Testing Lorentz invariance violations in the tritium beta-decay anomaly
NASA Astrophysics Data System (ADS)
Carmona, J. M.; Cortés, J. L.
2000-11-01
We consider a Lorentz non-invariant dispersion relation for the neutrino, which would produce unexpected effects with neutrinos of few eV, exactly where the tritium beta-decay anomaly is found. We use this anomaly to put bounds on the violation of Lorentz invariance. We discuss other consequences of this non-invariant dispersion relation in neutrino experiments and high-energy cosmic-ray physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubtsov, Grigory; Satunin, Petr; Sibiryakov, Sergey, E-mail: grisha@ms2.inr.ac.ru, E-mail: satunin@ms2.inr.ac.ru, E-mail: Sergey.Sibiryakov@cern.ch
2017-05-01
Parameterizing hypothetical violation of Lorentz invariance at high energies using the framework of effective quantum field theory, we discuss its effect on the formation of atmospheric showers by very-high-energy gamma rays. In the scenario where Lorentz invariance violation leads to a decrease of the photon velocity with energy the formation of the showers is suppressed compared to the Lorentz invariant case. Absence of such suppression in the high-energy part of spectrum of the Crab nebula measured independently by HEGRA and H.E.S.S. collaborations is used to set lower bounds on the energy scale of Lorentz invariance violation. These bounds are competitivemore » with the strongest existing constraints obtained from timing of variable astrophysical sources and the absorption of TeV photons on the extragalactic background light. They will be further improved by the next generation of multi-TeV gamma-ray observatories.« less
Testing local Lorentz invariance with gravitational waves
Kostelecký, V. Alan; Mewes, Matthew
2016-04-20
The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation. (C) 2016 The Authors. Published by Elsevier B.V.
Search for Violations of Lorentz Invariance and CPT Symmetry in B_{(s)}^{0} Mixing.
Aaij, R; Abellán Beteta, C; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hongming, L; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusardi, N; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Müller, D; Müller, J; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen-Mau, C; Niess, V; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parker, W; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Romanovsky, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefkova, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhong, L; Zhukov, V; Zucchelli, S
2016-06-17
Violations of CPT symmetry and Lorentz invariance are searched for by studying interference effects in B^{0} mixing and in B_{s}^{0} mixing. Samples of B^{0}→J/ψK_{S}^{0} and B_{s}^{0}→J/ψK^{+}K^{-} decays are recorded by the LHCb detector in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb^{-1}. No periodic variations of the particle-antiparticle mass differences are found, consistent with Lorentz invariance and CPT symmetry. Results are expressed in terms of the standard model extension parameter Δa_{μ} with precisions of O(10^{-15}) and O(10^{-14}) GeV for the B^{0} and B_{s}^{0} systems, respectively. With no assumption on Lorentz (non)invariance, the CPT-violating parameter z in the B_{s}^{0} system is measured for the first time and found to be Re(z)=-0.022±0.033±0.005 and Im(z)=0.004±0.011±0.002, where the first uncertainties are statistical and the second systematic.
Model-independent constraints on Lorentz invariance violation via the cosmographic approach
NASA Astrophysics Data System (ADS)
Zou, Xiao-Bo; Deng, Hua-Kai; Yin, Zhao-Yu; Wei, Hao
2018-01-01
Since Lorentz invariance plays an important role in modern physics, it is of interest to test the possible Lorentz invariance violation (LIV). The time-lag (the arrival time delay between light curves in different energy bands) of Gamma-ray bursts (GRBs) has been extensively used to this end. However, to our best knowledge, one or more particular cosmological models were assumed a priori in (almost) all of the relevant works in the literature. So, this makes the results on LIV in those works model-dependent and hence not so robust in fact. In the present work, we try to avoid this problem by using a model-independent approach. We calculate the time delay induced by LIV with the cosmic expansion history given in terms of cosmography, without assuming any particular cosmological model. Then, we constrain the possible LIV with the observational data, and find weak hints for LIV.
Alternative theories of gravity and Lorentz violation
NASA Astrophysics Data System (ADS)
Xu, Rui; Foster, Joshua; Kostelecky, V. Alan
2017-01-01
General relativity has achieved many successes, including the prediction of experimental results. However, its incompatibility with quantum theory remains an obstacle. By extending the foundational properties of general relativity, alternative theories of gravity can be constructed. In this talk, we focus on fermion couplings in the weak-gravity limit of certain alternative theories of gravity. Under suitable experimental circumstances, some of these couplings match terms appearing in the gravitational SME, which is a general framework describing violations of local Lorentz invariance. Existing limits on Lorentz violation can therefore be used to constrain certain Lorentz-invariant alternative theories of gravity.
Lorentz Invariance Violation and the Observed Spectrum of Ultrahigh Energy Cosmic Rays
NASA Technical Reports Server (NTRS)
Scully, S. T.; Stecker, F. W.
2009-01-01
There has been much interest in possible violations of Lorentz invariance, particularly motivated by quantum gravity theories. It has been suggested that a small amount of Lorentz invariance violation (LIV) could turn of photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with photons of the cosmic background radiation and thereby eliminate the resulting sharp steepening in the spectrum of the highest energy CRs predicted by Greisen Zatsepin and Kuzmin (GZK). Recent measurements of the UHECR spectrum reported by the HiRes and Auger collaborations, however, indicate the presence of the GZK effect. We present the results of a detailed calculation of the modification of the UHECR spectrum caused by LIV using the formalism of Coleman and Glashow. We then compare these results with the experimental UHECR data from Auger and HiRes. Based on these data, we find a best fit amount of LIV of 4.5+1:5 ..4:5 x 10(exp -23),consistent with an upper limit of 6 x 10(exp -23). This possible amount of LIV can lead to a recovery of the cosmic ray spectrum at higher energies than presently observed. Such an LIV recovery effect can be tested observationally using future detectors.
Improved test of Lorentz invariance in electrodynamics
NASA Astrophysics Data System (ADS)
Wolf, Peter; Bize, Sébastien; Clairon, André; Santarelli, Giorgio; Tobar, Michael E.; Luiten, André N.
2004-09-01
We report new results of a test of Lorentz invariance based on the comparison of a cryogenic sapphire microwave resonator and a hydrogen-maser. The experimental results are shown together with an extensive analysis of systematic effects. Previously, this experiment has set the most stringent constraint on Kennedy-Thorndike type violations of Lorentz invariance. In this work we present new data and interpret our results in the general Lorentz violating extension of the standard model of particle physics (SME). Within the photon sector of the SME, our experiment is sensitive to seven SME parameters. We marginally improve present limits on four of these, and by a factor seven to ten on the other three.
Lorentz invariance violation and generalized uncertainty principle
NASA Astrophysics Data System (ADS)
Tawfik, Abdel Nasser; Magdy, H.; Ali, A. Farag
2016-01-01
There are several theoretical indications that the quantum gravity approaches may have predictions for a minimal measurable length, and a maximal observable momentum and throughout a generalization for Heisenberg uncertainty principle. The generalized uncertainty principle (GUP) is based on a momentum-dependent modification in the standard dispersion relation which is conjectured to violate the principle of Lorentz invariance. From the resulting Hamiltonian, the velocity and time of flight of relativistic distant particles at Planck energy can be derived. A first comparison is made with recent observations for Hubble parameter in redshift-dependence in early-type galaxies. We find that LIV has two types of contributions to the time of flight delay Δ t comparable with that observations. Although the wrong OPERA measurement on faster-than-light muon neutrino anomaly, Δ t, and the relative change in the speed of muon neutrino Δ v in dependence on redshift z turn to be wrong, we utilize its main features to estimate Δ v. Accordingly, the results could not be interpreted as LIV. A third comparison is made with the ultra high-energy cosmic rays (UHECR). It is found that an essential ingredient of the approach combining string theory, loop quantum gravity, black hole physics and doubly spacial relativity and the one assuming a perturbative departure from exact Lorentz invariance. Fixing the sensitivity factor and its energy dependence are essential inputs for a reliable confronting of our calculations to UHECR. The sensitivity factor is related to the special time of flight delay and the time structure of the signal. Furthermore, the upper and lower bounds to the parameter, a that characterizes the generalized uncertainly principle, have to be fixed in related physical systems such as the gamma rays bursts.
Neutrinos as Probes of Lorentz Invariance
Díaz, Jorge S.
2014-01-01
Neutrinos can be used to search for deviations from exact Lorentz invariance. The worldwide experimental program in neutrino physics makes these particles a remarkable tool to search for a variety of signals that could reveal minute relativity violations. This paper reviews the generic experimental signatures of the breakdown of Lorentz symmetry in the neutrino sector.
Superconducting-Gravimeter Tests of Local Lorentz Invariance
NASA Astrophysics Data System (ADS)
Flowers, Natasha A.; Goodge, Casey; Tasson, Jay D.
2017-11-01
Superconducting-gravimeter measurements are used to test the local Lorentz invariance of the gravitational interaction and of matter-gravity couplings. The best laboratory sensitivities to date are achieved via a maximum-reach analysis for 13 Lorentz-violating operators, with some improvements exceeding an order of magnitude.
Superconducting-Gravimeter Tests of Local Lorentz Invariance.
Flowers, Natasha A; Goodge, Casey; Tasson, Jay D
2017-11-17
Superconducting-gravimeter measurements are used to test the local Lorentz invariance of the gravitational interaction and of matter-gravity couplings. The best laboratory sensitivities to date are achieved via a maximum-reach analysis for 13 Lorentz-violating operators, with some improvements exceeding an order of magnitude.
NASA Astrophysics Data System (ADS)
Dai, Wei-Ming; Guo, Zong-Kuan; Cai, Rong-Gen; Zhang, Yuan-Zhong
2017-06-01
We investigate constraints on Lorentz invariance violation in the neutrino sector from a joint analysis of big bang nucleosynthesis and the cosmic microwave background. The effect of Lorentz invariance violation during the epoch of big bang nucleosynthesis changes the predicted helium-4 abundance, which influences the power spectrum of the cosmic microwave background at the recombination epoch. In combination with the latest measurement of the primordial helium-4 abundance, the Planck 2015 data of the cosmic microwave background anisotropies give a strong constraint on the deformation parameter since adding the primordial helium measurement breaks the degeneracy between the deformation parameter and the physical dark matter density.
Tests of Lorentz invariance with atomic clocks
NASA Astrophysics Data System (ADS)
Mohan, Lakshmi
Lorentz invariance has been the cornerstone of special relativity. Recent theories have been proposed which suggest violations of Lorentz invariance. Experiments have been conducted using clocks that place the strictest limits on these theories. The thesis focuses on the Mansouri and Sexl formulation and I calculate using this framework the Doppler effect, Compton effect, Maxwell's equations, Hydrogen energy levels and other effects. I conclude the thesis by suggesting a possible method of testing my results using atomic clocks.
Effect of bulk Lorentz violation on anisotropic brane cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydari-Fard, Malihe, E-mail: heydarifard@qom.ac.ir
2012-04-01
The effect of Lorentz invariance violation in cosmology has attracted a considerable amount of attention. By using a dynamical vector field assumed to point in the bulk direction, with Lorentz invariance holding on the brane, we extend the notation of Lorentz violation in four dimensions Jacobson to a five-dimensional brane-world. We obtain the general solution of the field equations in an exact parametric form for Bianchi type I space-time, with perfect fluid as a matter source. We show that the brane universe evolves from an isotropic/anisotropic state to an isotropic de Sitter inflationary phase at late time. The early timemore » behavior of anisotropic brane universe is largely dependent on the Lorentz violating parameters β{sub i},i = 1,2,3 and the equation of state of the matter, while its late time behavior is independent of these parameters.« less
Lorentz violation and generalized uncertainty principle
NASA Astrophysics Data System (ADS)
Lambiase, Gaetano; Scardigli, Fabio
2018-04-01
Investigations on possible violation of Lorentz invariance have been widely pursued in the last decades, both from theoretical and experimental sides. A comprehensive framework to formulate the problem is the standard model extension (SME) proposed by A. Kostelecky, where violation of Lorentz invariance is encoded into specific coefficients. Here we present a procedure to link the deformation parameter β of the generalized uncertainty principle to the SME coefficients of the gravity sector. The idea is to compute the Hawking temperature of a black hole in two different ways. The first way involves the deformation parameter β , and therefore we get a deformed Hawking temperature containing the parameter β . The second way involves a deformed Schwarzschild metric containing the Lorentz violating terms s¯μ ν of the gravity sector of the SME. The comparison between the two different techniques yields a relation between β and s¯μ ν. In this way bounds on β transferred from s¯μ ν are improved by many orders of magnitude when compared with those derived in other gravitational frameworks. Also the opposite possibility of bounds transferred from β to s¯μ ν is briefly discussed.
Lorentz and diffeomorphism violations in linearized gravity
NASA Astrophysics Data System (ADS)
Kostelecký, V. Alan; Mewes, Matthew
2018-04-01
Lorentz and diffeomorphism violations are studied in linearized gravity using effective field theory. A classification of all gauge-invariant and gauge-violating terms is given. The exact covariant dispersion relation for gravitational modes involving operators of arbitrary mass dimension is constructed, and various special limits are discussed.
Neutrino velocity and local Lorentz invariance
NASA Astrophysics Data System (ADS)
Cardone, Fabio; Mignani, Roberto; Petrucci, Andrea
2015-09-01
We discuss the possible violation of local Lorentz invariance (LLI) arising from a faster-than-light neutrino speed. A toy calculation of the LLI violation parameter δ, based on the (disclaimed) OPERA data, suggests that the values of δ are determined by the interaction involved, and not by the energy range. This hypothesis is further corroborated by the analysis of the more recent results of the BOREXINO, LVD and ICARUS experiments.
Search for Violation of $CPT$ and Lorentz Invariance in $${B_s^0}$$ Meson Oscillations
Abazov, Victor Mukhamedovich
2015-06-12
We present the first search for CPT-violating effects in the mixing of B 0 s mesons using the full Run II data set with an integrated luminosity of 10.4 fb -1 of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. We measure the CPT-violating asymmetry in the decay B 0 s → µ ±D ± s as a function of celestial direction and sidereal phase. We find no evidence for CPT-violating effects and place limits on the direction and magnitude of flavor-dependent CPTand Lorentz-invariance violating coupling coefficients. We find 95% confidence intervals of Δa⊥ < 1.2more » × 10 -12 GeV and (-0.8 < ΔaT - 0.396Δa Z < 3.9) × 10 -13 GeV.« less
Search for Violation of CPT and Lorentz Invariance in B-s(0) Meson Oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abazov, V. M.
2015-10-14
We present the first search for CPT-violating effects in the mixing of B 0 s mesons using the full Run II data set with an integrated luminosity of 10.4 fb -1 of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. We measure the CPT-violating asymmetry in the decay B 0 s → µ ±D ± s as a function of celestial direction and sidereal phase. We find no evidence for CPT-violating effects and place limits on the direction and magnitude of flavor-dependent CPTand Lorentz-invariance violating coupling coefficients. We find 95% confidence intervals of Δa⊥ < 1.2more » × 10 -12 GeV and (-0.8 < ΔaT - 0.396Δa Z < 3.9) × 10 -13 GeV.« less
Testing local Lorentz invariance with short-range gravity
Kostelecký, V. Alan; Mewes, Matthew
2017-01-10
The Newton limit of gravity is studied in the presence of Lorentz-violating gravitational operators of arbitrary mass dimension. The linearized modified Einstein equations are obtained and the perturbative solutions are constructed and characterized. We develop a formalism for data analysis in laboratory experiments testing gravity at short range and demonstrate that these tests provide unique sensitivity to deviations from local Lorentz invariance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laemmerzahl, Claus; Macias, Alfredo; Mueller, Holger
2005-01-15
All quantum gravity approaches lead to small modifications in the standard laws of physics which in most cases lead to violations of Lorentz invariance. One particular example is the extended standard model (SME). Here, a general phenomenological approach for extensions of the Maxwell equations is presented which turns out to be more general than the SME and which covers charge nonconservation (CNC), too. The new Lorentz invariance violating terms cannot be probed by optical experiments but need, instead, the exploration of the electromagnetic field created by a point charge or a magnetic dipole. Some scalar tensor theories and higher dimensionalmore » brane theories predict CNC in four dimensions and some models violating special relativity have been shown to be connected with CNC. Its relation to the Einstein Equivalence Principle has been discussed. Because of this upcoming interest, the experimental status of electric charge conservation is reviewed. Up to now there seem to exist no unique tests of charge conservation. CNC is related to the precession of polarization, to a modification of the 1/r-Coulomb potential, and to a time dependence of the fine structure constant. This gives the opportunity to describe a dedicated search for CNC.« less
Lorentz violating Julia-Toulouse mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaete, Patricio; Wotzasek, Clovis; Instituto de Fisica, Universidade Federal do Rio de Janeiro
2007-03-01
We study a Lorentz invariance violating extension for the pure photonic sector of the standard model. A phenomenological proposal is made for the condensation of topological defects in the presence of a constant rank-m tensor in the context of the Julia-Toulouse mechanism. Possible physical consequences leading to direct measurable effects over the confining properties of the elementary particles are explored.
Lorentz Invariance Violation effects on UHECR propagation: A geometrized approach
NASA Astrophysics Data System (ADS)
Torri, Marco Danilo Claudio; Bertini, Stefano; Giammarchi, Marco; Miramonti, Lino
2018-06-01
We explore the possibility to geometrize the interaction of massive fermions with the quantum structure of space-time, trying to create a theoretical background, in order to explain what some recent experimental results seem to implicate on the propagation of Ultra High Energy Cosmic Rays (UHECR). We will investigate part of the phenomenological implications of this approach on the predicted effect of the UHECR suppression, in fact recent evidences seem to involve the modification of the GZK cut-off phenomenon. The search for an effective theory, which can explain this physical effect, is based on Lorentz Invariance Violation (LIV), which is introduced via Modified Dispersion Relations (MDRs). Furthermore we illustrate that this perspective implies a more general geometry of space-time than the usual Riemannian one, indicating, for example, the opportunity to resort to Finsler theory.
Lorentz-violating gravitoelectromagnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Quentin G.
2010-09-15
The well-known analogy between a special limit of general relativity and electromagnetism is explored in the context of the Lorentz-violating standard-model extension. An analogy is developed for the minimal standard-model extension that connects a limit of the CPT-even component of the electromagnetic sector to the gravitational sector. We show that components of the post-Newtonian metric can be directly obtained from solutions to the electromagnetic sector. The method is illustrated with specific examples including static and rotating sources. Some unconventional effects that arise for Lorentz-violating electrostatics and magnetostatics have an analog in Lorentz-violating post-Newtonian gravity. In particular, we show that evenmore » for static sources, gravitomagnetic fields arise in the presence of Lorentz violation.« less
Limits on Lorentz Invariance Violation from Coulomb Interactions in Nuclei and Atoms.
Flambaum, V V; Romalis, M V
2017-04-07
Anisotropy in the speed of light that has been constrained by Michelson-Morley-type experiments also generates anisotropy in the Coulomb interactions. This anisotropy can manifest itself as an energy anisotropy in nuclear and atomic experiments. Here the experimental limits on Lorentz violation in _{10}^{21}Ne are used to improve the limits on Lorentz symmetry violations in the photon sector, namely, the anisotropy of the speed of light and the Coulomb interactions, by 7 orders of magnitude in comparison with previous experiments: the speed of light is isotropic to a part in 10^{28}.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, F. W.
2011-01-01
High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35)m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and y-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2011-01-01
High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10-35 m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations ofthe spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV at a proton Lorentz factor of -2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.
NASA Astrophysics Data System (ADS)
Bailey, Quentin G.
2007-08-01
This work explores the theoretical and experimental aspects of Lorentz violation in gravity. A set of modified Einstein field equations is derived from the general Lorentz-violating Standard-Model Extension (SME). Some general theoretical implications of these results are discussed. The experimental consequences for weak-field gravitating systems are explored in the Earth- laboratory setting, the solar system, and beyond. The role of spontaneous Lorentz-symmetry breaking is discussed in the context of the pure-gravity sector of the SME. To establish the low-energy effective Einstein field equations, it is necessary to take into account the dynamics of 20 coefficients for Lorentz violation. As an example, the results are compared with bumblebee models, which are general theories of vector fields with spontaneous Lorentz violation. The field equations are evaluated in the post- newtonian limit using a perfect fluid description of matter. The post-newtonian metric of the SME is derived and compared with some standard test models of gravity. The possible signals for Lorentz violation due to gravity-sector coefficients are studied. Several new effects are identified that have experimental implications for current and future tests. Among the unconventional effects are a new type of spin precession for a gyroscope in orbit and a modification to the local gravitational acceleration on the Earth's surface. These and other tests are expected to yield interesting sensitivities to dimensionless gravity- sector coefficients.
Tests of local Lorentz invariance violation of gravity in the standard model extension with pulsars.
Shao, Lijing
2014-03-21
The standard model extension is an effective field theory introducing all possible Lorentz-violating (LV) operators to the standard model and general relativity (GR). In the pure-gravity sector of minimal standard model extension, nine coefficients describe dominant observable deviations from GR. We systematically implemented 27 tests from 13 pulsar systems to tightly constrain eight linear combinations of these coefficients with extensive Monte Carlo simulations. It constitutes the first detailed and systematic test of the pure-gravity sector of minimal standard model extension with the state-of-the-art pulsar observations. No deviation from GR was detected. The limits of LV coefficients are expressed in the canonical Sun-centered celestial-equatorial frame for the convenience of further studies. They are all improved by significant factors of tens to hundreds with existing ones. As a consequence, Einstein's equivalence principle is verified substantially further by pulsar experiments in terms of local Lorentz invariance in gravity.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2012-01-01
High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approx.10(exp -35) m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approx. 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future. I will also discuss how the LIV formalism casts doubt on the OPERA superluminal neutrino claim.
Constaints on Lorentz symmetry violations using lunar laser ranging observations
NASA Astrophysics Data System (ADS)
Bourgoin, Adrien
2016-12-01
General Relativity (GR) and the standard model of particle physics provide a comprehensive description of the four interactions of nature. A quantum gravity theory is expected to merge these two pillars of modern physics. From unification theories, such a combination would lead to a breaking of fundamental symmetry appearing in both GR and the standard model of particle physics as the Lorentz symmetry. Lorentz symmetry violations in all fields of physics can be parametrized by an effective field theory framework called the standard-model extension (SME). Local Lorentz Invariance violations in the gravitational sector should impact the orbital motion of bodies inside the solar system, such as the Moon. Thus, the accurate lunar laser ranging (LLR) data can be analyzed in order to study precisely the lunar motion to look for irregularities. For this purpose, ELPN (Ephéméride Lunaire Parisienne Numérique), a new lunar ephemeris has been integrated in the SME framework. This new numerical solution of the lunar motion provides time series dated in temps dynamique barycentrique (TDB). Among that series, we mention the barycentric position and velocity of the Earth-Moon vector, the lunar libration angles, the time scale difference between the terrestrial time and TDB and partial derivatives integrated from variational equations. ELPN predictions have been used to analyzed LLR observations. In the GR framework, the residuals standard deviations has turned out to be the same order of magnitude compare to those of INPOP13b and DE430 ephemerides. In the framework of the minimal SME, LLR data analysis provided constraints on local Lorentz invariance violations. Spetial attention was paid to analyze uncertainties to provide the most realistic constraints. Therefore, in a first place, linear combinations of SME coefficients have been derived and fitted to LLR observations. In a second time, realistic uncertainties have been determined with a resampling method. LLR data
Battat, James B R; Chandler, John F; Stubbs, Christopher W
2007-12-14
We present constraints on violations of Lorentz invariance based on archival lunar laser-ranging (LLR) data. LLR measures the Earth-Moon separation by timing the round-trip travel of light between the two bodies and is currently accurate to the equivalent of a few centimeters (parts in 10(11) of the total distance). By analyzing this LLR data under the standard-model extension (SME) framework, we derived six observational constraints on dimensionless SME parameters that describe potential Lorentz violation. We found no evidence for Lorentz violation at the 10(-6) to 10(-11) level in these parameters. This work constitutes the first LLR constraints on SME parameters.
Constraining Anisotropic Lorentz Violation via the Spectral-lag Transition of GRB 160625B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Jun-Jie; Wu, Xue-Feng; Shao, Lang
Violations of Lorentz invariance can lead to an energy-dependent vacuum dispersion of light, which results in arrival-time differences of photons with different energies arising from a given transient source. In this work, direction-dependent dispersion constraints are obtained on nonbirefringent Lorentz-violating effects using the observed spectral lags of the gamma-ray burst GRB 160625B. This burst has unusually large high-energy photon statistics, so we can obtain constraints from the true spectral time lags of bunches of high-energy photons rather than from the rough time lag of a single highest-energy photon. Also, GRB 160625B is the only burst to date having a well-definedmore » transition from positive lags to negative lags, providing a unique opportunity to distinguish Lorentz-violating effects from any source-intrinsic time lag in the emission of photons of different energy bands. Our results place comparatively robust two-sided constraints on a variety of isotropic and anisotropic coefficients for Lorentz violation, including the first bounds on Lorentz-violating effects from operators of mass dimension 10 in the photon sector.« less
Lorentz violation and Faddeev-Popov ghosts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altschul, B.
2006-02-15
We consider how Lorentz-violating interactions in the Faddeev-Popov ghost sector will affect scalar QED. The behavior depends sensitively on whether the gauge symmetry is spontaneously broken. If the symmetry is not broken, Lorentz violations in the ghost sector are unphysical, but if there is spontaneous breaking, radiative corrections will induce Lorentz-violating and gauge-dependent terms in other sectors of the theory.
Hadronic Lorentz violation in chiral perturbation theory including the coupling to external fields
NASA Astrophysics Data System (ADS)
Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.
2018-05-01
If any violation of Lorentz symmetry exists in the hadron sector, its ultimate origins must lie at the quark level. We continue the analysis of how the theories at these two levels are connected, using chiral perturbation theory. Considering a 2-flavor quark theory, with dimension-4 operators that break Lorentz symmetry, we derive a low-energy theory of pions and nucleons that is invariant under local chiral transformations and includes the coupling to external fields. The pure meson and baryon sectors, as well as the couplings between them and the couplings to external electromagnetic and weak gauge fields, contain forms of Lorentz violation which depend on linear combinations of quark-level coefficients. In particular, at leading order the electromagnetic couplings depend on the very same combinations as appear in the free particle propagators. This means that observations of electromagnetic processes involving hadrons—such as vacuum Cerenkov radiation, which may be allowed in Lorentz-violating theories—can only reliably constrain certain particular combinations of quark coefficients.
Gamma-Ray, Cosmic Ray and Neutrino Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd
2011-01-01
High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35) m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV of at a proton Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.
An Investigation of Spontaneous Lorentz Violation and Cosmic Inflation
NASA Astrophysics Data System (ADS)
Tam, Heywood
2010-12-01
In this thesis we re-examine two established ideas in theoretical physics: Lorentz invariance and cosmic inflation. In the first four chapters, we (i) propose a way to hide large extra dimensions by coupling standard model fields with Lorentz-violating tensor fields with expectation values along the extra dimensions; (ii) examine the stability of theories in which Lorentz invariance is spontaneously broken by fixed-norm 'aether' fields; (iii) investigate the phenomenological properties of the sigma-model aether theory; and (iv) explore the implications of an alternative theory of gravity in which the graviton arises from the Goldstone modes of a two-index symmetric aether field. In the final chapter, we examine the horizon and flatness problems using the canonical measure (developed by Gibbons, Hawking, and Stewart) on the space of solutions to Einstein's equations. We find that the flatness problem does not exist, while the homogeneity of our universe does represent a substantial fine-tuning. Based on the assumption of unitary evolution (Liouville's theorem), we further dispute the widely accepted claim that inflation makes our universe more natural.
Tests of CPT, Lorentz invariance and the WEP with antihydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzscheiter, M.H.; ATHENA Collaboration
1999-03-01
Antihydrogen atoms, produced near rest, trapped in a magnetic well, and cooled to the lowest possible temperature (kinetic energy) could provide an extremely powerful tool for the search of violations of CPT and Lorentz invariance. Equally well, such a system could be used for searches of violations of the Weak Equivalence Principle (WEP) at high precision. The author describes his plans to form a significant number of cold, trapped antihydrogen atoms for comparative precision spectroscopy of hydrogen and antihydrogen and comment on possible first experiments.
Cold Atom Clock Test of Lorentz Invariance in the Matter Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Peter; Chapelet, Frederic; Bize, Sebastien
2006-02-17
We report on a new experiment that tests for a violation of Lorentz invariance (LI), by searching for a dependence of atomic transition frequencies on the orientation of the spin of the involved states (Hughes-Drever type experiment). The atomic frequencies are measured using a laser cooled {sup 133}Cs atomic fountain clock, operating on a particular combination of Zeeman substates. We analyze the results within the framework of the Lorentz violating standard model extension (SME), where our experiment is sensitive to a largely unexplored region of the SME parameter space, corresponding to first measurements of four proton parameters and improvements bymore » 11 and 13 orders of magnitude on the determination of four others. In spite of the attained uncertainties, and of having extended the search into a new region of the SME, we still find no indication of LI violation.« less
Baryogenesis in Lorentz-violating gravity theories
NASA Astrophysics Data System (ADS)
Sakstein, Jeremy; Solomon, Adam R.
2017-10-01
Lorentz-violating theories of gravity typically contain constrained vector fields. We show that the lowest-order coupling of such vectors to U (1)-symmetric scalars can naturally give rise to baryogenesis in a manner akin to the Affleck-Dine mechanism. We calculate the cosmology of this new mechanism, demonstrating that a net B - L can be generated in the early Universe, and that the resulting baryon-to-photon ratio matches that which is presently observed. We discuss constraints on the model using solar system and astrophysical tests of Lorentz violation in the gravity sector. Generic Lorentz-violating theories can give rise to the observed matter-antimatter asymmetry without violating any current bounds.
Lorentz violation and deep inelastic scattering
Kostelecký, V. Alan; Lunghi, E.; Vieira, A. R.
2017-03-28
We study the effects of quark-sector Lorentz violation on deep inelastic electron–proton scattering. Here, we show that existing data can be used to establish first constraints on numerous coefficients for Lorentz violation in the quark sector at an estimated sensitivity of parts in a million.
Lorentz violation, gravitoelectromagnetic field and Bhabha scattering
NASA Astrophysics Data System (ADS)
Santos, A. F.; Khanna, Faqir C.
2018-01-01
Lorentz symmetry is a fundamental symmetry in the Standard Model (SM) and in General Relativity (GR). This symmetry holds true for all models at low energies. However, at energies near the Planck scale, it is conjectured that there may be a very small violation of Lorentz symmetry. The Standard Model Extension (SME) is a quantum field theory that includes a systematic description of Lorentz symmetry violations in all sectors of particle physics and gravity. In this paper, SME is considered to study the physical process of Bhabha Scattering in the Gravitoelectromagnetism (GEM) theory. GEM is an important formalism that is valid in a suitable approximation of general relativity. A new nonminimal coupling term that violates Lorentz symmetry is used in this paper. Differential cross-section for gravitational Bhabha scattering is calculated. The Lorentz violation contributions to this GEM scattering cross-section are small and are similar in magnitude to the case of the electromagnetic field.
Lorentz-violating electrodynamics and the cosmic microwave background.
Kostelecký, V Alan; Mewes, Matthew
2007-07-06
Possible Lorentz-violating effects in the cosmic microwave background are studied. We provide a systematic classification of renormalizable and nonrenormalizable operators for Lorentz violation in electrodynamics and use polarimetric observations to search for the associated violations.
Lorentz Invariance:. Present Experimental Status
NASA Astrophysics Data System (ADS)
Lämmerzahl, Claus
2006-02-01
Being one of the pillars of modern physics, Lorentz invariance has to be tested as precisely as possible. We review the present status of laboratory tests of Lorentz invariance. This includes the tests of properties of light propagation which are covered by the famous Michelson-Morley, Kennedy-Thorndike, and Ives-Stilwell experiments, as well as tests on dynamical properties of matter as, e.g., tests exploring the maximum velocity of massive particles or tests of the isotropy of quantum particles in Hughes-Drever experiments.
A Quantum Simulation on the Emergence of Lorentz Invariance
NASA Astrophysics Data System (ADS)
Zueco, David; Quijandría, Fernando; Blas, Diego; Pujòlas, Oriol
2014-03-01
Lorentz invariance (LI) is one of the best tested symmetries of Nature. It is natural to think that LI is a fundamental property. However, this does not need to be so. In fact, it could be an emergent symmetry in the low energy world. One motivation on Lorentz-violating theories may come from consistent non-relativistic models of gravity, where LI appears at low energies. The basic approach is by taking two interacting quantum fields. The bare (uncoupled fields) have different light velocities, say v1 and v2. The coupling tends to ``synchronize'' those velocities providing a common light velocity: the LI emergence. So far, only perturbative calculations are available. In this perturbative regime the emergence of LI is too slow. Therefore it is mandatory going beyond perturbative calculations. In this talk I will discuss that such models for emergent Lorentz Invariance can be simulated in an analog quantum simulator. In 1+1 dimensions two transmission lines coupled trough Josephson Junctions do the job. We show that the emergence can be checked by measuring photon correlations. Everything within the state of the art in circuit QED. We show that our proposal can provide a definite answer about the LI emergence hypothesis in the strong coupling regime.
NASA Astrophysics Data System (ADS)
Kislat, Fabian; Krawczynski, Henric
2017-04-01
Lorentz invariance is the fundamental symmetry of Einstein's theory of special relativity and has been tested to a great level of detail. However, theories of quantum gravity at the Planck scale indicate that Lorentz symmetry may be broken at that scale, motivating further tests. While the Planck energy is currently unreachable by experiment, tiny residual effects at attainable energies can become measurable when photons propagate over sufficiently large distances. The Standard-Model extension (SME) is an effective field-theory approach to describe low-energy effects of quantum gravity theories. Lorentz- and C P T -symmetry-violating effects are introduced by adding additional terms to the Standard-Model Lagrangian. These terms can be ordered by the mass dimension of the corresponding operator, and the leading terms of interest have dimension d =5 . Effects of these operators are a linear variation of the speed of light with photon energy, and a rotation of the linear polarization of photons quadratic in photon energy, as well as anisotropy. We analyze optical polarization data from 72 active galactic nuclei and GRBs and derive the first set of limits on all 16 coefficients of mass dimension d =5 of the SME photon sector. Our constraints imply a lower limit on the energy scale of quantum gravity of 1 06 times the Planck energy, severely limiting the phase space for any theory that predicts a rotation of the photon polarization quadratic in energy.
A New Limit on Planck Scale Lorentz Violation from Gamma-ray Burst Polarization
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2011-01-01
Constraints on possible Lorentz invariance violation (UV) to first order in E/M(sub Plank) for photons in the framework of effective field theory (EFT) are discussed, taking cosmological factors into account. Then. using the reported detection of polarized soft gamma-ray emission from the gamma-ray burst GRB041219a that is indicative' of an absence of vacuum birefringence, together with a very recent improved method for estimating the redshift of the burst, we derive constraints on the dimension 5 Lorentz violating modification to the Lagrangian of an effective local QFT for QED. Our new constraints are more than five orders of magnitude better than recent constraints from observations of the Crab Nebula.. We obtain the upper limit on the Lorentz violating dimension 5 EFT parameter absolute value of zeta of 2.4 x 10(exp -15), corresponding to a constraint on the dimension 5 standard model extension parameter. Kappa (sup 5) (sub (v)oo) much less than 4.2 X 10(exp -3)4 / GeV.
Lorentz violation, gravitoelectromagnetism and Bhabha scattering at finite temperature
NASA Astrophysics Data System (ADS)
Santos, A. F.; Khanna, Faqir C.
2018-04-01
Gravitoelectromagnetism (GEM) is an approach for the gravitation field that is described using the formulation and terminology similar to that of electromagnetism. The Lorentz violation is considered in the formulation of GEM that is covariant in its form. In practice, such a small violation of the Lorentz symmetry may be expected in a unified theory at very high energy. In this paper, a non-minimal coupling term, which exhibits Lorentz violation, is added as a new term in the covariant form. The differential cross-section for Bhabha scattering in the GEM framework at finite temperature is calculated that includes Lorentz violation. The Thermo Field Dynamics (TFD) formalism is used to calculate the total differential cross-section at finite temperature. The contribution due to Lorentz violation is isolated from the total cross-section. It is found to be small in magnitude.
Spectra of Lorentz-violating Dirac bound states in a cylindrical well
NASA Astrophysics Data System (ADS)
Xiao, Zhi
2016-12-01
In the presence of the Lorentz-violating bμ coefficient, the spectra of bound states for a Dirac particle in a cylindric well are changed. Compared to the Lorentz invariant (LI) spectrum, the Lorentz violation deviation becomes significant when eigenenergy E is sufficiently close to the critical values ±m , where m is the particle's mass. The detailed profile of the deviation depends on the observer Lorentz nature of bμ. We discussed three types of bμ configuration. When bμ=(0 ,0 ,0 ,bZ) is parallel to the well axis, the would be degenerate LI spectra split into two subspectra, reminiscent of the Zeeman splitting in the presence of a weak magnetic field. Depending on the relative sign of bZ accompanying mass m in the dispersion relation, the spectrum extends or shrinks in the allowed eigenenergy region. When bμ is a radial [bμ=(0 ,b cos ϕ ,b sin ϕ ,0 ) ] or purely timelike vector [bμ=(bT,0 →)], the spin-up and down components are coupled together, and there is no splitting. However, the monotonic increasing behavior of well depth V0 with the decrease of eigenenergy E is slightly changed when E is sufficiently close to -m .
A Study of Gaugeon Formalism for QED in Lorentz Violating Background
NASA Astrophysics Data System (ADS)
Shah, Mushtaq B.; Ganai, Prince A.
2018-02-01
At the energy regimes close to Planck scales, the usual structure of Lorentz symmetry fails to address certain fundamental issues and eventually breaks down, thus paving the way for an alternative road map. It is thus argued that some subgroup of proper Lorentz group could stand consistent and might possibly help us to circumvent this problem. It is this subgroup that goes by the name of Very Special Relativity (VSR). Apart from violating rotational symmetry, VSR is believed to preserve the very tenets of special relativity. The gaugeon formalism due to type-I Yokoyama and type-II Izawa are found to be invariant under BRST symmetry. In this paper, we analyze the scope of this invariance in the scheme of VSR. Furthermore, we will obtain VSR modified Lagrangian density using path integral derivation. We will explore the consistency of VSR with regard to these theories.
One-loop renormalization of Lorentz and C P T -violating scalar field theory in curved spacetime
NASA Astrophysics Data System (ADS)
Netto, Tibério de Paula
2018-03-01
The one-loop divergences for the scalar field theory with Lorentz and/or C P T breaking terms are obtained in curved spacetime. We analyze two separate cases: a minimal coupled scalar field with gravity and a nonminimal one. For the minimal case with a real scalar field, the counterterms are evaluated in a nonperturbative form in the C P T -even parameter through a redefinition of a space-time metric. In the most complicated case of a complex scalar field nonminimally interacting with gravity, the solution for the divergences is obtained in the first order in the weak Lorentz violating parameter. The necessary form of the vacuum counterterms indicate the most important structures of Lorentz and C P T violations in the pure gravitational sector of the theory. The conformal theory limit is also analyzed. It turns out that if we allow the violating fields to transform, the classical conformal invariance of massless scalar fields can be maintained in the ξ =1 /6 case. At a quantum level, the conformal symmetry is violated by a trace anomaly. As a result, the conformal anomaly and the anomaly induced effective action are evaluated in the presence of extra Lorentz- and/or C P T -violating parameters. Such gravitational effective action is important for cosmological applications and can be used for searching of Lorentz violation in the primordial Universe in the cosmological perturbations, especially gravitational waves.
Casimir force in a Lorentz violating theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Mariana; Turan, Ismail
2006-08-01
We study the effects of the minimal extension of the standard model including Lorentz violation on the Casimir force between two parallel conducting plates in the vacuum. We provide explicit solutions for the electromagnetic field using scalar field analogy, for both the cases in which the Lorentz violating terms come from the CPT-even or CPT-odd terms. We also calculate the effects of the Lorentz violating terms for a fermion field between two parallel conducting plates and analyze the modifications of the Casimir force due to the modifications of the Dirac equation. In all cases under consideration, the standard formulas formore » the Casimir force are modified by either multiplicative or additive correction factors, the latter case exhibiting different dependence on the distance between the plates.« less
Tests of Lorentz Invariance using a Microwave Resonator
NASA Astrophysics Data System (ADS)
Wolf, Peter; Bize, Sébastien; Clairon, André; Luiten, André N.; Santarelli, Giorgio; Tobar, Michael E.
2003-02-01
The frequencies of a cryogenic sapphire oscillator and a hydrogen maser are compared to set new constraints on a possible violation of Lorentz invariance. We determine the variation of the oscillator frequency as a function of its orientation (Michelson-Morley test) and of its velocity (Kennedy-Thorndike test) with respect to a preferred frame candidate. We constrain the corresponding parameters of the Mansouri and Sexl test theory to δ-β+1/2=(1.5±4.2)×10-9 and β-α-1=(-3.1±6.9)×10-7 which is of the same order as the best previous result for the former and represents a 30-fold improvement for the latter.
A test of local Lorentz invariance with Compton scattering asymmetry
Mohanmurthy, Prajwal; Narayan, Amrendra; Dutta, Dipangkar
2016-12-14
Here, we report on a measurement of the constancy and anisotropy of the speed of light relative to the electrons in photon-electron scattering. We also used the Compton scattering asymmetry measured by the new Compton polarimeter in Hall~C at Jefferson Lab to test for deviations from unity of the vacuum refractive index (more » $n$). For photon energies in the range of 9 - 46 MeV, we obtain a new limit of $$1-n < 1.4 \\times 10^{-8}$$. In addition, the absence of sidereal variation over the six month period of the measurement constrains any anisotropies in the speed of light. These constitute the first study of Lorentz invariance using Compton asymmetry. Within the minimal standard model extension framework, our result yield limits on the photon and electron coefficients $$\\tilde{\\kappa}_{0^+}^{YZ}, c_{TX}, \\tilde{\\kappa}_{0^+}^{ZX}$$, and $$c_{TY}$$. Though, these limits are several orders of magnitude larger than the current best limits, they demonstrate the feasibility of using Compton asymmetry for tests of Lorentz invariance. For future parity violating electron scattering experiments at Jefferson Lab we will use higher energy electrons enabling better constraints.« less
Testing the Equivalence Principle and Lorentz Invariance with PeV Neutrinos from Blazar Flares.
Wang, Zi-Yi; Liu, Ruo-Yu; Wang, Xiang-Yu
2016-04-15
It was recently proposed that a giant flare of the blazar PKS B1424-418 at redshift z=1.522 is in association with a PeV-energy neutrino event detected by IceCube. Based on this association we here suggest that the flight time difference between the PeV neutrino and gamma-ray photons from blazar flares can be used to constrain the violations of equivalence principle and the Lorentz invariance for neutrinos. From the calculated Shapiro delay due to clusters or superclusters in the nearby universe, we find that violation of the equivalence principle for neutrinos and photons is constrained to an accuracy of at least 10^{-5}, which is 2 orders of magnitude tighter than the constraint placed by MeV neutrinos from supernova 1987A. Lorentz invariance violation (LIV) arises in various quantum-gravity theories, which predicts an energy-dependent velocity of propagation in vacuum for particles. We find that the association of the PeV neutrino with the gamma-ray outburst set limits on the energy scale of possible LIV to >0.01E_{pl} for linear LIV models and >6×10^{-8}E_{pl} for quadratic order LIV models, where E_{pl} is the Planck energy scale. These are the most stringent constraints on neutrino LIV for subluminal neutrinos.
Constraining Lorentz Violation in Electroweak Physics
NASA Astrophysics Data System (ADS)
Lehnert, Ralf
2018-01-01
For practical reasons, the majority of past Lorentz tests has involved stable or quasistable particles, such as photons, neutrinos, electrons, protons, and neutrons. Similar efforts in the electroweak sector have only recently taken shape. Within this context, Lorentz-violation searches in the Standard-Model Extension’s Z-Boson sector will be discussed. It is argued that existing precision data on polarized electron-electron scattering can be employed to extract the first conservative two-sided limits on Lorentz breakdown in this sector at the level of 10-7.
Structural aspects of Lorentz-violating quantum field theory
NASA Astrophysics Data System (ADS)
Cambiaso, M.; Lehnert, R.; Potting, R.
2018-01-01
In the last couple of decades the Standard Model Extension has emerged as a fruitful framework to analyze the empirical and theoretical extent of the validity of cornerstones of modern particle physics, namely, of Special Relativity and of the discrete symmetries C, P and T (or some combinations of these). The Standard Model Extension allows to contrast high-precision experimental tests with posited alterations representing minute Lorentz and/or CPT violations. To date no violation of these symmetry principles has been observed in experiments, mostly prompted by the Standard-Model Extension. From the latter, bounds on the extent of departures from Lorentz and CPT symmetries can be obtained with ever increasing accuracy. These analyses have been mostly focused on tree-level processes. In this presentation I would like to comment on structural aspects of perturbative Lorentz violating quantum field theory. I will show that some insight coming from radiative corrections demands a careful reassessment of perturbation theory. Specifically I will argue that both the standard renormalization procedure as well as the Lehmann-Symanzik-Zimmermann reduction formalism need to be adapted given that the asymptotic single-particle states can receive quantum corrections from Lorentz-violating operators that are not present in the original Lagrangian.
Lorentz violation with a universal minimum speed as foundation of de Sitter relativity
NASA Astrophysics Data System (ADS)
Cruz, Cláudio Nassif; Dos Santos, Rodrigo Francisco; Amaro de Faria, A. C.
We aim to investigate the theory of Lorentz violation with an invariant minimum speed called Symmetrical Special Relativity (SSR) from the viewpoint of its metric. Thus, we should explore the nature of SSR-metric in order to understand the origin of the conformal factor that appears in the metric by deforming Minkowski metric by means of an invariant minimum speed that breaks down Lorentz symmetry. So, we are able to realize that there is a similarity between SSR and a new space with variable negative curvature ( -∞ < ℛ < 0) connected to a set of infinite cosmological constants (0 < Λ < ∞), working like an extended de Sitter (dS) relativity, so that such extended dS-relativity has curvature and cosmological “constant” varying in time. We obtain a scenario that is more similar to dS-relativity given in the approximation of a slightly negative curvature for representing the current universe having a tiny cosmological constant. Finally, we show that the invariant minimum speed provides the foundation for understanding the kinematics origin of the extra dimension considered in dS-relativity in order to represent the dS-length.
Constraints on Lorentz violation from gravitational Cerenkov radiation
Kostelecký, V. Alan; Tasson, Jay D.
2015-08-31
Limits on gravitational Cerenkov radiation by cosmic rays are obtained and used to constrain coefficients for Lorentz violation in the gravity sector associated with operators of even mass dimensions, including orientation-dependent effects. We use existing data from cosmic-ray telescopes to obtain conservative two-sided constraints on 80 distinct Lorentz-violating operators of dimensions four, six, and eight, along with conservative one-sided constraints on three others. Existing limits on the nine minimal operators at dimension four are improved by factors of up to a billion, while 74 of our explicit limits represent stringent first constraints on nonminimal operators. As a result, prospects aremore » discussed for future analyses incorporating effects of Lorentz violation in the matter sector, the role of gravitational Cerenkov radiation by high-energy photons, data from gravitational-wave observatories, the tired-light effect, and electromagnetic Cerenkov radiation by gravitons.« less
Spontaneous breaking of Lorentz invariance, black holes and perpetuum mobile of the 2nd kind
NASA Astrophysics Data System (ADS)
Dubovsky, S. L.; Sibiryakov, S. M.
2006-07-01
We study the effect of spontaneous breaking of Lorentz invariance on black hole thermodynamics. We consider a scenario where Lorentz symmetry breaking manifests itself by the difference of maximal velocities attainable by particles of different species in a preferred reference frame. The Lorentz breaking sector is represented by the ghost condensate. We find that the notions of black hole entropy and temperature loose their universal meaning. In particular, the standard derivation of the Hawking radiation yields that a black hole does emit thermal radiation in any given particle species, but with temperature depending on the maximal attainable velocity of this species. We demonstrate that this property implies violation of the second law of thermodynamics, and hence, allows construction of a perpetuum mobile of the 2nd kind. We discuss possible interpretation of these results.
Lorentz Invariance of Gravitational Lagrangians in the Space of Reference Frames
NASA Astrophysics Data System (ADS)
Cognola, G.
1980-06-01
The recently proposed theories of gravitation in the space of reference frames S are based on a Lagrangian invariant with respect to the homogeneous Lorentz group. However, in theories of this kind, the Lorentz invariance is not a necessary consequence of some physical principles, as in the theories formulated in space-time, but rather a purely esthetic request. In the present paper, we give a systematic method for the construction of gravitational theories in the space S, without assuming a priori the Lorentz invariance of the Lagrangian. The Einstein-Cartan equations of gravitation are obtained requiring only that the Lagrangian is invariant under proper rotations and has particular transformation properties under space reflections and space-time dilatations
Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2.
Yan, Mingzhe; Huang, Huaqing; Zhang, Kenan; Wang, Eryin; Yao, Wei; Deng, Ke; Wan, Guoliang; Zhang, Hongyun; Arita, Masashi; Yang, Haitao; Sun, Zhe; Yao, Hong; Wu, Yang; Fan, Shoushan; Duan, Wenhui; Zhou, Shuyun
2017-08-15
Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. Although Lorentz invariance is required in high energy physics, it is not necessarily obeyed in condensed matter physics, and thus Lorentz-violating type-II Weyl/Dirac fermions could be realized in topological semimetals. The recent realization of type-II Weyl fermions raises the question whether their spin-degenerate counterpart-type-II Dirac fermions-can be experimentally realized too. Here, we report the experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe 2 single crystal. Angle-resolved photoemission spectroscopy measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the Γ-A direction, confirming PtTe 2 as a type-II Dirac semimetal. Our results provide opportunities for investigating novel quantum phenomena (e.g., anisotropic magneto-transport) and topological phase transition.Whether the spin-degenerate counterpart of Lorentz-violating Weyl fermions, the Dirac fermions, can be realized remains as an open question. Here, Yan et al. report experimental evidence of such type-II Dirac fermions in bulk PtTe 2 single crystal with a pair of strongly tilted Dirac cones.
Lorentz invariance with an invariant energy scale.
Magueijo, João; Smolin, Lee
2002-05-13
We propose a modification of special relativity in which a physical energy, which may be the Planck energy, joins the speed of light as an invariant, in spite of a complete relativity of inertial frames and agreement with Einstein's theory at low energies. This is accomplished by a nonlinear modification of the action of the Lorentz group on momentum space, generated by adding a dilatation to each boost in such a way that the Planck energy remains invariant. The associated algebra has unmodified structure constants. We also discuss the resulting modifications of field theory and suggest a modification of the equivalence principle which determines how the new theory is embedded in general relativity.
Strong binary pulsar constraints on Lorentz violation in gravity.
Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico
2014-04-25
Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.
Search for Lorentz Violation in a Short-Range Gravity Experiment
NASA Astrophysics Data System (ADS)
Bennett, D.; Skavysh, V.; Long, J.
2011-12-01
An experimental test of the Newtonian inverse square law at short range has been used to set limits on Lorentz violation in the pure gravity sector of the Standard-Model Extension. On account of the planar test mass geometry, nominally null with respect to 1/r2 forces, the limits derived for the SME coefficients of Lorentz violation are on the order bar sJK ˜ 104 .
Lorentz symmetry violation with higher-order operators and renormalization
NASA Astrophysics Data System (ADS)
Nascimento, J. R.; Petrov, A. Yu; Reyes, C. M.
2018-01-01
Effective field theory has shown to be a powerful method in searching for quantum gravity effects and in particular for CPT and Lorentz symmetry violation. In this work we study an effective field theory with higher-order Lorentz violation, specifically we consider a modified model with scalars and modified fermions interacting via the Yukawa coupling. We study its renormalization properties, that is, its radiative corrections and renormalization conditions in the light of the requirements of having a finite and unitary S-matrix.
Lorentz-invariant three-vectors and alternative formulation of relativistic dynamics
NASA Astrophysics Data System (ADS)
Rȩbilas, Krzysztof
2010-03-01
Besides the well-known scalar invariants, there also exist vectorial invariants in special relativity. It is shown that the three-vector (dp⃗/dt)∥+γv(dp⃗/dt)⊥ is invariant under the Lorentz transformation. The subscripts ∥ and ⊥ denote the respective components with respect to the direction of the velocity of the body v⃗, and p⃗ is the relativistic momentum. We show that this vector is equal to a force F⃗R, which satisfies the classical Newtonian law F⃗R=ma⃗R in the instantaneous inertial rest frame of an accelerating body. Therefore, the relation F⃗R=(dp⃗/dt)∥+γv(dp⃗/dt)⊥, based on the Lorentz-invariant vectors, may be used as an invariant (not merely a covariant) relativistic equation of motion in any inertial system of reference. An alternative approach to classical electrodynamics based on the invariant three-vectors is proposed.
Searching for photon-sector Lorentz violation using gravitational-wave detectors
NASA Astrophysics Data System (ADS)
Kostelecký, V. Alan; Melissinos, Adrian C.; Mewes, Matthew
2016-10-01
We study the prospects for using interferometers in gravitational-wave detectors as tools to search for photon-sector violations of Lorentz symmetry. Existing interferometers are shown to be exquisitely sensitive to tiny changes in the effective refractive index of light occurring at frequencies around and below the microhertz range, including at the harmonics of the frequencies of the Earth's sidereal rotation and annual revolution relevant for tests of Lorentz symmetry. We use preliminary data obtained by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2006-2007 to place constraints on coefficients for Lorentz violation in the photon sector exceeding current limits by about four orders of magnitude.
Lorentz violations in multifractal spacetimes
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca
2017-05-01
Using the recent observation of gravitational waves (GW) produced by a black-hole merger, we place a lower bound on the energy above which a multifractal spacetime would display an anomalous geometry and, in particular, violations of Lorentz invariance. In the so-called multifractional theory with q-derivatives, we show that the deformation of dispersion relations is much stronger than in generic quantum-gravity approaches (including loop quantum gravity) and, contrary to the latter, present observations on GWs can place very strong bounds on the characteristic scales at which spacetime deviates from standard Minkowski. The energy at which multifractal effects should become apparent is E_{*}>10^{14} {GeV} (thus improving previous bounds by 12 orders of magnitude) when the exponents in the measure are fixed to their central value 1 / 2. We also estimate, for the first time, the effect of logarithmic oscillations in the measure (corresponding to a discrete spacetime structure) and find that they do not change much the bounds obtained in their absence, unless the amplitude of the oscillations is fine tuned. This feature, unavailable in known quantum-gravity scenarios, may help the theory to avoid being ruled out by gamma-ray burst (GRB) observations, for which E_{*}> 10^{17} {GeV} or greater.
NASA Astrophysics Data System (ADS)
MAGIC Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colak, S. M.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Inada, T.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.
2017-09-01
Spontaneous breaking of Lorentz symmetry at energies on the order of the Planck energy or lower is predicted by many quantum gravity theories, implying non-trivial dispersion relations for the photon in vacuum. Consequently, gamma-rays of different energies, emitted simultaneously from astrophysical sources, could accumulate measurable differences in their time of flight until they reach the Earth. Such tests have been carried out in the past using fast variations of gamma-ray flux from pulsars, and more recently from active galactic nuclei and gamma-ray bursts. We present new constraints studying the gamma-ray emission of the galactic Crab Pulsar, recently observed up to TeV energies by the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) collaboration. A profile likelihood analysis of pulsar events reconstructed for energies above 400 GeV finds no significant variation in arrival time as their energy increases. Ninety-five percent CL limits are obtained on the effective Lorentz invariance violating energy scale at the level of {E}{{QG}1}> 5.5× {10}17 {GeV} (4.5× {10}17 {GeV}) for a linear, and {E}{{QG}2}> 5.9× {10}10 {GeV} (5.3× {10}10 {GeV}) for a quadratic scenario, for the subluminal and the superluminal cases, respectively. A substantial part of this study is dedicated to calibration of the test statistic, with respect to bias and coverage properties. Moreover, the limits take into account systematic uncertainties, which are found to worsen the statistical limits by about 36%-42%. Our constraints would have been much more stringent if the intrinsic pulse shape of the pulsar between 200 GeV and 400 GeV was understood in sufficient detail and allowed inclusion of events well below 400 GeV.
NASA Technical Reports Server (NTRS)
Vasileiou, V.; Jacholkowska, A.; Piron, F.; Bolmont, J.; Courturier, C.; Granot, J.; Stecker, Floyd William; Cohen-Tanugi, J.; Longo, F.
2013-01-01
We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some Quantum Gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derive limits on the "QG energy scale" (the energy scale that LIV-inducing QG effects become important, E(sub QG)) and the coefficients of the Standard Model Extension. For the subluminal case (where high energy photons propagate more slowly than lower energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% CL) are obtained from GRB 090510 and are E(sub QG,1) > 7.6 times the Planck energy (E(sub Pl)) and E(sub QG,2) > 1.3×10(exp 11) GeV for linear and quadratic leading order LIV-induced vacuum dispersion, respectively. These limits improve the latest constraints by Fermi and H.E.S.S. by a factor of approx. 2. Our results disfavor any class of models requiring E(sub QG,1) < or approx. E(sub Pl)
Vasileiou, V.; Jacholkowska, A.; Piron, F.; ...
2013-06-04
For this research, we analyze the MeV/GeV emission from four bright gamma-ray bursts (GRBs) observed by the Fermi Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some quantum gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic, spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derivemore » limits on the QG energy scale (the energy scale where LIV-inducing QG effects become strong, E QG) and the coefficients of the Standard Model Extension. For the subluminal case (where high-energy photons propagate more slowly than lower-energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% C.L.) are obtained from GRB 090510 and are E QG,1 > 7.6 times the Planck energy (E Pl) and E QG,2 > 1.3 × 10 11 GeV for linear and quadratic leading-order LIV-induced vacuum dispersion, respectively. In conclusion, these limits improve the latest constraints by Fermi and H.E.S.S. by a factor of ~2 . Our results disfavor any class of models requiring E QG,1 ≲ E Pl .« less
Searching for photon-sector Lorentz violation using gravitational-wave detectors
Kostelecký, V. Alan; Melissinos, Adrian C.; Mewes, Matthew
2016-08-04
Here, we study the prospects for using interferometers in gravitational-wave detectors as tools to search for photon-sector violations of Lorentz symmetry. Existing interferometers are shown to be exquisitely sensitive to tiny changes in the effective refractive index of light occurring at frequencies around and below the microhertz range, including at the harmonics of the frequencies of the Earth's sidereal rotation and annual revolution relevant for tests of Lorentz symmetry. We use preliminary data obtained by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2006-2007 to place constraints on coefficients for Lorentz violation in the photon sector exceeding current limits by aboutmore » four orders of magnitude.« less
Allmendinger, F; Heil, W; Karpuk, S; Kilian, W; Scharth, A; Schmidt, U; Schnabel, A; Sobolev, Yu; Tullney, K
2014-03-21
We report on the search for a CPT- and Lorentz-invariance-violating coupling of the He3 and Xe129 nuclear spins (each largely determined by a valence neutron) to posited background tensor fields that permeate the Universe. Our experimental approach is to measure the free precession of nuclear spin polarized He3 and Xe129 atoms in a homogeneous magnetic guiding field of about 400 nT using LTC SQUIDs as low-noise magnetic flux detectors. As the laboratory reference frame rotates with respect to distant stars, we look for a sidereal modulation of the Larmor frequencies of the colocated spin samples. As a result we obtain an upper limit on the equatorial component of the background field interacting with the spin of the bound neutron b(⊥)(n)<8.4 × 10(-34) GeV (68% C.L.). Our result improves our previous limit (data measured in 2009) by a factor of 30 and the world's best limit by a factor of 4.
Vacuum Cherenkov radiation for Lorentz-violating fermions
NASA Astrophysics Data System (ADS)
Schreck, M.
2017-11-01
The current work focuses on the process of vacuum Cherenkov radiation for Lorentz-violating fermions that are described by the minimal standard-model extension (SME). To date, most considerations of this important hypothetical process have been restricted to Lorentz-violating photons, as the necessary theoretical tools for the SME fermion sector have not been available. With their development in a very recent paper, we are now in a position to compute the decay rates based on a modified Dirac theory. Two realizations of the Cherenkov process are studied. In the first scenario, the spin projection of the incoming fermion is assumed to be conserved, and in the second, the spin projection is allowed to flip. The first type of process is shown to be still forbidden for the dimensionful a and b coefficients where there are strong indications that it is energetically disallowed for the H coefficients, as well. However, it is rendered possible for the dimensionless c , d , e , f , and g coefficients. For large initial fermion energies, the decay rates for the c and d coefficients were found to grow linearly with momentum and to be linearly suppressed by the smallness of the Lorentz-violating coefficient where for the e , f , and g coefficients this suppression is even quadratic. The decay rates vanish in the vicinity of the threshold, as expected. The decay including a fermion spin-flip plays a role for the spin-nondegenerate operators and it was found to occur for the dimensionful b and H coefficients as well as for the dimensionless d and g . The characteristics of this process differ much from the properties of the spin-conserving one, e.g., there is no threshold. Based on experimental data of ultra-high-energy cosmic rays, new constraints on Lorentz violation in the quark sector are obtained from the thresholds. However, it does not seem to be possible to derive bounds from the spin-flip decays. This work reveals the usefulness of the quantum field theoretic methods
Comment on 'Noncommutative gauge theories and Lorentz symmetry'
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iorio, Alfredo
2008-02-15
We show that Lorentz symmetry is generally absent for noncommutative (Abelian) gauge theories and obtain a compact formula for the divergence of the Noether currents that allows a thorough study of this instance of symmetry violation. We use that formula to explain why the results of ''Noncommutative gauge theories and Lorentz symmetry'', Phys. Rev. D 70, 125004 (2004) by R. Banerjee, B. Chakraborty, and K. Kumar, interpreted there as new criteria for Lorentz invariance, are in fact just a particular case of the general expression for Lorentz violation obtained here. Finally, it is suggested that the divergence formula should holdmore » in a vast class of cases, such as, for instance, the standard model extension.« less
Tests of Lorentz and CPT Invariance in Space
NASA Technical Reports Server (NTRS)
Mewes, Matthew
2003-01-01
I give a brief overview of recent work concerning possible signals of Lorentz violation in sensitive clock-based experiments in space. The systems under consideration include atomic clocks and electromagnetic resonators of the type planned for flight on the International Space Station.
Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lehmann, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.
2010-12-01
A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillation models, derivable from extensions to the standard model, allow for neutrino oscillations that depend on the neutrino’s direction of propagation. No such direction-dependent variation was found. A discrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Because of the unique high energy reach of IceCube, it was possible to improve constraints on certain Lorentz-violating oscillations by 3 orders of magnitude with respect to limits set by other experiments.
Lorentz-violating modification of Dirac theory based on spin-nondegenerate operators
NASA Astrophysics Data System (ADS)
Reis, J. A. A. S.; Schreck, M.
2017-04-01
The Standard Model extension (SME) parametrizes all possible Lorentz-violating contributions to the Standard Model and general relativity. It can be considered as an effective framework to describe possible quantum-gravity effects for energies much below the Planck energy. In the current paper, the spin-nondegenerate operators of the SME fermion sector are the focus. The propagators, energies, and solutions to the modified Dirac equation are obtained for several families of coefficients including nonminimal ones. The particle energies and spinors are computed at first order in Lorentz violation and, with the optical theorem, they are shown to be consistent with the propagators. The optical theorem is then also used to derive the matrices formed from a spinor and its Dirac conjugate at all orders in Lorentz violation. The results are the first explicit ones derived for the spin-nondegenerate operators. They will prove helpful for future phenomenological calculations in the SME that rely on the footing of quantum field theory.
Lorentz symmetry violation and UHECR experiments
NASA Astrophysics Data System (ADS)
Gonzalez-Mestres, L.
2001-08-01
Lorentz symmetry violation (LSV) at Planck scale can be tested through ultra-high energy cosmic rays (UHECR). We discuss deformed Lorentz symmetry (DLS) and energy non-conservation (ENC) patterns where the effective LSV parameter varies like the square of the momentum scale (e.g. quadratically de-formed relativistic kinematics, QDRK). In such patterns, a ≈ 106 LSV at Planck scale would be enough to produce observable effects on the properties of cosmic rays at the ≈ 1020 eV scale: absence of GZK cutoff, stability of unstable particles, lower interaction rates, kinematical failure of any parton model and of standard formulae for Lorentz contraction and time dilation... Its phenomeno-logical implications are compatible with existing data. Precise signatures are discussed in several patterns. If the effective LSV or ENC parameter is taken to vary linearly with the momentum scale (e.g. linearly deformed relativistic kinematics, LDRK), contradictions seem to arise with UHECR data. Conse-quences are important for UHECR and high-energy gamma-ray exper iments, as well as for high-energy cosmic rays and gravitational waves.
Testing Lorentz and C P T invariance with ultracold neutrons
NASA Astrophysics Data System (ADS)
Martín-Ruiz, A.; Escobar, C. A.
2018-05-01
In this paper we investigate, within the standard model extension framework, the influence of Lorentz- and C P T -violating terms on gravitational quantum states of ultracold neutrons. Using a semiclassical wave packet, we derive the effective nonrelativistic Hamiltonian which describes the neutrons vertical motion by averaging the contributions from the perpendicular coordinates to the free falling axis. We compute the physical implications of the Lorentz- and C P T -violating terms on the spectra. The comparison of our results with those obtained in the GRANIT experiment leads to an upper bound for the symmetries-violation cμν n coefficients. We find that ultracold neutrons are sensitive to the ain and ein coefficients, which thus far are unbounded by experiments in the neutron sector. We propose two additional problems involving ultracold neutrons which could be relevant for improving our current bounds; namely, gravity-resonance spectroscopy and neutron whispering gallery wave.
Low-energy Lorentz violation from high-energy modified dispersion in inertial and circular motion
NASA Astrophysics Data System (ADS)
Louko, Jorma; Upton, Samuel D.
2018-01-01
We consider an Unruh-DeWitt detector in inertial and circular motion in Minkowski spacetime of arbitrary dimension, coupled to a quantized scalar field with the Lorentz-violating dispersion relation ω =|k |f (|k |/M⋆) , where M⋆ is the Lorentz-breaking scale. Assuming that f dips below unity somewhere, we show that an inertial detector experiences large low-energy Lorentz violations in all spacetime dimensions greater than two, generalizing previous results in four dimensions. For a detector in circular motion, we show that a similar low-energy Lorentz violation occurs in three spacetime dimensions, and we lay the analytic groundwork for examining circular motion in all dimensions greater than three, generalizing previous work by Stargen, Kajuri and Sriramkumar in four dimensions. The circular motion results may be relevant for the prospects of observing the circular motion Unruh effect in analogue laboratory systems.
Limits on Lorentz violation in gravity from worldwide superconducting gravimeters
NASA Astrophysics Data System (ADS)
Shao, Cheng-Gang; Chen, Ya-Fen; Sun, Rong; Cao, Lu-Shuai; Zhou, Min-Kang; Hu, Zhong-Kun; Yu, Chenghui; Müller, Holger
2018-01-01
We have investigated Lorentz violation through analyzing tides-subtracted gravity data measured by superconducting gravimeters. At the level of precision of superconducting gravimeters, we have brought up and resolved an existing issue of accuracy due to unaccounted local tidal effects in previous solid-earth tidal model used. Specifically, we have taken local tides into account with a brand new first-principles tidal model with ocean tides included, as well as removed potential bias from local tides by using a worldwide array of 12 superconducting gravimeters. Compared with previous test with local gravimeters, a more accurate and competitive bound on space-space components of gravitational Lorentz violation has been achieved up to the order of 10-10.
Testing Lorentz Invariance with Neutrinos from Ultrahigh Energy Cosmic Ray Interactions
NASA Technical Reports Server (NTRS)
Scully, Sean T.; Stecker, Floyd W.
2010-01-01
We have previously shown that a very small amount of Lorentz invariance violation (UV), which suppresses photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with cosmic background radiation (CBR) photons, can produce a spectrum of cosmic rays that is consistent with that currently observed by the Pierre Auger Observatory (PAO) and HiRes experiments. Here, we calculate the corresponding flux of high energy neutrinos generated by the propagation of UHECR protons through the CBR in the presence of UV. We find that UV produces a reduction in the flux of the highest energy neutrinos and a reduction in the energy of the peak of the neutrino energy flux spectrum, both depending on the strength of the UV. Thus, observations of the UHE neutrino spectrum provide a clear test for the existence and amount of UV at the highest energies. We further discuss the ability of current and future proposed detectors make such observations.
Lorentz symmetry violation in the fermion number anomaly with the chiral overlap operator
NASA Astrophysics Data System (ADS)
Makino, Hiroki; Morikawa, Okuto
2016-12-01
Recently, Grabowska and Kaplan proposed a four-dimensional lattice formulation of chiral gauge theories on the basis of a chiral overlap operator. We compute the classical continuum limit of the fermion number anomaly in this formulation. Unexpectedly, we find that the continuum limit contains a term which is not Lorentz invariant. The term is, however, proportional to the gauge anomaly coefficient, and thus the fermion number anomaly in this lattice formulation automatically restores the Lorentz-invariant form when and only when the anomaly cancellation condition is met.
NASA Astrophysics Data System (ADS)
Leon, David; Kaufman, Jonathan; Keating, Brian; Mewes, Matthew
2017-01-01
One of the most powerful probes of new physics is the polarized cosmic microwave background (CMB). The detection of a nonzero polarization angle rotation between the CMB surface of last scattering and today could provide evidence of Lorentz-violating physics. The purpose of this paper is two-fold. First, we review one popular mechanism for polarization rotation of CMB photons: the pseudo-Nambu-Goldstone boson (PNGB). Second, we propose a method to use the POLARBEAR experiment to constrain Lorentz-violating physics in the context of the Standard Model Extension (SME), a framework to standardize a large class of potential Lorentz-violating terms in particle physics.
Lorentz-invariant formulation of Cherenkov radiation by tachyons
NASA Technical Reports Server (NTRS)
Jones, F. C.
1972-01-01
Previous treatments of Cherenkov radiation, electromagnetic and gravitational, by tachyons were in error because the prescription employed to cut off the divergent integral over frequency is not a Lorentz invariant procedure. The resulting equation of motion for the tachyon is therefore not covariant. The proper procedure requires an extended, deformable distribution of charge or mass and yields a particularly simple form for the tachyon's world line, one that could be deduced from simple invariance considerations. It is shown that Cherenkov radiation by tachyons implys their ultimate annihilation with an antitachyon and demonstrates a disturbing property of tachyons, namely the impossibility of specifying arbitrary Cauchy data even in a purely classical theory.
Acoustic Tests of Lorentz Symmetry Using Quartz Oscillators
Lo, Anthony; Haslinger, Philipp; Mizrachi, Eli; ...
2016-02-24
Here we propose and demonstrate a test of Lorentz symmetry based on new, compact, and reliable quartz oscillator technology. Violations of Lorentz invariance in the matter and photon sector of the standard model extension generate anisotropies in particles’ inertial masses and the elastic constants of solids, giving rise to measurable anisotropies in the resonance frequencies of acoustic modes in solids. A first realization of such a “phonon-sector” test of Lorentz symmetry using room-temperature stress-compensated-cut crystals yields 120 h of data at a frequency resolution of 2.4 × 10 -15 and a limit ofmore » $$\\bar{c}$$ $$n\\atop{Q}$$ = (- 1.8 ± 2.2) × 10 -14 GeV on the most weakly constrained neutron-sector c coefficient of the standard model extension. Future experiments with cryogenic oscillators promise significant improvements in accuracy, opening up the potential for improved limits on Lorentz violation in the neutron, proton, electron, and photon sector.« less
Direct terrestrial test of Lorentz symmetry in electrodynamics to 10-18
NASA Astrophysics Data System (ADS)
Nagel, Moritz; Parker, Stephen R.; Kovalchuk, Evgeny V.; Stanwix, Paul L.; Hartnett, John G.; Ivanov, Eugene N.; Peters, Achim; Tobar, Michael E.
2015-09-01
Lorentz symmetry is a foundational property of modern physics, underlying the standard model of particles and general relativity. It is anticipated that these two theories are low-energy approximations of a single theory that is unified and consistent at the Planck scale. Many unifying proposals allow Lorentz symmetry to be broken, with observable effects appearing at Planck-suppressed levels; thus, precision tests of Lorentz invariance are needed to assess and guide theoretical efforts. Here we use ultrastable oscillator frequency sources to perform a modern Michelson-Morley experiment and make the most precise direct terrestrial test to date of Lorentz symmetry for the photon, constraining Lorentz violating orientation-dependent relative frequency changes Δν/ν to 9.2+/-10.7 × 10-19 (95% confidence interval). This order of magnitude improvement over previous Michelson-Morley experiments allows us to set comprehensive simultaneous bounds on nine boost and rotation anisotropies of the speed of light, finding no significant violations of Lorentz symmetry.
Theoretical Studies of Lorentz and CPT Symmetry
NASA Technical Reports Server (NTRS)
Kostelecky, V. Alan
2005-01-01
The fundamental symmetries studied here are Lorentz and CPT invariance, which form a cornerstone of the relativistic quantum theories used in modern descriptions of nature. The results obtained during the reporting period focus on the idea, originally suggested by the P.I. and his group in the late 1980s, that observable CPT and Lorentz violation in nature might emerge from the qualitatively new physics expected to hold at the Planck scale. What follows is a summary of results obtained during the period of this grant.
NASA Astrophysics Data System (ADS)
Field, J. H.
2006-06-01
It is demonstrated how the right-hand sides of the Lorentz transformation equations may be written, in a Lorentz-invariant manner, as 4-vector scalar products. This implies the existence of invariant length intervals analogous to invariant proper time intervals. An important distinction between the physical meanings of the space time and energy momentum 4-vectors is pointed out. The formalism is shown to provide a short derivation of the Lorentz force law of classical electrodynamics, and the conventional definition of the magnetic field, in terms of spatial derivatives of the 4-vector potential, as well as the Faraday Lenz law and the Gauss law for magnetic fields. The connection between the Gauss law for the electric field and the electrodynamic Ampère law, due to the 4-vector character of the electromagnetic potential, is also pointed out.
Inertial Frames Without the Relativity Principle: Breaking Lorentz Symmetry
NASA Astrophysics Data System (ADS)
Baccetti, Valentina; Tate, Kyle; Visser, Matt
2015-01-01
We investigate inertial frames in the absence of Lorentz invariance, reconsidering the usual group structure implied by the relativity principle. We abandon the relativity principle, discarding the group structure for the transformations between inertial frames, while requiring these transformations to be at least linear (to preserve homogeneity). In theories with a preferred frame (aether), the set of transformations between inertial frames forms a groupoid/pseudogroup instead of a group, a characteristic essential to evading the von Ignatowsky theorems. In order to understand the dynamics, we also demonstrate that the transformation rules for energy and momentum are in general affine. We finally focus on one specific and compelling model implementing a minimalist violation of Lorentz invariance.
Lorentz violation and perpetual motion
NASA Astrophysics Data System (ADS)
Eling, Christopher; Foster, Brendan Z.; Jacobson, Ted; Wall, Aron C.
2007-05-01
We show that any Lorentz-violating theory with two or more propagation speeds is in conflict with the generalized second law of black hole thermodynamics. We do this by identifying a classical energy-extraction method, analogous to the Penrose process, which would decrease the black hole entropy. Although the usual definitions of black hole entropy are ambiguous in this context, we require only very mild assumptions about its dependence on the mass. This extends the result found by Dubovsky and Sibiryakov, which uses the Hawking effect and applies only if the fields with different propagation speeds interact just through gravity. We also point out instabilities that could interfere with their black hole perpetuum mobile, but argue that these can be neglected if the black hole mass is sufficiently large.
Resolving puzzles of massive gravity with and without violation of Lorentz symmetry
NASA Astrophysics Data System (ADS)
Mironov, Andrei; Mironov, Sergey; Morozov, Alexei; Morozov, Andrey
2010-06-01
We perform a systematic study of various versions of massive gravity with and without violations of the Lorentz symmetry in arbitrary dimension. These theories are well known to possess very unusual properties, unfamiliar from studies of gauge and Lorentz invariant models. These peculiarities are caused by the mixing of familiar transverse fields with the revived longitudinal and pure gauge (Stueckelberg) fields and are all seen already in the quadratic approximation. They are all associated with non-trivial dispersion laws, which easily allow superluminal propagation, ghosts, tachyons and essential irrationalities. Moreover, the coefficients in front of emerging modes are small, which makes the theories essentially non-perturbative within a large Vainshtein radius. Attempts to get rid of unwanted degrees of freedom by giving them infinite masses lead to the DVZ discontinuities in the parameter (moduli) space, caused by non-permutability of different limits. Also, the condition mgh = ∞ can not be preserved already in non-trivial gravitational backgrounds and is unstable under any other perturbations of the linearized gravity. At the same time, an a priori healthy model of massive gravity in the quadratic approximation definitely exists: it is provided by any mass level of the Kaluza-Klein tower. It bypasses the problems because the gravity field is mixed with other fields, and this explains why such mixing helps in other models. At the same time, this can imply that the really healthy massive gravity can still require an infinite number of extra fields beyond the quadratic approximation.
Constraining spacetime nonmetricity with Lorentz-violation methods
NASA Astrophysics Data System (ADS)
Xiao, Zhi; Lehnert, Ralf; Snow, W. M.; Xu, Rui
2018-01-01
In this report, we will give the first constraints on in-matter nonmetricity. We will show how the effective-field-theory (EFT) toolbox developed for the study of Lorentz violation (LV) can be employed for investigations of the “effective LV” background caused by nonmetricity, a geometric object extending the notion of a Riemannian manifold. The idea is to probe for the effects of spacetime nonmetricity sourced by liquid 4He with polarized slow neutrons. We present the first constraints on isotropic and parity-odd nonmetricity components. Further constraints on anisotropic nonmetricity components within this EFT framework may be feasible with proper experimental techniques in the near future.
Test of Lorentz and CPT violation with short baseline neutrino oscillation excesses
NASA Astrophysics Data System (ADS)
MiniBooNE Collaboration; Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Huelsnitz, W.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.
2013-01-01
The sidereal time dependence of MiniBooNE νe and ν appearance data is analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov-Smirnov (K-S) test shows both the νe and ν appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the νe appearance data prefer a sidereal time-independent solution, and the ν appearance data slightly prefer a sidereal time-dependent solution. Limits of order 10-20 GeV are placed on combinations of SME coefficients. These limits give the best limits on certain SME coefficients for νμ→νe and ν→ν oscillations. The fit values and limits of combinations of SME coefficients are provided.
Probability density functions for CP-violating rephasing invariants
NASA Astrophysics Data System (ADS)
Fortin, Jean-François; Giasson, Nicolas; Marleau, Luc
2018-05-01
The implications of the anarchy principle on CP violation in the lepton sector are investigated. A systematic method is introduced to compute the probability density functions for the CP-violating rephasing invariants of the PMNS matrix from the Haar measure relevant to the anarchy principle. Contrary to the CKM matrix which is hierarchical, it is shown that the Haar measure, and hence the anarchy principle, are very likely to lead to the observed PMNS matrix. Predictions on the CP-violating Dirac rephasing invariant |jD | and Majorana rephasing invariant |j1 | are also obtained. They correspond to 〈 |jD | 〉 Haar = π / 105 ≈ 0.030 and 〈 |j1 | 〉 Haar = 1 / (6 π) ≈ 0.053 respectively, in agreement with the experimental hint from T2K of | jDexp | ≈ 0.032 ± 0.005 (or ≈ 0.033 ± 0.003) for the normal (or inverted) hierarchy.
Test of Lorentz and CPT violation with short baseline neutrino oscillation excesses
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Huelsnitz, W.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration
2013-01-01
The sidereal time dependence of MiniBooNE νe and νbare appearance data is analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov-Smirnov (K-S) test shows both the νe and νbare appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the νe appearance data prefer a sidereal time-independent solution, and the νbare appearance data slightly prefer a sidereal time-dependent solution. Limits of order 10-20 GeV are placed on combinations of SME coefficients. These limits give the best limits on certain SME coefficients for νμ →νe and νbarμ →νbare oscillations. The fit values and limits of combinations of SME coefficients are provided.
Lorentz Symmetry Violations from Matter-Gravity Couplings with Lunar Laser Ranging
NASA Astrophysics Data System (ADS)
Bourgoin, A.; Le Poncin-Lafitte, C.; Hees, A.; Bouquillon, S.; Francou, G.; Angonin, M.-C.
2017-11-01
The standard-model extension (SME) is an effective field theory framework aiming at parametrizing any violation to the Lorentz symmetry (LS) in all sectors of physics. In this Letter, we report the first direct experimental measurement of SME coefficients performed simultaneously within two sectors of the SME framework using lunar laser ranging observations. We consider the pure gravitational sector and the classical point-mass limit in the matter sector of the minimal SME. We report no deviation from general relativity and put new realistic stringent constraints on LS violations improving up to 3 orders of magnitude previous estimations.
Minkowski spacetime and Lorentz invariance: The cart and the horse or two sides of a single coin?
NASA Astrophysics Data System (ADS)
Acuña, Pablo
2016-08-01
Michel Janssen and Harvey Brown have driven a prominent recent debate concerning the direction of an alleged arrow of explanation between Minkowski spacetime and Lorentz invariance of dynamical laws in special relativity. In this article, I critically assess this controversy with the aim of clarifying the explanatory foundations of the theory. First, I show that two assumptions shared by the parties-that the dispute is independent of issues concerning spacetime ontology, and that there is an urgent need for a constructive interpretation of special relativity-are problematic and negatively affect the debate. Second, I argue that the whole discussion relies on a misleading conception of the link between Minkowski spacetime structure and Lorentz invariance, a misconception that in turn sheds more shadows than light on our understanding of the explanatory nature and power of Einstein's theory. I state that the arrow connecting Lorentz invariance and Minkowski spacetime is not explanatory and unidirectional, but analytic and bidirectional, and that this analytic arrow grounds the chronogeometric explanations of physical phenomena that special relativity offers.
Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables
Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji; ...
2016-03-14
We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relationsmore » for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.« less
Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity
NASA Astrophysics Data System (ADS)
Bluhm, Robert; Fung, Shu-Hong; Kostelecký, V. Alan
2008-03-01
Theories with spontaneous local Lorentz and diffeomorphism violation contain massless Nambu-Goldstone modes, which arise as field excitations in the minimum of the symmetry-breaking potential. If the shape of the potential also allows excitations above the minimum, then an alternative gravitational Higgs mechanism can occur in which massive modes involving the metric appear. The origin and basic properties of the massive modes are addressed in the general context involving an arbitrary tensor vacuum value. Special attention is given to the case of bumblebee models, which are gravitationally coupled vector theories with spontaneous local Lorentz and diffeomorphism violation. Mode expansions are presented in both local and spacetime frames, revealing the Nambu-Goldstone and massive modes via decomposition of the metric and bumblebee fields, and the associated symmetry properties and gauge fixing are discussed. The class of bumblebee models with kinetic terms of the Maxwell form is used as a focus for more detailed study. The nature of the associated conservation laws and the interpretation as a candidate alternative to Einstein-Maxwell theory are investigated. Explicit examples involving smooth and Lagrange-multiplier potentials are studied to illustrate features of the massive modes, including their origin, nature, dispersion laws, and effects on gravitational interactions. In the weak static limit, the massive mode and Lagrange-multiplier fields are found to modify the Newton and Coulomb potentials. The nature and implications of these modifications are examined.
Hidden in Plain View: The Material Invariance of Maxwell-Hertz-Lorentz Electrodynamics
NASA Astrophysics Data System (ADS)
Christov, C. I.
2006-04-01
Maxwell accounted for the apparent elastic behavior of the electromagnetic field through augmenting Ampere's law by the so-called displacement current much in the same way that he treated the viscoelasticity of gases. Original Maxwell constitutive relations for both electrodynamics and fluid dynamics were not material invariant, while combin- ing Faraday's law and the Lorentz force makes the first of Maxwell's equation material invariant. Later on, Oldroyd showed how to make a viscoelastic constitutive law mate- rial invariant. The main assumption was that the proper description of a constitutive law must be material invariant. Assuming that the electromagnetic field is a material field, we show here that if the upper convected Oldroyd derivative (related to Lie derivative) is used, the displacement current becomes material invariant. The new formulation ensures that the equation for conser- vation of charge is also material invariant which vindicates the choice of Oldroyd derivative over the standard convec- tive derivative. A material invariant field model is by ne- cessity Galilean invariant. We call the material field (the manifestation of which are the equations of electrodynam- ics the metacontinuum), in order to distinguish it form the standard material continua.
Quantization of Space-like States in Lorentz-Violating Theories
NASA Astrophysics Data System (ADS)
Colladay, Don
2018-01-01
Lorentz violation frequently induces modified dispersion relations that can yield space-like states that impede the standard quantization procedures. In certain cases, an extended Hamiltonian formalism can be used to define observer-covariant normalization factors for field expansions and phase space integrals. These factors extend the theory to include non-concordant frames in which there are negative-energy states. This formalism provides a rigorous way to quantize certain theories containing space-like states and allows for the consistent computation of Cherenkov radiation rates in arbitrary frames and avoids singular expressions.
Lorentz and CPT Tests with Atoms
NASA Astrophysics Data System (ADS)
Vargas Silva, Arnaldo J.
The prospects for using atomic-spectroscopy experiments to test Lorentz and CPT symmetry are investigated. Phenomenological models for Lorentz violation studied in this work include ones with contributions from all quadratic operators for a Dirac fermion in the Lagrange density of the Standard-Model Extension (SME), without restriction on the operator mass dimension. The systems considered include atoms composed of conventional matter, antimatter, and second-generation particles. Generic expressions for the Lorentz-violating energy shifts applicable to a broad range of atomic transitions are obtained. Signals for Lorentz violation that can in principle be studied in spectroscopic experiments are identified from the theoretical corrections to the spectrum. Some of these signals include sidereal and annual variations of atomic transition frequencies measured in a laboratory on the surface of the Earth. Other possibilities include effects produced by changing the orientation of the applied magnetic field or by realizing space-based experiments. Discrepancies in the experimental values for fundamental constants and energy levels based on self-consistent predictions from the Standard Model also offer potential signals for Lorentz violation. The sensitivities of different experiments to distinct sets of coefficients for Lorentz violation are considered. Using atoms composed of different particle species allows measurements of coefficients for Lorentz violation in different fermion sectors of the SME. Experiments comparing hydrogen and antihydrogen can discriminate between coefficients for Lorentz violation that are associated with CPT-odd or CPT-even operators. Additionally, certain systems and transitions are more sensitive to nonminimal operators, while others are particularly sensitive to minimal ones.
Energy scale of Lorentz violation in Rainbow Gravity
NASA Astrophysics Data System (ADS)
Nilsson, Nils A.; Dąbrowski, Mariusz P.
2017-12-01
We modify the standard relativistic dispersion relation in a way which breaks Lorentz symmetry-the effect is predicted in a high-energy regime of some modern theories of quantum gravity. We show that it is possible to realise this scenario within the framework of Rainbow Gravity which introduces two new energy-dependent functions f1(E) and f2(E) into the dispersion relation. Additionally, we assume that the gravitational constant G and the cosmological constant Λ also depend on energy E and introduce the scaling function h(E) in order to express this dependence. For cosmological applications we specify the functions f1 and f2 in order to fit massless particles which allows us to derive modified cosmological equations. Finally, by using Hubble+SNIa+BAO(BOSS+Lyman α)+CMB data, we constrain the energy scale ELV to be at least of the order of 1016 GeV at 1 σ which is the GUT scale or even higher 1017 GeV at 3 σ. Our claim is that this energy can be interpreted as the decoupling scale of massless particles from spacetime Lorentz violating effects.
Tests of Lorentz Symmetry with Electrodynamics
NASA Astrophysics Data System (ADS)
Bailey, Quentin; Kostelecky, Alan
2004-05-01
Lorentz and CPT violation is a promising candidate signal for Planck-scale physics. Low-energy effects of Lorentz and CPT violation are described by the general theoretical framework called the Standard-Model Extension (SME). This talk focuses on Lorentz-violating effects arising in the limit of classical electrodynamics. Analysis of the theory shows that suitable experiments could improve by several orders of magnitude on the sensitivities achieved in modern Michelson-Morley and Kennedy-Thorndike tests.
Extended hamiltonian formalism and Lorentz-violating lagrangians
NASA Astrophysics Data System (ADS)
Colladay, Don
2017-09-01
A new perspective on the classical mechanical formulation of particle trajectories in Lorentz-violating theories is presented. Using the extended hamiltonian formalism, a Legendre Transformation between the associated covariant lagrangian and hamiltonian varieties is constructed. This approach enables calculation of trajectories using Hamilton's equations in momentum space and the Euler-Lagrange equations in velocity space away from certain singular points that arise in the theory. Singular points are naturally de-singularized by requiring the trajectories to be smooth functions of both velocity and momentum variables. In addition, it is possible to identify specific sheets of the dispersion relations that correspond to specific solutions for the lagrangian. Examples corresponding to bipartite Finsler functions are computed in detail. A direct connection between the lagrangians and the field-theoretic solutions to the Dirac equation is also established for a special case.
NASA Astrophysics Data System (ADS)
Abe, K.; Amey, J.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Ban, S.; Barbato, F. C. T.; Barbi, M.; Barker, G. J.; Barr, G.; Barry, C.; Bartet-Friburg, P.; Batkiewicz, M.; Berardi, V.; Berkman, S.; Bhadra, S.; Bienstock, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buizza Avanzini, M.; Calland, R. G.; Campbell, T.; Cao, S.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Chappell, A.; Checchia, C.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Coplowe, D.; Cremonesi, L.; Cudd, A.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Denner, P. F.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K. E.; Dumarchez, J.; Dunkman, M.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S. G.; Giganti, C.; Gizzarelli, F.; Golan, T.; Gonin, M.; Grant, N.; Hadley, D. R.; Haegel, L.; Haigh, J. T.; Hamilton, P.; Hansen, D.; Harada, J.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hiramoto, A.; Hirota, S.; Hogan, M.; Holeczek, J.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Knight, A.; Knox, A.; Kobayashi, T.; Koch, L.; Koga, T.; Konaka, A.; Kondo, K.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kowalik, K.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Lamoureux, M.; Larkin, E.; Lasorak, P.; Laveder, M.; Lawe, M.; Lazos, M.; Licciardi, M.; Lindner, T.; Liptak, Z. J.; Litchfield, R. P.; Li, X.; Longhin, A.; Lopez, J. P.; Lou, T.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Maret, L.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Morrison, J.; Mueller, Th. A.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakanishi, Y.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Novella, P.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Patel, N. D.; Paudyal, P.; Pavin, M.; Payne, D.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radermacher, T.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rojas, P.; Rondio, E.; Rossi, B.; Roth, S.; Rubbia, A.; Ruggeri, A. C.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Stewart, T.; Stowell, P.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tamura, R.; Tanaka, H. K.; Tanaka, H. A.; Terhorst, D.; Terri, R.; Thakore, T.; Thompson, L. F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Vilela, C.; Vladisavljevic, T.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Wret, C.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration
2017-06-01
A class of extensions of the Standard Model allows Lorentz and C P T violations, which can be identified by the observation of sidereal modulations in the neutrino interaction rate. A search for such modulations was performed using the T2K on-axis near detector. Two complementary methods were used in this study, both of which resulted in no evidence of a signal. Limits on associated Lorentz and C P T -violating terms from the Standard Model extension have been derived by taking into account their correlations in this model for the first time. These results imply such symmetry violations are suppressed by a factor of more than 1 020 at the GeV scale.
Lorentz-Symmetry Test at Planck-Scale Suppression With a Spin-Polarized 133Cs Cold Atom Clock.
Pihan-Le Bars, H; Guerlin, C; Lasseri, R-D; Ebran, J-P; Bailey, Q G; Bize, S; Khan, E; Wolf, P
2018-06-01
We present the results of a local Lorentz invariance (LLI) test performed with the 133 Cs cold atom clock FO2, hosted at SYRTE. Such a test, relating the frequency shift between 133 Cs hyperfine Zeeman substates with the Lorentz violating coefficients of the standard model extension (SME), has already been realized by Wolf et al. and led to state-of-the-art constraints on several SME proton coefficients. In this second analysis, we used an improved model, based on a second-order Lorentz transformation and a self-consistent relativistic mean field nuclear model, which enables us to extend the scope of the analysis from purely proton to both proton and neutron coefficients. We have also become sensitive to the isotropic coefficient , another SME coefficient that was not constrained by Wolf et al. The resulting limits on SME coefficients improve by up to 13 orders of magnitude the present maximal sensitivities for laboratory tests and reach the generally expected suppression scales at which signatures of Lorentz violation could appear.
Lorentz violation in the gravity sector: The t puzzle
NASA Astrophysics Data System (ADS)
Bonder, Yuri
2015-06-01
Lorentz violation is a candidate quantum-gravity signal, and the Standard-Model Extension (SME) is a widely used parametrization of such a violation. In the gravitational SME sector, there is an elusive coefficient for which no effects have been found. This is known as the t puzzle and, to date, it has no compelling explanation. This paper analyzes whether there is a fundamental explanation for the t puzzle. To tackle this question, several approaches are followed. Mainly, redefinitions of the dynamical fields are studied, showing that other SME coefficients can be moved to nongravitational sectors. It is also found that the gravity SME sector can be consistently treated à la Palatini, and that, in the presence of spacetime boundaries, it is possible to correct its action to get the desired equations of motion. Moreover, through a reformulation as a Lanczos-type tensor, some problematic features of the t term, which should arise at the phenomenological level, are revealed. The most important conclusion of the paper is that there is no evidence of a fundamental explanation for the t puzzle, suggesting that it may be linked to the approximations taken at the phenomenological level.
Nuclear spin dependence of time reversal invariance violating effects in neutron scattering
NASA Astrophysics Data System (ADS)
Gudkov, Vladimir; Shimizu, Hirohiko M.
2018-06-01
The spin structure of parity violating and time reversal invariance violating effects in neutron scattering is discussed. The explicit relations between these effects are presented in terms of functions nuclear spins and neutron partial widths of p -wave resonances.
Lorentz-violating SO(3) model: Discussing unitarity, causality, and 't Hooft-Polyakov monopoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarpelli, A.P. Baeta; Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ; Helayeel-Neto, J.A.
2006-05-15
In this paper, we extend the analysis of the Lorentz-violating Quantum Electrodynamics to the non-Abelian case: an SO(3) Yang-Mills Lagrangian with the addition of the non-Abelian Chern-Simons-type term. We consider the spontaneous symmetry breaking of the model and inspect its spectrum in order to check if unitarity and causality are respected. An analysis of the topological structure is also carried out and we show that a 't Hooft-Polyakov solution for monopoles is still present.
Nuclear spin dependence of time reversal invariance violating effects in neutron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudkov, Vladimir; Shimizu, Hirohiko M.
In this study, the spin structure of parity violating and time reversal invariance violating effects in neutron scattering is discussed. The explicit relations between these effects are presented in terms of functions nuclear spins and neutron partial widths of p-wave resonances.
Nuclear spin dependence of time reversal invariance violating effects in neutron scattering
Gudkov, Vladimir; Shimizu, Hirohiko M.
2018-06-11
In this study, the spin structure of parity violating and time reversal invariance violating effects in neutron scattering is discussed. The explicit relations between these effects are presented in terms of functions nuclear spins and neutron partial widths of p-wave resonances.
A unifying framework for ghost-free Lorentz-invariant Lagrangian field theories
NASA Astrophysics Data System (ADS)
Li, Wenliang
2018-04-01
We propose a framework for Lorentz-invariant Lagrangian field theories where Ostrogradsky's scalar ghosts could be absent. A key ingredient is the generalized Kronecker delta. The general Lagrangians are reformulated in the language of differential forms. The absence of higher order equations of motion for the scalar modes stems from the basic fact that every exact form is closed. The well-established Lagrangian theories for spin-0, spin-1, p-form, spin-2 fields have natural formulations in this framework. We also propose novel building blocks for Lagrangian field theories. Some of them are novel nonlinear derivative terms for spin-2 fields. It is nontrivial that Ostrogradsky's scalar ghosts are absent in these fully nonlinear theories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira-Dias, B.; Hernaski, C. A.; Helayeel-Neto, J. A.
The combined effects of the Lorentz-symmetry violating Chern-Simons and Ricci-Cotton actions are investigated for the Einstein-Hilbert gravity in the second-order formalism modified by higher derivative terms, and their consequences on the spectrum of excitations are analyzed. We follow the lines of previous works and build up an orthonormal basis of projector-like operators for the degrees of freedom, rather than for the spin modes of the fields. With this new basis, the attainment of the propagators is remarkably simplified and the identification of the physical and unphysical modes becomes more immediate. Our conclusion is that the only tachyon- and ghost-free modelmore » is the Einstein-Hilbert action added up by the Chern-Simons term with a timelike vector of the type v{sup {mu}=}({mu},0-vector). Spectral consistency imposes that the Ricci-Cotton term must be switched off. We then infer that gravity with Lorentz-symmetry violation imposes a drastically different constraint on the background if compared to ordinary gauge theories whenever conditions for the suppression of tachyons and ghosts are imposed.« less
ERIC Educational Resources Information Center
Jak, Suzanne; Oort, Frans J.; Dolan, Conor V.
2013-01-01
We present a test for cluster bias, which can be used to detect violations of measurement invariance across clusters in 2-level data. We show how measurement invariance assumptions across clusters imply measurement invariance across levels in a 2-level factor model. Cluster bias is investigated by testing whether the within-level factor loadings…
Constraints and stability in vector theories with spontaneous Lorentz violation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluhm, Robert; Gagne, Nolan L.; Potting, Robertus
2008-06-15
Vector theories with spontaneous Lorentz violation, known as bumblebee models, are examined in flat spacetime using a Hamiltonian constraint analysis. In some of these models, Nambu-Goldstone modes appear with properties similar to photons in electromagnetism. However, depending on the form of the theory, additional modes and constraints can appear that have no counterparts in electromagnetism. An examination of these constraints and additional degrees of freedom, including their nonlinear effects, is made for a variety of models with different kinetic and potential terms, and the results are compared with electromagnetism. The Hamiltonian constraint analysis also permits an investigation of the stabilitymore » of these models. For certain bumblebee theories with a timelike vector, suitable restrictions of the initial-value solutions are identified that yield ghost-free models with a positive Hamiltonian. In each case, the restricted phase space is found to match that of electromagnetism in a nonlinear gauge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katori, Teppei
2008-12-01
The Mini-Booster neutrino experiment (MiniBooNE) at Fermi National Accelerator Laboratory (Fermilab) is designed to search for v μ → v e appearance neutrino oscillations. Muon neutrino charged-current quasi-elastic (CCQE) interactions (v μ + n → μ + p) make up roughly 40% of our data sample, and it is used to constrain the background and cross sections for the oscillation analysis. Using high-statistics MiniBooNE CCQE data, the muon-neutrino CCQE cross section is measured. The nuclear model is tuned precisely using the MiniBooNE data. The measured total cross section is σ = (1.058 ± 0.003 (stat) ± 0.111 (syst)) x 10more » -38 cm 2 at the MiniBooNE muon neutrino beam energy (700-800 MeV). v e appearance candidate data is also used to search for Lorentz violation. Lorentz symmetry is one of the most fundamental symmetries in modern physics. Neutrino oscillations offer a new method to test it. We found that the MiniBooNE result is not well-described using Lorentz violation, however further investigation is required for a more conclusive result.« less
Lorentz-violating contributions to the nuclear Schiff moment and nuclear EDM
NASA Astrophysics Data System (ADS)
Araujo, Jonas B.; Casana, Rodolfo; Ferreira, Manoel M.
2018-03-01
In the context of an atom endowed with nuclear electric dipole moments (EDM), we consider the effects on the Schiff moment of C P T -even Lorentz-violating (LV) terms that modify the Coulomb potential. First, we study the modifications on the Schiff moment when the nucleus interacts with the electronic cloud by means of a Coulomb potential altered only by the P -even LV components. Next, by supposing the existence of an additional intrinsic LV EDM generated by other LV sources, we assess the corrections to the Schiff moment when the interaction nucleus-electrons runs mediated by a Coulomb potential modified by both the P -odd and P -even LV components. We then use known estimates and EDM measurements to discuss upper bounds on the new Schiff moment components and the possibility of a nuclear EDM component ascribed to LV effects.
Lorentz-boosted evanescent waves
NASA Astrophysics Data System (ADS)
Bliokh, Konstantin Y.
2018-06-01
Polarization, spin, and helicity are important properties of electromagnetic waves. It is commonly believed that helicity is invariant under the Lorentz transformations. This is indeed so for plane waves and their localized superpositions. However, this is not the case for evanescent waves, which are well-defined only in a half-space, and are characterized by complex wave vectors. Here we describe transformations of evanescent electromagnetic waves and their polarization/spin/helicity properties under the Lorentz boosts along the three spatial directions.
Phenomenological constraints on A N in p ↑ p → π X from Lorentz invariance relations
Gamberg, Leonard; Kang, Zhong-Bo; Pitonyak, Daniel; ...
2017-04-27
Here, we present a new analysis of A N in p ↑ p → πX within the collinear twist-3 factorization formalism. We incorporate recently derived Lorentz invariance relations into our calculation and focus on input from the kinematical twist-3 functions, which are weighted integrals of transverse momentum dependent (TMD) functions. Particularly, we use the latest extractions of the Sivers and Collins functions with TMD evolution to compute certain terms in AN . Consequently, we are able to constrain the remaining contributions from the lesser known dynamical twist-3 correlators.
No static black hole hairs in gravitational theories with broken Lorentz invariance
NASA Astrophysics Data System (ADS)
Lin, Kai; Mukohyama, Shinji; Wang, Anzhong; Zhu, Tao
2017-06-01
In this paper, we revisit the issue of static hairs of black holes in gravitational theories with broken Lorentz invariance in the case that the speed cϕ of the khronon field becomes infinitely large, cϕ=∞ , for which the sound horizon of the khronon field coincides with the universal horizon, and the boundary conditions at the sound horizon reduce to those given normally at the universal horizons. As a result, fewer boundary conditions are present in this extreme case in comparison with the case cϕ=finite . Consequently, it is expected that static hairs might exist. However, we show analytically that, even in this case, static hairs still cannot exist, based on a decoupling limit analysis. We also consider the cases in which cϕ is finite but with cϕ≫1 , and we obtain the same conclusion.
Black holes in multi-fractional and Lorentz-violating models.
Calcagni, Gianluca; Rodríguez Fernández, David; Ronco, Michele
2017-01-01
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q -derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length [Formula: see text]. In the q -derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to [Formula: see text]. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q -derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models.
Black holes in multi-fractional and Lorentz-violating models
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Rodríguez Fernández, David; Ronco, Michele
2017-05-01
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q-derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length ℓ _*. In the q-derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to ℓ _*. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q-derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models.
Search for time reversal invariance violation in neutron transmission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, J. David; Gudkov, Vladimir
2014-12-29
Time reversal invariance violating (TRIV) effects in neutron transmission through a nuclear target are discussed. Here, we demonstrate the existence of a class of experiments that are free from false asymmetries. We discuss the enhancement of TRIV effects for neutron energies corresponding to p-wave resonances in the compound nuclear system. Finaly, we analyze a model experiment and show that such tests can have a discovery potential of 10 2-10 4 compared to current limits.
Lorentz Atom Revisited by Solving the Abraham-Lorentz Equation of Motion
NASA Astrophysics Data System (ADS)
Bosse, Jürgen
2017-08-01
By solving the non-relativistic Abraham-Lorentz (AL) equation, I demonstrate that the AL equation of motion is not suited for treating the Lorentz atom, because a steady-state solution does not exist. The AL equation serves as a tool, however, for deducing the appropriate parameters Ω and Γ to be used with the equation of forced oscillations in modelling the Lorentz atom. The electric polarisability, which many authors "derived" from the AL equation in recent years, is shown to violate Kramers-Kronig relations rendering obsolete the extracted photon-absorption rate, for example. Fortunately, errors turn out to be small quantitatively, as long as the light frequency ω is neither too close to nor too far from the resonance frequency Ω. The polarisability and absorption cross section are derived for the Lorentz atom by purely classical reasoning and are shown to agree with the quantum mechanical calculations of the same quantities. In particular, oscillator parameters Ω and Γ deduced by treating the atom as a quantum oscillator are found to be equivalent to those derived from the classical AL equation. The instructive comparison provides a deep insight into understanding the great success of Lorentz's model that was suggested long before the advent of quantum theory.
Non-Abelian Gauge Theory in the Lorentz Violating Background
NASA Astrophysics Data System (ADS)
Ganai, Prince A.; Shah, Mushtaq B.; Syed, Masood; Ahmad, Owais
2018-03-01
In this paper, we will discuss a simple non-Abelian gauge theory in the broken Lorentz spacetime background. We will study the partial breaking of Lorentz symmetry down to its sub-group. We will use the formalism of very special relativity for analysing this non-Abelian gauge theory. Moreover, we will discuss the quantisation of this theory using the BRST symmetry. Also, we will analyse this theory in the maximal Abelian gauge.
Detecting Lorentz Violations with Gravitational Waves From Black Hole Binaries
NASA Astrophysics Data System (ADS)
Sotiriou, Thomas P.
2018-01-01
Gravitational wave observations have been used to test Lorentz symmetry by looking for dispersive effects that are caused by higher order corrections to the dispersion relation. In this Letter I argue on general grounds that, when such corrections are present, there will also be a scalar excitation. Hence, a smoking-gun observation of Lorentz symmetry breaking would be the direct detection of scalar waves that travel at a speed other than the speed of the standard gravitational wave polarizations or the speed of light. Interestingly, in known Lorentz-breaking gravity theories the difference between the speeds of scalar and tensor waves is virtually unconstrained, whereas the difference between the latter and the speed of light is already severely constrained by the coincident detection of gravitational waves and gamma rays from a binary neutron star merger.
Neutrinos as the messengers of CPT violation
NASA Astrophysics Data System (ADS)
Borissov, Liubomir Anguelov
CPT violation has the potential to explain all three existing neutrino oscillation signals without enlarging the neutrino sector. CPT violation in the Dirac mass terms of the three neutrino flavors preserves Lorentz invariance, but generates in dependent masses for neutrinos and antineutrinos. This specific signature can be motivated by braneworld scenarios with extra dimensions, where neutrinos are the natural messengers for Standard Model physics of CPT violation in the bulk. A simple model of maximal CPT violation is sufficient to explain the exisiting neutrino data, while accommodating the recent results from the KamLAND experiment and making dramatic predictions for the ongoing MiniBooNE experiment. In addition, the model fits the existing SuperKamiokande data, at least as well as the standard atmospheric neutrino oscillation models. Another attractive feature of the presented model is that it provides a new promising mechanism for baryogenesis, which obviates two of the three Sakharov conditions necessary to generate the baryon asymmetry of the universe. CPT-violating scenarios can give new insights about the possible nature of neutrinos. Majorana neutrino masses are still allowed, but in general, there are no longer Majorana neutrinos in the conventional sense. However, CPT-violating models still have interesting consequences for neutrinoless double beta decay. Compared to the usual case, while the larger mass scale (from LSND) may appear, a greater degree of suppression can also occur.
Black Hole Thermodynamics and Lorentz Symmetry
NASA Astrophysics Data System (ADS)
Jacobson, Ted; Wall, Aron C.
2010-08-01
Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.
General consequences of the violated Feynman scaling
NASA Technical Reports Server (NTRS)
Kamberov, G.; Popova, L.
1985-01-01
The problem of scaling of the hadronic production cross sections represents an outstanding question in high energy physics especially for interpretation of cosmic ray data. A comprehensive analysis of the accelerator data leads to the conclusion of the existence of breaked Feynman scaling. It was proposed that the Lorentz invariant inclusive cross sections for secondaries of a given type approaches constant in respect to a breaked scaling variable x sub s. Thus, the differential cross sections measured in accelerator energy can be extrapolated to higher cosmic ray energies. This assumption leads to some important consequences. The distribution of secondary multiplicity that follows from the violated Feynman scaling using a similar method of Koba et al is discussed.
Constraints on relativity violations from gamma-ray bursts.
Kostelecký, V Alan; Mewes, Matthew
2013-05-17
Tiny violations of the Lorentz symmetry of relativity and the associated discrete CPT symmetry could emerge in a consistent theory of quantum gravity such as string theory. Recent evidence for linear polarization in gamma-ray bursts improves existing sensitivities to Lorentz and CPT violation involving photons by factors ranging from ten to a million.
Mode analysis for energetics of a moving charge in Lorentz- and C P T -violating electrodynamics
NASA Astrophysics Data System (ADS)
DeCosta, Richard; Altschul, Brett
2018-03-01
In isotropic but Lorentz- and C P T -violating electrodynamics, it is known that a charge in uniform motion does not lose any energy to Cerenkov radiation. This presents a puzzle, since the radiation appears to be kinematically allowed for many modes. Studying the Fourier transforms of the most important terms in the modified magnetic field and Poynting vector, we confirm the vanishing of the radiation rate. Moreover, we show that the Fourier transform of the field changes sign between small and large wave numbers. This enables modes with very long wavelengths to carry negative energies, which cancel out the positive energies carried away by modes with shorter wavelengths. This cancelation had previously been inferred but never explicitly demonstrated.
Test of CPT and Lorentz symmetry in entangled neutral kaons with the KLOE experiment
NASA Astrophysics Data System (ADS)
Babusci, D.; Balwierz-Pytko, I.; Bencivenni, G.; Bloise, C.; Bossi, F.; Branchini, P.; Budano, A.; Caldeira Balkeståhl, L.; Capon, G.; Ceradini, F.; Ciambrone, P.; Curciarello, F.; Czerwiński, E.; Danè, E.; De Leo, V.; De Lucia, E.; De Robertis, G.; De Santis, A.; De Simone, P.; Di Cicco, A.; Di Domenico, A.; Di Donato, C.; Di Salvo, R.; Domenici, D.; Erriquez, O.; Fanizzi, G.; Fantini, A.; Felici, G.; Fiore, S.; Franzini, P.; Gajos, A.; Gauzzi, P.; Giardina, G.; Giovannella, S.; Graziani, E.; Happacher, F.; Heijkenskjöld, L.; Höistad, B.; Jacewicz, M.; Johansson, T.; Kacprzak, K.; Kamińska, D.; Kupsc, A.; Lee-Franzini, J.; Loddo, F.; Loffredo, S.; Mandaglio, G.; Martemianov, M.; Martini, M.; Mascolo, M.; Messi, R.; Miscetti, S.; Morello, G.; Moricciani, D.; Moskal, P.; Nguyen, F.; Palladino, A.; Passeri, A.; Patera, V.; Prado Longhi, I.; Ranieri, A.; Santangelo, P.; Sarra, I.; Schioppa, M.; Sciascia, B.; Silarski, M.; Taccini, C.; Tortora, L.; Venanzoni, G.; Wiślicki, W.; Wolke, M.; Zdebik, J.
2014-03-01
Neutral kaon pairs produced in ϕ decays in anti-symmetric entangled state can be exploited to search for violation of CPT symmetry and Lorentz invariance. We present an analysis of the CP-violating process ϕ→KSKL→π+π-π+π- based on 1.7 fb of data collected by the KLOE experiment at the Frascati ϕ-factory DAΦNE. The data are used to perform a measurement of the CPT-violating parameters Δaμ for neutral kaons in the context of the Standard Model Extension framework. The parameters measured in the reference frame of the fixed stars are: Δa0=(-6.0±7.7stat±3.1syst)×10-18 GeV, ΔaX=(0.9±1.5stat±0.6syst)×10-18 GeV, ΔaY=(-2.0±1.5stat±0.5syst)×10-18 GeV, ΔaZ=(3.1±1.7stat±0.5syst)×10-18 GeV. These are presently the most precise measurements in the quark sector of the Standard Model Extension.
Lorentz covariance of loop quantum gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rovelli, Carlo; Speziale, Simone
2011-05-15
The kinematics of loop gravity can be given a manifestly Lorentz-covariant formulation: the conventional SU(2)-spin-network Hilbert space can be mapped to a space K of SL(2,C) functions, where Lorentz covariance is manifest. K can be described in terms of a certain subset of the projected spin networks studied by Livine, Alexandrov and Dupuis. It is formed by SL(2,C) functions completely determined by their restriction on SU(2). These are square-integrable in the SU(2) scalar product, but not in the SL(2,C) one. Thus, SU(2)-spin-network states can be represented by Lorentz-covariant SL(2,C) functions, as two-component photons can be described in the Lorentz-covariant Gupta-Bleulermore » formalism. As shown by Wolfgang Wieland in a related paper, this manifestly Lorentz-covariant formulation can also be directly obtained from canonical quantization. We show that the spinfoam dynamics of loop quantum gravity is locally SL(2,C)-invariant in the bulk, and yields states that are precisely in K on the boundary. This clarifies how the SL(2,C) spinfoam formalism yields an SU(2) theory on the boundary. These structures define a tidy Lorentz-covariant formalism for loop gravity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakke, K., E-mail: kbakke@fisica.ufpb.br; Belich, H., E-mail: belichjr@gmail.com
2016-10-15
Based on the Standard Model Extension, we investigate relativistic quantum effects on a scalar particle in backgrounds of the Lorentz symmetry violation defined by a tensor field. We show that harmonic-type and linear-type confining potentials can stem from Lorentz symmetry breaking effects, and thus, relativistic bound state solutions can be achieved. We first analyse a possible scenario of the violation of the Lorentz symmetry that gives rise to a harmonic-type potential. In the following, we analyse another possible scenario of the breaking of the Lorentz symmetry that induces both harmonic-type and linear-type confining potentials. In this second case, we alsomore » show that not all values of the parameter associated with the intensity of the electric field are permitted in the search for polynomial solutions to the radial equation, where the possible values of this parameter are determined by the quantum numbers of the system and the parameters associated with the violation of the Lorentz symmetry.« less
Discovery of Lorentz-violating type II Weyl fermions in LaAlGe
Xu, Su-Yang; Alidoust, Nasser; Chang, Guoqing; Lu, Hong; Singh, Bahadur; Belopolski, Ilya; Sanchez, Daniel S.; Zhang, Xiao; Bian, Guang; Zheng, Hao; Husanu, Marious-Adrian; Bian, Yi; Huang, Shin-Ming; Hsu, Chuang-Han; Chang, Tay-Rong; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Strocov, Vladimir N.; Lin, Hsin; Jia, Shuang; Hasan, M. Zahid
2017-01-01
In quantum field theory, Weyl fermions are relativistic particles that travel at the speed of light and strictly obey the celebrated Lorentz symmetry. Their low-energy condensed matter analogs are Weyl semimetals, which are conductors whose electronic excitations mimic the Weyl fermion equation of motion. Although the traditional (type I) emergent Weyl fermions observed in TaAs still approximately respect Lorentz symmetry, recently, the so-called type II Weyl semimetal has been proposed, where the emergent Weyl quasiparticles break the Lorentz symmetry so strongly that they cannot be smoothly connected to Lorentz symmetric Weyl particles. Despite some evidence of nontrivial surface states, the direct observation of the type II bulk Weyl fermions remains elusive. We present the direct observation of the type II Weyl fermions in crystalline solid lanthanum aluminum germanide (LaAlGe) based on our photoemission data alone, without reliance on band structure calculations. Moreover, our systematic data agree with the theoretical calculations, providing further support on our experimental results. PMID:28630919
Searching for New Physics with Ultrahigh Energy Cosmic Rays
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.; Scully, Sean T.
2009-01-01
Ultrahigh energy cosmic rays that produce giant extensive showers of charged particles and photons when they interact in the Earth's atmosphere provide a unique tool to search for new physics. Of particular interest is the possibility of detecting a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10 (exp -35) m. We discuss here the possible signature of Lorentz invariance violation on the spectrum of ultrahigh energy cosmic rays as compared with present observations of giant air showers. We also discuss the possibilities of using more sensitive detection techniques to improve searches for Lorentz invariance violation in the future. Using the latest data from the Pierre Auger Observatory, we derive a best fit to the LIV parameter of 3 .0 + 1.5 - 3:0 x 10 (exp -23) ,corresponding to an upper limit of 4.5 x 10-23 at a proton Lorentz factor of approximately 2 x 10(exp 11) . This result has fundamental implications for quantum gravity models.
On the violation of the invariance of the light speed in theoretical investigations
NASA Astrophysics Data System (ADS)
Chubykalo, A.; Espinoza, A.; Gonzalez-Sanchez, A.; Gutiérrez Rodríguez, A.
2017-11-01
In this review, we analyze some of the most important theoretical attempts to challenge the invariance of the light speed postulated by the Special Theory of Relativity (STR). Most of those studies, however, show that STR has great stability with respect to various kinds of modifications in its axioms. This stability probably is due to the fact that in these modifications there is no so much a violation of the physical postulate of the invariance of the speed of light, as its mathematical expansion in the form of making resort to a more general affine space. In these modifications, we refer to more general transformation groups, including scale transformation of the speed of light and time c‧ = γc, t‧ = γ-1t.
Conditions for Lorentz-invariant superluminal information transfer without signaling
NASA Astrophysics Data System (ADS)
Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H.
2016-03-01
We understand emergent quantum mechanics in the sense that quantum mechanics describes processes of physical emergence relating an assumed sub-quantum physics to macroscopic boundary conditions. The latter can be shown to entail top-down causation, in addition to usual bottom-up scenarios. With this example it is demonstrated that definitions of “realism” in the literature are simply too restrictive. A prevailing manner to define realism in quantum mechanics is in terms of pre-determination independent of the measurement. With our counter-example, which actually is ubiquitous in emergent, or self-organizing, systems, we argue for realism without pre-determination. We refer to earlier results of our group showing how the guiding equation of the de Broglie-Bohm interpretation can be derived from a theory with classical ingredients only. Essentially, this corresponds to a “quantum mechanics without wave functions” in ordinary 3-space, albeit with nonlocal correlations. This, then, leads to the central question of how to deal with the nonlocality problem in a relativistic setting. We here show that a basic argument discussing the allegedly paradox time ordering of events in EPR-type two-particle experiments falls short of taking into account the contextuality of the experimental setup. Consequently, we then discuss under which circumstances (i.e. physical premises) superluminal information transfer (but not signaling) may be compatible with a Lorentz-invariant theory. Finally, we argue that the impossibility of superluminal signaling - despite the presence of superluminal information transfer - is not the result of some sort of conspiracy (á la “Nature likes to hide”), but the consequence of the impossibility to exactly reproduce in repeated experimental runs a state's preparation, or of the no-cloning theorem, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakke, K., E-mail: kbakke@fisica.ufpb.br; Furtado, C., E-mail: furtado@fisica.ufpb.br; Belich, H., E-mail: belichjr@gmail.com
2016-09-15
From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the violation of the Lorentz symmetry and write an effective metric for the cosmic string spacetime. Then, we investigate the arising of an analogue of the Anandan quantum phase for a relativistic Dirac neutral particle with a permanent magnetic dipole moment in the cosmic string spacetime under Lorentz symmetry breaking effects. Besides, we analyse the influence of the effects of the Lorentz symmetry violation and the topology of the defect on the Aharonov–Casher geometric quantum phase in the nonrelativistic limit.
Gauge invariance for a whole Abelian model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauca, J.; Doria, R.; Soares, W.
Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the ((1/2),(1/2)) representation there is a fields family {l_brace}A{sub {mu}I}{r_brace} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is themore » effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.« less
Lorentz- and CPT-symmetry studies in subatomic physics
NASA Astrophysics Data System (ADS)
Lehnert, Ralf
2016-12-01
Subatomic systems provide an exquisite test bench for spacetime symmetries. This work motivates such measurements, reviews the effective field theory test framework for the description of Lorentz and CPT violation, and employs this framework to study the phenomenology of spacetime-symmetry breaking in various subatomic systems.
Living with ghosts in Lorentz invariant theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garriga, Jaume; Vilenkin, Alexander, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu
2013-01-01
We argue that theories with ghosts may have a long lived vacuum state even if all interactions are Lorentz preserving. In space-time dimension D = 2, we consider the tree level decay rate of the vacuum into ghosts and ordinary particles mediated by non-derivative interactions, showing that this is finite and logarithmically growing in time. For D > 2, the decay rate is divergent unless we assume that the interaction between ordinary matter and the ghost sector is soft in the UV, so that it can be described in terms of non-local form factors rather than point-like vertices. We providemore » an example of a nonlocal gravitational-strength interaction between the two sectors, which appears to satisfy all observational constraints.« less
Modeling the Violation of Reward Maximization and Invariance in Reinforcement Schedules
La Camera, Giancarlo; Richmond, Barry J.
2008-01-01
It is often assumed that animals and people adjust their behavior to maximize reward acquisition. In visually cued reinforcement schedules, monkeys make errors in trials that are not immediately rewarded, despite having to repeat error trials. Here we show that error rates are typically smaller in trials equally distant from reward but belonging to longer schedules (referred to as “schedule length effect”). This violates the principles of reward maximization and invariance and cannot be predicted by the standard methods of Reinforcement Learning, such as the method of temporal differences. We develop a heuristic model that accounts for all of the properties of the behavior in the reinforcement schedule task but whose predictions are not different from those of the standard temporal difference model in choice tasks. In the modification of temporal difference learning introduced here, the effect of schedule length emerges spontaneously from the sensitivity to the immediately preceding trial. We also introduce a policy for general Markov Decision Processes, where the decision made at each node is conditioned on the motivation to perform an instrumental action, and show that the application of our model to the reinforcement schedule task and the choice task are special cases of this general theoretical framework. Within this framework, Reinforcement Learning can approach contextual learning with the mixture of empirical findings and principled assumptions that seem to coexist in the best descriptions of animal behavior. As examples, we discuss two phenomena observed in humans that often derive from the violation of the principle of invariance: “framing,” wherein equivalent options are treated differently depending on the context in which they are presented, and the “sunk cost” effect, the greater tendency to continue an endeavor once an investment in money, effort, or time has been made. The schedule length effect might be a manifestation of these phenomena
Modeling the violation of reward maximization and invariance in reinforcement schedules.
La Camera, Giancarlo; Richmond, Barry J
2008-08-08
It is often assumed that animals and people adjust their behavior to maximize reward acquisition. In visually cued reinforcement schedules, monkeys make errors in trials that are not immediately rewarded, despite having to repeat error trials. Here we show that error rates are typically smaller in trials equally distant from reward but belonging to longer schedules (referred to as "schedule length effect"). This violates the principles of reward maximization and invariance and cannot be predicted by the standard methods of Reinforcement Learning, such as the method of temporal differences. We develop a heuristic model that accounts for all of the properties of the behavior in the reinforcement schedule task but whose predictions are not different from those of the standard temporal difference model in choice tasks. In the modification of temporal difference learning introduced here, the effect of schedule length emerges spontaneously from the sensitivity to the immediately preceding trial. We also introduce a policy for general Markov Decision Processes, where the decision made at each node is conditioned on the motivation to perform an instrumental action, and show that the application of our model to the reinforcement schedule task and the choice task are special cases of this general theoretical framework. Within this framework, Reinforcement Learning can approach contextual learning with the mixture of empirical findings and principled assumptions that seem to coexist in the best descriptions of animal behavior. As examples, we discuss two phenomena observed in humans that often derive from the violation of the principle of invariance: "framing," wherein equivalent options are treated differently depending on the context in which they are presented, and the "sunk cost" effect, the greater tendency to continue an endeavor once an investment in money, effort, or time has been made. The schedule length effect might be a manifestation of these phenomena in monkeys.
Global Dirac bispinor entanglement under Lorentz boosts
NASA Astrophysics Data System (ADS)
Bittencourt, Victor A. S. V.; Bernardini, Alex E.; Blasone, Massimo
2018-03-01
The effects of Lorentz boosts on the quantum entanglement encoded by a pair of massive spin-1/2 particles are described according to the Lorentz covariant structure described by Dirac bispinors. The quantum system considered incorporates four degrees of freedom: two of them related to the bispinor intrinsic parity and the other two related to the bispinor spin projection, i.e., the Dirac particle helicity. Because of the natural multipartite structure involved, the Meyer-Wallach global measure of entanglement is preliminarily used for computing global quantum correlations, while the entanglement separately encoded by spin degrees of freedom is measured through the negativity of the reduced two-particle spin-spin state. A general framework to compute the changes on quantum entanglement induced by a boost is developed and then specialized to describe three particular antisymmetric two-particle states. According to the results obtained, two-particle spin-spin entanglement cannot be created by the action of a Lorentz boost in a spin-spin separable antisymmetric state. On the other hand, the maximal spin-spin entanglement encoded by antisymmetric superpositions is degraded by Lorentz boosts driven by high-speed frame transformations. Finally, the effects of boosts on chiral states are shown to exhibit interesting invariance properties, which can only be obtained through such a Lorentz covariant formulation of the problem.
A strong astrophysical constraint on the violation of special relativity by quantum gravity.
Jacobson, T; Liberati, S; Mattingly, D
2003-08-28
Special relativity asserts that physical phenomena appear the same to all unaccelerated observers. This is called Lorentz symmetry and relates long wavelengths to short ones: if the symmetry is exact it implies that space-time must look the same at all length scales. Several approaches to quantum gravity, however, suggest that there may be a microscopic structure of space-time that leads to a violation of Lorentz symmetry. This might arise because of the discreteness or non-commutivity of space-time, or through the action of extra dimensions. Here we determine a very strong constraint on a type of Lorentz violation that produces a maximum electron speed less than the speed of light. We use the observation of 100-MeV synchrotron radiation from the Crab nebula to improve the previous limit by a factor of 40 million, ruling out this type of Lorentz violation, and thereby providing an important constraint on theories of quantum gravity.
Symmetry Violation in Hadron Physics
NASA Astrophysics Data System (ADS)
Gell-Mann, Murray
1982-01-01
The following sections are included: * INTRODUCTION * SU(3) × SU(3) SYMMETRY * VIOLATION OF SU(3) × SU(3) IN STRONG INTERACTIONS * POSSIBLE CONNECTIONS OF STRONG VIOLATION WITH WEAK AND ELECTROMAGNETIC EFFECTS * SCALE INVARIANCE AND THE DILATION OPERATOR * THE BREAKING OF SCALE INVARIANCE * RELATION BETWEEN VIOLATIONS OF SCALE INVARIANCE AND OF SU(3) × SU(3) * REFERENCES *Note: Much of the work presented in the next two sections was done this summer in collaboration with Lowell Brown. It is based partly on the pioneering research of Kastrup, Mack, Wess, Kenneth Wilson, and others. *In this section and the next, our particle states are normalized to one particle per unit volume.
NASA Astrophysics Data System (ADS)
de Andrade, L. C. Garcia
Recently Kahniashvili et al.9 presented a unified treatment for ultraviolet Lorentz violation (LV) testing through electromagnetic wave propagation in magnetized plasmas, based on dispersion and rotation measured data. Based on the fact discovered recently by Kostelecky et al., 3 that LV may place constraints on spacetime torsion, in this paper it is shown that on the limit of very low frequency torsion waves, it is possible to constraint torsion from Faraday rotation and CMB on a similar fashion as Minkowski spacetime plus torsion. Here, the Maxwells modified equations are obtained by a perturbative method introduced by de Sabbata and Gasperini [Introduction to Gravitation (World Scientific, 1980)]. Torsion is constraint to QCMB≈10-18 GeV which is not so stringent as the 10-31 GeV obtained by Kostelecky et al. However, Gamma-Ray Bursts (GRBs) may lead to the more string value obtained by Kostelecky et al.Another interesting constraint on torsion is shown to be placed by galactic dynamo seed magnetic fields. For torsion effects be compatible with the galactic dynamo seeds, one obtains a torsion constraint of 10-33 GeV which is two orders of magnitude more stringent that the above Kostelecky et al. limit.
Dynamical Lorentz symmetry breaking in 3D and charge fractionalization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charneski, B.; Gomes, M.; Silva, A. J. da
2009-03-15
We analyze the breaking of Lorentz invariance in a 3D model of fermion fields self-coupled through four-fermion interactions. The low-energy limit of the theory contains various submodels which are similar to those used in the study of graphene or in the description of irrational charge fractionalization.
Testing Lorentz Symmetry with Lunar Laser Ranging
NASA Astrophysics Data System (ADS)
Bourgoin, A.; Hees, A.; Bouquillon, S.; Le Poncin-Lafitte, C.; Francou, G.; Angonin, M.-C.
2016-12-01
Lorentz symmetry violations can be parametrized by an effective field theory framework that contains both general relativity and the standard model of particle physics called the standard-model extension (SME). We present new constraints on pure gravity SME coefficients obtained by analyzing lunar laser ranging (LLR) observations. We use a new numerical lunar ephemeris computed in the SME framework and we perform a LLR data analysis using a set of 20 721 normal points covering the period of August, 1969 to December, 2013. We emphasize that linear combination of SME coefficients to which LLR data are sensitive and not the same as those fitted in previous postfit residuals analysis using LLR observations and based on theoretical grounds. We found no evidence for Lorentz violation at the level of 10-8 for s¯T X, 10-12 for s¯X Y and s¯X Z, 10-11 for s¯X X-s¯Y Y and s¯X X+s¯Y Y-2 s¯Z Z-4.5 s¯Y Z, and 10-9 for s¯T Y+0.43 s¯T Z. We improve previous constraints on SME coefficient by a factor up to 5 and 800 compared to postfit residuals analysis of respectively binary pulsars and LLR observations.
Electric dipole moments with and beyond flavor invariants
NASA Astrophysics Data System (ADS)
Smith, Christopher; Touati, Selim
2017-11-01
In this paper, the flavor structure of quark and lepton electric dipole moments in the SM and beyond is investigated using tools inspired from Minimal Flavor Violation. While Jarlskog-like flavor invariants are adequate for estimating CP-violation from closed fermion loops, non-invariant structures arise from rainbow-like processes. Our goal is to systematically construct these latter flavor structures in the quark and lepton sectors, assuming different mechanisms for generating neutrino masses. Numerically, they are found typically much larger, and not necessarily correlated with, Jarlskog-like invariants. Finally, the formalism is adapted to deal with a third class of flavor structures, sensitive to the flavored U (1) phases, and used to study the impact of the strong CP-violating interaction and the interplay between the neutrino Majorana phases and possible baryon and/or lepton number violating interactions.
Phenomenologically viable Lorentz-violating quantum gravity.
Sotiriou, Thomas P; Visser, Matt; Weinfurtner, Silke
2009-06-26
Horava's "Lifschitz point gravity" has many desirable features, but in its original incarnation one is forced to accept a nonzero cosmological constant of the wrong sign to be compatible with observation. We develop an extension of Horava's model that abandons "detailed balance" and regains parity invariance, and in 3+1 dimensions exhibit all five marginal (renormalizable) and four relevant (super-renormalizable) operators, as determined by power counting. We also consider the classical limit of this theory, evaluate the Hamiltonian and supermomentum constraints, and extract the classical equations of motion in a form similar to the Arnowitt-Deser-Misner formulation of general relativity. This puts the model in a framework amenable to developing detailed precision tests.
Search for the Footprints of New Physics with Laboratory and Cosmic Neutrinos
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2017-01-01
Observations of high energy neutrinos, both in the laboratory and from cosmic sources, can be a useful probe in searching for new physics. Such observations can provide sensitive tests of Lorentz invariance violation (LIV), which may be a the result of quantum gravity physics (QG). We review some observationally testable consequences of LIV using effective field theory (EFT) formalism. To do this, one can postulate the existence of additional small LIV terms in free particle Lagrangians, suppressed by powers of the Planck mass. The observational consequences of such terms are then examined. In particular, one can place limits on a class of non-renormalizable, mass dimension five and six Lorentz invariance violating operators that may be the result of QG.
Seven Experiments to Test the Local Lorentz Invariance of c
NASA Technical Reports Server (NTRS)
Gezari, Daniel Y.
2005-01-01
The speed of light has never been measured directly with a moving detector to test the fundamental assertion of special relativity that c is invariant to motion of the observer. Seven simple experiments are proposed, four of which could test the invariance of c to motion of the detector. Three other observations of moving sources could test Einstein s second postulate and the relativity of stellar aberration. There are lingering concerns that the speed of light may depend on the motion of the observer, after all. This issue can now be resolved by experiment.
A limit on the variation of the speed of light arising from quantum gravity effects.
Abdo, A A; Ackermann, M; Ajello, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Bloom, E D; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burgess, J M; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaplin, V; Charles, E; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Connaughton, V; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dingus, B L; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Fishman, G; Focke, W B; Foschini, L; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Gibby, L; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Granot, J; Greiner, J; Grenier, I A; Grondin, M-H; Grove, J E; Grupe, D; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hoversten, E A; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Kippen, R M; Knödlseder, J; Kocevski, D; Kouveliotou, C; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McBreen, S; McEnery, J E; McGlynn, S; Mészáros, P; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Petrosian, V; Piron, F; Porter, T A; Preece, R; Rainò, S; Ramirez-Ruiz, E; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Stecker, F W; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Toma, K; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Uehara, T; Usher, T L; van der Horst, A J; Vasileiou, V; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Wang, P; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M
2009-11-19
A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximately 1.62 x 10(-33) cm or E(Planck) = M(Planck)c(2) approximately 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves. Here we report the detection of emission up to approximately 31 GeV from the distant and short GRB 090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories in which the quantum nature of space-time on a very small scale linearly alters the speed of light.
New test of Lorentz symmetry using ultrahigh-energy cosmic rays
NASA Astrophysics Data System (ADS)
Anchordoqui, Luis A.; Soriano, Jorge F.
2018-02-01
We propose an innovative test of Lorentz symmetry by observing pairs of simultaneous parallel extensive air showers produced by the fragments of ultrahigh-energy cosmic ray nuclei which disintegrated in collisions with solar photons. We show that the search for a cross-correlation of showers in arrival time and direction becomes background free for an angular scale ≲3 ° and a time window O (10 s ) . We also show that if the solar photo-disintegration probability of helium is O (10-5.5) then the hunt for spatiotemporal coincident showers could be within range of existing cosmic ray facilities, such as the Pierre Auger Observatory. We demonstrate that the actual observation of a few events can be used to constrain Lorentz violating dispersion relations of the nucleon.
Cohen, Andrew G; Glashow, Sheldon L
2006-07-14
By very special relativity (VSR) we mean descriptions of nature whose space-time symmetries are certain proper subgroups of the Poincaré group. These subgroups contain space-time translations together with at least a two-parameter subgroup of the Lorentz group isomorphic to that generated by K(x) + J(y) and K(y)- J(x). We find that VSR implies special relativity (SR) in the context of local quantum field theory or of conservation. Absent both of these added hypotheses, VSR provides a simulacrum of SR for which most of the consequences of Lorentz invariance remain wholly or essentially intact, and for which many sensitive searches for departures from Lorentz invariance must fail. Several feasible experiments are discussed for which Lorentz-violating effects in VSR may be detectable.
Finsler-type modification of the Coulomb law
NASA Astrophysics Data System (ADS)
Itin, Yakov; Lämmerzahl, Claus; Perlick, Volker
2014-12-01
Finsler geometry is a natural generalization of pseudo-Riemannian geometry. It can be motivated e.g. by a modified version of the Ehlers-Pirani-Schild axiomatic approach to space-time theory. Also, some scenarios of quantum gravity suggest a modified dispersion relation which could be phrased in terms of Finsler geometry. On a Finslerian space-time, the universality of free fall is still satisfied but local Lorentz invariance is violated in a way not covered by standard Lorentz invariance violation schemes. In this paper we consider a Finslerian modification of Maxwell's equations. The corrections to the Coulomb potential and to the hydrogen energy levels are computed. We find that the Finsler metric corrections yield a splitting of the energy levels. Experimental data provide bounds for the Finsler parameters.
Black hole entropy and Lorentz-diffeomorphism Noether charge
NASA Astrophysics Data System (ADS)
Jacobson, Ted; Mohd, Arif
2015-12-01
We show that, in the first or second order orthonormal frame formalism, black hole entropy is the horizon Noether charge for a combination of diffeomorphism and local Lorentz symmetry involving the Lie derivative of the frame. The Noether charge for diffeomorphisms alone is unsuitable, since a regular frame cannot be invariant under the flow of the Killing field at the bifurcation surface. We apply this formalism to Lagrangians polynomial in wedge products of the frame field 1-form and curvature 2-form, including general relativity, Lovelock gravity, and "topological" terms in four dimensions.
A limit on the variation of the speed of light arising from quantum gravity effects
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2009-10-28
A cornerstone of Einstein's special relativity is Lorentz invariance—the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l Planck ≈ 1.62 x 10 -33 cm or E Planck = M Planckc 2 ≈ 1.22 x 10 19 GeV), at which quantum effects are expected to strongly affect the nature of space–time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale.more » A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in γ-ray burst (GRB) light-curves. In this paper, we report the detection of emission up to ~31 GeV from the distant and short GRB 090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E Planck on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l Planck/1.2 on the length scale of the effect). Finally, our results disfavour quantum-gravity theories in which the quantum nature of space–time on a very small scale linearly alters the speed of light.« less
Translation invariant time-dependent massive gravity: Hamiltonian analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mourad, Jihad; Steer, Danièle A.; Noui, Karim, E-mail: mourad@apc.univ-paris7.fr, E-mail: karim.noui@lmpt.univ-tours.fr, E-mail: steer@apc.univ-paris7.fr
2014-09-01
The canonical structure of the massive gravity in the first order moving frame formalism is studied. We work in the simplified context of translation invariant fields, with mass terms given by general non-derivative interactions, invariant under the diagonal Lorentz group, depending on the moving frame as well as a fixed reference frame. We prove that the only mass terms which give 5 propagating degrees of freedom are the dRGT mass terms, namely those which are linear in the lapse. We also complete the Hamiltonian analysis with the dynamical evolution of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Andrew G.; Glashow, Sheldon L.
2006-07-14
By very special relativity (VSR) we mean descriptions of nature whose space-time symmetries are certain proper subgroups of the Poincare group. These subgroups contain space-time translations together with at least a two-parameter subgroup of the Lorentz group isomorphic to that generated by K{sub x}+J{sub y} and K{sub y}-J{sub x}. We find that VSR implies special relativity (SR) in the context of local quantum field theory or of CP conservation. Absent both of these added hypotheses, VSR provides a simulacrum of SR for which most of the consequences of Lorentz invariance remain wholly or essentially intact, and for which many sensitivemore » searches for departures from Lorentz invariance must fail. Several feasible experiments are discussed for which Lorentz-violating effects in VSR may be detectable.« less
Electroweak standard model with very special relativity
NASA Astrophysics Data System (ADS)
Alfaro, Jorge; González, Pablo; Ávila, Ricardo
2015-05-01
The very special relativity electroweak Standard Model (VSR EW SM) is a theory with SU (2 )L×U (1 )R symmetry, with the same number of leptons and gauge fields as in the usual Weinberg-Salam model. No new particles are introduced. The model is renormalizable and unitarity is preserved. However, photons obtain mass and the massive bosons obtain different masses for different polarizations. Besides, neutrino masses are generated. A VSR-invariant term will produce neutrino oscillations and new processes are allowed. In particular, we compute the rate of the decays μ →e +γ . All these processes, which are forbidden in the electroweak Standard Model, put stringent bounds on the parameters of our model and measure the violation of Lorentz invariance. We investigate the canonical quantization of this nonlocal model. Second quantization is carried out, and we obtain a well-defined particle content. Additionally, we do a counting of the degrees of freedom associated with the gauge bosons involved in this work, after spontaneous symmetry breaking has been realized. Violations of Lorentz invariance have been predicted by several theories of quantum gravity [J. Alfaro, H. Morales-Tecotl, and L. F. Urrutia, Phys. Rev. Lett. 84, 2318 (2000); Phys. Rev. D 65, 103509 (2002)]. It is a remarkable possibility that the low-energy effects of Lorentz violation induced by quantum gravity could be contained in the nonlocal terms of the VSR EW SM.
Towards thermodynamics of universal horizons in Einstein-æther theory.
Berglund, Per; Bhattacharyya, Jishnu; Mattingly, David
2013-02-15
Holography grew out of black hole thermodynamics, which relies on the causal structure and general covariance of general relativity. In Einstein-æther theory, a generally covariant theory with a dynamical timelike unit vector, every solution breaks local Lorentz invariance, thereby grossly modifying the causal structure of gravity. However, there are still absolute causal boundaries, called "universal horizons," which are not Killing horizons yet obey a first law of black hole mechanics and must have an entropy if they do not violate a generalized second law. We couple a scalar field to the timelike vector and show via the tunneling approach that the universal horizon radiates as a blackbody at a fixed temperature, even if the scalar field equations also violate local Lorentz invariance. This suggests that the class of holographic theories may be much broader than currently assumed.
Determination of the atmospheric neutrino flux and searches for new physics with AMANDA-II
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Breder, D.; Burgess, T.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cohen, S.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Day, C. T.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; De Young, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Gerhardt, L.; Gladstone, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hasegawa, Y.; Heise, J.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Knops, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Lauer, R.; Leich, H.; Lennarz, D.; Lucke, A.; Lundberg, J.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; McParland, C. P.; Meagher, K.; Merck, M.; Mészáros, P.; Middell, E.; Milke, N.; Miyamoto, H.; Mohr, A.; Montaruli, T.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Patton, S.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Potthoff, N.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Terranova, C.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; Voigt, B.; Walck, C.; Waldenmaier, T.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebusch, C. H.; Wiedemann, A.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.
2009-05-01
The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance or quantum decoherence. Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on violation of Lorentz invariance and quantum decoherence parameters using a maximum likelihood method. Given the absence of evidence for new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV.
Lorentz symmetry breaking in a cosmological context
NASA Astrophysics Data System (ADS)
Gresham, Moira I.
This thesis is comprised primarily of work from three independent papers, written in collaboration with Sean Carroll, Tim Dulaney, and Heywood Tam. The original motivation for the projects undertaken came from revisiting the standard assumption of spatial isotropy during inflation. Each project relates to the spontaneous breaking of Lorentz symmetry---in early Universe cosmology or in the context of effective field theory, in general. Chapter 1 is an introductory chapter that provides context for the thesis. Chapter 2 is an investigation of the stability of theories in which Lorentz invariance is spontaneously broken by fixed-norm vector "aether" fields. It is shown that models with generic kinetic terms are plagued either by ghosts or by tachyons, and are therefore physically unacceptable. Chapter 3 is an investigation of the phenomenological properties of the one low-energy effective theory of spontaneous Lorentz symmetry breaking found in the previous chapter to have a globally bounded Hamiltonian and a perturbatively stable vacuum---the theory in which the Lagrangian takes the form of a sigma model. In chapter 4 cosmological perturbations in a dynamical theory of inflation in which an Abelian gauge field couples directly to the inflaton are examined. The dominant effects of a small, persistent anisotropy on the primordial gravitational wave and curvature perturbation power spectra are found using the "in-in" formalism of perturbation theory. It is found that the primordial power spectra of cosmological perturbations gain significant direction dependence and that the fractional direction dependence of the tensor power spectrum is suppressed in comparison to that of the scalar power spectrum.
Anticipating the higher generations of quarks from rephasing invariance of the mixing matrix
NASA Astrophysics Data System (ADS)
Botella, F. J.; Chau, Ling-Lie
1986-02-01
We show that the number of invariant CP violating parameters XCP jumps from the unique universal one in three generations to nine in the four-generation case, saturating the parameter space for generation numbers higher than three. This can lead to drastically different consequences in CP-violating phenomena. We give the quark mass matrices in the three-generation case and speculate for higher generations. We also give some invariant definitions of “maximal” CP violation.
NASA Astrophysics Data System (ADS)
Zhang, Qi; Wu, Biao
2018-01-01
We present a theoretical framework for the dynamics of bosonic Bogoliubov quasiparticles. We call it Lorentz quantum mechanics because the dynamics is a continuous complex Lorentz transformation in complex Minkowski space. In contrast, in usual quantum mechanics, the dynamics is the unitary transformation in Hilbert space. In our Lorentz quantum mechanics, three types of state exist: space-like, light-like and time-like. Fundamental aspects are explored in parallel to the usual quantum mechanics, such as a matrix form of a Lorentz transformation, and the construction of Pauli-like matrices for spinors. We also investigate the adiabatic evolution in these mechanics, as well as the associated Berry curvature and Chern number. Three typical physical systems, where bosonic Bogoliubov quasi-particles and their Lorentz quantum dynamics can arise, are presented. They are a one-dimensional fermion gas, Bose-Einstein condensate (or superfluid), and one-dimensional antiferromagnet.
Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction
NASA Astrophysics Data System (ADS)
Rovelli, Carlo; Speziale, Simone
2003-03-01
A Planck-scale minimal observable length appears in many approaches to quantum gravity. It is sometimes argued that this minimal length might conflict with Lorentz invariance, because a boosted observer can see the minimal length further Lorentz contracted. We show that this is not the case within loop quantum gravity. In loop quantum gravity the minimal length (more precisely, minimal area) does not appear as a fixed property of geometry, but rather as the minimal (nonzero) eigenvalue of a quantum observable. The boosted observer can see the same observable spectrum, with the same minimal area. What changes continuously in the boost transformation is not the value of the minimal length: it is the probability distribution of seeing one or the other of the discrete eigenvalues of the area. We discuss several difficulties associated with boosts and area measurement in quantum gravity. We compute the transformation of the area operator under a local boost, propose an explicit expression for the generator of local boosts, and give the conditions under which its action is unitary.
Effect of VSR invariant Chern-Simons Lagrangian on photon polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayak, Alekha C.; Verma, Ravindra K.; Jain, Pankaj, E-mail: acnayak@iitk.ac.in, E-mail: ravindkv@iitk.ac.in, E-mail: pkjain@iitk.ac.in
2015-07-01
We propose a generalization of the Chern-Simons (CS) Lagrangian which is invariant under the SIM(2) transformations but not under the full Lorentz group. The generalized lagrangian is also invariant under a SIM(2) gauge transformation. We study the effect of such a term on radiation propagating over cosmological distances. We find that the dominant effect of this term is to produce circular polarization as radiation propagates through space. We use the circular polarization data from distant radio sources in order to impose a limit on this term.
Effect of VSR invariant Chern-Simons Lagrangian on photon polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayak, Alekha C.; Verma, Ravindra K.; Jain, Pankaj
We propose a generalization of the Chern-Simons (CS) Lagrangian which is invariant under the SIM(2) transformations but not under the full Lorentz group. The generalized lagrangian is also invariant under a SIM(2) gauge transformation. We study the effect of such a term on radiation propagating over cosmological distances. We find that the dominant effect of this term is to produce circular polarization as radiation propagates through space. We use the circular polarization data from distant radio sources in order to impose a limit on this term.
C P -invariance violation at short-baseline experiments in 3 +1 neutrino scenarios
NASA Astrophysics Data System (ADS)
de Gouvêa, André; Kelly, Kevin J.; Kobach, Andrew
2015-03-01
New neutrino degrees of freedom allow for more sources of charge parity- (C P ) invariance violation (CPV). We explore the requirements for accessing C P -odd mixing parameters in the so-called 3 +1 scenario, where one assumes the existence of one extra, mostly sterile neutrino degree of freedom, heavier than the other three mass eigenstates. As a first step, we concentrate on the νe→νμ appearance channel in a hypothetical, upgraded version of the ν STORM proposal. We establish that the optimal baseline for CPV studies depends strongly on the value of Δ m142—the new mass-squared difference—and that the ability to observe CPV depends significantly on whether the experiment is performed at the optimal baseline. Even at the optimal baseline, it is very challenging to see CPV in 3 +1 scenarios if one considers only one appearance channel. Full exploration of CPV in short-baseline experiments will require precision measurements of tau appearance, a challenge significantly beyond what is currently being explored by the experimental neutrino community.
NASA Astrophysics Data System (ADS)
Shi, Bowen; Raby, Stuart
2015-10-01
We provide a systematic treatment of chemical equilibrium in the presence of a specific type of time dependent background. The type of time dependent background we consider appears, for example, in recently proposed axion/Majoron leptogenesis models [A. Kusenko, K. Schmitz, and T. T. Yanagida, Phys. Rev. Lett. 115, 011302 (2015) and M. Ibe and K. Kaneta, Phys. Rev. D 92, 035019 (2015)]. In describing the chemical equilibrium we use quantities which are invariant under redefinition of fermion phases (we refer to this redefinition as a change of basis for short In this paper, change of basis does not mean change of Lorentz frame. All calculations in this paper are performed in the center-of-momentum frame of the thermal plasma, i.e. the Lorentz frame in which the average momentum of particles is zero.), and therefore it is a basis invariant treatment. The change of the anomaly terms due to the change of the path integral measure [K. Fujikawa, Phys. Rev. Lett. 42, 1195 (1979) and K. Fujikawa, Phys. Rev. D 29, 285 (1984)] under a basis change is taken into account. We find it is useful to go back and forth between different bases, and there are insights which can be more easily obtained in one basis rather than another. A toy model is provided to illustrate the ideas. For the axion leptogenesis model [A. Kusenko, K. Schmitz, and T. T. Yanagida, Phys. Rev. Lett. 115, 011302 (2015)], our result suggests that at T >1013 GeV , when sphaleron processes decouple and ΓB +L≪H <ΓL (where H is the Hubble parameter at temperature T and ΓL is the Δ L =2 lepton number violating interaction rate), the amount of B -L created is controlled by the smallness of the sphaleron interaction rate, ΓB +L. Therefore it is not as efficient as described. In addition, we notice an interesting modification of gauge boson dispersion relations at subleading order.
Casimir effect in presence of spontaneous Lorentz symmetry breaking
NASA Astrophysics Data System (ADS)
Escobar, C. A.
2018-01-01
The Casimir effect is one of the most remarkable consequences of the nonzero vacuum energy predicted by quantum field theory. In this contribution we study the Lorentz-violation effects of the minimal standard-model extension on the Casimir force between two parallel conducting plates in the vacuum. Using a perturbative method, we compute the relevant Green’s function which satisfies given boundary conditions. The standard point-splitting technique allow us to express the vacuum expectation value of the stress-energy tensor in terms of this Green’s function. Finally, we study the Casimir energy and the Casimir force paying particular attention to the quantum effects as approaching the plates.
Directly detecting isospin-violating dark matter
NASA Astrophysics Data System (ADS)
Kelso, Chris; Kumar, Jason; Marfatia, Danny; Sandick, Pearl
2018-03-01
We consider the prospects for multiple dark matter direct detection experiments to determine if the interactions of a dark matter candidate are isospin-violating. We focus on theoretically well-motivated examples of isospin-violating dark matter (IVDM), including models in which dark matter interactions with nuclei are mediated by a dark photon, a Z , or a squark. We determine that the best prospects for distinguishing IVDM from the isospin-invariant scenario arise in the cases of dark photon-or Z -mediated interactions, and that the ideal experimental scenario would consist of large exposure xenon- and neon-based detectors. If such models just evade current direct detection limits, then one could distinguish such models from the standard isospin-invariant case with two detectors with of order 100 ton-year exposure.
Atomicity violation detection using access interleaving invariants
Zhou, Yuanyuan; Lu, Shan; Tucek, Joseph Andrew
2013-09-10
During execution of a program, the situation where the atomicity of a pair of instructions that are to be executed atomically is violated is identified, and a bug is detected as occurring in the program at the pair of instructions. The pairs of instructions that are to be executed atomically can be identified in different manners, such as by executing a program multiple times and using the results of those executions to automatically identify the pairs of instructions.
Realizing total reciprocity violation in the phase for photon scattering
Deák, László; Bottyán, László; Fülöp, Tamás; Merkel, Dániel Géza; Nagy, Dénes Lajos; Sajti, Szilárd; Schulze, Kai Sven; Spiering, Hartmut; Uschmann, Ingo; Wille, Hans-Christian
2017-01-01
Reciprocity is when wave or quantum scattering satisfies a symmetry property, connecting a scattering process with the reversed one. While reciprocity involves the interchange of source and detector, it is fundamentally different from rotational invariance, and is a generalization of time reversal invariance, occurring in absorptive media as well. Due to its presence at diverse areas of physics, it admits a wide variety of applications. For polarization dependent scatterings, reciprocity is often violated, but violation in the phase of the scattering amplitude is much harder to experimentally observe than violation in magnitude. Enabled by the advantageous properties of nuclear resonance scattering of synchrotron radiation, we have measured maximal, i.e., 180-degree, reciprocity violation in the phase. For accessing phase information, we introduced a new version of stroboscopic detection. The scattering setting was devised based on a generalized reciprocity theorem that opens the way to construct new types of reciprocity related devices. PMID:28225031
Realizing total reciprocity violation in the phase for photon scattering.
Deák, László; Bottyán, László; Fülöp, Tamás; Merkel, Dániel Géza; Nagy, Dénes Lajos; Sajti, Szilárd; Schulze, Kai Sven; Spiering, Hartmut; Uschmann, Ingo; Wille, Hans-Christian
2017-02-22
Reciprocity is when wave or quantum scattering satisfies a symmetry property, connecting a scattering process with the reversed one. While reciprocity involves the interchange of source and detector, it is fundamentally different from rotational invariance, and is a generalization of time reversal invariance, occurring in absorptive media as well. Due to its presence at diverse areas of physics, it admits a wide variety of applications. For polarization dependent scatterings, reciprocity is often violated, but violation in the phase of the scattering amplitude is much harder to experimentally observe than violation in magnitude. Enabled by the advantageous properties of nuclear resonance scattering of synchrotron radiation, we have measured maximal, i.e., 180-degree, reciprocity violation in the phase. For accessing phase information, we introduced a new version of stroboscopic detection. The scattering setting was devised based on a generalized reciprocity theorem that opens the way to construct new types of reciprocity related devices.
NASA Astrophysics Data System (ADS)
Zhao, Chengliang; Cai, Yangjian
2011-05-01
Based on the generalized Huygens-Fresnel integral, propagation of partially coherent Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system in a turbulent atmosphere was investigated. Analytical propagation formulae were derived for the cross-spectral densities of partially coherent Lorentz and Lorentz-Gauss beams. As an application example, the focusing properties of partially coherent Gaussian, Lorentz and Lorentz-Gauss beams in a turbulent atmosphere and in free space were studied numerically and comparatively. It is found that the focusing properties of such beams are closely related to the initial coherence length and the structure constant of turbulence. By choosing a suitable initial coherence length, a partially coherent Lorentz beam can be focused more tightly than a Gaussian or Lorentz-Gauss beam in free space or in a turbulent atmosphere with small structure constant at the geometrical focal plane.
Finding Mutual Exclusion Invariants in Temporal Planning Domains
NASA Technical Reports Server (NTRS)
Bernardini, Sara; Smith, David E.
2011-01-01
We present a technique for automatically extracting temporal mutual exclusion invariants from PDDL2.2 planning instances. We first identify a set of invariant candidates by inspecting the domain and then check these candidates against properties that assure invariance. If these properties are violated, we show that it is sometimes possible to refine a candidate by adding additional propositions and turn it into a real invariant. Our technique builds on other approaches to invariant synthesis presented in the literature, but departs from their limited focus on instantaneous discrete actions by addressing temporal and numeric domains. To deal with time, we formulate invariance conditions that account for both the entire structure of the operators (including the conditions, rather than just the effects) and the possible interactions between operators. As a result, we construct a technique that is not only capable of identifying invariants for temporal domains, but is also able to find a broader set of invariants for non-temporal domains than the previous techniques.
NASA Astrophysics Data System (ADS)
Başkal, Sibel
2015-11-01
This book explains the Lorentz mathematical group in a language familiar to physicists. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group of the four-dimensional Minkowski space is still very strange to most present-day physicists. It plays an essential role in understanding particles moving at close to light speed and is becoming the essential language for quantum optics, classical optics, and information science. The book is based on papers and books published by the authors on the representations of the Lorentz group based on harmonic oscillators and their applications to high-energy physics and to Wigner functions applicable to quantum optics. It also covers the two-by-two representations of the Lorentz group applicable to ray optics, including cavity, multilayer and lens optics, as well as representations of the Lorentz group applicable to Stokes parameters and the Poincaré sphere on polarization optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahuatzin, G.; Bautista, I.; Hernandez-Lopez, J. A.
A constant antisymmetric 2-tensor can arise in general relativity with spontaneous symmetry breaking or in field theories formulated in a noncommutative space-time. In this work, the one-loop contribution of a nonstandard WW{gamma} vertex on the flavor violating quark transition q{sub i}{yields}q{sub j}{gamma} is studied in the context of the electroweak Yang-Mills sector extended with a Lorentz-violating constant 2-tensor. An exact analytical expression for the on-shell case is presented. It is found that the loop amplitude is gauge independent, electromagnetic gauge invariant, and free of ultraviolet divergences. The dipolar contribution to the b{yields}s{gamma} transition together with the experimental data on themore » B{yields}X{sub s{gamma}} decay is used to derive the constraint {Lambda}{sub LV}>1.96 TeV on the Lorentz-violating scale.« less
Torsion Bounds from CP Violation α2-DYNAMO in Axion-Photon Cosmic Plasma
NASA Astrophysics Data System (ADS)
Garcia de Andrade, L. C.
Years ago Mohanty and Sarkar [Phys. Lett. B 433, 424 (1998)] have placed bounds on torsion mass from K meson physics. In this paper, associating torsion to axions a la Campanelli et al. [Phys. Rev. D 72, 123001 (2005)], it is shown that it is possible to place limits on spacetime torsion by considering an efficient α2-dynamo CP violation term. Therefore instead of Kostelecky et al. [Phys. Rev. Lett. 100, 111102 (2008)] torsion bounds from Lorentz violation, here torsion bounds are obtained from CP violation through dynamo magnetic field amplification. It is also shown that oscillating photon-axion frequency peak is reduced to 10-7 Hz due to torsion mass (or Planck mass when torsion does not propagate) contribution to the photon-axion-torsion action. Though torsion does not couple to electromagnetic fields at classical level, it does at the quantum level. Recently, Garcia de Andrade [Phys. Lett. B 468, 28 (2011)] has shown that the photon sector of Lorentz violation (LV) Lagrangian leads to linear nonstandard Maxwell equations where the magnetic field decays slower giving rise to a seed for galactic dynamos. Torsion constraints of the order of K0≈10-42 GeV can be obtained which are more stringent than the value obtained by Kostelecky et al. A lower bound for the existence of galactic dynamos is obtained for torsion as K0≈10-37 GeV.
How changing physical constants and violation of local position invariance may occur?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flambaum, V. V.; Shuryak, E. V.
2008-04-04
Light scalar fields very naturally appear in modern cosmological models, affecting such parameters of Standard Model as electromagnetic fine structure constant {alpha}, dimensionless ratios of electron or quark mass to the QCD scale, m{sub e,q}/{lambda}{sub QCD}. Cosmological variations of these scalar fields should occur because of drastic changes of matter composition in Universe: the latest such event is rather recent (redshift z{approx}0.5), from matter to dark energy domination. In a two-brane model (we use as a pedagogical example) these modifications are due to changing distance to 'the second brane', a massive companion of 'our brane'. Back from extra dimensions, massivemore » bodies (stars or galaxies) can also affect physical constants. They have large scalar charge Q{sub d} proportional to number of particles which produces a Coulomb-like scalar field {phi} = Q{sub d}/r. This leads to a variation of the fundamental constants proportional to the gravitational potential, e.g. {delta}{alpha}/{alpha} = k{sub {alpha}}{delta}(GM/rc{sup 2}). We compare different manifestations of this effect, which is usually called violation of local position invariance. The strongest limits k{sub {alpha}}+0.17k{sub e} (-3.5{+-}6)*10{sup -7} are obtained from the measurements of dependence of atomic frequencies on the distance from Sun (the distance varies due to the ellipticity of the Earth's orbit)« less
Hyperscaling-violating Lifshitz hydrodynamics from black-holes: part II
NASA Astrophysics Data System (ADS)
Kiritsis, Elias; Matsuo, Yoshinori
2017-03-01
The derivation of Lifshitz-invariant hydrodynamics from holography, presented in [1] is generalized to arbitrary hyperscaling violating Lifshitz scaling theories with an unbroken U(1) symmetry. The hydrodynamics emerging is non-relativistic with scalar "forcing". By a redefinition of the pressure it becomes standard non-relativistic hydrodynamics in the presence of specific chemical potential for the mass current. The hydrodynamics is compatible with the scaling theory of Lifshitz invariance with hyperscaling violation. The bulk viscosity vanishes while the shear viscosity to entropy ratio is the same as in the relativistic case. We also consider the dimensional reduction ansatz for the hydrodynamics and clarify the difference with previous results suggesting a non-vanishing bulk viscosity.
Lorentz Invariance Violation: the Latest Fermi Results and the GRB-AGN Complementarity
NASA Technical Reports Server (NTRS)
Bolmont, J.; Vasileiou, V.; Jacholkowska, A.; Piron, F.; Couturier, C.; Granot, J.; Stecker, F. W.; Cohen-Tanugi, J.; Longo, F.
2013-01-01
Because they are bright and distant, Gamma-ray Bursts (GRBs) have been used for more than a decade to test propagation of photons and to constrain relevant Quantum Gravity (QG) models in which the velocity of photons in vacuum can depend on their energy. With its unprecedented sensitivity and energy coverage, the Fermi satellite has provided the most constraining results on the QG energy scale so far. In this talk, the latest results obtained from the analysis of four bright GRBs observed by the Large Area Telescope will be reviewed. These robust results, cross-checked using three different analysis techniques set the limit on QG energy scale at E(sub QG,1) greater than 7.6 times the Planck energy for linear dispersion and E(sub QG,2) greater than 1.3 x 10(exp 11) gigaelectron volts for quadratic dispersion (95% CL). After describing the data and the analysis techniques in use, results will be discussed and confronted to latest constraints obtained with Active Galactic Nuclei.
An NCME Instructional Module on Population Invariance in Linking and Equating
ERIC Educational Resources Information Center
Huggins, Anne C.; Penfield, Randall D.
2012-01-01
A goal for any linking or equating of two or more tests is that the linking function be invariant to the population used in conducting the linking or equating. Violations of population invariance in linking and equating jeopardize the fairness and validity of test scores, and pose particular problems for test-based accountability programs that…
Spontaneous CP-violation in extended technicolor models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, W.H.
1983-01-01
The spontaneous CP-violation in models with dynamically broken weak interaction symmetries, i.e., extended technicolor models is examined. Attention is focussed on situations in which the global, flavor symmetry of the strong, color-technicolor, interactions is a product of chiral, horizontal U(2), or, when weak degrees of freedom are included, U(4) factors. In this context, we demonstrate the Eichten, Lane, Preskill CP-violation mechanism and show that the nemesis of this mechanism, strong CP-violation, can be easily avoided by imposing a discrete symmetry on the chiral perturbation. When strong CP-invariance is preserved by this means, we find that spontaneously generated CP-violating phases aremore » suppressed by a ratio of extended technicolor mass scales. In addition, we consider, and attempt to analyze the direct contribution to strong CP-violation from colored technifermions.« less
Rephasing invariants of the Cabibbo-Kobayashi- Maskawa matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez R, H.; Kielanowski, P., E-mail: kiel@fis.cinvestav.mx; Juárez W, S. R., E-mail: rebeca@esfm.ipn.mx
2016-03-15
The paper is motivated by the importance of the rephasing invariance of the CKM (Cabibbo-Kobayashi-Maskawa) matrix observables. These observables appear in the discussion of the CP violation in the standard model (Jarlskog invariant) and also in the renormalization group equations for the quark Yukawa couplings. Our discussion is based on the general phase invariant monomials built out of the CKM matrix elements and their conjugates. We show that there exist 30 fundamental phase invariant monomials and 18 of them are a product of 4 CKM matrix elements and 12 are a product of 6 CKM matrix elements. In the mainmore » theorem we show that a general rephasing invariant monomial can be expressed as a product of at most five factors: four of them are fundamental phase invariant monomials and the fifth factor consists of powers of squares of absolute values of the CKM matrix elements. We also show that the imaginary part of any rephasing invariant monomial is proportional to the Jarlskog’s invariant J or is 0.« less
Searching for CPT violation with cosmic microwave background data from WMAP and BOOMERANG.
Feng, Bo; Li, Mingzhe; Xia, Jun-Qing; Chen, Xuelei; Zhang, Xinmin
2006-06-09
We search for signatures of Lorentz and violations in the cosmic microwave background (CMB) temperature and polarization anisotropies by using the Wilkinson Microwave Anisotropy Probe (WMAP) and the 2003 flight of BOOMERANG (B03) data. We note that if the Lorentz and symmetries are broken by a Chern-Simons term in the effective Lagrangian, which couples the dual electromagnetic field strength tensor to an external four-vector, the polarization vectors of propagating CMB photons will get rotated. Using the WMAP data alone, one could put an interesting constraint on the size of such a term. Combined with the B03 data, we found that a nonzero rotation angle of the photons is mildly favored: [Formula: See Text].
Ultrahigh Energy Cosmic Rays: Old Physics or New Physics?
NASA Technical Reports Server (NTRS)
Stecker, F. W.
2004-01-01
We consider the advantages of and the problems associated with hypotheses to explain the origin of ultrahigh energy cosmic rays (UHECR: E greater than 10 EeV) and the "trans-GZK" cosmic rays (TGZK: E greater than 100 EeV) both through "old physics" (acceleration in cosmic sources) and "new physics" (new particles, topological defects, fat neutrino cross sections, Lorentz invariance violation).
Spin connection as Lorentz gauge field in Fairchild’s action
NASA Astrophysics Data System (ADS)
Cianfrani, Francesco; Montani, Giovanni; Scopelliti, Vincenzo
2016-06-01
We propose a modified gravitational action containing besides the Einstein-Cartan term some quadratic contributions resembling the Yang-Mills Lagrangian for the Lorentz spin connections. We outline how a propagating torsion arises and we solve explicitly the linearized equations of motion on a Minkowski background. We identify among torsion components six degrees of freedom: one is carried by a pseudo-scalar particle, five by a tachyon field. By adding spinor fields and neglecting backreaction on the geometry, we point out how only the pseudo-scalar particle couples directly with fermions, but the resulting coupling constant is suppressed by the ratio between fermion and Planck masses. Including backreaction, we demonstrate how the tachyon field provides causality violation in the matter sector, via an interaction mediated by gravitational waves.
Scale invariance, conformality, and generalized free fields
Dymarsky, Anatoly; Farnsworth, Kara; Komargodski, Zohar; ...
2016-02-16
This paper addresses the question of whether there are 4D Lorentz invariant unitary quantum fi eld theories with scale invariance but not conformal invariance. We present an important loophole in the arguments of Luty-Polchinski-Rattazzi and Dymarsky-Komargodski-Schwimmer-Theisen that is the trace of the energy-momentum tensor T could be a generalized free field. In this paper we rule out this possibility. The key ingredient is the observation that a unitary theory with scale but not conformal invariance necessarily has a non-vanishing anomaly for global scale transformations. We show that this anomaly cannot be reproduced if T is a generalized free field unlessmore » the theory also contains a dimension-2 scalar operator. In the special case where such an operator is present it can be used to redefine ("improve") the energy-momentum tensor, and we show that there is at least one energy-momentum tensor that is not a generalized free field. In addition, we emphasize that, in general, large momentum limits of correlation functions cannot be understood from the leading terms of the coordinate space OPE. This invalidates a recent argument by Farnsworth-Luty-Prilepina (FLP). Finally, despite the invalidity of the general argument of FLP, some of the techniques turn out to be useful in the present context.« less
LETTER TO THE EDITOR: Parity-violating gravitational coupling of electromagnetic fields
NASA Astrophysics Data System (ADS)
Majumdar, Parthasarathi; Gupta, Soumitra Sen
1999-12-01
A manifestly gauge-invariant formulation of the coupling of the Maxwell theory with an Einstein-Cartan geometry is given, where the spacetime torsion originates from a massless Kalb-Ramond field augmented by suitable U(1) Chern-Simons terms. We focus on the situation where the torsion violates parity, and relate it to earlier proposals for gravitational parity violation.
On the origin of Poincaré gauge gravity
NASA Astrophysics Data System (ADS)
Chkareuli, J. L.
2017-06-01
We argue that the origin of Poincaré gauge gravity (PGG) may be related to spontaneous violation of underlying spacetime symmetries involved and appearance of gauge fields as vector Goldstone bosons. In essence, we start with an arbitrary theory of some vector and fermion fields which possesses only global spacetime symmetries, such as Lorentz and translational invariance, in flat Minkowski space. The two vector field multiplets involved are assumed to belong, respectively, to the adjoint (Aμij) and vector (eμi) representations of the starting global Lorentz symmetry. We propose that these prototype vector fields are covariantly constrained, Aμij Aijμ = ±MA2 and eμi eiμ = ±Me2 , that causes a spontaneous violation of the accompanying global symmetries (MA,e are their presumed violation scales). It then follows that the only possible theory compatible with these length-preserving constraints is turned out to be the gauge invariant PGG, while the corresponding massless (pseudo)Goldstone modes are naturally collected in the emergent gauge fields of tetrads and spin-connections. In a minimal theory case being linear in a curvature we unavoidably come to the Einstein-Cartan theory. The extended theories with propagating spin-connection and tetrad modes are also considered and their possible unification with the Standard Model is briefly discussed.
Gauge invariant gluon spin operator for spinless nonlinear wave solutions
NASA Astrophysics Data System (ADS)
Lee, Bum-Hoon; Kim, Youngman; Pak, D. G.; Tsukioka, Takuya; Zhang, P. M.
2017-04-01
We consider nonlinear wave type solutions with intrinsic mass scale parameter and zero spin in a pure SU(2) quantum chromodynamics (QCD). A new stationary solution which can be treated as a system of static Wu-Yang monopole dressed in off-diagonal gluon field is proposed. A remarkable feature of such a solution is that it possesses a finite energy density everywhere. All considered nonlinear wave type solutions have common features: presence of the mass scale parameter, nonvanishing projection of the color fields along the propagation direction and zero spin. The last property requires revision of the gauge invariant definition of the spin density operator which is supposed to produce spin one states for the massless vector gluon field. We construct a gauge invariant definition of the classical gluon spin density operator which is unique and Lorentz frame independent.
NASA Astrophysics Data System (ADS)
Belich, H.; Bakke, K.
2015-07-01
We start by investigating the arising of a spin-orbit coupling and a Darwin-type term that stem from Lorentz symmetry breaking effects in the CPT-odd sector of the Standard Model Extension. Then, we establish a possible scenario of the violation of the Lorentz symmetry that gives rise to a linear confining potential and an effective electric field in which determines the spin-orbit coupling for a neutral particle analogous to the Rashba coupling [E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960)]. Finally, we confine the neutral particle to a quantum dot [W.-C. Tan and J. C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)] and analyze the influence of the linear confining potential and the spin-orbit coupling on the spectrum of energy.
Lorentz force particle analyzer
NASA Astrophysics Data System (ADS)
Wang, Xiaodong; Thess, André; Moreau, René; Tan, Yanqing; Dai, Shangjun; Tao, Zhen; Yang, Wenzhi; Wang, Bo
2016-07-01
A new contactless technique is presented for the detection of micron-sized insulating particles in the flow of an electrically conducting fluid. A transverse magnetic field brakes this flow and tends to become entrained in the flow direction by a Lorentz force, whose reaction force on the magnetic-field-generating system can be measured. The presence of insulating particles suspended in the fluid produce changes in this Lorentz force, generating pulses in it; these pulses enable the particles to be counted and sized. A two-dimensional numerical model that employs a moving mesh method demonstrates the measurement principle when such a particle is present. Two prototypes and a three-dimensional numerical model are used to demonstrate the feasibility of a Lorentz force particle analyzer (LFPA). The findings of this study conclude that such an LFPA, which offers contactless and on-line quantitative measurements, can be applied to an extensive range of applications. These applications include measurements of the cleanliness of high-temperature and aggressive molten metal, such as aluminum and steel alloys, and the clean manufacturing of semiconductors.
Models & Searches of CPT Violation: a personal, very partial, list
NASA Astrophysics Data System (ADS)
Mavromatos, Nick E.
2018-01-01
In this talk, first I motivate theoretically, and then I review the phenomenology of, some models entailing CPT Violation (CPTV). The latter is argued to be responsible for the observed matter-antimatter asymmetry in the Cosmos, and may owe its origin to either Lorentz-violating background geometries, whose effects are strong in early epochs of the Universe but very weak today, being temperature dependent in general, or to an ill-defined CPT generator in some quantum gravity models entailing decoherence of quantum matter as a result of quantum degrees of freedom in the gravity sector that are inaccessible to the low-energy observers. In particular, for the latter category of CPTV, I argue that entangled states of neutral mesons (Kaons or B-systems), of central relevance to KLOE-2 experiment, can provide smoking-gun sensitive tests or even falsify some of these models. If CPT is ill-defined one may also encounter violations of the spin-statistics theorem, with possible consequences for the Pauli Exclusion Principle, which I only briefly touch upon.
NASA Astrophysics Data System (ADS)
Membiela, Federico Agustín; Bellini, Mauricio
2010-02-01
Using a semiclassical approach to Gravitoelectromagnetic Inflation (GEMI), we study the origin and evolution of seminal inflaton and electromagnetic fields in the early inflationary universe from a 5D vacuum state. The difference with other previous works is that in this one we use a Lorentz gauge. Our formalism is naturally not conformal invariant on the effective 4D de Sitter metric, which make possible the super adiabatic amplification of magnetic field modes during the early inflationary epoch of the universe on cosmological scales.
Testing Special Relativity at High Energies with Astrophysical Sources
NASA Technical Reports Server (NTRS)
Stecker, F. W.
2007-01-01
Since the group of Lorentz boosts is unbounded, there is a question as to whether Lorentz invariance (LI) holds to infinitely short distances. However, special and general relativity may break down at the Planck scale. Various quantum gravity scenarios such as loop quantum gravity, as well as some forms of string theory and extra dimension models may imply Lorentz violation (LV) at ultrahigh energies. The Gamma-Ray Large Area Space Telescope (GLAST), to be launched in mid-December, will measure the spectra of distant extragalactic sources of high energy gamma-rays, particularly active galactic nuclei and gamma-ray bursts. GLAST can look for energy-dependent gamma-ray propagation effects from such sources as a signal of Lorentz invariance violation. These sources may also exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions with low energy photons having a flux level as determined by various astronomical observations. With LV the threshold for such interactions can be significantly raised, changing the predicted absorption turnover in the observed spectrum of the sources. Stecker and Glashow have shown that the existence such absorption features in the spectra of extragalactic sources puts constraints on LV. Such constraints have important implications for some quantum gravity and large extra dimension models. Future spaceborne detectors dedicated to measuring gamma-ray polarization can look for birefringence effects as a possible signal of loop quantum gravity. A very small LV may also result in the modification or elimination of the GZK effect, thus modifying the spectrum of ultrahigh energy cosmic rays. This possibility can be explored with ground-based arrays such as Auger or with a space based detector system such as the proposed OWL satellite mission.
Cosmic ray anisotropies at high energies
NASA Technical Reports Server (NTRS)
Martinic, N. J.; Alarcon, A.; Teran, F.
1986-01-01
The directional anisotropies of the energetic cosmic ray gas due to the relative motion between the observers frame and the one where the relativistic gas can be assumed isotropic is analyzed. The radiation fluxes formula in the former frame must follow as the Lorentz invariance of dp/E, where p, E are the 4-vector momentum-energy components; dp is the 3-volume element in the momentum space. The anisotropic flux shows in such a case an amplitude, in a rotating earth, smaller than the experimental measurements from say, EAS-arrays for primary particle energies larger than 1.E(14) eV. Further, it is shown that two consecutive Lorentz transformations among three inertial frames exhibit the violation of dp/E invariance between the first and the third systems of reference, due to the Wigner rotation. A discussion of this result in the context of the experimental anisotropic fluxes and its current interpretation is given.
Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering
NASA Astrophysics Data System (ADS)
Tsakmakidis, K. L.; Shen, L.; Schulz, S. A.; Zheng, X.; Upham, J.; Deng, X.; Altug, H.; Vakakis, A. F.; Boyd, R. W.
2017-06-01
A century-old tenet in physics and engineering asserts that any type of system, having bandwidth Δω, can interact with a wave over only a constrained time period Δt inversely proportional to the bandwidth (Δt·Δω ~ 2π). This law severely limits the generic capabilities of all types of resonant and wave-guiding systems in photonics, cavity quantum electrodynamics and optomechanics, acoustics, continuum mechanics, and atomic and optical physics but is thought to be completely fundamental, arising from basic Fourier reciprocity. We propose that this “fundamental” limit can be overcome in systems where Lorentz reciprocity is broken. As a system becomes more asymmetric in its transport properties, the degree to which the limit can be surpassed becomes greater. By way of example, we theoretically demonstrate how, in an astutely designed magnetized semiconductor heterostructure, the above limit can be exceeded by orders of magnitude by using realistic material parameters. Our findings revise prevailing paradigms for linear, time-invariant resonant systems, challenging the doctrine that high-quality resonances must invariably be narrowband and providing the possibility of developing devices with unprecedentedly high time-bandwidth performance.
Gauge copies in the Landau-DeWitt gauge: A background invariant restriction
NASA Astrophysics Data System (ADS)
Dudal, David; Vercauteren, David
2018-04-01
The Landau background gauge, also known as the Landau-DeWitt gauge, has found renewed interest during the past decade given its usefulness in accessing the confinement-deconfinement transition via the vacuum expectation value of the Polyakov loop, describable via an appropriate background. In this Letter, we revisit this gauge from the viewpoint of it displaying gauge (Gribov) copies. We generalize the Gribov-Zwanziger effective action in a BRST and background invariant way; this action leads to a restriction on the allowed gauge fluctuations, thereby eliminating the infinitesimal background gauge copies. The explicit background invariance of our action is in contrast with earlier attempts to write down and use an effective Gribov-Zwanziger action. It allows to address certain subtleties arising in these earlier works, such as a spontaneous and thus spurious Lorentz symmetry breaking, something which is now averted.
Relativistic chaos is coordinate invariant.
Motter, Adilson E
2003-12-05
The noninvariance of Lyapunov exponents in general relativity has led to the conclusion that chaos depends on the choice of the space-time coordinates. Strikingly, we uncover the transformation laws of Lyapunov exponents under general space-time transformations and we find that chaos, as characterized by positive Lyapunov exponents, is coordinate invariant. As a result, the previous conclusion regarding the noninvariance of chaos in cosmology, a major claim about chaos in general relativity, necessarily involves the violation of hypotheses required for a proper definition of the Lyapunov exponents.
Theory of quark mixing matrix and invariant functions of mass matrices
NASA Astrophysics Data System (ADS)
Jarloskog, C.
1987-10-01
The origin of the quark mixing matrix; super elementary theory of flavor projection operators; equivalences and invariances; the commutator formalism and CP violation; CP conditions for any number of families; the angle between the quark mass matrices; and application to Fritzsch and Stech mass matrices are discussed.
Lorentz, the Solvay Councils and the Physics Institute
NASA Astrophysics Data System (ADS)
Berends, Frits A.
2015-09-01
This paper describes the crucial role which Lorentz played in shaping and continuing the Solvay Councils and the Physics Institute. At the same time it will become clear that Lorentz* intensive involvement in these activities added significantly to his influence on, and recognition in, the international physics community. The first Solvay Council in 1911 was an initiative of the German physical chemist Walther Nernst. It was generously supported by the wealthy industrialist and philantropist Ernest Solvay. About five months before the Council*s start Nernst invited Lorentz to chair the meeting. That was no simple task in view of the fundamental problem of the quanta and the practical problem of communication in different languages. Lorentz*s way of presiding the conference impressed all participants. When, after the meeting, Solvay was willing to support research in the field, it was only natural to ask Lorentz for a plan. Within two months Lorentz provided Solvay with a draft which would serve as an outline for the statutes of an institute. The international Solvay Institute of Physics was founded on 1 May 1912. It would support research proposals in a specified field and would regularly organize Councils. An international scientific committee would decide on grants which could be requested from everywhere. Between the Institute*s beginnings and the outbreak of WWI, 97 requests were considered and 40 proposals - originating from 7 countries - were accepted. A second Council took place in 1913. Lorentz was given the possibility to spend considerable time on chairing the scientific committee when in 1912 his full time professorship in Leiden was changed into a part-time one. During WWI Lorentz maintained contacts with Solvay and with several of his foreign colleagues in the countries at war. He tried to remain objective, impartial and helpful, and did not lose hope that pre-war international scientific relations would eventually be re-established. After the war he
Wu, E Y S; Ade, P; Bock, J; Bowden, M; Brown, M L; Cahill, G; Castro, P G; Church, S; Culverhouse, T; Friedman, R B; Ganga, K; Gear, W K; Gupta, S; Hinderks, J; Kovac, J; Lange, A E; Leitch, E; Melhuish, S J; Memari, Y; Murphy, J A; Orlando, A; Piccirillo, L; Pryke, C; Rajguru, N; Rusholme, B; Schwarz, R; O'Sullivan, C; Taylor, A N; Thompson, K L; Turner, A H; Zemcov, M
2009-04-24
We constrain parity-violating interactions to the surface of last scattering using spectra from the QUaD experiment's second and third seasons of observations by searching for a possible systematic rotation of the polarization directions of cosmic microwave background photons. We measure the rotation angle due to such a possible "cosmological birefringence" to be 0.55 degrees +/-0.82 degrees (random) +/-0.5 degrees (systematic) using QUaD's 100 and 150 GHz temperature-curl and gradient-curl spectra over the spectra over the multipole range 200
NASA Astrophysics Data System (ADS)
Pihan-Le Bars, H.; Guerlin, C.; Lasseri, R.-D.; Ebran, J.-P.; Bailey, Q. G.; Bize, S.; Khan, E.; Wolf, P.
2017-04-01
We introduce an improved model that links the frequency shift of the 133Cs hyperfine Zeeman transitions |F =3 ,mF ⟩↔|F =4 ,mF ⟩ to the Lorentz-violating Standard Model extension (SME) coefficients of the proton and neutron. The new model uses Lorentz transformations developed to second order in boost and additionally takes the nuclear structure into account, beyond the simple Schmidt model used previously in Standard Model extension analyses, thereby providing access to both proton and neutron SME coefficients including the isotropic coefficient c˜T T. Using this new model in a second analysis of the data delivered by the FO2 dual Cs/Rb fountain at Paris Observatory and previously analyzed in [1], we improve by up to 13 orders of magnitude the present maximum sensitivities for laboratory tests [2] on the c˜Q, c˜T J, and c˜T T coefficients for the neutron and on the c˜Q coefficient for the proton, reaching respectively 10-20, 10-17, 10-13, and 10-15 GeV .
Determination of the atmospheric neutrino flux and searches for new physics with AMANDA-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbasi, R.; Andeen, K.; Baker, M.
2009-05-15
The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance or quantum decoherence. Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on violation of Lorentzmore » invariance and quantum decoherence parameters using a maximum likelihood method. Given the absence of evidence for new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV.« less
Insensitivity of Hawking radiation to an invariant Planck-scale cutoff
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agullo, Ivan; Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Facultad de Fisica, Universidad de Valencia, Burjassot-46100, Valencia; Navarro-Salas, Jose
2009-08-15
A disturbing aspect of Hawking's derivation of black hole radiance is the need to invoke extreme conditions for the quantum field that originates the emitted quanta. It is widely argued that the derivation requires the validity of the conventional relativistic field theory to arbitrarily high, trans-Planckian scales. We stress in this note that this is not necessarily the case if the question is presented in a covariant way. We point out that Hawking radiation is immediately robust against an invariant Planck-scale cutoff. This important feature of Hawking radiation is relevant for a quantum gravity theory that preserves, in some way,more » the Lorentz symmetry.« less
Hendrik Antoon Lorentz: his role in physics and society.
Berends, Frits
2009-04-22
Hendrik Antoon Lorentz (1853-1928) was appointed in 1878 to a chair of theoretical physics at the University of Leiden, one of the first of such chairs in the world. A few years later Heike Kamerlingh Onnes became his experimental colleague, after vehement discussions in the faculty. Lorentz strongly supported Kamerlingh Onnes then, and proved subsequently to be an ideal colleague. With Lorentz's electron theory the classical theory of electromagnetism obtained its final form, at the time often called the Maxwell-Lorentz theory. In this theory the Zeeman effect could be explained: the first glimpse of the electron. The Nobel Prize followed in 1902. The Lorentz transformation, established in 1904, preceded the special theory of relativity. Later on, Lorentz played a much admired role in the debate on the new developments in physics, in particular as chairman of a series of Solvay conferences. Gradually his stature outside of physics grew, both nationally as chairman of the Zuiderzee committee and internationally as president of the International Commission on Intellectual Cooperation of the League of Nations. At his funeral the overwhelming tribute was the recognition of his unique greatness. Einstein said about him 'He meant more to me personally than anyone else I have met on my life's journey'.
Hendrik Antoon Lorentz: his role in physics and society
NASA Astrophysics Data System (ADS)
Berends, Frits
2009-04-01
Hendrik Antoon Lorentz (1853-1928) was appointed in 1878 to a chair of theoretical physics at the University of Leiden, one of the first of such chairs in the world. A few years later Heike Kamerlingh Onnes became his experimental colleague, after vehement discussions in the faculty. Lorentz strongly supported Kamerlingh Onnes then, and proved subsequently to be an ideal colleague. With Lorentz's electron theory the classical theory of electromagnetism obtained its final form, at the time often called the Maxwell-Lorentz theory. In this theory the Zeeman effect could be explained: the first glimpse of the electron. The Nobel Prize followed in 1902. The Lorentz transformation, established in 1904, preceded the special theory of relativity. Later on, Lorentz played a much admired role in the debate on the new developments in physics, in particular as chairman of a series of Solvay conferences. Gradually his stature outside of physics grew, both nationally as chairman of the Zuiderzee committee and internationally as president of the International Commission on Intellectual Cooperation of the League of Nations. At his funeral the overwhelming tribute was the recognition of his unique greatness. Einstein said about him 'He meant more to me personally than anyone else I have met on my life's journey'.
Lorentzian Goldstone modes shared among photons and gravitons
NASA Astrophysics Data System (ADS)
Chkareuli, J. L.; Jejelava, J.; Kepuladze, Z.
2018-02-01
It has long been known that photons and gravitons may appear as vector and tensor Goldstone modes caused by spontaneous Lorentz invariance violation (SLIV). Usually this approach is considered for photons and gravitons separately. We develop the emergent electrogravity theory consisting of the ordinary QED and the tensor-field gravity model which mimics the linearized general relativity in Minkowski spacetime. In this theory, Lorentz symmetry appears incorporated into higher global symmetries of the length-fixing constraints put on the vector and tensor fields involved, A_{μ }2=± MA2 and H_{μ ν }2=± MH2 (MA and MH are the proposed symmetry breaking scales). We show that such a SLIV pattern being related to breaking of global symmetries underlying these constraints induces the massless Goldstone and pseudo-Goldstone modes shared by photon and graviton. While for a vector field case the symmetry of the constraint coincides with Lorentz symmetry SO(1, 3) of the electrogravity Lagrangian, the tensor-field constraint itself possesses much higher global symmetry SO(7, 3), whose spontaneous violation provides a sufficient number of zero modes collected in a graviton. Accordingly, while the photon may only contain true Goldstone modes, the graviton appears at least partially to be composed of pseudo-Goldstone modes rather than of pure Goldstone ones. When expressed in terms of these modes, the theory looks essentially nonlinear and contains a variety of Lorentz and CPT violating couplings. However, all SLIV effects turn out to be strictly cancelled in the lowest order processes considered in some detail. How this emergent electrogravity theory could be observationally different from conventional QED and GR theories is also briefly discussed.
Evidence for broken Galilean invariance at the quantum spin Hall edge
NASA Astrophysics Data System (ADS)
Geissler, Florian; Crépin, François; Trauzettel, Björn
2015-12-01
We study transport properties of the helical edge channels of a quantum spin Hall insulator, in the presence of electron-electron interactions and weak, local Rashba spin-orbit coupling. The combination of the two allows for inelastic backscattering that does not break time-reversal symmetry, resulting in interaction-dependent power-law corrections to the conductance. Here, we use a nonequilibrium Keldysh formalism to describe the situation of a long, one-dimensional edge channel coupled to external reservoirs, where the applied bias is the leading energy scale. By calculating explicitly the corrections to the conductance up to fourth order of the impurity strength, we analyze correlated single- and two-particle backscattering processes on a microscopic level. Interestingly, we show that the modeling of the leads together with the breaking of Galilean invariance has important effects on the transport properties. Such breaking occurs because the Galilean invariance of the bulk spectrum transforms into an emergent Lorentz invariance of the edge spectrum. With this broken Galilean invariance at the quantum spin Hall edge, we find a contribution to single-particle backscattering with a very low power scaling, while in the presence of Galilean invariance the leading contribution will be due to correlated two-particle backscattering only. This difference is further reflected in the different values of the Fano factor of the shot noise, an experimentally observable quantity. The described behavior is specific to the Rashba scatterer and does not occur in the case of backscattering off a time-reversal-breaking, magnetic impurity.
Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering.
Tsakmakidis, K L; Shen, L; Schulz, S A; Zheng, X; Upham, J; Deng, X; Altug, H; Vakakis, A F; Boyd, R W
2017-06-23
A century-old tenet in physics and engineering asserts that any type of system, having bandwidth Δω, can interact with a wave over only a constrained time period Δ t inversely proportional to the bandwidth (Δ t ·Δω ~ 2π). This law severely limits the generic capabilities of all types of resonant and wave-guiding systems in photonics, cavity quantum electrodynamics and optomechanics, acoustics, continuum mechanics, and atomic and optical physics but is thought to be completely fundamental, arising from basic Fourier reciprocity. We propose that this "fundamental" limit can be overcome in systems where Lorentz reciprocity is broken. As a system becomes more asymmetric in its transport properties, the degree to which the limit can be surpassed becomes greater. By way of example, we theoretically demonstrate how, in an astutely designed magnetized semiconductor heterostructure, the above limit can be exceeded by orders of magnitude by using realistic material parameters. Our findings revise prevailing paradigms for linear, time-invariant resonant systems, challenging the doctrine that high-quality resonances must invariably be narrowband and providing the possibility of developing devices with unprecedentedly high time-bandwidth performance. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Emergent gauge theories and supersymmetry: A QED primer
NASA Astrophysics Data System (ADS)
Chkareuli, J. L.
2013-04-01
We argue that a generic trigger for photon and other gauge fields to emerge as massless Nambu-Goldstone modes could be spontaneously broken supersymmetry rather than physically manifested Lorentz violation. We consider supersymmetric QED model extended by an arbitrary polynomial potential of vector superfield that induces the spontaneous SUSY violation in the visible sector. As a consequence, massless photon appears as a companion of massless photino being Goldstone fermion state in tree approximation. Remarkably, the photon masslessness appearing at tree level is further protected against radiative corrections due to the simultaneously generated special gauge invariance in the broken SUSY phase. Meanwhile, photino being mixed with another goldstino appearing from a spontaneous SUSY violation in the hidden sector largely turns into light pseudo-goldstino whose physics seems to be of special interest.
No-Go Theorem for k-Essence Dark Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonvin, Camille; Caprini, Chiara; Durrer, Ruth
We demonstrate that if k-essence can solve the coincidence problem and play the role of dark energy in the Universe, the fluctuations of the field have to propagate superluminally at some stage. We argue that this implies that successful k-essence models violate causality. It is not possible to define a time ordered succession of events in a Lorentz invariant way. Therefore, k-essence cannot arise as a low energy effective field theory of a causal, consistent high energy theory.
Identifying fMRI Model Violations with Lagrange Multiplier Tests
Cassidy, Ben; Long, Christopher J; Rae, Caroline; Solo, Victor
2013-01-01
The standard modeling framework in Functional Magnetic Resonance Imaging (fMRI) is predicated on assumptions of linearity, time invariance and stationarity. These assumptions are rarely checked because doing so requires specialised software, although failure to do so can lead to bias and mistaken inference. Identifying model violations is an essential but largely neglected step in standard fMRI data analysis. Using Lagrange Multiplier testing methods we have developed simple and efficient procedures for detecting model violations such as non-linearity, non-stationarity and validity of the common Double Gamma specification for hemodynamic response. These procedures are computationally cheap and can easily be added to a conventional analysis. The test statistic is calculated at each voxel and displayed as a spatial anomaly map which shows regions where a model is violated. The methodology is illustrated with a large number of real data examples. PMID:22542665
Parity and Time-Reversal Violation in Atomic Systems
NASA Astrophysics Data System (ADS)
Roberts, B. M.; Dzuba, V. A.; Flambaum, V. V.
2015-10-01
Studying the violation of parity and time-reversal invariance in atomic systems has proven to be a very effective means of testing the electroweak theory at low energy and searching for physics beyond it. Recent developments in both atomic theory and experimental methods have led to the ability to make extremely precise theoretical calculations and experimental measurements of these effects. Such studies are complementary to direct high-energy searches, and can be performed for only a fraction of the cost. We review the recent progress in the field of parity and time-reversal violation in atoms, molecules, and nuclei, and examine the implications for physics beyond the Standard Model, with an emphasis on possible areas for development in the near future.
STAR -Space Time Asymmetry Research
NASA Astrophysics Data System (ADS)
van Zoest, Tim; Braxmaier, Claus; Schuldt, Thilo; Allab, Mohammed; Theil, Stephan; Pelivan, Ivanka; Herrmann, Sven; Lümmerzahl, Claus; Peters, Achim; Mühle, Katharina; Wicht, Andreas; Nagel, Moritz; Kovalchuk, Evgeny; Düringshoff, Klaus; Dittus, Hansjürg
STAR is a proposed satellite mission that aims for significantly improved tests of fundamental space-time symmetry and the foundations of special and general relativity. In total STAR comprises a series of five subsequent missions. The STAR1 mission will measure the constancy of the speed of light to one part in 1019 and derive the Kennedy Thorndike (KT) coefficient of the Mansouri-Sexl test theory to 7x10-10 . The KT experiment will be performed by compar-ison of an iodine standard with a highly stable cavity made from ultra low expansion (ULE) ceramics. With an orbital velocity of 7 km/s the sensitivity to a boost dependent violation of Lorentz invariance as modeled by the KT term in the Mansouri Sexl test theory or a Lorentz violating extension of the standard model (SME) will be significantly enhanced as compared to Earth based experiments. The low noise space environment will additionally enhance the measurement precision such that an overall improvement by a factor of 400 over current Earth based experiments is expected.
Loukachevitch, V V; Aldushchenkov, A V
2005-01-01
It is proposed within the framework of Ramsey's method to register two-dimensional spectra, depending on the neutron phase and neutron energy, for measuring parity (P) and time (T) violating amplitudes of the interaction of polarized neutrons with polarized (139)La nuclei in region of the p-wave resonance. The form of the phase spectrum and corresponding expressions for the asymmetries are obtained on the basis of a formalism of a spin density matrix. It is shown that the ratio of the P,T,-violating to P-violating imaginary amplitudes can be obtained from the measurements of the neutron phase spectrum with polarized and unpolarized (139)La target.
Matter-antimatter asymmetry in the universe via string-inspired CPT violation at early eras
NASA Astrophysics Data System (ADS)
Mavromatos, Nick E.
2018-01-01
In four-space-time dimensional string/brane theory, obtained either through compactification of the extra spatial dimensions, or by appropriate restriction to brane worlds with three large spatial dimensions, the rich physics potential associated with the presence of non-trivial Kalb-Ramond (KR) axion-like fields has not been fully exploited so far. In this talk, I discuss a scenario whereby such fields produce spontaneous Lorentz- and CPT-violating cosmological backgrounds over which strings propagate, which in the early Universe can lead to Baryogenesis through Leptogenesis in models with heavy right-handed neutrinos.
Measurement of the Lorentz-FitzGerald body contraction
NASA Astrophysics Data System (ADS)
Rafelski, Johann
2018-02-01
A complete foundational discussion of acceleration in the context of Special Relativity (SR) is presented. Acceleration allows the measurement of a Lorentz-FitzGerald body contraction created. It is argued that in the back scattering of a probing laser beam from a relativistic flying electron cloud mirror generated by an ultra-intense laser pulse, a first measurement of a Lorentz-FitzGerald body contraction is feasible.
Poincaré gauge gravity: An emergent scenario
NASA Astrophysics Data System (ADS)
Chkareuli, J. L.
2017-04-01
The Poincaré gauge gravity (PGG) with the underlying vector fields of tetrads and spin-connections is perhaps the best theory candidate for gravitation to be unified with the other three elementary forces of nature. There is a clear analogy between the local frame in PGG and the local internal symmetry space in the Standard Model. As a result, the spin-connection fields, gauging the local frame Lorentz symmetry group S O (1 ,3 )LF , appear in PGG much as photons and gluons appear in SM. We propose that such an analogy may follow from their common emergent nature allowing us to derive PGG in the same way as conventional gauge theories. In essence, we start with an arbitrary theory of some vector and fermion fields which possesses only global spacetime symmetries, such as Lorentz and translational invariance, in flat Minkowski space. The two vector field multiplets involved are proposed to belong, respectively, to the adjoint (Aμi j) and vector (eμi) representations of the starting global Lorentz symmetry. We show that if these prototype vector fields are covariantly constrained, Aμi jAij μ=±MA2 and eμieiμ=±Me2 , thus causing a spontaneous violation of the accompanying global symmetries (MA ,e are their proposed violation scales), then the only possible theory compatible with these length-preserving constraints is turned out to be the gauge invariant PGG, while the corresponding massless (pseudo)Goldstone modes are naturally collected in the emergent gauge fields of tetrads and spin-connections. In a minimal theory case being linear in a curvature we unavoidably come to the Einstein-Cartan theory. The extended theories with propagating spin-connection and tetrad modes are also considered and their possible unification with the Standard Model is briefly discussed.
Search for Lorentz invariance and CPT violation with muon antineutrinos in the MINOS Near Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, P.; et al.
2012-02-01
We have searched for sidereal variations in the rate of antineutrino interactions in the MINOS Near Detector. Using antineutrinos produced by the NuMI beam, we find no statistically significant sidereal modulation in the rate. When this result is placed in the context of the Standard Model Extension theory we are able to place upper limits on the coefficients defining the theory. These limits are used in combination with the results from an earlier analysis of MINOS neutrino data to further constrain the coefficients.
Time reversal invariance - a test in free neutron decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lising, Laura Jean
1999-01-01
Time reversal invariance violation plays only a small role in the Standard Model, and the existence of a T-violating effect above the predicted level would be an indication of new physics. A sensitive probe of this symmetry in the weak interaction is the measurement of the T-violating ''D''-correlation in the decay of free neutrons. The triple-correlation Dσ n∙p e x p v involves three kinematic variables, the neutron spin, electron momentu, and neutrino (or proton) momentum, and changes sign under time reversal. This experiment detects the decay products of a polarized cold neutron beam with an octagonal array of scintillationmore » and solid-state detectors. Data from first run at NIST's Cold Neutron Research Facility give a D-coefficient of -0.1 ± 1.3(stat.) ± 0.7(syst) x 10 -3 This measurement has the greatest bearing on extensions to the Standard model that incorporate leptoquarks, although exotic fermion and lift-right symmetric models also allow a D as large as the present limit.« less
Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence.
Liu, Dajun; Yin, Hongming; Wang, Guiqiu; Wang, Yaochuan
2017-11-01
The partially coherent Lorentz-Gauss vortex beam generated by a Schell-model source has been introduced. Based on the extended Huygens-Fresnel principle, the cross-spectral density function of a partially coherent Lorentz-Gauss vortex beam propagating in oceanic turbulence is derived. The influences of coherence length, topological charge M, and oceanic turbulence on the spreading properties and position of the coherence vortex for a partially coherent Lorentz-Gauss vortex beam are analyzed in detail. The results show that a partially coherent Lorentz-Gauss vortex beam propagating in stronger oceanic turbulence will evolve into a Gaussian-like beam more rapidly as the propagation distance increases, and the number of coherent vortices will change.
Convexity and concavity constants in Lorentz and Marcinkiewicz spaces
NASA Astrophysics Data System (ADS)
Kaminska, Anna; Parrish, Anca M.
2008-07-01
We provide here the formulas for the q-convexity and q-concavity constants for function and sequence Lorentz spaces associated to either decreasing or increasing weights. It yields also the formula for the q-convexity constants in function and sequence Marcinkiewicz spaces. In this paper we extent and enhance the results from [G.J.O. Jameson, The q-concavity constants of Lorentz sequence spaces and related inequalities, Math. Z. 227 (1998) 129-142] and [A. Kaminska, A.M. Parrish, The q-concavity and q-convexity constants in Lorentz spaces, in: Banach Spaces and Their Applications in Analysis, Conference in Honor of Nigel Kalton, May 2006, Walter de Gruyter, Berlin, 2007, pp. 357-373].
CP violation induced by the double resonance for pure annihilation decay process in perturbative QCD
Lü, Gang; Lu, Ye; Li, Sheng-Tao; ...
2017-08-04
In a perturbative QCD approach we study the direct CP violation in the pure annihilation decay process ofmore » $$\\bar{B}$$$0\\atop{s}$$→π +π -π +π - induced by the ρ and ω double resonance effect.Generally, the CP violation is small in the pure annihilation type decay process. But, we find that the CP violation can be enhanced by doubleinterference when the invariant masses of the π + π - pairs are in the vicinity of the ω resonance. For the decay process of $$\\bar{B}$$$0\\atop{s}$$→π +π -π +π -, the CP violation can reach ACP($$\\bar{B}$$$0\\atop{s}$$→π +π -π +π -)=27.20$$+0.05+0.28+7.13\\atop{-0.15-0.31-6.11}$$%.« less
CP violation induced by the double resonance for pure annihilation decay process in perturbative QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lü, Gang; Lu, Ye; Li, Sheng-Tao
In a perturbative QCD approach we study the direct CP violation in the pure annihilation decay process ofmore » $$\\bar{B}$$$0\\atop{s}$$→π +π -π +π - induced by the ρ and ω double resonance effect.Generally, the CP violation is small in the pure annihilation type decay process. But, we find that the CP violation can be enhanced by doubleinterference when the invariant masses of the π + π - pairs are in the vicinity of the ω resonance. For the decay process of $$\\bar{B}$$$0\\atop{s}$$→π +π -π +π -, the CP violation can reach ACP($$\\bar{B}$$$0\\atop{s}$$→π +π -π +π -)=27.20$$+0.05+0.28+7.13\\atop{-0.15-0.31-6.11}$$%.« less
Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.
Zhou, Guoquan
2011-11-21
A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail. © 2011 Optical Society of America
Optimal Lorentz-augmented spacecraft formation flying in elliptic orbits
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2015-06-01
An electrostatically charged spacecraft accelerates as it moves through the Earth's magnetic field due to the induced Lorentz force, providing a new means of propellantless electromagnetic propulsion for orbital maneuvers. The feasibility of Lorentz-augmented spacecraft formation flying in elliptic orbits is investigated in this paper. Assuming the Earth's magnetic field as a tilted dipole corotating with Earth, a nonlinear dynamical model that characterizes the orbital motion of Lorentz spacecraft in the vicinity of arbitrary elliptic orbits is developed. To establish a predetermined formation configuration at given terminal time, pseudospectral method is used to solve the optimal open-loop trajectories of hybrid control inputs consisted of Lorentz acceleration and thruster-generated control acceleration. A nontilted dipole model is also introduced to analyze the effect of dipole tilt angle via comparisons with the tilted one. Meanwhile, to guarantee finite-time convergence and system robustness against external perturbations, a continuous fast nonsingular terminal sliding mode controller is designed and the closed-loop system stability is proved by Lyapunov theory. Numerical simulations substantiate the validity of proposed open-loop and closed-loop control schemes, and the results indicate that an almost propellantless formation establishment can be achieved by choosing appropriate objective function in the pseudospectral method. Furthermore, compared to the nonsingular terminal sliding mode controller, the closed-loop controller presents superior convergence rate with only a bit more control effort. And the proposed controller can be applied in other Lorentz-augmented relative orbital control problems.
Experimental calibration procedures for rotating Lorentz-force flowmeters
Hvasta, M. G.; Slighton, N. T.; Kolemen, E.; ...
2017-07-14
Rotating Lorentz-force flowmeters are a novel and useful technology with a range of applications in a variety of different industries. However, calibrating these flowmeters can be challenging, time-consuming, and expensive. In this paper, simple calibration procedures for rotating Lorentz-force flowmeters are presented. These procedures eliminate the need for expensive equipment, numerical modeling, redundant flowmeters, and system down-time. Finally, the calibration processes are explained in a step-by-step manner and compared to experimental results.
Experimental calibration procedures for rotating Lorentz-force flowmeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hvasta, M. G.; Slighton, N. T.; Kolemen, E.
Rotating Lorentz-force flowmeters are a novel and useful technology with a range of applications in a variety of different industries. However, calibrating these flowmeters can be challenging, time-consuming, and expensive. In this paper, simple calibration procedures for rotating Lorentz-force flowmeters are presented. These procedures eliminate the need for expensive equipment, numerical modeling, redundant flowmeters, and system down-time. Finally, the calibration processes are explained in a step-by-step manner and compared to experimental results.
Stars and (furry) black holes in Lorentz breaking massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comelli, D.; Nesti, F.; Pilo, L.
We study the exact spherically symmetric solutions in a class of Lorentz-breaking massive gravity theories, using the effective-theory approach where the graviton mass is generated by the interaction with a suitable set of Stueckelberg fields. We find explicitly the exact black-hole solutions which generalizes the familiar Schwarzschild one, which shows a nonanalytic hair in the form of a powerlike term r{sup {gamma}}. For realistic self-gravitating bodies, we find interesting features, linked to the effective violation of the Gauss law: (i) the total gravitational mass appearing in the standard 1/r term gets a multiplicative renormalization proportional to the area of themore » body itself; (ii) the magnitude of the powerlike hairy correction is also linked to size of the body. The novel features can be ascribed to the presence of the Goldstones fluid turned on by matter inside the body; its equation of state approaching that of dark energy near the center. The Goldstones fluid also changes the matter equilibrium pressure, leading to an upper limit for the graviton mass, m < or approx. 10{sup -28/29} eV, derived from the largest stable gravitational bound states in the Universe.« less
NASA Astrophysics Data System (ADS)
Zhou, Guofeng; Wang, Limin; Wang, Xiaowei; Ge, Wei
2011-12-01
Many investigators have coupled the Lees-Edwards boundary conditions (LEBCs) and suspension methods in the framework of the lattice Boltzmann method to study the pure bulk properties of particle-fluid suspensions. However, these suspension methods are all link-based and are more or less exposed to the disadvantages of violating Galilean invariance. In this paper, we have coupled LEBCs with a node-based suspension method, which is demonstrated to be Galilean invariant in benchmark simulations. We use the coupled algorithm to predict the viscosity of a particle-fluid suspension at very low Reynolds number, and the simulation results are in good agreement with the semiempirical Krieger-Dougherty formula.
Diffusion limit of Lévy-Lorentz gas is Brownian motion
NASA Astrophysics Data System (ADS)
Magdziarz, Marcin; Szczotka, Wladyslaw
2018-07-01
In this paper we analyze asymptotic behaviour of a stochastic process called Lévy-Lorentz gas. This process is aspecial kind of continuous-time random walk in which walker moves in the fixed environment composed of scattering points. Upon each collision the walker performs a flight to the nearest scattering point. This type of dynamics is observed in Lévy glasses or long quenched polymers. We show that the diffusion limit of Lévy-Lorentz gas with finite mean distance between scattering centers is the standard Brownian motion. Thus, for long times the behaviour of the Lévy-Lorentz gas is close to the diffusive regime.
Testing Relativity with Electrodynamics
NASA Astrophysics Data System (ADS)
Bailey, Quentin; Kostelecky, Alan
2004-04-01
Lorentz and CPT violation is a promising candidate signal for Planck-scale physics. Low-energy effects of Lorentz and CPT violation are described by the general theoretical framework called the Standard-Model Extension (SME). This talk focuses on Lorentz-violating effects arising in the classical electrodynamics limit of the SME. Analysis of the theory shows that suitable experiments could improve by several orders of magnitude certain sensitivities achieved in modern Michelson-Morley and Kennedy-Thorndike tests.
NASA Astrophysics Data System (ADS)
Siegmund, Marc; Pankratov, Oleg
2011-01-01
We show that the exchange-correlation scalar and vector potentials obtained from the optimized effective potential (OEP) equations and from the Krieger-Li-Iafrate (KLI) approximation for the current-density functional theory (CDFT) change under a gauge transformation such that the energy functional remains invariant. This alone does not assure, however, the theory’s compliance with the continuity equation. Using the model of a quantum ring with a broken angular symmetry which is penetrated by a magnetic flux we demonstrate that the physical current density calculated with the exact-exchange CDFT in the KLI approximation violates the continuity condition. In contrast, the current found from a solution of the full OEP equations satisfies this condition. We argue that the continuity violation stems from the fact that the KLI potentials are not (in general) the exact functional derivatives of a gauge-invariant exchange-correlation functional.
Weak Galilean invariance as a selection principle for coarse-grained diffusive models.
Cairoli, Andrea; Klages, Rainer; Baule, Adrian
2018-05-29
How does the mathematical description of a system change in different reference frames? Galilei first addressed this fundamental question by formulating the famous principle of Galilean invariance. It prescribes that the equations of motion of closed systems remain the same in different inertial frames related by Galilean transformations, thus imposing strong constraints on the dynamical rules. However, real world systems are often described by coarse-grained models integrating complex internal and external interactions indistinguishably as friction and stochastic forces. Since Galilean invariance is then violated, there is seemingly no alternative principle to assess a priori the physical consistency of a given stochastic model in different inertial frames. Here, starting from the Kac-Zwanzig Hamiltonian model generating Brownian motion, we show how Galilean invariance is broken during the coarse-graining procedure when deriving stochastic equations. Our analysis leads to a set of rules characterizing systems in different inertial frames that have to be satisfied by general stochastic models, which we call "weak Galilean invariance." Several well-known stochastic processes are invariant in these terms, except the continuous-time random walk for which we derive the correct invariant description. Our results are particularly relevant for the modeling of biological systems, as they provide a theoretical principle to select physically consistent stochastic models before a validation against experimental data.
Evolution of heliospheric magnetized configurations via topological invariants
NASA Astrophysics Data System (ADS)
Roth, Ilan
2013-07-01
The analogy between magnetohydrodynamics (MHD) and knot theory is utilized in presenting a new method for an analysis of stability and evolution of complex magnetic heliospheric flux tubes. Planar projection of a three-dimensional magnetic configuration depicts the structure as a two-dimensional diagram with crossings, to which one may assign mathematical operations leading to robust topological invariants. These invariants enrich the topological information of magnetic configurations beyond helicity. It is conjectured that the field which emerges from the solar photosphere is structured as one of the simplest knots-unknot or prime knot-and these flux ropes are then stretched while carried by the solar wind into the interplanetary medium. Preservation of invariants for small diffusivity and large cross section of the emerging magnetic flux makes them impervious to large scale reconnection, allowing us to predict the observed structures at 1 AU as elongated prime knots. Similar structures may be observed in magnetic clouds which got disconnected from their footpoints and in ion drop-out configurations from a compact flare source in solar impulsive solar events. Observation of small scale magnetic features consistent with prime knots may indicate spatial intermittency and non-Gaussian statistics in the turbulent cascade process. For flux tubes with higher resistivity, magnetic energy decay rate should decrease with increased knot complexity as the invariants are then harder to be violated. These observations could be confirmed if adjacent satellites happen to measure distinctly oriented magnetic fields with directionally varying suprathermal particle fluxes.
Equilibria of a charged artificial satellite subject to gravitational and Lorentz torques
NASA Astrophysics Data System (ADS)
Abdel-Aziz, Yehia A.; Shoaib, Muhammad
2014-07-01
The attitude dynamics of a rigid artificial satellite subject to a gravity gradient and Lorentz torques in a circular orbit are considered. Lorentz torque is developed on the basis of the electrodynamic effects of the Lorentz force acting on the charged satellite's surface. We assume that the satellite is moving in a Low Earth Orbit in the geomagnetic field, which is considered to be a dipole. Our model of torque due to the Lorentz force is developed for an artificial satellite with a general shape, and the nonlinear differential equations of Euler are used to describe its attitude orientation. All equilibrium positions are determined and conditions for their existence are obtained. The numerical results show that the charge q and radius ρ0 of the center of charge for the satellite provide a certain type of semi-passive control for the attitude of the satellite. The technique for this kind of control would be to increase or decrease the electrostatic screening on the satellite. The results obtained confirm that the change in charge can affect the magnitude of the Lorentz torque, which can also affect control of the satellite. Moreover, the relationship between magnitude of the Lorentz torque and inclination of the orbit is investigated.
Constraints on the invariant functions of axisymmetric turbulence
NASA Technical Reports Server (NTRS)
Kerschen, E. J.
1983-01-01
Constraints are derived for the two invariant functions Q1 and Q2 that occur in Chandrasekhar's (1950) development of the axisymmetric turbulence theory. These constraints must be satisfied for the correlation tensor derived from Q1 and Q2 to be that of a stationary random process, i.e., for the turbulence to be realizable. The equivalent results in spectrum space are also developed. Applications of the constraints in aerodynamic noise modeling are discussed. It is shown that significant errors in prediction can be introduced by the use of turbulence models which violate the constraints.
The Space Time Asymmetry Research Mission
NASA Astrophysics Data System (ADS)
Scargle, Jeffrey; Goebel, John; Buchman, Sasha; Byer, Robert; Sun, Ke-Xun; Lipa, John; Chu-Thielbar, Lisa; Hall, John
We will use precision molecular iodine stabilized Nd:YAG laser interferometers to search for small deviations from Lorentz Invariance, a cornerstone of relativity and particle physics, and thus our understanding of the Universe. A Lorentz violation would have profound implications for cosmology and particle physics. An improved null result will constrain theories attempting to unite particle physics and gravity. Science Objectives: Measure the absolute anisotropy of the velocity of light to 10-18 (100-fold improvement) Derive the Michelson-Morley coefficient to 10-12 (100-fold improvement) Derive the Kennedy-Thorndyke coefficient to 7x10-10 (400-fold improvement) Derive the coefficients of Lorentz violation in the Standard Model Extension, in the range 7x10-18 to 10-14 (50 to 500-fold improvement) Thermal control, stabilization and uniformitization are great concerns, so new technology has been devised that keeps these parameters within strict specified limits. Thereby STAR is able to operate effectively in all possible orbits. The spacecraft is based on a bus development by NASA Ames Research Center. STAR is designed to fly as a secondary payload on a Delta IV launch vehicle with an ESPA ring into an 850 km circular orbit. It will have a one-year mission and is capable of even longer duration. Other orbit options are possible depending on the launch opportunities available. The STAR project is a partnership between Stanford University, NASA Ames Research Center and NASA Goddard Space Flight Center.
Traces of Lorentz symmetry breaking in a hydrogen atom at ground state
NASA Astrophysics Data System (ADS)
Borges, L. H. C.; Barone, F. A.
2016-02-01
Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.
A comparison of Lorentz, planetary gravitational, and satellite gravitational resonances
NASA Technical Reports Server (NTRS)
Hamilton, Douglas P.
1994-01-01
We consider a charged dust grain whose orbital motion is dominated by a planet's point-source gravity, but perturbed by higher-order terms in the planet's gravity field as well as by the Lorentz force arising from an asymmetric planetary magnetic field. Perturbations to Keplerian orbits due to a nonspherical gravity field are expressed in the traditional way: in terms of a disturbing function which can be expanded in a series of spherical harmonics (W. M. Kaula, 1966). In order to calculate the electromagnetic perturbation, we first write the Lorentz force in terms of the orbital elements and then substitute it into Gauss' perturbation equations. We use our result to derive strengths of Lorentz resonances and elucidate their properties. In particular, we compare Lorentz resonances to two types of gravitational resonances: those arising from periodic tugs of a satellite and those due to the attraction of an arbitrarily shaped planet. We find that Lorentz resonances share numerous properties with their gravitational counterparts and show, using simple physical arguments, that several of these patterns are fundamental, applying not only to our expansions, but to all quantities expressed in terms of orbital elements. Some of these patterns have been previously called 'd'Alembert rules' for satellite resonances. Other similarities arise because, to first-order in the perturbing force, the three problems share an integral of the motion. Yet there are also differences; for example, first-order inclination resonances exist for perturbations arising from planetary gravity and from the Lorentz force, but not for those due to an orbiting satellite. Finally, we provide a heuristic treatment of a particle's orbital evolution under the influence of drag and resonant forces. Particles brought into mean-motion resonances experience either trapping or resonant 'jumps,' depending on the direction from which the resonance is approached. We show that this behavior does not depend on
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, A.F., E-mail: alesandroferreira@fisica.ufmt.br; Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road Victoria, BC; Khanna, Faqir C., E-mail: khannaf@uvic.ca
Dynamics between particles is governed by Lorentz and CPT symmetry. There is a violation of Parity (P) and CP symmetry at low levels. The unified theory, that includes particle physics and quantum gravity, may be expected to be covariant with Lorentz and CPT symmetry. At high enough energies, will the unified theory display violation of any symmetry? The Standard Model Extension (SME), with Lorentz and CPT violating terms, has been suggested to include particle dynamics. The minimal SME in the pure photon sector is considered in order to calculate the Casimir effect at finite temperature.
NASA Technical Reports Server (NTRS)
Speziale, Charles G.
1988-01-01
The invariance of constitutive equations in continuum mechanics is examined from a basic theoretical standpoint. It is demonstrated the constitutive equations which are not form invariant under arbitrary translational accelerations of the reference frame are in violation of the Einstein equivalane principle. Furthermore, by making use of an analysis based on statistical mechanics, it is argued that any frame-dependent terms in constitutive equations must arise from the intrinsic spin tensor and are negligible provided that the ratio of microscopic to macroscopic time scales is extremely small. The consistency of these results with existing constitutive theories is discussed in detail along with possible avenues of future research.
Special Relativity in Week One: 3) Introducing the Lorentz Contraction
NASA Astrophysics Data System (ADS)
Huggins, Elisha
2011-05-01
This is the third of four articles on teaching special relativity in the first week of an introductory physics course.1,2 With Einstein's second postulate that the speed of light is the same to all observers, we could use the light pulse clock to introduce time dilation. But we had difficulty introducing the Lorentz contraction until we saw the movie "Time Dilation, an Experiment with Mu-Mesons" by David Frisch and James Smith.3,4 The movie demonstrates that time dilation and the Lorentz contraction are essentially two sides of the same coin. Here we take the muon's point of view for a more intuitive understanding of the Lorentz contraction, and use the results of the movie to provide an insight into the way we interpret experimental results involving special relativity.
NASA Astrophysics Data System (ADS)
Bartkiewicz, Karol; Chimczak, Grzegorz
2018-01-01
We describe a direct method to experimentally determine local two-qubit invariants by performing interferometric measurements on multiple copies of a given two-qubit state. We use this framework to analyze two different kinds of two-qubit invariants of Makhlin and Jing et al. These invariants allow us to fully reconstruct any two-qubit state up to local unitaries. We demonstrate that measuring three invariants is sufficient to find, e.g., the optimal Bell inequality violation. These invariants can be measured with local or nonlocal measurements. We show that the nonlocal strategy that follows from Makhlin's invariants is more resource efficient than local strategy following from the invariants of Jing et al. To measure all of the Makhlin's invariants directly one needs to use both two-qubit singlets and three-qubit W -state projections on multiple copies of the two-qubit state. This problem is equivalent to a coordinate system handedness measurement. We demonstrate that these three-qubit measurements can be performed by utilizing Hong-Ou-Mandel interference, which gives significant speedup in comparison to the classical handedness measurement. Finally, we point to potential applications of our results in quantum secret sharing.
NASA Astrophysics Data System (ADS)
Tobar, Michael Edmund; Wolf, Peter; Bize, Sébastien; Santarelli, Giorgio; Flambaum, Victor
2010-01-01
The cryogenic sapphire oscillator at the Paris Observatory has been continuously compared to various hydrogen masers since 2001. The early data sets were used to test local Lorentz invariance in the Robertson-Mansouri-Sexl (RMS) framework by searching for sidereal modulations with respect to the cosmic microwave background, and represent the best Kennedy-Thorndike experiment to date. In this work, we present continuous operation over a period of greater than six years from September 2002 to December 2008 and present a more precise way to analyze the data by searching the time derivative of the comparison frequency. Because of the long-term operation we are able to search both sidereal and annual modulations. The results give PKT=βRMS-αRMS-1=-1.7(4.0)×10-8 for the sidereal and -23(10)×10-8 for the annual term, with a weighted mean of -4.8(3.7)×10-8, a factor of 8 better than previous. Also, we analyze the data with respect to a change in gravitational potential for both diurnal and annual variations. The result gives βH-Maser-βCSO=-2.7(1.4)×10-4 for the annual and -6.9(4.0)×10-4 for the diurnal terms, with a weighted mean of -3.2(1.3)×10-4. This result is 2 orders of magnitude better than other tests that use electromagnetic resonators. With respect to fundamental constants a limit can be provided on the variation with ambient gravitational potential and boost of a combination of the fine structure constant (α), the normalized quark mass (mq), and the electron to proton mass ratio (me/mp), setting the first limit on boost dependence of order 10-10.
Lorentz Body Force Induced by Traveling Magnetic Fields
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.
2003-01-01
The Lorentz force induced by a traveling magnetic field (TMF) in a cylindrical container has been calculated. The force can be used to control flow in dectrically conducting melts and the direction of the magnetic field and resulting flow can be reversed. A TMF can be used to partially cancel flow driven by buoyancy. The penetration of the field into the cylinder decreases as the frequency increases, and there exists an optimal value of frequency for which the resulting force is a maximum. Expressions for the Lorentz force in the limiting cases of low frequency and infinite cylinder are also given and compared to the numerical calculations.
NASA Astrophysics Data System (ADS)
Rodríguez, Yeinzon; Beltrán Almeida, Juan P.; Valenzuela-Toledo, César A.
2013-04-01
We present the different consistency relations that can be seen as variations of the well known Suyama-Yamaguchi (SY) consistency relation τNL>=((6/5)fNL)2, the latter involving the levels of non-gaussianity fNL and τNL in the primordial curvature perturbation ζ. It has been (implicitly) claimed that the following variation: τNL(k1,k3)>=((6/5))2fNL(k1)fNL(k3), which we call ``the fourth variety'', in the collapsed (for τNL) and squeezed (for fNL) limits is always satisfied independently of any physics; however, the proof depends sensitively on the assumption of scale-invariance (expressing this way the fourth variety of the SY consistency relation as τNL>=((6/5)fNL)2) which only applies for cosmological models involving Lorentz-invariant scalar fields (at least at tree level), leaving room for a strong violation of this variety of the consistency relation when non-trivial degrees of freedom, for instance vector fields, are in charge of the generation of the primordial curvature perturbation. With this in mind as a motivation, we explicitly state, in the first part of this work, under which conditions the SY consistency relation has been claimed to hold in its different varieties (implicitly) presented in the literature since its inception back in 2008; as a result, we show for the first time that the variety τNL(k1,k1)>=((6/5)fNL(k1))2, which we call ``the fifth variety'', is always satisfied even when there is strong scale-dependence and high levels of statistical anisotropy as long as statistical homogeneity holds: thus, an observed violation of this specific variety would prevent the comparison between theory and observation, shaking this way the foundations of cosmology as a science. In the second part, we concern about the existence of non-trivial degrees of freedom, concretely vector fields for which the levels of non-gaussianity have been calculated for very few models; among them, and by making use of the δN formalism at tree level, we study a class
Test of time-reversal invariance at COSY (TRIC)
NASA Astrophysics Data System (ADS)
Eversheim, D.; Valdau, Yu.; Lorentz, B.
2013-03-01
At the Cooler Synchrotron COSY a novel (P-even, T-odd) null test of time-reversal invariance to an accuracy of 10 - 6 is planned as an internal target transmission experiment. The parity conserving time-reversal violating observable is the total cross-section asymmetry Ay,xz. This quantity is measured using a polarized proton beam with an energy of 135 MeV and an internal tensor polarized deuteron target from the PAX atomic beam source. The reaction rate will be measured by means of an integrating beam current transformer. Thus, in this experiment the cooler synchroton ring serves as ideal forward spectrometer, as a detector, and an accelerator.
Twofold symmetries of the pure gravity action
Cheung, Clifford; Remmen, Grant N.
2017-01-25
Here, we recast the action of pure gravity into a form that is invariant under a twofold Lorentz symmetry. To derive this representation, we construct a general parameterization of all theories equivalent to the Einstein-Hilbert action up to a local field redefinition and gauge fixing. We then exploit this freedom to eliminate all interactions except those exhibiting two sets of independently contracted Lorentz indices. The resulting action is local, remarkably simple, and naturally expressed in a field basis analogous to the exponential parameterization of the nonlinear sigma model. The space of twofold Lorentz invariant field redefinitions then generates an infinitemore » class of equivalent representations. By construction, all off-shell Feynman diagrams are twofold Lorentz invariant while all on-shell tree amplitudes are automatically twofold gauge invariant. We extend our results to curved spacetime and calculate the analogue of the Einstein equations. Finally, while these twofold invariances are hidden in the canonical approach of graviton perturbation theory, they are naturally expected given the double copy relations for scattering amplitudes in gauge theory and gravity.« less
Twofold symmetries of the pure gravity action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Clifford; Remmen, Grant N.
Here, we recast the action of pure gravity into a form that is invariant under a twofold Lorentz symmetry. To derive this representation, we construct a general parameterization of all theories equivalent to the Einstein-Hilbert action up to a local field redefinition and gauge fixing. We then exploit this freedom to eliminate all interactions except those exhibiting two sets of independently contracted Lorentz indices. The resulting action is local, remarkably simple, and naturally expressed in a field basis analogous to the exponential parameterization of the nonlinear sigma model. The space of twofold Lorentz invariant field redefinitions then generates an infinitemore » class of equivalent representations. By construction, all off-shell Feynman diagrams are twofold Lorentz invariant while all on-shell tree amplitudes are automatically twofold gauge invariant. We extend our results to curved spacetime and calculate the analogue of the Einstein equations. Finally, while these twofold invariances are hidden in the canonical approach of graviton perturbation theory, they are naturally expected given the double copy relations for scattering amplitudes in gauge theory and gravity.« less
Beyond Lovelock gravity: Higher derivative metric theories
NASA Astrophysics Data System (ADS)
Crisostomi, M.; Noui, K.; Charmousis, C.; Langlois, D.
2018-02-01
We consider theories describing the dynamics of a four-dimensional metric, whose Lagrangian is diffeomorphism invariant and depends at most on second derivatives of the metric. Imposing degeneracy conditions we find a set of Lagrangians that, apart form the Einstein-Hilbert one, are either trivial or contain more than 2 degrees of freedom. Among the partially degenerate theories, we recover Chern-Simons gravity, endowed with constraints whose structure suggests the presence of instabilities. Then, we enlarge the class of parity violating theories of gravity by introducing new "chiral scalar-tensor theories." Although they all raise the same concern as Chern-Simons gravity, they can nevertheless make sense as low energy effective field theories or, by restricting them to the unitary gauge (where the scalar field is uniform), as Lorentz breaking theories with a parity violating sector.
Torsional Oscillations with Lorentz Force
ERIC Educational Resources Information Center
Gluck, Paul
2007-01-01
We have built a device that uses the Lorentz force on a current-carrying wire situated in a magnetic field, F = I L x B, in order to demonstrate a slowly varying alternating current by means of an optical lever. The apparatus consists of a horseshoe magnet, a length of thin enamel-coated wire (ours was 0.3 mm thick), a signal generator, a…
Constraints on parity violating conformal field theories in d = 3
NASA Astrophysics Data System (ADS)
Chowdhury, Subham Dutta; David, Justin R.; Prakash, Shiroman
2017-11-01
We derive constraints on three-point functions involving the stress tensor, T, and a conserved U(1) current, j, in 2+1 dimensional conformal field theories that violate parity, using conformal collider bounds introduced by Hofman and Maldacena. Conformal invariance allows parity-odd tensor-structures for the 〈 T T T〉 and 〈 jjT〉 correlation functions which are unique to three space-time dimensions. Let the parameters which determine the 〈 T T T〉 correlation function be t 4 and α T , where α T is the parity-violating contribution. Similarly let the parameters which determine 〈 jjT〉 correlation function be a 2, and α J , where α J is the parity-violating contribution. We show that the parameters ( t 4, α T ) and (a2, α J ) are bounded to lie inside a disc at the origin of the t 4 - α T plane and the a 2 - α J plane respectively. We then show that large N Chern-Simons theories coupled to a fundamental fermion/boson lie on the circle which bounds these discs. The `t Hooft coupling determines the location of these theories on the boundary circles.
Baryon mass splittings and strong CP violation in SU(3) chiral perturbation theory
de Vries, Jordy; Mereghetti, Emanuele; Walker-Loud, Andre P.
2015-10-08
We study SU(3) flavor breaking corrections to the relation between the octet baryon masses and the nucleon-meson CP-violating interactions induced by the QCD theta term. We also work within the framework of SU(3) chiral perturbation theory and work through next-to-next-to-leading order in the SU(3) chiral expansion, which is O(m 2 q). At lowest order, the CP-odd couplings induced by the QCD θ - term are determined by mass splittings of the baryon octet, the classic result of Crewther et al. We show that for each isospin-invariant CP-violating nucleon-meson interaction there exists one relation which is respected by loop corrections upmore » to the order we work, while other leading-order relations are violated. With these relations we extract a precise value of the pion-nucleon coupling g - 0 by using recent lattice QCD evaluations of the proton-neutron mass splitting. Additionally, we derive semi-precise values for CP-violating coupling constants between heavier mesons and nucleons and discuss their phenomenological impact on electric dipole moments of nucleons and nuclei.« less
Baryon mass splittings and strong CP violation in SU(3) chiral perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Vries, Jordy; Mereghetti, Emanuele; Walker-Loud, Andre P.
We study SU(3) flavor breaking corrections to the relation between the octet baryon masses and the nucleon-meson CP-violating interactions induced by the QCD theta term. We also work within the framework of SU(3) chiral perturbation theory and work through next-to-next-to-leading order in the SU(3) chiral expansion, which is O(m 2 q). At lowest order, the CP-odd couplings induced by the QCD θ - term are determined by mass splittings of the baryon octet, the classic result of Crewther et al. We show that for each isospin-invariant CP-violating nucleon-meson interaction there exists one relation which is respected by loop corrections upmore » to the order we work, while other leading-order relations are violated. With these relations we extract a precise value of the pion-nucleon coupling g - 0 by using recent lattice QCD evaluations of the proton-neutron mass splitting. Additionally, we derive semi-precise values for CP-violating coupling constants between heavier mesons and nucleons and discuss their phenomenological impact on electric dipole moments of nucleons and nuclei.« less
Casual Set Approach to a Minimal Invariant Length
NASA Astrophysics Data System (ADS)
Raut, Usha
2007-04-01
Any attempt to quantize gravity would necessarily introduce a minimal observable length scale of the order of the Planck length. This conclusion is based on several different studies and thought experiments and appears to be an inescapable feature of all quantum gravity theories, irrespective of the method used to quantize gravity. Over the last few years there has been growing concern that such a minimal length might lead to a contradiction with the basic postulates of special relativity, in particular the Lorentz-Fitzgerald contraction. A few years ago, Rovelli et.al, attempted to reconcile an invariant minimal length with Special Relativity, using the framework of loop quantum gravity. However, the inherently canonical formalism of the loop quantum approach is plagued by a variety of problems, many brought on by separation of space and time co-ordinates. In this paper we use a completely different approach. Using the framework of the causal set paradigm, along with a statistical measure of closeness between Lorentzian manifolds, we re-examine the issue of introducing a minimal observable length that is not at odds with Special Relativity postulates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bettoni, Dario; Nusser, Adi; Blas, Diego
We develop the framework for testing Lorentz invariance in the dark matter sector using galactic dynamics. We consider a Lorentz violating (LV) vector field acting on the dark matter component of a satellite galaxy orbiting in a host halo. We introduce a numerical model for the dynamics of satellites in a galactic halo and for a galaxy in a rich cluster to explore observational consequences of such an LV field. The orbital motion of a satellite excites a time dependent LV force which greatly affects its internal dynamics. Our analysis points out key observational signatures which serve as probes ofmore » LV forces. These include modifications to the line of sight velocity dispersion, mass profiles and shapes of satellites. With future data and a more detailed modeling these signatures can be exploited to constrain a new region of the parameter space describing the LV in the dark matter sector.« less
Effect of the Lorentz force on on-off dynamo intermittency.
Alexakis, Alexandros; Ponty, Yannick
2008-05-01
An investigation of the dynamo instability close to the threshold produced by an ABC forced flow is presented. We focus on the on-off intermittency behavior of the dynamo and the countereffect of the Lorentz force in the nonlinear stage of the dynamo. The Lorentz force drastically alters the statistics of the turbulent fluctuations of the flow and reduces their amplitude. As a result, much longer bursts (on phases) are observed than is expected based on the amplitude of the fluctuations in the kinematic regime of the dynamo. For large Reynolds numbers, the duration time of the on phase follows a power law distribution, while for smaller Reynolds numbers the Lorentz force completely kills the noise and the system transits from a chaotic state into a laminar time periodic flow. The behavior of the on-off intermittency as the Reynolds number is increased is also examined. The connections with dynamo experiments and theoretical modeling are discussed.
NASA Astrophysics Data System (ADS)
Liu, Dajun; Wang, Guiqiu; Wang, Yaochuan
2018-01-01
Based on the Huygens-Fresnel integral and the relationship of Lorentz distribution and Hermite-Gauss function, the average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence have been investigated by using numerical examples. The influences of beam parameters and oceanic turbulence on the propagation properties are also discussed in details. It is shown that the partially coherent Lorentz-Gauss beam with smaller coherence length will spread faster in oceanic turbulence, and the stronger oceanic turbulence will accelerate the spreading of partially coherent Lorentz-Gauss beam in oceanic turbulence.
NASA Astrophysics Data System (ADS)
Wu, H.; Zhou, L.; Xu, T.; Fang, W. L.; He, W. G.; Liu, H. M.
2017-11-01
In order to improve the situation of voltage violation caused by the grid-connection of photovoltaic (PV) system in a distribution network, a bi-level programming model is proposed for battery energy storage system (BESS) deployment. The objective function of inner level programming is to minimize voltage violation, with the power of PV and BESS as the variables. The objective function of outer level programming is to minimize the comprehensive function originated from inner layer programming and all the BESS operating parameters, with the capacity and rated power of BESS as the variables. The differential evolution (DE) algorithm is applied to solve the model. Based on distribution network operation scenarios with photovoltaic generation under multiple alternative output modes, the simulation results of IEEE 33-bus system prove that the deployment strategy of BESS proposed in this paper is well adapted to voltage violation regulation invariable distribution network operation scenarios. It contributes to regulating voltage violation in distribution network, as well as to improve the utilization of PV systems.
Lorentz Contraction and Current-Carrying Wires
ERIC Educational Resources Information Center
van Kampen, Paul
2008-01-01
The force between two parallel current-carrying wires is investigated in the rest frames of the ions and the electrons. A straightforward Lorentz transformation shows that what appears as a purely magnetostatic force in the ion frame appears as a combined magnetostatic and electrostatic force in the electron frame. The derivation makes use of a…
Fox, Mark C; Mitchum, Ainsley L
2014-01-01
The trend of rising scores on intelligence tests raises important questions about the comparability of variation within and between time periods. Descriptions of the processes that mediate selection of item responses provide meaningful psychological criteria upon which to base such comparisons. In a recent paper, Fox and Mitchum presented and tested a cognitive theory of rising scores on analogical and inductive reasoning tests that is specific enough to make novel predictions about cohort differences in patterns of item responses for tests such as the Raven's Matrices. In this paper we extend the same proposal in two important ways by (1) testing it against a dataset that enables the effects of cohort to be isolated from those of age, and (2) applying it to two other inductive reasoning tests that exhibit large Flynn effects: Letter Series and Word Series. Following specification and testing of a confirmatory item response model, predicted violations of measurement invariance are observed between two age-matched cohorts that are separated by only 20 years, as members of the later cohort are found to map objects at higher levels of abstraction than members of the earlier cohort who possess the same overall level of ability. Results have implications for the Flynn effect and cognitive aging while underscoring the value of establishing psychological criteria for equating members of distinct groups who achieve the same scores.
NASA Astrophysics Data System (ADS)
Altschul, Brett D.
2007-06-01
experimental tests of special relativity, especially state-of-the-art versions of 'classic' tests of rotation and boost invariance. These include Michelson-Morley experiments with high-finesse optical resonators, two-species atomic clock comparisons, and direct measurements of Doppler shifts in the radiation of moving atoms. If there is a weakness in the overall presentation, it lies in the selection of material covered. {\\it Special Relativity} is more of a volume of conference proceedings than a truly cohesive set of lecture notes. This is most evident in the section on experimental tests of Lorentz invariance, which includes contributions from three different experimental groups working on optical resonator measurements. Impressive as these experiments are, this repetitive coverage is not necessary. And at the same time, there is no detailed coverage of astrophysical tests of Lorentz invariance, even though the tightest absolute bounds on deviations from relativity come from astrophysical polarimetry. However, taken as a whole, the volume presents an excellent survey of current research on Lorentz symmetry. Most of the book should be accessible to graduate students and researchers who are interested in the field but with little previous exposure to it. However, the mathematical level does vary quite a bit from one article to the next; especially in part II, facility with a fair number of mathematical physics concepts may be required. The coverage is broad enough that even an active researcher working on special relativity and possible modifications thereto will almost certainly find new material in this volume, and most of the authors provide abundant references, which should be quite valuable in a field with as many counterintuitive features as Lorentz violation research.
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2014-12-01
The Lorentz force acting on an electrostatically charged spacecraft as it moves through the planetary magnetic field could be utilized as propellantless electromagnetic propulsion for orbital maneuvering, such as spacecraft formation establishment and formation reconfiguration. By assuming that the Earth's magnetic field could be modeled as a tilted dipole located at the center of Earth that corotates with Earth, a dynamical model that describes the relative orbital motion of Lorentz spacecraft is developed. Based on the proposed dynamical model, the energy-optimal open-loop trajectories of control inputs, namely, the required specific charges of Lorentz spacecraft, for Lorentz-propelled spacecraft formation establishment or reconfiguration problems with both fixed and free final conditions constraints are derived via Gauss pseudospectral method. The effect of the magnetic dipole tilt angle on the optimal control inputs and the relative transfer trajectories for formation establishment or reconfiguration is also investigated by comparisons with the results derived from a nontilted dipole model. Furthermore, a closed-loop integral sliding mode controller is designed to guarantee the trajectory tracking in the presence of external disturbances and modeling errors. The stability of the closed-loop system is proved by a Lyapunov-based approach. Numerical simulations are presented to verify the validity of the proposed open-loop control methods and demonstrate the performance of the closed-loop controller. Also, the results indicate the dipole tilt angle should be considered when designing control strategies for Lorentz-propelled spacecraft formation establishment or reconfiguration.
Accelerated horizons and Planck-scale kinematics
NASA Astrophysics Data System (ADS)
Arzano, Michele; Laudonio, Matteo
2018-04-01
We extend the concept of accelerated horizons to the framework of deformed relativistic kinematics at the Planck scale. We show that the nontrivial effects due to symmetry deformation manifest in a finite blueshift for field modes as measured by a Rindler observer approaching the horizon. We investigate whether, at a field theoretic level, this effect could manifest in the possibility of a finite horizon contribution to the entropy, a sort of covariant brick wall. In the specific model of symmetry deformation considered, it will turn out that a nondiverging density of modes close to the horizon can be achieved only by introducing a momentum space measure which violates Lorentz invariance.
Superluminal Neutrinos at OPERA Confront Pion Decay Kinematics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowsik, Ramanath; Nussinov, Shmuel; Schmidt College of Science, Chapman University,Orange California 92866
2011-12-16
Violation of Lorentz invariance (VLI) has been suggested as an explanation of the superluminal velocities of muon neutrinos reported by OPERA. In this Letter, we show that the amount of VLI required to explain this result poses severe difficulties with the kinematics of the pion decay, extending its lifetime and reducing the momentum carried away by the neutrinos. We show that the OPERA experiment limits {alpha}=(v{sub {nu}}-c)/c<4x10{sup -6}. We then take recourse to cosmic-ray data on the spectrum of muons and neutrinos generated in Earth's atmosphere to provide a stronger bound on VLI: (v-c)/c<10{sup -12}.
The lepton flavor violating exclusive b bar → s bar ℓi- ℓj+ decays in SUSY without R-parity
NASA Astrophysics Data System (ADS)
Sheng, Jin-Huan; Song, Jia-Jia; Wang, Ru-Min; Yang, Ya-Dong
2018-05-01
Inspired by the recent anomaly measurements of the lepton-flavor violating decays h → μτ and the lepton flavor non-universality in decays b bar → s bar ℓ-ℓ+, we investigate the lepton flavor violating exclusive b bar → s bar ℓi- ℓj+ (i ≠ j and ℓ = e , μ , τ) decays within supersymmetry. Relevant R-parity violating couplings are constrained by using the latest experimental upper limits on the branching ratios of Bs → ℓi- ℓj+ and B →K (*) ℓi- ℓ j + flavor changing neutral current processes, and we find that all relevant branching ratios are very sensitive to the moduli of the squark and sneutrino exchange coupling products. In addition, the constrained lepton number violating effects on the dilepton invariant mass spectra, the single lepton polarization asymmetries and the differential forward-backward asymmetries are also studied. These lepton-flavor violating B decays could be used for the search of lepton flavor violation at the running LHC and the forthcoming Belle-II.
On holographic entanglement density
NASA Astrophysics Data System (ADS)
Gushterov, Nikola I.; O'Bannon, Andy; Rodgers, Ronnie
2017-10-01
We use holographic duality to study the entanglement entropy (EE) of Conformal Field Theories (CFTs) in various spacetime dimensions d, in the presence of various deformations: a relevant Lorentz scalar operator with constant source, a temperature T , a chemical potential μ, a marginal Lorentz scalar operator with source linear in a spatial coordinate, and a circle-compactified spatial direction. We consider EE between a strip or sphere sub-region and the rest of the system, and define the "entanglement density" (ED) as the change in EE due to the deformation, divided by the sub-region's volume. Using the deformed CFTs above, we show how the ED's dependence on the strip width or sphere radius, L, is useful for characterizing states of matter. For example, the ED's small- L behavior is determined either by the dimension of the perturbing operator or by the first law of EE. For Lorentz-invariant renormalization group (RG) flows between CFTs, the "area theorem" states that the coefficient of the EE's area law term must be larger in the UV than in the IR. In these cases the ED must therefore approach zero from below as L→∞. However, when Lorentz symmetry is broken and the IR fixed point has different scaling from the UV, we find that the ED often approaches the thermal entropy density from above, indicating area theorem violation.
NASA Astrophysics Data System (ADS)
Li, Yi-Ling; Liu, Zhen-Bo; Ma, Qing-Yu; Guo, Xia-Sheng; Zhang, Dong
2010-08-01
Magnetoacoustic tomography with magnetic induction has shown potential applications in imaging the electrical impedance for biological tissues. We present a novel methodology for the inverse problem solution of the 2-D Lorentz force distribution reconstruction based on the acoustic straight line propagation theory. The magnetic induction and acoustic generation as well as acoustic detection are theoretically provided as explicit formulae and also validated by the numerical simulations for a multilayered cylindrical phantom model. The reconstructed 2-D Lorentz force distribution reveals not only the conductivity configuration in terms of shape and size but also the amplitude value of the Lorentz force in the examined layer. This study provides a basis for further study of conductivity distribution reconstruction of MAT-MI in medical imaging.
Angular momentum conservation law in light-front quantum field theory
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.
2017-03-31
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3, the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED andmore » QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less
Angular momentum conservation law in light-front quantum field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3, the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED andmore » QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less
Angular momentum conservation law in light-front quantum field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QEDmore » and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less
Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.
2001-01-01
The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using the VPS process to form anode sections for a Lorentz force accelerator from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and accelerates the metal powder onto the mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the anode. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of the Lorentz force accelerator.
Relating Measurement Invariance, Cross-Level Invariance, and Multilevel Reliability.
Jak, Suzanne; Jorgensen, Terrence D
2017-01-01
Data often have a nested, multilevel structure, for example when data are collected from children in classrooms. This kind of data complicate the evaluation of reliability and measurement invariance, because several properties can be evaluated at both the individual level and the cluster level, as well as across levels. For example, cross-level invariance implies equal factor loadings across levels, which is needed to give latent variables at the two levels a similar interpretation. Reliability at a specific level refers to the ratio of true score variance over total variance at that level. This paper aims to shine light on the relation between reliability, cross-level invariance, and strong factorial invariance across clusters in multilevel data. Specifically, we will illustrate how strong factorial invariance across clusters implies cross-level invariance and perfect reliability at the between level in multilevel factor models.
Constraints onthe bulk Lorentz factor of gamma-ray burstswith the detection rate by Fermi LAT
NASA Astrophysics Data System (ADS)
Chen, Ye; Liu, Ruo-Yu; Wang, Xiang-Yu
2018-07-01
The bulk Lorentz factor (Γ) of the outflow is an essential parameter for understanding the physics of gamma-ray burst (GRB). Informations about the Lorentz factors of some individual GRBs have been obtained from the spectral features of the high-energy gamma-ray emissions (>100 MeV), assuming that the spectral breaks or cutoffs are due to the pair-production attenuation (i.e. γγ → e+e-). In this paper, we attempt to interpret the dependence of the Large Area Telescope (LAT) detection rate of GRBs on the number of high-energy gamma-rays, taking into account the attenuation effect. We first simulate a long-GRB sample with Monte Carlo method using the luminosity function, rate distribution with redshift, and properties of the GRB spectrum. To characterize the distribution of the Lorentz factors, we assume that the Lorentz factors follow the relation Γ =Γ _0E_{iso, 52}k, where Eiso,52 is the isotropic photon energy in unit of 1052 erg. After taking into account the attenuation effect related with the above Lorentz factor distribution, we are able to reproduce the LAT-detected rate of GRBs as the function of the number of gamma-rays for suitable choice of the values of Γ0 and k. The result suggests that the distribution of the bulk Lorentz factor for the majority of GRBs is in the range of 50-250.
Emergence of nonwhite noise in Langevin dynamics with magnetic Lorentz force
NASA Astrophysics Data System (ADS)
Chun, Hyun-Myung; Durang, Xavier; Noh, Jae Dong
2018-03-01
We investigate the low mass limit of Langevin dynamics for a charged Brownian particle driven by a magnetic Lorentz force. In the low mass limit, velocity variables relaxing quickly are coarse-grained out to yield effective dynamics for position variables. Without the Lorentz force, the low mass limit is equivalent to the high friction limit. Both cases share the same Langevin equation that is obtained by setting the mass to zero. The equivalence breaks down in the presence of the Lorentz force. The low mass limit cannot be achieved by setting the mass to zero. The limit is also distinct from the large friction limit. We derive the effective equations of motion in the low mass limit. The resulting stochastic differential equation involves a nonwhite noise whose correlation matrix has antisymmetric components. We demonstrate the importance of the nonwhite noise by investigating the heat dissipation by a driven Brownian particle, where the emergent nonwhite noise has a physically measurable effect.
Mansuripur, Masud
2012-05-11
The Lorentz law of force is the fifth pillar of classical electrodynamics, the other four being Maxwell's macroscopic equations. The Lorentz law is the universal expression of the force exerted by electromagnetic fields on a volume containing a distribution of electrical charges and currents. If electric and magnetic dipoles also happen to be present in a material medium, they are traditionally treated by expressing the corresponding polarization and magnetization distributions in terms of bound-charge and bound-current densities, which are subsequently added to free-charge and free-current densities, respectively. In this way, Maxwell's macroscopic equations are reduced to his microscopic equations, and the Lorentz law is expected to provide a precise expression of the electromagnetic force density on material bodies at all points in space and time. This Letter presents incontrovertible theoretical evidence of the incompatibility of the Lorentz law with the fundamental tenets of special relativity. We argue that the Lorentz law must be abandoned in favor of a more general expression of the electromagnetic force density, such as the one discovered by Einstein and Laub in 1908. Not only is the Einstein-Laub formula consistent with special relativity, it also solves the long-standing problem of "hidden momentum" in classical electrodynamics.
Cherenkov-like emission of Z bosons
NASA Astrophysics Data System (ADS)
Colladay, D.; Noordmans, J. P.; Potting, R.
2017-07-01
We study CPT and Lorentz violation in the electroweak gauge sector of the Standard Model in the context of the Standard-Model Extension (SME). In particular, we show that any non-zero value of a certain relevant Lorentz violation parameter that is thus far unbounded by experiment would imply that for sufficiently large energies one of the helicity modes of the Z boson should propagate with spacelike four-momentum and become stable against decay in vacuum. In this scenario, Cherenkov-like radiation of Z bosons by ultra-high-energy cosmic-ray protons becomes possible. We deduce a bound on the Lorentz violation parameter from the observational data on ultra-high energy cosmic rays.
Test of Time-Reversal Invariance at COSY (TRIC)
NASA Astrophysics Data System (ADS)
Eversheim, D.; Valdau, Yu.; Lorentz, B.
2016-02-01
At the Cooler Synchrotron COSY a novel (P-even, T-odd) null test of time-reversal invariance to an accuracy of 10-6 is planned as an internal target transmission experiment. The parity conserving time-reversal violating observable is the total cross-section asymmetry Ay,xz. This quantity is measured using a polarized proton beam with an energy of 135 MeV and an internal tensor polarized deuteron target from the PAX atomic beam source. The reaction rate will be determined by the lifetime of the beam. Consequently, the accuracy of the current measurement of the circulating proton beam is crucial for this experiment. Thus, the cooler synchroton ring serves as an ideal forward spectrometer, as a detector, and an accelerator.
Is Einsteinian no-signalling violated in Bell tests?
NASA Astrophysics Data System (ADS)
Kupczynski, Marian
2017-11-01
Relativistic invariance is a physical law verified in several domains of physics. The impossibility of faster than light influences is not questioned by quantum theory. In quantum electrodynamics, in quantum field theory and in the standard model relativistic invariance is incorporated by construction. Quantum mechanics predicts strong long range correlations between outcomes of spin projection measurements performed in distant laboratories. In spite of these strong correlations marginal probability distributions should not depend on what was measured in the other laboratory what is called shortly: non-signalling. In several experiments, performed to test various Bell-type inequalities, some unexplained dependence of empirical marginal probability distributions on distant settings was observed. In this paper we demonstrate how a particular identification and selection procedure of paired distant outcomes is the most probable cause for this apparent violation of no-signalling principle. Thus this unexpected setting dependence does not prove the existence of superluminal influences and Einsteinian no-signalling principle has to be tested differently in dedicated experiments. We propose a detailed protocol telling how such experiments should be designed in order to be conclusive. We also explain how magical quantum correlations may be explained in a locally causal way.
The origins of length contraction: I. The FitzGerald-Lorentz deformation hypothesis
NASA Astrophysics Data System (ADS)
Brown, Harvey R.
2001-10-01
"Can there be some point in the theory of Mr. Michelson's experiment which has yet been overlooked?" H. A. Lorentz, letter to Lord Rayleigh, August 1892. One of the widespread confusions concerning the history of the 1887 Michelson-Morley experiment has to do with the initial explanation of this celebrated null result due independently to FitzGerald and Lorentz. In neither case was a strict, longitudinal length contraction hypothesis invoked, as is commonly supposed. Lorentz postulated, particularly in 1895, any one of a certain family of possible deformation effects for rigid bodies in motion, including purely transverse alteration, and expansion as well as contraction; FitzGerald may well have had the same family in mind. A careful analysis of the Michelson-Morley experiment (which reveals a number of serious inadequacies in many textbook treatments) indeed shows that strict contraction is not required.
A simple derivation of Lorentz self-force
NASA Astrophysics Data System (ADS)
Haque, Asrarul
2014-09-01
We derive the Lorentz self-force for a charged particle in arbitrary non-relativistic motion by averaging the retarded fields. The derivation is simple and at the same time pedagogically accessible. We obtain the radiation reaction for a charged particle moving in a circle. We pin down the underlying concept of mass renormalization.
Measurement Invariance versus Selection Invariance: Is Fair Selection Possible?
ERIC Educational Resources Information Center
Borsman, Denny; Romeijn, Jan-Willem; Wicherts, Jelte M.
2008-01-01
This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement instrument is used and group differences are present in…
The scale invariant generator technique for quantifying anisotropic scale invariance
NASA Astrophysics Data System (ADS)
Lewis, G. M.; Lovejoy, S.; Schertzer, D.; Pecknold, S.
1999-11-01
Scale invariance is rapidly becoming a new paradigm for geophysics. However, little attention has been paid to the anisotropy that is invariably present in geophysical fields in the form of differential stratification and rotation, texture and morphology. In order to account for scaling anisotropy, the formalism of generalized scale invariance (GSI) was developed. Until now there has existed only a single fairly ad hoc GSI analysis technique valid for studying differential rotation. In this paper, we use a two-dimensional representation of the linear approximation to generalized scale invariance, to obtain a much improved technique for quantifying anisotropic scale invariance called the scale invariant generator technique (SIG). The accuracy of the technique is tested using anisotropic multifractal simulations and error estimates are provided for the geophysically relevant range of parameters. It is found that the technique yields reasonable estimates for simulations with a diversity of anisotropic and statistical characteristics. The scale invariant generator technique can profitably be applied to the scale invariant study of vertical/horizontal and space/time cross-sections of geophysical fields as well as to the study of the texture/morphology of fields.
Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.
2004-01-01
The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center, working with the Jet Propulsion Laboratory, has developed and demonstrated a fabrication technique using the VPS process to form anode and cathode sections for a Lorentz force accelerator made from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and deposits the molten metal powder onto a mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions for the inside surface of the anode or cathode of the accelerator. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of Lorentz force accelerator components.
Properties of TEM standing waves with E||B
NASA Astrophysics Data System (ADS)
Zaghloul, H.; Buckmaster, H. A.
This paper summarizes the known properties of E∥B TEM standing waves and shows that for such waves (i) E and B cannot be linearly polarized, (ii) E ≠ αB where α is a constant (iii) it is impossible to find a Lorentz frame where E>B, (iv) direction of the propagation vector cannot be inferred from the fields at one point of the space, (v) their behaviour under Lorentz, parity, time-reversal and gauge transformations is proper, (vi) both Lorentz invariants E2 - B2 and E·B are nonzero, (vii) the magnetic helicity may be nonzero, (viii) the magnetic field may be force-free, and (ix) kμFμv ≠ 0. It also shows how electromagnetic waves can be classified using Lorentz invariants. Cet article résume les qualités connues des ondes stationnaires E∥B TEM et montre que pour des ondes parallèles (i) E et B ne peuvent pas être polarisées linéairement, (ii) E ≠ αB où a est une constante, (iii) il est impossible de trouver une construction de Lorentz où E>B, (iv) la direction de propagation d'un vecteur ne peut pas être déduite des opérations à un point d'intervalle, (v) leur conduite sous Lorentz, parité, temps inverse et transformations de jauge est propre, (vi) les deux invariants de Lorentz E2 - B2 et E·B sont non nulles (vii) l'hélice magnétique peut être non nulle (viii) l'opération magnétique peut être de force libre et (ix) KμFμ v ≠ 0. Ceci montre aussi comment les ondes électromagnétiques peuvent être classifiées, en employant les invariants de Lorentz.
NASA Astrophysics Data System (ADS)
Philpott, Lydia
2010-09-01
Central to the development of any new theory is the investigation of the observable consequences of the theory. In the search for quantum gravity, research in phenomenology has been dominated by models violating Lorentz invariance (LI) -- despite there being, at present, no evidence that LI is violated. Causal set theory is a LI candidate theory of QG that seeks not to quantise gravity as such, but rather to develop a new understanding of the universe from which both GR and QM could arise separately. The key hypothesis is that spacetime is a discrete partial order: a set of events where the partial ordering is the physical causal ordering between the events. This thesis investigates Lorentz invariant QG phenomenology motivated by the causal set approach. Massive particles propagating in a discrete spacetime will experience diffusion in both position and momentum in proper time. This thesis considers this idea in more depth, providing a rigorous derivation of the diffusion equation in terms of observable cosmic time. The diffusion behaviour does not depend on any particular underlying particle model. Simulations of three different models are conducted, revealing behaviour that matches the diffusion equation despite limitations on the size of causal set simulated. The effect of spacetime discreteness on the behaviour of massless particles is also investigated. Diffusion equations in both affine time and cosmic time are derived, and it is found that massless particles undergo diffusion and drift in energy. Constraints are placed on the magnitudes of the drift and diffusion parameters by considering the blackbody nature of the CMB. Spacetime discreteness also has a potentially observable effect on photon polarisation. For linearly polarised photons, underlying discreteness is found to cause a rotation in polarisation angle and a suppression in overall polarisation.
A Useful Device for Illustrating the Lorentz Transformations
ERIC Educational Resources Information Center
Cortini, Giulio
1972-01-01
A graphical representation is proposed as a teaching device which can be useful in order to obtain a good intuitive grasp of the physical meaning of the Lorentz transformations. The connection between the time dilation and the desynchronization of clocks is particularly discussed. (Author/PR)
Fractional Fourier transform of Lorentz-Gauss vortex beams
NASA Astrophysics Data System (ADS)
Zhou, GuoQuan; Wang, XiaoGang; Chu, XiuXiang
2013-08-01
An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.
Towards metering tap water by Lorentz force velocimetry
NASA Astrophysics Data System (ADS)
Vasilyan, Suren; Ebert, Reschad; Weidner, Markus; Rivero, Michel; Halbedel, Bernd; Resagk, Christian; Fröhlich, Thomas
2015-11-01
In this paper, we present enhanced flow rate measurement by applying the contactless Lorentz Force Velocimetry (LFV) technique. Particularly, we show that the LFV is a feasible technique for metering the flow rate of salt water in a rectangular channel. The measurements of the Lorentz forces as a function of the flow rate are presented for different electrical conductivities of the salt water. The smallest value of conductivity is achieved at 0.06 S·m-1, which corresponds to the typical value of tap water. In comparison with previous results, the performance of LFV is improved by approximately 2 orders of magnitude by means of a high-precision differential force measurement setup. Furthermore, the sensitivity curve and the calibration factor of the flowmeter are provided based on extensive measurements for the flow velocities ranging from 0.2 to 2.5 m·s-1 and conductivities ranging from 0.06 to 10 S·m-1.
Violation of the zero-force theorem in the time-dependent Krieger-Li-Iafrate approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundt, Michael; Kuemmel, Stephan; Leeuwen, Robert van
2007-05-15
We demonstrate that the time-dependent Krieger-Li-Iafrate approximation in combination with the exchange-only functional violates the zero-force theorem. By analyzing the time-dependent dipole moment of Na{sub 5} and Na{sub 9}{sup +}, we furthermore show that this can lead to an unphysical self-excitation of the system depending on the system properties and the excitation strength. Analytical aspects, especially the connection between the zero-force theorem and the generalized-translation invariance of the potential, are discussed.
Invariants of the Jacobi-Porstendorfer room model for radon progeny in indoor air.
Thomas, Josef; Jilek, Karel
2012-06-01
The Jacobi-Porstendörfer room model, describing the dynamical behaviour of radon and radon progeny in indoor air, has been successfully used for decades. The inversion of the model-the determination of the five parameters from measured results which provide better information on the room environment than mere ratios of unattached and attached radon progeny-is treated as an algebraic task. The linear interdependence of the used equations strongly limits the algebraic invertibility of experimental results. For a unique solution, the fulfilment of two invariants of the room model for the measured results is required. Non-fulfilment of these model invariants by the measured results leads to a set of non-identical solutions and indicates the violation of the conditions required by the room model or the incorrectness or excessive uncertainties of the measured results. The limited and non-unique algebraic invertibility of the room model is analysed numerically using our own data for the radon progeny.
A Fock space representation for the quantum Lorentz gas
NASA Astrophysics Data System (ADS)
Maassen, H.; Tip, A.
1995-02-01
A Fock space representation is given for the quantum Lorentz gas, i.e., for random Schrödinger operators of the form H(ω)=p2+Vω=p2+∑ φ(x-xj(ω)), acting in H=L2(Rd), with Poisson distributed xjs. An operator H is defined in K=H⊗P=H⊗L2(Ω,P(dω))=L2(Ω,P(dω);H) by the action of H(ω) on its fibers in a direct integral decomposition. The stationarity of the Poisson process allows a unitarily equivalent description in terms of a new family {H(k)||k∈Rd}, where each H(k) acts in P [A. Tip, J. Math. Phys. 35, 113 (1994)]. The space P is then unitarily mapped upon the symmetric Fock space over L2(Rd,ρdx), with ρ the intensity of the Poisson process (the average number of points xj per unit volume; the scatterer density), and the equivalent of H(k) is determined. Averages now become vacuum expectation values and a further unitary transformation (removing ρ in ρdx) is made which leaves the former invariant. The resulting operator HF(k) has an interesting structure: On the nth Fock layer we encounter a single particle moving in the field of n scatterers and the randomness now appears in the coefficient √ρ in a coupling term connecting neighboring Fock layers. We also give a simple direct self-adjointness proof for HF(k), based upon Nelson's commutator theorem. Restriction to a finite number of layers (a kind of low scatterer density approximation) still gives nontrivial results, as is demonstrated by considering an example.
Constraints on the bulk Lorentz factor of gamma-ray bursts with the detection rate by Fermi LAT
NASA Astrophysics Data System (ADS)
Chen, Ye; Liu, Ruo-Yu; Wang, Xiang-Yu
2018-05-01
The bulk Lorentz factor(Γ) of the outflow is an essential parameter to understanding the physics of gamma-ray burst (GRB). Informations about the Lorentz factors of some individual GRBs have been obtained from the spectral features of the high-energy gamma-ray emissions (>100 MeV), assuming that the spectral breaks or cutoffs are due to the pair-production attenuation (i.e., γγ → e+e-). In this paper, we attempt to interpret the dependence of the LAT detection rate of GRBs on the number of high-energy gamma-rays, taking into account the attenuation effect. We first simulate a long-GRB sample with Monte Carlo method using the luminosity function, rate distribution with redshift and properties of the GRB spectrum. To characterize the distribution of the Lorentz factors, we assume that the Lorentz factors follow the relation Γ =Γ _0E_iso,52k, where Eiso, 52 is the isotropic photon energy in unit of 1052erg. After taking into account the attenuation effect related with the above Lorentz factor distribution, we are able to reproduce the LAT-detected rate of GRBs as the function of the number of gamma-rays for suitable choice of the values of Γ0 and k. The result suggests that the distribution of the bulk Lorentz factor for the majority of GRBs is in the range of 50 - 250.
48 CFR 403.104-7 - Violations or possible violations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Violations or possible violations. 403.104-7 Section 403.104-7 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE GENERAL IMPROPER BUSINESS PRACTICES AND PERSONAL CONFLICTS OF INTEREST Safeguards 403.104-7 Violations or...
Lorentz microscopy sheds light on the role of dipolar interactions in magnetic hyperthermia
NASA Astrophysics Data System (ADS)
Campanini, M.; Ciprian, R.; Bedogni, E.; Mega, A.; Chiesi, V.; Casoli, F.; de Julián Fernández, C.; Rotunno, E.; Rossi, F.; Secchi, A.; Bigi, F.; Salviati, G.; Magén, C.; Grillo, V.; Albertini, F.
2015-04-01
Monodispersed Fe3O4 nanoparticles with comparable size distributions have been synthesized by two different synthesis routes, co-precipitation and thermal decomposition. Thanks to the different steric stabilizations, the described samples can be considered as a model system to investigate the effects of magnetic dipolar interactions on the aggregation states of the nanoparticles. Moreover, the presence of magnetic dipolar interactions can strongly affect the nanoparticle efficiency as a hyperthermic mediator. In this paper, we present a novel way to visualize and map the magnetic dipolar interactions in different kinds of nanoparticle aggregates by the use of Lorentz microscopy, an easy and reliable in-line electron holographic technique. By exploiting Lorentz microscopy, which is complementary to the magnetic measurements, it is possible to correlate the interaction degrees of magnetic nanoparticles with their magnetic behaviors. In particular, we demonstrate that Lorentz microscopy is successful in visualizing the magnetic configurations stabilized by dipolar interactions, thus paving the way to the comprehension of the power loss mechanisms for different nanoparticle aggregates.Monodispersed Fe3O4 nanoparticles with comparable size distributions have been synthesized by two different synthesis routes, co-precipitation and thermal decomposition. Thanks to the different steric stabilizations, the described samples can be considered as a model system to investigate the effects of magnetic dipolar interactions on the aggregation states of the nanoparticles. Moreover, the presence of magnetic dipolar interactions can strongly affect the nanoparticle efficiency as a hyperthermic mediator. In this paper, we present a novel way to visualize and map the magnetic dipolar interactions in different kinds of nanoparticle aggregates by the use of Lorentz microscopy, an easy and reliable in-line electron holographic technique. By exploiting Lorentz microscopy, which is
Lorentz force detuning analysis of the Spallation Neutron Source (SNS) accelerating cavities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, R.R.; Matsumoto, K. Y.; Ciovati, G.
2001-01-01
The Spallation Neutron Source (SNS) project incorporates a superconducting radio-frequency (SRF) accelerator for the final section of the pulsed mode linac. Cavities with geometrical {beta} values of {beta}=0.61 and {beta}=0.81 are utilized in the SRF section, and are constructed out of thin-walled niobium with stiffener rings welded between the cells near the iris. The welded titanium helium vessel and tuner assembly restrains the cavity beam tubes. Cavities with {beta} values less than one have relatively steep and flat side-walls making the cavities susceptible to Lorentz force detuning. In addition, the pulsed RF induces cyclic Lorentz pressures that mechanically excite themore » cavities, producing a dynamic Lorentz force detuning different from a continuous RF system. The amplitude of the dynamic detuning for a given cavity design is a function of the mechanical damping, stiffness of the tuner/helium vessel assembly, RF pulse profile, and the RF pulse rate. This paper presents analysis and testing results to date, and indicates areas where more investigation is required.« less
Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models
NASA Astrophysics Data System (ADS)
Nojiri, Shin'Ichi; Odintsov, Sergei D.
2011-08-01
The classical generalization of general relativity is considered as the gravitational alternative for a unified description of the early-time inflation with late-time cosmic acceleration. The structure and cosmological properties of a number of modified theories, including traditional F(R) and Hořava-Lifshitz F(R) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, non-minimally coupled models, and power-counting renormalizable covariant gravity are discussed. Different representations of and relations between such theories are investigated. It is shown that some versions of the above theories may be consistent with local tests and may provide a qualitatively reasonable unified description of inflation with the dark energy epoch. The cosmological reconstruction of different modified gravities is provided in great detail. It is demonstrated that eventually any given universe evolution may be reconstructed for the theories under consideration, and the explicit reconstruction is applied to an accelerating spatially flat Friedmann-Robertson-Walker (FRW) universe. Special attention is paid to Lagrange multiplier constrained and conventional F(R) gravities, for latter F(R) theory, the effective ΛCDM era and phantom divide crossing acceleration are obtained. The occurrences of the Big Rip and other finite-time future singularities in modified gravity are reviewed along with their solutions via the addition of higher-derivative gravitational invariants.
NASA Astrophysics Data System (ADS)
Koo, Je Huan
2015-02-01
In this work we investigate magnetic effects in terms of the translational and rotational invariances of magnetisation. Whilst Landau-type diamagnetism originates from translational invariance, a new diamagnetism could result from rotational invariance. Translational invariance results in only conventional Landau-type diamagnetism, whereas rotational invariance can induce a paramagnetic susceptibility for localised electrons and also a new kind of diamagnetism that is specific to conducting electrons. In solids, the moving electron shows a paramagnetic susceptibility but the surrounding screening of electrons may produce a new diamagnetic response by Lenz's law, resulting in a total susceptibility that tends to zero. For electricity, similar behaviours are obtained. We also derive the DC-type negative electric susceptibility via two methods in analogy with Landau diamagnetism.
Using time-dependent indirect CP asymmetries to measure T and CPT violation in B0-Bbar0 mixing
NASA Astrophysics Data System (ADS)
Karan, Anirban; Nayak, Abinash Kumar; Sinha, Rahul; London, David
2018-06-01
Quantum field theory, which is the basis for all of particle physics, requires that all processes respect CPT invariance. It is therefore of paramount importance to test the validity of CPT conservation. In this Letter, we show that the time-dependent, indirect CP asymmetries involving B decays to a CP eigenstate contain enough information to measure T and CPT violation in B0-Bbar0 mixing, in addition to the standard CP-violating weak phases. Entangled B0Bbar0 states are not required (so that this analysis can be carried out at LHCb, as well as at the B factories), penguin pollution need not be neglected, and the measurements can be made using Bd0 or Bs0 mesons.
Long-Range Self-Assembly via the Mutual Lorentz Force of Plasmon Radiation.
Ji, Haojie; Trevino, Jacob; Tu, Raymond; Knapp, Ellen; McQuade, James; Yurkiv, Vitaliy; Mashayek, Farzad; Vuong, Luat T
2018-04-11
Long-range interactions often proceed as a sequence of hopping through intermediate, statistically favored events. Here, we demonstrate predictable mechanical dynamics of particles that arise from the Lorentz force between plasmons. Even if the radiation is weak, the nonconservative Lorentz force produces stable locations perpendicular to the plasmon oscillation; over time, distinct patterns emerge. Experimentally, linearly polarized light illumination leads to the formation of 80 nm diameter Au nanoparticle chains, perpendicularly aligned, with lengths that are orders of magnitude greater than their plasmon near-field interaction. There is a critical intensity threshold and optimal concentration for observing self-assembly.
Active control and synchronization chaotic satellite via the geomagnetic Lorentz force
NASA Astrophysics Data System (ADS)
Abdel-Aziz, Yehia
2016-07-01
The use of geomagnetic Lorentz force is considered in this paper for the purpose of satellite attitude control. A satellite with an electrostatic charge will interact with the Earth's magnetic field and experience the Lorentz force. An analytical attitude control and synchronization two identical chaotic satellite systems with different initial condition Master/ Slave are proposed to allows a charged satellite remains near the desired attitude. Asymptotic stability for the closed-loop system are investigated by means of Lyapunov stability theorem. The control feasibility depend on the charge requirement. Given a significantly and sufficiently accurate insertion, a charged satellite could maintains the desired attitude orientation without propellant. Simulations is performed to prove the efficacy of the proposed method.
Giant plasmonic mode splitting in THz metamaterials mediated by coupling with Lorentz phonon mode
NASA Astrophysics Data System (ADS)
Yu, Leilei; Huang, Yuanyuan; Liu, Changji; Hu, Fangrong; Jin, Yanping; Yan, Yi; Xu, Xinlong
2018-04-01
Giant plasmonic mode splitting has been observed in THz metamaterials due to the mediation by the Lorentz phonon dielectric material. This splitting mode is confirmed by the surface current distribution, indicating that plasmonic modes behave like dipole resonances, while the phonon mode behaves like multipole resonance due to coupling. The splitting of the plasmonic modes demonstrates an anti-crossing behavior with the change in Lorentz central frequency, which suggests that there is energy redistribution between plasmon and phonon modes. Similar to the Stark effect, the splitting frequency difference increases with the increasing direct current dielectric function. We also propose an interaction Hamiltonian to understand the physical mechanism of the plasmonic splitting. Furthermore, the splitting is convincible for small Lorentz dielectrics such as sugar and amino acid in the THz region, which could be used for biomolecular sensing applications.
An arena for model building in the Cohen-Glashow very special relativity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikh-Jabbari, M. M., E-mail: jabbari@theory.ipm.ac.i; Tureanu, A., E-mail: anca.tureanu@helsinki.f
2010-02-15
The Cohen-Glashow Very Special Relativity (VSR) algebra is defined as the part of the Lorentz algebra which upon addition of CP or T invariance enhances to the full Lorentz group, plus the space-time translations. We show that noncommutative space-time, in particular noncommutative Moyal plane, with light- like noncommutativity provides a robust mathematical setting for quantum field theories which are VSR invariant and hence set the stage for building VSR invariant particle physics models. In our setting the VSR invariant theories are specified with a single deformation parameter, the noncommutativity scale {Lambda}{sub NC}. Preliminary analysis with the available data leads tomore » {Lambda}{sub NC} {>=} 1-10 TeV.« less
Neutrino-antineutrino oscillations as a possible solution for the LSND and MiniBooNE anomalies?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollenberg, Sebastian; Micu, Octavian; Paes, Heinrich
2009-09-01
We investigate resonance structures in CPT and Lorentz symmetry-violating neutrino-antineutrino oscillations in a two generation framework. The neutrino-antineutrino oscillations are induced by Lorentz- and CPT-violating terms in the Hamiltonian. The resonances are suitably described in terms of charge conjugation eigenstates of the system. The relations among the flavor, charge conjugation and mass eigenbasis of neutrino-antineutrino oscillations are examined along with the interplay between the available CPT-violating parameter space and possible resonance structures. Eventually we remark on the consequences of such scenarios for neutrino oscillation experiments, namely, possible solutions for the LSND and MiniBooNE anomalies.
On the Casimir scaling violation in the cusp anomalous dimension at small angle
NASA Astrophysics Data System (ADS)
Grozin, Andrey; Henn, Johannes; Stahlhofen, Maximilian
2017-10-01
We compute the four-loop n f contribution proportional to the quartic Casimir of the QCD cusp anomalous dimension as an expansion for small cusp angle ϕ. This piece is gauge invariant, violates Casimir scaling, and first appears at four loops. It requires the evaluation of genuine non-planar four-loop Feynman integrals. We present results up to O({φ}^4) . One motivation for our calculation is to probe a recent conjecture on the all-order structure of the cusp anomalous dimension. As a byproduct we obtain the four-loop HQET wave function anomalous dimension for this color structure.
A locally supersymmetric SO(10, 2) invariant action for D = 12 supergravity
NASA Astrophysics Data System (ADS)
Castellani, Leonardo
2017-06-01
We present an action for N = 1 supergravity in 10 + 2 dimensions, containing the gauge fields of the OSp(1|64) superalgebra, i.e. one-forms B ( n) with n=1,2,5,6,9,10 antisymmetric D=12 Lorentz indices and a Majorana gravitino ψ. The vielbein and spin connection correspond to B (1) and B (2) respectively. The action is not gauge invariant under the full OSp(1|64) superalgebra, but only under a subalgebra \\tilde{F} (containing the F algebra OSp(1|32)), whose gauge fields are B (2), B (6), B (10) and the Weyl projected Majorana gravitino 1/2(1+{Γ}_{13})ψ . Supersymmetry transformations are therefore generated by a Majorana-Weyl supercharge and, being part of a gauge superalgebra, close off-shell. The action is simply ∫ STr( R 6 Γ) where R is the OSp(1|64) curvature supermatrix two-form, and Γ is a constant supermatrix involving Γ13 and breaking OSp(1|64) to its \\tilde{F} subalgebra. The usual Einstein-Hilbert term is included in the action.
CP violation in multibody B decays from QCD factorization
NASA Astrophysics Data System (ADS)
Klein, Rebecca; Mannel, Thomas; Virto, Javier; Vos, K. Keri
2017-10-01
We test a data-driven approach based on QCD factorization for charmless three-body B-decays by confronting it to measurements of CP violation in B - → π - π + π -. While some of the needed non-perturbative objects can be directly extracted from data, some others can, so far, only be modelled. Although this approach is currently model dependent, we comment on the perspectives to reduce this model dependence. While our model naturally accommodates the gross features of the Dalitz distribution, it cannot quantitatively explain the details seen in the current experimental data on local CP asymmetries. We comment on possible refinements of our simple model and conclude by briefly discussing a possible extension of the model to large invariant masses, where large local CP asymmetries have been measured.
The quantum CP-violating kaon system reproduced in the electronic laboratory
NASA Astrophysics Data System (ADS)
Caruso, M.; Fanchiotti, H.; García Canal, C. A.; Mayosky, M.; Veiga, A.
2016-11-01
The equivalence between the Schrödinger dynamics of a quantum system with a finite number of basis states and a classical dynamics is realized in terms of electric networks. The isomorphism that connects in a univocal way both dynamical systems was applied to the case of neutral mesons, kaons in particular, and the class of electric networks univocally related to the quantum system was analysed. Moreover, under CPT invariance, the relevant ɛ parameter that measures CP violation in the kaon system is reinterpreted in terms of network parameters. All these results were explicitly shown by means of both a numerical simulation of the implied networks and by constructing the corresponding circuits.
Internal shocks in microquasar jets with a continuous Lorentz factor modulation
NASA Astrophysics Data System (ADS)
Pjanka, Patryk; Stone, James M.
2018-06-01
We perform relativistic hydrodynamic simulations of internal shocks formed in microquasar jets by continuous variation of the bulk Lorentz factor, in order to investigate the internal shock model. We consider one-, two-, and flicker noise 20-mode variability. We observe emergence of a forward-reverse shock structure for each peak of the Lorentz factor modulation. The high pressure in the shocked layer launches powerful outflows perpendicular to the jet beam into the ambient medium. These outflows dominate the details of the jet's kinetic energy thermalization. They are responsible for mixing between the jet and the surrounding medium and generate powerful shocks in the latter. These results do not concur with the popular picture of well-defined internal shells depositing energy as they collide within the confines of the jet, in fact collisions between internal shells themselves are quite rare in our continuous formulation of the problem. For each of our simulations, we calculate the internal energy deposited in the system, the `efficiency' of this deposition (defined as the ratio of internal to total flow energy), and the maximum temperature reached in order to make connections to emission mechanisms. We probe the dependence of these diagnostics on the Lorentz factor variation amplitudes, modulation frequencies, as well as the initial density ratio between the jet and the ambient medium.
2010-12-02
Motzkin, T. and Straus, E. (1965). Maxima for graphs and a new proof of a theorem of Turan . Canad. J. Math. 17 533–540. [33] Rendl, F. and Sotirov, R...Convex Graph Invariants Venkat Chandrasekaran, Pablo A . Parrilo, and Alan S. Willsky ∗ Laboratory for Information and Decision Systems Department of...this paper we study convex graph invariants, which are graph invariants that are convex functions of the adjacency matrix of a graph. Some examples
48 CFR 2803.104-10 - Violations or possible violations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... General IMPROPER BUSINESS PRACTICES AND PERSONAL CONFLICTS OF INTEREST Safeguards 2803.104-10 Violations... action to be taken. The types of actions that would normally be taken when a violation has occurred that...
Lorentz Force Detuning Analysis of the SNS Accelerating Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Mitchell; K. Matsumoto; G. Ciovati
2001-09-01
The Spallation Neutron Source (SNS) project incorporates a superconducting radio-frequency (SRF) accelerator for the final section of the pulsed mode linac Cavities with geometrical {beta} values of {beta} = 0.61 and {beta} = 0.81 are utilized in the SRF section, and are constructed out of thin-walled niobium with stiffener rings welded between the cells near the iris. The welded titanium helium vessel and tuner assembly restrains the cavity beam tubes Cavities with {beta} values less than one have relatively steep and flat side-walls making the cavities susceptible to Ised RF induces cyclic Lorentz pressures that mechanically excite the cavities, producingmore » a dynamic Lorentz force detuning different from a continuous RF system. The amplitude of the dynamic detuning for a given cavity design is a function of the mechanical damping, stiffness of the tuner/helium vessel assembly, RF pulse profile, and the RF pulse rate. This paper presents analysis and testing results to date, and indicates areas where more investigation is required.« less
NASA Astrophysics Data System (ADS)
Wang, Yuan-Zhu; Wang, Hao; Zhang, Shuai; Liang, Yun-Feng; Jin, Zhi-Ping; He, Hao-Ning; Liao, Neng-Hui; Fan, Yi-Zhong; Wei, Da-Ming
2017-02-01
GRB 160625B is an extremely bright outburst with well-monitored afterglow emission. The geometry-corrected energy is high, up to ˜5.2 × 1052 erg or even ˜8 × 1052 erg, rendering it the most energetic GRB prompt emission recorded so far. We analyzed the time-resolved spectra of the prompt emission and found that in some intervals there were likely thermal-radiation components and the high energy emission was characterized by significant cutoff. The bulk Lorentz factors of the outflow material are estimated accordingly. We found out that the Lorentz factors derived in the thermal-radiation model are consistent with the luminosity-Lorentz factor correlation found in other bursts, as well as in GRB 090902B for the time-resolved thermal-radiation components, while the spectral cutoff model yields much lower Lorentz factors that are in tension with the constraints set by the electron pair Compton scattering process. We then suggest that these spectral cutoffs are more likely related to the particle acceleration process and that one should be careful in estimating the Lorentz factors if the spectrum cuts at a rather low energy (e.g., ˜tens of MeV). The nature of the central engine has also been discussed, and a stellar-mass black hole is favored.
Bifurcation from an invariant to a non-invariant attractor
NASA Astrophysics Data System (ADS)
Mandal, D.
2016-12-01
Switching dynamical systems are very common in many areas of physics and engineering. We consider a piecewise linear map that periodically switches between more than one different functional forms. We show that in such systems it is possible to have a border collision bifurcation where the system transits from an invariant attractor to a non-invariant attractor.
Causality constraints on corrections to the graviton three-point coupling
Camanho, Xián O.; Edelstein, José D.; Maldacena, Juan; ...
2016-02-03
In this paper, we consider higher derivative corrections to the graviton three-point coupling within a weakly coupled theory of gravity. Lorentz invariance allows further structures beyond the one present in the Einstein theory. We argue that these are constrained by causality. We devise a thought experiment involving a high energy scattering process which leads to causality violation if the graviton three-point vertex contains the additional structures. This violation cannot be fixed by adding conventional particles with spins J ≤ 2. But, it can be fixed by adding an in finite tower of extra massive particles with higher spins, J > 2. In AdS theories this implies a constraint on the conformal anomaly coefficients |more » $$\\frac{a-c}{c}$$|≲ $$\\frac{1}{2}$$ $${^Δ}_{gap}$$ in terms of Δgap, the dimension of the lightest single trace operator with spin J > 2. Lastly, for inflation, or de Sitter-like solutions, it indicates the existence of massive higher spin particles if the gravity wave non-gaussianity deviates significantly from the one computed in the Einstein theory.« less
Boomerang RG flows in M-theory with intermediate scaling
NASA Astrophysics Data System (ADS)
Donos, Aristomenis; Gauntlett, Jerome P.; Rosen, Christopher; Sosa-Rodriguez, Omar
2017-07-01
We construct novel RG flows of D=11 supergravity that asymptotically approach AdS 4 × S 7 in the UV with deformations that break spatial translations in the dual field theory. In the IR the solutions return to exactly the same AdS 4 × S 7 vacuum, with a renormalisation of relative length scales, and hence we refer to the flows as `boomerang RG flows'. For sufficiently large deformations, on the way to the IR the solutions also approach two distinct intermediate scaling regimes, each with hyperscaling violation. The first regime is Lorentz invariant with dynamical exponent z = 1 while the second has z = 5/2. Neither ofthe two intermediatescaling regimesare associatedwith exact hyperscaling violation solutions of D = 11 supergravity. The RG flow solutions are constructed using the four dimensional N = 2 STU gauged supergravity theory with vanishing gauge fields, but non-vanishing scalar and pseudoscalar fields. In the ABJM dual field theory the flows are driven by spatially modulated deformation parameters for scalar and fermion bilinear operators.
Magnetic monopoles, Galilean invariance, and Maxwell's equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, F.S.
1992-02-01
Maxwell's equations have space reserved for magnetic monopoles. Whether or not they exist in our part of the universe, monopoles provide a useful didactic tool to help us recognize relations among Maxwell's equations less easily apparent in the approach followed by many introductory textbooks, wherein Coulomb's law, Biot and Savart's law, Ampere's law, Faraday's law, Maxwell's displacement current, etc., are introduced independently, as demanded by experiment.'' Instead a conceptual path that deduces all of Maxwell's equations from the near-minimal set of assumptions: (a) Inertial frames exist, in which Newton's laws hold, to a first approximation; (b) the laws of electrodynamicsmore » are Galilean invariant---i.e., they have the same form in every inertial frame, to a first approximation; (c) magnetic poles (as well as the usual electric charges) exist; (d) the complete Lorentz force on an electric charge is known; (e) the force on a monopole at rest is known; (f) the Coulomb-like field produced by a resting electric charge and by a resting monopole are known. Everything else is deduced. History is followed in the assumption that Newtonian mechanics have been discovered, but not special relativity. (Only particle velocities {ital v}{much lt}{ital c} are considered.) This ends up with Maxwell's equations (Maxwell did not need special relativity, so why should we,) but facing Einstein's paradox, the solution of which is encapsulated in the Einstein velocity-addition formula.« less
A gyrokinetic collision operator for magnetized Lorentz plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Chang; Ma Chenhao; Yu Xiongjie
2011-03-15
A gyrocenter collision operator for magnetized Lorentz plasmas is derived using the Fokker-Plank method. The gyrocenter collision operator consists of drift and diffusion terms in the gyrocenter coordinates, including the diffusion of the gyrocenter, which does not exist for the collision operator in the particle phase space coordinates. The gyrocenter collision operator also depends on the transverse electric field explicitly, which is crucial for the correct treatment of collisional effects and transport in the gyrocenter coordinates. The gyrocenter collision operator derived is applied to calculate the particle and heat transport fluxes in a magnetized Lorentz plasma with an electric field.more » The particle and heat transport fluxes calculated from our gyrocenter collision operator agree exactly with the classical Braginskii's result [S. I. Braginskii, Reviews of Plasma Physics (Consultants Bureau, New York, 1965), Vol. 1, p. 205: P. Helander and D. J. Sigmar, Collisional Transport in Magnetized Plasmas (Cambridge University, Cambridge, 2002), p. 65], which validates the correctness of our collision operator. To calculate the transport fluxes correctly, it is necessary to apply the pullback transformation associated with gyrocenter coordinate transformation in the presence of collisions, which also serves as a practical algorithm for evaluating collisional particle and heat transport fluxes in the gyrocenter coordinates.« less
Invariant visual object recognition: a model, with lighting invariance.
Rolls, Edmund T; Stringer, Simon M
2006-01-01
How are invariant representations of objects formed in the visual cortex? We describe a neurophysiological and computational approach which focusses on a feature hierarchy model in which invariant representations can be built by self-organizing learning based on the statistics of the visual input. The model can use temporal continuity in an associative synaptic learning rule with a short term memory trace, and/or it can use spatial continuity in Continuous Transformation learning. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and in this paper we show also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in for example spatial and object search tasks. The model has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuan-Zhu; Wang, Hao; Zhang, Shuai
2017-02-10
GRB 160625B is an extremely bright outburst with well-monitored afterglow emission. The geometry-corrected energy is high, up to ∼5.2 × 10{sup 52} erg or even ∼8 × 10{sup 52} erg, rendering it the most energetic GRB prompt emission recorded so far. We analyzed the time-resolved spectra of the prompt emission and found that in some intervals there were likely thermal-radiation components and the high energy emission was characterized by significant cutoff. The bulk Lorentz factors of the outflow material are estimated accordingly. We found out that the Lorentz factors derived in the thermal-radiation model are consistent with the luminosity-Lorentz factormore » correlation found in other bursts, as well as in GRB 090902B for the time-resolved thermal-radiation components, while the spectral cutoff model yields much lower Lorentz factors that are in tension with the constraints set by the electron pair Compton scattering process. We then suggest that these spectral cutoffs are more likely related to the particle acceleration process and that one should be careful in estimating the Lorentz factors if the spectrum cuts at a rather low energy (e.g., ∼tens of MeV). The nature of the central engine has also been discussed, and a stellar-mass black hole is favored.« less
NASA Technical Reports Server (NTRS)
Schaffer, L.; Burns, J. A.
1995-01-01
Dust grains in planetary rings acquire stochastically fluctuating electric charges as they orbit through any corotating magnetospheric plasma. Here we investigate the nature of this stochastic charging and calculate its effect on the Lorentz resonance (LR). First we model grain charging as a Markov process, where the transition probabilities are identified as the ensemble-averaged charging fluxes due to plasma pickup and photoemission. We determine the distribution function P(t;N), giving the probability that a grain has N excess charges at time t. The autocorrelation function tau(sub q) for the strochastic charge process can be approximated by a Fokker-Planck treatment of the evolution equations for P(t; N). We calculate the mean square response to the stochastic fluctuations in the Lorentz force. We find that transport in phase space is very small compared to the resonant increase in amplitudes due to the mean charge, over the timescale that the oscillator is resonantly pumped up. Therefore the stochastic charge variations cannot break the resonant interaction; locally, the Lorentz resonance is a robust mechanism for the shaping of etheral dust ring systems. Slightly stronger bounds on plasma parameters are required when we consider the longer transit times between Lorentz resonances.
Use of the Lorentz-operator in relativistic quantum mechanics to guarentee a single-energy root
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritchie, A B
1998-08-01
The Lorentz-operator form of relativistic quantum mechanics, with relativistic wave equation i{h_bar}{partial_derivative}{psi}/{partial_derivative}t=(mc{sup 2}{gamma}+e{Phi}){psi}, is implemented to guarantee a single-energy root. The Lorentz factor as modified by Pauli's ansatz is given by {gamma}={radical}1+[{rvec {sigma}}{center_dot}(i{h_bar}{rvec {del}}+(e/c){rvec A})]{sup 2}/m{sup 2}c{sup 2}, such that the theory is appropriate for electrons. Magnetic fine structure in the Lorentz relativistic wave equation emerges on the use of an appropriate operator form of the Lienard-Wiechert four- potential ({Phi},{rvec A}) from electromagnetic theory. Although computationally more intensive the advantage of the theory is the elimination of the negative-root of the energy and an interpretation of the wave function basedmore » on a one-particle, positive definite probability density like that of nonrelativistic quantum mechanics.« less
Searches for New Physics in the Top Sector at the Tevatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Yvonne
2012-05-01
The top quark, discovered in 1995 by the CDF and D0 collaborations at the Tevatron collider at Fermilab, is the heaviest known elementary particle today. Due to its high mass and short lifetime, the top quark plays a special role in searching for physics beyond the Standard Model. In this article, recent results of searches for new physics in the top sector, performed by CDF and D0, are presented. In particular, we discuss the search for ttbar resonances, for tj resonances, the search for heavy fourth generation quarks, for dark matter produced in association with single tops, the study ofmore » anomalous couplings, the search for boosted top quarks as well as the analysis of Lorentz Invariance violation in the top quark sector.« less
NASA Astrophysics Data System (ADS)
Lackenby, B. G. C.; Flambaum, V. V.
2018-07-01
We introduce the weak quadrupole moment (WQM) of nuclei, related to the quadrupole distribution of the weak charge in the nucleus. The WQM produces a tensor weak interaction between the nucleus and electrons and can be observed in atomic and molecular experiments measuring parity nonconservation. The dominating contribution to the weak quadrupole is given by the quadrupole moment of the neutron distribution, therefore, corresponding experiments should allow one to measure the neutron quadrupoles. Using the deformed oscillator model and the Schmidt model we calculate the quadrupole distributions of neutrons, Q n , the WQMs, {Q}W(2), and the Lorentz invariance violating energy shifts in 9Be, 21Ne, 27Al, 131Xe, 133Cs, 151Eu, 153Eu, 163Dy, 167Er, 173Yb, 177Hf, 179Hf, 181Ta, 201Hg and 229Th.
48 CFR 903.104-7 - Violations or possible violations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... violation or possible violation of subsections 27 (a), (b), (c) or (d) of the Office of Federal Procurement... disclosure of proprietary or source selection information is the Assistant General Counsel for Procurement...) and (2) for Headquarters activities is the Agency Ethics Official (Designated Agency Ethics Official...
48 CFR 903.104-7 - Violations or possible violations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Violations or possible violations. 903.104-7 Section 903.104-7 Federal Acquisition Regulations System DEPARTMENT OF ENERGY GENERAL... disclosure of proprietary or source selection information is the Assistant General Counsel for Procurement...
Neutrinos, DUNE and the world best bound on CPT invariance
NASA Astrophysics Data System (ADS)
Barenboim, G.; Ternes, C. A.; Tórtola, M.
2018-05-01
CPT symmetry, the combination of Charge Conjugation, Parity and Time reversal, is a cornerstone of our model building strategy and therefore the repercussions of its potential violation will severely threaten the most extended tool we currently use to describe physics, i.e. local relativistic quantum fields. However, limits on its conservation from the Kaon system look indeed imposing. In this work we will show that neutrino oscillation experiments can improve this limit by several orders of magnitude and therefore are an ideal tool to explore the foundations of our approach to Nature. Strictly speaking testing CPT violation would require an explicit model for how CPT is broken and its effects on physics. Instead, what is presented in this paper is a test of one of the predictions of CPT conservation, i.e., the same mass and mixing parameters in neutrinos and antineutrinos. In order to do that we calculate the current CPT bound on all the neutrino mixing parameters and study the sensitivity of the DUNE experiment to such an observable. After deriving the most updated bound on CPT from neutrino oscillation data, we show that, if the recent T2K results turn out to be the true values of neutrino and antineutrino oscillations, DUNE would measure the fallout of CPT conservation at more than 3σ. Then, we study the sensitivity of the experiment to measure CPT invariance in general, finding that DUNE will be able to improve the current bounds on Δ (Δ m312) by at least one order of magnitude. We also study the sensitivity to the other oscillation parameters. Finally we show that, if CPT is violated in nature, combining neutrino with antineutrino data in oscillation analysis will produce imposter solutions.
Generalized uncertainty principles and quantum field theory
NASA Astrophysics Data System (ADS)
Husain, Viqar; Kothawala, Dawood; Seahra, Sanjeev S.
2013-01-01
Quantum mechanics with a generalized uncertainty principle arises through a representation of the commutator [x^,p^]=if(p^). We apply this deformed quantization to free scalar field theory for f±=1±βp2. The resulting quantum field theories have a rich fine scale structure. For small wavelength modes, the Green’s function for f+ exhibits a remarkable transition from Lorentz to Galilean invariance, whereas for f- such modes effectively do not propagate. For both cases Lorentz invariance is recovered at long wavelengths.
Causality as an emergent macroscopic phenomenon: The Lee-Wick O(N) model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grinstein, Benjamin; O'Connell, Donal; Wise, Mark B.
2009-05-15
In quantum mechanics the deterministic property of classical physics is an emergent phenomenon appropriate only on macroscopic scales. Lee and Wick introduced Lorentz invariant quantum theories where causality is an emergent phenomenon appropriate for macroscopic time scales. In this paper we analyze a Lee-Wick version of the O(N) model. We argue that in the large-N limit this theory has a unitary and Lorentz invariant S matrix and is therefore free of paradoxes in scattering experiments. We discuss some of its acausal properties.
Extended Friedberg-Lee hidden symmetries, quark masses,and CP violation with four generations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bar-Shalom, S.; Soni, A.; Oaknin, D.
2009-07-16
Motivated in part by the several observed anomalies involving CP asymmetries of B and B{sub s} decays, we consider the standard model with a 4th sequential family (SM4) which seems to offer a rather simple resolution. We initially assume T-invariance by taking the up and down-quark 4 x 4 mass matrix to be real. Following Friedberg and Lee (FL), we then impose a hidden symmetry on the unobserved (hidden) up and down-quark SU(2) states. The hidden symmetry for four generations ensures the existence of two zero-mass eigenstates, which we take to be the (u,c) and (d,s) states in the upmore » and down-quark sectors, respectively. Then, we simultaneously break T-invariance and the hidden symmetry by introducing two phase factors in each sector. This breaking mechanism generates the small quark masses m{sub u}, m{sub c} and m{sub d}, m{sub s}, which, along with the orientation of the hidden symmetry, determine the size of CP-violation in the SM4. For illustration we choose a specific physical picture for the hidden symmetry and the breaking mechanism that reproduces the observed quark masses, mixing angles and CP-violation, and at the same time allows us to further obtain very interesting relations/predictions for the mixing angles of t and t'. For example, with this choice we get V{sub td} {approx} (V{sub cb}/V{sub cd}-V{sub ts}/V{sub us}) + O({lambda}{sup 2}) and V{sub t'b}{approx}V{sub t'd{sm_bullet}}(V{sub cb}/V{sub cd}), V{sub tb'}V{sub t'd{sm_bullet}}(V{sub ts}/V{sub us}), implying that V{sub t'd} > V{sub t'b}, V{sub tb'}. We furthermore find that the Cabibbo angle is related to the orientation of the hidden symmetry and that the key CP-violating quantity of our model at high energies, J{sub SM4} {triple_bond} Im(V{sub tb}V{sub t'b*}V{sub t'b{prime}}V{sub tb'*}), which is the high-energy analogue of the Jarlskog invariant of the SM, is proportional to the light-quark masses and the measured Cabibbo-Kobayashi-Maskawa quark-mixing matrix angles: |J{sub SM4}|A{sup 3
Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale
NASA Astrophysics Data System (ADS)
Gorbunov, Dmitry S.; Sibiryakov, Sergei M.
2005-09-01
We present an extension of the Randall-Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam-Veltman-Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances.
A More Intuitive Version of the Lorentz Velocity Addition Formula
ERIC Educational Resources Information Center
Devlin, John F.
2009-01-01
The Lorentz velocity addition formula for one-dimensional motion presents a number of problems for beginning students of special relativity. In this paper we suggest a simple rewrite of the formula that is easier for students to memorize and manipulate, and furthermore is more intuitive in understanding the correction necessary when adding…
Feedback-Driven Dynamic Invariant Discovery
NASA Technical Reports Server (NTRS)
Zhang, Lingming; Yang, Guowei; Rungta, Neha S.; Person, Suzette; Khurshid, Sarfraz
2014-01-01
Program invariants can help software developers identify program properties that must be preserved as the software evolves, however, formulating correct invariants can be challenging. In this work, we introduce iDiscovery, a technique which leverages symbolic execution to improve the quality of dynamically discovered invariants computed by Daikon. Candidate invariants generated by Daikon are synthesized into assertions and instrumented onto the program. The instrumented code is executed symbolically to generate new test cases that are fed back to Daikon to help further re ne the set of candidate invariants. This feedback loop is executed until a x-point is reached. To mitigate the cost of symbolic execution, we present optimizations to prune the symbolic state space and to reduce the complexity of the generated path conditions. We also leverage recent advances in constraint solution reuse techniques to avoid computing results for the same constraints across iterations. Experimental results show that iDiscovery converges to a set of higher quality invariants compared to the initial set of candidate invariants in a small number of iterations.
NASA Astrophysics Data System (ADS)
Cruz, Cláudio Nassif
2016-06-01
This research aims to develop a new approach towards a consistent coupling of electromagnetic and gravitational fields, by using an electron that couples with a weak gravitational potential by means of its electromagnetic field. To accomplish this, we must first build a new model which provides the electromagnetic nature of both the mass and the energy of the electron, and which is implemented with the idea of γ-photon decay into an electron-positron pair. After this, we place the electron (or positron) in the presence of a weak gravitational potential given in the intergalactic medium, so that its electromagnetic field undergoes a very small perturbation, thus leading to a slight increase in the field’s electromagnetic energy density. This perturbation takes place by means of a tiny coupling constant ξ because gravity is a very weak interaction compared with the electromagnetic one. Thus, we realize that ξ is a new dimensionless universal constant, which reminds us of the fine structure constant α; however, ξ is much smaller than α because ξ takes into account gravity, i.e. ξ ∝G. We find ξ = V/c≅1.5302 × 10-22, where c is the speed of light and V ∝G(≅4.5876 × 10-14m/s) is a universal minimum speed that represents the lowest limit of speed for any particle. Such a minimum speed, unattainable by particles, represents a preferred reference frame associated with a background field that breaks the Lorentz symmetry. The metric of the flat spacetime shall include the presence of a uniform vacuum energy density, which leads to a negative pressure at cosmological scales (cosmological anti-gravity). The tiny values of the cosmological constant and the vacuum energy density will be successfully obtained in agreement with the observational data.
Prospects for testing Lorentz and CPT symmetry with antiprotons
NASA Astrophysics Data System (ADS)
Vargas, Arnaldo J.
2018-03-01
A brief overview of the prospects of testing Lorentz and CPT symmetry with antimatter experiments is presented. The models discussed are applicable to atomic spectroscopy experiments, Penning-trap experiments and gravitational tests. Comments about the sensitivity of the most recent antimatter experiments to the models reviewed here are included. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.
Lorentz symmetric n-particle systems without ``multiple times''
NASA Astrophysics Data System (ADS)
Smith, Felix
2013-05-01
The need for multiple times in relativistic n-particle dynamics is a consequence of Minkowski's postulated symmetry between space and time coordinates in a space-time s = [x1 , . . ,x4 ] = [ x , y , z , ict ] , Eq. (1). Poincaré doubted the need for this space-time symmetry, believing Lorentz covariance could also prevail in some geometries with a three-dimensional position space and a quite different time coordinate. The Hubble expansion observed later justifies a specific geometry of this kind, a negatively curved position 3-space expanding with time at the Hubble rate lH (t) =lH , 0 + cΔt (F. T. Smith, Ann. Fond. L. de Broglie, 30, 179 (2005) and 35, 395 (2010)). Its position 4-vector is not s but q = [x1 , . . ,x4 ] = [ x , y , z , ilH (t) ] , and shows no 4-space symmetry. What is observed is always a difference 4-vector Δq = [ Δx , Δy , Δz , icΔt ] , and this displays the structure of Eq. (1) perfectly. Thus we find the standard 4-vector of special relativity in a geometry that does not require a Minkowski space-time at all, but a quite different geometry with a expanding 3-space symmetry and an independent time. The same Lorentz symmetry with but a single time extends to 2 and n-body systems.
Leading-order classical Lagrangians for the nonminimal standard-model extension
NASA Astrophysics Data System (ADS)
Reis, J. A. A. S.; Schreck, M.
2018-03-01
In this paper, we derive the general leading-order classical Lagrangian covering all fermion operators of the nonminimal standard-model extension (SME). Such a Lagrangian is considered to be the point-particle analog of the effective field theory description of Lorentz violation that is provided by the SME. At leading order in Lorentz violation, the Lagrangian obtained satisfies the set of five nonlinear equations that govern the map from the field theory to the classical description. This result can be of use for phenomenological studies of classical bodies in gravitational fields.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Violations. 33.21 Section 33.21 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Violations § 33.21 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the provisions...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Violations. 33.21 Section 33.21 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Violations § 33.21 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the provisions...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Violations. 33.21 Section 33.21 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Violations § 33.21 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the provisions...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Violations. 33.21 Section 33.21 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Violations § 33.21 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the provisions...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Violations. 33.21 Section 33.21 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Violations § 33.21 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the provisions...
Special Relativity in Week One: 3) Introducing the Lorentz Contraction
ERIC Educational Resources Information Center
Huggins, Elisha
2011-01-01
This is the third of four articles on teaching special relativity in the first week of an introductory physics course. With Einstein's second postulate that the speed of light is the same to all observers, we could use the light pulse clock to introduce time dilation. But we had difficulty introducing the Lorentz contraction until we saw the movie…
Recent advances in Lorentz microscopy
Phatak, C.; Petford-Long, A. K.; De Graef, M.
2016-01-05
Lorentz transmission electron microscopy (LTEM) has evolved from a qualitative magnetic domain observation technique to a quantitative technique for the determination of the magnetization state of a sample. Here, we describe recent developments in techniques and imaging modes, including the use of spherical aberration correction to improve the spatial resolution of LTEM into the single nanometer range, and novel in situ observation modes. We also review recent advances in the modeling of the wave optical magnetic phase shift as well as in the area of phase reconstruction by means of the Transport of Intensity Equation (TIE) approach, and discuss vectormore » field electron tomography, which has emerged as a powerful tool for the 3D reconstruction of magnetization configurations. Finally, we conclude this review with a brief overview of recent LTEM applications.« less
Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure.
Šantić, N; Dubček, T; Aumiler, D; Buljan, H; Ban, T
2015-09-02
Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries.
Prospects for testing Lorentz and CPT symmetry with antiprotons.
Vargas, Arnaldo J
2018-03-28
A brief overview of the prospects of testing Lorentz and CPT symmetry with antimatter experiments is presented. The models discussed are applicable to atomic spectroscopy experiments, Penning-trap experiments and gravitational tests. Comments about the sensitivity of the most recent antimatter experiments to the models reviewed here are included.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Author(s).
P and CP violation and new thermalization scenario in heavy ion collisions
NASA Astrophysics Data System (ADS)
Zhitnitsky, Ariel R.
2011-03-01
The violation of local P and CP invariance in QCD has been a subject of intense discussions for the last couple of years as a result of very interesting ongoing results coming from RHIC. Separately, a new thermalization scenario for heavy ion collisions through the event horizon as a manifestation of the Unruh effect, has been also suggested. In this paper we argue that these two, naively unrelated phenomena, are actually two sides of the same coin as they are deeply rooted into the same fundamental physics related to some very nontrivial topological features of QCD. We formulate the universality conjecture for P and CP odd effects in heavy ion collisions analogous to the universal thermal behaviour observed in all other high energy interactions.
Absolutely relative or relatively absolute: violations of value invariance in human decision making.
Teodorescu, Andrei R; Moran, Rani; Usher, Marius
2016-02-01
Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed.
Galloway, Benjamin R.; Popmintchev, Dimitar; Pisanty, Emilio; ...
2016-09-09
Here, we present a semi-classical study of the effects of the Lorentz force on electrons during high harmonic generation in the soft and hard X-ray regions driven by near- and mid-infrared lasers with wavelengths from 0.8 to 20 μm, and at intensities below 10 15 W/cm 2. The transverse extent of the longitudinal Lorentz drift is compared for both Gaussian focus and waveguide geometries. Both geometries exhibit a longitudinal electric field component that cancels the magnetic Lorentz drift in some regions of the focus, once each full optical cycle. We show that the Lorentz force contributes a super-Gaussian scaling whichmore » acts in addition to the dominant high harmonic flux scaling of λ -(5-6) due to quantum diffusion. We predict that the high harmonic yield will be reduced for driving wavelengths > 6 μm, and that the presence of dynamic spatial mode asymmetries results in the generation of both even and odd harmonic orders. Remarkably, we show that under realistic conditions, the recollision process can be controlled and does not shut off completely even for wavelengths >10 μm and recollision energies greater than 15 keV.« less
Shift-invariant optical associative memories
NASA Astrophysics Data System (ADS)
Psaltis, Demetri; Hong, John
1987-01-01
Shift invariance in the context of associative memories is discussed. Two optical systems that exhibit shift invariance are described in detail with attention given to the analysis of storage capacities. It is shown that full shift invariance cannot be achieved with systems that employ only linear interconnections to store the associations.
Invariants of polarization transformations.
Sadjadi, Firooz A
2007-05-20
The use of polarization-sensitive sensors is being explored in a variety of applications. Polarization diversity has been shown to improve the performance of the automatic target detection and recognition in a significant way. However, it also brings out the problems associated with processing and storing more data and the problem of polarization distortion during transmission. We present a technique for extracting attributes that are invariant under polarization transformations. The polarimetric signatures are represented in terms of the components of the Stokes vectors. Invariant algebra is then used to extract a set of signature-related attributes that are invariant under linear transformation of the Stokes vectors. Experimental results using polarimetric infrared signatures of a number of manmade and natural objects undergoing systematic linear transformations support the invariancy of these attributes.
48 CFR 703.104-10.1 - Violations or possible violations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Violations or possible violations. 703.104-10.1 Section 703.104-10.1 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT GENERAL IMPROPER BUSINESS PRACTICES AND PERSONAL CONFLICTS OF INTEREST Safeguards 703.104-10.1...
48 CFR 703.104-10.1 - Violations or possible violations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Violations or possible violations. 703.104-10.1 Section 703.104-10.1 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT GENERAL IMPROPER BUSINESS PRACTICES AND PERSONAL CONFLICTS OF INTEREST Safeguards 703.104-10.1...
Moral Violations Reduce Oral Consumption
Chan, Cindy; Van Boven, Leaf; Andrade, Eduardo B.; Ariely, Dan
2014-01-01
Consumers frequently encounter moral violations in everyday life. They watch movies and television shows about crime and deception, hear news reports of corporate fraud and tax evasion, and hear gossip about cheaters and thieves. How does exposure to moral violations influence consumption? Because moral violations arouse disgust and because disgust is an evolutionarily important signal of contamination that should provoke a multi-modal response, we hypothesize that moral violations affect a key behavioral response to disgust: reduced oral consumption. In three experiments, compared with those in control conditions, people drank less water and chocolate milk while (a) watching a film portraying the moral violations of incest, (b) writing about moral violations of cheating or theft, and (c) listening to a report about fraud and manipulation. These findings imply that “moral disgust” influences consumption in ways similar to core disgust, and thus provide evidence for the associations between moral violations, emotions, and consumer behavior. PMID:25125931
NASA Astrophysics Data System (ADS)
Pressler, David E.
2012-03-01
A great discrepancy exists - the speed of light and the neutrino speed must be identical; as indicated by supernova1987A; yet, OPERA predicts faster-than-light neutrinos. Einstein's theories are based on the invariance of the speed of light, and no privileged Galilean frame of reference exists. Both of these hypotheses are in error and must be reconciled in order to solve the dilemma. The Michelson-Morley Experiment was misinterpreted - my Neoclassical Theory postulates that BOTH mirrors of the interferometer physically and absolutely move towards its center. The result is a three-directional-Contraction, (x, y, z axis), an actual distortion of space itself; a C-Space condition. ``PRESSLER'S LAW OF C-SPACE: The speed of light, c, will always be measured the same speed in all three directions (˜300,000 km/sec), in ones own inertial reference system, and will always be measured as having a different speed in all other inertial frames which are at a different kinetic energy level or at a location with a different strength gravity field'' Thus, the faster you go, motion, or the stronger the gravity field the smaller you get in all three directions. OPERA results are explained; at the surface of Earth, the strength of gravity field is at maximum -- below the earth's surface, time and space is less distorted; therefore, time is absolutely faster accordingly. Reference OPERA's preprint: Neutrino's faster time-effect due to altitude difference; (10-13ns) x c (299792458m) = 2.9 x 10-5 m/ns x distance (730085m) + 21.8m.) This is consistent with the OPERA result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko
2016-08-08
Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile,more » a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential V{sub ht}, but it also has a non-negligible deviation from V{sub ht}. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.« less
NASA Astrophysics Data System (ADS)
Escobar Martínez, S. D.; Fabela Enríquez, B.; Pedraza Morales, M. I.; REDTOP Collaboration
2017-10-01
REDTOP is a novel experiment proposed at the Delivery Ring of Fermilab with the intent of producing more than 1013 η mesons per year to detect possible rare η decays which can be a clear evidence of the existence of Physics Beyond the Standard Model. Such statistics are sufficient for investigating several discrete symmetry violations, searching for new particles and interactions and to perform precision studies. One of the golden processes to study is the η → π + π - π 0 decay [7], where π 0 decays promptly into two photons. In the context of the Standard Model, the dynamics of the charged pions is symmetric in this process. Thus, any mirror asymmetry in the Dalitz plot would be a direct indication of C and CP violation. We present a study on the performance of the REDTOP experiment detector by reconstructing the invariant mass of the final state π + π - γγ using Monte Carlo samples.
Lorentz boosted frame simulation technique in Particle-in-cell methods
NASA Astrophysics Data System (ADS)
Yu, Peicheng
In this dissertation, we systematically explore the use of a simulation method for modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique. In the lab frame the plasma length is typically four orders of magnitude larger than the laser pulse length. Using this technique, simulations are performed in a Lorentz boosted frame in which the plasma length, which is Lorentz contracted, and the laser length, which is Lorentz expanded, are now comparable. This technique has the potential to reduce the computational needs of a LWFA simulation by more than four orders of magnitude, and is useful if there is no or negligible reflection of the laser in the lab frame. To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle to overcome is a robust and violent numerical instability, called the Numerical Cerenkov Instability (NCI), that leads to unphysical energy exchange between relativistically drifting particles and their radiation. This leads to unphysical noise that dwarfs the real physical processes. In this dissertation, we first present a theoretical analysis of this instability, and show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We then discuss the methods to eliminate them. However, the use of FFTs can lead to parallel scalability issues when there are many more cells along the drifting direction than in the transverse direction(s). We then describe an algorithm that has the potential to address this issue by using a higher order finite difference operator for the derivative in the plasma drifting direction, while using the standard second order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and it is shown that the NCI can be eliminated using the same strategies that were used for the hybrid FFT
Extended Friedberg-Lee hidden symmetries, quark masses, and CP violation with four generations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bar-Shalom, Shaouly; Oaknin, David; Soni, Amarjit
2009-07-01
Motivated in part by the several observed anomalies involving CP asymmetries of B and B{sub s} decays, we consider the standard model with a 4th sequential family (SM4) which seems to offer a rather simple resolution. We initially assume T-invariance by taking the up and down-quark 4x4 mass matrix to be real. Following Friedberg and Lee (FL), we then impose a hidden symmetry on the unobserved (hidden) up and down-quark SU(2) states. The hidden symmetry for four generations ensures the existence of two zero-mass eigenstates, which we take to be the (u,c) and (d,s) states in the up and down-quarkmore » sectors, respectively. Then, we simultaneously break T-invariance and the hidden symmetry by introducing two phase factors in each sector. This breaking mechanism generates the small quark masses m{sub u}, m{sub c} and m{sub d}, m{sub s}, which, along with the orientation of the hidden symmetry, determine the size of CP-violation in the SM4. For illustration we choose a specific physical picture for the hidden symmetry and the breaking mechanism that reproduces the observed quark masses, mixing angles and CP-violation, and at the same time allows us to further obtain very interesting relations/predictions for the mixing angles of t and t'. For example, with this choice we get V{sub td}{approx}(V{sub cb}/V{sub cd}-V{sub ts}/V{sub us})+O({lambda}{sup 2}) and V{sub t{sup '}}{sub b}{approx}V{sub t{sup '}}{sub d}{center_dot}(V{sub cb}/V{sub cd}), V{sub tb{sup '}}{approx}V{sub t{sup '}}{sub d}{center_dot}(V{sub ts}/V{sub us}), implying that V{sub t{sup '}}{sub d}>V{sub t{sup '}}{sub b}, V{sub tb{sup '}}. We furthermore find that the Cabibbo angle is related to the orientation of the hidden symmetry and that the key CP-violating quantity of our model at high energies, J{sub SM4}{identical_to}Im(V{sub tb}V{sub t{sup '}}{sub b}*V{sub t{sup '}}{sub b{sup '}}V{sub tb{sup '}}*), which is the high-energy analogue of the Jarlskog invariant of the SM, is proportional to the light
Very special relativity as relativity of dark matter: the Elko connection
NASA Astrophysics Data System (ADS)
Ahluwalia, D. V.; Horvath, S. P.
2010-11-01
In the very special relativity (VSR) proposal by Cohen and Glashow, it was pointed out that invariance under HOM (2) is both necessary and sufficient to explain the null result of the Michelson-Morely experiment. It is the quantum field theoretic demand of locality, or the requirement of P, T, CP, or CT invariance, that makes invariance under the Lorentz group a necessity. Originally it was conjectured that VSR operates at the Planck scale; we propose that the natural arena for VSR is at energies similar to the standard model, but in the dark sector. To this end we provide an ab initio spinor representation invariant under the SIM (2) avatar of VSR and construct a mass dimension one fermionic quantum field of spin one half. This field turns out to be a very close sibling of Elko and it exhibits the same striking property of intrinsic darkness with respect to the standard model fields. In the new construct, the tension between Elko and Lorentz symmetries is fully resolved. We thus entertain the possibility that the symmetries underlying the standard model matter and gauge fields are those of Lorentz, while the event space underlying the dark matter and the dark gauge fields supports the algebraic structure underlying VSR.
Cartan invariants and event horizon detection
NASA Astrophysics Data System (ADS)
Brooks, D.; Chavy-Waddy, P. C.; Coley, A. A.; Forget, A.; Gregoris, D.; MacCallum, M. A. H.; McNutt, D. D.
2018-04-01
We show that it is possible to locate the event horizon of a black hole (in arbitrary dimensions) by the zeros of certain Cartan invariants. This approach accounts for the recent results on the detection of stationary horizons using scalar polynomial curvature invariants, and improves upon them since the proposed method is computationally less expensive. As an application, we produce Cartan invariants that locate the event horizons for various exact four-dimensional and five-dimensional stationary, asymptotically flat (or (anti) de Sitter), black hole solutions and compare the Cartan invariants with the corresponding scalar curvature invariants that detect the event horizon.
A review of the generalized uncertainty principle.
Tawfik, Abdel Nasser; Diab, Abdel Magied
2015-12-01
Based on string theory, black hole physics, doubly special relativity and some 'thought' experiments, minimal distance and/or maximum momentum are proposed. As alternatives to the generalized uncertainty principle (GUP), the modified dispersion relation, the space noncommutativity, the Lorentz invariance violation, and the quantum-gravity-induced birefringence effects are summarized. The origin of minimal measurable quantities and the different GUP approaches are reviewed and the corresponding observations are analysed. Bounds on the GUP parameter are discussed and implemented in the understanding of recent PLANCK observations of cosmic inflation. The higher-order GUP approaches predict minimal length uncertainty with and without maximum momenta. Possible arguments against the GUP are discussed; for instance, the concern about its compatibility with the equivalence principles, the universality of gravitational redshift and the free fall and law of reciprocal action are addressed.
Determination of the Atmospheric Neutrino Flux and Searches for New Physics with AMANDA-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
IceCube Collaboration; Klein, Spencer; Collaboration, IceCube
2009-06-02
The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance (VLI) or quantum decoherence (QD). Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on VLImore » and QD parameters using a maximum likelihood method. Given the absence of evidence for new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV.« less
Measurement of the direct C P violating charge asymmetry in B±→μ±νμD0 decays
NASA Astrophysics Data System (ADS)
Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Aushev, V.; Aushev, Y.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brochmann, M.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cuth, J.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Franc, J.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schott, M.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shkola, O.; Simak, V.; Skubic, P.; Slattery, P.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stefaniuk, N.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; D0 Collaboration
2017-02-01
We present the first measurement of the C P violating charge asymmetry in B±→μ±νμD0 decays using the full Run II integrated luminosity of 10.4 fb-1 in proton-antiproton collisions collected with the D0 detector at the Fermilab Tevatron Collider. We measure a difference in the yield of B- and B+ mesons in these decays by fitting the reconstructed invariant mass distributions. This results in an asymmetry of Aμ D0=[-0.14 ±0.20 ] % , which is consistent with standard model predictions.
Aad, G.; Abbott, B.; Abdinov, O.; ...
2016-11-28
A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of τ leptons and is based on 20.3 fb –1 of proton–proton collision data at √s = 8 TeV collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter d ~. The mean values andmore » distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter d ~ is constrained to the interval (–0.11,0.05) at 68% confidence level, consistent with the Standard Model expectation of d ~=0.« less
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdinov, O.; Abdallah, J.; Abeloos, B.; Aben, R.; Abolins, M.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Garcia, J. A. Benitez; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Berghaus, F.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Brunt, B. H.; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Quiles, A. Irles; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Dortz, O. Le; Guirriec, E. Le; Menedeu, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Andrade Filho, L. Manhaes de; Ramos, J. Manjarres; Mann, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Garcia, B. R. Mellado; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Murrone, A.; Musheghyan, H.; Muskinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Martinez, V. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zurzolo, G.; Zwalinski, L.
2016-12-01
A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of τ leptons and is based on 20.3 fb^{-1} of proton-proton collision data at √{s} = 8 TeV collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter tilde{d}. The mean values and distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter tilde{d} is constrained to the interval (-0.11,0.05) at 68% confidence level, consistent with the Standard Model expectation of tilde{d}=0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aad, G.; Abbott, B.; Abdinov, O.
A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of τ leptons and is based on 20.3 fb –1 of proton–proton collision data at √s = 8 TeV collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter d ~. The mean values andmore » distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter d ~ is constrained to the interval (–0.11,0.05) at 68% confidence level, consistent with the Standard Model expectation of d ~=0.« less
Aad, G; Abbott, B; Abdinov, O; Abdallah, J; Abeloos, B; Aben, R; Abolins, M; Aben, R; Abolins, M; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, A S; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Benitez, J; Garcia, J A Benitez; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Berghaus, F; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Sola, J D Bossio; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Calvet, T P; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Camincher, C; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelli, A; Gimenez, V Castillo; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Bravo, A Gascon; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, L; Gongadze, A; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Quiles, A Irles; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Ponce, J M Iturbe; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanneau, F; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohriki, T; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Dortz, O Le; Guirriec, E Le; Menedeu, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Solis, A Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Maneira, J; Andrade Filho, L Manhaes de; Ramos, J Manjarres; Mann, A; Mansoulie, B; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Fadden, N C Mc; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Garcia, B R Mellado; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Murrone, A; Musheghyan, H; Muskinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Seabra, L F Oleiro; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Aranda, C Padilla; Pagáčová, M; Griso, S Pagan; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Codina, E Perez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Perez, A Rodriguez; Rodriguez, D Rodriguez; Roe, S; Rogan, C S; Røhne, O; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Martinez, V Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turgeman, D; Turra, R; Turvey, A J; Tuts, P M; Tyndel, M; Ucchielli, G; Ueda, I; Ueno, R; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Santurio, E Valdes; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Vallecorsa, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigani, L; Vigne, R; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zurzolo, G; Zwalinski, L
2016-01-01
A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of [Formula: see text] leptons and is based on 20.3 [Formula: see text] of proton-proton collision data at [Formula: see text] = 8 [Formula: see text] collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter [Formula: see text]. The mean values and distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter [Formula: see text] is constrained to the interval [Formula: see text] at 68% confidence level, consistent with the Standard Model expectation of [Formula: see text].
The Correlated Jacobi and the Correlated Cauchy-Lorentz Ensembles
NASA Astrophysics Data System (ADS)
Wirtz, Tim; Waltner, Daniel; Kieburg, Mario; Kumar, Santosh
2016-01-01
We calculate the k-point generating function of the correlated Jacobi ensemble using supersymmetric methods. We use the result for complex matrices for k=1 to derive a closed-form expression for the eigenvalue density. For real matrices we obtain the density in terms of a twofold integral that we evaluate numerically. For both expressions we find agreement when comparing with Monte Carlo simulations. Relations between these quantities for the Jacobi and the Cauchy-Lorentz ensemble are derived.
Einstein and Lorentz: The structure of a scientific revolution
NASA Astrophysics Data System (ADS)
Brouwer, W.
1980-06-01
In a course entitled ''Revolutions in Physics'' a number of episodes in the history of physics are examined, in order to test the theories of Kuhn, Popper, Lakatos, and others, with regard to any common structure exhibited by the various revolutions that physics has undergone. The conflict between Lorentz's Electron Theory and Einstein's Special Relativity becomes a major focal point in the second half of the course for the models of scientific revolutions that are studied.
Betrouche, Malika; Maamache, Mustapha; Choi, Jeong Ryeol
2013-01-01
We investigate the Lorentz-covariant deformed algebra for Dirac oscillator problem, which is a generalization of Kempf deformed algebra in 3 + 1 dimension of space-time, where Lorentz symmetry are preserved. The energy spectrum of the system is analyzed by taking advantage of the corresponding wave functions with explicit spin state. We obtained entirely new results from our development based on Kempf algebra in comparison to the studies carried out with the non-Lorentz-covariant deformed one. A novel result of this research is that the quantized relativistic energy of the system in the presence of minimal length cannot grow indefinitely as quantum number n increases, but converges to a finite value, where c is the speed of light and β is a parameter that determines the scale of noncommutativity in space. If we consider the fact that the energy levels of ordinary oscillator is equally spaced, which leads to monotonic growth of quantized energy with the increment of n, this result is very interesting. The physical meaning of this consequence is discussed in detail. PMID:24225900
Betrouche, Malika; Maamache, Mustapha; Choi, Jeong Ryeol
2013-11-14
We investigate the Lorentz-covariant deformed algebra for Dirac oscillator problem, which is a generalization of Kempf deformed algebra in 3 + 1 dimension of space-time, where Lorentz symmetry are preserved. The energy spectrum of the system is analyzed by taking advantage of the corresponding wave functions with explicit spin state. We obtained entirely new results from our development based on Kempf algebra in comparison to the studies carried out with the non-Lorentz-covariant deformed one. A novel result of this research is that the quantized relativistic energy of the system in the presence of minimal length cannot grow indefinitely as quantum number n increases, but converges to a finite value, where c is the speed of light and β is a parameter that determines the scale of noncommutativity in space. If we consider the fact that the energy levels of ordinary oscillator is equally spaced, which leads to monotonic growth of quantized energy with the increment of n, this result is very interesting. The physical meaning of this consequence is discussed in detail.
NASA Astrophysics Data System (ADS)
Sachdeva, Nishtha; Subramanian, Prasad; Vourlidas, Angelos; Bothmer, Volker
2017-09-01
We seek to quantify the relative contributions of Lorentz forces and aerodynamic drag on the propagation of solar coronal mass ejections (CMEs). We use Graduated Cylindrical Shell (GCS) model fits to a representative set of 38 CMEs observed with the Solar and Heliospheric Observatory (SOHO) and the Solar and Terrestrial Relations Observatory (STEREO) spacecraft. We find that the Lorentz forces generally peak between 1.65 and 2.45 R⊙ for all CMEs. For fast CMEs, Lorentz forces become negligible in comparison to aerodynamic drag as early as 3.5 - 4 R⊙. For slow CMEs, however, they become negligible only by 12 - 50 R⊙. For these slow events, our results suggest that some of the magnetic flux might be expended in CME expansion or heating. In other words, not all of it contributes to the propagation. Our results are expected to be important in building a physical model for understanding the Sun-Earth dynamics of CMEs.
Shape invariant potentials in higher dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhya, R., E-mail: saudhamini@yahoo.com; Sree Ranjani, S., E-mail: s.sreeranjani@gmail.com; Faculty of Science and Technology, ICFAI foundation for Higher Education,
2015-08-15
In this paper we investigate the shape invariance property of a potential in one dimension. We show that a simple ansatz allows us to reconstruct all the known shape invariant potentials in one dimension. This ansatz can be easily extended to arrive at a large class of new shape invariant potentials in arbitrary dimensions. A reformulation of the shape invariance property and possible generalizations are proposed. These may lead to an important extension of the shape invariance property to Hamiltonians that are related to standard potential problems via space time transformations, which are found useful in path integral formulation ofmore » quantum mechanics.« less
Lorentz Contraction, Bell's Spaceships and Rigid Body Motion in Special Relativity
ERIC Educational Resources Information Center
Franklin, Jerrold
2010-01-01
The meaning of Lorentz contraction in special relativity and its connection with Bell's spaceships parable is discussed. The motion of Bell's spaceships is then compared with the accelerated motion of a rigid body. We have tried to write this in a simple form that could be used to correct students' misconceptions due to conflicting earlier…
Shaping propagation invariant laser beams
NASA Astrophysics Data System (ADS)
Soskind, Michael; Soskind, Rose; Soskind, Yakov
2015-11-01
Propagation-invariant structured laser beams possess several unique properties and play an important role in various photonics applications. The majority of propagation invariant beams are produced in the form of laser modes emanating from stable laser cavities. Therefore, their spatial structure is limited by the intracavity mode formation. We show that several types of anamorphic optical systems (AOSs) can be effectively employed to shape laser beams into a variety of propagation invariant structured fields with different shapes and phase distributions. We present a propagation matrix approach for designing AOSs and defining mode-matching conditions required for preserving propagation invariance of the output shaped fields. The propagation matrix approach was selected, as it provides a more straightforward approach in designing AOSs for shaping propagation-invariant laser beams than the alternative technique based on the Gouy phase evolution, especially in the case of multielement AOSs. Several practical configurations of optical systems that are suitable for shaping input laser beams into a diverse variety of structured propagation invariant laser beams are also presented. The laser beam shaping approach was applied by modeling propagation characteristics of several input laser beam types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian structured field distributions. The influence of the Ince-Gaussian beam semifocal separation parameter and the azimuthal orientation between the input laser beams and the AOSs onto the resulting shape of the propagation invariant laser beams is presented as well.
Do scale-invariant fluctuations imply the breaking of de Sitter invariance?
NASA Astrophysics Data System (ADS)
Youssef, A.
2013-01-01
The quantization of the massless minimally coupled (mmc) scalar field in de Sitter spacetime is known to be a non-trivial problem due to the appearance of strong infrared (IR) effects. In particular, the scale-invariance of the CMB power-spectrum - certainly one of the most successful predictions of modern cosmology - is widely believed to be inconsistent with a de Sitter invariant mmc two-point function. Using a Cesaro-summability technique to properly define an otherwise divergent Fourier transform, we show in this Letter that de Sitter symmetry breaking is not a necessary consequence of the scale-invariant fluctuation spectrum. We also generalize our result to the tachyonic scalar fields, i.e. the discrete series of representations of the de Sitter group, that suffer from similar strong IR effects.
Dimensional study of the dynamical arrest in a random Lorentz gas.
Jin, Yuliang; Charbonneau, Patrick
2015-04-01
The random Lorentz gas (RLG) is a minimal model for transport in heterogeneous media. Upon increasing the obstacle density, it exhibits a growing subdiffusive transport regime and then a dynamical arrest. Here, we study the dimensional dependence of the dynamical arrest, which can be mapped onto the void percolation transition for Poisson-distributed point obstacles. We numerically determine the arrest in dimensions d=2-6. Comparison of the results with standard mode-coupling theory reveals that the dynamical theory prediction grows increasingly worse with d. In an effort to clarify the origin of this discrepancy, we relate the dynamical arrest in the RLG to the dynamic glass transition of the infinite-range Mari-Kurchan-model glass former. Through a mixed static and dynamical analysis, we then extract an improved dimensional scaling form as well as a geometrical upper bound for the arrest. The results suggest that understanding the asymptotic behavior of the random Lorentz gas may be key to surmounting fundamental difficulties with the mode-coupling theory of glasses.
Monogamy equalities for qubit entanglement from Lorentz invariance.
Eltschka, Christopher; Siewert, Jens
2015-04-10
A striking result from nonrelativistic quantum mechanics is the monogamy of entanglement, which states that a particle can be maximally entangled only with one other party, not with several ones. While there is the exact quantitative relation for three qubits and also several inequalities describing monogamy properties, it is not clear to what extent exact monogamy relations are a general feature of quantum mechanics. We prove that in all many-qubit systems there exist strict monogamy laws for quantum correlations. They come about through the curious relationship between the nonrelativistic quantum mechanics of qubits and Minkowski space. We elucidate the origin of entanglement monogamy from this symmetry perspective and provide recipes to construct new families of such equalities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Violations. 490.310 Section 490.310 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.310 Violations. Violations of this subpart are subject to investigation and...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Violations. 490.310 Section 490.310 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.310 Violations. Violations of this subpart are subject to investigation and...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Violations. 490.310 Section 490.310 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.310 Violations. Violations of this subpart are subject to investigation and...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Violations. 490.310 Section 490.310 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.310 Violations. Violations of this subpart are subject to investigation and...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Violations. 490.310 Section 490.310 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.310 Violations. Violations of this subpart are subject to investigation and...
Benign violations: making immoral behavior funny.
McGraw, A Peter; Warren, Caleb
2010-08-01
Humor is an important, ubiquitous phenomenon; however, seemingly disparate conditions seem to facilitate humor. We integrate these conditions by suggesting that laughter and amusement result from violations that are simultaneously seen as benign. We investigated three conditions that make a violation benign and thus humorous: (a) the presence of an alternative norm suggesting that the situation is acceptable, (b) weak commitment to the violated norm, and (c) psychological distance from the violation. We tested the benign-violation hypothesis in the domain of moral psychology, where there is a strong documented association between moral violations and negative emotions, particularly disgust. Five experimental studies show that benign moral violations tend to elicit laughter and amusement in addition to disgust. Furthermore, seeing a violation as both wrong and not wrong mediates behavioral displays of humor. Our account is consistent with evolutionary accounts of laughter, explains humor across many domains, and suggests that humor can accompany negative emotion.
Magnetic Susceptibility Effects and Lorentz Damping in Diamagnetic Fluids
NASA Technical Reports Server (NTRS)
Ramachandran, Narayanan; Leslie, Fred W.
2000-01-01
A great number of crystals (semi-conductor and protein) grown in space are plagued by convective motions which contribute to structural flaws. The character of these instabilities is not well understood but is associated with density variations in the presence of residual gravity and g-jitter. Both static and dynamic (rotating or travelling wave) magnetic fields can be used to reduce the effects of convection in materials processing. In semi-conductor melts, due to their relatively high electrical conductivity, the induced Lorentz force can be effectively used to curtail convective effects. In melts/solutions with reduced electrical conductivity, such as aqueous solutions used in solution crystal growth, protein crystal growth and/or model fluid experiments for simulating melt growth, however, the variation of the magnetic susceptibility with temperature and/or concentration can be utilized to better damp fluid convection than the Lorentz force method. This paper presents a comprehensive, comparative numerical study of the relative damping effects using static magnetic fields and gradients in a simple geometry subjected to a thermal gradient. The governing equations are formulated in general terms and then simplified for the numerical calculations. Operational regimes, based on the best damping technique for different melts/solutions are identified based on fluid properties. Comparisons are provided between the numerical results and available results from experiments in surveyed literature.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Violations. 490.206 Section 490.206 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.206 Violations. Violations of this subpart are subject to investigation and enforcement under subpart...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Violations. 490.206 Section 490.206 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.206 Violations. Violations of this subpart are subject to investigation and enforcement under subpart...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Violations. 490.206 Section 490.206 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.206 Violations. Violations of this subpart are subject to investigation and enforcement under subpart...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Violations. 490.206 Section 490.206 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.206 Violations. Violations of this subpart are subject to investigation and enforcement under subpart...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Violations. 490.206 Section 490.206 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.206 Violations. Violations of this subpart are subject to investigation and enforcement under subpart...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Violations. 32.301 Section 32.301 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Violations § 32.301 Violations. (a) The Commission may obtain an injunction or other...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Violations. 32.301 Section 32.301 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Violations § 32.301 Violations. (a) The Commission may obtain an injunction or other...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Violations. 34.121 Section 34.121 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Violations § 34.121 Violations. (a) The Commission may obtain an injunction or other...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Violations. 34.121 Section 34.121 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Violations § 34.121 Violations. (a) The Commission may obtain an injunction or other...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Violations. 34.121 Section 34.121 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Violations § 34.121 Violations. (a) The Commission may obtain an injunction or other...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Violations. 34.121 Section 34.121 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Violations § 34.121 Violations. (a) The Commission may obtain an injunction or other...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Violations. 34.121 Section 34.121 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Violations § 34.121 Violations. (a) The Commission may obtain an injunction or other...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casana, Rodolfo; Ferreira, Manoel M. Jr; Rodrigues, Josberg S.
2009-10-15
In this work, we examine the finite temperature properties of the CPT-even and Lorentz-invariance-violating (LIV) electrodynamics of the standard model extension, represented by the term W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}F{sup {alpha}}{sup {nu}}F{sup {rho}}{sup {phi}}. We begin analyzing the Hamiltonian structure following the Dirac's procedure for constrained systems and construct a well-defined and gauge invariant partition function in the functional integral formalism. Next, we specialize for the nonbirefringent coefficients of the tensor W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}. In the sequel, the partition function is explicitly carried out for the parity-even sector of the tensor W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}. The modifiedmore » partition function is a power of the Maxwell's partition function. It is observed that the LIV coefficients induce an anisotropy in the black body angular energy density distribution. The Planck's radiation law, however, retains its frequency dependence and the Stefan-Boltzmann law keeps the usual form, except for a change in the Stefan-Boltzmann constant by a factor containing the LIV contributions.« less
Weyl invariance with a nontrivial mass scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Álvarez, Enrique; González-Martín, Sergio; Departamento de Física Teórica, Universidad Autónoma de Madrid,28049 Madrid
2016-09-07
A theory with a mass scale and yet Weyl invariant is presented. The theory is not invariant under all diffeomorphisms but only under transverse ones. This is the reason why Weyl invariance does not imply scale invariance in a free falling frame. Physical implications of this framework are discussed.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Violations. 490.708 Section 490.708 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.708 Violations. Violations of this subpart are subject to investigation and enforcement under subpart G of this...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Violations. 490.708 Section 490.708 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.708 Violations. Violations of this subpart are subject to investigation and enforcement under subpart G of this...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Violations. 490.708 Section 490.708 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.708 Violations. Violations of this subpart are subject to investigation and enforcement under subpart G of this...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Violations. 490.708 Section 490.708 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.708 Violations. Violations of this subpart are subject to investigation and enforcement under subpart G of this...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Violations. 490.708 Section 490.708 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.708 Violations. Violations of this subpart are subject to investigation and enforcement under subpart G of this...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Violations. 60.181 Section 60.181 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Violations § 60.181 Violations. (a) The Commission may obtain an injunction or other court order to prevent a...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Violations. 76.131 Section 76.131 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Enforcement § 76.131 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Violations. 76.131 Section 76.131 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Enforcement § 76.131 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Violations. 76.131 Section 76.131 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Enforcement § 76.131 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Violations. 76.131 Section 76.131 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Enforcement § 76.131 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Violations. 76.131 Section 76.131 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Enforcement § 76.131 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the...
Speeded Recognition of Ungrammaticality: Double Violations.
ERIC Educational Resources Information Center
Moore, Timothy E.; Biederman, Irving
1979-01-01
The speed at which sentences with various kinds of violations could be rejected was studied. Compatible with the sequential model was the finding that noun-verb and adjective-noun double violations did not result in shorter reaction times than noun-verb single violations, although double violations were judged less acceptable. (Author/RD)
A novel reciprocating micropump based on Lorentz force
NASA Astrophysics Data System (ADS)
Salari, Alinaghi; Hakimsima, Abbas; Shafii, Mohammad Behshad
2015-03-01
Lorentz force is the pumping basis of many electromagnetic micropumps used in lab-on-a-chip. In this paper a novel reciprocating single-chamber micropump is proposed, in which the actuation technique is based on Lorentz force acting on an array of microwires attached on a membrane surface. An alternating current is applied through the microwires in the presence of a magnetic field. The resultant force causes the membrane to oscillate and pushes the fluid to flow through microchannel using a ball-valve. The pump chamber (3 mm depth) was fabricated on a Polymethylmethacrylate (PMMA) substrate using laser engraving technique. The chamber was covered by a 60 μm thick hyper-elastic latex rubber diaphragm. Two miniature permanent magnets capable of providing magnetic field of 0.09 T at the center of the diaphragm were mounted on each side of the chamber. Square wave electric current with low-frequencies was generated using a function generator. Cylindrical copper microwires (250 μm diameter and 5 mm length) were attached side-by-side on top surface of the diaphragm. Thin loosely attached wires were used as connectors to energize the electrodes. Due to large displacement length of the diaphragm (~3 mm) a high efficiency (~90%) ball valve (2 mm diameter stainless steel ball in a tapered tubing structure) was used in the pump outlet. The micropump exhibits a flow rate as high as 490 μl/s and pressure up to 1.5 kPa showing that the pump is categorized among high-flow-rate mechanical micropumps.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Violations. 20.2401 Section 20.2401 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Enforcement § 20.2401 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the provisions of— (1) The...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Violations. 20.2401 Section 20.2401 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Enforcement § 20.2401 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the provisions of— (1) The...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Violations. 39.101 Section 39.101 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Enforcement § 39.101 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Violations. 39.101 Section 39.101 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Enforcement § 39.101 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Violations. 1016.44 Section 1016.44 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Control of Information § 1016.44 Violations. An injunction or other court order may be obtained prohibiting any violation of any provision of the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Violations. 1016.44 Section 1016.44 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Control of Information § 1016.44 Violations. An injunction or other court order may be obtained prohibiting any violation of any provision of the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Violations. 20.2401 Section 20.2401 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Enforcement § 20.2401 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the provisions of— (1) The...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Violations. 36.91 Section 36.91 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Enforcement § 36.91 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the provisions of— (1) The...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Violations. 36.91 Section 36.91 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Enforcement § 36.91 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the provisions of— (1) The...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Violations. 75.51 Section 75.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Enforcement § 75.51 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Violations. 75.51 Section 75.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Enforcement § 75.51 Violations. (a) The Commission may obtain an injunction or other court order to prevent a violation of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgoulis, Manolis K.; Titov, Viacheslav S.; Mikic, Zoran
Using solar vector magnetograms of the highest available spatial resolution and signal-to-noise ratio, we perform a detailed study of electric current patterns in two solar active regions (ARs): a flaring/eruptive and a flare-quiet one. We aim to determine whether ARs inject non-neutralized (net) electric currents in the solar atmosphere, responding to a debate initiated nearly two decades ago that remains inconclusive. We find that well-formed, intense magnetic polarity inversion lines (PILs) within ARs are the only photospheric magnetic structures that support significant net current. More intense PILs seem to imply stronger non-neutralized current patterns per polarity. This finding revises previousmore » works that claim frequent injections of intense non-neutralized currents by most ARs appearing in the solar disk but also works that altogether rule out injection of non-neutralized currents. In agreement with previous studies, we also find that magnetically isolated ARs remain globally current-balanced. In addition, we confirm and quantify the preference of a given magnetic polarity to follow a given sense of electric currents, indicating a dominant sense of twist in ARs. This coherence effect is more pronounced in more compact ARs with stronger PILs and must be of sub-photospheric origin. Our results yield a natural explanation of the Lorentz force, invariably generating velocity and magnetic shear along strong PILs, thus setting a physical context for the observed pre-eruption evolution in solar ARs.« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... PRIMARY DRINKING WATER REGULATIONS Revised Total Coliform Rule § 141.860 Violations. (a) E. coli MCL Violation. A system is in violation of the MCL for E. coli when any of the conditions identified in paragraphs (a)(1) through (a)(4) of this section occur. (1) The system has an E. coli-positive repeat sample...
Code of Federal Regulations, 2013 CFR
2013-07-01
... PRIMARY DRINKING WATER REGULATIONS Revised Total Coliform Rule § 141.860 Violations. (a) E. coli MCL Violation. A system is in violation of the MCL for E. coli when any of the conditions identified in paragraphs (a)(1) through (a)(4) of this section occur. (1) The system has an E. coli-positive repeat sample...
A perfectly conducting surface in electrodynamics with Lorentz symmetry breaking
NASA Astrophysics Data System (ADS)
Borges, L. H. C.; Barone, F. A.
2017-10-01
In this paper we consider a model which exhibits explicit Lorentz symmetry breaking due to the presence of a single background vector v^{μ } coupled to the gauge field. We investigate such a theory in the vicinity of a perfectly conducting plate for different configurations of v^{μ }. First we consider no restrictions on the components of the background vector and we treat it perturbatively up to second order. Next, we treat v^{μ } exactly for two special cases: the first one is when it has only components parallel to the plate, and the second one when it has a single component perpendicular to the plate. For all these configurations, the propagator for the gauge field and the interaction force between the plate and a point-like electric charge are computed. Surprisingly, it is shown that the image method is valid in our model and we argue that it is a non-trivial result. We show there arises a torque on the mirror with respect to its positioning in the background field when it interacts with a point-like charge. It is a new effect with no counterpart in theories with Lorentz symmetry in the presence of a perfect mirror.
Hidden scale invariance of metals
NASA Astrophysics Data System (ADS)
Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.; Pedersen, Ulf R.
2015-11-01
Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general "hidden" scale invariance of metals making the condensed part of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT computed density scaling exponents, related to the Grüneisen parameter, are in good agreement with experimental values for the 16 elements where reliable data were available. Hidden scale invariance is demonstrated in detail for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted by assuming scale invariant inverse power-law (IPL) pair interactions. However, crystal packings of several transition metals (V, Cr, Mn, Fe, Nb, Mo, Ta, W, and Hg), most post-transition metals (Ga, In, Sn, and Tl), and the metalloids Si and Ge cannot be explained by the IPL assumption. The virial-energy correlation coefficients of iron and phosphorous are shown to increase at elevated pressures. Finally, we discuss how scale invariance explains the Grüneisen equation of state and a number of well-known empirical melting and freezing rules.
Integrable mappings with transcendental invariants
NASA Astrophysics Data System (ADS)
Grammaticos, B.; Ramani, A.
2007-06-01
We examine a family of integrable mappings which possess rational invariants involving polynomials of arbitrarily high degree. Next we extend these mappings to the case where their parameters are functions of the independent variable. The resulting mappings do not preserve any invariant but are solvable by linearisation. Using this result we then proceed to construct the solution of the initial autonomous mappings and use it to explicitly construct the invariant, which turns out to be transcendental in the generic case.
NASA Astrophysics Data System (ADS)
Hernández, Daniel; Boeck, Thomas; Karcher, Christian; Wondrak, Thomas
2018-01-01
Lorentz force velocimetry (LFV) is a contactless velocity measurement technique for electrically conducting fluids. When a liquid metal or a molten glass flows through an externally applied magnetic field, eddy currents and a flow-braking force are generated inside the liquid. This force is proportional to the velocity or flow rate of the fluid and, due to Newton’s third law, a force of the same magnitude but in opposite direction acts on the source of the applied magnetic field which in our case are permanent magnets. According to Ohm’s law for moving conductors at low magnetic Reynolds numbers, an electric potential is induced which ensures charge conservation. In this paper, we analyze the contribution of the induced electric potential to the total Lorentz force by considering two different scenarios: conducting walls of finite thickness and aspect ratio variation of the cross-section of the flow. In both the cases, the force component generated by the electric potential is always in the opposite direction to the total Lorentz force. This force component is sensitive to the electric boundary conditions of the flow of which insulating and perfectly conducting walls are the two limiting cases. In the latter case, the overall electric resistance of the system is minimized, resulting in a considerable increase in the measured Lorentz force. Additionally, this force originating from the electric potential also decays when the aspect ratio of the cross-section of the flow is changed. Hence, the sensitivity of the measurement technique is enhanced by either increasing wall conductivity or optimizing the aspect ratio of the cross-section of the flow.
Sprague, Briana N; Hyun, Jinshil; Molenaar, Peter C M
2017-01-01
Invariance of intelligence across age is often assumed but infrequently explicitly tested. Horn and McArdle (1992) tested measurement invariance of intelligence, providing adequate model fit but might not consider all relevant aspects such as sub-test differences. The goal of the current paper is to explore age-related invariance of the WAIS-R using an alternative model that allows direct tests of age on WAIS-R subtests. Cross-sectional data on 940 participants aged 16-75 from the WAIS-R normative values were used. Subtests examined were information, comprehension, similarities, vocabulary, picture completion, block design, picture arrangement, and object assembly. The two intelligence factors considered were fluid and crystallized intelligence. Self-reported ages were divided into young (16-22, n = 300), adult (29-39, n = 275), middle (40-60, n = 205), and older (61-75, n = 160) adult groups. Results suggested partial metric invariance holds. Although most of the subtests reflected fluid and crystalized intelligence similarly across different ages, invariance did not hold for block design on fluid intelligence and picture arrangement on crystallized intelligence for older adults. Additionally, there was evidence of a correlated residual between information and vocabulary for the young adults only. This partial metric invariance model yielded acceptable model fit compared to previously-proposed invariance models of Horn and McArdle (1992). Almost complete metric invariance holds for a two-factor model of intelligence. Most of the subtests were invariant across age groups, suggesting little evidence for age-related bias in the WAIS-R. However, we did find unique relationships between two subtests and intelligence. Future studies should examine age-related differences in subtests when testing measurement invariance in intelligence.
Invariance in Measurement and Prediction Revisited
ERIC Educational Resources Information Center
Millsap, Roger E.
2007-01-01
Borsboom (Psychometrika, 71:425-440, 2006) noted that recent work on measurement invariance (MI) and predictive invariance (PI) has had little impact on the practice of measurement in psychology. To understand this contention, the definitions of MI and PI are reviewed, followed by results on the consistency between the two forms of invariance in…
Solitonic Spin-Liquid State Due to the Violation of the Lifshitz Condition in Fe(1+y)Te.
Materne, Ph; Koz, C; Rössler, U K; Doerr, M; Goltz, T; Klauss, H H; Schwarz, U; Wirth, S; Rössler, S
2015-10-23
A combination of phenomenological analysis and Mössbauer spectroscopy experiments on the tetragonal Fe(1+y)Te system indicates that the magnetic ordering transition in compounds with higher Fe excess, y≥0.11, is unconventional. Experimentally, a liquidlike magnetic precursor with quasistatic spin order is found from significantly broadened Mössbauer spectra at temperatures above the antiferromagnetic transition. The incommensurate spin-density wave order in Fe(1+y)Te is described by a magnetic free energy that violates the weak Lifshitz condition in the Landau theory of second-order transitions. The presence of multiple Lifshitz invariants provides the mechanism to create multidimensional, twisted, and modulated solitonic phases.
Solitonic Spin-Liquid State Due to the Violation of the Lifshitz Condition in Fe1 +yTe
NASA Astrophysics Data System (ADS)
Materne, Ph.; Koz, C.; Rößler, U. K.; Doerr, M.; Goltz, T.; Klauss, H. H.; Schwarz, U.; Wirth, S.; Rößler, S.
2015-10-01
A combination of phenomenological analysis and Mössbauer spectroscopy experiments on the tetragonal Fe1 +yTe system indicates that the magnetic ordering transition in compounds with higher Fe excess, y ≥0.11 , is unconventional. Experimentally, a liquidlike magnetic precursor with quasistatic spin order is found from significantly broadened Mössbauer spectra at temperatures above the antiferromagnetic transition. The incommensurate spin-density wave order in Fe1 +yTe is described by a magnetic free energy that violates the weak Lifshitz condition in the Landau theory of second-order transitions. The presence of multiple Lifshitz invariants provides the mechanism to create multidimensional, twisted, and modulated solitonic phases.
Jamil, Amber; Raja, Usman; Darr, Wendy
2013-01-01
This research examined the relationships between perceived psychological contract breach, felt violation, and burnout in a sample (n = 361) of employees from various organizations in Pakistan. The moderating role of contract types in these relationships was also tested. Findings supported a positive association between perceived psychological contract breach and felt violation and both were positively related to burnout. Transactional and relational contracts moderated the felt violation-burnout relationship. Scores on relational contract type tended to be higher than for transactional contract type showing some contextual influence.
NASA Technical Reports Server (NTRS)
Zuschlag, Michael
2005-01-01
This document provides the results from a study into the apparent factors and causes of violations of restricted airspace, particularly temporary flight restrictions (TFRs) and air defense identification zones (ADIZs). By illuminating the reasons for these violations, this study aims to take the first step towards reducing them. The study assesses the basic characteristics of restricted airspace violations as well as the probable causes and factors contributing to violations. Results from the study imply most violations occur where the restriction has been in place for a significant amount of time prior to the violation. Additionally, the study results imply most violations are not due to the pilot simply being unaware of the airspace at the time of violation. In most violations, pilots are aware of the presence of the restricted airspace but have incorrect information about it, namely, its exact boundaries or procedures for authorized penetration. These results imply that the best means to reduce violations of restricted airspace is to improve the effectiveness of providing pilots the details required to avoid the airspace.
The concept of invariance in school mathematics
NASA Astrophysics Data System (ADS)
Libeskind, Shlomo; Stupel, Moshe; Oxman, Victor
2018-01-01
In this paper, we highlight examples from school mathematics in which invariance did not receive the attention it deserves. We describe how problems related to invariance stimulated the interest of both teachers and students. In school mathematics, invariance is of particular relevance in teaching and learning geometry. When permitted change leaves some relationships or properties invariant, these properties prove to be inherently interesting to teachers and students.
Direct C P violation in charmless three-body decays of B mesons
NASA Astrophysics Data System (ADS)
Cheng, Hai-Yang; Chua, Chun-Khiang; Zhang, Zhi-Qing
2016-11-01
Dalitz distributions put very stringent constraints on the theoretical models. We check the magnitude and the sign of C P violation in some (large) invariant mass regions to test our model.
Measurement invariance versus selection invariance: is fair selection possible?
Borsboom, Denny; Romeijn, Jan-Willem; Wicherts, Jelte M
2008-06-01
This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement instrument is used and group differences are present in the location but not in the variance of the latent distribution, sensitivity and positive predictive value will be higher in the group at the higher end of the latent dimension, whereas specificity and negative predictive value will be higher in the group at the lower end of the latent dimension. When latent variances are unequal, the differences in these quantities depend on the size of group differences in variances relative to the size of group differences in means. The effect originates as a special case of Simpson's paradox, which arises because the observed score distribution is collapsed into an accept-reject dichotomy. Simulations show the effect can be substantial in realistic situations. It is suggested that the effect may be partly responsible for overprediction in minority groups as typically found in empirical studies on differential academic performance. A methodological solution to the problem is suggested, and social policy implications are discussed. (PsycINFO Database Record (c) 2008 APA, all rights reserved).
A six degree-of-freedom Lorentz vibration isolator with nonlinear controller
NASA Astrophysics Data System (ADS)
Fenn, Ralph C.
1992-05-01
The results of a phase 2 Small Business Innovation Research Program sponsored by MSFC are presented. Technology is developed for isolating acceleration sensitive microgravity experiments from structural vibration of a spacecraft, such as a space station. Two hardware articles are constructed: a six degree of freedom Lorentz force isolation and a one degree of freedom low acceleration testbed capable of tests at typical experiment accelerations.
Applications of invariants in general relativity
NASA Astrophysics Data System (ADS)
Pelavas, Nicos
This thesis explores various kinds of invariants and their use in general relativity. To start, the simplest invariants, those polynomial in the Riemann tensor, are examined and the currently accepted Carminati-Zakhary set is compared to the Carminati-McLenaghan set. A number of algebraic relations linking the two sets are given. The concept of gravitational entropy, as proposed by Penrose, has some physically appealing properties which have motivated attempts to quantify this notion using various invariants. We study this in the context of self-similar spacetimes. A general result is obtained which gives the Lie derivative of any invariant or ratio of invariants along a homothetic trajectory. A direct application of this result shows that the currently used gravitational epoch function fails to satisfy certain criteria. Based on this work, candidates for a gravitational epoch function are proposed that behave accordingly in these models. The instantaneous ergo surface in the Kerr solution is studied and shown to possess conical points at the poles when embedded in three dimensional Euclidean space. These intrinsic singularities had remained undiscovered for a generation. We generalize the Gauss-Bonnet theorem to accommodate these points and use it to compute a topological invariant, the Euler characteristic, for this surface. Interest in solutions admitting a cosmological constant has prompted us to study ergo surfaces in stationary non-asymptotically flat spacetimes. In these cases we show that there is in fact a family of ergo surfaces. By using a kinematic invariant constructed from timelike Killing vectors we try to find a preferred ergo surface. We illustrate to what extent this invariant fails to provide such a measure.
NASA Astrophysics Data System (ADS)
Adrián-Martínez, S.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Marti, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Müller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.
2017-01-01
A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level.
Constraints and tests of the OPERA superluminal neutrinos.
Bi, Xiao-Jun; Yin, Peng-Fei; Yu, Zhao-Huan; Yuan, Qiang
2011-12-09
The superluminal neutrinos detected by OPERA indicate Lorentz invariance violation (LIV) of the neutrino sector at the order of 10(-5). We study the implications of the result in this work. We find that such a large LIV implied by OPERA data will make the neutrino production process π → μ + ν(μ) kinematically forbidden for a neutrino energy greater than about 5 GeV. The OPERA detection of neutrinos at 40 GeV can constrain the LIV parameter to be smaller than 3×10(-7). Furthermore, the neutrino decay in the LIV framework will modify the neutrino spectrum greatly. The atmospheric neutrino spectrum measured by the IceCube Collaboration can constrain the LIV parameter to the level of 10(-12). The future detection of astrophysical neutrinos of galactic sources is expected to be able to give an even stronger constraint on the LIV parameter of neutrinos.
Scale invariant texture descriptors for classifying celiac disease
Hegenbart, Sebastian; Uhl, Andreas; Vécsei, Andreas; Wimmer, Georg
2013-01-01
Scale invariant texture recognition methods are applied for the computer assisted diagnosis of celiac disease. In particular, emphasis is given to techniques enhancing the scale invariance of multi-scale and multi-orientation wavelet transforms and methods based on fractal analysis. After fine-tuning to specific properties of our celiac disease imagery database, which consists of endoscopic images of the duodenum, some scale invariant (and often even viewpoint invariant) methods provide classification results improving the current state of the art. However, not each of the investigated scale invariant methods is applicable successfully to our dataset. Therefore, the scale invariance of the employed approaches is explicitly assessed and it is found that many of the analyzed methods are not as scale invariant as they theoretically should be. Results imply that scale invariance is not a key-feature required for successful classification of our celiac disease dataset. PMID:23481171
Migrant Farmworker Housing Regulation Violations in North Carolina
Arcury, Thomas A.; Weir, Maria; Chen, Haiying; Summers, Phillip; Pelletier, Lori E.; Galván, Leonardo; Bischoff, Werner E.; Mirabelli, Maria C.; Quandt, Sara A.
2013-01-01
Background The quality of housing provided to migrant farmworkers is often criticized, but few studies have investigated these housing conditions. This analysis examines housing regulation violations experienced by migrant farmworkers in North Carolina, and the associations of camp characteristics with the presence of housing violations. Methods Data were collected in183 eastern North Carolina migrant farmworker camps in 2010. Housing regulation violations for the domains of camp, sleeping room, bathroom, kitchen, laundry room, and general housing, as well as total violations were assessed using North Carolina Department of Labor standards. Results Violations of housing regulations were common, ranging from 4 to 22 per camp. Housing regulation violations were common in all domains; the mean number of camp violations was 1.6, of sleeping room violations was 3.8, of bathroom violations was 4.5, of kitchen violations was 2.3, of laundry room violations was 1.2, and of general housing violations was 3.1. The mean number of total housing violations was 11.4. Several camp characteristics were consistently associated with the number of violations; camps with workers having H-2A visas, with North Carolina Department of Labor Certificates of Inspection posted, and assessed early in the season had fewer violations. Conclusions These results argue for regulatory changes to improve the quality of housing provided to migrant farmworkers, including stronger regulations and the more vigorous enforcement of existing regulations. PMID:22237961
Invariant measures in brain dynamics
NASA Astrophysics Data System (ADS)
Boyarsky, Abraham; Góra, Paweł
2006-10-01
This note concerns brain activity at the level of neural ensembles and uses ideas from ergodic dynamical systems to model and characterize chaotic patterns among these ensembles during conscious mental activity. Central to our model is the definition of a space of neural ensembles and the assumption of discrete time ensemble dynamics. We argue that continuous invariant measures draw the attention of deeper brain processes, engendering emergent properties such as consciousness. Invariant measures supported on a finite set of ensembles reflect periodic behavior, whereas the existence of continuous invariant measures reflect the dynamics of nonrepeating ensemble patterns that elicit the interest of deeper mental processes. We shall consider two different ways to achieve continuous invariant measures on the space of neural ensembles: (1) via quantum jitters, and (2) via sensory input accompanied by inner thought processes which engender a “folding” property on the space of ensembles.
Measurement invariance, the lack thereof, and modeling change.
Edwards, Michael C; Houts, Carrie R; Wirth, R J
2017-08-17
Measurement invariance issues should be considered during test construction. In this paper, we provide a conceptual overview of measurement invariance and describe how the concept is implemented in several different statistical approaches. Typical applications look for invariance over things such as mode of administration (paper and pencil vs. computer based), language/translation, age, time, and gender, to cite just a few examples. To the extent that the relationships between items and constructs are stable/invariant, we can be more confident in score interpretations. A series of simulated examples are reported which highlight different kinds of non-invariance, the impact it can have, and the effect of appropriately modeling a lack of invariance. One example focuses on the longitudinal context, where measurement invariance is critical to understanding trends over time. Software syntax is provided to help researchers apply these models with their own data. The simulation studies demonstrate the negative impact an erroneous assumption of invariance may have on scores and substantive conclusions drawn from naively analyzing those scores. Measurement invariance implies that the links between the items and the construct of interest are invariant over some domain, grouping, or classification. Examining a new or existing test for measurement invariance should be part of any test construction/implementation plan. In addition to reviewing implications of the simulation study results, we also provide a discussion of the limitations of current approaches and areas in need of additional research.
5 CFR 1312.31 - Security violations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Security violations. 1312.31 Section 1312..., DOWNGRADING, DECLASSIFICATION AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION Control and Accountability of Classified Information § 1312.31 Security violations. (a) A security violation notice is issued by the United...
Raven, G.
2018-05-23
Existence of antimatter is a consequence of the combination of special relativity and quantum mechanics. No 'primordial' antimatter's observed, need CP violation. CP broken by the charged weak interaction. The weak and mass eigenstates of quarks are different, and this difference is described by the CKM matrix. There is a clear (and unexplained!) hierarchical structure to the CKM matrix...with 3 (or more families, one can have a complex phase(s) in the CKM matrix, and this allows for CP violation! Measurements show that CKM describes the dominant (only?) source of CP violation (at the EW scale). But it doesn't explain the matter--antimatter asymmetry of the universe.
48 CFR 2903.104-7 - Violations or possible violations of standards of conduct.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Violations or possible violations of standards of conduct. 2903.104-7 Section 2903.104-7 Federal Acquisition Regulations System DEPARTMENT OF LABOR GENERAL IMPROPER BUSINESS PRACTICES AND PERSONAL CONFLICTS OF INTEREST Safeguards 2903...
Electromagnetic plane-wave pulse transmission into a Lorentz half-space.
Cartwright, Natalie A
2011-12-01
The propagation of an electromagnetic plane-wave signal obliquely incident upon a Lorentz half-space is studied analytically. Time-domain asymptotic expressions that increase in accuracy with propagation distance are derived by application of uniform saddle point methods on the Fourier-Laplace integral representation of the transmitted field. The results are shown to be continuous in time and comparable with numerical calculations of the field. Arrival times and angles of refraction are given for prominent transient pulse features and the steady-state signal.
The Concept of Invariance in School Mathematics
ERIC Educational Resources Information Center
Libeskind, Shlomo; Stupel, Moshe; Oxman, Victor
2018-01-01
In this paper, we highlight examples from school mathematics in which invariance did not receive the attention it deserves. We describe how problems related to invariance stimulated the interest of both teachers and students. In school mathematics, invariance is of particular relevance in teaching and learning geometry. When permitted change…
The SME gauge sector with minimum length
NASA Astrophysics Data System (ADS)
Belich, H.; Louzada, H. L. C.
2017-12-01
We study the gauge sector of the Standard Model Extension (SME) with the Lorentz covariant deformed Heisenberg algebra associated to the minimum length. In order to find and estimate corrections, we clarify whether the violation of Lorentz symmetry and the existence of a minimum length are independent phenomena or are, in some way, related. With this goal, we analyze the dispersion relations of this theory.
Measuring Scale Invariance between and within Subjects.
ERIC Educational Resources Information Center
Benson, Jeri; Hocevar, Dennis
The present paper represents a demonstration of how LISREL V can be used to investigate scale invariance (1) across time (its relationship to test-retest reliability), and (2) across groups. Five criteria were established to test scale invariance across time and four criteria were established to test scale invariance across groups. Using the…
Exploring CP violation in the MSSM.
Arbey, Alexandre; Ellis, John; Godbole, Rohini M; Mahmoudi, Farvah
We explore the prospects for observing CP violation in the minimal supersymmetric extension of the Standard Model (MSSM) with six CP-violating parameters, three gaugino mass phases and three phases in trilinear soft supersymmetry-breaking parameters, using the CPsuperH code combined with a geometric approach to maximise CP-violating observables subject to the experimental upper bounds on electric dipole moments. We also implement CP-conserving constraints from Higgs physics, flavour physics and the upper limits on the cosmological dark matter density and spin-independent scattering. We study possible values of observables within the constrained MSSM (CMSSM), the non-universal Higgs model (NUHM), the CPX scenario and a variant of the phenomenological MSSM (pMSSM). We find values of the CP-violating asymmetry [Formula: see text] in [Formula: see text] decay that may be as large as 3 %, so future measurements of [Formula: see text] may provide independent information about CP violation in the MSSM. We find that CP-violating MSSM contributions to the [Formula: see text] meson mass mixing term [Formula: see text] are in general below the present upper limit, which is dominated by theoretical uncertainties. If these could be reduced, [Formula: see text] could also provide an interesting and complementary constraint on the six CP-violating MSSM phases, enabling them all to be determined experimentally, in principle. We also find that CP violation in the [Formula: see text] and [Formula: see text] couplings can be quite large, and so may offer interesting prospects for future [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] colliders.
Seismic sensitivity of normal-mode coupling to Lorentz stresses in the Sun
NASA Astrophysics Data System (ADS)
Hanasoge, Shravan M.
2017-09-01
Understanding the governing mechanism of solar magnetism remains an outstanding challenge in astrophysics. Seismology is the most compelling technique to infer the internal properties of the Sun and stars. Waves in the Sun, nominally acoustic, are sensitive to the emergence and cyclical strengthening of magnetic field, evidenced by measured changes in resonant oscillation frequencies that are correlated with the solar cycle. The inference of internal Lorentz stresses from these measurements has the potential to significantly advance our appreciation of the dynamo. Indeed, seismological inverse theory for the Sun is well understood for perturbations in composition, thermal structure and flows but, is not fully developed for magnetism, owing to the complexity of the ideal magnetohydrodynamic (MHD) equation. Invoking first-Born perturbation theory to characterize departures from spherically symmetric hydrostatic models of the Sun and applying the notation of generalized spherical harmonics, we calculate sensitivity functions of seismic measurements to the general time-varying Lorentz stress tensor. We find that eigenstates of isotropic (I.e. acoustic only) background models are dominantly sensitive to isotropic deviations in the stress tensor and much more weakly than anisotropic stresses (and therefore challenging to infer). The apple cannot fall far from the tree.
9 CFR 88.6 - Violations and penalties.
Code of Federal Regulations, 2010 CFR
2010-01-01
... TRANSPORTATION OF EQUINES FOR SLAUGHTER § 88.6 Violations and penalties. (a) The Secretary is authorized to... equine transported in violation of the regulations of this part will be considered a separate violation...
Recent progress in invariant pattern recognition
NASA Astrophysics Data System (ADS)
Arsenault, Henri H.; Chang, S.; Gagne, Philippe; Gualdron Gonzalez, Oscar
1996-12-01
We present some recent results in invariant pattern recognition, including methods that are invariant under two or more distortions of position, orientation and scale. There are now a few methods that yield good results under changes of both rotation and scale. Some new methods are introduced. These include locally adaptive nonlinear matched filters, scale-adapted wavelet transforms and invariant filters for disjoint noise. Methods using neural networks will also be discussed, including an optical method that allows simultaneous classification of multiple targets.
Robust photometric invariant features from the color tensor.
van de Weijer, Joost; Gevers, Theo; Smeulders, Arnold W M
2006-01-01
Luminance-based features are widely used as low-level input for computer vision applications, even when color data is available. The extension of feature detection to the color domain prevents information loss due to isoluminance and allows us to exploit the photometric information. To fully exploit the extra information in the color data, the vector nature of color data has to be taken into account and a sound framework is needed to combine feature and photometric invariance theory. In this paper, we focus on the structure tensor, or color tensor, which adequately handles the vector nature of color images. Further, we combine the features based on the color tensor with photometric invariant derivatives to arrive at photometric invariant features. We circumvent the drawback of unstable photometric invariants by deriving an uncertainty measure to accompany the photometric invariant derivatives. The uncertainty is incorporated in the color tensor, hereby allowing the computation of robust photometric invariant features. The combination of the photometric invariance theory and tensor-based features allows for detection of a variety of features such as photometric invariant edges, corners, optical flow, and curvature. The proposed features are tested for noise characteristics and robustness to photometric changes. Experiments show that the proposed features are robust to scene incidental events and that the proposed uncertainty measure improves the applicability of full invariants.
A System for Traffic Violation Detection
Aliane, Nourdine; Fernandez, Javier; Mata, Mario; Bemposta, Sergio
2014-01-01
This paper describes the framework and components of an experimental platform for an advanced driver assistance system (ADAS) aimed at providing drivers with a feedback about traffic violations they have committed during their driving. The system is able to detect some specific traffic violations, record data associated to these faults in a local data-base, and also allow visualization of the spatial and temporal information of these traffic violations in a geographical map using the standard Google Earth tool. The test-bed is mainly composed of two parts: a computer vision subsystem for traffic sign detection and recognition which operates during both day and nighttime, and an event data recorder (EDR) for recording data related to some specific traffic violations. The paper covers firstly the description of the hardware architecture and then presents the policies used for handling traffic violations. PMID:25421737
A system for traffic violation detection.
Aliane, Nourdine; Fernandez, Javier; Mata, Mario; Bemposta, Sergio
2014-11-24
This paper describes the framework and components of an experimental platform for an advanced driver assistance system (ADAS) aimed at providing drivers with a feedback about traffic violations they have committed during their driving. The system is able to detect some specific traffic violations, record data associated to these faults in a local data-base, and also allow visualization of the spatial and temporal information of these traffic violations in a geographical map using the standard Google Earth tool. The test-bed is mainly composed of two parts: a computer vision subsystem for traffic sign detection and recognition which operates during both day and nighttime, and an event data recorder (EDR) for recording data related to some specific traffic violations. The paper covers firstly the description of the hardware architecture and then presents the policies used for handling traffic violations.
Static analysis of class invariants in Java programs
NASA Astrophysics Data System (ADS)
Bonilla-Quintero, Lidia Dionisia
2011-12-01
This paper presents a technique for the automatic inference of class invariants from Java bytecode. Class invariants are very important for both compiler optimization and as an aid to programmers in their efforts to reduce the number of software defects. We present the original DC-invariant analysis from Adam Webber, talk about its shortcomings and suggest several different ways to improve it. To apply the DC-invariant analysis to identify DC-invariant assertions, all that one needs is a monotonic method analysis function and a suitable assertion domain. The DC-invariant algorithm is very general; however, the method analysis can be highly tuned to the problem in hand. For example, one could choose shape analysis as the method analysis function and use the DC-invariant analysis to simply extend it to an analysis that would yield class-wide invariants describing the shapes of linked data structures. We have a prototype implementation: a system we refer to as "the analyzer" that infers DC-invariant unary and binary relations and provides them to the user in a human readable format. The analyzer uses those relations to identify unnecessary array bounds checks in Java programs and perform null-reference analysis. It uses Adam Webber's relational constraint technique for the class-invariant binary relations. Early results with the analyzer were very imprecise in the presence of "dirty-called" methods. A dirty-called method is one that is called, either directly or transitively, from any constructor of the class, or from any method of the class at a point at which a disciplined field has been altered. This result was unexpected and forced an extensive search for improved techniques. An important contribution of this paper is the suggestion of several ways to improve the results by changing the way dirty-called methods are handled. The new techniques expand the set of class invariants that can be inferred over Webber's original results. The technique that produces better
Motion of a Rigid Body in a Special Lorentz Gas: Loss of Memory Effect
NASA Astrophysics Data System (ADS)
Koike, Kai
2018-06-01
Linear motion of a rigid body in a special kind of Lorentz gas is mathematically analyzed. The rigid body moves against gas drag according to Newton's equation. The gas model is a special Lorentz gas consisting of gas molecules and background obstacles, which was introduced in Tsuji and Aoki (J Stat Phys 146:620-645, 2012). The specular boundary condition is imposed on the resulting kinetic equation. This study complements the numerical study by Tsuji and Aoki cited above—although the setting in this paper is slightly different from theirs, qualitatively the same asymptotic behavior is proved: The velocity V(t) of the rigid body decays exponentially if the obstacles undergo thermal motion; if the obstacles are motionless, then the velocity V(t) decays algebraically with a rate t^{- 5} independent of the spatial dimension. This demonstrates the idea that interaction of the molecules with the background obstacles destroys the memory effect due to recollision.
New Fermi-LAT event reconstruction reveals more high-energy gamma rays from gamma-ray bursts
Atwood, W. B.; Baldini, L.; Bregeon, J.; ...
2013-08-19
Here, based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Largemore » Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy (~147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.« less
NASA Astrophysics Data System (ADS)
Banda Guzmán, V. M.; Kirchbach, M.
2016-09-01
A boson of spin j≥ 1 can be described in one of the possibilities within the Bargmann-Wigner framework by means of one sole differential equation of order twice the spin, which however is known to be inconsistent as it allows for non-local, ghost and acausally propagating solutions, all problems which are difficult to tackle. The other possibility is provided by the Fierz-Pauli framework which is based on the more comfortable to deal with second-order Klein-Gordon equation, but it needs to be supplemented by an auxiliary condition. Although the latter formalism avoids some of the pathologies of the high-order equations, it still remains plagued by some inconsistencies such as the acausal propagation of the wave fronts of the (classical) solutions within an electromagnetic environment. We here suggest a method alternative to the above two that combines their advantages while avoiding the related difficulties. Namely, we suggest one sole strictly D^{(j,0)oplus (0,j)} representation specific second-order differential equation, which is derivable from a Lagrangian and whose solutions do not violate causality. The equation under discussion presents itself as the product of the Klein-Gordon operator with a momentum-independent projector on Lorentz irreducible representation spaces constructed from one of the Casimir invariants of the spin-Lorentz group. The basis used is that of general tensor-spinors of rank 2 j.
BRDF invariant stereo using light transport constancy.
Wang, Liang; Yang, Ruigang; Davis, James E
2007-09-01
Nearly all existing methods for stereo reconstruction assume that scene reflectance is Lambertian and make use of brightness constancy as a matching invariant. We introduce a new invariant for stereo reconstruction called light transport constancy (LTC), which allows completely arbitrary scene reflectance (bidirectional reflectance distribution functions (BRDFs)). This invariant can be used to formulate a rank constraint on multiview stereo matching when the scene is observed by several lighting configurations in which only the lighting intensity varies. In addition, we show that this multiview constraint can be used with as few as two cameras and two lighting configurations. Unlike previous methods for BRDF invariant stereo, LTC does not require precisely configured or calibrated light sources or calibration objects in the scene. Importantly, the new constraint can be used to provide BRDF invariance to any existing stereo method whenever appropriate lighting variation is available.
National trends in drinking water quality violations.
Allaire, Maura; Wu, Haowei; Lall, Upmanu
2018-02-27
Ensuring safe water supply for communities across the United States is a growing challenge in the face of aging infrastructure, impaired source water, and strained community finances. In the aftermath of the Flint lead crisis, there is an urgent need to assess the current state of US drinking water. However, no nationwide assessment has yet been conducted on trends in drinking water quality violations across several decades. Efforts to reduce violations are of national concern given that, in 2015, nearly 21 million people relied on community water systems that violated health-based quality standards. In this paper, we evaluate spatial and temporal patterns in health-related violations of the Safe Drinking Water Act using a panel dataset of 17,900 community water systems over the period 1982-2015. We also identify vulnerability factors of communities and water systems through probit regression. Increasing time trends and violation hot spots are detected in several states, particularly in the Southwest region. Repeat violations are prevalent in locations of violation hot spots, indicating that water systems in these regions struggle with recurring issues. In terms of vulnerability factors, we find that violation incidence in rural areas is substantially higher than in urbanized areas. Meanwhile, private ownership and purchased water source are associated with compliance. These findings indicate the types of underperforming systems that might benefit from assistance in achieving consistent compliance. We discuss why certain violations might be clustered in some regions and strategies for improving national drinking water quality.
EnviroSafe Finding of Violation
This document outlines the U.S. Environmental Protection Agency reissuing an enclosed Finding of Violation (FOV) to Enviro-Safe Refrigerants, Inc. (you). We find that you have violated the Clean Air Act, 42 U.S.C. § 7413(a) (the CAA).
Metric Ranking of Invariant Networks with Belief Propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Changxia; Ge, Yong; Song, Qinbao
The management of large-scale distributed information systems relies on the effective use and modeling of monitoring data collected at various points in the distributed information systems. A promising approach is to discover invariant relationships among the monitoring data and generate invariant networks, where a node is a monitoring data source (metric) and a link indicates an invariant relationship between two monitoring data. Such an invariant network representation can help system experts to localize and diagnose the system faults by examining those broken invariant relationships and their related metrics, because system faults usually propagate among the monitoring data and eventually leadmore » to some broken invariant relationships. However, at one time, there are usually a lot of broken links (invariant relationships) within an invariant network. Without proper guidance, it is difficult for system experts to manually inspect this large number of broken links. Thus, a critical challenge is how to effectively and efficiently rank metrics (nodes) of invariant networks according to the anomaly levels of metrics. The ranked list of metrics will provide system experts with useful guidance for them to localize and diagnose the system faults. To this end, we propose to model the nodes and the broken links as a Markov Random Field (MRF), and develop an iteration algorithm to infer the anomaly of each node based on belief propagation (BP). Finally, we validate the proposed algorithm on both realworld and synthetic data sets to illustrate its effectiveness.« less
Computation of pattern invariance in brain-like structures.
Ullman, S; Soloviev, S
1999-10-01
A fundamental capacity of the perceptual systems and the brain in general is to deal with the novel and the unexpected. In vision, we can effortlessly recognize a familiar object under novel viewing conditions, or recognize a new object as a member of a familiar class, such as a house, a face, or a car. This ability to generalize and deal efficiently with novel stimuli has long been considered a challenging example of brain-like computation that proved extremely difficult to replicate in artificial systems. In this paper we present an approach to generalization and invariant recognition. We focus our discussion on the problem of invariance to position in the visual field, but also sketch how similar principles could apply to other domains.The approach is based on the use of a large repertoire of partial generalizations that are built upon past experience. In the case of shift invariance, visual patterns are described as the conjunction of multiple overlapping image fragments. The invariance to the more primitive fragments is built into the system by past experience. Shift invariance of complex shapes is obtained from the invariance of their constituent fragments. We study by simulations aspects of this shift invariance method and then consider its extensions to invariant perception and classification by brain-like structures.
Violation of unitarity by Hawking radiation does not violate energy-momentum conservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolić, Hrvoje
2015-04-02
An argument by Banks, Susskind and Peskin (BSP), according to which violation of unitarity would violate either locality or energy-momentum conservation, is widely believed to be a strong argument against non-unitarity of Hawking radiation. We find that the whole BSP argument rests on the crucial assumption that the Hamiltonian is not highly degenerate, and point out that this assumption is not satisfied for systems with many degrees of freedom. Using Lindblad equation, we show that high degeneracy of the Hamiltonian allows local non-unitary evolution without violating energy-momentum conservation. Moreover, since energy-momentum is the source of gravity, we argue that energy-momentummore » is necessarily conserved for a large class of non-unitary systems with gravity. Finally, we explicitly calculate the Lindblad operators for non-unitary Hawking radiation and show that they conserve energy-momentum.« less
A scale-invariant internal representation of time.
Shankar, Karthik H; Howard, Marc W
2012-01-01
We propose a principled way to construct an internal representation of the temporal stimulus history leading up to the present moment. A set of leaky integrators performs a Laplace transform on the stimulus function, and a linear operator approximates the inversion of the Laplace transform. The result is a representation of stimulus history that retains information about the temporal sequence of stimuli. This procedure naturally represents more recent stimuli more accurately than less recent stimuli; the decrement in accuracy is precisely scale invariant. This procedure also yields time cells that fire at specific latencies following the stimulus with a scale-invariant temporal spread. Combined with a simple associative memory, this representation gives rise to a moment-to-moment prediction that is also scale invariant in time. We propose that this scale-invariant representation of temporal stimulus history could serve as an underlying representation accessible to higher-level behavioral and cognitive mechanisms. In order to illustrate the potential utility of this scale-invariant representation in a variety of fields, we sketch applications using minimal performance functions to problems in classical conditioning, interval timing, scale-invariant learning in autoshaping, and the persistence of the recency effect in episodic memory across timescales.
Gender Role Violations and the Sexual Double Standard.
Zaikman, Yuliana; Marks, Michael J; Young, Tara M; Zeiber, Jacqueline A
2016-12-01
The sexual double standard (SDS) suggests that women are evaluated negatively and men positively for engaging in similar sexual behaviors. According to social role theory, the SDS exists due to gender role structures. Consequently, perceived violations of women's sexual behavior are associated with the SDS. In addition to gender role violations of sexual behavior, two additional violations of gender roles exist: heterosexual sexual orientation norms and gender role characteristics. The current study aims to investigate whether the SDS persists for sexual orientation-violating and gender role characteristic-violating targets, and to examine which of the three gender role violations influence evaluations of others' sexual behavior. A U.S. sample of 483 participants evaluated target individuals who were either female or male, heterosexual/gay man or lesbian, feminine or masculine, and had 1 or 12 sexual partners. Results indicate that SDS persists for gender role-violating targets but is exhibited differently for targets violating heterosexual sexual orientation norms and gender role characteristics.
CP violating scalar Dark Matter
NASA Astrophysics Data System (ADS)
Cordero-Cid, A.; Hernández-Sánchez, J.; Keus, V.; King, S. F.; Moretti, S.; Rojas, D.; Sokołowska, D.
2016-12-01
We study an extension of the Standard Model (SM) in which two copies of the SM scalar SU(2) doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are inert, are added to the scalar sector. We allow for CP-violation in the inert sector, where the lightest inert state is protected from decaying to SM particles through the conservation of a Z 2 symmetry. The lightest neutral particle from the inert sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.
An Analysis of Shuttle Crew Scheduling Violations
NASA Technical Reports Server (NTRS)
Bristol, Douglas
2012-01-01
From the early years of the Space Shuttle program, National Aeronautics and Space Administration (NASA) Shuttle crews have had a timeline of activities to guide them through their time on-orbit. Planners used scheduling constraints to build timelines that ensured the health and safety of the crews. If a constraint could not be met it resulted in a violation. Other agencies of the federal government also have scheduling constraints to ensure the safety of personnel and the public. This project examined the history of Space Shuttle scheduling constraints, constraints from Federal agencies and branches of the military and how these constraints may be used as a guide for future NASA and private spacecraft. This was conducted by reviewing rules and violations with regard to human aerospace scheduling constraints, environmental, political, social and technological factors, operating environment and relevant human factors. This study includes a statistical analysis of Shuttle Extra Vehicular Activity (EVA) related violations to determine if these were a significant producer of constraint violations. It was hypothesized that the number of SCSC violations caused by EVA activities were a significant contributor to the total number of violations for Shuttle/ISS missions. Data was taken from NASA data archives at the Johnson Space Center from Space Shuttle/ISS missions prior to the STS-107 accident. The results of the analysis rejected the null hypothesis and found that EVA violations were a significant contributor to the total number of violations. This analysis could help NASA and commercial space companies understand the main source of constraint violations and allow them to create constraint rules that ensure the safe operation of future human private and exploration missions. Additional studies could be performed to evaluate other variables that could have influenced the scheduling violations that were analyzed.
Invariant Imbedded T-Matrix Method for Axial Symmetric Hydrometeors with Extreme Aspect Ratios
NASA Technical Reports Server (NTRS)
Pelissier, Craig; Kuo, Kwo-Sen; Clune, Thomas; Adams, Ian; Munchak, Stephen
2017-01-01
The single-scattering properties (SSPs) of hydrometeors are the fundamental quantities for physics-based precipitation retrievals. Thus, efficient computation of their electromagnetic scattering is of great value. Whereas the semi-analytical T-Matrix methods are likely the most efficient for nonspherical hydrometeors with axial symmetry, they are not suitable for arbitrarily shaped hydrometeors absent of any significant symmetry, for which volume integral methods such as those based on Discrete Dipole Approximation (DDA) are required. Currently the two leading T-matrix methods are the Extended Boundary Condition Method (EBCM) and the Invariant Imbedding T-matrix Method incorporating Lorentz-Mie Separation of Variables (IITM+SOV). EBCM is known to outperform IITM+SOV for hydrometeors with modest aspect ratios. However, in cases when aspect ratios become extreme, such as needle-like particles with large height to diameter values, EBCM fails to converge. Such hydrometeors with extreme aspect ratios are known to be present in solid precipitation and their SSPs are required to model the radiative responses accurately. In these cases, IITM+SOV is shown to converge. An efficient, parallelized C++ implementation for both EBCM and IITM+SOV has been developed to conduct a performance comparison between EBCM, IITM+SOV, and DDSCAT (a popular implementation of DDA). We present the comparison results and discuss details. Our intent is to release the combined ECBM IITM+SOV software to the community under an open source license.
Invariant Imbedding T-Matrix Method for Axial Symmetric Hydrometeors with Extreme Aspect Ratios
NASA Astrophysics Data System (ADS)
Pelissier, C.; Clune, T.; Kuo, K. S.; Munchak, S. J.; Adams, I. S.
2017-12-01
The single-scattering properties (SSPs) of hydrometeors are the fundamental quantities for physics-based precipitation retrievals. Thus, efficient computation of their electromagnetic scattering is of great value. Whereas the semi-analytical T-Matrix methods are likely the most efficient for nonspherical hydrometeors with axial symmetry, they are not suitable for arbitrarily shaped hydrometeors absent of any significant symmetry, for which volume integral methods such as those based on Discrete Dipole Approximation (DDA) are required. Currently the two leading T-matrix methods are the Extended Boundary Condition Method (EBCM) and the Invariant Imbedding T-matrix Method incorporating Lorentz-Mie Separation of Variables (IITM+SOV). EBCM is known to outperform IITM+SOV for hydrometeors with modest aspect ratios. However, in cases when aspect ratios become extreme, such as needle-like particles with large height to diameter values, EBCM fails to converge. Such hydrometeors with extreme aspect ratios are known to be present in solid precipitation and their SSPs are required to model the radiative responses accurately. In these cases, IITM+SOV is shown to converge. An efficient, parallelized C++ implementation for both EBCM and IITM+SOV has been developed to conduct a performance comparison between EBCM, IITM+SOV, and DDSCAT (a popular implementation of DDA). We present the comparison results and discuss details. Our intent is to release the combined ECBM & IITM+SOV software to the community under an open source license.
ACES MWL data analysis center at SYRTE
NASA Astrophysics Data System (ADS)
Meynadier, F.; Delva, P.; le Poncin-Lafitte, C.; Guerlin, C.; Laurent, P.; Wolf, P.
2017-12-01
The ACES-PHARAO mission aims at operating a cold-atom caesium clock on board the International Space Station, and performs two-way time transfer with ground terminals, in order to allow highly accurate and stable comparisons of its internal timescale with those found in various metrology institutes. Scientific goals in fundamental physics include tests of the gravitational redshift with unprecedented accuracy, and search for a violation of the Lorentz local invariance. As launch is coming closer we are getting ready to process the data expected to come from ACES Microwave Link (MWL) once on board the International Space Station. Several hurdles have been cleared in our software in the past months, as we managed to implement algorithms that reach target accuracy for ground/space desynchronisation measurement. I will present the current status of data analysis preparation, as well as the activities that will take place at SYRTE in order to set up its data processing center.
Sources of GeV Photons and the Fermi Results
NASA Astrophysics Data System (ADS)
Dermer, Charles D.
This chapter presents the elaborated lecture notes on Sources of GeV Photons and the Fermi Results given by Charles D. Dermer at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". The Fermi Gamma-ray Space Telescope made important discoveries and established new results in various areas of astrophysics: from our solar system to remote gamma-ray bursts, from pulsar physics to limits on dark matter and Lorentz invariance violations. The author gives a broad overview of these results by discussing GeV instrumentation and the GeV sky as seen by Fermi, the Fermi catalogs on gamma-ray sources, pulsars and active galactic nuclei, relativistic jet physics and blazars, gamma-rays from cosmic rays in the Galaxy, from star-forming galaxies and from clusters of galaxies, the diffuse extra-galactic gamma-ray background, micro-quasars, radio galaxies, the extragalactic background light, gamma-ray bursts, Fermi acceleration, ultra-high energy cosmic rays, and black holes.
Constraining dark sector perturbations I: cosmic shear and CMB lensing
NASA Astrophysics Data System (ADS)
Battye, Richard A.; Moss, Adam; Pearson, Jonathan A.
2015-04-01
We present current and future constraints on equations of state for dark sector perturbations. The equations of state considered are those corresponding to a generalized scalar field model and time-diffeomorphism invariant Script L(g) theories that are equivalent to models of a relativistic elastic medium and also Lorentz violating massive gravity. We develop a theoretical understanding of the observable impact of these models. In order to constrain these models we use CMB temperature data from Planck, BAO measurements, CMB lensing data from Planck and the South Pole Telescope, and weak galaxy lensing data from CFHTLenS. We find non-trivial exclusions on the range of parameters, although the data remains compatible with w=-1. We gauge how future experiments will help to constrain the parameters. This is done via a likelihood analysis for CMB experiments such as CoRE and PRISM, and tomographic galaxy weak lensing surveys, focussing in on the potential discriminatory power of Euclid on mildly non-linear scales.
Constraints and Tests of the OPERA Superluminal Neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi Xiaojun; Yin Pengfei; Yu Zhaohuan
The superluminal neutrinos detected by OPERA indicate Lorentz invariance violation (LIV) of the neutrino sector at the order of 10{sup -5}. We study the implications of the result in this work. We find that such a large LIV implied by OPERA data will make the neutrino production process {pi}{yields}{mu}+{nu}{sub {mu}} kinematically forbidden for a neutrino energy greater than about 5 GeV. The OPERA detection of neutrinos at 40 GeV can constrain the LIV parameter to be smaller than 3x10{sup -7}. Furthermore, the neutrino decay in the LIV framework will modify the neutrino spectrum greatly. The atmospheric neutrino spectrum measured bymore » the IceCube Collaboration can constrain the LIV parameter to the level of 10{sup -12}. The future detection of astrophysical neutrinos of galactic sources is expected to be able to give an even stronger constraint on the LIV parameter of neutrinos.« less
This site provides information on EPA's issued notice of violation (NOV) of the Clean Air Act (CAA) to Volkswagen. The NOV alleges software that circumvents EPA emissions standards for certain air pollutants.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Violations. 1048.5 Section 1048.5 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) TRESPASSING ON STRATEGIC PETROLEUM RESERVE FACILITIES AND OTHER PROPERTY § 1048.5 Violations. Willful unauthorized entry, or willful unauthorized introduction of weapons or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Violations. 1048.5 Section 1048.5 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) TRESPASSING ON STRATEGIC PETROLEUM RESERVE FACILITIES AND OTHER PROPERTY § 1048.5 Violations. Willful unauthorized entry, or willful unauthorized introduction of weapons or...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Violations. 1048.5 Section 1048.5 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) TRESPASSING ON STRATEGIC PETROLEUM RESERVE FACILITIES AND OTHER PROPERTY § 1048.5 Violations. Willful unauthorized entry, or willful unauthorized introduction of weapons or...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Violations. 1048.5 Section 1048.5 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) TRESPASSING ON STRATEGIC PETROLEUM RESERVE FACILITIES AND OTHER PROPERTY § 1048.5 Violations. Willful unauthorized entry, or willful unauthorized introduction of weapons or...