-10-12
Hořava-Lifshitz gravity models contain higher-order operators suppressed by a characteristic scale, which is required to be parametrically smaller than the Planck scale. We show that recomputed synchrotron radiation constraints from the Crab Nebula suffice to exclude the possibility that this scale is of the same order of magnitude as the Lorentz breaking scale in the matter sector. This highlights the need for a mechanism that suppresses the percolation of Lorentz violation in the matter sector and is effective for higher-order operators as well.
Analysis of Hanle-effect signals observed in Si-channel spin accumulation devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takamura, Yota, E-mail: takamura@spin.pe.titech.ac.jp; Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552; Akushichi, Taiju
2014-05-07
We reexamined curve-fitting analysis for spin-accumulation signals observed in Si-channel spin-accumulation devices, employing widely-used Lorentz functions and a new formula developed from the spin diffusion equation. A Si-channel spin-accumulation device with a high quality ferromagnetic spin injector was fabricated, and its observed spin-accumulation signals were verified. Experimentally obtained Hanle-effect signals for spin accumulation were not able to be fitted by a single Lorentz function and were reproduced by the newly developed formula. Our developed formula can represent spin-accumulation signals and thus analyze Hanle-effect signals.
2007-06-01
Phys. Lett., vol. 87, p. 162505, 2005. [2] J. L. Macmanus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. E. Hawley ...B. Maiorov, L. Civale, Y. Lin, M. E. Hawley , M. P. Maley, and D. E. Peterson, “Systematic enhancement of in-field critical current density with rare...16, p. 162 507–1, 2005. [15] H. Safar, J. Y. Coulter, M. P. Maley, S. R. Foltyn, P. N. Arendt, X. D. Wu, and J. O. Willis , “Anisotropy and Lorentz
Random-walk approach to the d -dimensional disordered Lorentz gas
NASA Astrophysics Data System (ADS)
Adib, Artur B.
2008-02-01
A correlated random walk approach to diffusion is applied to the disordered nonoverlapping Lorentz gas. By invoking the Lu-Torquato theory for chord-length distributions in random media [J. Chem. Phys. 98, 6472 (1993)], an analytic expression for the diffusion constant in arbitrary number of dimensions d is obtained. The result corresponds to an Enskog-like correction to the Boltzmann prediction, being exact in the dilute limit, and better or nearly exact in comparison to renormalized kinetic theory predictions for all allowed densities in d=2,3 . Extensive numerical simulations were also performed to elucidate the role of the approximations involved.
Observation of three-component fermions in the topological semimetal molybdenum phosphide.
Lv, B Q; Feng, Z-L; Xu, Q-N; Gao, X; Ma, J-Z; Kong, L-Y; Richard, P; Huang, Y-B; Strocov, V N; Fang, C; Weng, H-M; Shi, Y-G; Qian, T; Ding, H
2017-06-29
In quantum field theory, Lorentz invariance leads to three types of fermion-Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.
Observation of three-component fermions in the topological semimetal molybdenum phosphide
NASA Astrophysics Data System (ADS)
Lv, B. Q.; Feng, Z.-L.; Xu, Q.-N.; Gao, X.; Ma, J.-Z.; Kong, L.-Y.; Richard, P.; Huang, Y.-B.; Strocov, V. N.; Fang, C.; Weng, H.-M.; Shi, Y.-G.; Qian, T.; Ding, H.
2017-06-01
In quantum field theory, Lorentz invariance leads to three types of fermion—Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.
NASA Astrophysics Data System (ADS)
Reich, Felix A.; Rickert, Wilhelm; Stahn, Oliver; Müller, Wolfgang H.
2017-03-01
Based on the principles of rational continuum mechanics and electrodynamics (see Truesdell and Toupin in Handbuch der Physik, Springer, Berlin, 1960 or Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000), we present closed-form solutions for the mechanical displacements and stresses of two different magnets. Both magnets are initially of spherical shape. The first (hard) magnet is uniformly magnetized and deforms due to the field induced by the magnetization. In the second problem of a (soft) linear-magnetic sphere, the deformation is caused by an applied external field, giving rise to magnetization. Both problems can be used for modeling parts of general magnetization processes. We will address the similarities between both settings in context with the solutions for the stresses and displacements. In both problems, the volumetric Lorentz force density vanishes. However, a Lorentz surface traction is present. This traction is determined from the magnetic flux density. Since the obtained displacements and stresses are small in magnitude, we may use Hooke's law with a small-strain approximation, resulting in the Lamé- Navier equations of linear elasticity theory. If gravity is neglected and azimuthal symmetry is assumed, these equations can be solved in terms of a series. This has been done by Hiramatsu and Oka (Int J Rock Mech Min Sci Geomech Abstr 3(2):89-90, 1966) before. We make use of their series solution for the displacements and the stresses and expand the Lorentz tractions of the analyzed problems suitably in order to find the expansion coefficients. The resulting algebraic system yields finite numbers of nonvanishing coefficients. Finally, the resulting stresses, displacements, principal strains and the Lorentz tractions are illustrated and discussed.
Constraining the High-Energy Emission from Gamma-Ray Bursts with Fermi
NASA Technical Reports Server (NTRS)
Gehrels, Neil; Harding, A. K.; Hays, E.; Racusin, J. L.; Sonbas, E.; Stamatikos, M.; Guirec, S.
2012-01-01
We examine 288 GRBs detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field-of-view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the nuF(sub v) spectra (E(sub pk)). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E(sub pk) than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cut-off in their high-energy spectra, which if assumed to be due to gamma gamma attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.
Prompt gamma-ray emission of GRB 170817A associated to GW 170817: A consistent picture
NASA Astrophysics Data System (ADS)
Ziaeepour, Houri
2018-05-01
The short GRB 170817A associated to the first detection of gravitation waves from a Binary Neutron Star (BNS) merger was in many ways unusual. Possible explanations are emission from a cocoon or cocoon break out, off-axis view of a structured or uniform jet, and on-axis ultra-relativistic jet with reduced density and Lorentz factor. Here we use a phenomenological model of shock evolution and synchrotron/self-Compton emission to simulate the prompt emission of GRB 170817A and to test above proposals. We find that synchrotron emission from a mildly relativistic cocoon with a Lorentz factor of 2-3, as considered in the literature, generates a too soft, too long, and too bright prompt emission. Off-axis view of an structured jet with a Lorentz factor of about 10 can reproduce observations, but needs a very efficient transfer of kinetic energy to electrons in internal shocks, which is disfavored by particle in cell simulations. We also comment on cocoon breakout as a mechanism for generation of the prompt gamma-ray. A relativistic jet with a Lorentz factor of about 100 and a density lower than typical short GRBs seems to be the most plausible model and we conclude that GRB 170817A was intrinsically faint. Based on this result and findings of relativistic magnetohydrodynamics simulations of BNS merger in the literature we discuss physical and astronomical conditions, which may lead to such faint short GRBs. We identify small mass difference of progenitor neutron stars, their old age and reduced magnetic field, and anti-alignment of spin-orbit angular momentum induced by environmental gravitational disturbances during the lifetime of the BNS as causes for the faintness of GRB 170817A. We predict that BNS mergers at lower redshifts generate on average fainter GRBs.
Constraining the high-energy emission from gamma-ray bursts with Fermi
Ackermann, M.; Ajello, M.; Baldini, L.; ...
2012-07-17
Here, we examine 288 gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field of view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We also compare these limits with the fluxes that would be expected from extrapolations of spectral fitsmore » presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the νF ν spectra (E pk). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E pk than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cutoff in their high-energy spectra, which if assumed to be due to γγ attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. Furthermore, all of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.« less
Lorentzian Goldstone modes shared among photons and gravitons
NASA Astrophysics Data System (ADS)
Chkareuli, J. L.; Jejelava, J.; Kepuladze, Z.
2018-02-01
It has long been known that photons and gravitons may appear as vector and tensor Goldstone modes caused by spontaneous Lorentz invariance violation (SLIV). Usually this approach is considered for photons and gravitons separately. We develop the emergent electrogravity theory consisting of the ordinary QED and the tensor-field gravity model which mimics the linearized general relativity in Minkowski spacetime. In this theory, Lorentz symmetry appears incorporated into higher global symmetries of the length-fixing constraints put on the vector and tensor fields involved, A_{μ }2=± MA2 and H_{μ ν }2=± MH2 (MA and MH are the proposed symmetry breaking scales). We show that such a SLIV pattern being related to breaking of global symmetries underlying these constraints induces the massless Goldstone and pseudo-Goldstone modes shared by photon and graviton. While for a vector field case the symmetry of the constraint coincides with Lorentz symmetry SO(1, 3) of the electrogravity Lagrangian, the tensor-field constraint itself possesses much higher global symmetry SO(7, 3), whose spontaneous violation provides a sufficient number of zero modes collected in a graviton. Accordingly, while the photon may only contain true Goldstone modes, the graviton appears at least partially to be composed of pseudo-Goldstone modes rather than of pure Goldstone ones. When expressed in terms of these modes, the theory looks essentially nonlinear and contains a variety of Lorentz and CPT violating couplings. However, all SLIV effects turn out to be strictly cancelled in the lowest order processes considered in some detail. How this emergent electrogravity theory could be observationally different from conventional QED and GR theories is also briefly discussed.
Constraining the High-energy Emission from Gamma-Ray Bursts with Fermi
NASA Astrophysics Data System (ADS)
Fermi Large Area Telescope Team; Ackermann, M.; Ajello, M.; Baldini, L.; Barbiellini, G.; Baring, M. G.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Brigida, M.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cutini, S.; D'Ammando, F.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Granot, J.; Grenier, I. A.; Grove, J. E.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hays, E.; Horan, D.; Jóhannesson, G.; Kataoka, J.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J.; McGlynn, S.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Ritz, S.; Ryde, F.; Sgrò, C.; Siskind, E. J.; Sonbas, E.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Stawarz, Łukasz; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Tosti, G.; Uehara, T.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Fermi Gamma-ray Burst Monitor Team; Connaughton, V.; Briggs, M. S.; Guirec, S.; Goldstein, A.; Burgess, J. M.; Bhat, P. N.; Bissaldi, E.; Camero-Arranz, A.; Fishman, J.; Fitzpatrick, G.; Foley, S.; Gruber, D.; Jenke, P.; Kippen, R. M.; Kouveliotou, C.; McBreen, S.; Meegan, C.; Paciesas, W. S.; Preece, R.; Rau, A.; Tierney, D.; van der Horst, A. J.; von Kienlin, A.; Wilson-Hodge, C.; Xiong, S.
2012-08-01
We examine 288 gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field of view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the νF ν spectra (E pk). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E pk than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cutoff in their high-energy spectra, which if assumed to be due to γγ attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.
The role of radiation reaction in Lienard-Wiechert description of FEL interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimel, I.; Elias, L.R.
1995-12-31
The most common theoretical analysis of the FEL interaction is based on the set of equations consisting of Lorentz and wave equations. This approach explains most of FEL features and, in particular, works well to describe operation in the amplifier mode. In that approach however, there are some difficulties in describing operation in oscillator mode, as well as self amplified spontaneous emission. In particular, it is not possible to describe the start up stage since there is no wave to start with. It is clear that a different approach is required in such situations. That is why we have pursuedmore » the study of the FEL interaction in the framework of Lorentz plus Lienard-Wiechert equations. The Lienard-Wiechert Lorentz equation approach however, presents its own set of problems. Variation in energy of the electrons is given exclusively by the Lorentz equation. Thus, the energy lost due to the radiation process is not properly taken into account. This, of course, is a long standing problem in classical electrodynamics. In order to restore energy conservation radiation reaction has to be incorporated into the framework. The first question in that regard has to do with which form of the radiation reaction equations is the most convenient for computations in the FEL process. This has to do with the fact that historically, radiation reaction has been added in an ad hoc manner instead of being derived from the fundamental equations. Another problem discussed is how to take into account the radiation reaction in a collective manner in the interaction among electrons. Also discussed is the radiation reaction vis a vi the coherence properties of the FEL process.« less
Non-compact nonlinear sigma models
NASA Astrophysics Data System (ADS)
de Rham, Claudia; Tolley, Andrew J.; Zhou, Shuang-Yong
2016-09-01
The target space of a nonlinear sigma model is usually required to be positive definite to avoid ghosts. We introduce a unique class of nonlinear sigma models where the target space metric has a Lorentzian signature, thus the associated group being non-compact. We show that the would-be ghost associated with the negative direction is fully projected out by 2 second-class constraints, and there exist stable solutions in this class of models. This result also has important implications for Lorentz-invariant massive gravity: There exist stable nontrivial vacua in massive gravity that are free from any linear vDVZ-discontinuity and a Λ2 decoupling limit can be defined on these vacua.
Lorentz-invariant formulation of Cherenkov radiation by tachyons
NASA Technical Reports Server (NTRS)
Jones, F. C.
1972-01-01
Previous treatments of Cherenkov radiation, electromagnetic and gravitational, by tachyons were in error because the prescription employed to cut off the divergent integral over frequency is not a Lorentz invariant procedure. The resulting equation of motion for the tachyon is therefore not covariant. The proper procedure requires an extended, deformable distribution of charge or mass and yields a particularly simple form for the tachyon's world line, one that could be deduced from simple invariance considerations. It is shown that Cherenkov radiation by tachyons implys their ultimate annihilation with an antitachyon and demonstrates a disturbing property of tachyons, namely the impossibility of specifying arbitrary Cauchy data even in a purely classical theory.
Uniqueness of the Isotropic Frame and Usefulness of the Lorentz Transformation
NASA Astrophysics Data System (ADS)
Choi, Yang-Ho
2018-05-01
According to the postulates of the special theory of relativity (STR), physical quantities such as proper times and Doppler shifts can be obtained from any inertial frame by regarding it as isotropic. Nonetheless many inconsistencies arise from the postulates, as shown in this paper. However, there are numerous experimental results that agree with the predictions of STR. It is explained why they are accurate despite the inconsistencies. The Lorentz transformation (LT), unless subject to the postulates of STR, may be a useful method to approach physics problems. As an example to show the usefulness of LT, the problem of the generalized Sagnac effect is solved by utilizing it.
NASA Astrophysics Data System (ADS)
Correnti, Dan S.
2018-06-01
The underlying mechanisms of the fundamental electric and magnetic forces are not clear in current models; they are mainly mathematical constructs. This study examines the underlying physics from a classical viewpoint to explain Coulomb's electric force and Lorentz's magnetic force. This is accomplished by building upon already established physics. Although no new physics is introduced, extension of existing models is made by close examination. We all know that an electron carries a bound cylindrical B-field (CBF) as it translates. Here, we show how the electron CBF plays an intrinsic role in the generation of the electric and magnetic forces.
Analysis of the linearity of half periods of the Lorentz pendulum
NASA Astrophysics Data System (ADS)
Wickramasinghe, T.; Ochoa, R.
2005-05-01
We analyze the motion of the Lorentz pendulum, a simple pendulum whose length is changed at a constant rate k. We show both analytically and numerically that the half period Tn, the time between half oscillations as measured from midpoint to midpoint, increases linearly with the oscillation number n such that Tn+1-Tn≈kπ2/2g, where g is the acceleration due to gravity. A video camera is used to record the motion of the oscillating bob of the pendulum and verify the linearity of Tn with oscillation number. The theory and the experiment are suitable for an advanced undergraduate laboratory.
Neutrino-antineutrino oscillations as a possible solution for the LSND and MiniBooNE anomalies?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollenberg, Sebastian; Micu, Octavian; Paes, Heinrich
2009-09-01
We investigate resonance structures in CPT and Lorentz symmetry-violating neutrino-antineutrino oscillations in a two generation framework. The neutrino-antineutrino oscillations are induced by Lorentz- and CPT-violating terms in the Hamiltonian. The resonances are suitably described in terms of charge conjugation eigenstates of the system. The relations among the flavor, charge conjugation and mass eigenbasis of neutrino-antineutrino oscillations are examined along with the interplay between the available CPT-violating parameter space and possible resonance structures. Eventually we remark on the consequences of such scenarios for neutrino oscillation experiments, namely, possible solutions for the LSND and MiniBooNE anomalies.
Mechanical design and analysis of a low beta squeezed half-wave resonator
NASA Astrophysics Data System (ADS)
He, Shou-Bo; Zhang, Cong; Yue, Wei-Ming; Wang, Ruo-Xu; Xu, Meng-Xin; Wang, Zhi-Jun; Huang, Shi-Chun; Huang, Yu-Lu; Jiang, Tian-Cai; Wang, Feng-Feng; Zhang, Sheng-Xue; He, Yuan; Zhang, Sheng-Hu; Zhao, Hong-Wei
2014-08-01
A superconducting squeezed type half-wave resonator (HWR) of β=0.09 has been developed at the Institute of Modern Physics, Lanzhou. In this paper, a basic design is presented for the stiffening structure for the detuning effect caused by helium pressure and Lorentz force. The mechanical modal analysis has been investigated the with finite element method (FEM). Based on these considerations, a new stiffening structure is proposed for the HWR cavity. The computation results concerning the frequency shift show that the low beta HWR cavity with new stiffening structure has low frequency sensitivity coefficient df/dp and Lorentz force detuning coefficient KL, and stable mechanical properties.
Casimir effect in presence of spontaneous Lorentz symmetry breaking
NASA Astrophysics Data System (ADS)
Escobar, C. A.
2018-01-01
The Casimir effect is one of the most remarkable consequences of the nonzero vacuum energy predicted by quantum field theory. In this contribution we study the Lorentz-violation effects of the minimal standard-model extension on the Casimir force between two parallel conducting plates in the vacuum. Using a perturbative method, we compute the relevant Green’s function which satisfies given boundary conditions. The standard point-splitting technique allow us to express the vacuum expectation value of the stress-energy tensor in terms of this Green’s function. Finally, we study the Casimir energy and the Casimir force paying particular attention to the quantum effects as approaching the plates.
NASA Technical Reports Server (NTRS)
Kazanas, D.; Georganopoulos, M.; Mastichladis, A.
2003-01-01
We propose a process by which the kinetic energy of the protons, that carry most of the energy of GRB relativistic blast waves (RBW) of Lorentz factor is converted explosively into relativistic electrons of the same Lorentz factor, which subsequently produce the observed prompt gamma-ray emission of the burst. This conversion is the result of the combined effects of the reflection of photons produced within the flow by upstream located matter, their re-interception and conversion into e(+) e(-) pairs on the RBW by the p gamma (right arrow) p e(+) e(-) reaction.
Constraining spacetime nonmetricity with Lorentz-violation methods
NASA Astrophysics Data System (ADS)
Xiao, Zhi; Lehnert, Ralf; Snow, W. M.; Xu, Rui
2018-01-01
In this report, we will give the first constraints on in-matter nonmetricity. We will show how the effective-field-theory (EFT) toolbox developed for the study of Lorentz violation (LV) can be employed for investigations of the “effective LV” background caused by nonmetricity, a geometric object extending the notion of a Riemannian manifold. The idea is to probe for the effects of spacetime nonmetricity sourced by liquid 4He with polarized slow neutrons. We present the first constraints on isotropic and parity-odd nonmetricity components. Further constraints on anisotropic nonmetricity components within this EFT framework may be feasible with proper experimental techniques in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akushichi, T., E-mail: taiju.aku7@isl.titech.ac.jp; Shuto, Y.; Sugahara, S., E-mail: sugahara@isl.titech.ac.jp
We investigate spin injection into Si channels using three-terminal spin-accumulation (3T-SA) devices with high-quality CoFe/MgO/n-Si and CoFe/AlO{sub x}/n-Si tunnel spin-injectors whose tunnel barriers are formed by radical oxidation of Mg and Al thin films deposited on Si(100) substrates and successive annealing under radical-oxygen exposure. When the MgO and AlO{sub x} barriers are not treated by the radical-oxygen annealing, the Hanle-effect signals obtained from the 3T-SA devices are closely fitted by a single Lorentz function representing a signal due to trap spins. On the other hand, when the tunnel barriers are annealed under radical-oxygen exposure, the Hanle-effect signals can be accuratelymore » fitted by the superposition of a Lorentz function and a non-Lorentz function representing a signal due to accumulated spins in the Si channel. These results suggest that the quality improvement of tunnel barriers treated by radical-oxygen annealing is highly effective for spin-injection into Si channels.« less
Attitude stabilization of a spacecraft equipped with large electrostatic protection screens
NASA Astrophysics Data System (ADS)
Nikitin, D. Yu.; Tikhonov, A. A.
2018-05-01
A satellite with a system of three electrostatic radiation protection (ERP) screens is under consideration. The screens are constructed as electrostatically charged toroidal shields with characteristic size of order equal to 100 m. The interaction of electric charge with the Earth's magnetic field (EMF) give rise to the Lorentz torque acting upon a satellite attitude motion. As the sizes of ERP system are large, we derive the Lorentz torque taking into account the complex form of ERP screens and gradient of the EMF in the screen volume. It is assumed that the satellite center of charge coincides with the satellite mass center. The EMF is modeled by the straight magnetic dipole. In the paper we investigate the usage of Lorentz torque for passive attitude stabilization for satellite in a circular equatorial orbit. Mathematical model for attitude dynamics of a satellite equipped with ERP interacting with the EMF is derived and first integral of corresponding differential equations is constructed. The straight equilibrium position of the satellite in the orbital frame is found. Sufficient conditions for stability of satellite equilibrium position are constructed with the use of the first integral. The gravity gradient torque is taken into account. The satellite equilibrium stability domain is constructed.
Seismic sensitivity of normal-mode coupling to Lorentz stresses in the Sun
NASA Astrophysics Data System (ADS)
Hanasoge, Shravan M.
2017-09-01
Understanding the governing mechanism of solar magnetism remains an outstanding challenge in astrophysics. Seismology is the most compelling technique to infer the internal properties of the Sun and stars. Waves in the Sun, nominally acoustic, are sensitive to the emergence and cyclical strengthening of magnetic field, evidenced by measured changes in resonant oscillation frequencies that are correlated with the solar cycle. The inference of internal Lorentz stresses from these measurements has the potential to significantly advance our appreciation of the dynamo. Indeed, seismological inverse theory for the Sun is well understood for perturbations in composition, thermal structure and flows but, is not fully developed for magnetism, owing to the complexity of the ideal magnetohydrodynamic (MHD) equation. Invoking first-Born perturbation theory to characterize departures from spherically symmetric hydrostatic models of the Sun and applying the notation of generalized spherical harmonics, we calculate sensitivity functions of seismic measurements to the general time-varying Lorentz stress tensor. We find that eigenstates of isotropic (I.e. acoustic only) background models are dominantly sensitive to isotropic deviations in the stress tensor and much more weakly than anisotropic stresses (and therefore challenging to infer). The apple cannot fall far from the tree.
NASA Astrophysics Data System (ADS)
Graneau, P.
1984-03-01
The Ampere electrodynamics of metallic conductors and experiments supporting it predict that the interaction of a current-carrying wire with its own magnetic field should produce longitudinal mechanical forces in the conductor, existing in addition to the transverse Lorentz forces. The longitudinal forces should stretch the conductor and have been referred to as Ampere tension. In 1964 it was discovered that a current pulse would break a straight copper wire into many fragments without visible melting. A metallurgical examination of the pieces confirmed that the metal parted in the solid state. The same observation has now been made with aluminum wires. In the latest experiments the wire was bent into a semicircle and arc-connected to a capacitor discharge circuit. The arc connections ruled out rupture by Lorentz hoop tension and indicated the longitudinal forces may also arise in circular magnet windings. Explanations of wire fragmentation by thermal shock, longitudinal stress waves, Lorentz pinch-off, bending stresses, and material defects have been considered and found unconvincing. Computed Ampere tensions would be sufficient to fracture hot wires. The Ampere tension would double the hoop tension normally expected in dipole magnets. This should be borne in mind in the design of large dipole magnets contemplated for MHD power generators and railgun accelerators.
High harmonic interferometry of the Lorentz force in strong mid-infrared laser fields
NASA Astrophysics Data System (ADS)
Pisanty, Emilio; Hickstein, Daniel D.; Galloway, Benjamin R.; Durfee, Charles G.; Kapteyn, Henry C.; Murnane, Margaret M.; Ivanov, Misha
2018-05-01
The interaction of intense mid-infrared laser fields with atoms and molecules leads to a range of new opportunities, from the production of bright, coherent radiation in the soft x-ray range, to imaging molecular structures and dynamics with attosecond temporal and sub-angstrom spatial resolution. However, all these effects, which rely on laser-driven recollision of an electron removed by the strong laser field and its parent ion, suffer from the rapidly increasing role of the magnetic field component of the driving pulse: the associated Lorentz force pushes the electrons off course in their excursion and suppresses all recollision-based processes, including high harmonic generation as well as elastic and inelastic scattering. Here we show how the use of two non-collinear beams with opposite circular polarizations produces a forwards ellipticity which can be used to monitor, control, and cancel the effect of the Lorentz force. This arrangement can thus be used to re-enable recollision-based phenomena in regimes beyond the long-wavelength breakdown of the dipole approximation, and it can be used to observe this breakdown in high harmonic generation using currently available light sources.
A test of local Lorentz invariance with Compton scattering asymmetry
Mohanmurthy, Prajwal; Narayan, Amrendra; Dutta, Dipangkar
2016-12-14
Here, we report on a measurement of the constancy and anisotropy of the speed of light relative to the electrons in photon-electron scattering. We also used the Compton scattering asymmetry measured by the new Compton polarimeter in Hall~C at Jefferson Lab to test for deviations from unity of the vacuum refractive index (more » $n$). For photon energies in the range of 9 - 46 MeV, we obtain a new limit of $$1-n < 1.4 \\times 10^{-8}$$. In addition, the absence of sidereal variation over the six month period of the measurement constrains any anisotropies in the speed of light. These constitute the first study of Lorentz invariance using Compton asymmetry. Within the minimal standard model extension framework, our result yield limits on the photon and electron coefficients $$\\tilde{\\kappa}_{0^+}^{YZ}, c_{TX}, \\tilde{\\kappa}_{0^+}^{ZX}$$, and $$c_{TY}$$. Though, these limits are several orders of magnitude larger than the current best limits, they demonstrate the feasibility of using Compton asymmetry for tests of Lorentz invariance. For future parity violating electron scattering experiments at Jefferson Lab we will use higher energy electrons enabling better constraints.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira-Dias, B.; Hernaski, C. A.; Helayeel-Neto, J. A.
The combined effects of the Lorentz-symmetry violating Chern-Simons and Ricci-Cotton actions are investigated for the Einstein-Hilbert gravity in the second-order formalism modified by higher derivative terms, and their consequences on the spectrum of excitations are analyzed. We follow the lines of previous works and build up an orthonormal basis of projector-like operators for the degrees of freedom, rather than for the spin modes of the fields. With this new basis, the attainment of the propagators is remarkably simplified and the identification of the physical and unphysical modes becomes more immediate. Our conclusion is that the only tachyon- and ghost-free modelmore » is the Einstein-Hilbert action added up by the Chern-Simons term with a timelike vector of the type v{sup {mu}=}({mu},0-vector). Spectral consistency imposes that the Ricci-Cotton term must be switched off. We then infer that gravity with Lorentz-symmetry violation imposes a drastically different constraint on the background if compared to ordinary gauge theories whenever conditions for the suppression of tachyons and ghosts are imposed.« less
Lorentz Invariance Violation and the Observed Spectrum of Ultrahigh Energy Cosmic Rays
NASA Technical Reports Server (NTRS)
Scully, S. T.; Stecker, F. W.
2009-01-01
There has been much interest in possible violations of Lorentz invariance, particularly motivated by quantum gravity theories. It has been suggested that a small amount of Lorentz invariance violation (LIV) could turn of photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with photons of the cosmic background radiation and thereby eliminate the resulting sharp steepening in the spectrum of the highest energy CRs predicted by Greisen Zatsepin and Kuzmin (GZK). Recent measurements of the UHECR spectrum reported by the HiRes and Auger collaborations, however, indicate the presence of the GZK effect. We present the results of a detailed calculation of the modification of the UHECR spectrum caused by LIV using the formalism of Coleman and Glashow. We then compare these results with the experimental UHECR data from Auger and HiRes. Based on these data, we find a best fit amount of LIV of 4.5+1:5 ..4:5 x 10(exp -23),consistent with an upper limit of 6 x 10(exp -23). This possible amount of LIV can lead to a recovery of the cosmic ray spectrum at higher energies than presently observed. Such an LIV recovery effect can be tested observationally using future detectors.
Lorentz violation with a universal minimum speed as foundation of de Sitter relativity
NASA Astrophysics Data System (ADS)
Cruz, Cláudio Nassif; Dos Santos, Rodrigo Francisco; Amaro de Faria, A. C.
We aim to investigate the theory of Lorentz violation with an invariant minimum speed called Symmetrical Special Relativity (SSR) from the viewpoint of its metric. Thus, we should explore the nature of SSR-metric in order to understand the origin of the conformal factor that appears in the metric by deforming Minkowski metric by means of an invariant minimum speed that breaks down Lorentz symmetry. So, we are able to realize that there is a similarity between SSR and a new space with variable negative curvature ( -∞ < ℛ < 0) connected to a set of infinite cosmological constants (0 < Λ < ∞), working like an extended de Sitter (dS) relativity, so that such extended dS-relativity has curvature and cosmological “constant” varying in time. We obtain a scenario that is more similar to dS-relativity given in the approximation of a slightly negative curvature for representing the current universe having a tiny cosmological constant. Finally, we show that the invariant minimum speed provides the foundation for understanding the kinematics origin of the extra dimension considered in dS-relativity in order to represent the dS-length.
Collisions near Kerr black holes: lower limit of energy between orbiting and incoming particles
NASA Astrophysics Data System (ADS)
Rutkowski, Mieszko
2017-01-01
In our paper we investigate the lower limit of collisional energy of test particles near the Kerr black hole. In particular we examine the minimal Lorentz factor between the freely falling particles and the particles orbiting around a black hole. We consider collisions on the innermost stable circular orbit and examine near-extreme case, where collisions take place near an event horizon. By fine-tuning the particles' angular momentum, the Lorentz factor of the collision can always be minimized to a value dependent on the black hole's spin. We identified that this minimal value is always less than 2√{2}-1/√{3} and more than √{12}-1/√{6} (the limits are the values for an extreme Kerr and Schwarzschild, respectively). It implies that this kind of collisions of compact objects are expected to be highly energetic near supermassive black holes. In addition, we show that an interaction between black hole's and particle's spins has an influence on minimal Lorentz factor. This contribution is nonnegligible for near-extreme black holes. We also discuss the relation between our results and sci-fi movie Interstellar.
Sasaki, Hirokazu; Otomo, Shinya; Minato, Ryuichiro; Yamamoto, Kazuo; Hirayama, Tsukasa
2014-06-01
Phase-shifting electron holography and Lorentz microscopy were used to map dopant distributions in GaAs compound semiconductors with step-like dopant concentration. Transmission electron microscope specimens were prepared using a triple beam focused ion beam (FIB) system, which combines a Ga ion beam, a scanning electron microscope, and an Ar ion beam to remove the FIB damaged layers. The p-n junctions were clearly observed in both under-focused and over-focused Lorentz microscopy images. A phase image was obtained by using a phase-shifting reconstruction method to simultaneously achieve high sensitivity and high spatial resolution. Differences in dopant concentrations between 1 × 10(19) cm(-3) and 1 × 10(18) cm(-3) regions were clearly observed by using phase-shifting electron holography. We also interpreted phase profiles quantitatively by considering inactive layers induced by ion implantation during the FIB process. The thickness of an inactive layer at different dopant concentration area can be measured from the phase image. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A perfectly conducting surface in electrodynamics with Lorentz symmetry breaking
NASA Astrophysics Data System (ADS)
Borges, L. H. C.; Barone, F. A.
2017-10-01
In this paper we consider a model which exhibits explicit Lorentz symmetry breaking due to the presence of a single background vector v^{μ } coupled to the gauge field. We investigate such a theory in the vicinity of a perfectly conducting plate for different configurations of v^{μ }. First we consider no restrictions on the components of the background vector and we treat it perturbatively up to second order. Next, we treat v^{μ } exactly for two special cases: the first one is when it has only components parallel to the plate, and the second one when it has a single component perpendicular to the plate. For all these configurations, the propagator for the gauge field and the interaction force between the plate and a point-like electric charge are computed. Surprisingly, it is shown that the image method is valid in our model and we argue that it is a non-trivial result. We show there arises a torque on the mirror with respect to its positioning in the background field when it interacts with a point-like charge. It is a new effect with no counterpart in theories with Lorentz symmetry in the presence of a perfect mirror.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Subir; Pal, Probir; Physics Department, Uluberia College, Uluberia, Howrah 711315
2009-12-15
Recently it has been advocated [A. G. Cohen and S. L. Glashow, Phys. Rev. Lett. 97, 021601 (2006)] that for describing nature within the minimal symmetry requirement, certain subgroups of the Lorentz group may play a fundamental role. One such group is E(2) which induces a Lie algebraic noncommutative spacetime [M. M. Sheikh-Jabbari and A. Tureanu, Phys. Rev. Lett. 101, 261601 (2008); arXiv:0811.3670] where translation invariance is not fully maintained. We have constructed a consistent structure of noncommutative phase space for this system, and furthermore we have studied an appropriate point particle action on it. Interestingly, the Einstein dispersion relationmore » p{sup 2}=m{sup 2} remains intact. The model is constructed by exploiting a dual canonical phase space following the scheme developed by us earlier [S. Ghosh and P. Pal, Phys. Rev. D 75, 105021 (2007)].« less
Tests of Lorentz Invariance using a Microwave Resonator
NASA Astrophysics Data System (ADS)
Wolf, Peter; Bize, Sébastien; Clairon, André; Luiten, André N.; Santarelli, Giorgio; Tobar, Michael E.
2003-02-01
The frequencies of a cryogenic sapphire oscillator and a hydrogen maser are compared to set new constraints on a possible violation of Lorentz invariance. We determine the variation of the oscillator frequency as a function of its orientation (Michelson-Morley test) and of its velocity (Kennedy-Thorndike test) with respect to a preferred frame candidate. We constrain the corresponding parameters of the Mansouri and Sexl test theory to δ-β+1/2=(1.5±4.2)×10-9 and β-α-1=(-3.1±6.9)×10-7 which is of the same order as the best previous result for the former and represents a 30-fold improvement for the latter.
Generalized expression for optical source fields
NASA Astrophysics Data System (ADS)
Kamacıoğlu, Canan; Baykal, Yahya
2012-09-01
A generalized optical beam expression is developed that presents the majority of the existing optical source fields such as Bessel, Laguerre-Gaussian, dark hollow, bottle, super Gaussian, Lorentz, super-Lorentz, flat-topped, Hermite-sinusoidal-Gaussian, sinusoidal-Gaussian, annular, Gauss-Legendre, vortex, also their higher order modes with their truncated, elegant and elliptical versions. Source intensity profiles derived from the generalized optical source beam fields are checked to match the intensity profiles of many individual known beam types. Source intensities for several interesting beam combinations are presented. Our generalized optical source beam field expression can be used to examine both the source characteristics and the propagation properties of many different optical beams in a single formulation.
The Explanation of Michelson's Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klinaku, Shukri
In this paper we will prove that the Lorentz factor doesn't exist on the relative motion. In fact this factor is the result of a wrong calculation of Michelson. His mistake was approved by Lorentz and other physicists, including Einstein. Michelson in order to implement his idea with his interferometer in 1881, made the following mistake: he made the calculation according to the only principle of relativity which was known by physics--the Galileo principle, but he didn't faithfully apply this principle. In this paper, the principle of Galileo will be implemented exactly to Michelson's experiment and the result will showmore » us that physics doesn't need the postulates of the year 1905.« less
Exact Schwarzschild-like solution in a bumblebee gravity model
NASA Astrophysics Data System (ADS)
Casana, R.; Cavalcante, A.; Poulis, F. P.; Santos, E. B.
2018-05-01
We obtain an exact vacuum solution from the gravity sector contained in the minimal standard-model extension. The theoretical model assumes a Riemann spacetime coupled to the bumblebee field which is responsible for the spontaneous Lorentz symmetry breaking. The solution achieved in a static and spherically symmetric scenario establishes a Schwarzschild-like black hole. In order to study the effects of the spontaneous Lorentz symmetry breaking we investigate some classic tests, including the advance of perihelion, the bending of light, and Shapiro's time delay. Furthermore, we compute some upper bounds, among which the most stringent associated with existing experimental data provides a sensitivity at the 10-15 level and that for future missions at the 10-19 level.
Comparison Study of Three Different Image Reconstruction Algorithms for MAT-MI
Xia, Rongmin; Li, Xu
2010-01-01
We report a theoretical study on magnetoacoustic tomography with magnetic induction (MAT-MI). According to the description of signal generation mechanism using Green’s function, the acoustic dipole model was proposed to describe acoustic source excited by the Lorentz force. Using Green’s function, three kinds of reconstruction algorithms based on different models of acoustic source (potential energy, vectored acoustic pressure, and divergence of Lorenz force) are deduced and compared, and corresponding numerical simulations were conducted to compare these three kinds of reconstruction algorithms. The computer simulation results indicate that the potential energy method and vectored pressure method can directly reconstruct the Lorentz force distribution and give a more accurate reconstruction of electrical conductivity. PMID:19846363
A unifying framework for ghost-free Lorentz-invariant Lagrangian field theories
NASA Astrophysics Data System (ADS)
Li, Wenliang
2018-04-01
We propose a framework for Lorentz-invariant Lagrangian field theories where Ostrogradsky's scalar ghosts could be absent. A key ingredient is the generalized Kronecker delta. The general Lagrangians are reformulated in the language of differential forms. The absence of higher order equations of motion for the scalar modes stems from the basic fact that every exact form is closed. The well-established Lagrangian theories for spin-0, spin-1, p-form, spin-2 fields have natural formulations in this framework. We also propose novel building blocks for Lagrangian field theories. Some of them are novel nonlinear derivative terms for spin-2 fields. It is nontrivial that Ostrogradsky's scalar ghosts are absent in these fully nonlinear theories.
NASA Technical Reports Server (NTRS)
Joseph, Rose M.; Hagness, Susan C.; Taflove, Allen
1991-01-01
The initial results for femtosecond pulse propagation and scattering interactions for a Lorentz medium obtained by a direct time integration of Maxwell's equations are reported. The computational approach provides reflection coefficients accurate to better than 6 parts in 10,000 over the frequency range of dc to 3 x 10 to the 16th Hz for a single 0.2-fs Gaussian pulse incident upon a Lorentz-medium half-space. New results for Sommerfeld and Brillouin precursors are shown and compared with previous analyses. The present approach is robust and permits 2D and 3D electromagnetic pulse propagation directly from the full-vector Maxwell's equations.
Multi-Mode Excitation and Data Reduction for Fatigue Crack Characterization in Conducting Plates
NASA Technical Reports Server (NTRS)
Wincheski, B.; Namkung, M.; Fulton, J. P.; Clendenin, C. G.
1992-01-01
Advances in the technique of fatigue crack characterization by resonant modal analysis have been achieved through a new excitation mechanism and data reduction of multiple resonance modes. A non-contacting electromagnetic device is used to apply a time varying Lorentz force to thin conducting sheets. The frequency and direction of the Lorentz force are such that resonance modes are generated in the test sample. By comparing the change in frequency between distinct resonant modes of a sample, detecting and sizing of fatigue cracks are achieved and frequency shifts caused by boundary condition changes can be discriminated against. Finite element modeling has been performed to verify experimental results.
A modified Lorentz theory as a test theory of special relativity
NASA Technical Reports Server (NTRS)
Chang, T.; Torr, D. G.; Gagnon, D. R.
1988-01-01
Attention has been given recently to a modified Lorentz theory (MLT) that is based on the generalized Galilean transformation. Some explicit formulas within the framework of MLT, dealing with the one-way velocity of light, slow-clock transport, and the Doppler effect are derived. A number of typical experiments are analyzed on this basis. Results indicate that the empirical equivalence between MLT and special relativity is still maintained to second order terms. The results of previous works that predict that the MLT might be distinguished from special relativity at the third order by Doppler centrifuge tests capable of a fractional frequency detection threshold of 10 to the -15th are confirmed.
NASA Astrophysics Data System (ADS)
Siboni, N. H.; Schluck, J.; Pierz, K.; Schumacher, H. W.; Kazazis, D.; Horbach, J.; Heinzel, T.
2018-02-01
Magnetotransport measurements in combination with molecular dynamics simulations on two-dimensional disordered Lorentz gases in the classical regime are reported. In quantitative agreement between experiment and simulation, the magnetoconductivity displays a pronounced peak as a function of the perpendicular magnetic field B which cannot be explained by existing kinetic theories. This peak is linked to the onset of a directed motion of the electrons along the contour of the disordered obstacle matrix when the cyclotron radius becomes smaller than the size of the obstacles. This directed motion leads to transient superdiffusive motion and strong scaling corrections in the vicinity of the insulator-to-conductor transitions of the Lorentz gas.
NASA Astrophysics Data System (ADS)
Banda Guzmán, V. M.; Kirchbach, M.
2016-09-01
A boson of spin j≥ 1 can be described in one of the possibilities within the Bargmann-Wigner framework by means of one sole differential equation of order twice the spin, which however is known to be inconsistent as it allows for non-local, ghost and acausally propagating solutions, all problems which are difficult to tackle. The other possibility is provided by the Fierz-Pauli framework which is based on the more comfortable to deal with second-order Klein-Gordon equation, but it needs to be supplemented by an auxiliary condition. Although the latter formalism avoids some of the pathologies of the high-order equations, it still remains plagued by some inconsistencies such as the acausal propagation of the wave fronts of the (classical) solutions within an electromagnetic environment. We here suggest a method alternative to the above two that combines their advantages while avoiding the related difficulties. Namely, we suggest one sole strictly D^{(j,0)oplus (0,j)} representation specific second-order differential equation, which is derivable from a Lagrangian and whose solutions do not violate causality. The equation under discussion presents itself as the product of the Klein-Gordon operator with a momentum-independent projector on Lorentz irreducible representation spaces constructed from one of the Casimir invariants of the spin-Lorentz group. The basis used is that of general tensor-spinors of rank 2 j.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizuta, Akira; Ioka, Kunihito
We investigate the jet propagation and breakout from the stellar progenitor for gamma-ray burst (GRB) collapsars by performing two-dimensional relativistic hydrodynamic simulations and analytical modeling. We find that the jet opening angle is given by θ{sub j} ∼ 1/5Γ{sub 0} and infer the initial Lorentz factor of the jet at the central engine, Γ{sub 0}, is a few for existing observations of θ{sub j}. The jet keeps the Lorentz factor low inside the star by converging cylindrically via collimation shocks under the cocoon pressure and accelerates at jet breakout before the free expansion to a hollow-cone structure. In this newmore » picture, the GRB duration is determined by the sound crossing time of the cocoon, after which the opening angle widens, reducing the apparent luminosity. Some bursts violating the maximum opening angle θ{sub j,{sub max}} ∼ 1/5 ∼ 12° imply the existence of a baryon-rich sheath or a long-acting jet. We can explain the slopes in both Amati and Yonetoku spectral relations using an off-centered photosphere model, if we make only one assumption that the total jet luminosity is proportional to the initial Lorentz factor of the jet. We also numerically calibrate the pre-breakout model (Bromberg et al.) for later use.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desgranges, Caroline; Delhommelle, Jerome
2014-03-14
Combining rules, such as the Lorentz-Berthelot rules, are routinely used to calculate the thermodynamic properties of mixtures using molecular simulations. Here we extend the expanded Wang-Landau simulation approach to determine the impact of the combining rules on the value of the partition function of binary systems, and, in turn, on the phase coexistence and thermodynamics of these mixtures. We study various types of mixtures, ranging from systems of rare gases to biologically and technologically relevant mixtures, such as water-urea and water-carbon dioxide. Comparing the simulation results to the experimental data on mixtures of rare gases allows us to rank themore » performance of combining rules. We find that the widely used Lorentz-Berthelot rules exhibit the largest deviations from the experimental data, both for the bulk and at coexistence, while the Kong and Waldman-Hagler provide much better alternatives. In particular, in the case of aqueous solutions of urea, we show that the use of the Lorentz-Berthelot rules has a strong impact on the Gibbs free energy of the solute, overshooting the value predicted by the Waldman-Hagler rules by 7%. This result emphasizes the importance of the combining rule for the determination of hydration free energies using molecular simulations.« less
Testing the Equivalence Principle and Lorentz Invariance with PeV Neutrinos from Blazar Flares.
Wang, Zi-Yi; Liu, Ruo-Yu; Wang, Xiang-Yu
2016-04-15
It was recently proposed that a giant flare of the blazar PKS B1424-418 at redshift z=1.522 is in association with a PeV-energy neutrino event detected by IceCube. Based on this association we here suggest that the flight time difference between the PeV neutrino and gamma-ray photons from blazar flares can be used to constrain the violations of equivalence principle and the Lorentz invariance for neutrinos. From the calculated Shapiro delay due to clusters or superclusters in the nearby universe, we find that violation of the equivalence principle for neutrinos and photons is constrained to an accuracy of at least 10^{-5}, which is 2 orders of magnitude tighter than the constraint placed by MeV neutrinos from supernova 1987A. Lorentz invariance violation (LIV) arises in various quantum-gravity theories, which predicts an energy-dependent velocity of propagation in vacuum for particles. We find that the association of the PeV neutrino with the gamma-ray outburst set limits on the energy scale of possible LIV to >0.01E_{pl} for linear LIV models and >6×10^{-8}E_{pl} for quadratic order LIV models, where E_{pl} is the Planck energy scale. These are the most stringent constraints on neutrino LIV for subluminal neutrinos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McPherson, J. W., E-mail: mcpherson.reliability@yahoo.com
The local electric field (the field that distorts, polarizes, and weakens polar molecular bonds in dielectrics) has been investigated for hyper-thin dielectrics. Hyper-thin dielectrics are currently required for advanced semiconductor devices. In the work presented, it is shown that the common practice of using a Lorentz factor of L = 1/3, to describe the local electric field in a dielectric layer, remains valid for hyper-thin dielectrics. However, at the very edge of device structures, a rise in the macroscopic/Maxwell electric field E{sub diel} occurs and this causes a sharp rise in the effective Lorentz factor L{sub eff}. At capacitor and transistor edges,more » L{sub eff} is found to increase to a value 2/3 < L{sub eff} < 1. The increase in L{sub eff} results in a local electric field, at device edge, that is 50%–100% greater than in the bulk of the dielectric. This increase in local electric field serves to weaken polar bonds thus making them more susceptible to breakage by standard Boltzmann and/or current-driven processes. This has important time-dependent dielectric breakdown (TDDB) implications for all electronic devices utilizing polar materials, including GaN devices that suffer from device-edge TDDB.« less
Magnetic Susceptibility Effects and Lorentz Damping in Diamagnetic Fluids
NASA Technical Reports Server (NTRS)
Ramachandran, Narayanan; Leslie, Fred W.
2000-01-01
A great number of crystals (semi-conductor and protein) grown in space are plagued by convective motions which contribute to structural flaws. The character of these instabilities is not well understood but is associated with density variations in the presence of residual gravity and g-jitter. Both static and dynamic (rotating or travelling wave) magnetic fields can be used to reduce the effects of convection in materials processing. In semi-conductor melts, due to their relatively high electrical conductivity, the induced Lorentz force can be effectively used to curtail convective effects. In melts/solutions with reduced electrical conductivity, such as aqueous solutions used in solution crystal growth, protein crystal growth and/or model fluid experiments for simulating melt growth, however, the variation of the magnetic susceptibility with temperature and/or concentration can be utilized to better damp fluid convection than the Lorentz force method. This paper presents a comprehensive, comparative numerical study of the relative damping effects using static magnetic fields and gradients in a simple geometry subjected to a thermal gradient. The governing equations are formulated in general terms and then simplified for the numerical calculations. Operational regimes, based on the best damping technique for different melts/solutions are identified based on fluid properties. Comparisons are provided between the numerical results and available results from experiments in surveyed literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laemmerzahl, Claus; Macias, Alfredo; Mueller, Holger
2005-01-15
All quantum gravity approaches lead to small modifications in the standard laws of physics which in most cases lead to violations of Lorentz invariance. One particular example is the extended standard model (SME). Here, a general phenomenological approach for extensions of the Maxwell equations is presented which turns out to be more general than the SME and which covers charge nonconservation (CNC), too. The new Lorentz invariance violating terms cannot be probed by optical experiments but need, instead, the exploration of the electromagnetic field created by a point charge or a magnetic dipole. Some scalar tensor theories and higher dimensionalmore » brane theories predict CNC in four dimensions and some models violating special relativity have been shown to be connected with CNC. Its relation to the Einstein Equivalence Principle has been discussed. Because of this upcoming interest, the experimental status of electric charge conservation is reviewed. Up to now there seem to exist no unique tests of charge conservation. CNC is related to the precession of polarization, to a modification of the 1/r-Coulomb potential, and to a time dependence of the fine structure constant. This gives the opportunity to describe a dedicated search for CNC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lienert, Matthias, E-mail: lienert@math.lmu.de
2015-04-15
The question how to Lorentz transform an N-particle wave function naturally leads to the concept of a so-called multi-time wave function, i.e., a map from (space-time){sup N} to a spin space. This concept was originally proposed by Dirac as the basis of relativistic quantum mechanics. In such a view, interaction potentials are mathematically inconsistent. This fact motivates the search for new mechanisms for relativistic interactions. In this paper, we explore the idea that relativistic interaction can be described by boundary conditions on the set of coincidence points of two particles in space-time. This extends ideas from zero-range physics to amore » relativistic setting. We illustrate the idea at the simplest model which still possesses essential physical properties like Lorentz invariance and a positive definite density: two-time equations for massless Dirac particles in 1 + 1 dimensions. In order to deal with a spatio-temporally non-trivial domain, a necessity in the multi-time picture, we develop a new method to prove existence and uniqueness of classical solutions: a generalized version of the method of characteristics. Both mathematical and physical considerations are combined to precisely formulate and answer the questions of probability conservation, Lorentz invariance, interaction, and antisymmetry.« less
Testing Lorentz Symmetry with Lunar Laser Ranging
NASA Astrophysics Data System (ADS)
Bourgoin, A.; Hees, A.; Bouquillon, S.; Le Poncin-Lafitte, C.; Francou, G.; Angonin, M.-C.
2016-12-01
Lorentz symmetry violations can be parametrized by an effective field theory framework that contains both general relativity and the standard model of particle physics called the standard-model extension (SME). We present new constraints on pure gravity SME coefficients obtained by analyzing lunar laser ranging (LLR) observations. We use a new numerical lunar ephemeris computed in the SME framework and we perform a LLR data analysis using a set of 20 721 normal points covering the period of August, 1969 to December, 2013. We emphasize that linear combination of SME coefficients to which LLR data are sensitive and not the same as those fitted in previous postfit residuals analysis using LLR observations and based on theoretical grounds. We found no evidence for Lorentz violation at the level of 10-8 for s¯T X, 10-12 for s¯X Y and s¯X Z, 10-11 for s¯X X-s¯Y Y and s¯X X+s¯Y Y-2 s¯Z Z-4.5 s¯Y Z, and 10-9 for s¯T Y+0.43 s¯T Z. We improve previous constraints on SME coefficient by a factor up to 5 and 800 compared to postfit residuals analysis of respectively binary pulsars and LLR observations.
A gyrokinetic collision operator for magnetized Lorentz plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Chang; Ma Chenhao; Yu Xiongjie
2011-03-15
A gyrocenter collision operator for magnetized Lorentz plasmas is derived using the Fokker-Plank method. The gyrocenter collision operator consists of drift and diffusion terms in the gyrocenter coordinates, including the diffusion of the gyrocenter, which does not exist for the collision operator in the particle phase space coordinates. The gyrocenter collision operator also depends on the transverse electric field explicitly, which is crucial for the correct treatment of collisional effects and transport in the gyrocenter coordinates. The gyrocenter collision operator derived is applied to calculate the particle and heat transport fluxes in a magnetized Lorentz plasma with an electric field.more » The particle and heat transport fluxes calculated from our gyrocenter collision operator agree exactly with the classical Braginskii's result [S. I. Braginskii, Reviews of Plasma Physics (Consultants Bureau, New York, 1965), Vol. 1, p. 205: P. Helander and D. J. Sigmar, Collisional Transport in Magnetized Plasmas (Cambridge University, Cambridge, 2002), p. 65], which validates the correctness of our collision operator. To calculate the transport fluxes correctly, it is necessary to apply the pullback transformation associated with gyrocenter coordinate transformation in the presence of collisions, which also serves as a practical algorithm for evaluating collisional particle and heat transport fluxes in the gyrocenter coordinates.« less
Some surprising manifestations of charged particle dynamics in a magnetic field
NASA Astrophysics Data System (ADS)
Varma, Ram K.
2010-08-01
We present here some very unusual experimental results on the dynamics of charged particle in a magnetic field which cannot be comprehended in terms of the Lorentz dynamics regarded, as per the current conceptual framework, as the appropriate one for the macro-scale description. Astonishingly, these results have been shown to be manifestations of a novel macro-scale quantum structure, designated as ‘transition amplitude wave’ (TAW), riding with the guiding centre trajectory, which is generated in the latter trajectory in consequence of the scattering of the particle with a fixed scattering centre. One set of observed results is thus identified as matter wave interference effects on the macro-scale attributable to this entity. The other enigmatic observation demonstrates the detection of a curl-free magnetic vector potential on the macro-scale, which is also shown to be a consequence of the TAW embedded in the Lorentz trajectory. These enigmatic results thus point to the unravelling of a new concept of a ‘dressed’ Lorentz trajectory—dressed with the TAW—accountable for these results, as against the ‘bare’ trajectory. These results and the formalism which enables one to comprehend them have led to the emergence of a new class of phenomena which display quantum properties on the macro-scale.
A d-dimensional stress tensor for Minkd+2 gravity
NASA Astrophysics Data System (ADS)
Kapec, Daniel; Mitra, Prahar
2018-05-01
We consider the tree-level scattering of massless particles in ( d+2)-dimensional asymptotically flat spacetimes. The S -matrix elements are recast as correlation functions of local operators living on a space-like cut ℳ d of the null momentum cone. The Lorentz group SO( d + 1 , 1) is nonlinearly realized as the Euclidean conformal group on ℳ d . Operators of non-trivial spin arise from massless particles transforming in non-trivial representations of the little group SO( d), and distinguished operators arise from the soft-insertions of gauge bosons and gravitons. The leading soft-photon operator is the shadow transform of a conserved spin-one primary operator J a , and the subleading soft-graviton operator is the shadow transform of a conserved spin-two symmetric traceless primary operator T ab . The universal form of the soft-limits ensures that J a and T ab obey the Ward identities expected of a conserved current and energy momentum tensor in a Euclidean CFT d , respectively.
Deformed space-time transformations in Mercury
NASA Astrophysics Data System (ADS)
Cardone, F.; Albertini, G.; Bassani, D.; Cherubini, G.; Guerriero, E.; Mignani, R.; Monti, M.; Petrucci, A.; Ridolfi, F.; Rosada, A.; Rosetto, F.; Sala, V.; Santoro, E.; Spera, G.
2017-09-01
A mole of Mercury was suitably treated by ultrasound in order to generate in it the same conditions of local Lorentz invariance violation that were generated in a sonicated cylindrical bar of AISI 304 steel and that are the cause of neutron emission during the sonication. After 3 min, part of the mercury turned into a solid material which turned out to contain isotopes having a different mass (higher and lower) with respect to the isotopes already present in the initial material (mercury). These transformations in the atomic weight without gamma production above the background are brought about during Deformed Space-Time reactions. We present the results of the analyses performed on samples taken from the transformation product. The analyses have been done in two groups, the first one using five different analytical techniques: ICP-OES, XRF, ESEM-EDS, ICP-MS, INAA. In the second group of analyses, we used only two techniques: INAA and ICP-MS. The second group of analyses confirmed the occurring of the transformations in mercury.
Looe, Hui Khee; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn
2017-06-21
The distortion of detector reading profiles across photon beams in the presence of magnetic fields is a developing subject of clinical photon-beam dosimetry. The underlying modification by the Lorentz force of a detector's lateral dose response function-the convolution kernel transforming the true cross-beam dose profile in water into the detector reading profile-is here studied for the first time. The three basic convolution kernels, the photon fluence response function, the dose deposition kernel, and the lateral dose response function, of wall-less cylindrical detectors filled with water of low, normal and enhanced density are shown by Monte Carlo simulation to be distorted in the prevailing direction of the Lorentz force. The asymmetric shape changes of these convolution kernels in a water medium and in magnetic fields of up to 1.5 T are confined to the lower millimetre range, and they depend on the photon beam quality, the magnetic flux density and the detector's density. The impact of this distortion on detector reading profiles is demonstrated using a narrow photon beam profile. For clinical applications it appears as favourable that the magnetic flux density dependent distortion of the lateral dose response function, as far as secondary electron transport is concerned, vanishes in the case of water-equivalent detectors of normal water density. By means of secondary electron history backtracing, the spatial distribution of the photon interactions giving rise either directly to secondary electrons or to scattered photons further downstream producing secondary electrons which contribute to the detector's signal, and their lateral shift due to the Lorentz force is elucidated. Electron history backtracing also serves to illustrate the correct treatment of the influences of the Lorentz force in the EGSnrc Monte Carlo code applied in this study.
NASA Astrophysics Data System (ADS)
Antunes, A.; Glover, P. M.; Li, Y.; Mian, O. S.; Day, B. L.
2012-07-01
Large static magnetic fields may be employed in magnetic resonance imaging (MRI). At high magnetic field strengths (usually from about 3 T and above) it is possible for humans to perceive a number of effects. One such effect is mild vertigo. Recently, Roberts et al (2011 Current Biology 21 1635-40) proposed a Lorentz-force mechanism resulting from the ionic currents occurring naturally in the endolymph of the vestibular system. In the present work a more detailed calculation of the forces and resulting pressures in the vestibular system is carried out using a numerical model. Firstly, realistic 3D finite element conductivity and fluid maps of the utricle and a single semi-circular canal containing the current sources (dark cells) and sinks (hair cells) of the utricle and ampulla were constructed. Secondly, the electrical current densities in the fluid are calculated. Thirdly, the developed Lorentz force is used directly in the Navier-Stokes equation and the trans-cupular pressure is computed. Since the driving force field is relatively large in comparison with the advective acceleration, we demonstrate that it is possible to perform an approximation in the Navier-Stokes equations that reduces the problem to solving a simpler Poisson equation. This simplification allows rapid and easy calculation for many different directions of applied magnetic field. At 7 T a maximum cupula pressure difference of 1.6 mPa was calculated for the combined ampullar (0.7 µA) and utricular (3.31 µA) distributed current sources, assuming a hair-cell resting current of 100 pA per unit. These pressure values are up to an order of magnitude lower than those proposed by Roberts et al using a simplistic model and calculation, and are in good agreement with the estimated pressure values for nystagmus velocities in caloric experiments. This modeling work supports the hypothesis that the Lorentz force mechanism is a significant contributor to the perception of magnetic field induced vertigo.
Covariant Uniform Acceleration
NASA Astrophysics Data System (ADS)
Friedman, Yaakov; Scarr, Tzvi
2013-04-01
We derive a 4D covariant Relativistic Dynamics Equation. This equation canonically extends the 3D relativistic dynamics equation , where F is the 3D force and p = m0γv is the 3D relativistic momentum. The standard 4D equation is only partially covariant. To achieve full Lorentz covariance, we replace the four-force F by a rank 2 antisymmetric tensor acting on the four-velocity. By taking this tensor to be constant, we obtain a covariant definition of uniformly accelerated motion. This solves a problem of Einstein and Planck. We compute explicit solutions for uniformly accelerated motion. The solutions are divided into four Lorentz-invariant types: null, linear, rotational, and general. For null acceleration, the worldline is cubic in the time. Linear acceleration covariantly extends 1D hyperbolic motion, while rotational acceleration covariantly extends pure rotational motion. We use Generalized Fermi-Walker transport to construct a uniformly accelerated family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the Weak Hypothesis of Locality, we obtain local spacetime transformations from a uniformly accelerated frame K' to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. We obtain velocity and acceleration transformations from a uniformly accelerated system K' to an inertial frame K. We introduce the 4D velocity, an adaptation of Horwitz and Piron s notion of "off-shell." We derive the general formula for the time dilation between accelerated clocks. We obtain a formula for the angular velocity of a uniformly accelerated object. Every rest point of K' is uniformly accelerated, and its acceleration is a function of the observer's acceleration and its position. We obtain an interpretation of the Lorentz-Abraham-Dirac equation as an acceleration transformation from K' to K.
Special relativity in a discrete quantum universe
NASA Astrophysics Data System (ADS)
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo
2016-10-01
The hypothesis of a discrete fabric of the universe, the "Planck scale," is always on stage since it solves mathematical and conceptual problems in the infinitely small. However, it clashes with special relativity, which is designed for the continuum. Here, we show how the clash can be overcome within a discrete quantum theory where the evolution of fields is described by a quantum cellular automaton. The reconciliation is achieved by defining the change of observer as a change of representation of the dynamics, without any reference to space-time. We use the relativity principle, i.e., the invariance of dynamics under change of inertial observer, to identify a change of inertial frame with a symmetry of the dynamics. We consider the full group of such symmetries, and recover the usual Lorentz group in the relativistic regime of low energies, while at the Planck scale the covariance is nonlinearly distorted.
Dipole-Induced Electromagnetic Transparency
NASA Astrophysics Data System (ADS)
Puthumpally-Joseph, Raiju; Sukharev, Maxim; Atabek, Osman; Charron, Eric
2014-10-01
We determine the optical response of a thin and dense layer of interacting quantum emitters. We show that, in such a dense system, the Lorentz redshift and the associated interaction broadening can be used to control the transmission and reflection spectra. In the presence of overlapping resonances, a dipole-induced electromagnetic transparency (DIET) regime, similar to electromagnetically induced transparency (EIT), may be achieved. DIET relies on destructive interference between the electromagnetic waves emitted by quantum emitters. Carefully tuning material parameters allows us to achieve narrow transmission windows in, otherwise, completely opaque media. We analyze in detail this coherent and collective effect using a generalized Lorentz model and show how it can be controlled. Several potential applications of the phenomenon, such as slow light, are proposed.
Mode analysis for energetics of a moving charge in Lorentz- and C P T -violating electrodynamics
NASA Astrophysics Data System (ADS)
DeCosta, Richard; Altschul, Brett
2018-03-01
In isotropic but Lorentz- and C P T -violating electrodynamics, it is known that a charge in uniform motion does not lose any energy to Cerenkov radiation. This presents a puzzle, since the radiation appears to be kinematically allowed for many modes. Studying the Fourier transforms of the most important terms in the modified magnetic field and Poynting vector, we confirm the vanishing of the radiation rate. Moreover, we show that the Fourier transform of the field changes sign between small and large wave numbers. This enables modes with very long wavelengths to carry negative energies, which cancel out the positive energies carried away by modes with shorter wavelengths. This cancelation had previously been inferred but never explicitly demonstrated.
A nonlinear dynamics for the scalar field in Randers spacetime
NASA Astrophysics Data System (ADS)
Silva, J. E. G.; Maluf, R. V.; Almeida, C. A. S.
2017-03-01
We investigate the properties of a real scalar field in the Finslerian Randers spacetime, where the local Lorentz violation is driven by a geometrical background vector. We propose a dynamics for the scalar field by a minimal coupling of the scalar field and the Finsler metric. The coupling is intrinsically defined on the Randers spacetime, and it leads to a non-canonical kinetic term for the scalar field. The nonlinear dynamics can be split into a linear and nonlinear regimes, which depend perturbatively on the even and odd powers of the Lorentz-violating parameter, respectively. We analyze the plane-waves solutions and the modified dispersion relations, and it turns out that the spectrum is free of tachyons up to second-order.
Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals
Hobson, D.O.; Alexeff, I.; Sikka, V.K.
1987-08-10
Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to ''float'' in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields. 6 figs.
Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals
Hobson, David O.; Alexeff, Igor; Sikka, Vinod K.
1988-01-01
Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to "float" in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields.
Living with ghosts in Lorentz invariant theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garriga, Jaume; Vilenkin, Alexander, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu
2013-01-01
We argue that theories with ghosts may have a long lived vacuum state even if all interactions are Lorentz preserving. In space-time dimension D = 2, we consider the tree level decay rate of the vacuum into ghosts and ordinary particles mediated by non-derivative interactions, showing that this is finite and logarithmically growing in time. For D > 2, the decay rate is divergent unless we assume that the interaction between ordinary matter and the ghost sector is soft in the UV, so that it can be described in terms of non-local form factors rather than point-like vertices. We providemore » an example of a nonlocal gravitational-strength interaction between the two sectors, which appears to satisfy all observational constraints.« less
Search for the Footprints of New Physics with Laboratory and Cosmic Neutrinos
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2017-01-01
Observations of high energy neutrinos, both in the laboratory and from cosmic sources, can be a useful probe in searching for new physics. Such observations can provide sensitive tests of Lorentz invariance violation (LIV), which may be a the result of quantum gravity physics (QG). We review some observationally testable consequences of LIV using effective field theory (EFT) formalism. To do this, one can postulate the existence of additional small LIV terms in free particle Lagrangians, suppressed by powers of the Planck mass. The observational consequences of such terms are then examined. In particular, one can place limits on a class of non-renormalizable, mass dimension five and six Lorentz invariance violating operators that may be the result of QG.
Denaturation process of laccase in various media by refractive index measurements.
Saoudi, O; Ghaouar, N; Ben Salah, S; Othman, T
2017-09-01
In this work, we are interested in the denaturation process of a laccase from Tramates versicolor via the determination of the refractive index, the refractive index increment and the specific volume in various media. The measurements were carried out using an Abbe refractometer. We have shown that the refractive index increment values obtained from the slope of the variation of the refractive index vs. Concentration are outside the range refractive index increments of proteins. To correct the results, we have followed the theoretical predictions based on the knowledge of the protein refractive index from its amino acids composition. The denaturation process was studied by calculating the specific volume variation where its determination was related to the Gladstone-Dale and the Lorentz-Lorentz models.
Lorentz violation and perpetual motion
NASA Astrophysics Data System (ADS)
Eling, Christopher; Foster, Brendan Z.; Jacobson, Ted; Wall, Aron C.
2007-05-01
We show that any Lorentz-violating theory with two or more propagation speeds is in conflict with the generalized second law of black hole thermodynamics. We do this by identifying a classical energy-extraction method, analogous to the Penrose process, which would decrease the black hole entropy. Although the usual definitions of black hole entropy are ambiguous in this context, we require only very mild assumptions about its dependence on the mass. This extends the result found by Dubovsky and Sibiryakov, which uses the Hawking effect and applies only if the fields with different propagation speeds interact just through gravity. We also point out instabilities that could interfere with their black hole perpetuum mobile, but argue that these can be neglected if the black hole mass is sufficiently large.
NASA Astrophysics Data System (ADS)
Kim, Dongwook; Park, Bumjin; Park, Jaehyoung; Park, Hyun Ho; Ahn, Seungyoung
2018-05-01
In this paper, we propose a novel coil structure, using a ferromagnetic material which concentrates the magnetic field, as the propulsion system of a wireless power transfer (WPT) based micro-robot. This structure uses an incident magnetic field to induce current during wireless power transfer, to generate a Lorentz force. To prevent net cancelation of the Lorentz force in the load coil, ferrite films were applied to one side of the coil segment. The demonstrated simplicity and effectiveness of the proposed micro-robot showed its suitability for applications. Simulation and experimental results confirmed a velocity of 1.02 mm/s with 6 mW power transfer capacity for the 3 mm sized micro-robot.
Misconceptions in recent papers on special relativity and absolute space theories
NASA Technical Reports Server (NTRS)
Torr, D. G.; Kolen, P.
1982-01-01
Several recent papers which purport to substantiate or negate arguments in favor of certain theories of absolute space have been based on fallacious principles. This paper discusses three related instances, indicating where misconceptions have arisen. It is established, contrary to popular belief, that the classical Lorentz ether theory accounts for all the experimental evidence which supports the special theory of relativity. It is demonstrated that the ether theory predicts the null results obtained from pulsar timing and Moessbauer experiments. It is concluded that a measurement of the one-way velocity of light has physical meaning within the context of the Lorentz theory, and it is argued that an adequately designed experiment to measure the one-way velocity of light should be attempted.
Universal Low-energy Behavior in a Quantum Lorentz Gas with Gross-Pitaevskii Potentials
NASA Astrophysics Data System (ADS)
Basti, Giulia; Cenatiempo, Serena; Teta, Alessandro
2018-06-01
We consider a quantum particle interacting with N obstacles, whose positions are independently chosen according to a given probability density, through a two-body potential of the form N 2 V ( N x) (Gross-Pitaevskii potential). We show convergence of the N dependent one-particle Hamiltonian to a limiting Hamiltonian where the quantum particle experiences an effective potential depending only on the scattering length of the unscaled potential and the density of the obstacles. In this sense our Lorentz gas model exhibits a universal behavior for N large. Moreover we explicitely characterize the fluctuations around the limit operator. Our model can be considered as a simplified model for scattering of slow neutrons from condensed matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butt, Y M; Romero, G E; Torres, D F
We suggest that ultraluminous X-ray sources (ULXs) and some of the variable low latitude EGRET gamma-ray sources may be two different manifestations of the same underlying phenomena: high-mass microquasars with relativistic jets forming a small angle with the line of sight (i.e. microblazars). Microblazars with jets formed by relatively cool plasma (Lorentz factors for the leptons up to a few hundreds) naturally lead to ULXs. If the jet contains very energetic particles (high-energy cutoff above Lorentz factors of several thousands) the result is a relatively strong gamma-ray source. As pointed out by Kaufman Bernads, Romero & Mirabel (2002), a gamma-raymore » microblazar will always have an X-ray counterpart (although it might be relatively weak), whereas X-ray microblazars might have no gamma-ray counterparts.« less
Searching for CPT violation with cosmic microwave background data from WMAP and BOOMERANG.
Feng, Bo; Li, Mingzhe; Xia, Jun-Qing; Chen, Xuelei; Zhang, Xinmin
2006-06-09
We search for signatures of Lorentz and violations in the cosmic microwave background (CMB) temperature and polarization anisotropies by using the Wilkinson Microwave Anisotropy Probe (WMAP) and the 2003 flight of BOOMERANG (B03) data. We note that if the Lorentz and symmetries are broken by a Chern-Simons term in the effective Lagrangian, which couples the dual electromagnetic field strength tensor to an external four-vector, the polarization vectors of propagating CMB photons will get rotated. Using the WMAP data alone, one could put an interesting constraint on the size of such a term. Combined with the B03 data, we found that a nonzero rotation angle of the photons is mildly favored: [Formula: See Text].
Finsler-type modification of the Coulomb law
NASA Astrophysics Data System (ADS)
Itin, Yakov; Lämmerzahl, Claus; Perlick, Volker
2014-12-01
Finsler geometry is a natural generalization of pseudo-Riemannian geometry. It can be motivated e.g. by a modified version of the Ehlers-Pirani-Schild axiomatic approach to space-time theory. Also, some scenarios of quantum gravity suggest a modified dispersion relation which could be phrased in terms of Finsler geometry. On a Finslerian space-time, the universality of free fall is still satisfied but local Lorentz invariance is violated in a way not covered by standard Lorentz invariance violation schemes. In this paper we consider a Finslerian modification of Maxwell's equations. The corrections to the Coulomb potential and to the hydrogen energy levels are computed. We find that the Finsler metric corrections yield a splitting of the energy levels. Experimental data provide bounds for the Finsler parameters.
NASA Astrophysics Data System (ADS)
Meljanac, Daniel; Meljanac, Stjepan; Mignemi, Salvatore; Pikutić, Danijel; Štrajn, Rina
2018-03-01
We construct the twist operator for the Snyder space. Our starting point is a non-associative star product related to a Hermitian realisation of the noncommutative coordinates originally introduced by Snyder. The corresponding coproduct of momenta is non-coassociative. The twist is constructed using a general definition of the star product in terms of a bi-differential operator in the Hopf algebroid approach. The result is given by a closed analytical expression. We prove that this twist reproduces the correct coproducts of the momenta and the Lorentz generators. The twisted Poincaré symmetry is described by a non-associative Hopf algebra, while the twisted Lorentz symmetry is described by the undeformed Hopf algebra. This new twist might be important in the construction of different types of field theories on Snyder space.
Lorentz symmetric n-particle systems without ``multiple times''
NASA Astrophysics Data System (ADS)
Smith, Felix
2013-05-01
The need for multiple times in relativistic n-particle dynamics is a consequence of Minkowski's postulated symmetry between space and time coordinates in a space-time s = [x1 , . . ,x4 ] = [ x , y , z , ict ] , Eq. (1). Poincaré doubted the need for this space-time symmetry, believing Lorentz covariance could also prevail in some geometries with a three-dimensional position space and a quite different time coordinate. The Hubble expansion observed later justifies a specific geometry of this kind, a negatively curved position 3-space expanding with time at the Hubble rate lH (t) =lH , 0 + cΔt (F. T. Smith, Ann. Fond. L. de Broglie, 30, 179 (2005) and 35, 395 (2010)). Its position 4-vector is not s but q = [x1 , . . ,x4 ] = [ x , y , z , ilH (t) ] , and shows no 4-space symmetry. What is observed is always a difference 4-vector Δq = [ Δx , Δy , Δz , icΔt ] , and this displays the structure of Eq. (1) perfectly. Thus we find the standard 4-vector of special relativity in a geometry that does not require a Minkowski space-time at all, but a quite different geometry with a expanding 3-space symmetry and an independent time. The same Lorentz symmetry with but a single time extends to 2 and n-body systems.
Electroweak standard model with very special relativity
NASA Astrophysics Data System (ADS)
Alfaro, Jorge; González, Pablo; Ávila, Ricardo
2015-05-01
The very special relativity electroweak Standard Model (VSR EW SM) is a theory with SU (2 )L×U (1 )R symmetry, with the same number of leptons and gauge fields as in the usual Weinberg-Salam model. No new particles are introduced. The model is renormalizable and unitarity is preserved. However, photons obtain mass and the massive bosons obtain different masses for different polarizations. Besides, neutrino masses are generated. A VSR-invariant term will produce neutrino oscillations and new processes are allowed. In particular, we compute the rate of the decays μ →e +γ . All these processes, which are forbidden in the electroweak Standard Model, put stringent bounds on the parameters of our model and measure the violation of Lorentz invariance. We investigate the canonical quantization of this nonlocal model. Second quantization is carried out, and we obtain a well-defined particle content. Additionally, we do a counting of the degrees of freedom associated with the gauge bosons involved in this work, after spontaneous symmetry breaking has been realized. Violations of Lorentz invariance have been predicted by several theories of quantum gravity [J. Alfaro, H. Morales-Tecotl, and L. F. Urrutia, Phys. Rev. Lett. 84, 2318 (2000); Phys. Rev. D 65, 103509 (2002)]. It is a remarkable possibility that the low-energy effects of Lorentz violation induced by quantum gravity could be contained in the nonlocal terms of the VSR EW SM.
NASA Astrophysics Data System (ADS)
Kivotides, Demosthenes
2018-03-01
The interactions between vortex tubes and magnetic-flux rings in incompressible magnetohydrodynamics are investigated at high kinetic and magnetic Reynolds numbers, and over a wide range of the interaction parameter. The latter is a measure of the turnover time of the large-scale fluid motions in units of the magnetic damping time, or of the strength of the Lorentz force in units of the inertial force. The small interaction parameter results, which are related to kinematic turbulent dynamo studies, indicate the evolution of magnetic rings into flattened spirals wrapped around the vortex tubes. This process is also observed at intermediate interaction parameter values, only now the Lorentz force creates new vortical structures at the magnetic spiral edges, which have a striking solenoid vortex-line structure, and endow the flattened magnetic-spiral surfaces with a curvature. At high interaction parameter values, the decisive physical factor is Lorentz force effects. The latter create two (adjacent to the magnetic ring) vortex rings that reconnect with the vortex tube by forming an intriguing, serpentinelike, vortex-line structure, and generate, in turn, two new magnetic rings, adjacent to the initial one. In this regime, the morphologies of the vorticity and magnetic field structures are similar. The effects of these structures on kinetic and magnetic energy spectra, as well as on the direction of energy transfer between flow and magnetic fields, are also indicated.
Vincenti, M A; de Ceglia, D; Roppo, V; Scalora, M
2011-01-31
We have conducted a theoretical study of harmonic generation from a silver grating having slits filled with GaAs. By working in the enhanced transmission regime, and by exploiting phase-locking between the pump and its harmonics, we guarantee strong field localization and enhanced harmonic generation under conditions of high absorption at visible and UV wavelengths. Silver is treated using the hydrodynamic model, which includes Coulomb and Lorentz forces, convection, electron gas pressure, plus bulk χ(3) contributions. For GaAs we use nonlinear Lorentz oscillators, with characteristic χ(2) and χ(3) and nonlinear sources that arise from symmetry breaking and Lorentz forces. We find that: (i) electron pressure in the metal contributes to linear and nonlinear processes by shifting/reshaping the band structure; (ii) TE- and TM-polarized harmonics can be generated efficiently; (iii) the χ(2) tensor of GaAs couples TE- and TM-polarized harmonics that create phase-locked pump photons having polarization orthogonal compared to incident pump photons; (iv) Fabry-Perot resonances yield more efficient harmonic generation compared to plasmonic transmission peaks, where most of the light propagates along external metal surfaces with little penetration inside its volume. We predict conversion efficiencies that range from 10(-6) for second harmonic generation to 10(-3) for the third harmonic signal, when pump power is 2 GW/cm2.
Reformulation of the symmetries of first-order general relativity
NASA Astrophysics Data System (ADS)
Montesinos, Merced; González, Diego; Celada, Mariano; Díaz, Bogar
2017-10-01
We report a new internal gauge symmetry of the n-dimensional Palatini action with cosmological term (n>3 ) that is the generalization of three-dimensional local translations. This symmetry is obtained through the direct application of the converse of Noether’s second theorem on the theory under consideration. We show that diffeomorphisms can be expressed as linear combinations of it and local Lorentz transformations with field-dependent parameters up to terms involving the variational derivatives of the action. As a result, the new internal symmetry together with local Lorentz transformations can be adopted as the fundamental gauge symmetries of general relativity. Although their gauge algebra is open in general, it allows us to recover, without resorting to the equations of motion, the very well-known Lie algebra satisfied by translations and Lorentz transformations in three dimensions. We also report the analog of the new gauge symmetry for the Holst action with cosmological term, finding that it explicitly depends on the Immirzi parameter. The same result concerning its relation to diffeomorphisms and the open character of the gauge algebra also hold in this case. Finally, we consider the non-minimal coupling of a scalar field to gravity in n dimensions and establish that the new gauge symmetry is affected by this matter field. Our results indicate that general relativity in dimension greater than three can be thought of as a gauge theory.
The Space Time Asymmetry Research Mission
NASA Astrophysics Data System (ADS)
Scargle, Jeffrey; Goebel, John; Buchman, Sasha; Byer, Robert; Sun, Ke-Xun; Lipa, John; Chu-Thielbar, Lisa; Hall, John
We will use precision molecular iodine stabilized Nd:YAG laser interferometers to search for small deviations from Lorentz Invariance, a cornerstone of relativity and particle physics, and thus our understanding of the Universe. A Lorentz violation would have profound implications for cosmology and particle physics. An improved null result will constrain theories attempting to unite particle physics and gravity. Science Objectives: Measure the absolute anisotropy of the velocity of light to 10-18 (100-fold improvement) Derive the Michelson-Morley coefficient to 10-12 (100-fold improvement) Derive the Kennedy-Thorndyke coefficient to 7x10-10 (400-fold improvement) Derive the coefficients of Lorentz violation in the Standard Model Extension, in the range 7x10-18 to 10-14 (50 to 500-fold improvement) Thermal control, stabilization and uniformitization are great concerns, so new technology has been devised that keeps these parameters within strict specified limits. Thereby STAR is able to operate effectively in all possible orbits. The spacecraft is based on a bus development by NASA Ames Research Center. STAR is designed to fly as a secondary payload on a Delta IV launch vehicle with an ESPA ring into an 850 km circular orbit. It will have a one-year mission and is capable of even longer duration. Other orbit options are possible depending on the launch opportunities available. The STAR project is a partnership between Stanford University, NASA Ames Research Center and NASA Goddard Space Flight Center.
Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity
NASA Astrophysics Data System (ADS)
Bluhm, Robert; Fung, Shu-Hong; Kostelecký, V. Alan
2008-03-01
Theories with spontaneous local Lorentz and diffeomorphism violation contain massless Nambu-Goldstone modes, which arise as field excitations in the minimum of the symmetry-breaking potential. If the shape of the potential also allows excitations above the minimum, then an alternative gravitational Higgs mechanism can occur in which massive modes involving the metric appear. The origin and basic properties of the massive modes are addressed in the general context involving an arbitrary tensor vacuum value. Special attention is given to the case of bumblebee models, which are gravitationally coupled vector theories with spontaneous local Lorentz and diffeomorphism violation. Mode expansions are presented in both local and spacetime frames, revealing the Nambu-Goldstone and massive modes via decomposition of the metric and bumblebee fields, and the associated symmetry properties and gauge fixing are discussed. The class of bumblebee models with kinetic terms of the Maxwell form is used as a focus for more detailed study. The nature of the associated conservation laws and the interpretation as a candidate alternative to Einstein-Maxwell theory are investigated. Explicit examples involving smooth and Lagrange-multiplier potentials are studied to illustrate features of the massive modes, including their origin, nature, dispersion laws, and effects on gravitational interactions. In the weak static limit, the massive mode and Lagrange-multiplier fields are found to modify the Newton and Coulomb potentials. The nature and implications of these modifications are examined.
ERIC Educational Resources Information Center
Martins, Roberto de A.
1978-01-01
Describes a thought experiment using a general analysis approach with Lorentz transformations to show that the apparent self-contradictions of special relativity concerning the length-paradox are really non-existant. (GA)
Transmission Nonreciprocity in a Mutually Coupled Circulating Structure
NASA Astrophysics Data System (ADS)
He, Bing; Yang, Liu; Jiang, Xiaoshun; Xiao, Min
2018-05-01
Breaking Lorentz reciprocity was believed to be a prerequisite for nonreciprocal transmissions of light fields, so the possibility of nonreciprocity by linear optical systems was mostly ignored. We put forward a structure of three mutually coupled microcavities or optical fiber rings to realize optical nonreciprocity. Although its couplings with the fields from two different input ports are constantly equal, such system transmits them nonreciprocally either under the saturation of an optical gain in one of the cavities or with the asymmetric couplings of the circulating fields in different cavities. The structure made up of optical fiber rings can perform nonreciprocal transmissions as a time-independent linear system without breaking Lorentz reciprocity. Optical isolation for inputs simultaneously from two different ports and even approximate optical isolator operations are implementable with the structure.
Convection Induced by Traveling Magnetic Fields in Semiconductor Melts
NASA Technical Reports Server (NTRS)
Konstantin, Mazuruk
2000-01-01
Axisymmetric traveling magnetic fields (TMF) can be beneficial for crystal growth applications. such as the vertical Bridgman, float zone or traveling heater methods. TMF induces a basic flow in the form of a single roll. This type of flow can enhance mass and heat transfer to the growing crystal. More importantly, the TMF Lorentz body force induced in the system can counterbalance the buoyancy forces, so the resulting convection can be much smaller and even the direction of it can be changed. In this presentation, we display basic features of this novel technique. In particular, numerical calculations of the Lorentz force for arbitrary frequencies will be presented along with induced steady-state fluid flow profiles. Also, numerical modeling of the TMF counter-balancing natural convection in vertical Bridgman systems will be demonstrated.
Implicit Contractive Mappings in Modular Metric and Fuzzy Metric Spaces
Hussain, N.; Salimi, P.
2014-01-01
The notion of modular metric spaces being a natural generalization of classical modulars over linear spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, and Calderon-Lozanovskii spaces was recently introduced. In this paper we investigate the existence of fixed points of generalized α-admissible modular contractive mappings in modular metric spaces. As applications, we derive some new fixed point theorems in partially ordered modular metric spaces, Suzuki type fixed point theorems in modular metric spaces and new fixed point theorems for integral contractions. In last section, we develop an important relation between fuzzy metric and modular metric and deduce certain new fixed point results in triangular fuzzy metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25003157
Spin connection as Lorentz gauge field in Fairchild’s action
NASA Astrophysics Data System (ADS)
Cianfrani, Francesco; Montani, Giovanni; Scopelliti, Vincenzo
2016-06-01
We propose a modified gravitational action containing besides the Einstein-Cartan term some quadratic contributions resembling the Yang-Mills Lagrangian for the Lorentz spin connections. We outline how a propagating torsion arises and we solve explicitly the linearized equations of motion on a Minkowski background. We identify among torsion components six degrees of freedom: one is carried by a pseudo-scalar particle, five by a tachyon field. By adding spinor fields and neglecting backreaction on the geometry, we point out how only the pseudo-scalar particle couples directly with fermions, but the resulting coupling constant is suppressed by the ratio between fermion and Planck masses. Including backreaction, we demonstrate how the tachyon field provides causality violation in the matter sector, via an interaction mediated by gravitational waves.
NASA Astrophysics Data System (ADS)
Hu, W.-R.
1984-09-01
The paper gives a theoretical analysis of the overall characteristics of the Evershed flow (one of the main features of sunspots), with particular attention given to its outward flow from the umbra in the photosphere, reaching a maximum somewhere in the penumbra, and decreasing rapidly further out, and its inward flow of a comparable magnitude in chromosphere. Because the inertial force of the flow is small, the relevant dynamic process can be divided into a base state and a perturbation. The base-state solution yields the equilibrium relations between the pressure gradient, the Lorentz force, and gravity, and the flow law. The perturbation describes the force driving the Evershed flow. Since the pressure gradient in the base state is already in equilibrium with the Lorentz force and the gravity, the driving force of the mean Evershed flow is small.
Special Issue on "Instanton Counting: Moduli Spaces, Representation Theory, and Integrable Systems"
NASA Astrophysics Data System (ADS)
Bruzzo, Ugo; Sala, Francesco
2016-11-01
This special issue of the Journal of Geometry and Physics collects some papers that were presented during the workshop ;Instanton Counting: Moduli Spaces, Representation Theory, and Integrable Systems; that took place at the Lorentz Center in Leiden, The Netherlands, from 16 to 20 June 2014. The workshop was supported by the Lorentz Center, the ;Geometry and Quantum Theory; Cluster, Centre Européen pour les Mathématiques, la Physique et leurs Interactions (Lille, France), Laboratoire Angevin de Recherche en Mathématiques (Angers, France), SISSA (Trieste, Italy), and Foundation Compositio (Amsterdam, the Netherlands). We deeply thank all these institutions for making the workshop possible. We also thank the other organizers of the workshop, Professors Dimitri Markushevich, Vladimir Rubtsov and Sergey Shadrin, for their efforts and great collaboration.
Bulanov, Sergei V; Esirkepov, Timur Zh; Kando, Masaki; Koga, James K; Bulanov, Stepan S
2011-11-01
When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.
Flow of nanofluid past a Riga plate
NASA Astrophysics Data System (ADS)
Ahmad, Adeel; Asghar, Saleem; Afzal, Sumaira
2016-03-01
This paper studies the mixed convection boundary layer flow of a nanofluid past a vertical Riga plate in the presence of strong suction. The mathematical model incorporates the Brownian motion and thermophoresis effects due to nanofluid and the Grinberg-term for the wall parallel Lorentz force due to Riga plate. The analytical solution of the problem is presented using the perturbation method for small Brownian and thermophoresis diffusion parameters. The numerical solution is also presented to ensure the reliability of the asymptotic method. The comparison of the two solutions shows an excellent agreement. The correlation expressions for skin friction, Nusselt number and Sherwood number are developed by performing linear regression on the obtained numerical data. The effects of nanofluid and the Lorentz force due to Riga plate, on the skin friction are discussed.
Heavy and Heavy-Light Mesons in the Covariant Spectator Theory
NASA Astrophysics Data System (ADS)
Stadler, Alfred; Leitão, Sofia; Peña, M. T.; Biernat, Elmar P.
2018-05-01
The masses and vertex functions of heavy and heavy-light mesons, described as quark-antiquark bound states, are calculated with the Covariant Spectator Theory (CST). We use a kernel with an adjustable mixture of Lorentz scalar, pseudoscalar, and vector linear confining interaction, together with a one-gluon-exchange kernel. A series of fits to the heavy and heavy-light meson spectrum were calculated, and we discuss what conclusions can be drawn from it, especially about the Lorentz structure of the kernel. We also apply the Brodsky-Huang-Lepage prescription to express the CST wave functions for heavy quarkonia in terms of light-front variables. They agree remarkably well with light-front wave functions obtained in the Hamiltonian basis light-front quantization approach, even in excited states.
Stoykov, Nikolay S; Kuiken, Todd A; Lowery, Madeleine M; Taflove, Allen
2003-09-01
We present what we believe to be the first algorithms that use a simple scalar-potential formulation to model linear Debye and Lorentz dielectric dispersions at low frequencies in the context of finite-element time-domain (FETD) numerical solutions of electric potential. The new algorithms, which permit treatment of multiple-pole dielectric relaxations, are based on the auxiliary differential equation method and are unconditionally stable. We validate the algorithms by comparison with the results of a previously reported method based on the Fourier transform. The new algorithms should be useful in calculating the transient response of biological materials subject to impulsive excitation. Potential applications include FETD modeling of electromyography, functional electrical stimulation, defibrillation, and effects of lightning and impulsive electric shock.
NASA Astrophysics Data System (ADS)
Yamamoto, Takuya; Adkar, Nikhil; Okano, Yasunori; Ujihara, Toru; Dost, Sadik
2017-09-01
A numerical simulation study was carried out to examine the transport phenomena occurring during the Top-Seeded Solution Growth (TSSG) process of SiC. The simulation model includes the contributions of radiative and conductive heat transfer in the furnace, mass transfer and fluid flow in the melt, and the induced electric and magnetic fields. Results show that the induced Lorentz force is dominant in the melt compared with that of buoyancy. At the relatively low coil frequencies, the effect of the Lorentz force on the melt flow is significant, and the corresponding flow patterns loose their axisymmetry and become almost fully disturbed. However, at the relatively higher frequency values, the flow is steady and the flow patterns remain axisymmetric.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki
2011-11-15
When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to themore » nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.« less
Recent advances in Lorentz microscopy
Phatak, C.; Petford-Long, A. K.; De Graef, M.
2016-01-05
Lorentz transmission electron microscopy (LTEM) has evolved from a qualitative magnetic domain observation technique to a quantitative technique for the determination of the magnetization state of a sample. Here, we describe recent developments in techniques and imaging modes, including the use of spherical aberration correction to improve the spatial resolution of LTEM into the single nanometer range, and novel in situ observation modes. We also review recent advances in the modeling of the wave optical magnetic phase shift as well as in the area of phase reconstruction by means of the Transport of Intensity Equation (TIE) approach, and discuss vectormore » field electron tomography, which has emerged as a powerful tool for the 3D reconstruction of magnetization configurations. Finally, we conclude this review with a brief overview of recent LTEM applications.« less
Antunes, A; Glover, P M; Li, Y; Mian, O S; Day, B L
2012-07-21
Large static magnetic fields may be employed in magnetic resonance imaging (MRI). At high magnetic field strengths (usually from about 3 T and above) it is possible for humans to perceive a number of effects. One such effect is mild vertigo. Recently, Roberts et al (2011 Current Biology 21 1635-40) proposed a Lorentz-force mechanism resulting from the ionic currents occurring naturally in the endolymph of the vestibular system. In the present work a more detailed calculation of the forces and resulting pressures in the vestibular system is carried out using a numerical model. Firstly, realistic 3D finite element conductivity and fluid maps of the utricle and a single semi-circular canal containing the current sources (dark cells) and sinks (hair cells) of the utricle and ampulla were constructed. Secondly, the electrical current densities in the fluid are calculated. Thirdly, the developed Lorentz force is used directly in the Navier-Stokes equation and the trans-cupular pressure is computed. Since the driving force field is relatively large in comparison with the advective acceleration, we demonstrate that it is possible to perform an approximation in the Navier-Stokes equations that reduces the problem to solving a simpler Poisson equation. This simplification allows rapid and easy calculation for many different directions of applied magnetic field. At 7 T a maximum cupula pressure difference of 1.6 mPa was calculated for the combined ampullar (0.7 µA) and utricular (3.31 µA) distributed current sources, assuming a hair-cell resting current of 100 pA per unit. These pressure values are up to an order of magnitude lower than those proposed by Roberts et al using a simplistic model and calculation, and are in good agreement with the estimated pressure values for nystagmus velocities in caloric experiments. This modeling work supports the hypothesis that the Lorentz force mechanism is a significant contributor to the perception of magnetic field induced vertigo.
Image of a moving sphere and the FitzGerald Lorentz contraction
NASA Astrophysics Data System (ADS)
Redzic, Dragan V.
2004-01-01
An asymmetry in Maxwell's electrodynamics concerning the electromagnetic image of a moving spherical conductor is pointed out. The asymmetry, if properly understood, opens the door to special relativity.
Expanding the Discovery Potential of VERITAS via Moonlight Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benbow, Wystan R.
2014-10-27
This grant partially supported the base research efforts of the Smithsonian Astrophysical Observatory (SAO), Very-High-Energy (VHE; E > 100 GeV) gamma-ray research group from 8/1/09 to 7/31/14. During the project period, the SAO gamma-ray group carried out a wide-range of research efforts, but focused on VHE observations of extragalactic sources with VERITAS. The SAO group led or co-lead nearly all VERITAS extragalactic working groups and the observations addressed themes in Particle Physics and Fundamental Laws, Cosmology, and Black Holes. The primary topics of this research were processes in exotic galaxies, especially active galactic nuclei and starburst galaxies, which have implicationsmore » for cosmology and Lorentz invariance violation, as well as indirect dark matter detection via VERITAS observations of dwarf spheroidal galaxies. In addition, the SAO group let the development of unique capabilities for VERITAS to observe during all periods of moonlight. Overall, this has increased the VERITAS data yield by 60% and these data are both scientifically useful and regularly published. This grant funded research that led to contributions towards the publication of 51 refereed journal articles during the project period, including several led by, or with significant contributions from, the SAO group.« less
A Heuristic Potential Theory of Electric and Magnetic Monopoles without Strings.
ERIC Educational Resources Information Center
Barker, William A.; Graziani, Frank
1978-01-01
Shows how Maxwell's equations can be obtained by starting with a relatively simple pseudoscalar and scalar potential employing only the Lorentz transformation for a four vector (or pseudovector). (GA)
Quantum entropy and special relativity.
Peres, Asher; Scudo, Petra F; Terno, Daniel R
2002-06-10
We consider a single free spin- 1 / 2 particle. The reduced density matrix for its spin is not covariant under Lorentz transformations. The spin entropy is not a relativistic scalar and has no invariant meaning.
Extended hamiltonian formalism and Lorentz-violating lagrangians
NASA Astrophysics Data System (ADS)
Colladay, Don
2017-09-01
A new perspective on the classical mechanical formulation of particle trajectories in Lorentz-violating theories is presented. Using the extended hamiltonian formalism, a Legendre Transformation between the associated covariant lagrangian and hamiltonian varieties is constructed. This approach enables calculation of trajectories using Hamilton's equations in momentum space and the Euler-Lagrange equations in velocity space away from certain singular points that arise in the theory. Singular points are naturally de-singularized by requiring the trajectories to be smooth functions of both velocity and momentum variables. In addition, it is possible to identify specific sheets of the dispersion relations that correspond to specific solutions for the lagrangian. Examples corresponding to bipartite Finsler functions are computed in detail. A direct connection between the lagrangians and the field-theoretic solutions to the Dirac equation is also established for a special case.
General Boundary Conditions for a Majorana Single-Particle in a Box in (1 + 1) Dimensions
NASA Astrophysics Data System (ADS)
De Vincenzo, Salvatore; Sánchez, Carlet
2018-05-01
We consider the problem of a Majorana single-particle in a box in (1 + 1) dimensions. We show that the most general set of boundary conditions for the equation that models this particle is composed of two families of boundary conditions, each one with a real parameter. Within this set, we only have four confining boundary conditions—but infinite not confining boundary conditions. Our results are also valid when we include a Lorentz scalar potential in this equation. No other Lorentz potential can be added. We also show that the four confining boundary conditions for the Majorana particle are precisely the four boundary conditions that mathematically can arise from the general linear boundary condition used in the MIT bag model. Certainly, the four boundary conditions for the Majorana particle are also subject to the Majorana condition.
Towards thermodynamics of universal horizons in Einstein-æther theory.
Berglund, Per; Bhattacharyya, Jishnu; Mattingly, David
2013-02-15
Holography grew out of black hole thermodynamics, which relies on the causal structure and general covariance of general relativity. In Einstein-æther theory, a generally covariant theory with a dynamical timelike unit vector, every solution breaks local Lorentz invariance, thereby grossly modifying the causal structure of gravity. However, there are still absolute causal boundaries, called "universal horizons," which are not Killing horizons yet obey a first law of black hole mechanics and must have an entropy if they do not violate a generalized second law. We couple a scalar field to the timelike vector and show via the tunneling approach that the universal horizon radiates as a blackbody at a fixed temperature, even if the scalar field equations also violate local Lorentz invariance. This suggests that the class of holographic theories may be much broader than currently assumed.
Directivity analysis of meander-line-coil EMATs with a wholly analytical method.
Xie, Yuedong; Liu, Zenghua; Yin, Liyuan; Wu, Jiande; Deng, Peng; Yin, Wuliang
2017-01-01
This paper presents the simulation and experimental study of the radiation pattern of a meander-line-coil EMAT. A wholly analytical method, which involves the coupling of two models: an analytical EM model and an analytical UT model, has been developed to build EMAT models and analyse the Rayleigh waves' beam directivity. For a specific sensor configuration, Lorentz forces are calculated using the EM analytical method, which is adapted from the classic Deeds and Dodd solution. The calculated Lorentz force density are imported to an analytical ultrasonic model as driven point sources, which produce the Rayleigh waves within a layered medium. The effect of the length of the meander-line-coil on the Rayleigh waves' beam directivity is analysed quantitatively and verified experimentally. Copyright © 2016 Elsevier B.V. All rights reserved.
Second- and third-harmonic generation in metal-based structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scalora, M.; Akozbek, N.; Bloemer, M. J.
We present a theoretical approach to the study of second- and third-harmonic generation from metallic structures and nanocavities filled with a nonlinear material in the ultrashort pulse regime. We model the metal as a two-component medium, using the hydrodynamic model to describe free electrons and Lorentz oscillators to account for core electron contributions to both the linear dielectric constant and harmonic generation. The active nonlinear medium that may fill a metallic nanocavity, or be positioned between metallic layers in a stack, is also modeled using Lorentz oscillators and surface phenomena due to symmetry breaking are taken into account. We studymore » the effects of incident TE- and TM-polarized fields and show that a simple reexamination of the basic equations reveals additional, exploitable dynamical features of nonlinear frequency conversion in plasmonic nanostructures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahuatzin, G.; Bautista, I.; Hernandez-Lopez, J. A.
A constant antisymmetric 2-tensor can arise in general relativity with spontaneous symmetry breaking or in field theories formulated in a noncommutative space-time. In this work, the one-loop contribution of a nonstandard WW{gamma} vertex on the flavor violating quark transition q{sub i}{yields}q{sub j}{gamma} is studied in the context of the electroweak Yang-Mills sector extended with a Lorentz-violating constant 2-tensor. An exact analytical expression for the on-shell case is presented. It is found that the loop amplitude is gauge independent, electromagnetic gauge invariant, and free of ultraviolet divergences. The dipolar contribution to the b{yields}s{gamma} transition together with the experimental data on themore » B{yields}X{sub s{gamma}} decay is used to derive the constraint {Lambda}{sub LV}>1.96 TeV on the Lorentz-violating scale.« less
Lorentz Invariance Violation effects on UHECR propagation: A geometrized approach
NASA Astrophysics Data System (ADS)
Torri, Marco Danilo Claudio; Bertini, Stefano; Giammarchi, Marco; Miramonti, Lino
2018-06-01
We explore the possibility to geometrize the interaction of massive fermions with the quantum structure of space-time, trying to create a theoretical background, in order to explain what some recent experimental results seem to implicate on the propagation of Ultra High Energy Cosmic Rays (UHECR). We will investigate part of the phenomenological implications of this approach on the predicted effect of the UHECR suppression, in fact recent evidences seem to involve the modification of the GZK cut-off phenomenon. The search for an effective theory, which can explain this physical effect, is based on Lorentz Invariance Violation (LIV), which is introduced via Modified Dispersion Relations (MDRs). Furthermore we illustrate that this perspective implies a more general geometry of space-time than the usual Riemannian one, indicating, for example, the opportunity to resort to Finsler theory.
NASA Astrophysics Data System (ADS)
Li, Hua-bai
2017-10-01
Tai Chi, a Chinese martial art developed based on the laws of nature, emphasises how 'to conquer the unyielding with the yielding'. The recent observation of star formation shows that stars result from the interaction between gravity, turbulence and magnetic fields. This interaction again follows the nature rules that inspired Tai Chi. For example, if self-gravity is the force that dominates, the molecular cloud will collapse isotropically, which compresses magnetic field lines. The density of the yielding field lines increases until magnetic pressure reaches the critical value to support the cloud against the gravitational force in directions perpendicular to the field lines (Lorentz force). Then gravity gives way to Lorentz force, accumulating gas only along the field lines till the gas density achieves the critical value to again compress the field lines. The Tai Chi goes on in a self-similar way.
Nanoscale ferromagnetism in phase-separated manganites
NASA Astrophysics Data System (ADS)
Mori, S.; Horibe, Y.; Asaka, T.; Matsui, Y.; Chen, C. H.; Cheong, S. W.
2007-03-01
Magnetic domain structures in phase-separated manganites were investigated by low-temperature Lorentz electron microscopy, in order to understand some unusual physical properties such as a colossal magnetoresistance (CMR) effect and a metal-to-insulator transition. In particular, we examined a spatial distribution of the charge/orbital-ordered (CO/OO) insulator state and the ferromagnetic (FM) metallic one in phase-separated manganites; Cr-doped Nd0.5Ca0.5MnO3 and ( La1-xPrx)CaMnO3 with x=0.375, by obtaining both the dark-field images and Lorentz electron microscopic ones. It is found that an unusual coexistence of the CO/OO and FM metallic states below a FM transition temperature in the two compounds. The present experimental results clearly demonstrated the coexisting state of the two distinct ground states in manganites.
Resolving puzzles of massive gravity with and without violation of Lorentz symmetry
NASA Astrophysics Data System (ADS)
Mironov, Andrei; Mironov, Sergey; Morozov, Alexei; Morozov, Andrey
2010-06-01
We perform a systematic study of various versions of massive gravity with and without violations of the Lorentz symmetry in arbitrary dimension. These theories are well known to possess very unusual properties, unfamiliar from studies of gauge and Lorentz invariant models. These peculiarities are caused by the mixing of familiar transverse fields with the revived longitudinal and pure gauge (Stueckelberg) fields and are all seen already in the quadratic approximation. They are all associated with non-trivial dispersion laws, which easily allow superluminal propagation, ghosts, tachyons and essential irrationalities. Moreover, the coefficients in front of emerging modes are small, which makes the theories essentially non-perturbative within a large Vainshtein radius. Attempts to get rid of unwanted degrees of freedom by giving them infinite masses lead to the DVZ discontinuities in the parameter (moduli) space, caused by non-permutability of different limits. Also, the condition mgh = ∞ can not be preserved already in non-trivial gravitational backgrounds and is unstable under any other perturbations of the linearized gravity. At the same time, an a priori healthy model of massive gravity in the quadratic approximation definitely exists: it is provided by any mass level of the Kaluza-Klein tower. It bypasses the problems because the gravity field is mixed with other fields, and this explains why such mixing helps in other models. At the same time, this can imply that the really healthy massive gravity can still require an infinite number of extra fields beyond the quadratic approximation.
NASA Astrophysics Data System (ADS)
Li, Ping; Li, Xin-zhou; Xi, Ping
2016-06-01
We present a detailed study of the spherically symmetric solutions in Lorentz-breaking massive gravity. There is an undetermined function { F }(X,{w}1,{w}2,{w}3) in the action of Stückelberg fields {S}φ ={{{Λ }}}4\\int {{{d}}}4x\\sqrt{-g}{ F }, which should be resolved through physical means. In general relativity, the spherically symmetric solution to the Einstein equation is a benchmark and its massive deformation also plays a crucial role in Lorentz-breaking massive gravity. { F } will satisfy the constraint equation {T}01=0 from the spherically symmetric Einstein tensor {G}01=0, if we maintain that any reasonable physical theory should possess the spherically symmetric solutions. The Stückelberg field {φ }i is taken as a ‘hedgehog’ configuration {φ }i=φ (r){x}i/r, whose stability is guaranteed by the topological one. Under this ansätz, {T}01=0 is reduced to d{ F }=0. The functions { F } for d{ F }=0 form a commutative ring {R}{ F }. We obtain an expression of the solution to the functional differential equation with spherical symmetry if { F }\\in {R}{ F }. If { F }\\in {R}{ F } and \\partial { F }/\\partial X=0, the functions { F } form a subring {S}{ F }\\subset {R}{ F }. We show that the metric is Schwarzschild, Schwarzschild-AdS or Schwarzschild-dS if { F }\\in {S}{ F }. When { F }\\in {R}{ F } but { F }\
[Probing Planck-scale Physics with a Ne-21/He-3 Zeeman Maser
NASA Technical Reports Server (NTRS)
2003-01-01
The Ne-21/He-3 Zeeman maser is a recently developed device which employs co-located ensembles of Ne-21 and He-3 atoms to provide sensitive differential measurements of the noble gas nuclear Zeeman splittings as a function of time, thereby greatly attenuating common-mode systematic effects such as uniform magnetic field variations. The Ne-21 maser will serve as a precision magnetometer to stabilize the system's static magnetic field, while the He-3 maser is used as a sensitive probe for violations of CPT and Lorentz symmetry by searching for small variations in the 3He maser frequency as the spatial orientation of the apparatus changes due to the rotation of the Earth (or placement on a rotating table). In the context of a general extension of the Standard Model of particle physics, the Ne-21/He-3 maser will provide the most sensitive search to date for CPT and Lorentz violation of the neutron: better than 10(exp -32) GeV, an improvement of more than an order of magnitude over past experiments. This exceptional precision will offer a rare opportunity to probe physics at the Planck scale. A future space-based Ne-21/He-3 maser or related device could provide even greater sensitivity to violations of CPT and Lorentz symmetry, and hence to Planck-scale physics, because of isolation from dominant systematic effects associated with ground-based operation, and because of access to different positions in space-time.
A novel reciprocating micropump based on Lorentz force
NASA Astrophysics Data System (ADS)
Salari, Alinaghi; Hakimsima, Abbas; Shafii, Mohammad Behshad
2015-03-01
Lorentz force is the pumping basis of many electromagnetic micropumps used in lab-on-a-chip. In this paper a novel reciprocating single-chamber micropump is proposed, in which the actuation technique is based on Lorentz force acting on an array of microwires attached on a membrane surface. An alternating current is applied through the microwires in the presence of a magnetic field. The resultant force causes the membrane to oscillate and pushes the fluid to flow through microchannel using a ball-valve. The pump chamber (3 mm depth) was fabricated on a Polymethylmethacrylate (PMMA) substrate using laser engraving technique. The chamber was covered by a 60 μm thick hyper-elastic latex rubber diaphragm. Two miniature permanent magnets capable of providing magnetic field of 0.09 T at the center of the diaphragm were mounted on each side of the chamber. Square wave electric current with low-frequencies was generated using a function generator. Cylindrical copper microwires (250 μm diameter and 5 mm length) were attached side-by-side on top surface of the diaphragm. Thin loosely attached wires were used as connectors to energize the electrodes. Due to large displacement length of the diaphragm (~3 mm) a high efficiency (~90%) ball valve (2 mm diameter stainless steel ball in a tapered tubing structure) was used in the pump outlet. The micropump exhibits a flow rate as high as 490 μl/s and pressure up to 1.5 kPa showing that the pump is categorized among high-flow-rate mechanical micropumps.
NASA Astrophysics Data System (ADS)
Hughes, J.; Schaub, H.
2017-12-01
Spacecraft can charge to very negative voltages at GEO due to interactions with the space plasma. This can cause arcing which can damage spacecraft electronics or solar panels. Recently, it has been suggested that spacecraft charging may lead to orbital perturbations which change the orbits of lightweight uncontrolled debris orbits significantly. The motions of High Area to Mass Ratio objects are not well explained with just perturbations from Solar Radiation Pressure (SRP) and earth, moon, and sun gravity. A charged spacecraft will experience a Lorentz force as the spacecraft moves relative to Earth's magnetic field, as well as a Lorentz torque and eddy current torques if the object is rotating. Prior work assuming a constant "worst case" voltage has shown that Lorentz and eddy torques can cause quite large orbital changes by rotating the object to experience more or less SRP. For some objects, including or neglecting these electromagnetic torques can lead to differences of thousands of kilometers after only two orbits. This paper will further investigate the effects of electromagnetic perturbations by using a charging model that uses measured flux distributions to better simulate natural charging. This differs from prior work which used a constant voltage or Maxwellian distributions. This is done to a calm space weather case of Kp = 2 and a stormy case where Kp = 8. Preliminary analysis suggests that electrostatics will still cause large orbital changes even with the more realistic charging model.
Lorentz boosted frame simulation technique in Particle-in-cell methods
NASA Astrophysics Data System (ADS)
Yu, Peicheng
In this dissertation, we systematically explore the use of a simulation method for modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique. In the lab frame the plasma length is typically four orders of magnitude larger than the laser pulse length. Using this technique, simulations are performed in a Lorentz boosted frame in which the plasma length, which is Lorentz contracted, and the laser length, which is Lorentz expanded, are now comparable. This technique has the potential to reduce the computational needs of a LWFA simulation by more than four orders of magnitude, and is useful if there is no or negligible reflection of the laser in the lab frame. To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle to overcome is a robust and violent numerical instability, called the Numerical Cerenkov Instability (NCI), that leads to unphysical energy exchange between relativistically drifting particles and their radiation. This leads to unphysical noise that dwarfs the real physical processes. In this dissertation, we first present a theoretical analysis of this instability, and show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We then discuss the methods to eliminate them. However, the use of FFTs can lead to parallel scalability issues when there are many more cells along the drifting direction than in the transverse direction(s). We then describe an algorithm that has the potential to address this issue by using a higher order finite difference operator for the derivative in the plasma drifting direction, while using the standard second order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and it is shown that the NCI can be eliminated using the same strategies that were used for the hybrid FFT/Finite Difference solver. This scheme also requires a current correction and filtering which require FFTs. However, we show that in this case the FFTs can be done locally on each parallel partition. We also describe how the use of the hybrid FFT/Finite Difference or the hybrid higher order finite difference/second order finite difference methods permit combining the Lorentz boosted frame simulation technique with another "speed up" technique, called the quasi-3D algorithm, to gain unprecedented speed up for the LWFA simulations. In the quasi-3D algorithm the fields and currents are defined on an r--z PIC grid and expanded in azimuthal harmonics. The expansion is truncated with only a few modes so it has similar computational needs of a 2D r--z PIC code. We show that NCI has similar properties in r--z as in z-x slab geometry and show that the same strategies for eliminating the NCI in Cartesian geometry can be effective for the quasi-3D algorithm leading to the possibility of unprecedented speed up. We also describe a new code called UPIC-EMMA that is based on fully spectral (FFT) solver. The new code includes implementation of a moving antenna that can launch lasers in the boosted frame. We also describe how the new hybrid algorithms were implemented into OSIRIS. Examples of LWFA using the boosted frame using both UPIC-EMMA and OSIRIS are given, including the comparisons against the lab frame results. We also describe how to efficiently obtain the boosted frame simulations data that are needed to generate the transformed lab frame data, as well as how to use a moving window in the boosted frame. The NCI is also a major issue for modeling relativistic shocks with PIC algorithm. In relativistic shock simulations two counter-propagating plasmas drifting at relativistic speeds are colliding against each other. We show that the strategies for eliminating the NCI developed in this dissertation are enabling such simulations being run for much longer simulation times, which should open a path for major advances in relativistic shock research. (Abstract shortened by ProQuest.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girelli, Florian; Livine, Etera R.; Laboratoire de Physique, ENS Lyon, CNRS UMR 5672, 46 Allee d'Italie, 69007 Lyon
Deformed special relativity (DSR) is obtained by imposing a maximal energy to special relativity and deforming the Lorentz symmetry (more exactly, the Poincare symmetry) to accommodate this requirement. One can apply the same procedure in the context of Galilean relativity by imposing a maximal speed (the speed of light). Effectively, one deforms the Galilean group and this leads to a noncommutative space structure, together with the deformations of composition of speed and conservation of energy momentum. In doing so, one runs into most of the ambiguities that one stumbles onto in the DSR context. However, this time, special relativity ismore » there to tell us what is the underlying physics, in such a way we can understand and interpret these ambiguities. We use these insights to comment on the physics of DSR.« less
Conditions for Lorentz-invariant superluminal information transfer without signaling
NASA Astrophysics Data System (ADS)
Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H.
2016-03-01
We understand emergent quantum mechanics in the sense that quantum mechanics describes processes of physical emergence relating an assumed sub-quantum physics to macroscopic boundary conditions. The latter can be shown to entail top-down causation, in addition to usual bottom-up scenarios. With this example it is demonstrated that definitions of “realism” in the literature are simply too restrictive. A prevailing manner to define realism in quantum mechanics is in terms of pre-determination independent of the measurement. With our counter-example, which actually is ubiquitous in emergent, or self-organizing, systems, we argue for realism without pre-determination. We refer to earlier results of our group showing how the guiding equation of the de Broglie-Bohm interpretation can be derived from a theory with classical ingredients only. Essentially, this corresponds to a “quantum mechanics without wave functions” in ordinary 3-space, albeit with nonlocal correlations. This, then, leads to the central question of how to deal with the nonlocality problem in a relativistic setting. We here show that a basic argument discussing the allegedly paradox time ordering of events in EPR-type two-particle experiments falls short of taking into account the contextuality of the experimental setup. Consequently, we then discuss under which circumstances (i.e. physical premises) superluminal information transfer (but not signaling) may be compatible with a Lorentz-invariant theory. Finally, we argue that the impossibility of superluminal signaling - despite the presence of superluminal information transfer - is not the result of some sort of conspiracy (á la “Nature likes to hide”), but the consequence of the impossibility to exactly reproduce in repeated experimental runs a state's preparation, or of the no-cloning theorem, respectively.
Depciuch, J; Kaznowska, E; Golowski, S; Koziorowska, A; Zawlik, I; Cholewa, M; Szmuc, K; Cebulski, J
2017-09-05
Breast cancer affects one in four women, therefore, the search for new diagnostic technologies and therapeutic approaches is of critical importance. This involves the development of diagnostic tools to facilitate the detection of cancer cells, which is useful for assessing the efficacy of cancer therapies. One of the major challenges for chemotherapy is the lack of tools to monitor efficacy during the course of treatment. Vibrational spectroscopy appears to be a promising tool for such a purpose, as it yields Fourier transformation infrared (FTIR) spectra which can be used to provide information on the chemical composition of the tissue. Previous research by our group has demonstrated significant differences between the infrared spectra of healthy, cancerous and post-chemotherapy breast tissue. Furthermore, the results obtained for three extreme patient cases revealed that the infrared spectra of post-chemotherapy breast tissue closely resembles that of healthy breast tissue when chemotherapy is effective (i.e., a good therapeutic response is achieved), or that of cancerous breast tissue when chemotherapy is ineffective. In the current study, we compared the infrared spectra of healthy, cancerous and post-chemotherapy breast tissue. Characteristic parameters were designated for the obtained spectra, spreading the function of absorbance using the Kramers-Kronig transformation and the best fit procedure to obtain Lorentz functions, which represent components of the bands. The Lorentz function parameters were used to develop a physics-based computational model to verify the efficacy of a given chemotherapy protocol in a given case. The results obtained using this model reflected the actual patient data retrieved from medical records (health improvement or no improvement). Therefore, we propose this model as a useful tool for monitoring the efficacy of chemotherapy in patients with breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
The Ghost of Electricity: A History of Electron Theory from 1897 to 1987.
ERIC Educational Resources Information Center
Adams, S. F.
1988-01-01
Discusses the history of electron theory from 1897 to 1987. Includes the works of some physicists, such as Thomson, Lorentz, De Broglie, Bohr, Pauli, Dirac, Feynman, Wheeler, Weinberg, and Salam. (YP)
NASA Technical Reports Server (NTRS)
Rinsland, Curtis P.; Smith, Mary Ann H.; Goldman, Aaron; Malathy Devi, V.
1991-01-01
Lorentz air-broadening coefficients and relative intensities have been measured for forty-three lines in the pure rotational band and twenty lines in the nu2 band of H2O-16 between 800 and 1150/cm. The results were derived from analysis of nine 0.017/cm-resolution atmospheric absorption spectra recorded over horizontal paths of 0.5-1.5 km with the McMath Fourier transform spectrometer and main solar telescope operated on Kitt Peak by the National Solar Observatory. A nonlinear least-squares spectral fitting technique was used in the spectral analysis. The results are compared with previous measurements and calculations. In most cases, the measured pressure-broadening coefficients and intensities are significantly different from the values in the 1986 HITRAN line parameters compilation.
Method For Chemical Sensing Using A Microfabricated Teeter-Totter Resonator
Adkins, Douglas Ray; Heller, Edwin J.; Shul, Randy J.
2004-11-30
A method for sensing a chemical analyte in a fluid stream comprises providing a microfabricated teeter-totter resonator that relies upon a Lorentz force to cause oscillation in a paddle, applying a static magnetic field substantially aligned in-plane with the paddle, energizing a current conductor line on a surface of the paddle with an alternating electrical current to generate the Lorentz force, exposing the resonator to the analyte, and detecting the response of the oscillatory motion of the paddle to the chemical analyte. Preferably, a chemically sensitive coating is disposed on at least one surface of the paddle to enhance the sorption of the analyte by the paddle. The concentration of the analyte in a fluid stream can be determined by measuring the change in the resonant frequency or phase of the teeter-totter resonator as the chemical analyte is added to or removed from the paddle.
Spin-orbit induced electronic spin separation in semiconductor nanostructures.
Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku
2012-01-01
The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin-orbit interaction in an InGaAs-based heterostructure. Using a Stern-Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 10(8) T m(-1) resulting in a highly polarized spin current.
Spin–orbit induced electronic spin separation in semiconductor nanostructures
Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku
2012-01-01
The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin–orbit interaction in an InGaAs-based heterostructure. Using a Stern–Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 108 T m−1 resulting in a highly polarized spin current. PMID:23011136
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Crawford, Chris; Butow, Steven J.; Nugent, David; Koop, Mike; Holman, David; Houston, Jane; Jobse, Klaas; Kronk, Gary
2000-01-01
A new hybrid technique of visual and video meteor observations was developed to provide high precision near real-time flux measurements for satellite operators from airborne platforms. A total of 33,000 Leonids. recorded on video during the 1999 Leonid storm, were watched by a team of visual observers using a video head display and an automatic counting tool. The counts reveal that the activity profile of the Leonid storm is a Lorentz profile. By assuming a radial profile for the dust trail that is also a Lorentzian, we make predictions for future encounters. If that assumption is correct, we passed 0.0003 AU deeper into the 1899 trailet than expected during the storm of 1999 and future encounters with the 1866 trailet will be less intense than. predicted elsewhere.
Performance of Inductors Attached to a Galvanizing Bath
NASA Astrophysics Data System (ADS)
Zhou, Xinping; Yuan, Shuo; Liu, Chi; Yang, Peng; Qian, Chaoqun; Song, Bao
2013-12-01
By taking a galvanizing bath with inductors from an Iron and Steel Co., Ltd as an example, the distributions of Lorentz force and generated heat in the inductor are simulated. As a result, the zinc flow and the temperature distribution driven by the Lorentz force and the generated heat in the inductor of a galvanizing bath are simulated numerically, and their characteristics are analyzed. The relationship of the surface-weighted average velocity at the outlet and the temperature difference between the inlet and the outlet and the effective power for the inductor is studied. Results show that with an increase in effective power for the inductor, the surface-weighted average velocity at the outlet and the temperature difference between the inlet and the outlet increase gradually. We envisage this work to lay a foundation for the study of the performance of the galvanizing bath in future.
Nature of the electromagnetic force between classical magnetic dipoles
NASA Astrophysics Data System (ADS)
Mansuripur, Masud
2017-09-01
The Lorentz force law of classical electrodynamics states that the force 𝑭𝑭 exerted by the magnetic induction 𝑩𝑩 on a particle of charge 𝑞𝑞 moving with velocity 𝑽𝑽 is given by 𝑭𝑭 = 𝑞𝑞𝑽𝑽 × 𝑩𝑩. Since this force is orthogonal to the direction of motion, the magnetic field is said to be incapable of performing mechanical work. Yet there is no denying that a permanent magnet can readily perform mechanical work by pushing/pulling on another permanent magnet or by attracting pieces of magnetizable material such as scrap iron or iron filings. We explain this apparent contradiction by examining the magnetic Lorentz force acting on an Amperian current loop, which is the model for a magnetic dipole. We then extend the discussion by analyzing the Einstein-Laub model of magnetic dipoles in the presence of external magnetic fields.
Lorentz-violating contributions to the nuclear Schiff moment and nuclear EDM
NASA Astrophysics Data System (ADS)
Araujo, Jonas B.; Casana, Rodolfo; Ferreira, Manoel M.
2018-03-01
In the context of an atom endowed with nuclear electric dipole moments (EDM), we consider the effects on the Schiff moment of C P T -even Lorentz-violating (LV) terms that modify the Coulomb potential. First, we study the modifications on the Schiff moment when the nucleus interacts with the electronic cloud by means of a Coulomb potential altered only by the P -even LV components. Next, by supposing the existence of an additional intrinsic LV EDM generated by other LV sources, we assess the corrections to the Schiff moment when the interaction nucleus-electrons runs mediated by a Coulomb potential modified by both the P -odd and P -even LV components. We then use known estimates and EDM measurements to discuss upper bounds on the new Schiff moment components and the possibility of a nuclear EDM component ascribed to LV effects.
Search for Violation of $CPT$ and Lorentz Invariance in $${B_s^0}$$ Meson Oscillations
Abazov, Victor Mukhamedovich
2015-06-12
We present the first search for CPT-violating effects in the mixing of B 0 s mesons using the full Run II data set with an integrated luminosity of 10.4 fb -1 of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. We measure the CPT-violating asymmetry in the decay B 0 s → µ ±D ± s as a function of celestial direction and sidereal phase. We find no evidence for CPT-violating effects and place limits on the direction and magnitude of flavor-dependent CPTand Lorentz-invariance violating coupling coefficients. We find 95% confidence intervals of Δa⊥ < 1.2more » × 10 -12 GeV and (-0.8 < ΔaT - 0.396Δa Z < 3.9) × 10 -13 GeV.« less
An analytic superfield formalism for tree superamplitudes in D=10 and D=11
NASA Astrophysics Data System (ADS)
Bandos, Igor
2018-05-01
Tree amplitudes of 10D supersymmetric Yang-Mills theory (SYM) and 11D supergravity (SUGRA) are collected in multi-particle counterparts of analytic on-shell superfields. These have essentially the same form as their chiral 4D counterparts describing N=4 SYM and N=8 SUGRA, but with components dependent on a different set of bosonic variables. These are the D=10 and D=11 spinor helicity variables, the set of which includes the spinor frame variable (Lorentz harmonics) and a scalar density, and generalized homogeneous coordinates of the coset SO(D-2)/SO(D-4)⊗ U(1) (internal harmonics). We present an especially convenient parametrization of the spinor harmonics (Lorentz covariant gauge fixed with the use of an auxiliary gauge symmetry) and use this to find (a gauge fixed version of) the 3-point tree superamplitudes of 10D SYM and 11D SUGRA which generalize the 4 dimensional anti-MHV superamplitudes.
Effect of Electrodynamic Forces on the Attitude Stabilization of a Satellite in Ecliptic orbits
NASA Astrophysics Data System (ADS)
Abdel-Aziz, Yehia
This work is based on the previous paper of the author [1]. The present paper is devoted to the investigation of the attitude dynamics of an ecliptic satellite moving in the magnetic field of the Earth. Eelectrodynamic forces result from the motion of a charged satelite relative to the magnetic field of the Earth. The torque due to electrodynamic effect of the Lorentz forces on the attitude stabilization of the satellite is studied with the detailed model of the Earth's magnetic field. A method for estimating the stable and unstable regions of the equilibrium positions based on Euler's equation is also discussed. The results show that Lorentz forces can affect the stablization of the satellite, in particular for highly eccentric orbits and also for large satellte. [1] Abdel-Aziz, Y. A. Attitude Stabilization of a Rigid Spacecraft in the Geomagnetic Field. AdSpR 40, 18-24, 2007.
Cosmic ray anisotropies at high energies
NASA Technical Reports Server (NTRS)
Martinic, N. J.; Alarcon, A.; Teran, F.
1986-01-01
The directional anisotropies of the energetic cosmic ray gas due to the relative motion between the observers frame and the one where the relativistic gas can be assumed isotropic is analyzed. The radiation fluxes formula in the former frame must follow as the Lorentz invariance of dp/E, where p, E are the 4-vector momentum-energy components; dp is the 3-volume element in the momentum space. The anisotropic flux shows in such a case an amplitude, in a rotating earth, smaller than the experimental measurements from say, EAS-arrays for primary particle energies larger than 1.E(14) eV. Further, it is shown that two consecutive Lorentz transformations among three inertial frames exhibit the violation of dp/E invariance between the first and the third systems of reference, due to the Wigner rotation. A discussion of this result in the context of the experimental anisotropic fluxes and its current interpretation is given.
General relativity as the effective theory of GL(4,R) spontaneous symmetry breaking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomboulis, E. T.
2011-10-15
We assume a GL(4,R) space-time symmetry which is spontaneously broken to SO(3,1). We carry out the coset construction of the effective theory for the nonlinearly realized broken symmetry in terms of the Goldstone fields and matter fields transforming linearly under the unbroken Lorentz subgroup. We then identify functions of the Goldstone and matter fields that transform linearly also under the broken symmetry. Expressed in terms of these quantities the effective theory reproduces the vierbein formalism of general relativity with general coordinate invariance being automatically realized nonlinearly over GL(4,R). The coset construction makes no assumptions about any underlying theory that mightmore » be responsible for the assumed symmetry breaking. We give a brief discussion of the possibility of field theories with GL(4,R) rather than Lorentz space-time symmetry providing the underlying dynamics.« less
Airy Wave Packets Accelerating in Space-Time
NASA Astrophysics Data System (ADS)
Kondakci, H. Esat; Abouraddy, Ayman F.
2018-04-01
Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation invariance. A lesser-explored strategy for achieving optical self-similar propagation exploits the modification of the spatiotemporal field structure when observed in reference frames moving at relativistic speeds. For such an observer, it is predicted that the associated Lorentz boost can bring to a halt the axial dynamics of a wave packet of an arbitrary profile. This phenomenon is particularly striking in the case of a self-accelerating beam—such as an Airy beam—whose peak normally undergoes a transverse displacement upon free propagation. Here we synthesize an acceleration-free Airy wave packet that travels in a straight line by deforming its spatiotemporal spectrum to reproduce the impact of a Lorentz boost. The roles of the axial spatial coordinate and time are swapped, leading to "time diffraction" manifested in self-acceleration observed in the propagating Airy wave-packet frame.
On the synchrotron radiation reaction in external magnetic field
NASA Astrophysics Data System (ADS)
Tursunov, Arman; Kološ, Martin
2017-12-01
We study the dynamics of point electric charges undergoing radiation reaction force due to synchrotron radiation in the presence of external uniform magnetic field. The radiation reaction force cannot be neglected in many physical situations and its presence modifies the equations of motion significantly. The exact form of the equation of motion known as the Lorentz-Dirac equation contains higher order Schott term which leads to the appearance of the runaway solutions. We demonstrate effective computational ways to avoid such unphysical solutions and perform numerical integration of the dynamical equations. We show that in the ultrarelativistic case the Schott term is small and does not have considerable effect to the trajectory of a particle. We compare results with the covariant Landau-Lifshitz equation which is the first iteration of the Lorentz-Dirac equation. Even though the Landau-Lifshitz equation is thought to be approximative solution, we show that in realistic scenarios both approaches lead to identical results.
Search for Violation of CPT and Lorentz Invariance in B-s(0) Meson Oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abazov, V. M.
2015-10-14
We present the first search for CPT-violating effects in the mixing of B 0 s mesons using the full Run II data set with an integrated luminosity of 10.4 fb -1 of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. We measure the CPT-violating asymmetry in the decay B 0 s → µ ±D ± s as a function of celestial direction and sidereal phase. We find no evidence for CPT-violating effects and place limits on the direction and magnitude of flavor-dependent CPTand Lorentz-invariance violating coupling coefficients. We find 95% confidence intervals of Δa⊥ < 1.2more » × 10 -12 GeV and (-0.8 < ΔaT - 0.396Δa Z < 3.9) × 10 -13 GeV.« less
Rapid Penumbra and Lorentz Force Changes in an X1.0 Solar Flare
NASA Astrophysics Data System (ADS)
Xu, Zhe; Jiang, Yunchun; Yang, Jiayang; Yang, Bo; Bi, Yi
2016-03-01
We present observations of the violent changes in photospheric magnetic structures associated with an X1.1 flare, which occurred in a compact δ-configuration region in the following part of AR 11890 on 2013 November 8. In both central and peripheral penumbra regions of the small δ sunspot, these changes took place abruptly and permanently in the reverse direction during the flare: the inner/outer penumbra darkened/disappeared, where the magnetic fields became more horizontal/vertical. Particularly, the Lorentz force (LF) changes in the central/peripheral region had a downward/upward and inward direction, meaning that the local pressure from the upper atmosphere was enhanced/released. It indicates that the LF changes might be responsible for the penumbra changes. These observations can be well explained as the photospheric response to the coronal field reconstruction within the framework of the magnetic implosion theory and the back reaction model of flares.
Relativistic Length Agony Continued
NASA Astrophysics Data System (ADS)
Redzic, D. V.
2014-06-01
We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.
NASA Astrophysics Data System (ADS)
DeLuca, R.
2009-05-01
It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity vA under the influence of a transverse magnetic field B0, an electromotive force generator can be conceived. In fact, the Lorentz force acting on the sodium and chlorine ions in a water solution gives rise to a so-called Faraday voltage across the two metal electrodes, positioned at the sides of the pipe. The effect is carried along the following chemical reactions at the electrodes: at the cathode, water is reduced (instead of sodium ions) and hydrogen gas is generated; at the anode, chlorine gas is produced. In college physics teaching, this interdisciplinary subject can be adopted to stress analogies and differences between the Hall voltage in conductors and the Faraday voltage in electrolyte solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bettoni, Dario; Nusser, Adi; Blas, Diego
We develop the framework for testing Lorentz invariance in the dark matter sector using galactic dynamics. We consider a Lorentz violating (LV) vector field acting on the dark matter component of a satellite galaxy orbiting in a host halo. We introduce a numerical model for the dynamics of satellites in a galactic halo and for a galaxy in a rich cluster to explore observational consequences of such an LV field. The orbital motion of a satellite excites a time dependent LV force which greatly affects its internal dynamics. Our analysis points out key observational signatures which serve as probes ofmore » LV forces. These include modifications to the line of sight velocity dispersion, mass profiles and shapes of satellites. With future data and a more detailed modeling these signatures can be exploited to constrain a new region of the parameter space describing the LV in the dark matter sector.« less
Unconventional Magnetic Domain Structure in the Ferromagnetic Phase of MnP Single Crystals
NASA Astrophysics Data System (ADS)
Koyama, Tsukasa; Yano, Shin-ichiro; Togawa, Yoshihiko; Kousaka, Yusuke; Mori, Shigeo; Inoue, Katsuya; Kishine, Jun-ichiro; Akimitsu, Jun
2012-04-01
We have studied ferromagnetic (FM) structures in the FM phase of MnP single crystals by low-temperature Lorentz transmission electron microscopy and small-angle electron diffraction analysis. In Lorentz Fresnel micrographs, striped FM domain structures were observed at an external magnetic field less than 10 Oe in specimens with the ab-plane in their plane. From real- and reciprocal-space analyses, it was clearly identified that striped FM domains oriented to the c-axis appear with Bloch-type domain walls in the b-direction and order regularly along the a-axis with a constant separation less than 100 nm. Moreover, the magnetic chirality reverses in alternate FM domain walls. These specific spin configuration of striped FM domains will affect the magnetic phase transition from the FM phase to the proper screw spiral phase at low temperature or to the FAN phase in magnetic fields in MnP.
Determination of the atmospheric neutrino flux and searches for new physics with AMANDA-II
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Breder, D.; Burgess, T.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cohen, S.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Day, C. T.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; De Young, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Gerhardt, L.; Gladstone, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hasegawa, Y.; Heise, J.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Knops, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Lauer, R.; Leich, H.; Lennarz, D.; Lucke, A.; Lundberg, J.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; McParland, C. P.; Meagher, K.; Merck, M.; Mészáros, P.; Middell, E.; Milke, N.; Miyamoto, H.; Mohr, A.; Montaruli, T.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Patton, S.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Potthoff, N.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Terranova, C.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; Voigt, B.; Walck, C.; Waldenmaier, T.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebusch, C. H.; Wiedemann, A.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.
2009-05-01
The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance or quantum decoherence. Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on violation of Lorentz invariance and quantum decoherence parameters using a maximum likelihood method. Given the absence of evidence for new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV.
Infrared reflectance spectroscopy of MgAl2O4 nanoparticles substituted by K+ ions
NASA Astrophysics Data System (ADS)
Ahmad, Javed; Qadeer Awan, M.; Yasmin, Roomana; Sabir, Maria; Anwar, Shafiq; Ehsan Mazhar, M.; Hamad Bukhari, Syed
2018-03-01
The infrared reflectivity spectra for potassium-doped polycrystalline magnesium aluminates Mg1-xKxAl2O4 (x=0, 0.25, 0.50, 0.75, 1) are measured in the frequency range between 10-15, 500 cm-1 using FTIR spectrometer at room-temperature. Four optical phonon modes are observed in measured spectra, which are fitted by Lorentz oscillator model for semiconducting behavior and Lorentz-Drude model for metallic behavior. Moreover, optical parameters are also determined for these modes which may attribute to spinel structure for samples Mg1-xKxAl2O4, their reflectivity spectra shows a typical semiconducting nature. To study ionicity and effect of polarization, Born and Szigeti effective charges are calculated from longitudinal optical and transverse optical (LO-TO) splitting of modes for all samples. Optical bandgap has been estimated through optical conductivity (σ(ω)) and found to be x dependent.
Franssens, G; De Maziére, M; Fonteyn, D
2000-08-20
A new derivation is presented for the analytical inversion of aerosol spectral extinction data to size distributions. It is based on the complex analytic extension of the anomalous diffraction approximation (ADA). We derive inverse formulas that are applicable to homogeneous nonabsorbing and absorbing spherical particles. Our method simplifies, generalizes, and unifies a number of results obtained previously in the literature. In particular, we clarify the connection between the ADA transform and the Fourier and Laplace transforms. Also, the effect of the particle refractive-index dispersion on the inversion is examined. It is shown that, when Lorentz's model is used for this dispersion, the continuous ADA inverse transform is mathematically well posed, whereas with a constant refractive index it is ill posed. Further, a condition is given, in terms of Lorentz parameters, for which the continuous inverse operator does not amplify the error.
Testing Done for Lorentz Force Accelerators and Electrodeless Propulsion Technology Development
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Gilland, James H.; Arrington, Lynn A.; Kamhawi, Hani
2004-01-01
The NASA Glenn Research Center is developing Lorentz force accelerators and electrodeless plasma propulsion for a wide variety of space applications. These applications range from precision control of formation-flying spacecraft to primary propulsion for very high power interplanetary spacecraft. The specific thruster technologies being addressed are pulsed plasma thrusters, magnetoplasmadynamic thrusters, and helicon-electron cyclotron resonance acceleration thrusters. The pulsed plasma thruster mounted on the Earth Observing-1 spacecraft was operated successfully in orbit in 2002. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. Recent on-orbit operations have focused on extended operations to add flight operation time to the total accumulated thruster life. The results of the experiments pave the way for electric propulsion applications on future Earth-imaging satellites.
NASA Astrophysics Data System (ADS)
Khan, Mair; Malik, M. Y.; Salahuddin, T.; Hussian, Arif.
2018-03-01
The present analysis is devoted to explore the computational solution of the problem addressing the variable viscosity and inclined Lorentz force effects on Williamson nanofluid over a stretching sheet. Variable viscosity is assumed to vary as a linear function of temperature. The basic mathematical modelled problem i.e. system of PDE's is converted nonlinear into ODE's via applying suitable transformations. Computational solutions of the problem is also achieved via efficient numerical technique shooting. Characteristics of controlling parameters i.e. stretching index, inclined angle, Hartmann number, Weissenberg number, variable viscosity parameter, mixed convention parameter, Brownian motion parameter, Prandtl number, Lewis number, thermophoresis parameter and chemical reactive species on concentration, temperature and velocity gradient. Additionally, friction factor coefficient, Nusselt number and Sherwood number are describe with the help of graphics as well as tables verses flow controlling parameters.
The Properties of Extragalactic Radio Jets
NASA Astrophysics Data System (ADS)
Finke, Justin
2018-01-01
I show that by assuming a standard Blandford-Konigl jet, it is possible to determine the speed (bulk Lorentz factor) and orientation (angle to the line of sight) of self-similar parsec-scale blazar jets by using four measured quantities: the core radio flux, the extended radio flux, the magnitude of the core shift between two frequencies, and the apparent jet opening angle. Once the bulk Lorentz factor and angle to the line of sight of a jet are known, it is possible to compute their Doppler factor, magnetic field, and intrinsic jet opening angle. I use data taken from the literature and marginalize over nuisance parameters associated with the electron distribution and equipartition, to compute these quantities, albeit with large errors. The results have implications for the resolution of the TeV BL Lac Doppler factor crisis and the production of jets from magnetically arrested disks.
NASA Astrophysics Data System (ADS)
Hsu, Leonardo; Hsu, Jong-Ping
2018-01-01
Based on the limiting continuation of Lorentz-Poincaré invariance, we propose an alternative formulation of the generalized Planck distribution for inertial and noninertial frames. The Lorentz invariant Planck distribution law leads to a new physical interpretation of the dipole anisotropy of the Cosmic Microwave Background. The Big Jets model predicts a distant `antimatter blackbody,' whose radiations could make 50% of the sky very slightly warmer than the isotropic CMB temperature TCMB with a cosine function. The other 50% of the sky has the same isotropic temperature TCMB. Thus, we could have a pseudo-dipole anisotropy because the microwaves emitted from the antimatter blackbody are totally absorbed by our matter blackbody. We suggest that accurate data of satellite experiments might be used to search for the pseudo-dipole anisotropy and the missing half of the antimatter universe.
Oven, Robert
2011-09-10
The refractive index of optical waveguides formed by electric field assisted Cu(+)-Na(+) ion exchange in two types of glass is measured. Assuming, as in a previously published work, that the observed refractive index increase is solely due to polarizability changes, the difference in electronic polarizability between Cu(+) and Na(+) ions is determined by applying the Lorentz-Lorenz equation to the data. In our work, the concentration of exchanged ions, which is a necessary input to the Lorentz-Lorenz equation, is determined by combining optical data and electrical data obtained during the exchange. Values for the electronic polarizability difference are in agreement with that in the literature. However, when a correction is made, taking into consideration the measured volume expansion and stress in the glass, the calculated electronic polarizability difference is shown to increase by 19%.
Ellison, C. L.; Burby, J. W.; Qin, H.
2015-11-01
One popular technique for the numerical time advance of charged particles interacting with electric and magnetic fields according to the Lorentz force law [1], [2], [3] and [4] is the Boris algorithm. Its popularity stems from simple implementation, rapid iteration, and excellent long-term numerical fidelity [1] and [5]. Excellent long-term behavior strongly suggests the numerical dynamics exhibit conservation laws analogous to those governing the continuous Lorentz force system [6]. Moreover, without conserved quantities to constrain the numerical dynamics, algorithms typically dissipate or accumulate important observables such as energy and momentum over long periods of simulated time [6]. Identification of themore » conservative properties of an algorithm is important for establishing rigorous expectations on the long-term behavior; energy-preserving, symplectic, and volume-preserving methods each have particular implications for the qualitative numerical behavior [6], [7], [8], [9], [10] and [11].« less
Calibrationless rotating Lorentz-force flowmeters for low flow rate applications
NASA Astrophysics Data System (ADS)
Hvasta, M. G.; Dudt, D.; Fisher, A. E.; Kolemen, E.
2018-07-01
A ‘weighted magnetic bearing’ has been developed to improve the performance of rotating Lorentz-force flowmeters (RLFFs). Experiments have shown that the new bearing reduces frictional losses within a double-sided, disc-style RLFF to negligible levels. Operating such an RLFF under ‘frictionless’ conditions provides two major benefits. First, the steady-state velocity of the RLFF magnets matches the average velocity of the flowing liquid at low flow rates. This enables an RLFF to make accurate volumetric flow measurements without any calibration or prior knowledge of the fluid properties. Second, due to minimized frictional losses, an RLFF is able to measure low flow rates that cannot be detected when conventional, high-friction bearings are used. This paper provides a brief background on RLFFs, gives a detailed description of weighted magnetic bearings, and compares experimental RLFF data to measurements taken with a commercially available flowmeter.
An introduction to tensor calculus, relativity and cosmology /3rd edition/
NASA Astrophysics Data System (ADS)
Lawden, D. F.
This textbook introduction to the principles of special relativity proceeds within the context of cartesian tensors. Newton's laws of motion are reviewed, as are the Lorentz transformations, Minkowski space-time, and the Fitzgerald contraction. Orthogonal transformations are described, and invariants, gradients, tensor derivatives, contraction, scalar products, divergence, pseudotensors, vector products, and curl are defined. Special relativity mechanics are explored in terms of mass, momentum, the force vector, the Lorentz transformation equations for force, calculations for photons and neutrinos, the development of the Lagrange and Hamilton equations, and the energy-momentum tensor. Electrodynamics is investigated, together with general tensor calculus and Riemmanian space. The General Theory of Relativity is presented, along with applications to astrophysical phenomena such as black holes and gravitational waves. Finally, analytical discussions of cosmological problems are reviewed, particularly Einstein, de Sitter, and Friedmann universes, redshifts, event horizons, and the redshift.
Three-dimensional fractional-spin gravity
NASA Astrophysics Data System (ADS)
Boulanger, Nicolas; Sundell, Per; Valenzuela, Mauricio
2014-02-01
Using Wigner-deformed Heisenberg oscillators, we construct 3D Chern-Simons models consisting of fractional-spin fields coupled to higher-spin gravity and internal nonabelian gauge fields. The gauge algebras consist of Lorentz-tensorial Blencowe-Vasiliev higher-spin algebras and compact internal algebras intertwined by infinite-dimensional generators in lowest-weight representations of the Lorentz algebra with fractional spin. In integer or half-integer non-unitary cases, there exist truncations to gl(ℓ , ℓ ± 1) or gl(ℓ|ℓ ± 1) models. In all non-unitary cases, the internal gauge fields can be set to zero. At the semi-classical level, the fractional-spin fields are either Grassmann even or odd. The action requires the enveloping-algebra representation of the deformed oscillators, while their Fock-space representation suffices on-shell. The project was funded in part by F.R.S.-FNRS " Ulysse" Incentive Grant for Mobility in Scientific Research.
No static black hole hairs in gravitational theories with broken Lorentz invariance
NASA Astrophysics Data System (ADS)
Lin, Kai; Mukohyama, Shinji; Wang, Anzhong; Zhu, Tao
2017-06-01
In this paper, we revisit the issue of static hairs of black holes in gravitational theories with broken Lorentz invariance in the case that the speed cϕ of the khronon field becomes infinitely large, cϕ=∞ , for which the sound horizon of the khronon field coincides with the universal horizon, and the boundary conditions at the sound horizon reduce to those given normally at the universal horizons. As a result, fewer boundary conditions are present in this extreme case in comparison with the case cϕ=finite . Consequently, it is expected that static hairs might exist. However, we show analytically that, even in this case, static hairs still cannot exist, based on a decoupling limit analysis. We also consider the cases in which cϕ is finite but with cϕ≫1 , and we obtain the same conclusion.
Testing Lorentz Invariance with Neutrinos from Ultrahigh Energy Cosmic Ray Interactions
NASA Technical Reports Server (NTRS)
Scully, Sean T.; Stecker, Floyd W.
2010-01-01
We have previously shown that a very small amount of Lorentz invariance violation (UV), which suppresses photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with cosmic background radiation (CBR) photons, can produce a spectrum of cosmic rays that is consistent with that currently observed by the Pierre Auger Observatory (PAO) and HiRes experiments. Here, we calculate the corresponding flux of high energy neutrinos generated by the propagation of UHECR protons through the CBR in the presence of UV. We find that UV produces a reduction in the flux of the highest energy neutrinos and a reduction in the energy of the peak of the neutrino energy flux spectrum, both depending on the strength of the UV. Thus, observations of the UHE neutrino spectrum provide a clear test for the existence and amount of UV at the highest energies. We further discuss the ability of current and future proposed detectors make such observations.
Relativity Based on Physical Processes Rather Than Space-Time
NASA Astrophysics Data System (ADS)
Giese, Albrecht
2013-09-01
Physicists' understanding of relativity and the way it is handled is at present dominated by the interpretation of Albert Einstein, who related relativity to specific properties of space and time. The principal alternative to Einstein's interpretation is based on a concept proposed by Hendrik A. Lorentz, which uses knowledge of classical physics to explain relativistic phenomena. In this paper, we will show that on the one hand the Lorentz-based interpretation provides a simpler mathematical way of arriving at the known results for both Special and General Relativity. On the other hand, it is able to solve problems which have remained open to this day. Furthermore, a particle model will be presented, based on Lorentzian relativity, which explains the origin of mass without the use of the Higgs mechanism, based on the finiteness of the speed of light, and which provides the classical results for particle properties that are currently only accessible through quantum mechanics.
Constraints and stability in vector theories with spontaneous Lorentz violation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluhm, Robert; Gagne, Nolan L.; Potting, Robertus
2008-06-15
Vector theories with spontaneous Lorentz violation, known as bumblebee models, are examined in flat spacetime using a Hamiltonian constraint analysis. In some of these models, Nambu-Goldstone modes appear with properties similar to photons in electromagnetism. However, depending on the form of the theory, additional modes and constraints can appear that have no counterparts in electromagnetism. An examination of these constraints and additional degrees of freedom, including their nonlinear effects, is made for a variety of models with different kinetic and potential terms, and the results are compared with electromagnetism. The Hamiltonian constraint analysis also permits an investigation of the stabilitymore » of these models. For certain bumblebee theories with a timelike vector, suitable restrictions of the initial-value solutions are identified that yield ghost-free models with a positive Hamiltonian. In each case, the restricted phase space is found to match that of electromagnetism in a nonlinear gauge.« less
Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor
Dennis, John Ojur; Ahmad, Farooq; Khir, M. Haris Bin Md; Hamid, Nor Hisham Bin
2015-01-01
Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT. PMID:26225972
THE KINEMATICS AND IONIZATION OF NUCLEAR GAS CLOUDS IN CENTAURUS A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bicknell, Geoffrey V.; Sutherland, Ralph S.; Neumayer, Nadine, E-mail: Geoff.Bicknell@anu.edu.au, E-mail: Ralph.Sutherland@anu.edu.au, E-mail: nadine.neumayer@universe-cluster.de
2013-03-20
Neumayer et al. established the existence of a blueshifted cloud in the core of Centaurus A, within a few parsecs of the nucleus and close to the radio jet. We propose that the cloud has been impacted by the jet, and that it is in the foreground of the jet, accounting for its blueshifted emission on the southern side of the nucleus. We consider both shock excitation and photoionization models for the excitation of the cloud. Shock models do not account for the [Si VI] and [Ca VIII] emission line fluxes. However, X-ray observations indicate a source of ionizing photonsmore » in the core of Centaurus A; photoionization by the inferred flux incident on the cloud can account for the fluxes in these lines relative to Brackett-{gamma}. The power-law slope of the ionizing continuum matches that inferred from synchrotron models of the X-rays. The logarithm of the ionization parameter is -1.9, typical of that in Seyfert galaxies and consistent with the value proposed for dusty ionized plasmas. The model cloud density depends upon the Lorentz factor of the blazar and the inclination of our line of sight to the jet axis. For acute inclinations, the inferred density is consistent with expected cloud densities. However, for moderate inclinations of the jet to the line of sight, high Lorentz factors imply cloud densities in excess of 10{sup 5} cm{sup -3} and very low filling factors, suggesting that models of the gamma-ray emission should incorporate jet Lorentz factors {approx}< 5.« less
NASA Astrophysics Data System (ADS)
Huang, Yadong; Zhou, Benmou; Tang, Zhaolie; Zhang, Fei
2017-07-01
In recent investigations of the flow over a square leading-edge flat plate, elliptic instability and transient growth of perturbations are proposed to explain the turbulent transition mechanism of the separating and reattaching flow reported in early experimental visualizations. An original transition scenario as well as a transition control method is presented by a detailed numerical study in this paper. The transient growth of perturbations in the separation bubble induces the primary instability that causes the 2D unsteady flow consisting of Kelvin-Helmholtz (KH) vortices. The pairing instability of the KH vortices induces the subharmonic secondary instability, and then resonance transition occurs. The streamwise Lorentz force as the control input is applied in the recirculation region where the separation bubble generates. The maximum energy amplification magnitude of perturbations takes a linear attenuation with the interaction number; thus, the primary instability is reduced under control. The interaction number represents the strength of the streamwise Lorentz force relative to the inertial force of the fluid. The reduced primary instability is not strong enough to induce the secondary instability, so the flow is globally stable under control. Three-dimensional direct numerical simulation confirms the results of the linear stability analysis. Although the growth rate of the convectively unstable secondary instability is limited by the flow field scale, the feedback loop of the energy transfer promotes the resonance transition. However, as the separation bubble scale is reduced and the feedback loop is broken by the streamwise Lorentz force, the three-dimensional transition is suppressed and a skin-friction drag reduction is achieved.
Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor.
Dennis, John Ojur; Ahmad, Farooq; Khir, M Haris Bin Md; Bin Hamid, Nor Hisham
2015-07-27
Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT.
On the self-force in Bopp-Podolsky electrodynamics
NASA Astrophysics Data System (ADS)
Gratus, Jonathan; Perlick, Volker; Tucker, Robin W.
2015-10-01
In the classical vacuum Maxwell-Lorentz theory the self-force of a charged point particle is infinite. This makes classical mass renormalization necessary and, in the special relativistic domain, leads to the Abraham-Lorentz-Dirac equation of motion possessing unphysical run-away and pre-acceleration solutions. In this paper we investigate whether the higher-order modification of classical vacuum electrodynamics suggested by Bopp, Landé, Thomas and Podolsky in the 1940s, can provide a solution to this problem. Since the theory is linear, Green-function techniques enable one to write the field of a charged point particle on Minkowski spacetime as an integral over the particle’s history. By introducing the notion of timelike worldlines that are ‘bounded away from the backward light-cone’ we are able to prescribe criteria for the convergence of such integrals. We also exhibit a timelike worldline yielding singular fields on a lightlike hyperplane in spacetime. In this case the field is mildly singular at the event where the particle crosses the hyperplane. Even in the case when the Bopp-Podolsky field is bounded, it exhibits a directional discontinuity as one approaches the point particle. We describe a procedure for assigning a value to the field on the particle worldline which enables one to define a finite Lorentz self-force. This is explicitly derived leading to an integro-differential equation for the motion of the particle in an external electromagnetic field. We conclude that any worldline solutions to this equation belonging to the categories discussed in the paper have continuous four-velocities.
Muehsam, David J; Pilla, Arthur A
2009-09-01
We have previously employed the Lorentz-Langevin model to describe the effects of weak exogenous magnetic fields via the classical Lorentz force on a charged ion bound in a harmonic oscillator potential, in the presence of thermal noise forces. Previous analyses predicted that microT-range fields give rise to a rotation of the oscillator orientation at the Larmor frequency and bioeffects were based upon the assumption that the classical trajectory of the bound charge itself could modulate a biochemical process. Here, it is shown that the thermal component of the motion follows the Larmor trajectory. The results show that the Larmor frequency is independent of the thermal noise strength, and the motion retains the form of a coherent oscillator throughout the binding lifetime, rather than devolving into a random walk. Thermal equilibration results in a continual increase in the vibrational amplitude of the rotating oscillator towards the steady-state amplitude, but does not affect the Larmor orbit. Thus, thermal noise contributes to, rather than inhibits, the effect of the magnetic field upon reactivity. Expressions are derived for the ensemble average of position and the velocity of the thermal component of the oscillator motion. The projection of position and velocity onto a Cartesian axis measures the nonuniformity of the Larmor trajectory and is illustrated for AC and combined AC/DC magnetic fields, suggesting a means of interpreting resonance phenomena. It is noted that the specific location and height of resonances are dependent upon binding lifetime and initial AC phase.
Reality and myths of AGN feedback
NASA Astrophysics Data System (ADS)
Husemann, Bernd; Harrison, Chris M.
2018-03-01
Feedback from active galactic nuclei (AGNs) remains controversial despite its wide acceptance as necessary to regulate massive galaxy growth. Consequently, we held a workshop in October 2017, at Leiden's Lorentz Center, to distinguish between the reality and myths of feedback.
Effects of Traveling Magnetic Field on Dynamics of Solidification
NASA Technical Reports Server (NTRS)
2003-01-01
The Lorentz body force induced in electrically conducting fluids can be utilized for a number of materials processing technologies. An application of strong static magnetic fields can be beneficial for damping convection present during solidification. On the other hand, alternating magnetic fields can be used to reduce as well as to enhance convection. However, only special types of time dependent magnetic fields can induce a non-zero time averaged Lorentz force needed for convection control. One example is the rotating magnetic field. This field configuration induces a swirling flow in circular containers. Another example of a magnetic field configuration is the traveling magnetic field (TMF). It utilizes axisymmetric magnetostatic waves. This type of field induces an axial recirculating flow that can be advantageous for controlling axial mass transport, such as during solidification in long cylindrical tubes. Incidentally, this is the common geometry for crystal growth research. The Lorentz force induced by TMF can potentially counter-balance the buoyancy force, diminishing natural convection, or even setting up the flow in reverse direction. Crystal growth process in presence of TMF can be then significantly modified. Such properties as the growth rate, interface shape and macro segregation can be affected and optimized. Melt homogenization is the other potential application of TMF. It is a necessary step prior to solidification. TMF can be attractive for this purpose, as it induces a basic flow along the axis of the ampoule. TMF can be a practical alloy mixing method especially suited for solidification research in space. In the theoretical part of this work, calculations of the induced Lorentz force in the whole frequency range have been completed. The basic flow characteristics for the finite cylinder geometry are completed and first results on stability analysis for higher Reynolds numbers are obtained. A theoretical model for TMF mixing is also developed. In the experimental part, measurements of flow induced by TMF in a column of mercury (Hg) are presented. Also, an alloy mixing of Bi-Sn of the eutectic composition is demonstrated. A traveling magnetic field of 4mT at 3kHz applied for 120 minutes is found to be sufficient to homogenize an alloy enclosed in a 1cm diameter and 12 cm long tube.
Polariton excitation in epsilon-near-zero slabs: Transient trapping of slow light
NASA Astrophysics Data System (ADS)
Ciattoni, Alessandro; Marini, Andrea; Rizza, Carlo; Scalora, Michael; Biancalana, Fabio
2013-05-01
We numerically investigate the propagation of a spatially localized and quasimonochromatic electromagnetic pulse through a slab with a Lorentz dielectric response in the epsilon-near-zero regime, where the real part of the permittivity vanishes at the pulse carrier frequency. We show that the pulse is able to excite a set of virtual polariton modes supported by the slab, with the excitation undergoing a generally slow damping due to absorption and radiation leakage. Our numerical and analytical approaches indicate that in its transient dynamics the electromagnetic field displays the very same enhancement of the field component perpendicular to the slab, as in the monochromatic regime. The transient trapping is inherently accompanied by a significantly reduced group velocity ensuing from the small dielectric permittivity, thus providing an alternative platform for achieving control and manipulation of slow light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraljic, David; Sarkar, Subir, E-mail: David.Kraljic@physics.ox.ac.uk, E-mail: Subir.Sarkar@physics.ox.ac.uk
It has been observed [1,2] that the locally measured Hubble parameter converges quickest to the background value and the dipole structure of the velocity field is smallest in the reference frame of the Local Group of galaxies. We study the statistical properties of Lorentz boosts with respect to the Cosmic Microwave Background frame which make the Hubble flow look most uniform around a particular observer. We use a very large N-Body simulation to extract the dependence of the boost velocities on the local environment such as underdensities, overdensities, and bulk flows. We find that the observation [1,2] is not unexpectedmore » if we are located in an underdensity, which is indeed the case for our position in the universe. The amplitude of the measured boost velocity for our location is consistent with the expectation in the standard cosmology.« less
Standard Model as a Double Field Theory.
Choi, Kang-Sin; Park, Jeong-Hyuck
2015-10-23
We show that, without any extra physical degree introduced, the standard model can be readily reformulated as a double field theory. Consequently, the standard model can couple to an arbitrary stringy gravitational background in an O(4,4) T-duality covariant manner and manifest two independent local Lorentz symmetries, Spin(1,3)×Spin(3,1). While the diagonal gauge fixing of the twofold spin groups leads to the conventional formulation on the flat Minkowskian background, the enhanced symmetry makes the standard model more rigid, and also stringy, than it appeared. The CP violating θ term may no longer be allowed by the symmetry, and hence the strong CP problem can be solved. There are now stronger constraints imposed on the possible higher order corrections. We speculate that the quarks and the leptons may belong to the two different spin classes.
Gravity Duals of Lifshitz-Like Fixed Points
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Liu, Xiao
2008-11-05
We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points, which do not have particle number as a conserved quantity. We compute two-point correlation functions which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization group flows to conformal field theories. Our theories are characterized by a dynamical critical exponent z, which governs the anisotropy between spatial and temporal scaling t {yields} {lambda}{sup z}t, x {yields} {lambda}x; we focus on the case with z = 2. Such theories describe multicritical points in certain magnetic materials and liquid crystals, and have been shown to arisemore » at quantum critical points in toy models of the cuprate superconductors. This work can be considered a small step towards making useful dual descriptions of such critical points.« less
Relativistic differential-difference momentum operators and noncommutative differential calculus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mir-Kasimov, R. M., E-mail: mirkr@theor.jinr.ru
2013-09-15
The relativistic kinetic momentum operators are introduced in the framework of the Quantum Mechanics (QM) in the Relativistic Configuration Space (RCS). These operators correspond to the half of the non-Euclidean distance in the Lobachevsky momentum space. In terms of kinetic momentum operators the relativistic kinetic energy is separated as the independent term of the total Hamiltonian. This relativistic kinetic energy term is not distinguishing in form from its nonrelativistic counterpart. The role of the plane wave (wave function of the motion with definite value of momentum and energy) plays the generating function for the matrix elements of the unitary irrepsmore » of Lorentz group (generalized Jacobi polynomials). The kinetic momentum operators are the interior derivatives in the framework of the noncommutative differential calculus over the commutative algebra generated by the coordinate functions over the RCS.« less
ERIC Educational Resources Information Center
Levin, Sidney
1984-01-01
Presents the listing (TRS-80) for a computer program which derives the relativistic equation (employing as a model the concept of a moving clock which emits photons at regular intervals) and calculates transformations of time, mass, and length with increasing velocities (Einstein-Lorentz transformations). (JN)
Studies of the jet in BL Lacertae. I. Recollimation shock and moving emission features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, M. H.; Hovatta, T.; Meier, D. L.
2014-06-01
Parsec-scale VLBA images of BL Lac at 15 GHz show that the jet contains a permanent quasi-stationary emission feature 0.26 mas (0.34 pc projected) from the core, along with numerous moving features. In projection, the tracks of the moving features cluster around an axis at a position angle of –166.°6 that connects the core with the standing feature. The moving features appear to emanate from the standing feature in a manner strikingly similar to the results of numerical two-dimensional relativistic magneto-hydrodynamic (RMHD) simulations in which moving shocks are generated at a recollimation shock (RCS). Because of this, and the closemore » analogy to the jet feature HST-1 in M87, we identify the standing feature in BL Lac as an RCS. We assume that the magnetic field dominates the dynamics in the jet, and that the field is predominantly toroidal. From this we suggest that the moving features are compressions established by slow and fast mode magneto-acoustic MHD waves. We illustrate the situation with a simple model in which the slowest moving feature is a slow-mode wave, and the fastest feature is a fast-mode wave. In the model, the beam has Lorentz factor Γ{sub beam}{sup gal}≈3.5 in the frame of the host galaxy and the fast mode wave has Lorentz factor Γ{sub Fwave}{sup beam}≈1.6 in the frame of the beam. This gives a maximum apparent speed for the moving features, β{sub app} = v{sub app}/c = 10. In this model the Lorentz factor of the pattern in the galaxy frame is approximately three times larger than that of the beam itself.« less
The gamma-ray emitting region of the jet in Cyg X-3
NASA Astrophysics Data System (ADS)
Zdziarski, Andrzej A.; Sikora, Marek; Dubus, Guillaume; Yuan, Feng; Cerutti, Benoit; Ogorzałek, Anna
2012-04-01
We study models of the γ-ray emission of Cyg X-3 observed by Fermi. We calculate the average X-ray spectrum during the γ-ray active periods. Then, we calculate spectra from Compton scattering of a photon beam into a given direction by isotropic relativistic electrons with a power-law distribution, both based on the Klein-Nishina cross-section and in the Thomson limit. Applying the results to scattering of stellar blackbody radiation in the inner jet of Cyg X-3, we find that a low-energy break in the electron distribution at a Lorentz factor of ˜300-103 is required by the shape of the observed X-ray/γ-ray spectrum in order to avoid overproducing the observed X-ray flux. The electrons giving rise to the observed γ-rays are efficiently cooled by Compton scattering, and the power-law index of the acceleration process is ≃2.5-3. The bulk Lorentz factor of the jet and the kinetic power before the dissipation region depend on the fraction of the dissipation power supplied to the electrons; if it is ≃1/2, the Lorentz factor is ˜2.5, and the kinetic power is ˜1038 erg s-1, which represents a firm lower limit on the jet power, and is comparable to the bolometric luminosity of Cyg X-3. Most of the power supplied to the electrons is radiated. The broad-band spectrum constrains the synchrotron and self-Compton emission from the γ-ray emitting electrons, which requires the magnetic field to be relatively weak, with the magnetic energy density ≲ a few times 10-3 of that in the electrons. The actual value of the magnetic field strength can be inferred from a future simultaneous measurement of the infrared and γ-ray fluxes.
Sanabria, Charlie; Lee, Peter J.; Starch, William; ...
2016-05-31
As part of the ITER conductor qualification process, 3 m long Cable-in-Conduit Conductors (CICCs) were tested at the SULTAN facility under conditions simulating ITER operation so as to establish the current sharing temperature, T cs, as a function of multiple full Lorentz force loading cycles. After a comprehensive evaluation of both the Toroidal Field (TF) and the Central Solenoid (CS) conductors, it was found that T cs degradation was common in long twist pitch TF conductors while short twist pitch CS conductors showed some T cs increase. However, one kind of TF conductors containing superconducting strand fabricated by the Bochvarmore » Institute of Inorganic Materials (VNIINM) avoided T cs degradation despite having long twist pitch. In our earlier metallographic autopsies of long and short twist pitch CS conductors, we observed a substantially greater transverse strand movement under Lorentz force loading for long twist pitch conductors, while short twist pitch conductors had negligible transverse movement. With help from the literature, we concluded that the transverse movement was not the source of T cs degradation but rather an increase of the compressive strain in the Nb 3Sn filaments possibly induced by longitudinal movement of the wires. Like all TF conductors this TF VNIINM conductor showed large transverse motions under Lorentz force loading, but Tcs actually increased, as in all short twist pitch CS conductors. We here propose that the high surface roughness of the VNIINM strand may be responsible for the suppression of the compressive strain enhancement (characteristic of long twist pitch conductors). Furthermore, it appears that increasing strand surface roughness could improve the performance of long twist pitch CICCs.« less
NASA Astrophysics Data System (ADS)
Kempf, A.; Chatwin-Davies, A.; Martin, R. T. W.
2013-02-01
While a natural ultraviolet cutoff, presumably at the Planck length, is widely assumed to exist in nature, it is nontrivial to implement a minimum length scale covariantly. This is because the presence of a fixed minimum length needs to be reconciled with the ability of Lorentz transformations to contract lengths. In this paper, we implement a fully covariant Planck scale cutoff by cutting off the spectrum of the d'Alembertian. In this scenario, consistent with Lorentz contractions, wavelengths that are arbitrarily smaller than the Planck length continue to exist. However, the dynamics of modes of wavelengths that are significantly smaller than the Planck length possess a very small bandwidth. This has the effect of freezing the dynamics of such modes. While both wavelengths and bandwidths are frame dependent, Lorentz contraction and time dilation conspire to make the freezing of modes of trans-Planckian wavelengths covariant. In particular, we show that this ultraviolet cutoff can be implemented covariantly also in curved spacetimes. We focus on Friedmann Robertson Walker spacetimes and their much-discussed trans-Planckian question: The physical wavelength of each comoving mode was smaller than the Planck scale at sufficiently early times. What was the mode's dynamics then? Here, we show that in the presence of the covariant UV cutoff, the dynamical bandwidth of a comoving mode is essentially zero up until its physical wavelength starts exceeding the Planck length. In particular, we show that under general assumptions, the number of dynamical degrees of freedom of each comoving mode all the way up to some arbitrary finite time is actually finite. Our results also open the way to calculating the impact of this natural UV cutoff on inflationary predictions for the cosmic microwave background.
Lorentz invariance violation and generalized uncertainty principle
NASA Astrophysics Data System (ADS)
Tawfik, Abdel Nasser; Magdy, H.; Ali, A. Farag
2016-01-01
There are several theoretical indications that the quantum gravity approaches may have predictions for a minimal measurable length, and a maximal observable momentum and throughout a generalization for Heisenberg uncertainty principle. The generalized uncertainty principle (GUP) is based on a momentum-dependent modification in the standard dispersion relation which is conjectured to violate the principle of Lorentz invariance. From the resulting Hamiltonian, the velocity and time of flight of relativistic distant particles at Planck energy can be derived. A first comparison is made with recent observations for Hubble parameter in redshift-dependence in early-type galaxies. We find that LIV has two types of contributions to the time of flight delay Δ t comparable with that observations. Although the wrong OPERA measurement on faster-than-light muon neutrino anomaly, Δ t, and the relative change in the speed of muon neutrino Δ v in dependence on redshift z turn to be wrong, we utilize its main features to estimate Δ v. Accordingly, the results could not be interpreted as LIV. A third comparison is made with the ultra high-energy cosmic rays (UHECR). It is found that an essential ingredient of the approach combining string theory, loop quantum gravity, black hole physics and doubly spacial relativity and the one assuming a perturbative departure from exact Lorentz invariance. Fixing the sensitivity factor and its energy dependence are essential inputs for a reliable confronting of our calculations to UHECR. The sensitivity factor is related to the special time of flight delay and the time structure of the signal. Furthermore, the upper and lower bounds to the parameter, a that characterizes the generalized uncertainly principle, have to be fixed in related physical systems such as the gamma rays bursts.
CONSTRAINTS ON THE SYNCHROTRON EMISSION MECHANISM IN GAMMA-RAY BURSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beniamini, Paz; Piran, Tsvi, E-mail: paz.beniamini@mail.huji.ac.il, E-mail: tsvi.piran@mail.huji.ac.il
2013-05-20
We reexamine the general synchrotron model for gamma-ray bursts' (GRBs') prompt emission and determine the regime in the parameter phase space in which it is viable. We characterize a typical GRB pulse in terms of its peak energy, peak flux, and duration and use the latest Fermi observations to constrain the high-energy part of the spectrum. We solve for the intrinsic parameters at the emission region and find the possible parameter phase space for synchrotron emission. Our approach is general and it does not depend on a specific energy dissipation mechanism. Reasonable synchrotron solutions are found with energy ratios ofmore » 10{sup -4} < {epsilon}{sub B}/{epsilon}{sub e} < 10, bulk Lorentz factor values of 300 < {Gamma} < 3000, typical electrons' Lorentz factor values of 3 Multiplication-Sign 10{sup 3} < {gamma}{sub e} < 10{sup 5}, and emission radii of the order 10{sup 15} cm < R < 10{sup 17} cm. Most remarkable among those are the rather large values of the emission radius and the electron's Lorentz factor. We find that soft (with peak energy less than 100 keV) but luminous (isotropic luminosity of 1.5 Multiplication-Sign 10{sup 53}) pulses are inefficient. This may explain the lack of strong soft bursts. In cases when most of the energy is carried out by the kinetic energy of the flow, such as in the internal shocks, the synchrotron solution requires that only a small fraction of the electrons are accelerated to relativistic velocities by the shocks. We show that future observations of very high energy photons from GRBs by CTA could possibly determine all parameters of the synchrotron model or rule it out altogether.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanabria, Charlie; Lee, Peter J.; Starch, William
As part of the ITER conductor qualification process, 3 m long Cable-in-Conduit Conductors (CICCs) were tested at the SULTAN facility under conditions simulating ITER operation so as to establish the current sharing temperature, T cs, as a function of multiple full Lorentz force loading cycles. After a comprehensive evaluation of both the Toroidal Field (TF) and the Central Solenoid (CS) conductors, it was found that T cs degradation was common in long twist pitch TF conductors while short twist pitch CS conductors showed some T cs increase. However, one kind of TF conductors containing superconducting strand fabricated by the Bochvarmore » Institute of Inorganic Materials (VNIINM) avoided T cs degradation despite having long twist pitch. In our earlier metallographic autopsies of long and short twist pitch CS conductors, we observed a substantially greater transverse strand movement under Lorentz force loading for long twist pitch conductors, while short twist pitch conductors had negligible transverse movement. With help from the literature, we concluded that the transverse movement was not the source of T cs degradation but rather an increase of the compressive strain in the Nb 3Sn filaments possibly induced by longitudinal movement of the wires. Like all TF conductors this TF VNIINM conductor showed large transverse motions under Lorentz force loading, but Tcs actually increased, as in all short twist pitch CS conductors. We here propose that the high surface roughness of the VNIINM strand may be responsible for the suppression of the compressive strain enhancement (characteristic of long twist pitch conductors). Furthermore, it appears that increasing strand surface roughness could improve the performance of long twist pitch CICCs.« less
NASA Astrophysics Data System (ADS)
MAGIC Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colak, S. M.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Inada, T.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.
2017-09-01
Spontaneous breaking of Lorentz symmetry at energies on the order of the Planck energy or lower is predicted by many quantum gravity theories, implying non-trivial dispersion relations for the photon in vacuum. Consequently, gamma-rays of different energies, emitted simultaneously from astrophysical sources, could accumulate measurable differences in their time of flight until they reach the Earth. Such tests have been carried out in the past using fast variations of gamma-ray flux from pulsars, and more recently from active galactic nuclei and gamma-ray bursts. We present new constraints studying the gamma-ray emission of the galactic Crab Pulsar, recently observed up to TeV energies by the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) collaboration. A profile likelihood analysis of pulsar events reconstructed for energies above 400 GeV finds no significant variation in arrival time as their energy increases. Ninety-five percent CL limits are obtained on the effective Lorentz invariance violating energy scale at the level of {E}{{QG}1}> 5.5× {10}17 {GeV} (4.5× {10}17 {GeV}) for a linear, and {E}{{QG}2}> 5.9× {10}10 {GeV} (5.3× {10}10 {GeV}) for a quadratic scenario, for the subluminal and the superluminal cases, respectively. A substantial part of this study is dedicated to calibration of the test statistic, with respect to bias and coverage properties. Moreover, the limits take into account systematic uncertainties, which are found to worsen the statistical limits by about 36%-42%. Our constraints would have been much more stringent if the intrinsic pulse shape of the pulsar between 200 GeV and 400 GeV was understood in sufficient detail and allowed inclusion of events well below 400 GeV.
NASA Astrophysics Data System (ADS)
Shifflett, J. A.
2008-08-01
We modify the Einstein-Schrödinger theory to include a cosmological constant Λ z which multiplies the symmetric metric, and we show how the theory can be easily coupled to additional fields. The cosmological constant Λ z is assumed to be nearly cancelled by Schrödinger’s cosmological constant Λ b which multiplies the nonsymmetric fundamental tensor, such that the total Λ = Λ z + Λ b matches measurement. The resulting theory becomes exactly Einstein-Maxwell theory in the limit as | Λ z | → ∞. For | Λ z | ~ 1/(Planck length)2 the field equations match the ordinary Einstein and Maxwell equations except for extra terms which are < 10-16 of the usual terms for worst-case field strengths and rates-of-change accessible to measurement. Additional fields can be included in the Lagrangian, and these fields may couple to the symmetric metric and the electromagnetic vector potential, just as in Einstein-Maxwell theory. The ordinary Lorentz force equation is obtained by taking the divergence of the Einstein equations when sources are included. The Einstein-Infeld-Hoffmann (EIH) equations of motion match the equations of motion for Einstein-Maxwell theory to Newtonian/Coulombian order, which proves the existence of a Lorentz force without requiring sources. This fixes a problem of the original Einstein-Schrödinger theory, which failed to predict a Lorentz force. An exact charged solution matches the Reissner-Nordström solution except for additional terms which are ~10-66 of the usual terms for worst-case radii accessible to measurement. An exact electromagnetic plane-wave solution is identical to its counterpart in Einstein-Maxwell theory.
NASA Astrophysics Data System (ADS)
Przygoda, K.; Piotrowski, A.; Jablonski, G.; Makowski, D.; Pozniak, T.; Napieralski, A.
2009-08-01
Pulsed operation of high gradient superconducting radio frequency (SCRF) cavities results in dynamic Lorentz force detuning (LFD) approaching or exceeding the bandwidth of the cavity of order of a few hundreds of Hz. The resulting modulation of the resonance frequency of the cavity is leading to a perturbation of the amplitude and phase of the accelerating field, which can be controlled only at the expense of RF power. Presently, at various labs, a piezoelectric fast tuner based on an active compensation scheme for the resonance frequency control of the cavity is under study. The tests already performed in the Free Electron Laser in Hamburg (FLASH), proved the possibility of Lorentz force detuning compensation by the means of the piezo element excited with the single period of sine wave prior to the RF pulse. The X-Ray Free Electron Laser (X-FEL) accelerator, which is now under development in Deutsche Elektronen-Synchrotron (DESY), will consists of around 800 cavities with a fast tuner fixture including the actuator/sensor configuration. Therefore, it is necessary to design a distributed control system which would be able to supervise around 25 RF stations, each one comprised of 32 cavities. The Advanced Telecomunications Computing Architecture (ATCA) was chosen to design, develop, and build a Low Level Radio Frequency (LLRF) controller for X-FEL. The prototype control system for Lorentz force detuning compensation was designed and developed. The control applications applied in the system were fitted to the main framework of interfaces and communication protocols proposed for the ATCA-based LLRF control system. The paper presents the general view of a designed control system and shows the first experimental results from the tests carried out in FLASH facility. Moreover, the possibilities for integration of the piezo control system to the ATCA standards are discussed.
NASA Astrophysics Data System (ADS)
Mansuripur, Masud
2015-01-01
The classical theory of electrodynamics cannot explain the existence and structure of electric and magnetic dipoles, yet it incorporates such dipoles into its fundamental equations, simply by postulating their existence and properties, just as it postulates the existence and properties of electric charges and currents. Maxwell's macroscopic equations are mathematically exact and self-consistent differential equations that relate the electromagnetic (EM) field to its sources, namely, electric charge-density 𝜌𝜌free, electric current-density 𝑱𝑱free, polarization 𝑷𝑷, and magnetization 𝑴𝑴. At the level of Maxwell's macroscopic equations, there is no need for models of electric and magnetic dipoles. For example, whether a magnetic dipole is an Amperian current-loop or a Gilbertian pair of north and south magnetic monopoles has no effect on the solution of Maxwell's equations. Electromagnetic fields carry energy as well as linear and angular momenta, which they can exchange with material media—the seat of the sources of the EM field—thereby exerting force and torque on these media. In the Lorentz formulation of classical electrodynamics, the electric and magnetic fields, 𝑬𝑬 and 𝑩𝑩, exert forces and torques on electric charge and current distributions. An electric dipole is then modeled as a pair of electric charges on a stick (or spring), and a magnetic dipole is modeled as an Amperian current loop, so that the Lorentz force law can be applied to the corresponding (bound) charges and (bound) currents of these dipoles. In contrast, the Einstein-Laub formulation circumvents the need for specific models of the dipoles by simply providing a recipe for calculating the force- and torque-densities exerted by the 𝑬𝑬 and 𝑯𝑯 fields on charge, current, polarization and magnetization. The two formulations, while similar in many respects, have significant differences. For example, in the Lorentz approach, the Poynting vector is 𝑺𝑺𝐿𝐿 = 𝜇𝜇0 -1𝑬𝑬 × 𝑩𝑩, and the linear and angular momentum densities of the EM field are 𝓹𝓹𝐿𝐿 = 𝜀𝜀0𝑬𝑬 × 𝑩𝑩 and 𝓛𝓛𝐿𝐿 = 𝒓𝒓 × 𝓹𝓹𝐿𝐿, whereas in the Einstein-Laub formulation the corresponding entities are 𝑺𝑺𝐸𝐸𝐸𝐸= 𝑬𝑬 × 𝑯𝑯, 𝓹𝓹𝐸𝐸𝐸𝐸= 𝑬𝑬 × 𝑯𝑯⁄𝑐𝑐2, and 𝓛𝓛𝐸𝐸𝐸𝐸= 𝒓𝒓 × 𝓹𝓹𝐸𝐸𝐸𝐸. (Here 𝜇𝜇0 and 𝜀𝜀0 are the permeability and permittivity of free space, 𝑐𝑐 is the speed of light in vacuum, 𝑩𝑩 = 𝜇𝜇0𝑯𝑯 + 𝑴𝑴, and 𝒓𝒓 is the position vector.) Such differences can be reconciled by recognizing the need for the so-called hidden energy and hidden momentum associated with Amperian current loops of the Lorentz formalism. (Hidden entities of the sort do not arise in the Einstein-Laub treatment of magnetic dipoles.) Other differences arise from over-simplistic assumptions concerning the equivalence between free charges and currents on the one hand, and their bound counterparts on the other. A more nuanced treatment of EM force and torque densities exerted on polarization and magnetization in the Lorentz approach would help bridge the gap that superficially separates the two formulations. Atoms and molecules may collide with each other and, in general, material constituents can exchange energy, momentum, and angular momentum via direct mechanical interactions. In the case of continuous media, elastic and hydrodynamic stresses, phenomenological forces such as those related to exchange coupling in ferromagnets, etc., subject small volumes of materials to external forces and torques. Such matter-matter interactions, although fundamentally EM in nature, are distinct from field-matter interactions in classical physics. Beyond the classical regime, however, the dichotomy that distinguishes the EM field from EM sources gets blurred. An electron's wavefunction may overlap that of an atomic nucleus, thereby initiating a contact interaction between the magnetic dipole moments of the two particles. Or a neutron passing through a ferromagnetic material may give rise to scattering events involving overlaps between the wave-functions of the neutron and magnetic electrons. Such matter-matter interactions exert equal and opposite forces and/or torques on the colliding particles, and their observable effects often shed light on the nature of the particles involved. It is through such observations that the Amperian model of a magnetic dipole has come to gain prominence over the Gilbertian model. In situations involving overlapping particle wave-functions, it is imperative to take account of the particle-particle interaction energy when computing the scattering amplitudes. As far as total force and total torque on a given volume of material are concerned, such particle-particle interactions do not affect the outcome of calculations, since the mutual actions of the two (overlapping) particles cancel each other out. Both Lorentz and Einstein-Laub formalisms thus yield the same total force and total torque on a given volume—provided that hidden entities are properly removed. The Lorentz formalism, with its roots in the Amperian current-loop model, correctly predicts the interaction energy between two overlapping magnetic dipoles 𝒎𝒎1 and 𝒎𝒎2 as being proportional to -𝒎𝒎1 • 𝒎𝒎2. In contrast, the Einstein-Laub formalism, which is ignorant of such particle-particle interactions, needs to account for them separately.
Two Different Squeeze Transformations
NASA Technical Reports Server (NTRS)
Han, D. (Editor); Kim, Y. S.
1996-01-01
Lorentz boosts are squeeze transformations. While these transformations are similar to those in squeezed states of light, they are fundamentally different from both physical and mathematical points of view. The difference is illustrated in terms of two coupled harmonic oscillators, and in terms of the covariant harmonic oscillator formalism.
Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio
2016-08-24
Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases).
NASA Astrophysics Data System (ADS)
Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael
The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.
NASA Astrophysics Data System (ADS)
Pfeiffer, Adrian N.; Bell, M. Justine; Beck, Annelise R.; Mashiko, Hiroki; Neumark, Daniel M.; Leone, Stephen R.
2013-11-01
Recording the transmitted spectrum of a weak attosecond pulse through a medium, while a strong femtosecond pulse copropagates at variable delay, probes the strong-field dynamics of atoms, molecules, and solids. Usually, the interpretation of these measurements is based on the assumption of a thin medium. Here, the propagation through a macroscopic medium of helium atoms in the region of fully allowed resonances is investigated both theoretically and experimentally. The propagation has dramatic effects on the transient spectrum even at relatively low pressures (50 mbar) and short propagation lengths (1 mm). The absorption does not evolve monotonically with the product of propagation distance and pressure, but regions with characteristics of Lorentz line shapes and characteristics of Fano line shapes alternate. Criteria are deduced to estimate whether macroscopic effects can be neglected or not in a transient absorption experiment. Furthermore, the theory in the limit of single-atom response yields a general equation for Lorentz- and Fano-type line shapes at variable pulse delay.
STAR -Space Time Asymmetry Research
NASA Astrophysics Data System (ADS)
van Zoest, Tim; Braxmaier, Claus; Schuldt, Thilo; Allab, Mohammed; Theil, Stephan; Pelivan, Ivanka; Herrmann, Sven; Lümmerzahl, Claus; Peters, Achim; Mühle, Katharina; Wicht, Andreas; Nagel, Moritz; Kovalchuk, Evgeny; Düringshoff, Klaus; Dittus, Hansjürg
STAR is a proposed satellite mission that aims for significantly improved tests of fundamental space-time symmetry and the foundations of special and general relativity. In total STAR comprises a series of five subsequent missions. The STAR1 mission will measure the constancy of the speed of light to one part in 1019 and derive the Kennedy Thorndike (KT) coefficient of the Mansouri-Sexl test theory to 7x10-10 . The KT experiment will be performed by compar-ison of an iodine standard with a highly stable cavity made from ultra low expansion (ULE) ceramics. With an orbital velocity of 7 km/s the sensitivity to a boost dependent violation of Lorentz invariance as modeled by the KT term in the Mansouri Sexl test theory or a Lorentz violating extension of the standard model (SME) will be significantly enhanced as compared to Earth based experiments. The low noise space environment will additionally enhance the measurement precision such that an overall improvement by a factor of 400 over current Earth based experiments is expected.
Quantum Gravitational Corrections to the Real Klein-Gordon Field in the Presence of a Minimal Length
NASA Astrophysics Data System (ADS)
Moayedi, S. K.; Setare, M. R.; Moayeri, H.
2010-09-01
The ( D+1)-dimensional ( β, β')-two-parameter Lorentz-covariant deformed algebra introduced by Quesne and Tkachuk (J. Phys., A Math. Gen. 39, 10909, 2006), leads to a nonzero minimal uncertainty in position (minimal length). The Klein-Gordon equation in a (3+1)-dimensional space-time described by Quesne-Tkachuk Lorentz-covariant deformed algebra is studied in the case where β'=2 β up to first order over deformation parameter β. It is shown that the modified Klein-Gordon equation which contains fourth-order derivative of the wave function describes two massive particles with different masses. We have shown that physically acceptable mass states can only exist for β<1/8m^{2c2} which leads to an isotropic minimal length in the interval 10-17 m<(Δ X i )0<10-15 m. Finally, we have shown that the above estimation of minimal length is in good agreement with the results obtained in previous investigations.
From Maxwell's Electrodynamics to Relativity, a Geometric Journey
NASA Astrophysics Data System (ADS)
Smith, Felix T.
2015-05-01
Since Poincaré and Minkowski recognized ict as a fourth coordinate in a four-space associated with the Lorentz transformation, the occurrence of that imaginary participant in the relativistic four-vector has been a mystery of relativistic dynamics. A reexamination of Maxwell's equations (ME) shows that one of their necessary implications is to bring to light a constraint that distorts the 3-space of our experience from strict Euclidean zero curvature by a time-varying, spatially isotropic term creating a minute curvature Kcurv(t) and therefore a radius of curvature rcurv(t) =Kcurv- 1 / 2 (t). In the light of Michelson-Morley and the Lorentz transformation, this radius must be imaginary, and the geometric curvature K must be negative. From the time dependence of the ME the rate of change of the curvature radius is shown to be drcurv / dt = ic , agreeing exactly with the Hubble expansion. The imaginary magnitude is the radius of curvature; the time itself is not imaginary. Minkowski's space-time is unjustified. Important consequences for the foundations of special relativity follow.
Pollard, Shawn D.; Garlow, Joseph A.; Yu, Jiawei; ...
2017-03-10
Néel skyrmions are of high interest due to their potential applications in a variety of spintronic devices, currently accessible in ultrathin heavy metal/ferromagnetic bilayers and multilayers with a strong Dzyaloshinskii–Moriya interaction. Here in this paper we report on the direct imaging of chiral spin structures including skyrmions in an exchange-coupled cobalt/palladium multilayer at room temperature with Lorentz transmission electron microscopy, a high-resolution technique previously suggested to exhibit no Néel skyrmion contrast. Phase retrieval methods allow us to map the internal spin structure of the skyrmion core, identifying a 25 nm central region of uniform magnetization followed by a larger regionmore » characterized by rotation from in- to out-of-plane. The formation and resolution of the internal spin structure of room temperature skyrmions without a stabilizing out-of-plane field in thick magnetic multilayers opens up a new set of tools and materials to study the physics and device applications associated with chiral ordering and skyrmions.« less
Relativistic spin-orbit interactions of photons and electrons
NASA Astrophysics Data System (ADS)
Smirnova, D. A.; Travin, V. M.; Bliokh, K. Y.; Nori, F.
2018-04-01
Laboratory optics, typically dealing with monochromatic light beams in a single reference frame, exhibits numerous spin-orbit interaction phenomena due to the coupling between the spin and orbital degrees of freedom of light. Similar phenomena appear for electrons and other spinning particles. Here we examine transformations of paraxial photon and relativistic-electron states carrying the spin and orbital angular momenta (AM) under the Lorentz boosts between different reference frames. We show that transverse boosts inevitably produce a rather nontrivial conversion from spin to orbital AM. The converted part is then separated between the intrinsic (vortex) and extrinsic (transverse shift or Hall effect) contributions. Although the spin, intrinsic-orbital, and extrinsic-orbital parts all point in different directions, such complex behavior is necessary for the proper Lorentz transformation of the total AM of the particle. Relativistic spin-orbit interactions can be important in scattering processes involving photons, electrons, and other relativistic spinning particles, as well as when studying light emitted by fast-moving bodies.
Thermal and Lorentz Force Analysis of Beryllium Windows for the Rectilinear Muon Cooling Channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Tianhuan; Li, D.; Virostek, S.
Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which willmore » produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.« less
Thermal and Lorentz force analysis of beryllium windows for a rectilinear muon cooling channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, T.; Stratakis, D.; Li, D.
Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which willmore » produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.« less
Estimation of droughts indicators in the Veguita zone, Cuba
NASA Astrophysics Data System (ADS)
Cumbrera, Ramiro; Millán Vega, Humberto; Tarquis, Ana Maria; Alcolea Naranjo, Osvaldo
2016-04-01
This work has as essential objective the evaluation and analysis of the main indicators of hydrometeorology drought in Veguita, using series of daily precipitations, daily temperature and intensity of the rain. These data were contributed by the Station Agrometeorológica of Veguitas. The estimated indexes were the concentration of precipitations (CP) and the standardized index of precipitation and evapotranspiration (SPEI). The CP was calculated by means of the calculation of the index of Gini, based on the curve of Lorentz using data from 1994 until 2013. The SPEI was calculated with the software of the same name using the data from 2001 up to 2013. The main result obtained was that the precipitations in the area are concentrating, in accordance with the index of Gini and the exponential adjustment of the curve of Lorentz. Beside it, gusts dry superiors to one month were detected and the SPEI pointed out 35 months with drought, 40 humid and 81 with normal levels of rain in the last 13 years.
Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio
2016-01-01
Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases). PMID:27563912
Manifesting enhanced cancellations in supergravity: integrands versus integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bern, Zvi; Enciso, Michael; Parra-Martinez, Julio
2017-05-25
We have found examples of `enhanced ultraviolet cancellations' with no known standard-symmetry explanation in a variety of supergravity theories. Furthermore, by examining one- and two-loop examples in four- and five-dimensional half-maximal supergravity, we argue that enhanced cancellations in general cannot be exhibited prior to integration. In light of this, we explore reorganizations of integrands into parts that are manifestly finite and parts that have poor power counting but integrate to zero due to integral identities. At two loops we find that in the large loop-momentum limit the required integral identities follow from Lorentz and SL(2) relabeling symmetry. We carry outmore » a nontrivial check at four loops showing that the identities generated in this way are a complete set. We propose that at L loops the combination of Lorentz and SL(L) symmetry is sufficient for displaying enhanced cancellations when they happen, whenever the theory is known to be ultraviolet finite up to (L - 1) loops.« less
Equilibrium models of coronal loops that involve curvature and buoyancy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindman, Bradley W.; Jain, Rekha, E-mail: hindman@solarz.colorado.edu
2013-12-01
We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to amore » detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.« less
Extreme-UV scanning wafer and reticle stages
Williams, Mark E.
2002-01-01
A stage for precise positioning of a chuck in three orthogonal linear axes and in three orthogonal rotation axes that includes first and second subassemblies. The a first subassembly includes (i) a monolithic mirror that supports the chuck wherein the monolithic mirror has at least two polished orthogonal faces for interferometric determination of the X, Y, and .THETA.z positions; (ii) a plurality of electromagnetic actuators that control fine positioning in all six axes and coarse positioning in one axis; (iii) a position sensor for measuring the vertical Z position of the monolithic mirror; and (iv) a Lorentz actuator, that includes magnet array, for effecting motion in the Y axis. The a second subassembly comprising a stepping axis beam over which the first subassembly is suspended, wherein the stepping axis beam includes a drive coil array for the Lorentz actuator. T the stage can also include a cable stage subassembly that is positioned a fixed distance away from the monolithic mirror and/or a mechanical zero reference for the first subassembly.
Exact solutions for sound radiation from a moving monopole above an impedance plane.
Ochmann, Martin
2013-04-01
The acoustic field of a monopole source moving with constant velocity at constant height above an infinite locally reacting plane can be expressed in analytical form by combining the Lorentz transformation with the method of superimposing complex or real point sources. For a plane with masslike response, the solution in Lorentz space consists of a superposition of monopoles only and therefore, does not differ in principle from the solution for the corresponding stationary boundary value problem. However, by considering a frequency independent surface impedance, e.g., with pure absorbing behavior, the half-space Green's function is now comprised of not only a line of monopoles but also of dipoles. For certain field points at a special line g, this solution can be written explicitly by using an exponential integral. For arbitrary field points, the method of stationary phase leads to an asymptotic solution for the reflection coefficient which agrees with prior results from the literature.
Vortex Escape from Columnar Defect in a Current-Loaded Superconductor
NASA Astrophysics Data System (ADS)
Fedirko, V. A.; Kasatkin, A. L.; Polyakov, S. V.
2018-06-01
The problem of Abrikosov vortices depinning from extended linear (columnar) defect in 3D-anisotropic superconductor film under non-uniformly distributed Lorentz force is studied for the case of low temperatures, disregarding thermal activation processes. We treat it as a problem of mechanical behavior of an elastic vortex string settled in a potential well of a linear defect and exerted to Lorentz force action within the screening layer about the London penetration depth near the specimen surface. The stability problem for the vortex pinning state is investigated by means of numerical modeling, and conditions for the instability threshold are obtained as well as the critical current density j_c and its dependence on the film thickness and magnetic field orientation. The instability leading to vortex depinning from extended linear defect first emerges near the surface and then propagates inside the superconductor. This scenario of vortex depinning mechanism at low temperatures is strongly supported by some recent experiments on high-Tc superconductors and other novel superconducting materials, containing columnar defects of various nature.
The Newton constant and gravitational waves in some vector field adjusting mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santillán, Osvaldo P.; Scornavacche, Marina, E-mail: firenzecita@hotmail.com, E-mail: marina.scorna@hotmail.com
At the present, there exist some Lorentz breaking scenarios which explain the smallness of the cosmological constant at the present era [1]–[2]. An important aspect to analyze is the propagation of gravitational waves and the screening or enhancement of the Newton constant G {sub N} in these models. The problem is that the Lorentz symmetry breaking terms may induce an unacceptable value of the Newton constant G {sub N} or introduce longitudinal modes in the gravitational wave propagation. Furthermore this breaking may spoil the standard dispersion relation ω= ck . In [3] the authors have presented a model suggesting thatmore » the behavior of the gravitational constant is correct for asymptotic times. In the present work, an explicit checking is made and we finally agree with these claims. Furthermore, it is suggested that the gravitational waves are also well behaved for large times. In the process, some new models with the same behavior are obtained, thus enlarging the list of possible adjustment mechanisms.« less
Determination of domain wall chirality using in situ Lorentz transmission electron microscopy
Chess, Jordan J.; Montoya, Sergio A.; Fullerton, Eric E.; ...
2017-02-23
Controlling domain wall chirality is increasingly seen in non-centrosymmetric materials. Mapping chiral magnetic domains requires knowledge about all the vector components of the magnetization, which poses a problem for conventional Lorentz transmission electron microscopy (LTEM) that is only sensitive to magnetic fields perpendicular to the electron beams direction of travel. The standard approach in LTEM for determining the third component of the magnetization is to tilt the sample to some angle and record a second image. Furthermore, this presents a problem for any domain structures that are stabilized by an applied external magnetic field (e.g. skyrmions), because the standard LTEMmore » setup does not allow independent control of the angle of an applied magnetic field, and sample tilt angle. Here we show that applying a modified transport of intensity equation analysis to LTEM images collected during an applied field sweep, we can determine the domain wall chirality of labyrinth domains in a perpendicularly magnetized material, avoiding the need to tilt the sample.« less
Beyond disciplinary borders. H. A. Lorentz and S. Ramón y Cajal.
Fernández Santarén, J; Kox, A J; Sánchez-Ron, J M
2014-01-01
Science is a multidisciplinary enterprise. Mathematics, physics, chemistry, biology, geology, and many other, perhaps not so " basic ", but not less interesting disciplines form what we call " science ". The task of history of science is to recover and put order in the past of such disciplines. Although, on most the occasions, those histories are limited by the territories of the different sciences, we know that their frontiers are not impermeable, that there are relationships between them. However, it is not frequent to find studies dealing with those relationships, especially dealing with relations among scientists belonging to different fields. In the present paper, we study a case in which two outstanding scientists, a physicist and a histologist (or neuroscientist, as we would say today), the Dutchman Hendrik A. Lorentz and the Spanish Santiago Ramón y Cajal, maintained a, albeit brief, relation. Both being such prominent scientific figures, of worldwide stature, the relation they maintained deserves to be known.
Determination of domain wall chirality using in situ Lorentz transmission electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chess, Jordan J.; Montoya, Sergio A.; Fullerton, Eric E.
Controlling domain wall chirality is increasingly seen in non-centrosymmetric materials. Mapping chiral magnetic domains requires knowledge about all the vector components of the magnetization, which poses a problem for conventional Lorentz transmission electron microscopy (LTEM) that is only sensitive to magnetic fields perpendicular to the electron beams direction of travel. The standard approach in LTEM for determining the third component of the magnetization is to tilt the sample to some angle and record a second image. Furthermore, this presents a problem for any domain structures that are stabilized by an applied external magnetic field (e.g. skyrmions), because the standard LTEMmore » setup does not allow independent control of the angle of an applied magnetic field, and sample tilt angle. Here we show that applying a modified transport of intensity equation analysis to LTEM images collected during an applied field sweep, we can determine the domain wall chirality of labyrinth domains in a perpendicularly magnetized material, avoiding the need to tilt the sample.« less
Synthesis and optical property of holmium doped Lithium lead borate glasses
NASA Astrophysics Data System (ADS)
Usharani, V. L.; Eraiah, B.
2017-05-01
The new glass system 60B2O3-30PbO-(10-x)Li2O-xHo2O3 (where x =0, 0.1, 0.3 and 0.5 mol%) were prepared by conventional melt quenching method. The XRD spectrum confirms the amorphous nature of the sample. The density of these glasses is measured by using Archimedes principle, the values range from 4.23 g/cm-3 to 4.34 g/cm-3 and the corresponding molar volumes are calculated. The optical absorbance studies were carried out on these glasses in the wavelength range of 200nm to 1100nm. The measured optical direct band gap energies were in the range of 3.072eV to 3.259eV and the optical indirect band gap energies in the range of 2.658eV to 2.846eV. The refractive indices of these glasses were measured by using Abbe refractometer and the corresponding polarizabilities of oxide ions are calculated by using Lorentz-Lorentz relations.
Finite-width Laplacian sum rules for 2++ tensor glueball in the instanton vacuum model
NASA Astrophysics Data System (ADS)
Chen, Junlong; Liu, Jueping
2017-01-01
The more carefully defined and more appropriate 2++ tensor glueball current is a S Uc(3 ) gauge-invariant, symmetric, traceless, and conserved Lorentz-irreducible tensor. After Lorentz decomposition, the invariant amplitude of the correlation function is abstracted and calculated based on the semiclassical expansion for quantum chromodynamics (QCD) in the instanton liquid background. In addition to taking the perturbative contribution into account, we calculate the contribution arising from the interaction (or the interference) between instantons and the quantum gluon fields, which is infrared free. Instead of the usual zero-width approximation for the resonances, the Breit-Wigner form with a correct threshold behavior for the spectral function of the finite-width three resonances is adopted. The properties of the 2++ tensor glueball are investigated via a family of the QCD Laplacian sum rules for the invariant amplitude. The values of the mass, decay width, and coupling constants for the 2++ resonance in which the glueball fraction is dominant are obtained.
A computer program for thermal radiation from gaseous rocket exhuast plumes (GASRAD)
NASA Technical Reports Server (NTRS)
Reardon, J. E.; Lee, Y. C.
1979-01-01
A computer code is presented for predicting incident thermal radiation from defined plume gas properties in either axisymmetric or cylindrical coordinate systems. The radiation model is a statistical band model for exponential line strength distribution with Lorentz/Doppler line shapes for 5 gaseous species (H2O, CO2, CO, HCl and HF) and an appoximate (non-scattering) treatment of carbon particles. The Curtis-Godson approximation is used for inhomogeneous gases, but a subroutine is available for using Young's intuitive derivative method for H2O with Lorentz line shape and exponentially-tailed-inverse line strength distribution. The geometry model provides integration over a hemisphere with up to 6 individually oriented identical axisymmetric plumes, a single 3-D plume, Shading surfaces may be used in any of 7 shapes, and a conical limit may be defined for the plume to set individual line-of-signt limits. Intermediate coordinate systems may specified to simplify input of plumes and shading surfaces.
Lemberger, Thomas R.; Loh, Yen Lee
2016-10-27
This article models the dynamics of vortices that are generated in the middle of a thin, large-area, superconducting film by a low-frequency magnetic field from a small coil, motivated by a desire to better understand measurements of the superconducting coherence length made with a two-coil apparatus. When the applied field exceeds a critical value, vortices and antivortices originate near the middle of the film at the radius where the Lorentz force of the screening supercurrent is largest. The Lorentz force from the screening supercurrent pushes vortices toward the center of the film and antivortices outward. In an experiment, vortices aremore » detected as an increase in mutual inductance between drive coil and a coaxial “pickup” coil on the opposite side of the film. Lastly, the model shows that the essential features of measurements are well described when vortex pinning and the attendant hysteresis are included.« less