Science.gov

Sample records for loreta kelpait tarmo

  1. EEG based brain source localization comparison of sLORETA and eLORETA.

    PubMed

    Jatoi, Munsif Ali; Kamel, Nidal; Malik, Aamir Saeed; Faye, Ibrahima

    2014-12-01

    Human brain generates electromagnetic signals during certain activation inside the brain. The localization of the active sources which are responsible for such activation is termed as brain source localization. This process of source estimation with the help of EEG which is also known as EEG inverse problem is helpful to understand physiological, pathological, mental, functional abnormalities and cognitive behaviour of the brain. This understanding leads for the specification for diagnoses of various brain disorders such as epilepsy and tumour. Different approaches are devised to exactly localize the active sources with minimum localization error, less complexity and more validation which include minimum norm, low resolution brain electromagnetic tomography (LORETA), standardized LORETA, exact LORETA, Multiple Signal classifier, focal under determined system solution etc. This paper discusses and compares the ability of localizing the sources for two low resolution methods i.e., sLORETA and eLORETA respectively. The ERP data with visual stimulus is used for comparison at four different time instants for both methods (sLORETA and eLORETA) and then corresponding activation in terms of scalp map, slice view and cortex map is discussed.

  2. LORETA EEG phase reset of the default mode network

    PubMed Central

    Thatcher, Robert W.; North, Duane M.; Biver, Carl J.

    2014-01-01

    Objectives: The purpose of this study was to explore phase reset of 3-dimensional current sources in Brodmann areas located in the human default mode network (DMN) using Low Resolution Electromagnetic Tomography (LORETA) of the human electroencephalogram (EEG). Methods: The EEG was recorded from 19 scalp locations from 70 healthy normal subjects ranging in age from 13 to 20 years. A time point by time point computation of LORETA current sources were computed for 14 Brodmann areas comprising the DMN in the delta frequency band. The Hilbert transform of the LORETA time series was used to compute the instantaneous phase differences between all pairs of Brodmann areas. Phase shift and lock durations were calculated based on the 1st and 2nd derivatives of the time series of phase differences. Results: Phase shift duration exhibited three discrete modes at approximately: (1) 25 ms, (2) 50 ms, and (3) 65 ms. Phase lock duration present primarily at: (1) 300–350 ms and (2) 350–450 ms. Phase shift and lock durations were inversely related and exhibited an exponential change with distance between Brodmann areas. Conclusions: The results are explained by local neural packing density of network hubs and an exponential decrease in connections with distance from a hub. The results are consistent with a discrete temporal model of brain function where anatomical hubs behave like a “shutter” that opens and closes at specific durations as nodes of a network giving rise to temporarily phase locked clusters of neurons for specific durations. PMID:25100976

  3. Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review.

    PubMed

    Pascual-Marqui, R D; Esslen, M; Kochi, K; Lehmann, D

    2002-01-01

    This paper reviews several recent publications that have successfully used the functional brain imaging method known as LORETA. Emphasis is placed on the electrophysiological and neuroanatomical basis of the method, on the localization properties of the method, and on the validation of the method in real experimental human data. Papers that criticize LORETA are briefly discussed. LORETA publications in the 1994-1997 period based localization inference on images of raw electric neuronal activity. In 1998, a series of papers appeared that based localization inference on the statistical parametric mapping methodology applied to high-time resolution LORETA images. Starting in 1999, quantitative neuroanatomy was added to the methodology, based on the digitized Talairach atlas provided by the Brain Imaging Centre, Montreal Neurological Institute. The combination of these methodological developments has placed LORETA at a level that compares favorably to the more classical functional imaging methods, such as PET and fMRI.

  4. Combination of PCA and LORETA for sources analysis of ERP data: an emotional processing study

    NASA Astrophysics Data System (ADS)

    Hu, Jin; Tian, Jie; Yang, Lei; Pan, Xiaohong; Liu, Jiangang

    2006-03-01

    The purpose of this paper is to study spatiotemporal patterns of neuronal activity in emotional processing by analysis of ERP data. 108 pictures (categorized as positive, negative and neutral) were presented to 24 healthy, right-handed subjects while 128-channel EEG data were recorded. An analysis of two steps was applied to the ERP data. First, principal component analysis was performed to obtain significant ERP components. Then LORETA was applied to each component to localize their brain sources. The first six principal components were extracted, each of which showed different spatiotemporal patterns of neuronal activity. The results agree with other emotional study by fMRI or PET. The combination of PCA and LORETA can be used to analyze spatiotemporal patterns of ERP data in emotional processing.

  5. Evaluation of multiple comparison correction procedures in drug assessment studies using LORETA maps.

    PubMed

    Alonso, Joan Francesc; Romero, Sergio; Mañanas, Miguel Ángel; Rojas, Mónica; Riba, Jordi; Barbanoj, Manel José

    2015-10-01

    The identification of the brain regions involved in the neuropharmacological action is a potential procedure for drug development. These regions are commonly determined by the voxels showing significant statistical differences after comparing placebo-induced effects with drug-elicited effects. LORETA is an electroencephalography (EEG) source imaging technique frequently used to identify brain structures affected by the drug. The aim of the present study was to evaluate different methods for the correction of multiple comparisons in the LORETA maps. These methods which have been commonly used in neuroimaging and also simulated studies have been applied on a real case of pharmaco-EEG study where the effects of increasing benzodiazepine doses on the central nervous system measured by LORETA were investigated. Data consisted of EEG recordings obtained from nine volunteers who received single oral doses of alprazolam 0.25, 0.5, and 1 mg, and placebo in a randomized crossover double-blind design. The identification of active regions was highly dependent on the selected multiple test correction procedure. The combined criteria approach known as cluster mass was useful to reveal that increasing drug doses led to higher intensity and spread of the pharmacologically induced changes in intracerebral current density.

  6. Combination of sLORETA and Nonlinear Coupling for Emotional EEG Source Localization.

    PubMed

    Goshvarpour, Ateke; Abbasi, Ataollah; Goshvarpour, Atefeh

    2016-07-01

    The objective of the present study is to investigate the anatomical distribution of the cortical sources of emotional response to music videos by means of electroencephalogram (EEG) analysis. A novel methodology is introduced to determine the nonlinear couplings between different brain regions based on the coherence analysis, nonlinear features of EEG recordings and a source localization method, standard low resolution electromagnetic tomography (sLORETA). 32 channels of EEG time series of 32 subjects available in DEAP database were studied. The Lyapunov exponents and approximate entropy were applied to the EEG. The coherence for Lyapunov exponents and approximate entropy were calculated between each electrode paired to all other electrodes. Considering valence and arousal related effects, the sLORETA was applied to each above mentioned feature to determine emotional processing cortices. Using the proposed methodology, significant differences in sLORETA activity are observed between different emotional states. These changes were dominantly localized in the Brodmann 11 area (frontal lobe). In addition, some evidences provided that the left hemisphere is more activated to valence and arousal-related effects. Results suggest that considering two dimensions of emotions concurrently, a wider brain region was dominated in synchronization: superior frontal gyrus, middle frontal gyrus, and superior parietal lobule. Cooperating nonlinear coupling along with EEG source localization methods could provide an interesting tool for understanding the cortical specialization in emotional processes. PMID:27262422

  7. The performance of the spatiotemporal Kalman filter and LORETA in seizure onset localization.

    PubMed

    Hamid, Laith; Sarabi, Masoud; Japaridze, Natia; Wiegand, Gert; Heute, Ulrich; Stephani, Ulrich; Galka, Andreas; Siniatchkin, Michael

    2015-08-01

    The assumption of spatial-smoothness is often used to solve the bioelectric inverse problem during electroencephalographic (EEG) source imaging, e.g., in low resolution electromagnetic tomography (LORETA). Since the EEG data show a temporal structure, the combination of the temporal-smoothness and the spatial-smoothness constraints may improve the solution of the EEG inverse problem. This study investigates the performance of the spatiotemporal Kalman filter (STKF) method, which is based on spatial and temporal smoothness, in the localization of a focal seizure's onset and compares its results to those of LORETA. The main finding of the study was that the STKF with an autoregressive model of order two significantly outperformed LORETA in the accuracy and consistency of the localization, provided that the source space consists of a whole-brain volumetric grid. In the future, these promising results will be confirmed using data from more patients and performing statistical analyses on the results. Furthermore, the effects of the temporal smoothness constraint will be studied using different types of focal seizures.

  8. Spatiotemporal patterns of ERP based on combined ICA-LORETA analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Jiacai; Guo, Taomei; Xu, Yaqin; Zhao, Xiaojie; Yao, Li

    2007-03-01

    In contrast to the FMRI methods widely used up to now, this method try to understand more profoundly how the brain systems work under sentence processing task map accurately the spatiotemporal patterns of activity of the large neuronal populations in the human brain from the analysis of ERP data recorded on the brain scalp. In this study, an event-related brain potential (ERP) paradigm to record the on-line responses to the processing of sentences is chosen as an example. In order to give attention to both utilizing the ERPs' temporal resolution of milliseconds and overcoming the insensibility of cerebral location ERP sources, we separate these sources in space and time based on a combined method of independent component analysis (ICA) and low-resolution tomography (LORETA) algorithms. ICA blindly separate the input ERP data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. And then the spatial maps associated with each ICA component are analyzed, with use of LORETA to uniquely locate its cerebral sources throughout the full brain according to the assumption that neighboring neurons are simultaneously and synchronously activated. Our results show that the cerebral computation mechanism underlies content words reading is mediated by the orchestrated activity of several spatially distributed brain sources located in the temporal, frontal, and parietal areas, and activate at distinct time intervals and are grouped into different statistically independent components. Thus ICA-LORETA analysis provides an encouraging and effective method to study brain dynamics from ERP.

  9. Electrophysiological Neuroimaging using sLORETA Comparing 100 Schizophrenia Patients to 48 Patients with Major Depression

    PubMed Central

    Eugene, Andy R.; Masiak, Jolanta

    2015-01-01

    In this retrospective analysis of electroencephalograms were to identify a surrogate biomarker for the Dopamine D2 receptors in the brain by comparing patients diagnosed with Schizophrenia taking Atypical Antipsychotics to Depressive patients medicated with Selective Serotonin Reuptake Inhibitors. To achieve this, thirty-seconds of resting EEG were spectrally transformed in sLORETA. Three-dimensional statistical non-paramentric maps (SnPM) for the sLORETA Global Field Power within each band were then computed. Our results illustrated that the Right Superior Frontal Gyrus (t=2.049, p=0.007), along the dopamine mesolimbic pathway, had higher neuronal oscillations in the delta frequency band in the 100 Schizophrenia patients as compared to the 32-depressive female patients. The comparisons with both the 48 depressive patient cohort or the sixteen male depressive patient cohort did not yield any statistically significant findings. We conclude that the Superior Frontal Gyrus should be investigated as a possible surrogate biomarker for preclinical and clinical drug discovery in neuropharmacology. PMID:26609423

  10. Electrical source localization by LORETA in patients with epilepsy: Confirmation by postoperative MRI

    PubMed Central

    Akdeniz, Gülsüm

    2016-01-01

    Background: Few studies have been conducted that have compared electrical source localization (ESL) results obtained by analyzing ictal patterns in scalp electroencephalogram (EEG) with the brain areas that are found to be responsible for seizures using other brain imaging techniques. Additionally, adequate studies have not been performed to confirm the accuracy of ESL methods. Materials and Methods: In this study, ESL was conducted using LORETA (Low Resolution Brain Electromagnetic Tomography) in 9 patients with lesions apparent on magnetic resonance imaging (MRI) and in 6 patients who did not exhibit lesions on their MRIs. EEGs of patients who underwent surgery for epilepsy and had follow-ups for at least 1 year after operations were analyzed for ictal spike, rhythmic, paroxysmal fast, and obscured EEG activities. Epileptogenic zones identified in postoperative MRIs were then compared with localizations obtained by LORETA model we employed. Results: We found that brain areas determined via ESL were in concordance with resected brain areas for 13 of the 15 patients evaluated, and those 13 patients were post-operatively determined as being seizure-free. Conclusion: ESL, which is a noninvasive technique, may contribute to the correct delineation of epileptogenic zones in patients who will eventually undergo surgery to treat epilepsy, (regardless of neuroimaging status). Moreover, ESL may aid in deciding on the number and localization of intracranial electrodes to be used in patients who are candidates for invasive recording. PMID:27011626

  11. EEG sLORETA functional imaging during hypnotic arm levitation and voluntary arm lifting.

    PubMed

    Cardeña, Etzel; Lehmann, Dietrich; Faber, Pascal L; Jönsson, Peter; Milz, Patricia; Pascual-Marqui, Roberto D; Kochi, Kieko

    2012-01-01

    This study (N = 37 with high, medium, and low hypnotizables) evaluated depth reports and EEG activity during both voluntary and hypnotically induced left-arm lifting with sLORETA functional neuroimaging. The hypnotic condition was associated with higher activity in fast EEG frequencies in anterior regions and slow EEG frequencies in central-parietal regions, all left-sided. The voluntary condition was associated with fast frequency activity in right-hemisphere central-parietal regions and slow frequency activity in left anterior regions. Hypnotizability did not have a significant effect on EEG activity, but hypnotic depth correlated with left hemisphere increased anterior slow EEG and decreased central fast EEG activity. Hypnosis had a minimal effect on depth reports among lows, a moderate one among mediums, and a large one among highs. Because only left-arm data were available, the full role of the hemispheres remains to be clarified. PMID:22098568

  12. Low-resolution electromagnetic tomography (LORETA) of cerebral activity in chronic depressive disorder.

    PubMed

    Lubar, Joel F; Congedo, Marco; Askew, John H

    2003-09-01

    In this study we compared the current density power and power asymmetry in 15 right-handed, medication-free chronically depressed females (of the unipolar type) and age-matched non-clinical female controls. We used frequency domain LORETA (Low-Resolution Electromagnetic Tomography). In the interhemispheric asymmetry analysis, compared with the control group, the depression group exhibited a left-to-right Alpha2 (10-12 Hz) current density dominance in the left postcentral gyrus. The pattern of left-to-right dominance included frontal (especially medial and middle frontal gyri) and temporal locations. The between groups comparison of spectral power revealed decreased activity in the right middle temporal gyrus in the depressed group. The decrease emerged in the whole frequency spectrum analyzed (2-32 Hz), although it reached significance in the Delta (2-3.5 Hz) band only. These findings are discussed in terms of the existing literature on affect using EEG, PET and SPECT.

  13. Electrophysiological Neuroimaging using sLORETA Comparing 22 Age Matched Male and Female Schizophrenia Patients

    PubMed Central

    Eugene, Andy R.; Masiak, Jolanta; Kapica, Jacek; Masiak, Marek

    2015-01-01

    Introduction The purpose of this electrophysiological neuroimaging study was to provide a deeper mechanistic understanding of both olanzapine and risperidone pharmacodynamics relative to gender. In doing so, we age-matched 22 men and women and evaluated their resting-state EEG recordings and later used standard low resolution brain Electrotomography to visualize the differences in brain activity amongst the two patient groups. Methods In this investigation, electroencephalogram (EEG) data were analyzed from male and female schizophrenia patients treated with either olanzapine or risperidone, both atypical antipsychotics, during their in-patient stay at the Department of Psychiatry. Twenty-two males and females were age-matched and EEG recordings were analyzed from 19 Ag/AgCl electrodes. Thirty-seconds of resting EEG were spectrally transformed in standardized low resolution electromagnetic tomography (sLORETA). 3D statistical non-paramentric maps for the sLORETA Global Field Power within each band were finally computed. Results The results indicated that, relative to males patients, females schizophrenia patients had increased neuronal synchronization in delta frequency, slow-wave, EEG band located in the dorsolateral prefrontal cortex, within the middle frontal gyrus (t= -2.881, p < 0.03580). These findings suggest that females experience greater dopamine (D2) receptor and serotonin (5-HT2) receptor neuronal blockade relative to age-matched males. Further, our finding provided insight to the pharmacodynamics of second-generation antipsychotics olanzapine and risperidone. Conclusion When compared to male patients, female patients, suffering from schizophrenia, have D2 and 5-HT2 receptors that are blocked more readily than age-matched male schizophrenia patients. Clinically, this may translate into a quicker time to treatment-response in females as compared to male patients. PMID:26617679

  14. High-resolution imaging-guided electroencephalography source localization: temporal effect regularization incorporation in LORETA inverse solution

    NASA Astrophysics Data System (ADS)

    Boughariou, Jihene; Zouch, Wassim; Slima, Mohamed Ben; Kammoun, Ines; Hamida, Ahmed Ben

    2015-11-01

    Electroencephalography (EEG) and magnetic resonance imaging (MRI) are noninvasive neuroimaging modalities. They are widely used and could be complementary. The fusion of these modalities may enhance some emerging research fields targeting the exploration better brain activities. Such research attracted various scientific investigators especially to provide a convivial and helpful advanced clinical-aid tool enabling better neurological explorations. Our present research was, in fact, in the context of EEG inverse problem resolution and investigated an advanced estimation methodology for the localization of the cerebral activity. Our focus was, therefore, on the integration of temporal priors to low-resolution brain electromagnetic tomography (LORETA) formalism and to solve the inverse problem in the EEG. The main idea behind our proposed method was in the integration of a temporal projection matrix within the LORETA weighting matrix. A hyperparameter is the principal fact for such a temporal integration, and its importance would be obvious when obtaining a regularized smoothness solution. Our experimental results clearly confirmed the impact of such an optimization procedure adopted for the temporal regularization parameter comparatively to the LORETA method.

  15. Self vs. other: neural correlates underlying agent identification based on unimodal auditory information as revealed by electrotomography (sLORETA).

    PubMed

    Justen, C; Herbert, C; Werner, K; Raab, M

    2014-02-14

    Recent neuroscientific studies have identified activity changes in an extensive cerebral network consisting of medial prefrontal cortex, precuneus, temporo-parietal junction, and temporal pole during the perception and identification of self- and other-generated stimuli. Because this network is supposed to be engaged in tasks which require agent identification, it has been labeled the evaluation network (e-network). The present study used self- versus other-generated movement sounds (long jumps) and electroencephalography (EEG) in order to unravel the neural dynamics of agent identification for complex auditory information. Participants (N=14) performed an auditory self-other identification task with EEG. Data was then subjected to a subsequent standardized low-resolution brain electromagnetic tomography (sLORETA) analysis (source localization analysis). Differences between conditions were assessed using t-statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. Three-dimensional sLORETA source localization analysis revealed cortical activations in brain regions mostly associated with the e-network, especially in the medial prefrontal cortex (bilaterally in the alpha-1-band and right-lateralized in the gamma-band) and the temporo-parietal junction (right hemisphere in the alpha-1-band). Taken together, the findings are partly consistent with previous functional neuroimaging studies investigating unimodal visual or multimodal agent identification tasks (cf. e-network) and extent them to the auditory domain. Cortical activations in brain regions of the e-network seem to have functional relevance, especially the significantly higher cortical activation in the right medial prefrontal cortex. PMID:24295635

  16. sLORETA intracortical lagged coherence during breath counting in meditation-naïve participants

    PubMed Central

    Milz, Patricia; Faber, Pascal L.; Lehmann, Dietrich; Kochi, Kieko; Pascual-Marqui, Roberto D.

    2013-01-01

    We investigated brain functional connectivity comparing no-task resting to breath counting (a meditation exercise but given as task without referring to meditation). Functional connectivity computed as EEG coherence between head-surface data suffers from localization ambiguity, reference dependence, and overestimation due to volume conduction. Lagged coherence between intracortical model sources addresses these criticisms. With this analysis approach, experienced meditators reportedly showed reduced coherence during meditation, meditation-naïve participants have not yet been investigated. 58-channel EEG from 23 healthy, right-handed, meditation-naïve males during resting [3 runs] and breath counting [2 runs] was computed into sLORETA time series of intracortical electrical activity in 19 regions of interest (ROI) corresponding to the cortex underlying 19 scalp electrode sites, for each of the eight independent EEG frequency bands covering 1.5–44 Hz. Intracortical lagged coherences and head-surface conventional coherences were computed between the 19 regions/sites. During breath counting compared to resting, paired t-tests corrected for multiple testing revealed four significantly lower intracortical lagged coherences, but four significantly higher head-surface conventional coherences. Lowered intracortical lagged coherences involved left BA 10 and right BAs 3, 10, 17, 40. In conclusion, intracortical lagged coherence can yield results that are inverted to those of head-surface conventional coherence. The lowered functional connectivity between cognitive control areas and sensory perception areas during meditation-type breath counting compared to resting conceivably reflects the attention to a bodily percept without cognitive reasoning. The reductions in functional connectivity were similar but not as widespread as the reductions reported during meditation in experienced meditators. PMID:24860483

  17. Detection of independent functional networks during music listening using electroencephalogram and sLORETA-ICA.

    PubMed

    Jäncke, Lutz; Alahmadi, Nsreen

    2016-04-13

    The measurement of brain activation during music listening is a topic that is attracting increased attention from many researchers. Because of their high spatial accuracy, functional MRI measurements are often used for measuring brain activation in the context of music listening. However, this technique faces the issues of contaminating scanner noise and an uncomfortable experimental environment. Electroencephalogram (EEG), however, is a neural registration technique that allows the measurement of neurophysiological activation in silent and more comfortable experimental environments. Thus, it is optimal for recording brain activations during pleasant music stimulation. Using a new mathematical approach to calculate intracortical independent components (sLORETA-IC) on the basis of scalp-recorded EEG, we identified specific intracortical independent components during listening of a musical piece and scales, which differ substantially from intracortical independent components calculated from the resting state EEG. Most intracortical independent components are located bilaterally in perisylvian brain areas known to be involved in auditory processing and specifically in music perception. Some intracortical independent components differ between the music and scale listening conditions. The most prominent difference is found in the anterior part of the perisylvian brain region, with stronger activations seen in the left-sided anterior perisylvian regions during music listening, most likely indicating semantic processing during music listening. A further finding is that the intracortical independent components obtained for the music and scale listening are most prominent in higher frequency bands (e.g. beta-2 and beta-3), whereas the resting state intracortical independent components are active in lower frequency bands (alpha-1 and theta). This new technique for calculating intracortical independent components is able to differentiate independent neural networks associated

  18. Zazen meditation and no-task resting EEG compared with LORETA intracortical source localization.

    PubMed

    Faber, Pascal L; Lehmann, Dietrich; Gianotti, Lorena R R; Milz, Patricia; Pascual-Marqui, Roberto D; Held, Marlene; Kochi, Kieko

    2015-02-01

    Meditation is a self-induced and willfully initiated practice that alters the state of consciousness. The meditation practice of Zazen, like many other meditation practices, aims at disregarding intrusive thoughts while controlling body posture. It is an open monitoring meditation characterized by detached moment-to-moment awareness and reduced conceptual thinking and self-reference. Which brain areas differ in electric activity during Zazen compared to task-free resting? Since scalp electroencephalography (EEG) waveforms are reference-dependent, conclusions about the localization of active brain areas are ambiguous. Computing intracerebral source models from the scalp EEG data solves this problem. In the present study, we applied source modeling using low resolution brain electromagnetic tomography (LORETA) to 58-channel scalp EEG data recorded from 15 experienced Zen meditators during Zazen and no-task resting. Zazen compared to no-task resting showed increased alpha-1 and alpha-2 frequency activity in an exclusively right-lateralized cluster extending from prefrontal areas including the insula to parts of the somatosensory and motor cortices and temporal areas. Zazen also showed decreased alpha and beta-2 activity in the left angular gyrus and decreased beta-1 and beta-2 activity in a large bilateral posterior cluster comprising the visual cortex, the posterior cingulate cortex and the parietal cortex. The results include parts of the default mode network and suggest enhanced automatic memory and emotion processing, reduced conceptual thinking and self-reference on a less judgmental, i.e., more detached moment-to-moment basis during Zazen compared to no-task resting.

  19. Modification of EEG power spectra and EEG connectivity in autobiographical memory: a sLORETA study.

    PubMed

    Imperatori, Claudio; Brunetti, Riccardo; Farina, Benedetto; Speranza, Anna Maria; Losurdo, Anna; Testani, Elisa; Contardi, Anna; Della Marca, Giacomo

    2014-08-01

    The aim of the present study was to explore the modifications of scalp EEG power spectra and EEG connectivity during the autobiographical memory test (AM-T) and during the retrieval of an autobiographical event (the high school final examination, Task 2). Seventeen healthy volunteers were enrolled (9 women and 8 men, mean age 23.4 ± 2.8 years, range 19-30). EEG was recorded at baseline and while performing the autobiographical memory (AM) tasks, by means of 19 surface electrodes and a nasopharyngeal electrode. EEG analysis was conducted by means of the standardized LOw Resolution Electric Tomography (sLORETA) software. Power spectra and lagged EEG coherence were compared between EEG acquired during the memory tasks and baseline recording. The frequency bands considered were as follows: delta (0.5-4 Hz); theta (4.5-7.5 Hz); alpha (8-12.5 Hz); beta1 (13-17.5 Hz); beta2 (18-30 Hz); gamma (30.5-60 Hz). During AM-T, we observed a significant delta power increase in left frontal and midline cortices (T = 3.554; p < 0.05) and increased EEG connectivity in delta band in prefrontal, temporal, parietal, and occipital areas, and for gamma bands in the left temporo-parietal regions (T = 4.154; p < 0.05). In Task 2, we measured an increased power in the gamma band located in the left posterior midline areas (T = 3.960; p < 0.05) and a significant increase in delta band connectivity in the prefrontal, temporal, parietal, and occipital areas, and in the gamma band involving right temporo-parietal areas (T = 4.579; p < 0.05). These results indicate that AM retrieval engages in a complex network which is mediated by both low- (delta) and high-frequency (gamma) EEG bands.

  20. Three-Dimensional Electroencephalographic Changes on Low-Resolution Brain Electromagnetic Tomography (LORETA) During the Sleep Onset Period.

    PubMed

    Park, Doo-Heum; Ha, Jee Hyun; Ryu, Seung-Ho; Yu, Jaehak; Shin, Chul-Jin

    2015-10-01

    Electroencephalographic (EEG) patterns during sleep are markedly different from those measured during the waking state, but the process of falling asleep is not fully understood in terms of biochemical and neurophysiological aspects. We sought to investigate EEG changes that occur during the transitional period from wakefulness to sleep in a 3-dimensional manner to gain a better understanding of the physiological meaning of sleep for the brain. We examined EEG 3-dimensionally using LORETA (low-resolution electromagnetic tomography), to localize the brain region associated with changes that occur during the sleep onset period (SOP). Thirty-channel EEG was recorded in 61 healthy subjects. EEG power spectra and intracortical standardized LORETA were compared between 4 types of 30-second states, including the wakeful stage, transition stage, early sleep stage 1, and late sleep stage 1. Sleep onset began with increased delta and theta power and decreased alpha-1 power in the occipital lobe, and increased theta power in the parietal lobe. Thereafter, global reductions of alpha-1 and alpha-2 powers and greater increases of theta power in the occipito-parietal lobe occurred. As sleep became deeper in sleep stage 1, beta-2 and beta-3, powers decreased mainly in the frontal lobe and some regions of the parieto-temporo-limbic area. These findings suggest that sleep onset includes at least 3 steps in a sequential manner, which include an increase in theta waves in the posterior region of the brain, a global decrease in alpha waves, and a decrease in beta waves in the fronto-central area.

  1. Coherence and phase locking in the scalp EEG and between LORETA model sources, and microstates as putative mechanisms of brain temporo-spatial functional organization.

    PubMed

    Lehmann, Dietrich; Faber, Pascal L; Gianotti, Lorena R R; Kochi, Kieko; Pascual-Marqui, Roberto D

    2006-01-01

    Brain electric mechanisms of temporary, functional binding between brain regions are studied using computation of scalp EEG coherence and phase locking, sensitive to time differences of few milliseconds. However, such results if computed from scalp data are ambiguous since electric sources are spatially oriented. Non-ambiguous results can be obtained using calculated time series of strength of intracerebral model sources. This is illustrated applying LORETA modeling to EEG during resting and meditation. During meditation, time series of LORETA model sources revealed a tendency to decreased left-right intracerebral coherence in the delta band, and to increased anterior-posterior intracerebral coherence in the theta band. An alternate conceptualization of functional binding is based on the observation that brain electric activity is discontinuous, i.e., that it occurs in chunks of up to about 100 ms duration that are detectable as quasi-stable scalp field configurations of brain electric activity, called microstates. Their functional significance is illustrated in spontaneous and event-related paradigms, where microstates associated with imagery- versus abstract-type mentation, or while reading positive versus negative emotion words showed clearly different regions of cortical activation in LORETA tomography. These data support the concept that complete brain functions of higher order such as a momentary thought might be incorporated in temporal chunks of processing in the range of tens to about 100 ms as quasi-stable brain states; during these time windows, subprocesses would be accepted as members of the ongoing chunk of processing.

  2. Three-dimensional localization of abnormal EEG activity in migraine: a low resolution electromagnetic tomography (LORETA) study of migraine patients in the pain-free interval.

    PubMed

    Clemens, Béla; Bánk, József; Piros, Pálma; Bessenyei, Mónika; Veto, Sára; Tóth, Márton; Kondákor, István

    2008-09-01

    Investigating the brain of migraine patients in the pain-free interval may shed light on the basic cerebral abnormality of migraine, in other words, the liability of the brain to generate migraine attacks from time to time. Twenty unmedicated "migraine without aura" patients and a matched group of healthy controls were investigated in this explorative study. 19-channel EEG was recorded against the linked ears reference and was on-line digitized. 60 x 2-s epochs of eyes-closed, waking-relaxed activity were subjected to spectral analysis and a source localization method, low resolution electromagnetic tomography (LORETA). Absolute power was computed for 19 electrodes and four frequency bands (delta: 1.5-3.5 Hz, theta: 4.0-7.5 Hz, alpha: 8.0-12.5 Hz, beta: 13.0-25.0 Hz). LORETA "activity" (=current source density, ampers/meters squared) was computed for 2394 voxels and the above specified frequency bands. Group comparison was carried out for the specified quantitative EEG variables. Activity in the two groups was compared on a voxel-by-voxel basis for each frequency band. Statistically significant (uncorrected P < 0.01) group differences were projected to cortical anatomy. Spectral findings: there was a tendency for more alpha power in the migraine that in the control group in all but two (F4, C3) derivations. However, statistically significant (P < 0.01, Bonferroni-corrected) spectral difference was only found in the right occipital region. The main LORETA-finding was that voxels with P < 0.01 differences were crowded in anatomically contiguous cortical areas. Increased alpha activity was found in a cortical area including part of the precuneus, and the posterior part of the middle temporal gyrus in the right hemisphere. Decreased alpha activity was found bilaterally in medial parts of the frontal cortex including the anterior cingulate and the superior and medial frontal gyri. Neither spectral analysis, nor LORETA revealed statistically significant differences in

  3. Left dominance for language perception starts in the extrastriate cortex: An ERP and sLORETA study.

    PubMed

    Selpien, Helene; Siebert, Carsten; Genc, Erhan; Beste, Christian; Faustmann, Pedro M; Güntürkün, Onur; Ocklenburg, Sebastian

    2015-09-15

    While it is well known that the left hemisphere is more efficient than the right in most tasks involving perception of speech stimuli, the neurophysiological pathways leading to these lateralised performance differences are as yet rather unclear. In particular, the question whether language lateralisation depends on semantic processing or is already evident in early perceptual stimulus processing has not been answered unequivocally. In the present study, we therefore recorded event-related potentials (ERPs) during tachistoscopic presentation of horizontally or vertically presented verbal stimuli in the left (LVF) and the right visual field (RVF). Participants were asked to indicate, whether the presented stimulus was a word or a non-word. On the behavioural level, participants showed stronger hemispheric asymmetries for horizontal, than for vertical stimulus presentation. In addition, ERP asymmetries were also modulated by stimulus presentation format, as the electrode by visual field interactions for P1 and N1 were stronger after vertical, than after horizontal stimulus presentation. Moreover, sLORETA revealed that ERP left-right asymmetries were mainly driven by the extrastriate cortex and reading-associated areas in the parietal cortex. Taken together, the present study shows electrophysiological support for the assumption that language lateralisation during speech perception arises from a left dominance for the processing of early perceptual stimulus aspects.

  4. Quantitative EEG and Low-Resolution Electromagnetic Tomography (LORETA) Imaging of Patients Undergoing Methadone Treatment for Opiate Addiction.

    PubMed

    Wang, Grace Y; Kydd, Robert R; Russell, Bruce R

    2016-07-01

    Methadone maintenance treatment (MMT) has been used as a treatment for opiate dependence since the mid-1960s. Evidence suggests that methadone binds to mu opiate receptors as do other opiates and induces changes in neurophysiological function. However, little is known, about how neural activity within the higher frequency gamma band (>30 Hz) while at rest changes in those stabilized on MMT despite its association with the excitation-inhibition balance within pyramidal-interneuron networks. Our study investigated differences in resting gamma power (37-41 Hz) between patients undergoing MMT for opiate dependence, illicit opiate users, and healthy controls subjects. Electroencephalographic data were recorded from 26 sites according to the international 10-20 system. Compared with the healthy controls subjects, people either undergoing MMT (mean difference [MD] = 0.32, 95% CI = 0.09-0.55, P < .01) or currently using illicit opiates (MD = 0.31, 95% CI = 0.06-0.56, P = .01) exhibited significant increased gamma power. The sLORETA (standardized low-resolution electromagnetic tomography) between-group comparison revealed dysfunctional neuronal activity in the occipital, parietal, and frontal lobes in the patients undergoing MMT. A more severe profile of dysfunction was observed in those using illicit opiates. Our findings suggest that long-term exposure to opioids is associated with disrupted resting state network, which may be reduced after MMT.

  5. sLORETA current source density analysis of evoked potentials for spatial updating in a virtual navigation task.

    PubMed

    Nguyen, Hai M; Matsumoto, Jumpei; Tran, Anh H; Ono, Taketoshi; Nishijo, Hisao

    2014-01-01

    Previous studies have reported that multiple brain regions are activated during spatial navigation. However, it is unclear whether these activated brain regions are specifically associated with spatial updating or whether some regions are recruited for parallel cognitive processes. The present study aimed to localize current sources of event related potentials (ERPs) associated with spatial updating specifically. In the control phase of the experiment, electroencephalograms (EEGs) were recorded while subjects sequentially traced 10 blue checkpoints on the streets of a virtual town, which were sequentially connected by a green line, by manipulating a joystick. In the test phase of the experiment, the checkpoints and green line were not indicated. Instead, a tone was presented when the subjects entered the reference points where they were then required to trace the 10 invisible spatial reference points corresponding to the checkpoints. The vertex-positive ERPs with latencies of approximately 340 ms from the moment when the subjects entered the unmarked reference points were significantly larger in the test than in the control phases. Current source density analysis of the ERPs by standardized low-resolution brain electromagnetic tomography (sLORETA) indicated activation of brain regions in the test phase that are associated with place and landmark recognition (entorhinal cortex/hippocampus, parahippocampal and retrosplenial cortices, fusiform, and lingual gyri), detecting self-motion (posterior cingulate and posterior insular cortices), motor planning (superior frontal gyrus, including the medial frontal cortex), and regions that process spatial attention (inferior parietal lobule). The present results provide the first identification of the current sources of ERPs associated with spatial updating, and suggest that multiple systems are active in parallel during spatial updating.

  6. sLORETA current source density analysis of evoked potentials for spatial updating in a virtual navigation task

    PubMed Central

    Nguyen, Hai M.; Matsumoto, Jumpei; Tran, Anh H.; Ono, Taketoshi; Nishijo, Hisao

    2014-01-01

    Previous studies have reported that multiple brain regions are activated during spatial navigation. However, it is unclear whether these activated brain regions are specifically associated with spatial updating or whether some regions are recruited for parallel cognitive processes. The present study aimed to localize current sources of event related potentials (ERPs) associated with spatial updating specifically. In the control phase of the experiment, electroencephalograms (EEGs) were recorded while subjects sequentially traced 10 blue checkpoints on the streets of a virtual town, which were sequentially connected by a green line, by manipulating a joystick. In the test phase of the experiment, the checkpoints and green line were not indicated. Instead, a tone was presented when the subjects entered the reference points where they were then required to trace the 10 invisible spatial reference points corresponding to the checkpoints. The vertex-positive ERPs with latencies of approximately 340 ms from the moment when the subjects entered the unmarked reference points were significantly larger in the test than in the control phases. Current source density analysis of the ERPs by standardized low-resolution brain electromagnetic tomography (sLORETA) indicated activation of brain regions in the test phase that are associated with place and landmark recognition (entorhinal cortex/hippocampus, parahippocampal and retrosplenial cortices, fusiform, and lingual gyri), detecting self-motion (posterior cingulate and posterior insular cortices), motor planning (superior frontal gyrus, including the medial frontal cortex), and regions that process spatial attention (inferior parietal lobule). The present results provide the first identification of the current sources of ERPs associated with spatial updating, and suggest that multiple systems are active in parallel during spatial updating. PMID:24624067

  7. Localization of MDMA-induced brain activity in healthy volunteers using low resolution brain electromagnetic tomography (LORETA).

    PubMed

    Frei, E; Gamma, A; Pascual-Marqui, R; Lehmann, D; Hell, D; Vollenweider, F X

    2001-11-01

    3,4-Methylenedioxymethamphetamine (MDMA; 'Ecstasy') is a psychostimulant drug producing heightened mood and facilitated social communication. In animal studies, MDMA effects are primarily mediated by serotonin (5-HT), but also by dopamine (DA) and possibly noradrenaline (NA). In humans, however, the neurochemical and neurophysiological basis of acute MDMA effects remains unknown. The distribution of active neuronal populations after administration of a single dose of MDMA (1.7 mg/kg) or placebo was studied in 16 healthy, MDMA-naïve volunteers. Thirty-one-channel scalp EEGs during resting with open and closed eyes was analyzed in the different EEG frequency bands. Scalp maps of power showed significant, global differences between MDMA and placebo in both eye conditions and all frequency bands. Low resolution brain electromagnetic tomography (LORETA) was used to compute 3D, functional images of electric neuronal activity from the scalp EEG data. MDMA produced a widespread decrease of slow and medium frequency activity and an increase of fast frequency activity in the anterior temporal and posterior orbital cortex, concomitant with a marked enhancement of mood, emotional arousal and increased extraversion. This activation of frontotemporal areas indicates that the observed enhancement of mood and possibly the increased extroversion rely on modulation of limbic orbitofrontal and anterotemporal structures known to be involved in emotional processes. Comparison of the MDMA-specific EEG pattern with that of various 5-HT, DA, and NA agonists indicates that serotonin, noradrenaline, and, to a lesser degree, dopamine, contribute to the effects of MDMA on EEG, and possibly also on mood and behavior.

  8. A self-referential default brain state: patterns of coherence, power, and eLORETA sources during eyes-closed rest and Transcendental Meditation practice.

    PubMed

    Travis, Fred; Haaga, David A F; Hagelin, John; Tanner, Melissa; Arenander, Alaric; Nidich, Sanford; Gaylord-King, Carolyn; Grosswald, Sarina; Rainforth, Maxwell; Schneider, Robert H

    2010-02-01

    Activation of a default mode network (DMN) including frontal and parietal midline structures varies with cognitive load, being more active during low-load tasks and less active during high-load tasks requiring executive control. Meditation practices entail various degrees of cognitive control. Thus, DMN activation patterns could give insight into the nature of meditation practices. This 10-week random assignment study compared theta2, alpha1, alpha2, beta1, beta2 and gamma EEG coherence, power, and eLORETA cortical sources during eyes-closed rest and Transcendental Meditation (TM) practice in 38 male and female college students, average age 23.7 years. Significant brainwave differences were seen between groups. Compared to eyes-closed rest, TM practice led to higher alpha1 frontal log-power, and lower beta1 and gamma frontal and parietal log-power; higher frontal and parietal alpha1 interhemispheric coherence and higher frontal and frontal-central beta2 intrahemispheric coherence. eLORETA analysis identified sources of alpha1 activity in midline cortical regions that overlapped with the DMN. Greater activation in areas that overlap the DMN during TM practice suggests that meditation practice may lead to a foundational or 'ground' state of cerebral functioning that may underlie eyes-closed rest and more focused cognitive processes.

  9. The choice of the source space and the Laplacian matrix in LORETA and the spatio-temporal Kalman filter EEG inverse methods.

    PubMed

    Habboush, Nawar; Hamid, Laith; Japaridze, Natia; Wiegand, Gert; Heute, Ulrich; Stephani, Ulrich; Galka, Andreas; Siniatchkin, Michael

    2015-08-01

    The discretization of the brain and the definition of the Laplacian matrix influence the results of methods based on spatial and spatio-temporal smoothness, since the Laplacian operator is used to define the smoothness based on the neighborhood of each grid point. In this paper, the results of low resolution electromagnetic tomography (LORETA) and the spatiotemporal Kalman filter (STKF) are computed using, first, a greymatter source space with the standard definition of the Laplacian matrix and, second, using a whole-brain source space and a modified definition of the Laplacian matrix. Electroencephalographic (EEG) source imaging results of five inter-ictal spikes from a pre-surgical patient with epilepsy are used to validate the two aforementioned approaches. The results using the whole-brain source space and the modified definition of the Laplacian matrix were concentrated in a single source activation, stable, and concordant with the location of the focal cortical dysplasia (FCD) in the patient's brain compared with the results which use a grey-matter grid and the classical definition of the Laplacian matrix. This proof-of-concept study demonstrates a substantial improvement of source localization with both LORETA and STKF and constitutes a basis for further research in a large population of patients with epilepsy. PMID:26736860

  10. Characteristic changes in brain electrical activity due to chronic hypoxia in patients with obstructive sleep apnea syndrome (OSAS): a combined EEG study using LORETA and omega complexity.

    PubMed

    Toth, Marton; Faludi, Bela; Wackermann, Jiri; Czopf, Jozsef; Kondakor, Istvan

    2009-11-01

    EEG background activity of patients with obstructive sleep apnea syndrome (OSAS, N = 25) was compared to that of normal controls (N = 14) to reflect alterations of brain electrical activity caused by chronic intermittent hypoxia in OSAS. Global and regional (left vs. right, anterior vs. posterior) measures of spatial complexity (Omega) were used to characterize the degree of spatial synchrony of EEG. Low resolution electromagnetic tomography (LORETA) was used to localize generators of EEG activity in separate frequency bands. Comparing patients to controls, lower Omega complexity was found globally and in the right hemisphere. Using LORETA, an increased medium frequency activity was seen bilaterally in the precuneus, paracentral and posterior cingulate cortex. These findings indicate that alterations caused by chronic hypoxia in brain electrical activity in regions associated with influencing emotional regulation, long-term memory and the default mode network. Global synchronization (lower Omega complexity) may indicate a significantly reduced number of relatively independent, parallel neural processes due to chronic global hypoxic state in apneic patients as well as over the right hemisphere.

  11. The choice of the source space and the Laplacian matrix in LORETA and the spatio-temporal Kalman filter EEG inverse methods.

    PubMed

    Habboush, Nawar; Hamid, Laith; Japaridze, Natia; Wiegand, Gert; Heute, Ulrich; Stephani, Ulrich; Galka, Andreas; Siniatchkin, Michael

    2015-08-01

    The discretization of the brain and the definition of the Laplacian matrix influence the results of methods based on spatial and spatio-temporal smoothness, since the Laplacian operator is used to define the smoothness based on the neighborhood of each grid point. In this paper, the results of low resolution electromagnetic tomography (LORETA) and the spatiotemporal Kalman filter (STKF) are computed using, first, a greymatter source space with the standard definition of the Laplacian matrix and, second, using a whole-brain source space and a modified definition of the Laplacian matrix. Electroencephalographic (EEG) source imaging results of five inter-ictal spikes from a pre-surgical patient with epilepsy are used to validate the two aforementioned approaches. The results using the whole-brain source space and the modified definition of the Laplacian matrix were concentrated in a single source activation, stable, and concordant with the location of the focal cortical dysplasia (FCD) in the patient's brain compared with the results which use a grey-matter grid and the classical definition of the Laplacian matrix. This proof-of-concept study demonstrates a substantial improvement of source localization with both LORETA and STKF and constitutes a basis for further research in a large population of patients with epilepsy.

  12. A LORETA study of mental time travel: similar and distinct electrophysiological correlates of re-experiencing past events and pre-experiencing future events.

    PubMed

    Lavallee, Christina F; Persinger, Michael A

    2010-12-01

    Previous studies exploring mental time travel paradigms with functional neuroimaging techniques have uncovered both common and distinct neural correlates of re-experiencing past events or pre-experiencing future events. A gap in the mental time travel literature exists, as paradigms have not explored the affective component of re-experiencing past episodic events; this study explored this sparsely researched area. The present study employed standardized low resolution electromagnetic tomography (sLORETA) to identify electrophysiological correlates of re-experience affect-laden and non-affective past events, as well as pre-experiencing a future anticipated event. Our results confirm previous research and are also novel in that we illustrate common and distinct electrophysiological correlates of re-experiencing affective episodic events. Furthermore, research from this experiment yields results outlining a pattern of activation in the frontal and temporal regions is correlated with the time frame of past or future events subjects imagined. PMID:20598583

  13. Aberrant EEG functional connectivity and EEG power spectra in resting state post-traumatic stress disorder: a sLORETA study.

    PubMed

    Imperatori, Claudio; Farina, Benedetto; Quintiliani, Maria Isabella; Onofri, Antonio; Castelli Gattinara, Paola; Lepore, Marta; Gnoni, Valentina; Mazzucchi, Edoardo; Contardi, Anna; Della Marca, Giacomo

    2014-10-01

    The aim of the present study was to explore the modifications of EEG power spectra and EEG connectivity of resting state (RS) condition in patients with post-traumatic stress disorder (PTSD). Seventeen patients and seventeen healthy subjects matched for age and gender were enrolled. EEG was recorded during 5min of RS. EEG analysis was conducted by means of the standardized Low Resolution Electric Tomography software (sLORETA). In power spectra analysis PTSD patients showed a widespread increase of theta activity (4.5-7.5Hz) in parietal lobes (Brodmann Area, BA 7, 4, 5, 40) and in frontal lobes (BA 6). In the connectivity analysis PTSD patients also showed increase of alpha connectivity (8-12.5Hz) between the cortical areas explored by Pz-P4 electrode. Our results could reflect the alteration of memory systems and emotional processing consistently altered in PTSD patients.

  14. Effect of the 5-HT(1A) partial agonist buspirone on regional brain electrical activity in man: a functional neuroimaging study using low-resolution electromagnetic tomography (LORETA).

    PubMed

    Anderer, P; Saletu, B; Pascual-Marqui, R D

    2000-12-01

    In a double-blind, placebo-controlled study, the effects of 20 mg buspirone - a 5-HT(1A) partial agonist - on regional electrical generators within the human brain were investigated utilizing three-dimensional EEG tomography. Nineteen-channel vigilance-controlled EEG recordings were carried out in 20 healthy subjects before and 1, 2, 4, 6 and 8 h after drug intake. Low-resolution electromagnetic tomography (LORETA; Key Institute for Brain-Mind Research, software: http://www.keyinst.unizh.ch) was computed from spectrally analyzed EEG data, and differences between drug- and placebo-induced changes were displayed as statistical parametric maps. Data were registered to the Talairach-Tournoux human brain atlas available as a digitized MRI (McConnell Brain Imaging Centre: http://www.bic.mni.mcgill.ca). At the pharmacodynamic peak (1st hour), buspirone increased theta and decreased fast alpha and beta sources. Areas of theta increase were mainly the left temporo-occipito-parietal and left prefrontal cortices, which is consistent with PET studies on buspirone-induced decreases in regional cerebral blood flow and fenfluramine-induced serotonin activation demonstrated by changes in regional cerebral glucose metabolism. In later hours (8th hour) with lower buspirone plasma levels, delta, theta, slow alpha and fast beta decreased, predominantly in the prefrontal and anterior limbic lobe. Whereas the results of the 1st hour speak for a slight CNS sedation (more in the sense of relaxation), those obtained in the 8th hour indicate activation. Thus, LORETA may provide useful and direct information on drug-induced changes in central nervous system function in man.

  15. Modifications of EEG power spectra in mesial temporal lobe during n-back tasks of increasing difficulty. A sLORETA study.

    PubMed

    Imperatori, Claudio; Farina, Benedetto; Brunetti, Riccardo; Gnoni, Valentina; Testani, Elisa; Quintiliani, Maria I; Del Gatto, Claudia; Indraccolo, Allegra; Contardi, Anna; Speranza, Anna M; Della Marca, Giacomo

    2013-01-01

    The n-back task is widely used to investigate the neural basis of Working Memory (WM) processes. The principal aim of this study was to explore and compare the EEG power spectra during two n-back tests with different levels of difficulty (1-back vs. 3-back). Fourteen healthy subjects were enrolled (seven men and seven women, mean age 31.21 ± 7.05 years, range: 23-48). EEG was recorded while performing the N-back test, by means of 19 surface electrodes referred to joint mastoids. EEG analysis were conducted by means of the standardized Low Resolution brain Electric Tomography (sLORETA) software. The statistical comparison between EEG power spectra in the two conditions was performed using paired t-statistics on the coherence values after Fisher's z transformation available in the LORETA program package. The frequency bands considered were: delta (0.5-4 Hz); theta (4.5-7.5 Hz); alpha (8-12.5 Hz); beta (13-30 Hz); gamma (30.5-100 Hz). Significant changes occurred in the delta band: in the 3-back condition an increased delta power was localized in a brain region corresponding to the Brodmann Area (BA) 28 in the left posterior entorhinal cortex (T = 3.112; p < 0.05) and in the BA 35 in the left perirhinal cortex in the parahippocampal gyrus (T = 2.876; p < 0.05). No significant differences were observed in the right hemisphere and in the alpha, theta, beta, and gamma frequency bands. Our results indicate that the most prominent modification induced by the increased complexity of the task occur in the mesial left temporal lobe structures.

  16. Neuroplastic Effects of Combined Computerized Physical and Cognitive Training in Elderly Individuals at Risk for Dementia: An eLORETA Controlled Study on Resting States

    PubMed Central

    Kartsidis, Panagiotis; Ioannides, Andreas A.; Bamidis, Panagiotis D.

    2015-01-01

    The present study investigates whether a combined cognitive and physical training may induce changes in the cortical activity as measured via electroencephalogram (EEG) and whether this change may index a deceleration of pathological processes of brain aging. Seventy seniors meeting the clinical criteria of mild cognitive impairment (MCI) were equally divided into 5 groups: 3 experimental groups engaged in eight-week cognitive and/or physical training and 2 control groups: active and passive. A 5-minute long resting state EEG was measured before and after the intervention. Cortical EEG sources were modelled by exact low resolution brain electromagnetic tomography (eLORETA). Cognitive function was assessed before and after intervention using a battery of neuropsychological tests including the minimental state examination (MMSE). A significant training effect was identified only after the combined training scheme: a decrease in the post- compared to pre-training activity of precuneus/posterior cingulate cortex in delta, theta, and beta bands. This effect was correlated to improvements in cognitive capacity as evaluated by MMSE scores. Our results indicate that combined physical and cognitive training shows indices of a positive neuroplastic effect in MCI patients and that EEG may serve as a potential index of gains versus cognitive declines and neurodegeneration. This trial is registered with ClinicalTrials.gov Identifier NCT02313935. PMID:25945260

  17. Low-Resolution Electromagnetic Tomography (LORETA) of changed Brain Function Provoked by Pro-Dopamine Regulator (KB220z) in one Adult ADHD case

    PubMed Central

    Steinberg, Bruce; Blum, Kenneth; McLaughlin, Thomas; Lubar, Joel; Febo, Marcelo; Braverman, Eric R.; Badgaiyan, Rajendra D

    2016-01-01

    Attention Deficit-Hyperactivity Disorder (ADHD) often continues into adulthood. Recent neuroimaging studies found lowered baseline dopamine tone in the brains of affected individuals that may place them at risk for Substance Use Disorder (SUD). This is an observational case study of the potential for novel management of Adult ADHD with a non-addictive glutaminergic-dopaminergic optimization complex KB200z. Low-resolution electromagnetic tomography (LORETA) was used to evaluate the effects of KB220z on a 72-year-old male with ADHD, at baseline and one hour following administration. The resultant z-scores, averaged across Eyes Closed, Eyes Open and Working Memory conditions, increased for each frequency band, in the anterior, dorsal and posterior cingulate regions, as well as the right dorsolateral prefrontal cortex during Working Memory, with KB220z. These scores are consistent with other human and animal neuroimaging studies that demonstrated increased connectivity volumes in reward circuitry and may offer a new approach to ADHD treatment. However, larger randomized trials to confirm these results are required.

  18. Low-Resolution Electromagnetic Tomography (LORETA) of changed Brain Function Provoked by Pro-Dopamine Regulator (KB220z) in one Adult ADHD case

    PubMed Central

    Steinberg, Bruce; Blum, Kenneth; McLaughlin, Thomas; Lubar, Joel; Febo, Marcelo; Braverman, Eric R.; Badgaiyan, Rajendra D

    2016-01-01

    Attention Deficit-Hyperactivity Disorder (ADHD) often continues into adulthood. Recent neuroimaging studies found lowered baseline dopamine tone in the brains of affected individuals that may place them at risk for Substance Use Disorder (SUD). This is an observational case study of the potential for novel management of Adult ADHD with a non-addictive glutaminergic-dopaminergic optimization complex KB200z. Low-resolution electromagnetic tomography (LORETA) was used to evaluate the effects of KB220z on a 72-year-old male with ADHD, at baseline and one hour following administration. The resultant z-scores, averaged across Eyes Closed, Eyes Open and Working Memory conditions, increased for each frequency band, in the anterior, dorsal and posterior cingulate regions, as well as the right dorsolateral prefrontal cortex during Working Memory, with KB220z. These scores are consistent with other human and animal neuroimaging studies that demonstrated increased connectivity volumes in reward circuitry and may offer a new approach to ADHD treatment. However, larger randomized trials to confirm these results are required. PMID:27610420

  19. Neurocognitive Deficits in Male Alcoholics: An ERP/sLORETA Analysis of the N2 Component in an Equal Probability Go/NoGo Task

    PubMed Central

    Pandey, AK; Kamarajan, C; Tang, Y; Chorlian, DB; Roopesh, BN; Manz, N; Stimus, A; Rangaswamy, M; Porjesz, B

    2011-01-01

    In alcoholism research, studies concerning time-locked electrophysiological aspects of response inhibition have concentrated mainly on the P3 component of the event-related potential (ERP). The objective of the present study was to investigate the N2 component of the ERP to elucidate possible brain dysfunction related to the motor response and its inhibition using a Go/NoGo task in alcoholics. The sample consisted of 78 abstinent alcoholic males and 58 healthy male controls. The N2 peak was compared across group and task conditions. Alcoholics showed significantly reduced N2 peak amplitudes compared to normal controls for Go as well as NoGo task conditions. Control subjects showed significantly larger NoGo than Go N2 amplitudes at frontal regions, whereas alcoholics did not show any differences between task conditions at frontal regions. Standardized Low Resolution Electromagnetic Tomography Analysis (sLORETA) indicated that alcoholics had significantly lower current density at the source than control subjects for the NoGo condition at bilateral anterior prefrontal regions, whereas the differences between groups during the Go trials was not statistically significant. Furthermore, NoGo current density across both groups revealed significantly more activation in bilateral anterior cingulate cortical (ACC) areas, with the maximum activation in the right cingulate regions. However, the magnitude of this difference was much less in alcoholics compared to control subjects. These findings suggest that alcoholics may have deficits in effortful processing during the motor response and its inhibition, suggestive of possible frontal lobe dysfunction. PMID:22024409

  20. Modification of EEG functional connectivity and EEG power spectra in overweight and obese patients with food addiction: An eLORETA study.

    PubMed

    Imperatori, Claudio; Fabbricatore, Mariantonietta; Innamorati, Marco; Farina, Benedetto; Quintiliani, Maria Isabella; Lamis, Dorian A; Mazzucchi, Edoardo; Contardi, Anna; Vollono, Catello; Della Marca, Giacomo

    2015-12-01

    We evaluated the modifications of electroencephalographic (EEG) power spectra and EEG connectivity in overweight and obese patients with elevated food addiction (FA) symptoms. Fourteen overweight and obese patients (3 men and 11 women) with three or more FA symptoms and fourteen overweight and obese patients (3 men and 11 women) with two or less FA symptoms were included in the study. EEG was recorded during three different conditions: 1) five minutes resting state (RS), 2) five minutes resting state after a single taste of a chocolate milkshake (ML-RS), and 3) five minutes resting state after a single taste of control neutral solution (N-RS). EEG analyses were conducted by means of the exact Low Resolution Electric Tomography software (eLORETA). Significant modification was observed only in the ML-RS condition. Compared to controls, patients with three or more FA symptoms showed an increase of delta power in the right middle frontal gyrus (Brodmann Area [BA] 8) and in the right precentral gyrus (BA 9), and theta power in the right insula (BA 13) and in the right inferior frontal gyrus (BA 47). Furthermore, compared to controls, patients with three or more FA symptoms showed an increase of functional connectivity in fronto-parietal areas in both the theta and alpha band. The increase of functional connectivity was also positively associated with the number of FA symptoms. Taken together, our results show that FA has similar neurophysiological correlates of other forms of substance-related and addictive disorders suggesting similar psychopathological mechanisms.

  1. Snap Your Fingers! An ERP/sLORETA Study Investigating Implicit Processing of Self- vs. Other-Related Movement Sounds Using the Passive Oddball Paradigm

    PubMed Central

    Justen, Christoph; Herbert, Cornelia

    2016-01-01

    So far, neurophysiological studies have investigated implicit and explicit self-related processing particularly for self-related stimuli such as the own face or name. The present study extends previous research to the implicit processing of self-related movement sounds and explores their spatio-temporal dynamics. Event-related potentials (ERPs) were assessed while participants (N = 12 healthy subjects) listened passively to previously recorded self- and other-related finger snapping sounds, presented either as deviants or standards during an oddball paradigm. Passive listening to low (500 Hz) and high (1000 Hz) pure tones served as additional control. For self- vs. other-related finger snapping sounds, analysis of ERPs revealed significant differences in the time windows of the N2a/MMN and P3. An subsequent source localization analysis with standardized low-resolution brain electromagnetic tomography (sLORETA) revealed increased cortical activation in distinct motor areas such as the supplementary motor area (SMA) in the N2a/mismatch negativity (MMN) as well as the P3 time window during processing of self- and other-related finger snapping sounds. In contrast, brain regions associated with self-related processing [e.g., right anterior/posterior cingulate cortex (ACC/PPC)] as well as the right inferior parietal lobule (IPL) showed increased activation particularly during processing of self- vs. other-related finger snapping sounds in the time windows of the N2a/MMN (ACC/PCC) or the P3 (IPL). None of these brain regions showed enhanced activation while listening passively to low (500 Hz) and high (1000 Hz) pure tones. Taken together, the current results indicate (1) a specific role of motor regions such as SMA during auditory processing of movement-related information, regardless of whether this information is self- or other-related, (2) activation of neural sources such as the ACC/PCC and the IPL during implicit processing of self-related movement stimuli, and (3

  2. Effects of CPAP-therapy on brain electrical activity in obstructive sleep apneic patients: a combined EEG study using LORETA and Omega complexity : reversible alterations of brain activity in OSAS.

    PubMed

    Toth, Marton; Faludi, Bela; Kondakor, Istvan

    2012-10-01

    Effects of initiation of continuous positive airway pressure (CPAP) therapy on EEG background activity were investigated in patients with obstructive sleep apnea syndrome (OSAS, N = 25) to test possible reversibility of alterations of brain electrical activity caused by chronic hypoxia. Normal control group (N = 14) was also examined. Two EEG examinations were done in each groups: at night and in the next morning. Global and regional (left vs. right, anterior vs. posterior) measures of spatial complexity (Omega complexity) were used to characterize the degree of spatial synchrony of EEG. Low resolution electromagnetic tomography (LORETA) was used to localize generators of EEG activity in separate frequency bands. Before CPAP-treatment, a significantly lower Omega complexity was found globally and over the right hemisphere. Due to CPAP-treatment, these significant differences vanished. Significantly decreased Omega complexity was found in the anterior region after treatment. LORETA showed a decreased activity in all of the beta bands after therapy in the right hippocampus, premotor and temporo-parietal cortex, and bilaterally in the precuneus, paracentral and posterior cingulate cortex. No significant changes were seen in control group. Comparing controls and patients before sleep, an increased alpha2 band activity was seen bilaterally in the precuneus, paracentral and posterior cingulate cortex, while in the morning an increased beta3 band activity in the left precentral and bilateral premotor cortex and a decreased delta band activity in the right temporo-parietal cortex and insula were observed. These findings indicate that effect of sleep on EEG background activity is different in OSAS patients and normal controls. In OSAS patients, significant changes lead to a more normal EEG after a night under CPAP-treatment. Compensatory alterations of brain electrical activity in regions associated with influencing sympathetic outflow, visuospatial abilities, long

  3. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details.

    PubMed

    Pascual-Marqui, R D

    2002-01-01

    Scalp electric potentials (electroencephalograms) and extracranial magnetic fields (magnetoencephalograms) are due to the primary (impressed) current density distribution that arises from neuronal postsynaptic processes. A solution to the inverse problem--the computation of images of electric neuronal activity based on extracranial measurements--would provide important information on the time-course and localization of brain function. In general, there is no unique solution to this problem. In particular, an instantaneous, distributed, discrete, linear solution capable of exact localization of point sources is of great interest, since the principles of linearity and superposition would guarantee its trustworthiness as a functional imaging method, given that brain activity occurs in the form of a finite number of distributed hot spots. Despite all previous efforts, linear solutions, at best, produced images with systematic nonzero localization errors. A solution reported here yields images of standardized current density with zero localization error. The purpose of this paper is to present the technical details of the method, allowing researchers to test, check, reproduce and validate the new method.

  4. Hemispheric Asymmetries and Cognitive Flexibility: An ERP and sLORETA Study

    ERIC Educational Resources Information Center

    Ocklenburg, Sebastian; Gunturkun, Onur; Beste, Christian

    2012-01-01

    Although functional cerebral asymmetries (FCAs) affect all cognitive domains, their modulation of the efficacy of specific executive functions is largely unexplored. In the present study, we used a lateralized version of the task switching paradigm to investigate the relevance of hemispheric asymmetries for cognitive control processes. Words were…

  5. Electrophysiological Neuroimaging using sLORETA Comparing 12 Anorexia Nervosa Patients to 12 Controls

    PubMed Central

    Eugene, Andy R.; Masiak, Jolanta; Kapica, Jacek

    2015-01-01

    Anorexia Nervosa (AN) is characterized by Diagnostic and Statistical Manual of Mental Disorders Volume 4 (DSM IV), as one’s refusal to maintain a body weight that is above the calculated limit, which is determined by an algorithm involving one’s height and weight. As more emphasis in society is placed on one’s body image and appearance there has been an increase in the prevalence of this disease. Previously, the sole diagnostic imaging modality was fMRI. Studies determined that there was reduced blood flood in the Parahippocampal Gyrus, and Left Fusiform Gyrus, of those afflicted with AN. Electroencephalography (EEG) was utilized as an alternative imaging modality that was more cost effect. It was determined that the activated regions localized on the fMRI study coincided with those highlighted on the EEG report and previous fMRI studies. The goal of this study was to determine a more cost effective way to earlier detect a diagnosis of AN. The desired outcome would be for patients afflicted with AN to be diagnosed and treated at an earlier stage, increasing their overall long-term survival. PMID:26609424

  6. Cortical activities of heat-sensitization responses in suspended moxibustion: an EEG source analysis with sLORETA.

    PubMed

    Wang, Juan; Yi, Ming; Zhang, Chan; Bian, Zhijie; Wan, You; Chen, Rixin; Li, Xiaoli

    2015-12-01

    Moxibustion is under active research as a complementary and alternative treatment for various diseases such as pain. "Heat-sensitization" responses have been reported during suspended moxibustion, whose occurrence is associated with significantly better therapeutic effects. The present study aimed to investigate the cortical activities of this interesting phenomenon by a standardized low-resolution brain electromagnetic tomography. We performed electroencephalography recording in a group of patients with chronic low back pain before, during, and after moxibustion treatment at Yaoyangguan (DU3) areas. 11 out of 21 subjects experienced strong heat-sensitization during moxibustion, which were accompanied with significant decreases of current densities in the beta frequency bands in prefrontal, primary and second somatosensory, and cingulate cortices, as well as increased current densities in the alpha2 band in the left insula. No changes were detected in patients without sensitization responses, or in the post-moxibustion phase of either group. These data indicated widespread activity changes across different frequency bands during heat-sensitization. Cortical oscillatory activities could be used to evaluate the "heat-sensitization" responses during suspended moxibustion.

  7. Conflict monitoring and adjustment in the task-switching paradigm under different memory load conditions: an ERP/sLORETA analysis.

    PubMed

    Deng, Yuqin; Wang, Yan; Ding, Xiaoqian; Tang, Yi-Yuan

    2015-02-11

    The aim of the present study was to examine electrophysiological and behavioral changes caused by different memory loads in a task-switching paradigm. A total of 31 healthy individuals were subjected to a task, in which the stimulus-response reversal paradigm was combined with the task-switching paradigm. The event-related potentials were recorded and the N2 component, an index of conflict processing, was measured. In addition, the neural sources of N2 were further analyzed by standardized low-resolution brain electromagnetic tomography. The event-related potential results showed that high memory load triggered a higher N2 mean amplitude. Moreover, the standardized low-resolution brain electromagnetic tomography data showed that high memory load caused an increase in current densities at the anterior cingulate cortex and the prefrontal cortex in the task-switching paradigm. In summary, our findings provide electrophysiological evidence to interpret possible influences of memory loads on conflict monitoring and modulation during the task switching. These results imply that the working memory load overrules the influence of task-switching performance on the intensification of cognitive control.

  8. Respiratory sinus arrhythmia feedback in a stressed population exposed to a brief stressor demonstrated by quantitative EEG and sLORETA.

    PubMed

    Sherlin, Leslie; Muench, Fred; Wyckoff, Sarah

    2010-09-01

    Previous investigations of electroencephalograms during relaxation have identified increases in slow wave band power, correlations between increased levels of alpha activity with lower levels of anxiety, and autonomic changes characterized by otherwise documented decreased sympathetic activity. This study was carried out to determine the overall changes in quantitative electroencephalographic activity and the current source as a result of an acute session of respiratory sinus arrhythmia (RSA) biofeedback in a population of subjects experiencing stress. This study's findings provide physiological evidence of RSA feedback effect and suggest that RSA training may decrease arousal by promoting an increase of alpha band frequencies and decrease in beta frequencies overall and in areas critical to the regulation of stress. It was of interest that novices could achieve these objective alterations in EEG activity after minimal training and intervention periods considering that the previous literature on EEG and meditative states involve experienced meditators or participants who had been given extensive training. Additionally, these effects were present immediately following the training suggesting that the intervention may have effects beyond the actual practice.

  9. Respiratory sinus arrhythmia feedback in a stressed population exposed to a brief stressor demonstrated by quantitative EEG and sLORETA.

    PubMed

    Sherlin, Leslie; Muench, Fred; Wyckoff, Sarah

    2010-09-01

    Previous investigations of electroencephalograms during relaxation have identified increases in slow wave band power, correlations between increased levels of alpha activity with lower levels of anxiety, and autonomic changes characterized by otherwise documented decreased sympathetic activity. This study was carried out to determine the overall changes in quantitative electroencephalographic activity and the current source as a result of an acute session of respiratory sinus arrhythmia (RSA) biofeedback in a population of subjects experiencing stress. This study's findings provide physiological evidence of RSA feedback effect and suggest that RSA training may decrease arousal by promoting an increase of alpha band frequencies and decrease in beta frequencies overall and in areas critical to the regulation of stress. It was of interest that novices could achieve these objective alterations in EEG activity after minimal training and intervention periods considering that the previous literature on EEG and meditative states involve experienced meditators or participants who had been given extensive training. Additionally, these effects were present immediately following the training suggesting that the intervention may have effects beyond the actual practice. PMID:20414803

  10. Conflict monitoring and adjustment in the task-switching paradigm under different memory load conditions: an ERP/sLORETA analysis.

    PubMed

    Deng, Yuqin; Wang, Yan; Ding, Xiaoqian; Tang, Yi-Yuan

    2015-02-11

    The aim of the present study was to examine electrophysiological and behavioral changes caused by different memory loads in a task-switching paradigm. A total of 31 healthy individuals were subjected to a task, in which the stimulus-response reversal paradigm was combined with the task-switching paradigm. The event-related potentials were recorded and the N2 component, an index of conflict processing, was measured. In addition, the neural sources of N2 were further analyzed by standardized low-resolution brain electromagnetic tomography. The event-related potential results showed that high memory load triggered a higher N2 mean amplitude. Moreover, the standardized low-resolution brain electromagnetic tomography data showed that high memory load caused an increase in current densities at the anterior cingulate cortex and the prefrontal cortex in the task-switching paradigm. In summary, our findings provide electrophysiological evidence to interpret possible influences of memory loads on conflict monitoring and modulation during the task switching. These results imply that the working memory load overrules the influence of task-switching performance on the intensification of cognitive control. PMID:25569792

  11. Source localization of intermittent rhythmic delta activity in a patient with acute confusional migraine: cross-spectral analysis using standardized low-resolution brain electromagnetic tomography (sLORETA).

    PubMed

    Kim, Dae-Eun; Shin, Jung-Hyun; Kim, Young-Hoon; Eom, Tae-Hoon; Kim, Sung-Hun; Kim, Jung-Min

    2016-01-01

    Acute confusional migraine (ACM) shows typical electroencephalography (EEG) patterns of diffuse delta slowing and frontal intermittent rhythmic delta activity (FIRDA). The pathophysiology of ACM is still unclear but these patterns suggest neuronal dysfunction in specific brain areas. We performed source localization analysis of IRDA (in the frequency band of 1-3.5 Hz) to better understand the ACM mechanism. Typical IRDA EEG patterns were recorded in a patient with ACM during the acute stage. A second EEG was obtained after recovery from ACM. To identify source localization of IRDA, statistical non-parametric mapping using standardized low-resolution brain electromagnetic tomography was performed for the delta frequency band comparisons between ACM attack and non-attack periods. A difference in the current density maximum was found in the dorsal anterior cingulated cortex (ACC). The significant differences were widely distributed over the frontal, parietal, temporal and limbic lobe, paracentral lobule and insula and were predominant in the left hemisphere. Dorsal ACC dysfunction was demonstrated for the first time in a patient with ACM in this source localization analysis of IRDA. The ACC plays an important role in the frontal attentional control system and acute confusion. This dysfunction of the dorsal ACC might represent an important ACM pathophysiology.

  12. Positive and negative symptom scores are correlated with activation in different brain regions during facial emotion perception in schizophrenia patients: a voxel-based sLORETA source activity study.

    PubMed

    Kim, Do-Won; Kim, Han-Sung; Lee, Seung-Hwan; Im, Chang-Hwan

    2013-12-01

    Schizophrenia is one of the most devastating of all mental illnesses, and has dimensional characteristics that include both positive and negative symptoms. One problem reported in schizophrenia patients is that they tend to show deficits in face emotion processing, on which negative symptoms are thought to have stronger influence. In this study, four event-related potential (ERP) components (P100, N170, N250, and P300) and their source activities were analyzed using EEG data acquired from 23 schizophrenia patients while they were presented with facial emotion picture stimuli. Correlations between positive and negative syndrome scale (PANSS) scores and source activations during facial emotion processing were calculated to identify the brain areas affected by symptom scores. Our analysis demonstrates that PANSS positive scores are negatively correlated with major areas of the left temporal lobule for early ERP components (P100, N170) and with the right middle frontal lobule for a later component (N250), which indicates that positive symptoms affect both early face processing and facial emotion processing. On the other hand, PANSS negative scores are negatively correlated with several clustered regions, including the left fusiform gyrus (at P100), most of which are not overlapped with regions showing correlations with PANSS positive scores. Our results suggest that positive and negative symptoms affect independent brain regions during facial emotion processing, which may help to explain the heterogeneous characteristics of schizophrenia.

  13. Low resolution brain electromagnetic tomography in a realistic geometry head model: a simulation study.

    PubMed

    Ding, Lei; Lai, Yuan; He, Bin

    2005-01-01

    It is of importance to localize neural sources from scalp recorded EEG. Low resolution brain electromagnetic tomography (LORETA) has received considerable attention for localizing brain electrical sources. However, most such efforts have used spherical head models in representing the head volume conductor. Investigation of the performance of LORETA in a realistic geometry head model, as compared with the spherical model, will provide useful information guiding interpretation of data obtained by using the spherical head model. The performance of LORETA was evaluated by means of computer simulations. The boundary element method was used to solve the forward problem. A three-shell realistic geometry (RG) head model was constructed from MRI scans of a human subject. Dipole source configurations of a single dipole located at different regions of the brain with varying depth were used to assess the performance of LORETA in different regions of the brain. A three-sphere head model was also used to approximate the RG head model, and similar simulations performed, and results compared with the RG-LORETA with reference to the locations of the simulated sources. Multisource localizations were discussed and examples given in the RG head model. Localization errors employing the spherical LORETA, with reference to the source locations within the realistic geometry head, were about 20-30 mm, for four brain regions evaluated: frontal, parietal, temporal and occipital regions. Localization errors employing the RG head model were about 10 mm over the same four brain regions. The present simulation results suggest that the use of the RG head model reduces the localization error of LORETA, and that the RG head model based LORETA is desirable if high localization accuracy is needed.

  14. Evaluating low-resolution tomography neurofeedback by single dissociation of mental grotation task from stop signal task performance.

    PubMed

    Getter, Nir; Kaplan, Zeev; Todder, Doron

    2015-10-01

    Electroencephalography source localization neurofeedback, i.e Standardized low-resolution tomography (sLORETA) neurofeedback are non-invasive method for altering region specific brain activity. This is an improvement over traditional neurofeedback which were based on recordings from a single scalp-electrode. We proposed three criteria clusters as a methodological framework to evaluate electroencephalography source localization neurofeedback and present relevant data. Our objective was to evaluate standardized low resolution EEG tomography neurofeedback by examining how training one neuroanatomical area effects the mental rotation task (which is related to the activity of bilateral Parietal regions) and the stop-signal test (which is related to frontal structures). Twelve healthy participants were enrolled in a single session sLORETA neurofeedback protocol. The participants completed both the mental rotation task and the stop-signal test before and after one sLORETA neurofeedback session. During sLORETA neurofeedback sessions participants watched one sitcom episode while the picture quality co-varied with activity in the superior parietal lobule. Participants were rewarded for increasing activity in this region only. Results showed a significant reaction time decrease and an increase in accuracy after sLORETA neurofeedback on the mental rotation task but not after stop signal task. Together with behavioral changes a significant activity increase was found at the left parietal brain after sLORETA neurofeedback compared with baseline. We concluded that activity increase in the parietal region had a specific effect on the mental rotation task. Tasks unrelated to parietal brain activity were unaffected. Therefore, sLORETA neurofeedback could be used as a research, or clinical tool for cognitive disorders.

  15. Evaluation of Electroencephalography Source Localization Algorithms with Multiple Cortical Sources

    PubMed Central

    Bradley, Allison; Yao, Jun; Dewald, Jules; Richter, Claus-Peter

    2016-01-01

    Background Source localization algorithms often show multiple active cortical areas as the source of electroencephalography (EEG). Yet, there is little data quantifying the accuracy of these results. In this paper, the performance of current source density source localization algorithms for the detection of multiple cortical sources of EEG data has been characterized. Methods EEG data were generated by simulating multiple cortical sources (2–4) with the same strength or two sources with relative strength ratios of 1:1 to 4:1, and adding noise. These data were used to reconstruct the cortical sources using current source density (CSD) algorithms: sLORETA, MNLS, and LORETA using a p-norm with p equal to 1, 1.5 and 2. Precision (percentage of the reconstructed activity corresponding to simulated activity) and Recall (percentage of the simulated sources reconstructed) of each of the CSD algorithms were calculated. Results While sLORETA has the best performance when only one source is present, when two or more sources are present LORETA with p equal to 1.5 performs better. When the relative strength of one of the sources is decreased, all algorithms have more difficulty reconstructing that source. However, LORETA 1.5 continues to outperform other algorithms. If only the strongest source is of interest sLORETA is recommended, while LORETA with p equal to 1.5 is recommended if two or more of the cortical sources are of interest. These results provide guidance for choosing a CSD algorithm to locate multiple cortical sources of EEG and for interpreting the results of these algorithms. PMID:26809000

  16. Brain Oscillatory Activity during Spatial Navigation: Theta and Gamma Activity Link Medial Temporal and Parietal Regions

    ERIC Educational Resources Information Center

    White, David J.; Congedo, Marco; Ciorciari, Joseph; Silberstein, Richard B.

    2012-01-01

    Brain oscillatory correlates of spatial navigation were investigated using blind source separation (BSS) and standardized low resolution electromagnetic tomography (sLORETA) analyses of 62-channel EEG recordings. Twenty-five participants were instructed to navigate to distinct landmark buildings in a previously learned virtual reality town…

  17. Neural Activation Underlying Cognitive Control in the Context of Neutral and Affectively Charged Pictures in Children

    ERIC Educational Resources Information Center

    Lamm, Connie; White, Lauren K.; McDermott, Jennifer Martin; Fox, Nathan A.

    2012-01-01

    The neural correlates of cognitive control for typically developing 9-year-old children were examined using dense-array ERPs and estimates of cortical activation (LORETA) during a go/no-go task with two conditions: a neutral picture condition and an affectively charged picture condition. Activation was estimated for the entire cortex after which…

  18. Comparison of Low Resolution Electromagnetic Tomography Imaging Between Subjects With Mild and Severe Obstructive Sleep Apnea Syndrome: A Preliminary Study

    PubMed Central

    Lee, Hyun-Kwon; Shin, Hyun-Sil; Hong, Seok-Chan

    2008-01-01

    Objective The purpose of this study was to identify the regions of the brain associated with recurrent nocturnal chronic hypoxic episodes in patients with untreated obstructive sleep apnea syndrome (OSAS) using low-resolution electromagnetic tomography (LORETA) and quantitative electroencephalography (QEEG). Methods Nocturnal polysomnograph (NPSG) and subsequent morning electroencephalograph (EEG) were measured in 20 subjects with OSAS. Mild (n=10 ages 39.5±12.1 years) and severe (n=10 ages 41.7±13.6 years) right-handed male OSAS subjects were selected by interview and questionnaires including the NPSG, Beck Depression Inventory, Beck Anxiety Inventory, Epworth Sleepiness Scale, and Pittsburgh Sleep Quality Index. The LORETA and QEEG were compared between the severe and mild OSAS groups by frequency bands (delta 1-3 Hz, theta 4-7 Hz, alpha 8-12 Hz, beta1 13-18 Hz, beta2 19-21 Hz, beta3 22-30 Hz, and total 1-30 Hz) made by spectral analysis during resting with the eyes closed. Results The LORETA analysis showed decreased alpha activity at the right posterior cingulate gyrus (Brodmann area 23) in cases with severe OSAS compared to mild OSAS (p<0.05). For the QEEG, the absolute power of the alpha activity (8-12 Hz) was decreased in P3 (p=0.047), PZ (p=0.039) and O2 (p=0.04) in cases with severe OSAS compared to mild OSAS cases. The LORETA and QEEG analyses had similar results with regard to band, activation and location. Conclusion The decreased activity of the alpha frequency in the right posterior cingulate gyrus, in patients with severe OSAS compared to those with mild OSAS, suggests that chronic repeated short-term hypoxia during sleep, in OSAS, could provoke cortical brain dysfunction associated with cognitive dysfunction such as memory and attention. PMID:20046408

  19. Towards a method to differentiate chronic disorder of consciousness patients' awareness: The Low-Resolution Brain Electromagnetic Tomography Analysis.

    PubMed

    Naro, Antonino; Bramanti, Placido; Leo, Antonino; Cacciola, Alberto; Bramanti, Alessia; Manuli, Alfredo; Calabrò, Rocco Salvatore

    2016-09-15

    Assessing residual signs of awareness in patients suffering from chronic disorders of consciousness (DOC) is a challenging issue. DOC patient behavioral assessment is often doubtful since some individuals may retain covert traces of awareness; thus, some Unresponsive Wakefulness Syndrome (UWS) patients may be misdiagnosed. The aim of our study was to explore possible differences between the source powers within poly-modal cortices to differentiate Minimally Conscious State (MCS) from UWS. To this end, we recorded an electroencephalogram (EEG) during awake resting state and performed a Low-Resolution Brain Electromagnetic Tomography (LORETA), which is a 3D source localization method allowing the visualization of the most probable neuroanatomical generators of EEG differences. MCS and UWS patients showed significant variations concerning the frontal source power of delta-band, frontal and parietal of theta, parietal and occipital of alpha, central of beta, and parietal of gamma, in correlation with the Coma Recovery Scale-Revised (CRS-R) score. The alpha-band was the most significant LORETA data correlating with the consciousness level. In addition, we observed a significant correlation between central beta-peaks and the motor abilities and a dissociation between theta and gamma bands within parietal regions. Our findings suggest that LORETA analysis may be useful in DOC differential diagnosis since distinct neurophysiological correlates in some UWS patients could be used to assess deeper the residual cerebral activity of brain areas responsible for covert awareness. PMID:27538628

  20. Loss of control during instrumental learning: a source localization study.

    PubMed

    Diener, Carsten; Kuehner, Christine; Flor, Herta

    2010-04-01

    This study used multi-channel electroencephalography (EEG) to investigate cortical correlates of response-outcome contingency appraisal as indexed by the postimperative negative variation (PINV) during instrumental learning. PINV data were subjected to standardized low resolution brain electromagnetic tomography (sLORETA) for source localization. Forty-six healthy adult persons underwent a forewarned S1-S2 paradigm where response-outcome contingencies varied in three consecutive conditions. Initially subjects could control aversive stimulation by a correct behavioral response followed by loss of control and subsequent restitution of control. Throughout the experiment, reaction times, errors, ratings of controllability, arousal, emotional valence and helplessness were assessed. Topographical EEG analyses showed that in particular frontal PINV magnitudes covaried with the experimental manipulation. Loss of control induced extensive response-outcome uncertainty accompanied by a fronto-central PINV maximum. sLORETA functional analyses of the PINV revealed that dependent on the experimental conditions frontal, temporal and parietal areas seem to be related to PINV formation. In particular during loss of control, between-conditions sLORETA comparisons found Brodmann Area 24 in the anterior cingulate cortex (ACC) to be associated with PINV generation, which was confirmed by correlational analyses. These results provide further evidence for the role of the ACC in detecting response conflict and its involvement in the generation of the PINV.

  1. EEG-based local brain activity feedback training—tomographic neurofeedback

    PubMed Central

    Bauer, Herbert; Pllana, Avni

    2014-01-01

    Along with the development of distributed EEG source modeling methods, basic approaches to local brain activity (LBA-) neurofeedback (NF) have been suggested. Meanwhile several attempts using LORETA and sLORETA have been published. This article specifically reports on “EEG-based LBA-feedback training” developed by Bauer et al. (2011). Local brain activity-feedback has the advantage over other sLORETA-based approaches in the way that feedback is exclusively controlled by EEG-generating sources within a selected cortical region of training (ROT): feedback is suspended if there is no source. In this way the influence of sources in the vicinity of the ROT is excluded. First applications have yielded promising results: aiming to enhance activity in left hemispheric linguistic areas, five experimental subjects increased significantly the feedback rate whereas five controls receiving sham feedback did not, both after 13 training runs (U-test, p < 0.01). Preliminary results of another study that aims to document effects of LBA-feedback training of the Anterior Cingulate Cortex (ACC) and Dorso-Lateral Prefrontal Cortex (DLPFC) by fMRI revealed more local ACC-activity after successful training (Radke et al., 2014). PMID:25566027

  2. Effect of a psychoneurotherapy on brain electromagnetic tomography in individuals with major depressive disorder.

    PubMed

    Paquette, Vincent; Beauregard, Mario; Beaulieu-Prévost, Dominic

    2009-12-30

    Recent advances in power spectral analysis of electroencephalography (EEG) signals and brain-computer interface (BCI) technology may significantly contribute to the development of psychoneurotherapies. The goal of this study was to measure the effect of a psychoneurotherapy on brain source generators of abnormal EEG activity in individuals with major depressive disorder (MDD). Thirty participants with unipolar MDD were recruited in the community. The proposed psychoneurotherapy was developed based on the relationship between the localization of abnormal EEG activity and depressive symptomatology. Brain electromagnetic abnormalities in MDD were identified with low resolution brain electromagnetic tomography (LORETA) and a normative EEG database. Localization of brain changes after treatment was assessed through the standardized version of LORETA (sLORETA). Before treatment, excessive high-beta (18-30 Hz) activity was noted in several brain regions located in the fronto-temporal regions. After treatment, only participants who successfully normalized EEG activity in cortico-limbic/paralimbic regions could be considered in clinical remission. In these regions, significant correlations were found between the percentage of change of depressive symptoms and the percentage of reduction in high-beta activity. These results suggest that the normalization of high-beta activity in cortico-limbic/paralimbic regions can be associated with a significant reduction of depressive symptoms.

  3. Intrinsic Functional Hypoconnectivity in Core Neurocognitive Networks Suggests Central Nervous System Pathology in Patients with Myalgic Encephalomyelitis: A Pilot Study.

    PubMed

    Zinn, Marcie L; Zinn, Mark A; Jason, Leonard A

    2016-09-01

    Exact low resolution electromagnetic tomography (eLORETA) was recorded from nineteen EEG channels in nine patients with myalgic encephalomyelitis (ME) and 9 healthy controls to assess current source density and functional connectivity, a physiological measure of similarity between pairs of distributed regions of interest, between groups. Current source density and functional connectivity were measured using eLORETA software. We found significantly decreased eLORETA source analysis oscillations in the occipital, parietal, posterior cingulate, and posterior temporal lobes in Alpha and Alpha-2. For connectivity analysis, we assessed functional connectivity within Menon triple network model of neuropathology. We found support for all three networks of the triple network model, namely the central executive network (CEN), salience network (SN), and the default mode network (DMN) indicating hypo-connectivity in the Delta, Alpha, and Alpha-2 frequency bands in patients with ME compared to controls. In addition to the current source density resting state dysfunction in the occipital, parietal, posterior temporal and posterior cingulate, the disrupted connectivity of the CEN, SN, and DMN appears to be involved in cognitive impairment for patients with ME. This research suggests that disruptions in these regions and networks could be a neurobiological feature of the disorder, representing underlying neural dysfunction.

  4. Prediction of Treatment Outcome in Patients with Obsessive-Compulsive Disorder with Low-Resolution Brain Electromagnetic Tomography: A Prospective EEG Study.

    PubMed

    Krause, Daniela; Folkerts, Malte; Karch, Susanne; Keeser, Daniel; Chrobok, Agnieszka I; Zaudig, Michael; Hegerl, Ulrich; Juckel, Georg; Pogarell, Oliver

    2015-01-01

    The issue of predicting treatment response and identifying, in advance, which patient will profit from treating obsessive-compulsive disorder (OCD) seems to be an elusive goal. This prospective study investigated brain electric activity [using Low-Resolution Brain Electromagnetic Tomography (LORETA)] for the purpose of predicting response to treatment. Forty-one unmedicated patients with a DSM-IV diagnosis of OCD were included. A resting 32-channel EEG was obtained from each participant before and after 10 weeks of standardized treatment with sertraline and behavioral therapy. LORETA was used to localize the sources of brain electrical activity. At week 10, patients were divided into responders and non-responders (according to a reduction of symptom severity >50% on the Y-BOCS). LORETA analysis revealed that at baseline responders showed compared to non-responders a significantly lower brain electric activity within the beta 1 (t = 2.86, p < 0.05), 2 (t = 2.81, p < 0.05), and 3 (t = 2.76, p < 0.05) frequency bands and ROI analysis confirmed a reduced activity in alpha 2 (t = 2.06, p < 0.05) in the anterior cingulate cortex (ACC). When baseline LORETA data were compared to follow-up data, the analysis showed in the responder group a significantly lower brain electrical resting activity in the beta 1 (t = 3.17. p < 0.05) and beta 3 (t = 3.11. p < 0.05) frequency bands and equally for the ROI analysis of the orbitofrontal cortex (OFC) in the alpha 2 (t = 2.15. p < 0.05) frequency band. In the group of non-responders the opposite results were found. In addition, a positive correlation between frequency alpha 2 (rho = 0.40, p = 0.010), beta 3 (rho = 0.42, p = 0.006), delta (rho = 0.33, p = 0.038), theta (rho = 0.34, p = 0.031), alpha 1 (rho = 0.38, p = 0.015), and beta1 (rho = 0.34, p = 0.028) of the OFC and the bands delta (rho = 0.33, p = 0.035), alpha 1 (rho = 0.36, p = 0.019), alpha 2 (rho = 0.34, p = 0.031), and beta 3 (rho = 0.38, p = 0.015) of the ACC with a

  5. Prediction of Treatment Outcome in Patients with Obsessive-Compulsive Disorder with Low-Resolution Brain Electromagnetic Tomography: A Prospective EEG Study

    PubMed Central

    Krause, Daniela; Folkerts, Malte; Karch, Susanne; Keeser, Daniel; Chrobok, Agnieszka I.; Zaudig, Michael; Hegerl, Ulrich; Juckel, Georg; Pogarell, Oliver

    2016-01-01

    The issue of predicting treatment response and identifying, in advance, which patient will profit from treating obsessive-compulsive disorder (OCD) seems to be an elusive goal. This prospective study investigated brain electric activity [using Low-Resolution Brain Electromagnetic Tomography (LORETA)] for the purpose of predicting response to treatment. Forty-one unmedicated patients with a DSM-IV diagnosis of OCD were included. A resting 32-channel EEG was obtained from each participant before and after 10 weeks of standardized treatment with sertraline and behavioral therapy. LORETA was used to localize the sources of brain electrical activity. At week 10, patients were divided into responders and non-responders (according to a reduction of symptom severity >50% on the Y-BOCS). LORETA analysis revealed that at baseline responders showed compared to non-responders a significantly lower brain electric activity within the beta 1 (t = 2.86, p < 0.05), 2 (t = 2.81, p < 0.05), and 3 (t = 2.76, p < 0.05) frequency bands and ROI analysis confirmed a reduced activity in alpha 2 (t = 2.06, p < 0.05) in the anterior cingulate cortex (ACC). When baseline LORETA data were compared to follow-up data, the analysis showed in the responder group a significantly lower brain electrical resting activity in the beta 1 (t = 3.17. p < 0.05) and beta 3 (t = 3.11. p < 0.05) frequency bands and equally for the ROI analysis of the orbitofrontal cortex (OFC) in the alpha 2 (t = 2.15. p < 0.05) frequency band. In the group of non-responders the opposite results were found. In addition, a positive correlation between frequency alpha 2 (rho = 0.40, p = 0.010), beta 3 (rho = 0.42, p = 0.006), delta (rho = 0.33, p = 0.038), theta (rho = 0.34, p = 0.031), alpha 1 (rho = 0.38, p = 0.015), and beta1 (rho = 0.34, p = 0.028) of the OFC and the bands delta (rho = 0.33, p = 0.035), alpha 1 (rho = 0.36, p = 0.019), alpha 2 (rho = 0.34, p = 0.031), and beta 3 (rho = 0.38, p = 0.015) of the ACC with a

  6. Interhemispheric Asymmetries and Theta Activity in the Rostral Anterior Cingulate Cortex as EEG Signature of HIV-Related Depression: Gender Matters.

    PubMed

    Kremer, Heidemarie; Lutz, Franz P C; McIntosh, Roger C; Dévieux, Jessy G; Ironson, Gail

    2016-04-01

    Resting EEGs of 40 people living with HIV (PLWH) on long-term antiretroviral treatment were examined for z-scored deviations from a healthy control (normative database) to examine the main and interaction effects of depression and gender. Regions of interest were frontal (alpha) and central (all bands) for interhemispheric asymmetries in quantitative EEGs and theta in the rostral anterior cingulate cortex (rACC) in low-resolution electromagnetic tomography (LORETA). Z-scored normed deviations of depressed PLWH, compared with nondepressed, showed right-dominant interhemispheric asymmetries in all regions. However, after adjusting for multiple testing, significance remained only central for theta, alpha, and beta. Reversed (left-dominant) frontal alpha asymmetry is a potential EEG marker of depression in the HIV negative population that was not reversed in depressive PLWH; however, corresponding with extant literature, gender had an effect on the size of frontal alpha asymmetry. The LORETA analysis revealed a trending interactional effect of depression and gender on theta activity in the rACC in Brodmann area 32. We found that compared to men, women had greater right-dominant frontal alpha-asymmetry and elevated theta activity in voxels of the rACC, which may indicate less likelihood of depression and a higher likelihood of response to antidepressants. In conclusion, subtle EEG deviations, such as right-dominant central theta, alpha, and beta asymmetries and theta activity in the rACC may mark HIV-related depressive symptoms and may predict the likelihood of response to antidepressants but gender effects need to be taken into account. Although this study introduced the use of LORETA to examine the neurophysiological correlates of negative affect in PLWH, further research is needed to assess the utility of this tool in diagnostics and treatment monitoring of depression in PLWH. PMID:25568149

  7. Coherence, phase differences, phase shift, and phase lock in EEG/ERP analyses.

    PubMed

    Thatcher, Robert W

    2012-01-01

    Electroencephalogram (EEG) coherence is a mixture of phase locking interrupted by phase shifts in the spontaneous EEG. Average reference, Laplacian transforms, and independent component (ICA) reconstruction of time series can distort physiologically generated phase differences and invalidate the computation of coherence and phase differences as well as in the computation of directed coherence and phase reset. Time domain measures of phase shift and phase lock are less prone to artifact and are independent of volume conduction. Cross-frequency synchrony in the surface EEG and in Low Resolution Electromagnetic Tomography (LORETA) provides insights into dynamic functions of the brain.

  8. EEG source activity during processing of neutral stimuli in subjects with anxiety disorders.

    PubMed

    Gmaj, Bartłomiej; Januszko, Piotr; Kamiński, Jan; Drozdowicz, Ewa; Kopera, Maciej; Wołyńczyk-Gmaj, Dorota; Szelenberger, Waldemar; Wojnar, Marcin

    2016-01-01

    Anxiety disorders are a social problem due to their prevalence and consequences. It is crucial to explore the influence of anxiety on cognitive processes. In this study we recorded EEG activity from 73 subjects (35 patients, 38 controls, matched for age and education) during performance of the Continuous Attention Task. We used low resolution electromagnetic tomography (LORETA) for evaluation of mechanisms of impaired cognitive performance in anxiety disorders. Analysis showed that patients with anxiety disorders committed more errors than the controls, had a short latency of P300 and higher amplitude of ERPs at all steps of stimulus processing. Furthermore, we showed that there was a relationship between the scores of Hamilton Anxiety Scale and Beck Depression Inventory, and amplitudes and latencies of ERPs. The results of LORETA analysis showed that enhanced neural responses were found within circuits mediating visual information processing, sustained attention and anxiety. Also, we found higher current density within areas playing an important role in the brain fear network - anterior cingulate and anterior part of insula. Electrophysiological neuroimaging showed greater recruitment of cognitive resources in anxiety disorders, evidenced by higher current density and activation of greater number of brain areas. Despite the strategy employed to compensate for cognitive problems, the anxiety patients did not achieve the same performance as controls. Present study demonstrates that anxiety disorders influence processing of neutral stimuli and this influence is observable at both behavioral and electrophysiological level. The data suggests instability of neural systems responsible for information selection, working memory, engagement and focusing of attention.

  9. Acute effects of exercise on mood and EEG activity in healthy young subjects: a systematic review.

    PubMed

    Lattari, Eduardo; Portugal, Eduardo; Moraes, Helena; Machado, Sérgio; Santos, Tony M; Deslandes, Andrea C

    2014-01-01

    Electroencephalography has been used to establish the relationship among cortical activity, exercise and mood, such as asymmetry, absolute and relative power. The purpose of this study was to systematically review the influence of cortical activity on mood state induced by exercise. The Preferred Reporting Items in Systematic reviews and Meta-Analyses was followed in this study. The studies were retrieved from MEDLINE/PubMed, ISI Web of Knowledge and SciELO. Search was conducted in all databases using the following terms: EEG asymmetry, sLORETA, exercise, with affect, mood and emotions. Based on the defined criteria, a total of 727 articles were found in the search conducted in the literature (666 in Pubmed, 54 in ISI Web of Science, 2 in SciELO and 5 in other data sources). Total of 11 studies were selected which properly met the criteria for this review. Nine out of 11 studies used the frontal asymmetry, four used absolute and relative power and one used sLORETA. With regard to changes in cortical activity and mood induced by exercise, six studies attributed this result to different intensities, one to duration, one to type of exercise and one to fitness level. In general, EEG measures showed contradictory evidence of its ability to predict or modulate psychological mood states through exercise intervention.

  10. The psychophysiology of reading.

    PubMed

    Chiarenza, Giuseppe A; Di Pietro, Sara F; Casarotto, Silvia

    2014-11-01

    Early identification of dyslexia would be fundamental to prevent the negative consequences of delayed treatment in the social, psychological and occupational domains. Movement-related potentials of dyslexic children are characterized by inadequate ability to program movements and reduced capacity to evaluate their performance and to correct their errors. Reading-related potentials recorded during different reading conditions elicit a series of positive and negative components with specific functional meaning and with a characteristic spatial-temporal pattern. These reading-related potentials, when analyzed with sLORETA, show significantly different patterns of activation when comparing self-paced reading aloud to passive viewing of single letters. Comparison of fMRI and sLORETA during both tasks showed that the cortical region with the widest inter-modality similarities is the middle-superior temporal lobe during self-paced reading aloud. Neuropsychological studies have shown the existence of clinical subtypes of dyslexia; these studies have been confirmed by the results of ICA applied to the EEG. Dyslexia can be defined as a disorder of programming and integrating ideokinetic elements, associated with a deficiency in the fast processing and integration of sensory information, with reduced efficiency of error systems analysis. Each of these phenomena occurs at different levels of the central nervous system and at different times.

  11. EEG source activity during processing of neutral stimuli in subjects with anxiety disorders.

    PubMed

    Gmaj, Bartłomiej; Januszko, Piotr; Kamiński, Jan; Drozdowicz, Ewa; Kopera, Maciej; Wołyńczyk-Gmaj, Dorota; Szelenberger, Waldemar; Wojnar, Marcin

    2016-01-01

    Anxiety disorders are a social problem due to their prevalence and consequences. It is crucial to explore the influence of anxiety on cognitive processes. In this study we recorded EEG activity from 73 subjects (35 patients, 38 controls, matched for age and education) during performance of the Continuous Attention Task. We used low resolution electromagnetic tomography (LORETA) for evaluation of mechanisms of impaired cognitive performance in anxiety disorders. Analysis showed that patients with anxiety disorders committed more errors than the controls, had a short latency of P300 and higher amplitude of ERPs at all steps of stimulus processing. Furthermore, we showed that there was a relationship between the scores of Hamilton Anxiety Scale and Beck Depression Inventory, and amplitudes and latencies of ERPs. The results of LORETA analysis showed that enhanced neural responses were found within circuits mediating visual information processing, sustained attention and anxiety. Also, we found higher current density within areas playing an important role in the brain fear network - anterior cingulate and anterior part of insula. Electrophysiological neuroimaging showed greater recruitment of cognitive resources in anxiety disorders, evidenced by higher current density and activation of greater number of brain areas. Despite the strategy employed to compensate for cognitive problems, the anxiety patients did not achieve the same performance as controls. Present study demonstrates that anxiety disorders influence processing of neutral stimuli and this influence is observable at both behavioral and electrophysiological level. The data suggests instability of neural systems responsible for information selection, working memory, engagement and focusing of attention. PMID:27102920

  12. Closely Spaced MEG Source Localization and Functional Connectivity Analysis Using a New Prewhitening Invariance of Noise Space Algorithm.

    PubMed

    Zhang, Junpeng; Cui, Yuan; Deng, Lihua; He, Ling; Zhang, Junran; Zhang, Jing; Zhou, Qun; Liu, Qi; Zhang, Zhiguo

    2016-01-01

    This paper proposed a prewhitening invariance of noise space (PW-INN) as a new magnetoencephalography (MEG) source analysis method, which is particularly suitable for localizing closely spaced and highly correlated cortical sources under real MEG noise. Conventional source localization methods, such as sLORETA and beamformer, cannot distinguish closely spaced cortical sources, especially under strong intersource correlation. Our previous work proposed an invariance of noise space (INN) method to resolve closely spaced sources, but its performance is seriously degraded under correlated noise between MEG sensors. The proposed PW-INN method largely mitigates the adverse influence of correlated MEG noise by projecting MEG data to a new space defined by the orthogonal complement of dominant eigenvectors of correlated MEG noise. Simulation results showed that PW-INN is superior to INN, sLORETA, and beamformer in terms of localization accuracy for closely spaced and highly correlated sources. Lastly, source connectivity between closely spaced sources can be satisfactorily constructed from source time courses estimated by PW-INN but not from results of other conventional methods. Therefore, the proposed PW-INN method is a promising MEG source analysis to provide a high spatial-temporal characterization of cortical activity and connectivity, which is crucial for basic and clinical research of neural plasticity.

  13. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM☆

    PubMed Central

    López, J.D.; Litvak, V.; Espinosa, J.J.; Friston, K.; Barnes, G.R.

    2014-01-01

    The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy—an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. PMID:24041874

  14. Low-resolution electromagnetic tomography and treatment response in obsessive-compulsive disorder.

    PubMed

    Fontenelle, Leonardo F; Mendlowicz, Mauro V; Ribeiro, Pedro; Piedade, Roberto A; Versiani, Marcio

    2006-02-01

    We investigated whether findings from pretreatment low-resolution electromagnetic tomography (LORETA) predicted response to drug treatment in patients with obsessive-compulsive disorder (OCD). The 3D intra-cerebral distribution of neuronal electrical activity from the scalp-recorded potential distribution of 17 drug-free patients with OCD was assessed with LORETA. They were treated with antidepressants in the maximum tolerated doses for at least 12 wk. Individuals were considered to be treatment responders if they displayed a reduction of at least 35% on the initial YBOCS scores and had a final CGI score of 1 or 2. The SPM-99 t test for independent samples was employed to compare, voxel-by-voxel, the brain electrical activities of responders (n = 10) and non-responders (n = 7). Responders exhibited significantly lower activities in beta band in the rostral anterior cingulate [Brodmann's area (BA) 24 and 32] (p = 0.002) and the medial frontal gyrus (BA 10) (p = 0.002), suggesting that a distinctive pattern of activity within the medial surface of the frontal lobe predicts therapeutic response in OCD.

  15. Densitometric validation and analysis of biomarker β-amyrin in different Acacia species (leaves) grown in Kingdom of Saudi Arabia by high performance thin-layer chromatography.

    PubMed

    Alam, Perwez; Alajmi, Mohamed Fahad; Siddiqui, Nasir Ali; Al-Rehaily, Adnan Jathlan; Alharbi, Hattan; Basudan, Omer Ahmed; Hussain, Afzal

    2015-07-01

    Biomarker β-amyrin was analyzed in the leaves of four different Acacia species (A. salicina, A. loreta, A. hamulosa and A. tortilis) grown in Kingdom of Saudi Arabia by a validated HPTLC method. The chromatography was performed on glass-backed silica gel 60 F254 HPTLC plates using solvents toluene: methanol (9:1, v/v) as mobile phase. The developed TLC plate was derivatized with anisaldehyde and scanned at 520 nm. A sharp peak of β-amyrin was found at Rf=0.58±0.01. The r2 and the linear regression equation for β-amyrin was found to be 0.991 and 19.913X+107.803, respectively in the concentration range of 100-800 ng. The percentage of β-amyrin was found to be maximum 2.70% w/w in A. tortilis, 1.85% w/w in A. loreta and 1.80% w/w in A. hamulosa while it was totally absent in A. salicina. This study conceives maiden reporting of quantification of β-amyrin in four different species of Acacia by validated HPTLC method. The developed method for the analysis of β-amyrin was proved to be reproducible by statistical analysis hence it can be employed for further analysis of β-amyrin in plasma, other biological fluids and in finished products available in the market.

  16. Training of affect recognition in schizophrenia patients with violent offences: behavioral treatment effects and electrophysiological correlates.

    PubMed

    Luckhaus, Christian; Frommann, Nicole; Stroth, Sanna; Brinkmeyer, Jürgen; Wölwer, Wolfgang

    2013-01-01

    Violent offenders with schizophrenia have a particularly poor performance level in facial affect recognition. Nineteen male schizophrenia patients, who had been committed to psychiatric hospital detention because of violent offences and lack of criminal responsibility, were recruited to receive the Training of Affect Recognition (TAR). Performance in the Pictures of Facial Affect (PFA)-test and event-related potentials (ERPs) were registered in a pre-post-treatment design. TAR was feasible with a very high treatment effect (Cohen's d = 1.88), which persisted for 2 months post-treatment. ERPs remained unchanged post- vs. pre-treatment, while low resolution brain electromagnetic tomography (LORETA) revealed activation decreases in left-hemispheric parietal-temporal-occipital regions at 172 msec and activation increases in right dorsolateral prefrontal cortex and anterior cingulate at 250 msec. Possibly, violent offenders with schizophrenia are particularly amenable to TAR because of a high level of dysfunction at baseline. Post- vs. pre-treatment changes of neural activity (LORETA) may mirror a gain of efficiency in structural face decoding and a shift towards a more reflective mode of emotional face decoding, relying on increased frontal brain activity. Functional magnetic resonance imaging (BOLD-fMRI) -data from another study further supports this notion. TAR treatment might enable subjects with schizophrenia and a disposition to violence to reach a higher degree of deliberation of their reactive behavior to facial affect stimuli.

  17. Closely Spaced MEG Source Localization and Functional Connectivity Analysis Using a New Prewhitening Invariance of Noise Space Algorithm

    PubMed Central

    Zhang, Junpeng; Cui, Yuan; Deng, Lihua; He, Ling; Zhang, Junran; Zhang, Jing; Zhou, Qun; Liu, Qi; Zhang, Zhiguo

    2016-01-01

    This paper proposed a prewhitening invariance of noise space (PW-INN) as a new magnetoencephalography (MEG) source analysis method, which is particularly suitable for localizing closely spaced and highly correlated cortical sources under real MEG noise. Conventional source localization methods, such as sLORETA and beamformer, cannot distinguish closely spaced cortical sources, especially under strong intersource correlation. Our previous work proposed an invariance of noise space (INN) method to resolve closely spaced sources, but its performance is seriously degraded under correlated noise between MEG sensors. The proposed PW-INN method largely mitigates the adverse influence of correlated MEG noise by projecting MEG data to a new space defined by the orthogonal complement of dominant eigenvectors of correlated MEG noise. Simulation results showed that PW-INN is superior to INN, sLORETA, and beamformer in terms of localization accuracy for closely spaced and highly correlated sources. Lastly, source connectivity between closely spaced sources can be satisfactorily constructed from source time courses estimated by PW-INN but not from results of other conventional methods. Therefore, the proposed PW-INN method is a promising MEG source analysis to provide a high spatial-temporal characterization of cortical activity and connectivity, which is crucial for basic and clinical research of neural plasticity. PMID:26819768

  18. Basic visual dysfunction allows classification of patients with schizophrenia with exceptional accuracy.

    PubMed

    González-Hernández, J A; Pita-Alcorta, C; Padrón, A; Finalé, A; Galán, L; Martínez, E; Díaz-Comas, L; Samper-González, J A; Lencer, R; Marot, M

    2014-10-01

    Basic visual dysfunctions are commonly reported in schizophrenia; however their value as diagnostic tools remains uncertain. This study reports a novel electrophysiological approach using checkerboard visual evoked potentials (VEP). Sources of spectral resolution VEP-components C1, P1 and N1 were estimated by LORETA, and the band-effects (BSE) on these estimated sources were explored in each subject. BSEs were Z-transformed for each component and relationships with clinical variables were assessed. Clinical effects were evaluated by ROC-curves and predictive values. Forty-eight patients with schizophrenia (SZ) and 55 healthy controls participated in the study. For each of the 48 patients, the three VEP components were localized to both dorsal and ventral brain areas and also deviated from a normal distribution. P1 and N1 deviations were independent of treatment, illness chronicity or gender. Results from LORETA also suggest that deficits in thalamus, posterior cingulum, precuneus, superior parietal and medial occipitotemporal areas were associated with symptom severity. While positive symptoms were more strongly related to sensory processing deficits (P1), negative symptoms were more strongly related to perceptual processing dysfunction (N1). Clinical validation revealed positive and negative predictive values for correctly classifying SZ of 100% and 77%, respectively. Classification in an additional independent sample of 30 SZ corroborated these results. In summary, this novel approach revealed basic visual dysfunctions in all patients with schizophrenia, suggesting these visual dysfunctions represent a promising candidate as a biomarker for schizophrenia.

  19. Densitometric validation and analysis of biomarker β-amyrin in different Acacia species (leaves) grown in Kingdom of Saudi Arabia by high performance thin-layer chromatography.

    PubMed

    Alam, Perwez; Alajmi, Mohamed Fahad; Siddiqui, Nasir Ali; Al-Rehaily, Adnan Jathlan; Alharbi, Hattan; Basudan, Omer Ahmed; Hussain, Afzal

    2015-07-01

    Biomarker β-amyrin was analyzed in the leaves of four different Acacia species (A. salicina, A. loreta, A. hamulosa and A. tortilis) grown in Kingdom of Saudi Arabia by a validated HPTLC method. The chromatography was performed on glass-backed silica gel 60 F254 HPTLC plates using solvents toluene: methanol (9:1, v/v) as mobile phase. The developed TLC plate was derivatized with anisaldehyde and scanned at 520 nm. A sharp peak of β-amyrin was found at Rf=0.58±0.01. The r2 and the linear regression equation for β-amyrin was found to be 0.991 and 19.913X+107.803, respectively in the concentration range of 100-800 ng. The percentage of β-amyrin was found to be maximum 2.70% w/w in A. tortilis, 1.85% w/w in A. loreta and 1.80% w/w in A. hamulosa while it was totally absent in A. salicina. This study conceives maiden reporting of quantification of β-amyrin in four different species of Acacia by validated HPTLC method. The developed method for the analysis of β-amyrin was proved to be reproducible by statistical analysis hence it can be employed for further analysis of β-amyrin in plasma, other biological fluids and in finished products available in the market. PMID:26431661

  20. Alteration of Electro-Cortical Activity in Microgravity

    NASA Astrophysics Data System (ADS)

    Schneider, Stefan; Brummer, Vera; Carnahan, Heather; Askew, Christopher D.; Guardiera, Simon; Struder, Heiko K.

    2008-06-01

    There is growing interest in the effects of weightlessness on central nervous system (CNS) activity. Due to technical and logistical limitations it presently seems impossible to apply imaging techniques as fMRI or PET in weightless environments e.g. on ISS or during parabolic flights. Within this study we evaluated changes in brain cortical activity using low resolution brain electromagnetic tomography (LORETA) during parabolic flights. Results showed a distinct inhibition of right frontal area activity >12Hz during phases of microgravity compared to normal gravity. We conclude that the inhibition of high frequency frontal activity during microgravity may serve as a marker of emotional anxiety and/or indisposition associated with weightlessness. This puts a new light on the debate as to whether cognitive and sensorimotor impairments are attributable to primary physiological effects or secondary psychological effects of a weightless environment.

  1. EEG paroxysmal gamma waves during Bhramari Pranayama: a yoga breathing technique.

    PubMed

    Vialatte, François B; Bakardjian, Hovagim; Prasad, Rajkishore; Cichocki, Andrzej

    2009-12-01

    Here we report that a specific form of yoga can generate controlled high-frequency gamma waves. For the first time, paroxysmal gamma waves (PGW) were observed in eight subjects practicing a yoga technique of breathing control called Bhramari Pranayama (BhPr). To obtain new insights into the nature of the EEG during BhPr, we analyzed EEG signals using time-frequency representations (TFR), independent component analysis (ICA), and EEG tomography (LORETA). We found that the PGW consists of high-frequency biphasic ripples. This unusual activity is discussed in relation to previous reports on yoga and meditation. It is concluded this EEG activity is most probably non-epileptic, and that applying the same methodology to other meditation recordings might yield an improved understanding of the neurocorrelates of meditation.

  2. Brain sources of EEG gamma frequency during volitionally meditation-induced, altered states of consciousness, and experience of the self.

    PubMed

    Lehmann, D; Faber, P L; Achermann, P; Jeanmonod, D; Gianotti, L R; Pizzagalli, D

    2001-11-30

    Multichannel EEG of an advanced meditator was recorded during four different, repeated meditations. Locations of intracerebral source gravity centers as well as Low Resolution Electromagnetic Tomography (LORETA) functional images of the EEG 'gamma' (35-44 Hz) frequency band activity differed significantly between meditations. Thus, during volitionally self-initiated, altered states of consciousness that were associated with different subjective meditation states, different brain neuronal populations were active. The brain areas predominantly involved during the self-induced meditation states aiming at visualization (right posterior) and verbalization (left central) agreed with known brain functional neuroanatomy. The brain areas involved in the self-induced, meditational dissolution and reconstitution of the experience of the self (right fronto-temporal) are discussed in the context of neural substrates implicated in normal self-representation and reality testing, as well as in depersonalization disorders and detachment from self after brain lesions.

  3. Enhanced Power Within the Default Mode Network in Normal Subjects with Elevated Scores on an Egocentric Scale

    PubMed Central

    Collins, Mark W.G; Persinger, Michael A

    2014-01-01

    Integrated global power from the primary structures that composed the Default Mode Network (DMN) and from a random collection of other structures were measured by sLORETA (standardized low-resolution electromagnetic tomography) for young university volunteers who had completed an inventory that contained a subscale by which egocentricity has been inferred. Subjects who exhibited higher scores for egocentricity displayed significantly more power within the DMN structures relative to comparison areas. This was not observed for individuals whose egocentricity scores were lowest where the power differences between the DMN and comparison structures were not significant statistically. DMN power was greater in the right hemisphere than the left for men but greater in the left hemisphere than the right for women. The results are consistent with our operating metaphor that elevation of power or activity within the DMN is associated with greater affiliation with the self and its cognitive contents. PMID:25419254

  4. Brain sources of EEG gamma frequency during volitionally meditation-induced, altered states of consciousness, and experience of the self.

    PubMed

    Lehmann, D; Faber, P L; Achermann, P; Jeanmonod, D; Gianotti, L R; Pizzagalli, D

    2001-11-30

    Multichannel EEG of an advanced meditator was recorded during four different, repeated meditations. Locations of intracerebral source gravity centers as well as Low Resolution Electromagnetic Tomography (LORETA) functional images of the EEG 'gamma' (35-44 Hz) frequency band activity differed significantly between meditations. Thus, during volitionally self-initiated, altered states of consciousness that were associated with different subjective meditation states, different brain neuronal populations were active. The brain areas predominantly involved during the self-induced meditation states aiming at visualization (right posterior) and verbalization (left central) agreed with known brain functional neuroanatomy. The brain areas involved in the self-induced, meditational dissolution and reconstitution of the experience of the self (right fronto-temporal) are discussed in the context of neural substrates implicated in normal self-representation and reality testing, as well as in depersonalization disorders and detachment from self after brain lesions. PMID:11738545

  5. Electro-cortical manifestations of common vs. proper name processing during reading.

    PubMed

    Adorni, Roberta; Manfredi, Mirella; Proverbio, Alice Mado

    2014-08-01

    The main purpose of the present study was to investigate how proper and common nouns are represented in the brain independent of memory retrieval processes. Participants were instructed to perform a lexical decision task while dense-array EEG was continuously recorded. Both ERP components (namely N400 and P300) and swLORETA suggested that proper name processing engaged a more widespread neural network and required more cognitive resources than common noun processing. Overall, our results come down in favor of the hypothesis that specific effects of proper vs. common noun processing exist, and they suggest a possible neuro-functional segregation of proper vs. common noun processing. The difference in proper and common noun processing seems to emerge at the level of storage or representation of lexical knowledge, and it may crucially depend on their semantic characteristics.

  6. Self-Referential Processing in Depressed Adolescents: A High-Density ERP Study

    PubMed Central

    Auerbach, Randy P.; Stanton, Colin H.; Proudfit, Greg Hajcak; Pizzagalli, Diego A.

    2015-01-01

    Despite the alarming increase in the prevalence of depression during adolescence, particularly among female adolescents, the pathophysiology of depression in adolescents remains largely unknown. Event-related potentials (ERPs) provide an ideal approach to investigate cognitive-affective processes associated with depression in adolescents, especially in the context of negative self-referential processing biases. In this study, healthy (n = 30) and depressed (n = 22) female adolescents completed a self-referential encoding task while ERP data were recorded. To examine cognitive-affective processes associated with self-referential processing, P1, P2, and late positive potential (LPP) responses to negative and positive words were investigated, and intracortical sources of scalp effects were probed using Low Resolution Electromagnetic Tomography (LORETA). Additionally, we tested whether key cognitive processes (e.g., maladaptive self-view, self-criticism) previously implicated in depression related to ERP components. Relative to healthy female subjects, depressed females endorsed more negative and fewer positive words, and free recalled and recognized fewer positive words. With respect to ERPs, compared to healthy female adolescents, depressed adolescents exhibited greater P1 amplitudes following negative words, which was associated with a more maladaptive self-view and self-criticism. In both early and late LPP responses, depressed females showed greater activity following negative versus positive words, whereas healthy females demonstrated the opposite pattern. For both P1 and LPP, LORETA revealed reduced inferior frontal gyrus activity in response to negative words in depressed versus healthy female adolescents. Collectively, these findings suggest that the P1 and LPP reflect biased self-referential processing in female adolescents with depression. Potential treatment implications are discussed. PMID:25643205

  7. Assessing direct paths of intracortical causal information flow of oscillatory activity with the isolated effective coherence (iCoh).

    PubMed

    Pascual-Marqui, Roberto D; Biscay, Rolando J; Bosch-Bayard, Jorge; Lehmann, Dietrich; Kochi, Kieko; Kinoshita, Toshihiko; Yamada, Naoto; Sadato, Norihiro

    2014-01-01

    Functional connectivity is of central importance in understanding brain function. For this purpose, multiple time series of electric cortical activity can be used for assessing the properties of a network: the strength, directionality, and spectral characteristics (i.e., which oscillations are preferentially transmitted) of the connections. The partial directed coherence (PDC) of Baccala and Sameshima (2001) is a widely used method for this problem. The three aims of this study are: (1) To show that the PDC can misrepresent the frequency response under plausible realistic conditions, thus defeating the main purpose for which the measure was developed; (2) To provide a solution to this problem, namely the "isolated effective coherence" (iCoh), which consists of estimating the partial coherence under a multivariate autoregressive model, followed by setting all irrelevant associations to zero, other than the particular directional association of interest; and (3) To show that adequate iCoh estimators can be obtained from non-invasively computed cortical signals based on exact low resolution electromagnetic tomography (eLORETA) applied to scalp EEG recordings. To illustrate the severity of the problem with the PDC, and the solution achieved by the iCoh, three examples are given, based on: (1) Simulated time series with known dynamics; (2) Simulated cortical sources with known dynamics, used for generating EEG recordings, which are then used for estimating (with eLORETA) the source signals for the final connectivity assessment; and (3) EEG recordings in rats. Lastly, real human recordings are analyzed, where the iCoh between six cortical regions of interest are calculated and compared under eyes open and closed conditions, using 61-channel EEG recordings from 109 subjects. During eyes closed, the posterior cingulate sends alpha activity to all other regions. During eyes open, the anterior cingulate sends theta-alpha activity to other frontal regions.

  8. Spatiotemporal analysis of single-trial EEG of emotional pictures based on independent component analysis and source location

    NASA Astrophysics Data System (ADS)

    Liu, Jiangang; Tian, Jie

    2007-03-01

    The present study combined the Independent Component Analysis (ICA) and low-resolution brain electromagnetic tomography (LORETA) algorithms to identify the spatial distribution and time course of single-trial EEG record differences between neural responses to emotional stimuli vs. the neutral. Single-trial multichannel (129-sensor) EEG records were collected from 21 healthy, right-handed subjects viewing the emotion emotional (pleasant/unpleasant) and neutral pictures selected from International Affective Picture System (IAPS). For each subject, the single-trial EEG records of each emotional pictures were concatenated with the neutral, and a three-step analysis was applied to each of them in the same way. First, the ICA was performed to decompose each concatenated single-trial EEG records into temporally independent and spatially fixed components, namely independent components (ICs). The IC associated with artifacts were isolated. Second, the clustering analysis classified, across subjects, the temporally and spatially similar ICs into the same clusters, in which nonparametric permutation test for Global Field Power (GFP) of IC projection scalp maps identified significantly different temporal segments of each emotional condition vs. neutral. Third, the brain regions accounted for those significant segments were localized spatially with LORETA analysis. In each cluster, a voxel-by-voxel randomization test identified significantly different brain regions between each emotional condition vs. the neutral. Compared to the neutral, both emotional pictures elicited activation in the visual, temporal, ventromedial and dorsomedial prefrontal cortex and anterior cingulated gyrus. In addition, the pleasant pictures activated the left middle prefrontal cortex and the posterior precuneus, while the unpleasant pictures activated the right orbitofrontal cortex, posterior cingulated gyrus and somatosensory region. Our results were well consistent with other functional imaging

  9. Real-time Neuroimaging and Cognitive Monitoring Using Wearable Dry EEG

    PubMed Central

    Mullen, Tim R.; Kothe, Christian A.E.; Chi, Mike; Ojeda, Alejandro; Kerth, Trevor; Makeig, Scott; Jung, Tzyy-Ping; Cauwenberghs, Gert

    2015-01-01

    Goal We present and evaluate a wearable high-density dry electrode EEG system and an open-source software framework for online neuroimaging and state classification. Methods The system integrates a 64-channel dry EEG form-factor with wireless data streaming for online analysis. A real-time software framework is applied, including adaptive artifact rejection, cortical source localization, multivariate effective connectivity inference, data visualization, and cognitive state classification from connectivity features using a constrained logistic regression approach (ProxConn). We evaluate the system identification methods on simulated 64-channel EEG data. Then we evaluate system performance, using ProxConn and a benchmark ERP method, in classifying response errors in 9 subjects using the dry EEG system. Results Simulations yielded high accuracy (AUC=0.97±0.021) for real-time cortical connectivity estimation. Response error classification using cortical effective connectivity (sdDTF) was significantly above chance with similar performance (AUC) for cLORETA (0.74±0.09) and LCMV (0.72±0.08) source localization. Cortical ERP-based classification was equivalent to ProxConn for cLORETA (0.74±0.16) but significantly better for LCMV (0.82±0.12). Conclusion We demonstrated the feasibility for real-time cortical connectivity analysis and cognitive state classification from high-density wearable dry EEG. Significance This paper is the first validated application of these methods to 64-channel dry EEG. The work addresses a need for robust real-time measurement and interpretation of complex brain activity in the dynamic environment of the wearable setting. Such advances can have broad impact in research, medicine, and brain-computer interfaces. The pipelines are made freely available in the open-source SIFT and BCILAB toolboxes. PMID:26415149

  10. Neural correlate of the projection of mental states on the not-structured visual stimuli.

    PubMed

    Luciani, Massimiliano; Cecchini, Marco; Altavilla, Daniela; Palumbo, Letizia; Aceto, Paola; Ruggeri, Giuseppe; Vecchio, Fabrizio; Lai, Carlo

    2014-06-24

    Projection is a spontaneous and complex mental activity responsible for the subjective meaning attribution. The hypotheses of this study were that the neural correlate of projection may involve frontal, parietal, and temporal brain areas, and that alexithymia may be negatively associated with intensities in limbic and paralimbic areas during projection. EEG data were recorded continuously at 250 Hz using NetStation 4.5.1 with 256-channels HydroCel Geodesic Sensor Net in 20 healthy subjects during the presentation of structured and not-structured visual stimuli. The tasks were paying attention to the stimuli and thinking about the possible meaning of each image. Event related potential (ERP) components and low-resolution electromagnetic tomography (sLoreta) were analyzed. Participants were administered the 20-Item Toronto Alexithymia Scale before stimulus presentation. Source analyses (sLORETA) showed a greater activated source in the left primary somatosensory cortex (BA1) compared to all the others BA in both conditions through all the ERP components. An involvement of the frontal (right-BA4, left- and right-BA9, left-BA11) and parietal (left and right-BA2 and left-BA7) areas was found in projective response to not-structured visual stimuli. Alexithymia levels were negatively correlated with the anterior (right-BA32) and posterior (left-BA29) cingulate cortex. Findings show the relevance of fronto-parieto circuits during projection, where the internally generating somatosensory representations could drive an intermodal meaning attribution during the task. Moreover, high alexithymia levels were associated with a reduced activation of the cingulated cortex. PMID:24831184

  11. Hypnotizability and Placebo Analgesia in Waking and Hypnosis as Modulators of Auditory Startle Responses in Healthy Women: An ERP Study

    PubMed Central

    De Pascalis, Vilfredo; Scacchia, Paolo

    2016-01-01

    We evaluated the influence of hypnotizability, pain expectation, placebo analgesia in waking and hypnosis on tonic pain relief. We also investigated how placebo analgesia affects somatic responses (eye blink) and N100 and P200 waves of event-related potentials (ERPs) elicited by auditory startle probes. Although expectation plays an important role in placebo and hypnotic analgesia, the neural mechanisms underlying these treatments are still poorly understood. We used the cold cup test (CCT) to induce tonic pain in 53 healthy women. Placebo analgesia was initially produced by manipulation, in which the intensity of pain induced by the CCT was surreptitiously reduced after the administration of a sham analgesic cream. Participants were then tested in waking and hypnosis under three treatments: (1) resting (Baseline); (2) CCT-alone (Pain); and (3) CCT plus placebo cream for pain relief (Placebo). For each painful treatment, we assessed pain and distress ratings, eye blink responses, N100 and P200 amplitudes. We used LORETA analysis of N100 and P200 waves, as elicited by auditory startle, to identify cortical regions sensitive to pain reduction through placebo and hypnotic analgesia. Higher pain expectation was associated with higher pain reductions. In highly hypnotizable participants placebo treatment produced significant reductions of pain and distress perception in both waking and hypnosis condition. P200 wave, during placebo analgesia, was larger in the frontal left hemisphere while placebo analgesia, during hypnosis, involved the activity of the left hemisphere including the occipital region. These findings demonstrate that hypnosis and placebo analgesia are different processes of top-down regulation. Pain reduction was associated with larger EMG startle amplitudes, N100 and P200 responses, and enhanced activity within the frontal, parietal, and anterior and posterior cingulate gyres. LORETA results showed that placebo analgesia modulated pain-responsive areas

  12. EEG source analysis of epileptiform activity using a 1mm anisotropic hexahedra finite element head model

    PubMed Central

    Rullmann, M.; Anwander, A.; Dannhauer, M.; Warfield, S.K.; Duffy, F.H.; Wolters, C.H.

    2009-01-01

    The major goal of the evaluation in presurgical epilepsy diagnosis for medically intractable patients is the precise reconstruction of the epileptogenic foci, preferably with non-invasive methods. This paper evaluates whether surface electroencephalography (EEG) source analysis based on a 1mm anisotropic finite element (FE) head model can provide additional guidance for presurgical epilepsy diagnosis and whether it is practically feasible in daily routine. A 1mm hexahedra FE volume conductor model of the patient’s head with special focus on accurately modeling the compartments skull, cerebrospinal fluid (CSF) and the anisotropic conducting brain tissues was constructed using non-linearly co-registered T1-, T2- and diffusion-tensor- magnetic resonance imaging data. The electrodes of intra-cranial EEG (iEEG) measurements were extracted from a co-registered computed tomography image. Goal function scan (GFS), minimum norm least squares (MNLS), standardized low resolution electromagnetic tomography (sLORETA) and spatio-temporal current dipole modeling inverse methods were then applied to the peak of the averaged ictal discharges EEG data. MNLS and sLORETA pointed to a single center of activity. Moving and rotating single dipole fits resulted in an explained variance of more than 97%. The non-invasive EEG source analysis methods localized at the border of the lesion and at the border of the iEEG electrodes which mainly received ictal discharges. Source orientation was towards the epileptogenic tissue. For the reconstructed superficial source, brain conductivity anisotropy and the lesion conductivity had only a minor influence, whereas a correct modeling of the highly conducting CSF compartment and the anisotropic skull was found to be important. The proposed FE forward modeling approach strongly simplifies meshing and reduces run-time (37 Milliseconds for one forward computation in the model with 3.1 Million unknowns), corroborating the practical feasibility of the

  13. Hypnotizability and Placebo Analgesia in Waking and Hypnosis as Modulators of Auditory Startle Responses in Healthy Women: An ERP Study.

    PubMed

    De Pascalis, Vilfredo; Scacchia, Paolo

    2016-01-01

    We evaluated the influence of hypnotizability, pain expectation, placebo analgesia in waking and hypnosis on tonic pain relief. We also investigated how placebo analgesia affects somatic responses (eye blink) and N100 and P200 waves of event-related potentials (ERPs) elicited by auditory startle probes. Although expectation plays an important role in placebo and hypnotic analgesia, the neural mechanisms underlying these treatments are still poorly understood. We used the cold cup test (CCT) to induce tonic pain in 53 healthy women. Placebo analgesia was initially produced by manipulation, in which the intensity of pain induced by the CCT was surreptitiously reduced after the administration of a sham analgesic cream. Participants were then tested in waking and hypnosis under three treatments: (1) resting (Baseline); (2) CCT-alone (Pain); and (3) CCT plus placebo cream for pain relief (Placebo). For each painful treatment, we assessed pain and distress ratings, eye blink responses, N100 and P200 amplitudes. We used LORETA analysis of N100 and P200 waves, as elicited by auditory startle, to identify cortical regions sensitive to pain reduction through placebo and hypnotic analgesia. Higher pain expectation was associated with higher pain reductions. In highly hypnotizable participants placebo treatment produced significant reductions of pain and distress perception in both waking and hypnosis condition. P200 wave, during placebo analgesia, was larger in the frontal left hemisphere while placebo analgesia, during hypnosis, involved the activity of the left hemisphere including the occipital region. These findings demonstrate that hypnosis and placebo analgesia are different processes of top-down regulation. Pain reduction was associated with larger EMG startle amplitudes, N100 and P200 responses, and enhanced activity within the frontal, parietal, and anterior and posterior cingulate gyres. LORETA results showed that placebo analgesia modulated pain-responsive areas

  14. A theoretical formulation of the electrophysiological inverse problem on the sphere

    NASA Astrophysics Data System (ADS)

    Riera, Jorge J.; Valdés, Pedro A.; Tanabe, Kunio; Kawashima, Ryuta

    2006-04-01

    The construction of three-dimensional images of the primary current density (PCD) produced by neuronal activity is a problem of great current interest in the neuroimaging community, though being initially formulated in the 1970s. There exist even now enthusiastic debates about the authenticity of most of the inverse solutions proposed in the literature, in which low resolution electrical tomography (LORETA) is a focus of attention. However, in our opinion, the capabilities and limitations of the electro and magneto encephalographic techniques to determine PCD configurations have not been extensively explored from a theoretical framework, even for simple volume conductor models of the head. In this paper, the electrophysiological inverse problem for the spherical head model is cast in terms of reproducing kernel Hilbert spaces (RKHS) formalism, which allows us to identify the null spaces of the implicated linear integral operators and also to define their representers. The PCD are described in terms of a continuous basis for the RKHS, which explicitly separates the harmonic and non-harmonic components. The RKHS concept permits us to bring LORETA into the scope of the general smoothing splines theory. A particular way of calculating the general smoothing splines is illustrated, avoiding a brute force discretization prematurely. The Bayes information criterion is used to handle dissimilarities in the signal/noise ratios and physical dimensions of the measurement modalities, which could affect the estimation of the amount of smoothness required for that class of inverse solution to be well specified. In order to validate the proposed method, we have estimated the 3D spherical smoothing splines from two data sets: electric potentials obtained from a skull phantom and magnetic fields recorded from subjects performing an experiment of human faces recognition.

  15. Pain modulation in waking and hypnosis in women: event-related potentials and sources of cortical activity.

    PubMed

    De Pascalis, Vilfredo; Varriale, Vincenzo; Cacace, Immacolata

    2015-01-01

    Using a strict subject selection procedure, we tested in High and Low Hypnotizable subjects (HHs and LHs) whether treatments of hypoalgesia and hyperalgesia, as compared to a relaxation-control, differentially affected subjective pain ratings and somatosensory event-related potentials (SERPs) during painful electric stimulation. Treatments were administered in waking and hypnosis conditions. LHs showed little differentiation in pain and distress ratings between hypoalgesia and hyperalgesia treatments, whereas HHs showed a greater spread in the instructed direction. HHs had larger prefrontal N140 and P200 waves of the SERPs during hypnotic hyperalgesia as compared to relaxation-control treatment. Importantly, HHs showed significant smaller frontocentral N140 and frontotemporal P200 waves during hypnotic hypoalgesia. LHs did not show significant differences for these SERP waves among treatments in both waking and hypnosis conditions. Source localization (sLORETA) method revealed significant activations of the bilateral primary somatosensory (BA3), middle frontal gyrus (BA6) and anterior cingulate cortices (BA24). Activity of these contralateral regions significantly correlated with subjective numerical pain scores for control treatment in waking condition. Moreover, multivariate regression analyses distinguished the contralateral BA3 as the only region reflecting a stable pattern of pain coding changes across all treatments in waking and hypnosis conditions. More direct testing showed that hypnosis reduced the strength of the association of pain modulation and brain activity changes at BA3. sLORETA in HHs revealed, for the N140 wave, that during hypnotic hyperalgesia, there was an increased activity within medial, supramarginal and superior frontal gyri, and cingulated gyrus (BA32), while for the P200 wave, activity was increased in the superior (BA22), middle (BA37), inferior temporal (BA19) gyri and superior parietal lobule (BA7). Hypnotic hypoalgesia in HHs, for N

  16. Sustained attention in skilled and novice martial arts athletes: a study of event-related potentials and current sources.

    PubMed

    Sanchez-Lopez, Javier; Silva-Pereyra, Juan; Fernandez, Thalia

    2016-01-01

    Background. Research on sports has revealed that behavioral responses and event-related brain potentials (ERP) are better in expert than in novice athletes for sport-related tasks. Focused attention is essential for optimal athletic performance across different sports but mainly in combat disciplines. During combat, long periods of focused attention (i.e., sustained attention) are required for a good performance. Few investigations have reported effects of expertise on brain electrical activity and its neural generators during sport-unrelated attention tasks. The aim of the present study was to assess the effect of expertise (i.e., skilled and novice martial arts athletes) analyzing the ERP during a sustained attention task (Continuous Performance Task; CPT) and the cortical three-dimensional distribution of current density, using the sLORETA technique. Methods. CPT consisted in an oddball-type paradigm presentation of five stimuli (different pointing arrows) where only one of them (an arrow pointing up right) required a motor response (i.e., target). CPT was administered to skilled and novice martial arts athletes while EEG were recorded. Amplitude ERP data from target and non-target stimuli were compared between groups. Subsequently, current source analysis for each ERP component was performed on each subject. sLORETA images were compared by condition and group using Statistical Non-Parametric Mapping analysis. Results. Skilled athletes showed significant amplitude differences between target and non-target conditions in early ERP components (P100 and P200) as opposed to the novice group; however, skilled athletes showed no significant effect of condition in N200 but novices did show a significant effect. Current source analysis showed greater differences in activations in skilled compared with novice athletes between conditions in the frontal (mainly in the Superior Frontal Gyrus and Medial Frontal Gyrus) and limbic (mainly in the Anterior Cingulate Gyrus) lobes

  17. Sustained attention in skilled and novice martial arts athletes: a study of event-related potentials and current sources

    PubMed Central

    Sanchez-Lopez, Javier; Silva-Pereyra, Juan

    2016-01-01

    Background. Research on sports has revealed that behavioral responses and event-related brain potentials (ERP) are better in expert than in novice athletes for sport-related tasks. Focused attention is essential for optimal athletic performance across different sports but mainly in combat disciplines. During combat, long periods of focused attention (i.e., sustained attention) are required for a good performance. Few investigations have reported effects of expertise on brain electrical activity and its neural generators during sport-unrelated attention tasks. The aim of the present study was to assess the effect of expertise (i.e., skilled and novice martial arts athletes) analyzing the ERP during a sustained attention task (Continuous Performance Task; CPT) and the cortical three-dimensional distribution of current density, using the sLORETA technique. Methods. CPT consisted in an oddball-type paradigm presentation of five stimuli (different pointing arrows) where only one of them (an arrow pointing up right) required a motor response (i.e., target). CPT was administered to skilled and novice martial arts athletes while EEG were recorded. Amplitude ERP data from target and non-target stimuli were compared between groups. Subsequently, current source analysis for each ERP component was performed on each subject. sLORETA images were compared by condition and group using Statistical Non-Parametric Mapping analysis. Results. Skilled athletes showed significant amplitude differences between target and non-target conditions in early ERP components (P100 and P200) as opposed to the novice group; however, skilled athletes showed no significant effect of condition in N200 but novices did show a significant effect. Current source analysis showed greater differences in activations in skilled compared with novice athletes between conditions in the frontal (mainly in the Superior Frontal Gyrus and Medial Frontal Gyrus) and limbic (mainly in the Anterior Cingulate Gyrus) lobes

  18. Sustained attention in skilled and novice martial arts athletes: a study of event-related potentials and current sources.

    PubMed

    Sanchez-Lopez, Javier; Silva-Pereyra, Juan; Fernandez, Thalia

    2016-01-01

    Background. Research on sports has revealed that behavioral responses and event-related brain potentials (ERP) are better in expert than in novice athletes for sport-related tasks. Focused attention is essential for optimal athletic performance across different sports but mainly in combat disciplines. During combat, long periods of focused attention (i.e., sustained attention) are required for a good performance. Few investigations have reported effects of expertise on brain electrical activity and its neural generators during sport-unrelated attention tasks. The aim of the present study was to assess the effect of expertise (i.e., skilled and novice martial arts athletes) analyzing the ERP during a sustained attention task (Continuous Performance Task; CPT) and the cortical three-dimensional distribution of current density, using the sLORETA technique. Methods. CPT consisted in an oddball-type paradigm presentation of five stimuli (different pointing arrows) where only one of them (an arrow pointing up right) required a motor response (i.e., target). CPT was administered to skilled and novice martial arts athletes while EEG were recorded. Amplitude ERP data from target and non-target stimuli were compared between groups. Subsequently, current source analysis for each ERP component was performed on each subject. sLORETA images were compared by condition and group using Statistical Non-Parametric Mapping analysis. Results. Skilled athletes showed significant amplitude differences between target and non-target conditions in early ERP components (P100 and P200) as opposed to the novice group; however, skilled athletes showed no significant effect of condition in N200 but novices did show a significant effect. Current source analysis showed greater differences in activations in skilled compared with novice athletes between conditions in the frontal (mainly in the Superior Frontal Gyrus and Medial Frontal Gyrus) and limbic (mainly in the Anterior Cingulate Gyrus) lobes

  19. Coherence between Brain Cortical Function and Neurocognitive Performance during Changed Gravity Conditions

    PubMed Central

    Brümmer, Vera; Schneider, Stefan; Vogt, Tobias; Strüder, Heiko; Carnahan, Heather; Askew, Christopher D.; Csuhaj, Roland

    2011-01-01

    Previous studies of cognitive, mental and/or motor processes during short-, medium- and long-term weightlessness have only been descriptive in nature, and focused on psychological aspects. Until now, objective observation of neurophysiological parameters has not been carried out - undoubtedly because the technical and methodological means have not been available -, investigations into the neurophysiological effects of weightlessness are in their infancy (Schneider et al. 2008). While imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) would be hardly applicable in space, the non-invasive near-infrared spectroscopy (NIRS) technique represents a method of mapping hemodynamic processes in the brain in real time that is both relatively inexpensive and that can be employed even under extreme conditions. The combination with electroencephalography (EEG) opens up the possibility of following the electrocortical processes under changing gravity conditions with a finer temporal resolution as well as with deeper localization, for instance with electrotomography (LORETA). Previous studies showed an increase of beta frequency activity under normal gravity conditions and a decrease under weightlessness conditions during a parabolic flight (Schneider et al. 2008a+b). Tilt studies revealed different changes in brain function, which let suggest, that changes in parabolic flight might reflect emotional processes rather than hemodynamic changes. However, it is still unclear whether these are effects of changed gravity or hemodynamic changes within the brain. Combining EEG/LORETA and NIRS should for the first time make it possible to map the effect of weightlessness and reduced gravity on both hemodynamic and electrophysiological processes in the brain. Initially, this is to be done as part of a feasibility study during a parabolic flight. Afterwards, it is also planned to use both techniques during medium- and long-term space flight. It

  20. Pain Modulation in Waking and Hypnosis in Women: Event-Related Potentials and Sources of Cortical Activity

    PubMed Central

    De Pascalis, Vilfredo; Varriale, Vincenzo; Cacace, Immacolata

    2015-01-01

    Using a strict subject selection procedure, we tested in High and Low Hypnotizable subjects (HHs and LHs) whether treatments of hypoalgesia and hyperalgesia, as compared to a relaxation-control, differentially affected subjective pain ratings and somatosensory event-related potentials (SERPs) during painful electric stimulation. Treatments were administered in waking and hypnosis conditions. LHs showed little differentiation in pain and distress ratings between hypoalgesia and hyperalgesia treatments, whereas HHs showed a greater spread in the instructed direction. HHs had larger prefrontal N140 and P200 waves of the SERPs during hypnotic hyperalgesia as compared to relaxation-control treatment. Importantly, HHs showed significant smaller frontocentral N140 and frontotemporal P200 waves during hypnotic hypoalgesia. LHs did not show significant differences for these SERP waves among treatments in both waking and hypnosis conditions. Source localization (sLORETA) method revealed significant activations of the bilateral primary somatosensory (BA3), middle frontal gyrus (BA6) and anterior cingulate cortices (BA24). Activity of these contralateral regions significantly correlated with subjective numerical pain scores for control treatment in waking condition. Moreover, multivariate regression analyses distinguished the contralateral BA3 as the only region reflecting a stable pattern of pain coding changes across all treatments in waking and hypnosis conditions. More direct testing showed that hypnosis reduced the strength of the association of pain modulation and brain activity changes at BA3. sLORETA in HHs revealed, for the N140 wave, that during hypnotic hyperalgesia, there was an increased activity within medial, supramarginal and superior frontal gyri, and cingulated gyrus (BA32), while for the P200 wave, activity was increased in the superior (BA22), middle (BA37), inferior temporal (BA19) gyri and superior parietal lobule (BA7). Hypnotic hypoalgesia in HHs, for N

  1. Pain modulation in waking and hypnosis in women: event-related potentials and sources of cortical activity.

    PubMed

    De Pascalis, Vilfredo; Varriale, Vincenzo; Cacace, Immacolata

    2015-01-01

    Using a strict subject selection procedure, we tested in High and Low Hypnotizable subjects (HHs and LHs) whether treatments of hypoalgesia and hyperalgesia, as compared to a relaxation-control, differentially affected subjective pain ratings and somatosensory event-related potentials (SERPs) during painful electric stimulation. Treatments were administered in waking and hypnosis conditions. LHs showed little differentiation in pain and distress ratings between hypoalgesia and hyperalgesia treatments, whereas HHs showed a greater spread in the instructed direction. HHs had larger prefrontal N140 and P200 waves of the SERPs during hypnotic hyperalgesia as compared to relaxation-control treatment. Importantly, HHs showed significant smaller frontocentral N140 and frontotemporal P200 waves during hypnotic hypoalgesia. LHs did not show significant differences for these SERP waves among treatments in both waking and hypnosis conditions. Source localization (sLORETA) method revealed significant activations of the bilateral primary somatosensory (BA3), middle frontal gyrus (BA6) and anterior cingulate cortices (BA24). Activity of these contralateral regions significantly correlated with subjective numerical pain scores for control treatment in waking condition. Moreover, multivariate regression analyses distinguished the contralateral BA3 as the only region reflecting a stable pattern of pain coding changes across all treatments in waking and hypnosis conditions. More direct testing showed that hypnosis reduced the strength of the association of pain modulation and brain activity changes at BA3. sLORETA in HHs revealed, for the N140 wave, that during hypnotic hyperalgesia, there was an increased activity within medial, supramarginal and superior frontal gyri, and cingulated gyrus (BA32), while for the P200 wave, activity was increased in the superior (BA22), middle (BA37), inferior temporal (BA19) gyri and superior parietal lobule (BA7). Hypnotic hypoalgesia in HHs, for N

  2. Dissociating action inhibition, conflict monitoring and sensory mismatch into independent components of event related potentials in GO/NOGO task.

    PubMed

    Kropotov, Juri D; Ponomarev, Valery A; Hollup, Stig; Mueller, Andreas

    2011-07-15

    The anterior N2 and P3 waves of event related potentials (ERPs) in the GO/NOGO paradigm in trials related to preparatory set violations in previous studies were inconsistently associated either with action inhibition or conflict monitoring operations. In the present study a paired stimulus GO/NOGO design was used in order to experimentally control the preparatory sets. Three variants of the same stimulus task manipulated sensory mismatch, action inhibition and conflict monitoring operations by varying stimulus-response associations. The anterior N2 and P3 waves were decomposed into components by means of independent component analysis (ICA). The ICA was performed on collection of 114 individual ERPs in the three experimental conditions. Three of the independent components were selectively affected by the task manipulations indicating association of these components with sensory mismatch, action inhibition and conflict monitoring operations. According to sLORETA the sensory mismatch component was generated in the left and right temporal areas, the action suppression component was generated in the supplementary motor cortex, and the conflict monitoring component was generated in the anterior cingulate cortex.

  3. Cortical Source Multivariate EEG Synchronization Analysis on Amnestic Mild Cognitive Impairment in Type 2 Diabetes

    PubMed Central

    Bian, Zhijie; Li, Qiuli; Wang, Lei; Li, Xiaoli

    2014-01-01

    Is synchronization altered in amnestic mild cognitive impairment (aMCI) and normal cognitive functions subjects in type 2 diabetes mellitus (T2DM)? Resting eye-closed EEG data were recorded in 8 aMCI subjects and 11 age-matched controls in T2DM. Three multivariate synchronization algorithms (S-estimator (S), synchronization index (SI), and global synchronization index (GSI)) were used to measure the synchronization in five ROIs of sLORETA sources for seven bands. Results showed that aMCI group had lower synchronization values than control groups in parietal delta and beta2 bands, temporal delta and beta2 bands, and occipital theta and beta2 bands significantly. Temporal (r = 0.629; P = 0.004) and occipital (r = 0.648; P = 0.003) theta S values were significantly positive correlated with Boston Name Testing. In sum, each of methods reflected that the cortical source synchronization was significantly different between aMCI and control group, and these difference correlated with cognitive functions. PMID:25254248

  4. Effectiveness of music therapy as an aid to neurorestoration of children with severe neurological disorders

    PubMed Central

    Bringas, Maria L.; Zaldivar, Marilyn; Rojas, Pedro A.; Martinez-Montes, Karelia; Chongo, Dora M.; Ortega, Maria A.; Galvizu, Reynaldo; Perez, Alba E.; Morales, Lilia M.; Maragoto, Carlos; Vera, Hector; Galan, Lidice; Besson, Mireille; Valdes-Sosa, Pedro A.

    2015-01-01

    This study was a two-armed parallel group design aimed at testing real world effectiveness of a music therapy (MT) intervention for children with severe neurological disorders. The control group received only the standard neurorestoration program and the experimental group received an additional MT “Auditory Attention plus Communication protocol” just before the usual occupational and speech therapy. Multivariate Item Response Theory (MIRT) identified a neuropsychological status-latent variable manifested in all children and which exhibited highly significant changes only in the experimental group. Changes in brain plasticity also occurred in the experimental group, as evidenced using a Mismatch Event Related paradigm which revealed significant post intervention positive responses in the latency range between 308 and 400 ms in frontal regions. LORETA EEG source analysis identified prefrontal and midcingulate regions as differentially activated by the MT in the experimental group. Taken together, our results showing improved attention and communication as well as changes in brain plasticity in children with severe neurological impairments, confirm the importance of MT for the rehabilitation of patients across a wide range of dysfunctions. PMID:26582974

  5. Time-Frequency Mixed-Norm Estimates: Sparse M/EEG imaging with non-stationary source activations

    PubMed Central

    Gramfort, A.; Strohmeier, D.; Haueisen, J.; Hämäläinen, M.; Kowalski, M.

    2013-01-01

    Magnetoencephalography (MEG) and electroencephalography (EEG) allow functional brain imaging with high temporal resolution. While solving the inverse problem independently at every time point can give an image of the active brain at every millisecond, such a procedure does not capitalize on the temporal dynamics of the signal. Linear inverse methods (Minimum-norm, dSPM, sLORETA, beamformers) typically assume that the signal is stationary: regularization parameter and data covariance are independent of time and the time varying signal-to-noise ratio (SNR). Other recently proposed non-linear inverse solvers promoting focal activations estimate the sources in both space and time while also assuming stationary sources during a time interval. However such an hypothesis only holds for short time intervals. To overcome this limitation, we propose time-frequency mixed-norm estimates (TF-MxNE), which use time-frequency analysis to regularize the ill-posed inverse problem. This method makes use of structured sparse priors defined in the time-frequency domain, offering more accurate estimates by capturing the non-stationary and transient nature of brain signals. State-of-the-art convex optimization procedures based on proximal operators are employed, allowing the derivation of a fast estimation algorithm. The accuracy of the TF-MxNE is compared to recently proposed inverse solvers with help of simulations and by analyzing publicly available MEG datasets. PMID:23291276

  6. Validation of Regression-Based Myogenic Correction Techniques for Scalp and Source-Localized EEG

    PubMed Central

    McMenamin, Brenton W.; Shackman, Alexander J.; Maxwell, Jeffrey S.; Greischar, Lawrence L.; Davidson, Richard J.

    2008-01-01

    EEG and EEG source-estimation are susceptible to electromyographic artifacts (EMG) generated by the cranial muscles. EMG can mask genuine effects or masquerade as a legitimate effect - even in low frequencies, such as alpha (8–13Hz). Although regression-based correction has been used previously, only cursory attempts at validation exist and the utility for source-localized data is unknown. To address this, EEG was recorded from 17 participants while neurogenic and myogenic activity were factorially varied. We assessed the sensitivity and specificity of four regression-based techniques: between-subjects, between-subjects using difference-scores, within-subjects condition-wise, and within-subject epoch-wise on the scalp and in data modeled using the LORETA algorithm. Although within-subject epoch-wise showed superior performance on the scalp, no technique succeeded in the source-space. Aside from validating the novel epoch-wise methods on the scalp, we highlight methods requiring further development. PMID:19298626

  7. [Emotional intelligence and oscillatory responses on the emotional facial expressions].

    PubMed

    Kniazev, G G; Mitrofanova, L G; Bocharov, A V

    2013-01-01

    Emotional intelligence-related differences in oscillatory responses to emotional facial expressions were investigated in 48 subjects (26 men and 22 women) in age 18-30 years. Participants were instructed to evaluate emotional expression (angry, happy and neutral) of each presented face on an analog scale ranging from -100 (very hostile) to + 100 (very friendly). High emotional intelligence (EI) participants were found to be more sensitive to the emotional content of the stimuli. It showed up both in their subjective evaluation of the stimuli and in a stronger EEG theta synchronization at an earlier (between 100 and 500 ms after face presentation) processing stage. Source localization using sLORETA showed that this effect was localized in the fusiform gyrus upon the presentation of angry faces and in the posterior cingulate gyrus upon the presentation of happy faces. At a later processing stage (500-870 ms) event-related theta synchronization in high emotional intelligence subject was higher in the left prefrontal cortex upon the presentation of happy faces, but it was lower in the anterior cingulate cortex upon presentation of angry faces. This suggests the existence of a mechanism that can be selectively increase the positive emotions and reduce negative emotions.

  8. Spatio-temporal regularization in linear distributed source reconstruction from EEG/MEG: a critical evaluation.

    PubMed

    Dannhauer, Moritz; Lämmel, Eric; Wolters, Carsten H; Knösche, Thomas R

    2013-04-01

    The high temporal resolution of EEG/MEG data offers a way to improve source reconstruction estimates which provide insight into the spatio-temporal involvement of neuronal sources in the human brain. In this work, we investigated the performance of spatio-temporal regularization (STR) in a current density approach using a systematic comparison to simple ad hoc or post hoc filtering of the data or of the reconstructed current density, respectively. For the used STR approach we implemented a frequency-specific constraint to penalize solutions outside a narrow frequency band of interest. The widely used sLORETA algorithm was adapted for STR and generally used for source reconstruction. STR and filtering approaches were evaluated with respect to spatial localization error and spatial dispersion, as well as to correlation of original and reconstructed source time courses in single source and two source scenarios with fixed source locations and oscillating source waveforms. We used extensive computer simulations and tested all algorithms with different parameter settings (noise levels and regularization parameters) for EEG data. To verify our results, we also used data from MEG phantom measurements. For the investigated scenarios, we did not find any evidence that STR-based methods outperform purely spatial algorithms applied to temporally filtered data. Furthermore, the results show very clearly that the performance of STR depends very much on the choice of regularization parameters.

  9. Effects of vibratory stimulation-induced kinesthetic illusions on the neural activities of patients with stroke

    PubMed Central

    Kodama, Takayuki; Nakano, Hideki; Ohsugi, Hironori; Murata, Shin

    2016-01-01

    [Purpose] This study evaluated the influence of vibratory stimulation-induced kinesthetic illusion on brain function after stroke. [Subjects] Twelve healthy individuals and 13 stroke patients without motor or sensory loss participated. [Methods] Electroencephalograms were taken at rest and during vibratory stimulation. As a neurophysiological index of brain function, we measured the μ-rhythm, which is present mainly in the kinesthetic cortex and is attenuated by movement or motor imagery and compared the data using source localization analyses in the Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA) program. [Results] At rest, μ-rhythms appeared in the sensorimotor and supplementary motor cortices in both healthy controls and stroke patients. Under vibratory stimulation, no μ-rhythm appeared in the sensorimotor cortex of either group. Moreover, in the supplementary motor area, which stores the motor imagery required for kinesthetic illusions, the μ-rhythms of patients were significantly stronger than those of the controls, although the μ-rhythms of both groups were reduced. Thus, differences in neural activity in the supplementary motor area were apparent between the subject groups. [Conclusion] Kinesthetic illusions do occur in patients with motor deficits due to stroke. The neural basis of the supplementary motor area in stroke patients may be functionally different from that found in healthy controls. PMID:27065525

  10. Neural correlates of inferring speaker sincerity from white lies: an event-related potential source localization study.

    PubMed

    Rigoulot, Simon; Fish, Karyn; Pell, Marc D

    2014-05-27

    During social interactions, listeners weigh the importance of linguistic and extra-linguistic speech cues (prosody) to infer the true intentions of the speaker in reference to what is actually said. In this study, we investigated what brain processes allow listeners to detect when a spoken compliment is meant to be sincere (true compliment) or not ("white lie"). Electroencephalograms of 29 participants were recorded while they listened to Question-Response pairs, where the response was expressed in either a sincere or insincere tone (e.g., "So, what did you think of my presentation?"/"I found it really interesting."). Participants judged whether the response was sincere or not. Behavioral results showed that prosody could be effectively used to discern the intended sincerity of compliments. Analysis of temporal and spatial characteristics of event-related potentials (P200, N400, P600) uncovered significant effects of prosody on P600 amplitudes, which were greater in response to sincere versus insincere compliments. Using low resolution brain electromagnetic tomography (LORETA), we determined that the anatomical sources of this activity were likely located in the (left) insula, consistent with previous reports of insular activity in the perception of lies and concealments. These data extend knowledge of the neurocognitive mechanisms that permit context-appropriate inferences about speaker feelings and intentions during interpersonal communication.

  11. Disentangling depression and distress networks in the tinnitus brain.

    PubMed

    Joos, Kathleen; Vanneste, Sven; De Ridder, Dirk

    2012-01-01

    Tinnitus is the continuous perception of an internal auditory stimulus. This permanent sound often affects a person's emotional state inducing distress and depressive feelings changes in 6-25% of the affected population. Distress and depression are two distinct emotional states. Whereas distress describes a transient aversive state, interfering with a person's ability to adequately adapt to stressors, depressive feelings should rather be considered as a more constant emotional state. Based on previous observations in chronic pain, posttraumatic stress disorder and depression, we assume that both states are related to separate neural circuits. We used the Dutch version of the Tinnitus Questionnaire to assess the global index of distress together with the Beck Depression Inventory to evaluate the depressive symptoms accompanying tinnitus. Furthermore sLORETA analysis was performed to correlate current density distribution with distress and depression scores, revealing a lateralization effect of depression versus distress. Distress is mainly correlated with alpha 2, beta 1 and beta 2 activity of the right frontopolar cortex and orbitofrontal cortex in combination with beta 2 activation of the anterior cingulate cortex. In contrast, the more permanent depressive alterations induced by tinnitus are associated with activity of alpha 2 activity in the left frontopolar and orbitofrontal cortex. These specific neural circuits are embedded in a greater neural network, with the parahippocampal region functioning as a crucial linkage between both tinnitus related pathways.

  12. Using quantitative and analytic EEG methods in the understanding of connectivity in autism spectrum disorders: a theory of mixed over- and under-connectivity

    PubMed Central

    Coben, Robert; Mohammad-Rezazadeh, Iman; Cannon, Rex L.

    2014-01-01

    Neuroimaging technologies and research has shown that autism is largely a disorder of neuronal connectivity. While advanced work is being done with fMRI, MRI-DTI, SPECT and other forms of structural and functional connectivity analyses, the use of EEG for these purposes is of additional great utility. Cantor et al. (1986) were the first to examine the utility of pairwise coherence measures for depicting connectivity impairments in autism. Since that time research has shown a combination of mixed over and under-connectivity that is at the heart of the primary symptoms of this multifaceted disorder. Nevertheless, there is reason to believe that these simplistic pairwise measurements under represent the true and quite complicated picture of connectivity anomalies in these persons. We have presented three different forms of multivariate connectivity analysis with increasing levels of sophistication (including one based on principle components analysis, sLORETA source coherence, and Granger causality) to present a hypothesis that more advanced statistical approaches to EEG coherence analysis may provide more detailed and accurate information than pairwise measurements. A single case study is examined with findings from MR-DTI, pairwise and coherence and these three forms of multivariate coherence analysis. In this case pairwise coherences did not resemble structural connectivity, whereas multivariate measures did. The possible advantages and disadvantages of different techniques are discussed. Future work in this area will be important to determine the validity and utility of these techniques. PMID:24616679

  13. The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback

    PubMed Central

    Bluschke, Annet; Broschwitz, Felicia; Kohl, Simon; Roessner, Veit; Beste, Christian

    2016-01-01

    Neurofeedback is increasingly recognized as an intervention to treat core symptoms of attention deficit hyperactivity disorder (ADHD). Despite the large number of studies having been carried out to evaluate its effectiveness, it is widely elusive what neuronal mechanisms related to the core symptoms of ADHD are modulated by neurofeedback. 19 children with ADHD undergoing 8 weeks of theta/beta neurofeedback and 17 waiting list controls performed a Go/Nogo task in a pre-post design. We used neurophysiological measures combining high-density EEG recording with source localization analyses using sLORETA. Compared to the waiting list ADHD control group, impulsive behaviour measured was reduced after neurofeedback treatment. The effects of neurofeedback were very specific for situations requiring inhibitory control over responses. The neurophysiological data shows that processes of perceptual gating, attentional selection and resource allocation processes were not affected by neurofeedback. Rather, neurofeedback effects seem to be based on the modulation of response inhibition processes in medial frontal cortices. The study shows that specific neuronal mechanisms underlying impulsivity are modulated by theta/beta neurofeedback in ADHD. The applied neurofeedback protocol could be particularly suitable to address inhibitory control. The study validates assumed functional neuroanatomical target regions of an established neurofeedback protocol on a neurophysiological level. PMID:27514985

  14. Abnormal error monitoring in math-anxious individuals: evidence from error-related brain potentials.

    PubMed

    Suárez-Pellicioni, Macarena; Núñez-Peña, María Isabel; Colomé, Angels

    2013-01-01

    This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA) and seventeen low math-anxious (LMA) individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN) in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN), the error positivity component (Pe), classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants' math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA) we found greater activation of the insula in errors on a numerical task as compared to errors in a non-numerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN.

  15. Alpha Power, Alpha Asymmetry and Anterior Cingulate Cortex Activity in Depressed Males and Females

    PubMed Central

    Jaworska, Natalia; Blier, Pierre; Fusee, Wendy; Knott, Verner

    2012-01-01

    Left fronto-cortical hypoactivity, thought to reflect reduced activity in approach-related systems, and right parietal hypoactivity, associated with emotional under-arousal, have been noted in major depressive disorder (MDD). Altered theta activity in the anterior cingulate cortex (ACC) has also been associated with the disorder. We assessed resting frontal and parietal alpha asymmetry and power in non-medicated MDD (N=53; 29 females) and control (N=43; 23 females) individuals. Theta activity was examined using standardized low-resolution electromagnetic tomography (sLORETA) in the ACC [BA24ab and BA32 comprising the rostral ACC and BA25/subgenual (sg) ACC]. The MDD group, and particularly depressed males, displayed increased overall frontal and parietal alpha power and left midfrontal hypoactivity (alpha2-indexed). They also exhibited increased sgACC theta2 activity. MDD females had increased right parietal activity, suggesting increased emotive arousal. Thus, unmedicated depressed adults were characterized by lower activity in regions implicated in approach/positive affective tendencies as well as diffuse cortical hypoarousal, though sex specific modulations emerged. Altered theta in the sgACC may reflect emotion regulation abnormalities in MDD. PMID:22939462

  16. Meditators and non-meditators: EEG source imaging during resting.

    PubMed

    Tei, Shisei; Faber, Pascal L; Lehmann, Dietrich; Tsujiuchi, Takuya; Kumano, Hiroaki; Pascual-Marqui, Roberto D; Gianotti, Lorena R R; Kochi, Kieko

    2009-11-01

    Many meditation exercises aim at increased awareness of ongoing experiences through sustained attention and at detachment, i.e., non-engaging observation of these ongoing experiences by the intent not to analyze, judge or expect anything. Long-term meditation practice is believed to generalize the ability of increased awareness and greater detachment into everyday life. We hypothesized that neuroplasticity effects of meditation (correlates of increased awareness and detachment) would be detectable in a no-task resting state. EEG recorded during resting was compared between Qigong meditators and controls. Using LORETA (low resolution electromagnetic tomography) to compute the intracerebral source locations, differences in brain activations between groups were found in the inhibitory delta EEG frequency band. In the meditators, appraisal systems were inhibited, while brain areas involved in the detection and integration of internal and external sensory information showed increased activation. This suggests that neuroplasticity effects of long-term meditation practice, subjectively described as increased awareness and greater detachment, are carried over into non-meditating states.

  17. Effectiveness of music therapy as an aid to neurorestoration of children with severe neurological disorders.

    PubMed

    Bringas, Maria L; Zaldivar, Marilyn; Rojas, Pedro A; Martinez-Montes, Karelia; Chongo, Dora M; Ortega, Maria A; Galvizu, Reynaldo; Perez, Alba E; Morales, Lilia M; Maragoto, Carlos; Vera, Hector; Galan, Lidice; Besson, Mireille; Valdes-Sosa, Pedro A

    2015-01-01

    This study was a two-armed parallel group design aimed at testing real world effectiveness of a music therapy (MT) intervention for children with severe neurological disorders. The control group received only the standard neurorestoration program and the experimental group received an additional MT "Auditory Attention plus Communication protocol" just before the usual occupational and speech therapy. Multivariate Item Response Theory (MIRT) identified a neuropsychological status-latent variable manifested in all children and which exhibited highly significant changes only in the experimental group. Changes in brain plasticity also occurred in the experimental group, as evidenced using a Mismatch Event Related paradigm which revealed significant post intervention positive responses in the latency range between 308 and 400 ms in frontal regions. LORETA EEG source analysis identified prefrontal and midcingulate regions as differentially activated by the MT in the experimental group. Taken together, our results showing improved attention and communication as well as changes in brain plasticity in children with severe neurological impairments, confirm the importance of MT for the rehabilitation of patients across a wide range of dysfunctions.

  18. Disentangling Depression and Distress Networks in the Tinnitus Brain

    PubMed Central

    Joos, Kathleen; Vanneste, Sven; De Ridder, Dirk

    2012-01-01

    Tinnitus is the continuous perception of an internal auditory stimulus. This permanent sound often affects a person's emotional state inducing distress and depressive feelings changes in 6–25% of the affected population. Distress and depression are two distinct emotional states. Whereas distress describes a transient aversive state, interfering with a person's ability to adequately adapt to stressors, depressive feelings should rather be considered as a more constant emotional state. Based on previous observations in chronic pain, posttraumatic stress disorder and depression, we assume that both states are related to separate neural circuits. We used the Dutch version of the Tinnitus Questionnaire to assess the global index of distress together with the Beck Depression Inventory to evaluate the depressive symptoms accompanying tinnitus. Furthermore sLORETA analysis was performed to correlate current density distribution with distress and depression scores, revealing a lateralization effect of depression versus distress. Distress is mainly correlated with alpha 2, beta 1 and beta 2 activity of the right frontopolar cortex and orbitofrontal cortex in combination with beta 2 activation of the anterior cingulate cortex. In contrast, the more permanent depressive alterations induced by tinnitus are associated with activity of alpha 2 activity in the left frontopolar and orbitofrontal cortex. These specific neural circuits are embedded in a greater neural network, with the parahippocampal region functioning as a crucial linkage between both tinnitus related pathways. PMID:22808188

  19. Equivalent charge source model based iterative maximum neighbor weight for sparse EEG source localization.

    PubMed

    Xu, Peng; Tian, Yin; Lei, Xu; Hu, Xiao; Yao, Dezhong

    2008-12-01

    How to localize the neural electric activities within brain effectively and precisely from the scalp electroencephalogram (EEG) recordings is a critical issue for current study in clinical neurology and cognitive neuroscience. In this paper, based on the charge source model and the iterative re-weighted strategy, proposed is a new maximum neighbor weight based iterative sparse source imaging method, termed as CMOSS (Charge source model based Maximum neighbOr weight Sparse Solution). Different from the weight used in focal underdetermined system solver (FOCUSS) where the weight for each point in the discrete solution space is independently updated in iterations, the new designed weight for each point in each iteration is determined by the source solution of the last iteration at both the point and its neighbors. Using such a new weight, the next iteration may have a bigger chance to rectify the local source location bias existed in the previous iteration solution. The simulation studies with comparison to FOCUSS and LORETA for various source configurations were conducted on a realistic 3-shell head model, and the results confirmed the validation of CMOSS for sparse EEG source localization. Finally, CMOSS was applied to localize sources elicited in a visual stimuli experiment, and the result was consistent with those source areas involved in visual processing reported in previous studies.

  20. Women are better at seeing faces where there are none: an ERP study of face pareidolia.

    PubMed

    Proverbio, Alice M; Galli, Jessica

    2016-09-01

    Event-related potentials (ERPs) were recorded in 26 right-handed students while they detected pictures of animals intermixed with those of familiar objects, faces and faces-in-things (FITs). The face-specific N170 ERP component over the right hemisphere was larger in response to faces and FITs than to objects. The vertex positive potential (VPP) showed a difference in FIT encoding processes between males and females at frontal sites; while for men, the FIT stimuli elicited a VPP of intermediate amplitude (between that for faces and objects), for women, there was no difference in VPP responses to faces or FITs, suggesting a marked anthropomorphization of objects in women. SwLORETA source reconstructions carried out to estimate the intracortical generators of ERPs in the 150-190 ms time window showed how, in the female brain, FIT perception was associated with the activation of brain areas involved in the affective processing of faces (right STS, BA22; posterior cingulate cortex, BA22; and orbitofrontal cortex, BA10) in addition to regions linked to shape processing (left cuneus, BA18/30). Conversely, in the men, the activation of occipito/parietal regions was prevalent, with a considerably smaller activation of BA10. The data suggest that the female brain is more inclined to anthropomorphize perfectly real objects compared to the male brain.

  1. Comprehending body language and mimics: an ERP and neuroimaging study on Italian actors and viewers.

    PubMed

    Proverbio, Alice Mado; Calbi, Marta; Manfredi, Mirella; Zani, Alberto

    2014-01-01

    In this study, the neural mechanism subserving the ability to understand people's emotional and mental states by observing their body language (facial expression, body posture and mimics) was investigated in healthy volunteers. ERPs were recorded in 30 Italian University students while they evaluated 280 pictures of highly ecological displays of emotional body language that were acted out by 8 male and female Italian actors. Pictures were briefly flashed and preceded by short verbal descriptions (e.g., "What a bore!") that were incongruent half of the time (e.g., a picture of a very attentive and concentrated person shown after the previous example verbal description). ERP data and source reconstruction indicated that the first recognition of incongruent body language occurred 300 ms post-stimulus. swLORETA performed on the N400 identified the strongest generators of this effect in the right rectal gyrus (BA11) of the ventromedial orbitofrontal cortex, the bilateral uncus (limbic system) and the cingulate cortex, the cortical areas devoted to face and body processing (STS, FFA EBA) and the premotor cortex (BA6), which is involved in action understanding. These results indicate that face and body mimics undergo a prioritized processing that is mostly represented in the affective brain and is rapidly compared with verbal information. This process is likely able to regulate social interactions by providing on-line information about the sincerity and trustfulness of others.

  2. Effects of Ketamine on Resting-State EEG Activity and Their Relationship to Perceptual/Dissociative Symptoms in Healthy Humans

    PubMed Central

    de la Salle, Sara; Choueiry, Joelle; Shah, Dhrasti; Bowers, Hayley; McIntosh, Judy; Ilivitsky, Vadim; Knott, Verner

    2016-01-01

    N-methyl-D-aspartate (NMDA) receptor antagonists administered to healthy humans results in schizophrenia-like symptoms, which preclinical research suggests are due to glutamatergically altered brain oscillations. Here, we examined resting-state electroencephalographic activity in 21 healthy volunteers assessed in a placebo-controlled, double-blind, randomized study involving administration of either a saline infusion or a sub-anesthetic dose of ketamine, an NMDA receptor antagonist. Frequency-specific current source density (CSD) was assessed at sensor-level and source-level using eLORETA within regions of interest of a triple network model of schizophrenia (this model posits a dysfunctional switching between large-scale Default Mode and Central Executive networks by the monitor-controlling Salience Network). These CSDs were measured in each session along with subjective symptoms as indexed with the Clinician Administered Dissociative States Scale. Ketamine-induced CSD reductions in slow (delta/theta and alpha) and increases in fast (gamma) frequencies at scalp electrode sites were paralleled by frequency-specific CSD changes in the Default Mode, Central Executive, and Salience networks. Subjective symptoms scores were increased with ketamine and ratings of depersonalization in particular were associated with alpha CSD reductions in general and in specific regions of interest in each of the three networks. These results tentatively support the hypothesis that pathological brain oscillations associated with hypofunctional NMDA receptor activity may contribute to the emergence of the perceptual/dissociate symptoms of schizophrenia. PMID:27729865

  3. Electrophysiological Evidence Reveals Differences between the Recognition of Microexpressions and Macroexpressions

    PubMed Central

    Shen, Xunbing; Wu, Qi; Zhao, Ke; Fu, Xiaolan

    2016-01-01

    Microexpressions are fleeting facial expressions that are important for judging people’s true emotions. Little is known about the neural mechanisms underlying the recognition of microexpressions (with duration of less than 200 ms) and macroexpressions (with duration of greater than 200 ms). We used an affective priming paradigm in which a picture of a facial expression is the prime and an emotional word is the target, and electroencephalogram (EEG) and event-related potentials (ERPs) to examine neural activities associated with recognizing microexpressions and macroexpressions. The results showed that there were significant main effects of duration and valence for N170/vertex positive potential. The main effect of congruence for N400 is also significant. Further, sLORETA showed that the brain regions responsible for these significant differences included the inferior temporal gyrus and widespread regions of the frontal lobe. Furthermore, the results suggested that the left hemisphere was more involved than the right hemisphere in processing a microexpression. The main effect of duration for the event-related spectral perturbation (ERSP) was significant, and the theta oscillations (4 to 8 Hz) increased in recognizing expressions with a duration of 40 ms compared with 300 ms. Thus, there are different EEG/ERPs neural mechanisms for recognizing microexpressions compared to recognizing macroexpressions.

  4. The notion of the motion: the neurocognition of motion lines in visual narratives.

    PubMed

    Cohn, Neil; Maher, Stephen

    2015-03-19

    Motion lines appear ubiquitously in graphic representation to depict the path of a moving object, most popularly in comics. Some researchers have argued that these graphic signs directly tie to the "streaks" appearing in the visual system when a viewer tracks an object (Burr, 2000), despite the fact that previous studies have been limited to offline measurements. Here, we directly examine the cognition of motion lines by comparing images in comic strips that depicted normal motion lines with those that either had no lines or anomalous, reversed lines. In Experiment 1, shorter viewing times appeared to images with normal lines than those with no lines, which were shorter than those with anomalous lines. In Experiment 2, measurements of event-related potentials (ERPs) showed that, compared to normal lines, panels with no lines elicited a posterior positivity that was distinct from the frontal positivity evoked by anomalous lines. These results suggested that motion lines aid in the comprehension of depicted events. LORETA source localization implicated greater activation of visual and language areas when understanding was made more difficult by anomalous lines. Furthermore, in both experiments, participants' experience reading comics modulated these effects, suggesting motion lines are not tied to aspects of the visual system, but rather are conventionalized parts of the "vocabulary" of the visual language of comics.

  5. The notion of the motion: The neurocognition of motion lines in visual narratives

    PubMed Central

    Cohn, Neil; Maher, Stephen

    2015-01-01

    Motion lines appear ubiquitously in graphic representation to depict the path of a moving object, most popularly in comics. Some researchers have argued that these graphic signs directly tie to the “streaks” appearing in the visual system when a viewer tracks an object (Burr, 2000), despite the fact that previous studies have been limited to offline measurements. Here, we directly examine the cognition of motion lines by comparing images in comic strips that depicted normal motion lines with those that either had no lines or anomalous, reversed lines. In Experiment 1, shorter viewing times appeared to images with normal lines than those with no lines, which were shorter than those with anomalous lines. In Experiment 2, measurements of event-related potentials (ERPs) showed that, compared to normal lines, panels with no lines elicited a posterior positivity that was distinct from the frontal positivity evoked by anomalous lines. These results suggested that motion lines aid in the comprehension of depicted events. LORETA source localization implicated greater activation of visual and language areas when understanding was made more difficult by anomalous lines. Furthermore, in both experiments, participants' experience reading comics modulated these effects, suggesting motion lines are not tied to aspects of the visual system, but rather are conventionalized parts of the “vocabulary” of the visual language of comics. PMID:25601006

  6. Neural markers of a greater female responsiveness to social stimuli

    PubMed Central

    Proverbio, Alice M; Zani, Alberto; Adorni, Roberta

    2008-01-01

    Background There is fMRI evidence that women are neurally predisposed to process infant laughter and crying. Other findings show that women might be more empathic and sensitive than men to emotional facial expressions. However, no gender difference in the brain responses to persons and unanimated scenes has hitherto been demonstrated. Results Twenty-four men and women viewed 220 images portraying persons or landscapes and ERPs were recorded from 128 sites. In women, but not in men, the N2 component (210–270) was much larger to persons than to scenes. swLORETA showed significant bilateral activation of FG (BA19/37) in both genders when viewing persons as opposed to scenes. Only women showed a source of activity in the STG and in the right MOG (extra-striate body area, EBA), and only men in the left parahippocampal area (PPA). Conclusion A significant gender difference was found in activation of the left and right STG (BA22) and the cingulate cortex for the subtractive condition women minus men, thus indicating that women might have a greater preference or interest for social stimuli (faces and persons). PMID:18590546

  7. Alterations of EEG functional connectivity in resting state obese and overweight patients with binge eating disorder: A preliminary report.

    PubMed

    Imperatori, Claudio; Fabbricatore, Mariantonietta; Farina, Benedetto; Innamorati, Marco; Quintiliani, Maria Isabella; Lamis, Dorian A; Contardi, Anna; Della Marca, Giacomo; Speranza, Anna Maria

    2015-10-21

    Alterations in brain functional connectivity have been detected in patients with eating disorders, but have not been studied in binge eating disorder (BED). We have investigated electroencephalographic (EEG) functional connectivity in thirteen overweight and obese patients with BED and thirteen overweight and obese patients without BED during RS condition. EEG analyzes were conducted by means of the exact Low Resolution Electric Tomography software (eLORETA). Compared to patients without BED, patients with BED demonstrated an increase of lagged phase synchronization in the beta frequency band among the cortical areas explored by FC1-T3 (left superior frontal gyrus-left middle temporal gyrus), T5-O1 (left inferior temporal gyrus-left middle occipital gyrus), and C4-O1 (right postcentral gyrus-left middle occipital gyrus) electrodes (T=4.861, p<0.05). EEG connectivity values were also significantly related to binge eating symptomatology after controlling for depressive symptoms. Our results may reflect the impairment of frontal control network and visual processing networks, which lead patients with BED to be more vulnerable to food cues and lack of control with regards to over eating.

  8. Identifying Treatment Response of Sertraline in a Teenager with Selective Mutism using Electrophysiological Neuroimaging

    PubMed Central

    Eugene, Andy R.; Masiak, Jolanta

    2016-01-01

    Background Selective Mutism is described as the inability to verbally express oneself in anxiety provoking social situations and may result in awkward social interactions in school-aged children. In this case-report we present the baseline electrophysiological neuroimaging results and after treatment with Sertraline for 6-weeks. Methods A 20-channel EEG event-related potential recording was acquired during an internal voice task at baseline prior to the initiation of 50mg of Sertraline and then repeated 6-weeks after treatment with Sertraline. EEG signals were processed for movement, eye-blink, and muscle artifacts and ERP signal averaging was completed. ERPs were analyzed using Standard Low Resolution Brain Electromagnetic Tomography (sLORETA). Results At baseline, Sertraline increased the neuronal activation in the middle temporal gyrus and the anterior cingulate gyrus from baseline in the patient following 6-weeks of treatment. Conclusion Our findings suggest that electrophysiological neuroimaging may provide a creative approach for personalizing medicine by providing insight to the pharmacodynamics of antidepressants. PMID:27468379

  9. MEG-measured auditory steady-state oscillations show high test-retest reliability: A sensor and source-space analysis.

    PubMed

    Tan, H-R M; Gross, J; Uhlhaas, P J

    2015-11-15

    Stability of oscillatory signatures across magnetoencephalography (MEG) measurements is an important prerequisite for basic and clinical research that has been insufficiently addressed. Here, we evaluated the test-retest reliability of auditory steady-state responses (ASSRs) over two MEG sessions. The study required participants (N=13) to detect the rare occurrence of pure tones interspersed within a stream of 5 Hz or 40 Hz amplitude-modulated (AM) tones. Intraclass correlations (ICC; Shrout and Fleiss, 1979) were derived to assess stability of spectral power changes and the inter-trial phase coherence (ITPC) of task-elicited neural responses. ASSRs source activity was estimated using eLORETA beamforming from bilateral auditory cortex. ASSRs to 40 Hz AM stimuli evoked stronger power modulation and phase-locking than 5 Hz stimulation. Overall, spectral power and ITPC values at both sensor- and source-level showed robust ICC values. Notably, ITPC measures yielded higher ICCs (~0.86-0.96) between sessions compared to the assessment of spectral power change (~0.61-0.82). Our data indicate that spectral modulations and phase consistency of ASSRs in MEG data are highly reproducible, providing support for MEG-measured oscillatory parameters in basic and clinical research.

  10. Focal attenuation of specific electroencephalographic power over the right parahippocampal region during transcerebral copper screening in living subjects and hemispheric asymmetric voltages in fixed brain tissue.

    PubMed

    Rouleau, Nicolas; Lehman, Brendan; Persinger, Michael A

    2016-08-01

    Covering the heads of human volunteers with a toque lined with copper mesh compared to no mesh resulted in significant diminishments in quantitative electroencephalographic power within theta and beta-gamma bands over the right caudal hemisphere. The effect was most evident in women compared to men. The significant attenuation of power was verified by LORETA (low resolution electromagnetic tomography) within the parahippocampal region of the right hemisphere. Direct measurements of frequency-dependent voltages of coronal section preserved in ethanol-formalin-acetic acid from our human brain collection revealed consistently elevated power (0.2μV(2)Hz(-1)) in right hemispheric structures compared to left. The discrepancy was most pronounced in the grey (cortical) matter of the right parahippocampal region. Probing the superficial convexities of the cerebrum in an unsectioned human brain demonstrated rostrocaudal differences in hemispheric spectral power density asymmetries, particularly over caudal and parahippocampal regions, which were altered as a function of the chemical and spatial contexts imposed upon the tissue. These results indicate that the heterogeneous response of the human cerebrum to covering of the head by a thin conductor could reflect an intrinsic structure and unique electrical property of the (entorhinal) cortices of the right caudal hemisphere that persists in fixed tissue.

  11. Impact of head models in N170 component source imaging: results in control subjects and ADHD patients

    NASA Astrophysics Data System (ADS)

    Beltrachini, L.; Blenkmann, A.; von Ellenrieder, N.; Petroni, A.; Urquina, H.; Manes, F.; Ibáñez, A.; Muravchik, C. H.

    2011-12-01

    The major goal of evoked related potential studies arise in source localization techniques to identify the loci of neural activity that give rise to a particular voltage distribution measured on the surface of the scalp. In this paper we evaluate the effect of the head model adopted in order to estimate the N170 component source in attention deficit hyperactivity disorder (ADHD) patients and control subjects, considering faces and words stimuli. The standardized low resolution brain electromagnetic tomography algorithm (sLORETA) is used to compare between the three shell spherical head model and a fully realistic model based on the ICBM-152 atlas. We compare their variance on source estimation and analyze the impact on the N170 source localization. Results show that the often used three shell spherical model may lead to erroneous solutions, specially on ADHD patients, so its use is not recommended. Our results also suggest that N170 sources are mainly located in the right occipital fusiform gyrus for faces stimuli and in the left occipital fusiform gyrus for words stimuli, for both control subjects and ADHD patients. We also found a notable decrease on the N170 estimated source amplitude on ADHD patients, resulting in a plausible marker of the disease.

  12. Protracted parahippocampal activity associated with Sean Harribance

    PubMed Central

    Persinger, Michael A; Saroka, Kevin S

    2012-01-01

    Aims: Previous research published by Venkatasubramanian et al. (2008) in this journal showed markedly enhanced functional magnetic resonance imaging (fMRI) activity within the right parahippocampal region of a gifted person while he experienced accurate telepathic impression. The present research is designed to discern if Sean Harribance, a reliable psychic who reported independently verified accurate histories of others during his intuitive state, would also show similar enhancement as measured by standardized low resolution electromagnetic tomography (sLORETA). Materials and Methods and Results: The raw data from the unique electroencephalographic pattern displayed by Sean Harribance (the Harribance configuration) during his intuitive state revealed a peak increase of power within the upper beta range (20-30 Hz) within the right parahippocampal region only. Conclusions: The congruence of the region of activation during “telepathy” by Sean Harribance and Gerard Senehi, especially when the specific electromagnetic and cellular characteristics are considered, suggests the parahippocampal region may be a focus for exploration of the mechanisms by which these phenomena might occur. PMID:22869999

  13. Impaired Early Attentional Processes in Parkinson’s Disease: A High-Resolution Event-Related Potentials Study

    PubMed Central

    Bocquillon, Perrine; Bourriez, Jean-Louis; Palmero-Soler, Ernesto; Defebvre, Luc; Derambure, Philippe; Dujardin, Kathy

    2015-01-01

    Introduction The selection of task-relevant information requires both the focalization of attention on the task and resistance to interference from irrelevant stimuli. A previous study using the P3 component of the event-related potentials suggested that a reduced ability to resist interference could be responsible for attention disorders at early stages of Parkinson’s disease (PD), with a possible role of the dorsolateral prefrontal cortex (DLPFC). Methods Our objective was to better determine the origin of this impairment, by studying an earlier ERP component, the N2, and its subcomponents, as they reflect early inhibition processes and as they are known to have sources in the anterior cingulate cortex (ACC), which is involved together with the DLPFC in inhibition processes. Fifteen early-stage PD patients and 15 healthy controls (HCs) performed a three-stimulus visual oddball paradigm, consisting in detecting target inputs amongst standard stimuli, while resisting interference from distracter ones. A 128-channel electroencephalogram was recorded during this task and the generators of the N2 subcomponents were identified using standardized weighted low-resolution electromagnetic tomography (swLORETA). Results PD patients displayed fewer N2 generators than HCs in both the DLPFC and the ACC, for all types of stimuli. In contrast to controls, PD patients did not show any differences between their generators for different N2 subcomponents. Conclusion Our data suggest that impaired inhibition in PD results from dysfunction of the DLPFC and the ACC during the early stages of attentional processes. PMID:26135906

  14. Cortical Brain Connectivity and B-Type Natriuretic Peptide in Patients With Congestive Heart Failure.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Valeriani, Lavinia; Scarpellini, Maria Gabriella; Bramanti, Placido; Mecarelli, Oriano; Rossini, Paolo M

    2015-07-01

    The brain has a high level of complexity and needs continuous oxygen supply. So it is clear that any pathological condition, or physiological (aging) change, in the cardiovascular system affects functioning of the central nervous system. We evaluated linear aspects of the relationship between the slowness of cortical rhythms, as revealed by the modulation of a graph connectivity parameter, and congestive heart failure (CHF), as a reflection of neurodegenerative processes. Eyes-closed resting electroencephalographic (EEG) data of 10 patients with CHF were recorded by 19 electrodes positioned according the international 10-20 system. Graph theory function (normalized characteristic path length λ) was applied to the undirected and weighted networks obtained by lagged linear coherence evaluated by eLORETA software, therefore getting rid of volumetric propagation influences. The EEG frequency bands of interest were: delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), beta 2 (20-30 Hz), and gamma (30-40 Hz). The analysis between B-type natriuretic peptide (BNP) values and λ showed positive correlation in delta, associated with a negative correlation in alpha 2 band. Namely, the higher the severity of the disease (as revealed by the BNP vales), the higher the λ in delta, and lower in alpha 2 band. Results suggest that delta and alpha λ indices are good markers of the severity of CHF.

  15. Electrophysiological time course and brain areas of spontaneous and intentional trait inferences

    PubMed Central

    Van Duynslaeger, Marijke; Verstraeten, Edwin

    2007-01-01

    This study measured event-related potentials during spontaneous and intentional trait inferences. Participants read sentences describing the behavior of a target person from which a strong moral trait could be inferred. The last word of each sentence determined the consistency with the trait induced during an introductory paragraph. In comparison with behaviors that were consistent with the implied trait, a P300 waveform was obtained when the behaviors were evaluative inconsistent with that trait. This dependency on behavioral consistency indicates that trait inferences were made previously while reading the preceding behaviors, irrespective of the participants’ spontaneous or intentional goals. Overall, the P300 shows considerable parallels between spontaneous and intentional inferences, indicating that the type and timing of the inconsistency process is very similar. In contrast, source localization (LORETA) of the event-related potentials suggest that spontaneous inferences show greater activation in the temporo-parietal junction compared to intentional inferences following an inconsistency. Memory measures taken after the presentation of the stimulus material involved sentence completion and trait-cued recall, and supported the occurrence of trait inferences associated with the actor. They also showed significant correlations with the neural components (i.e. P300 and its current density at the temporo-parietal junction) predominantly following spontaneous instructions, indicating that these components are valid neural indices of spontaneous inferences. PMID:18985139

  16. Audio-visuomotor processing in the musician's brain: an ERP study on professional violinists and clarinetists.

    PubMed

    Proverbio, Alice Mado; Calbi, Marta; Manfredi, Mirella; Zani, Alberto

    2014-07-29

    The temporal dynamics of brain activation during visual and auditory perception of congruent vs. incongruent musical video clips was investigated in 12 musicians from the Milan Conservatory of music and 12 controls. 368 videos of a clarinetist and a violinist playing the same score with their instruments were presented. The sounds were similar in pitch, intensity, rhythm and duration. To produce an audiovisual discrepancy, in half of the trials, the visual information was incongruent with the soundtrack in pitch. ERPs were recorded from 128 sites. Only in musicians for their own instruments was a N400-like negative deflection elicited due to the incongruent audiovisual information. SwLORETA applied to the N400 response identified the areas mediating multimodal motor processing: the prefrontal cortex, the right superior and middle temporal gyrus, the premotor cortex, the inferior frontal and inferior parietal areas, the EBA, somatosensory cortex, cerebellum and SMA. The data indicate the existence of audiomotor mirror neurons responding to incongruent visual and auditory information, thus suggesting that they may encode multimodal representations of musical gestures and sounds. These systems may underlie the ability to learn how to play a musical instrument.

  17. One-year-old fear memories rapidly activate human fusiform gyrus.

    PubMed

    Mueller, Erik M; Pizzagalli, Diego A

    2016-02-01

    Fast threat detection is crucial for survival. In line with such evolutionary pressure, threat-signaling fear-conditioned faces have been found to rapidly (<80 ms) activate visual brain regions including the fusiform gyrus on the conditioning day. Whether remotely fear conditioned stimuli (CS) evoke similar early processing enhancements is unknown. Here, 16 participants who underwent a differential face fear-conditioning and extinction procedure on day 1 were presented the initial CS 24 h after conditioning (Recent Recall Test) as well as 9-17 months later (Remote Recall Test) while EEG was recorded. Using a data-driven segmentation procedure of CS evoked event-related potentials, five distinct microstates were identified for both the recent and the remote memory test. To probe intracranial activity, EEG activity within each microstate was localized using low resolution electromagnetic tomography analysis (LORETA). In both the recent (41-55 and 150-191 ms) and remote (45-90 ms) recall tests, fear conditioned faces potentiated rapid activation in proximity of fusiform gyrus, even in participants unaware of the contingencies. These findings suggest that rapid processing enhancements of conditioned faces persist over time. PMID:26416784

  18. Combining energy and Laplacian regularization to accurately retrieve the depth of brain activity of diffuse optical tomographic data

    NASA Astrophysics Data System (ADS)

    Chiarelli, Antonio M.; Maclin, Edward L.; Low, Kathy A.; Mathewson, Kyle E.; Fabiani, Monica; Gratton, Gabriele

    2016-03-01

    Diffuse optical tomography (DOT) provides data about brain function using surface recordings. Despite recent advancements, an unbiased method for estimating the depth of absorption changes and for providing an accurate three-dimensional (3-D) reconstruction remains elusive. DOT involves solving an ill-posed inverse problem, requiring additional criteria for finding unique solutions. The most commonly used criterion is energy minimization (energy constraint). However, as measurements are taken from only one side of the medium (the scalp) and sensitivity is greater at shallow depths, the energy constraint leads to solutions that tend to be small and superficial. To correct for this bias, we combine the energy constraint with another criterion, minimization of spatial derivatives (Laplacian constraint, also used in low resolution electromagnetic tomography, LORETA). Used in isolation, the Laplacian constraint leads to solutions that tend to be large and deep. Using simulated, phantom, and actual brain activation data, we show that combining these two criteria results in accurate (error <2 mm) absorption depth estimates, while maintaining a two-point spatial resolution of <24 mm up to a depth of 30 mm. This indicates that accurate 3-D reconstruction of brain activity up to 30 mm from the scalp can be obtained with DOT.

  19. Noninvasive localization of electromagnetic epileptic activity. I. Method descriptions and simulations.

    PubMed

    Grave de Peralta Menendez, R; Gonzalez Andino, S; Lantz, G; Michel, C M; Landis, T

    2001-01-01

    This paper considers the solution of the bioelectromagnetic inverse problem with particular emphasis on focal compact sources that are likely to arise in epileptic data. Two linear inverse methods are proposed and evaluated in simulations. The first method belongs to the class of distributed inverse solutions, capable of dealing with multiple simultaneously active sources. This solution is based on a Local Auto Regressive Average (LAURA) model. Since no assumption is made about the number of activated sources, this approach can be applied to data with multiple sources. The second method, EPIFOCUS, assumes that there is only a single focal source. However, in contrast to the single dipole model, it allows the source to have a spatial extent beyond a single point and avoids the non-linear optimization process required by dipole fitting. The performance of both methods is evaluated with synthetic data in noisy and noise free conditions. The simulation results demonstrate that LAURA and EPIFOCUS increase the number of sources retrieved with zero dipole localization error and produce lower maximum error and lower average error compared to Minimum Norm, Weighted Minimum Norm and Minimum Laplacian (LORETA). The results show that EPIFOCUS is a robust and powerful tool to localize focal sources. Alternatives to localize data generated by multiple sources are discussed. A companion paper (Lantz et al. 2001, this issue) illustrates the application of LAURA and EPIFOCUS to the analysis of interictal data in epileptic patients.

  20. Electrophysiological Evidence Reveals Differences between the Recognition of Microexpressions and Macroexpressions.

    PubMed

    Shen, Xunbing; Wu, Qi; Zhao, Ke; Fu, Xiaolan

    2016-01-01

    Microexpressions are fleeting facial expressions that are important for judging people's true emotions. Little is known about the neural mechanisms underlying the recognition of microexpressions (with duration of less than 200 ms) and macroexpressions (with duration of greater than 200 ms). We used an affective priming paradigm in which a picture of a facial expression is the prime and an emotional word is the target, and electroencephalogram (EEG) and event-related potentials (ERPs) to examine neural activities associated with recognizing microexpressions and macroexpressions. The results showed that there were significant main effects of duration and valence for N170/vertex positive potential. The main effect of congruence for N400 is also significant. Further, sLORETA showed that the brain regions responsible for these significant differences included the inferior temporal gyrus and widespread regions of the frontal lobe. Furthermore, the results suggested that the left hemisphere was more involved than the right hemisphere in processing a microexpression. The main effect of duration for the event-related spectral perturbation (ERSP) was significant, and the theta oscillations (4 to 8 Hz) increased in recognizing expressions with a duration of 40 ms compared with 300 ms. Thus, there are different EEG/ERPs neural mechanisms for recognizing microexpressions compared to recognizing macroexpressions. PMID:27630610

  1. Encoding of visual-spatial information in working memory requires more cerebral efforts than retrieval: Evidence from an EEG and virtual reality study.

    PubMed

    Jaiswal, N; Ray, W; Slobounov, S

    2010-08-01

    Visual-spatial working memory tasks can be decomposed into encoding and retrieval phases. It was hypothesized that encoding of visual-spatial information is cognitively more challenging than retrieval. This was tested by combining electroencephalography with a virtual reality paradigm to observe the modulation in EEG activity. EEG power analysis results demonstrated an increase in theta activity during encoding in comparison to retrieval, whereas alpha activity was significantly higher for retrieval in comparison to encoding. We found that encoding required more cerebral efforts than retrieval. Further, as seen in fMRI studies, we observed an encoding/retrieval flip in that encoding and retrieval differentially activated similar neural substrates. Results obtained from sLORETA identified cortical sources in the inferior frontal gyrus, which is a part of dorsolateral prefrontal cortex (DLPFC) during encoding, whereas the inferior parietal lobe and precuneus cortical sources were identified during retrieval. We further tie our results into studies examining the default network, which have shown increased activation in DLPFC occurs in response to increased cerebral challenge, while posterior parietal areas show activation during baseline or internal processing tasks. We conclude that encoding of visual-spatial information via VR navigation task is more cerebrally challenging than retrieval.

  2. An Herbal Nasal Drop Enhanced Frontal and Anterior Cingulate Cortex Activity

    PubMed Central

    Chan, Agnes S.; Cheung, Mei-chun; Sze, Sophia L.; Leung, Winnie W.; Shi, Dejian

    2011-01-01

    The present study examined the neuro-electrophysiological activity of the brain associated with the application of a herbal remedy developed by a Shaolin monk based upon the Chan healing principle of clearing the orifices (i.e., the nasal cavities). A repeated-measures design was used. Fourteen normal adults were administered herbal remedy and saline solution intranasally on separate sessions. Two intervals of eyes-closed resting EEG data were obtained individually before and after each administration. Results showed that only the herbal remedy but not the saline solution induced elevation in cordance, an index correlated with cerebral perfusion, in the anterior brain region. In addition, the activity of the anterior cingulate cortex (ACC), as examined by the LORETA analysis, was also increased after the application of the herbal remedy but not saline solution. The present study provided some preliminary evidence suggesting that the herbal nasal drop enhanced the activity of the frontal lobe and ACC. Implications for the potential clinical application of the herbal remedy to treat patients with frontal lobe disorders were discussed. PMID:19996154

  3. Alterations of EEG functional connectivity in resting state obese and overweight patients with binge eating disorder: A preliminary report.

    PubMed

    Imperatori, Claudio; Fabbricatore, Mariantonietta; Farina, Benedetto; Innamorati, Marco; Quintiliani, Maria Isabella; Lamis, Dorian A; Contardi, Anna; Della Marca, Giacomo; Speranza, Anna Maria

    2015-10-21

    Alterations in brain functional connectivity have been detected in patients with eating disorders, but have not been studied in binge eating disorder (BED). We have investigated electroencephalographic (EEG) functional connectivity in thirteen overweight and obese patients with BED and thirteen overweight and obese patients without BED during RS condition. EEG analyzes were conducted by means of the exact Low Resolution Electric Tomography software (eLORETA). Compared to patients without BED, patients with BED demonstrated an increase of lagged phase synchronization in the beta frequency band among the cortical areas explored by FC1-T3 (left superior frontal gyrus-left middle temporal gyrus), T5-O1 (left inferior temporal gyrus-left middle occipital gyrus), and C4-O1 (right postcentral gyrus-left middle occipital gyrus) electrodes (T=4.861, p<0.05). EEG connectivity values were also significantly related to binge eating symptomatology after controlling for depressive symptoms. Our results may reflect the impairment of frontal control network and visual processing networks, which lead patients with BED to be more vulnerable to food cues and lack of control with regards to over eating. PMID:26409786

  4. Long-range neural activity evoked by premotor cortex stimulation: a TMS/EEG co-registration study

    PubMed Central

    Zanon, Marco; Battaglini, Piero P.; Jarmolowska, Joanna; Pizzolato, Gilberto; Busan, Pierpaolo

    2013-01-01

    The premotor cortex is one of the fundamental structures composing the neural networks of the human brain. It is implicated in many behaviors and cognitive tasks, ranging from movement to attention and eye-related activity. Therefore, neural circuits that are related to premotor cortex have been studied to clarify their connectivity and/or role in different tasks. In the present work, we aimed to investigate the propagation of the neural activity evoked in the dorsal premotor cortex using transcranial magnetic stimulation/electroencephalography (TMS/EEG). Toward this end, interest was focused on the neural dynamics elicited in long-ranging temporal and spatial networks. Twelve healthy volunteers underwent a single-pulse TMS protocol in a resting condition with eyes closed, and the evoked activity, measured by EEG, was compared to a sham condition in a time window ranging from 45 ms to about 200 ms after TMS. Spatial and temporal investigations were carried out with sLORETA. TMS was found to induce propagation of neural activity mainly in the contralateral sensorimotor and frontal cortices, at about 130 ms after delivery of the stimulus. Different types of analyses showed propagated activity also in posterior, mainly visual, regions, in a time window between 70 and 130 ms. Finally, a likely “rebounding” activation of the sensorimotor and frontal regions, was observed in various time ranges. Taken together, the present findings further characterize the neural circuits that are driven by dorsal premotor cortex activation in healthy humans. PMID:24324426

  5. Effectiveness of music therapy as an aid to neurorestoration of children with severe neurological disorders.

    PubMed

    Bringas, Maria L; Zaldivar, Marilyn; Rojas, Pedro A; Martinez-Montes, Karelia; Chongo, Dora M; Ortega, Maria A; Galvizu, Reynaldo; Perez, Alba E; Morales, Lilia M; Maragoto, Carlos; Vera, Hector; Galan, Lidice; Besson, Mireille; Valdes-Sosa, Pedro A

    2015-01-01

    This study was a two-armed parallel group design aimed at testing real world effectiveness of a music therapy (MT) intervention for children with severe neurological disorders. The control group received only the standard neurorestoration program and the experimental group received an additional MT "Auditory Attention plus Communication protocol" just before the usual occupational and speech therapy. Multivariate Item Response Theory (MIRT) identified a neuropsychological status-latent variable manifested in all children and which exhibited highly significant changes only in the experimental group. Changes in brain plasticity also occurred in the experimental group, as evidenced using a Mismatch Event Related paradigm which revealed significant post intervention positive responses in the latency range between 308 and 400 ms in frontal regions. LORETA EEG source analysis identified prefrontal and midcingulate regions as differentially activated by the MT in the experimental group. Taken together, our results showing improved attention and communication as well as changes in brain plasticity in children with severe neurological impairments, confirm the importance of MT for the rehabilitation of patients across a wide range of dysfunctions. PMID:26582974

  6. Natural stimuli from three coherent modalities enhance behavioral responses and electrophysiological cortical activity in humans.

    PubMed

    Sella, Irit; Reiner, Miriam; Pratt, Hillel

    2014-07-01

    Cues that involve a number of sensory modalities are processed in the brain in an interactive multimodal manner rather than independently for each modality. We studied multimodal integration in a natural, yet fully controlled scene, implemented as an interactive game in an auditory-haptic-visual virtual environment. In this imitation of a natural scene, the targets of perception were ecologically valid uni-, bi- and tri-modal manifestations of a simple event-a ball hitting a wall. Subjects were engaged in the game while their behavioral and early cortical electrophysiological responses were measured. Behavioral results confirmed that tri-modal cues were detected faster and more accurately than bi-modal cues, which, likewise, showed advantages over unimodal responses. Event-Related Potentials (ERPs) were recorded, and the first 200 ms following stimulus onset was analyzed to reveal the latencies of cortical multimodal interactions as estimated by sLORETA. These electrophysiological findings indicated bi-modal as well as tri-modal interactions beginning very early (~30 ms), uniquely for each multimodal combination. The results suggest that early cortical multimodal integration accelerates cortical activity and, in turn, enhances performance measures. This acceleration registers on the scalp as sub-additive cortical activation.

  7. Neural activation for conceptual identification of correct versus incorrect tool-object pairs.

    PubMed

    Mizelle, J C; Wheaton, Lewis A

    2010-10-01

    Appropriate tool-object pairing is a natural part of our lives. When preparing to clean our teeth, we know that a toothbrush is useful, but not a screwdriver. The neural correlates of this pairing process remain unclear. We recorded 64-channel electroencephalography to determine neural correlates of identification of tool-object matches and mismatches. Subjects were shown a target tool (e.g. spoon) later paired with an object that was either a conceptual match (e.g. bowl) or mismatch (e.g. wood). To verify that activity was not related to general concept of match-mismatch, in a second condition subjects saw non-tool environmental items (e.g. bird) later paired with a conceptual match (e.g. nest) or mismatch (e.g. spider web). Analysis was focused on time bins after each picture, using standardized low-resolution brain electromagnetic tomography (sLORETA). Tool-object match versus mismatch revealed significant differences in the posterior cingulate, precuneus, left insula and superior temporal gyrus. These patterns were not present for environmental match versus mismatch. This work suggests a specific network in comprehending tool-based pairings, but not extensive to other pairings. The posterior cingulate, precuneus, insula and superior temporal gyrus preferentially differentiates tool-object matching and mismatching, identifying a potential locus related to impairments in comprehending appropriate and inappropriate tool-object relationships that arise after neural injury.

  8. Neural generators of the auditory evoked potential components P3a and P3b.

    PubMed

    Wronka, Eligiusz; Kaiser, Jan; Coenen, Anton M L

    2012-01-01

    The aim of the present study was to define the scalp topography of the two subcomponents of the P3 component of the auditory evoked potential elicited in a three-stimulus oddball paradigm and to identify their cortical generators using the standardized low resolution electromagnetic tomography (sLORETA). Subjects were presented with a random sequence of auditory stimuli and instructed to respond to an infrequently occurring target stimulus inserted into a sequence of frequent standard and rare non-target stimuli. Results show that the magnitude of the frontal P3a is determined by the relative physical difference among stimuli, as it was larger for the stimulus more deviant from the standard. Major neural generators of the P3a were localized within frontal cortex and anterior cingulate gyrus. In contrast to this, the P3b, showing maximal amplitude at parietal locations, was larger for stimuli demanding a response than for the rare non-target. Major sources of the P3b included the superior parietal lobule and the posterior part of the cingulate gyrus. Our findings are in line with the hypothesis that P3a is related to alerting activity during the initial allocation of attention, while P3b is related to activation of a posterior network when the neuronal model of perceived stimulation is compared with the attentional trace. PMID:22508084

  9. A role for the precuneus in thought–action fusion: Evidence from participants with significant obsessive–compulsive symptoms☆

    PubMed Central

    Jones, Rhiannon; Bhattacharya, Joydeep

    2013-01-01

    Likelihood thought–action fusion (TAF-L) refers to a cognitive bias in which individuals believe that the mere thought of a negative event increases its likelihood of occurring in reality. TAF-L is most commonly associated with obsessive–compulsive disorder (OCD) but is also present in depression, generalized anxiety disorder and psychosis. We induced TAF-L in individuals with high (High-OC, N = 23) and low (Low-OC, N = 24) levels of OC traits, and used low resolution electromagnetic tomography (LORETA) to localise the accompanying electrical brain activity patterns. The results showed greater TAF-L in the High-OC than in the Low-OC group (p < .005), which was accompanied by significantly greater upper beta frequency (19–30 Hz) activity in the precuneus (p < .05). Further, the precuneus activity was positively correlated with self-reported magnitude of TAF-L (p < .01), suggesting a specific role of this region in this cognitive bias. Results are discussed with reference to self-referential processing and the default-mode network. PMID:24371793

  10. Neurophysiological correlates of eye movement desensitization and reprocessing sessions: preliminary evidence for traumatic memories integration.

    PubMed

    Farina, Benedetto; Imperatori, Claudio; Quintiliani, Maria I; Castelli Gattinara, Paola; Onofri, Antonio; Lepore, Marta; Brunetti, Riccardo; Losurdo, Anna; Testani, Elisa; Della Marca, Giacomo

    2015-11-01

    We have investigated the potential role of eye movement desensitization and reprocessing (EMDR) in enhancing the integration of traumatic memories by measuring EEG coherence, power spectra and autonomic variables before (pre-EMDR) and after (post-EMDR) EMDR sessions during the recall of patient's traumatic memory. Thirteen EMDR sessions of six patients with post-traumatic stress disorder were recorded. EEG analyses were conducted by means of the standardized Low Resolution Electric Tomography (sLORETA) software. Power spectra, EEG coherence and heart rate variability (HRV) were compared between pre- and post-EMDR sessions. After EMDR, we observed a significant increase of alpha power in the left inferior temporal gyrus (T = 3.879; P = 0.041) and an increased EEG coherence in beta band between C3 and T5 electrodes (T = 6.358; P < 0.001). Furthermore, a significant increase of HRV in the post-EMDR sessions was also observed (pre-EMDR: 6.38 ± 6.83; post-EMDR: 2.46 ± 2.95; U-Test = 45, P = 0.043). Finally, the values of lagged coherence were negatively associated with subjective units of disturbance (r(24) = -0.44, P < 0.05) and positively associated with parasympathetic activity (r(24) = 0.40, P < 0.05). Our results suggest that EMDR leads to an integration of dissociated aspects of traumatic memories and, consequently, a decrease of hyperarousal symptoms [Correction made here after initial publication].

  11. The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback.

    PubMed

    Bluschke, Annet; Broschwitz, Felicia; Kohl, Simon; Roessner, Veit; Beste, Christian

    2016-08-12

    Neurofeedback is increasingly recognized as an intervention to treat core symptoms of attention deficit hyperactivity disorder (ADHD). Despite the large number of studies having been carried out to evaluate its effectiveness, it is widely elusive what neuronal mechanisms related to the core symptoms of ADHD are modulated by neurofeedback. 19 children with ADHD undergoing 8 weeks of theta/beta neurofeedback and 17 waiting list controls performed a Go/Nogo task in a pre-post design. We used neurophysiological measures combining high-density EEG recording with source localization analyses using sLORETA. Compared to the waiting list ADHD control group, impulsive behaviour measured was reduced after neurofeedback treatment. The effects of neurofeedback were very specific for situations requiring inhibitory control over responses. The neurophysiological data shows that processes of perceptual gating, attentional selection and resource allocation processes were not affected by neurofeedback. Rather, neurofeedback effects seem to be based on the modulation of response inhibition processes in medial frontal cortices. The study shows that specific neuronal mechanisms underlying impulsivity are modulated by theta/beta neurofeedback in ADHD. The applied neurofeedback protocol could be particularly suitable to address inhibitory control. The study validates assumed functional neuroanatomical target regions of an established neurofeedback protocol on a neurophysiological level.

  12. The time course of brain activity in reading English and Chinese: an ERP study of Chinese bilinguals.

    PubMed

    Liu, Ying; Perfetti, Charles A

    2003-03-01

    Chinese bilinguals performed a delayed naming task, reading both Chinese characters and English words, while EEGs were recorded by a 128-channel system. Principle component analysis (PCA) of Event Related Potentials (ERP) from the onset of the stimulus suggested a temporal unfolding of graphic, phonological, and semantic processing that depended on both language and word frequency. At 150 msec, Chinese produced an earlier and higher amplitude shift (N150) than English. At 250 msec, frequency effects were significant for both Chinese and English, but at 450 msec, only the English frequency effect was reliable. Source localization analysis by Low Resolution Electromagnetic Tomography (LORETA) showed bilateral occipital (left BA 17, right BA 18) visual processing of Chinese characters with left occipital only (left BA 17) for English high-frequency words. Low-frequency English words showed activation bilaterally, but with a more diffused and extended temporal pattern. Right prefrontal area (BA 10) was found to be strongly activated in the mid latency (300-400 msec) period of Chinese character naming, whereas English word naming showed more medial frontal (BA 8, and 10) activation. A post 450-msec visual verification was found to be general for both writing systems.

  13. The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback.

    PubMed

    Bluschke, Annet; Broschwitz, Felicia; Kohl, Simon; Roessner, Veit; Beste, Christian

    2016-01-01

    Neurofeedback is increasingly recognized as an intervention to treat core symptoms of attention deficit hyperactivity disorder (ADHD). Despite the large number of studies having been carried out to evaluate its effectiveness, it is widely elusive what neuronal mechanisms related to the core symptoms of ADHD are modulated by neurofeedback. 19 children with ADHD undergoing 8 weeks of theta/beta neurofeedback and 17 waiting list controls performed a Go/Nogo task in a pre-post design. We used neurophysiological measures combining high-density EEG recording with source localization analyses using sLORETA. Compared to the waiting list ADHD control group, impulsive behaviour measured was reduced after neurofeedback treatment. The effects of neurofeedback were very specific for situations requiring inhibitory control over responses. The neurophysiological data shows that processes of perceptual gating, attentional selection and resource allocation processes were not affected by neurofeedback. Rather, neurofeedback effects seem to be based on the modulation of response inhibition processes in medial frontal cortices. The study shows that specific neuronal mechanisms underlying impulsivity are modulated by theta/beta neurofeedback in ADHD. The applied neurofeedback protocol could be particularly suitable to address inhibitory control. The study validates assumed functional neuroanatomical target regions of an established neurofeedback protocol on a neurophysiological level. PMID:27514985

  14. Electrophysiological Evidence Reveals Differences between the Recognition of Microexpressions and Macroexpressions

    PubMed Central

    Shen, Xunbing; Wu, Qi; Zhao, Ke; Fu, Xiaolan

    2016-01-01

    Microexpressions are fleeting facial expressions that are important for judging people’s true emotions. Little is known about the neural mechanisms underlying the recognition of microexpressions (with duration of less than 200 ms) and macroexpressions (with duration of greater than 200 ms). We used an affective priming paradigm in which a picture of a facial expression is the prime and an emotional word is the target, and electroencephalogram (EEG) and event-related potentials (ERPs) to examine neural activities associated with recognizing microexpressions and macroexpressions. The results showed that there were significant main effects of duration and valence for N170/vertex positive potential. The main effect of congruence for N400 is also significant. Further, sLORETA showed that the brain regions responsible for these significant differences included the inferior temporal gyrus and widespread regions of the frontal lobe. Furthermore, the results suggested that the left hemisphere was more involved than the right hemisphere in processing a microexpression. The main effect of duration for the event-related spectral perturbation (ERSP) was significant, and the theta oscillations (4 to 8 Hz) increased in recognizing expressions with a duration of 40 ms compared with 300 ms. Thus, there are different EEG/ERPs neural mechanisms for recognizing microexpressions compared to recognizing macroexpressions. PMID:27630610

  15. Who needs a referee? How incorrect basketball actions are automatically detected by basketball players' brain.

    PubMed

    Proverbio, Alice Mado; Crotti, Nicola; Manfredi, Mirella; Adorni, Roberta; Zani, Alberto

    2012-01-01

    While the existence of a mirror neuron system (MNS) representing and mirroring simple purposeful actions (such as reaching) is known, neural mechanisms underlying the representation of complex actions (such as ballet, fencing, etc.) that are learned by imitation and exercise are not well understood. In this study, correct and incorrect basketball actions were visually presented to professional basketball players and naïve viewers while their EEG was recorded. The participants had to respond to rare targets (unanimated scenes). No category or group differences were found at perceptual level, ruling out the possibility that correct actions might be more visually familiar. Large, anterior N400 responses of event-related brain potentials to incorrectly performed basketball actions were recorded in skilled brains only. The swLORETA inverse solution for incorrect-correct contrast showed that the automatic detection of action ineffectiveness/incorrectness involved the fronto/parietal MNS, the cerebellum, the extra-striate body area, and the superior temporal sulcus.

  16. Semantic brain areas are involved in gesture comprehension: An electrical neuroimaging study.

    PubMed

    Proverbio, Alice Mado; Gabaro, Veronica; Orlandi, Andrea; Zani, Alberto

    2015-08-01

    While the mechanism of sign language comprehension in deaf people has been widely investigated, little is known about the neural underpinnings of spontaneous gesture comprehension in healthy speakers. Bioelectrical responses to 800 pictures of actors showing common Italian gestures (e.g., emblems, deictic or iconic gestures) were recorded in 14 persons. Stimuli were selected from a wider corpus of 1122 gestures. Half of the pictures were preceded by an incongruent description. ERPs were recorded from 128 sites while participants decided whether the stimulus was congruent. Congruent pictures elicited a posterior P300 followed by late positivity, while incongruent gestures elicited an anterior N400 response. N400 generators were investigated with swLORETA reconstruction. Processing of congruent gestures activated face- and body-related visual areas (e.g., BA19, BA37, BA22), the left angular gyrus, mirror fronto/parietal areas. The incongruent-congruent contrast particularly stimulated linguistic and semantic brain areas, such as the left medial and the superior temporal lobe.

  17. Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization

    PubMed Central

    Strobbe, Gregor; Carrette, Evelien; López, José David; Montes Restrepo, Victoria; Van Roost, Dirk; Meurs, Alfred; Vonck, Kristl; Boon, Paul; Vandenberghe, Stefaan; van Mierlo, Pieter

    2016-01-01

    Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP) approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i) an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii) an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii) an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time epochs were in

  18. Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization.

    PubMed

    Strobbe, Gregor; Carrette, Evelien; López, José David; Montes Restrepo, Victoria; Van Roost, Dirk; Meurs, Alfred; Vonck, Kristl; Boon, Paul; Vandenberghe, Stefaan; van Mierlo, Pieter

    2016-01-01

    Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP) approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i) an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii) an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii) an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time epochs were in

  19. Early differential sensitivity of evoked-potentials to local and global shape during the perception of three-dimensional objects.

    PubMed

    Leek, E Charles; Roberts, Mark; Oliver, Zoe J; Cristino, Filipe; Pegna, Alan J

    2016-08-01

    Here we investigated the time course underlying differential processing of local and global shape information during the perception of complex three-dimensional (3D) objects. Observers made shape matching judgments about pairs of sequentially presented multi-part novel objects. Event-related potentials (ERPs) were used to measure perceptual sensitivity to 3D shape differences in terms of local part structure and global shape configuration - based on predictions derived from hierarchical structural description models of object recognition. There were three types of different object trials in which stimulus pairs (1) shared local parts but differed in global shape configuration; (2) contained different local parts but shared global configuration or (3) shared neither local parts nor global configuration. Analyses of the ERP data showed differential amplitude modulation as a function of shape similarity as early as the N1 component between 146-215ms post-stimulus onset. These negative amplitude deflections were more similar between objects sharing global shape configuration than local part structure. Differentiation among all stimulus types was reflected in N2 amplitude modulations between 276-330ms. sLORETA inverse solutions showed stronger involvement of left occipitotemporal areas during the N1 for object discrimination weighted towards local part structure. The results suggest that the perception of 3D object shape involves parallel processing of information at local and global scales. This processing is characterised by relatively slow derivation of 'fine-grained' local shape structure, and fast derivation of 'coarse-grained' global shape configuration. We propose that the rapid early derivation of global shape attributes underlies the observed patterns of N1 amplitude modulations.

  20. Trait inferences in goal-directed behavior: ERP timing and localization under spontaneous and intentional processing

    PubMed Central

    Van den Eede, Sofie; Baetens, Kris; Vandekerckhove, Marie

    2009-01-01

    This study measured event-related potentials (ERPs) during multiple goal and trait inferences, under spontaneous or intentional instructions. Participants read sentences describing several goal-implying behaviors of a target person from which also a strong trait could be inferred or not. The last word of each sentence determined the consistency with the inference induced during preceding sentences. In comparison with behaviors that implied only a goal, stronger waveforms beginning at ∼150 ms were obtained when the behaviors additionally implied a trait. These ERPs showed considerable parallels between spontaneous and intentional inferences. This suggests that traits embedded in a stream of goal-directed behaviors were detected more rapidly and automatically than mere goals, irrespective of the participants’ spontaneous or intentional instructions. In line with this, source localization (LORETA) of the ERPs show predominantly activation in the temporo-parietal junction (TPJ) during 150–200 ms, suggesting that goals were detected at that time interval. During 200–300 ms, activation was stronger at the medial prefrontal cortex (mPFC) for multiple goals and traits as opposed to goals only, suggesting that traits were inferred during this time window. A cued recall measure taken after the presentation of the stimulus material support the occurrence of goal and trait inferences and shows significant correlations with the neural components, indicating that these components are valid neural indices of spontaneous and intentional social inferences. The early detection of multiple goal and trait inferences is explained in terms of their greater social relevance, leading to privileged attention allocation and processing in the brain. PMID:19270041

  1. Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Altavilla, Riccardo; Scrascia, Federica; Giambattistelli, Federica; Quattrocchi, Carlo Cosimo; Bramanti, Placido; Vernieri, Fabrizio; Rossini, Paolo Maria

    2015-01-01

    A relatively new approach to brain function in neuroscience is the "functional connectivity", namely the synchrony in time of activity in anatomically-distinct but functionally-collaborating brain regions. On the other hand, diffusion tensor imaging (DTI) is a recently developed magnetic resonance imaging (MRI)-based technique with the capability to detect brain structural connection with fractional anisotropy (FA) identification. FA decrease has been observed in the corpus callosum of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI, an AD prodromal stage). Corpus callosum splenium DTI abnormalities are thought to be associated with functional disconnections among cortical areas. This study aimed to investigate possible correlations between structural damage, measured by MRI-DTI, and functional abnormalities of brain integration, measured by characteristic path length detected in resting state EEG source activity (40 participants: 9 healthy controls, 10 MCI, 10 mild AD, 11 moderate AD). For each subject, undirected and weighted brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity values were used as weight of the edges of the network. Results showed that callosal FA reduction is associated to a loss of brain interhemispheric functional connectivity characterized by increased delta and decreased alpha path length. These findings suggest that "global" (average network shortest path length representing an index of how efficient is the information transfer between two parts of the network) functional measure can reflect the reduction of fiber connecting the two hemispheres as revealed by DTI analysis and also anticipate in time this structural loss. PMID:25613102

  2. The Brain Network of Expectancy and Uncertainty Processing

    PubMed Central

    Catena, Andrés; Perales, José C.; Megías, Alberto; Cándido, Antonio; Jara, Elvia; Maldonado, Antonio

    2012-01-01

    Background The Stimulus Preceding Negativity (SPN) is a non-motor slow cortical potential elicited by temporally predictable stimuli, customarily interpreted as a physiological index of expectancy. Its origin would be the brain activity responsible for generating the anticipatory mental representation of an expected upcoming event. The SPN manifests itself as a slow cortical potential with negative slope, growing in amplitude as the stimulus approximates. The uncertainty hypothesis we present here postulates that the SPN is linked to control-related areas in the prefrontal cortex that become more active before the occurrence of an upcoming outcome perceived as uncertain. Methods/Findings We tested the uncertainty hypothesis by using a repeated measures design in a Human Contingency Learning task with two levels of uncertainty. In the high uncertainty condition, the outcome is unpredictable. In the mid uncertainty condition, the outcome can be learnt to be predicted in 75% of the trials. Our experiment shows that the Stimulus Preceding Negativity is larger for probabilistically unpredictable (uncertain) outcomes than for probabilistically predictable ones. sLoreta estimations of the brain activity preceding the outcome suggest that prefrontal and parietal areas can be involved in its generation. Prefrontal sites activation (Anterior Cingulate and Dorsolateral Prefrontal Cortex) seems to be related to the degree of uncertainty. Activation in posterior parietal areas, however, does not correlates with uncertainty. Conclusions/Significance We suggest that the Stimulus Preceding Negativity reflects the attempt to predict the outcome, when posterior brain areas fail to generate a stable expectancy. Uncertainty is thus conceptualized, not just as the absence of learned expectancy, but as a state with psychological and physiological entity. PMID:22768344

  3. Meditation experience predicts less negative appraisal of pain: electrophysiological evidence for the involvement of anticipatory neural responses.

    PubMed

    Brown, Christopher A; Jones, Anthony K P

    2010-09-01

    The aim of mindfulness meditation is to develop present-focused, non-judgmental, attention. Therefore, experience in meditation should be associated with less anticipation and negative appraisal of pain. In this study we compared a group of individuals with meditation experience to a control group to test whether any differences in the affective appraisal of pain could be explained by lower anticipatory neural processing. Anticipatory and pain-evoked ERPs and reported pain unpleasantness were recorded in response to laser stimuli of matched subjective intensity between the two groups. ERP data were analysed after source estimation with LORETA. No group effects were found on the laser energies used to induce pain. More experienced meditators perceived the pain as less unpleasant relative to controls, with meditation experience correlating inversely with unpleasantness ratings. ERP source data for anticipation showed that in meditators, lower activity in midcingulate cortex relative to controls was related to the lower unpleasantness ratings, and was predicted by lifetime meditation experience. Meditators also reversed the normal positive correlation between medial prefrontal cortical activity and pain unpleasantness during anticipation. Meditation was also associated with lower activity in S2 and insula during the pain-evoked response, although the experiment could not disambiguate this activity from the preceding anticipation response. Our data is consistent with the hypothesis that meditation reduces the anticipation and negative appraisal of pain, but effects on pain-evoked activity are less clear and may originate from preceding anticipatory activity. Further work is required to directly test the causal relationship between meditation, pain anticipation, and pain experience.

  4. Low and then high frequency oscillations of distinct right cortical networks are progressively enhanced by medium and long term Satyananda Yoga meditation practice

    PubMed Central

    Thomas, John; Jamieson, Graham; Cohen, Marc

    2014-01-01

    Meditation proficiency is related to trait-like (learned) effects on brain function, developed over time. Previous studies show increases in EEG power in lower frequency bands (theta, alpha) in experienced meditators in both meditation states and baseline conditions. Higher gamma band power has been found in advanced Buddhist meditators, yet it is not known if this occurs in Yoga meditation practices. This study used eLORETA to compare differences in cortical source activity underlying scalp EEG from intermediate (mean experience 4 years) and advanced (mean experience 30 years) Australian meditators from the Satyananda Yoga tradition during a body-steadiness meditation, mantra meditation, and non-meditation mental calculation condition. Intermediate Yoga meditators showed greater source activity in low frequencies (particularly theta and alpha1) during mental calculation, body-steadiness and mantra meditation. A similar spatial pattern of significant differences was found in all conditions but the number of significant voxels was double during body-steadiness and mantra meditation than in the non-meditation (calculation) condition. These differences were greatest in right (R) superior frontal and R precentral gyri and extended back to include the R parietal and occipital lobes. Advanced Yoga meditators showed greater activity in high frequencies (beta and especially gamma) in all conditions but greatly expanded during meditation practice. Across all conditions (meditation and non-meditation) differences were greatest in the same regions: R insula, R inferior frontal gyrus and R anterior temporal lobe. Distinct R core networks were identified in alpha1 (8–10 Hz) and gamma (25–42 Hz) bands, respectively. The voxels recruited to these networks greatly expanded during meditation practice to include homologous regions of the left hemisphere. Functional interpretation parallels traditionally described stages of development in Yoga proficiency. PMID:24959124

  5. The relationship between brain cortical activity and brain oxygenation in the prefrontal cortex during hypergravity exposure.

    PubMed

    Smith, Craig; Goswami, Nandu; Robinson, Ryan; von der Wiesche, Melanie; Schneider, Stefan

    2013-04-01

    Artificial gravity has been proposed as a method to counteract the physiological deconditioning of long-duration spaceflight; however, the effects of hypergravity on the central nervous system has had little study. The study aims to investigate whether there is a relationship between prefrontal cortex brain activity and prefrontal cortex oxygenation during exposure to hypergravity. Twelve healthy participants were selected to undergo hypergravity exposure aboard a short-arm human centrifuge. Participants were exposed to hypergravity in the +Gz axis, starting from 0.6 +Gz for women, and 0.8 +Gz for men, and gradually increasing by 0.1 +Gz until the participant showed signs of syncope. Brain cortical activity was measured using electroencephalography (EEG) and localized to the prefrontal cortex using standard low-resolution brain electromagnetic tomography (LORETA). Prefrontal cortex oxygenation was measured using near-infrared spectroscopy (NIRS). A significant increase in prefrontal cortex activity (P < 0.05) was observed during hypergravity exposure compared with baseline. Prefrontal cortex oxygenation was significantly decreased during hypergravity exposure, with a decrease in oxyhemoglobin levels (P < 0.05) compared with baseline and an increase in deoxyhemoglobin levels (P < 0.05) with increasing +Gz level. No significant correlation was found between prefrontal cortex activity and oxy-/deoxyhemoglobin. It is concluded that the increase in prefrontal cortex activity observed during hypergravity was most likely not the result of increased +Gz values resulting in a decreased oxygenation produced through hypergravity exposure. No significant relationship between prefrontal cortex activity and oxygenation measured by NIRS concludes that brain activity during exposure to hypergravity may be difficult to measure using NIRS. Instead, the increase in prefrontal cortex activity might be attributable to psychological stress, which could pose a problem for the use of a

  6. Prefrontal oscillations during recall of conditioned and extinguished fear in humans.

    PubMed

    Mueller, Erik M; Panitz, Christian; Hermann, Christiane; Pizzagalli, Diego A

    2014-05-21

    Human neuroimaging studies indicate that the anterior midcingulate cortex (AMC) and the ventromedial prefrontal cortex (vmPFC) play important roles in the expression and extinction of fear, respectively. Electrophysiological rodent studies further indicate that oscillatory neuronal activity in homolog regions (i.e., prelimbic and infralimbic cortices) changes during fear expression and fear extinction recall. Whether similar processes occur in humans remains largely unexplored. By assessing scalp surface EEG in conjunction with LORETA source estimation of CS-related theta and gamma activity, we tested whether a priori defined ROIs in the human AMC and vmPFC similarly modulate their oscillatory activity during fear expression and extinction recall, respectively. To this end, 42 healthy individuals underwent a differential conditioning/differential extinction protocol with a Recall Test on the next day. In the Recall Test, nonextinguished versus extinguished stimuli evoked an increased differential (CS(+) vs CS(-)) response with regard to skin conductance and AMC-localized theta power. Conversely, extinguished versus nonextinguished stimuli evoked an increased differential response with regard to vmPFC-localized gamma power. Finally, individuals who failed to show a suppressed skin conductance response to the extinguished versus nonextinguished CS(+) also failed to show the otherwise observed alterations in vmPFC gamma power to extinguished CS(+). These results indicate that fear expression is associated with AMC theta activity, whereas successful fear extinction recall relates to changes in vmPFC gamma activity. The present work thereby bridges findings from prior rodent electrophysiological research and human neuroimaging studies and indicates that EEG is a valuable tool for future fear extinction research.

  7. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: implications for treatment outcome?

    PubMed

    Arns, Martijn; Etkin, Amit; Hegerl, Ulrich; Williams, Leanne M; DeBattista, Charles; Palmer, Donna M; Fitzgerald, Paul B; Harris, Anthony; deBeuss, Roger; Gordon, Evian

    2015-08-01

    In major depressive disorder (MDD), elevated theta current density in the rostral anterior cingulate (rACC), as estimated by source localization of scalp-recorded electroencenphalogram (EEG), has been associated with response to antidepressant treatments, whereas elevated frontal theta has been linked to non-response. This study used source localization to attempt to integrate these apparently opposite results and test, whether antidepressant response is associated with elevated rACC theta and non-response with elevated frontal theta and whether theta activity is a differential predictor of response to different types of commonly used antidepressants. In the international Study to Predict Optimized Treatment in Depression (iSPOT-D), a multi-center, international, randomized, prospective practical trial, 1008 MDD participants were randomized to escitalopram, sertraline or venlafaxine-XR. The study also recruited 336 healthy controls. Treatment response and remission were established after eight weeks using the 17-item Hamilton Rating Scale for Depression (HRSD17). The resting-state EEG was assessed at baseline with eyes closed and source localization (eLORETA) was employed to extract theta from the rACC and frontal cortex. Patients with MDD had elevated theta in both frontal cortex and rACC, with small effect sizes. High frontal and rACC theta were associated with treatment non-response, but not with non-remission, and this effect was most pronounced in a subgroup with previous treatment failures. Low theta in frontal cortex and rACC are found in responders to antidepressant treatments with a small effect size. Future studies should investigate in more detail the role of previous treatment (failure) in the association between theta and treatment outcome. PMID:25936227

  8. Emerging hubs in phantom perception connectomics

    PubMed Central

    Mohan, Anusha; De Ridder, Dirk; Vanneste, Sven

    2016-01-01

    Brain networks are small-world networks typically characterized by the presence of hubs, i.e. nodes that have significantly greater number of links in comparison to other nodes in the network. These hubs act as short cuts in the network and promote long-distance connectivity. Long-distance connections increase the efficiency of information transfer but also increase the cost of the network. Brain disorders are associated with an altered brain connectome which reflects either as a complete change in the network topology, as in, the replacement of hubs or as an alteration in the connectivity between the hubs while retaining network structure. The current study compares the network topology of binary and weighted networks in tinnitus patients and healthy controls by studying the hubs of the two networks in different oscillatory bands. The EEG of 311 tinnitus patients and 256 control subjects are recorded, pre-processed and source-localized using sLORETA. The hubs of the different binary and weighted networks are identified using different measures of network centrality. The results suggest that the tinnitus and control networks are distinct in all the frequency bands but substantially overlap in the gamma frequency band. The differences in network topology in the tinnitus and control groups in the delta, theta and the higher beta bands are driven by a change in hubs as well as network connectivity; in the alpha band by changes in hubs alone and in the gamma band by changes in network connectivity. Thus the brain seems to employ different frequency band-dependent adaptive mechanisms trying to compensate for auditory deafferentation. PMID:26955514

  9. Utility of event-related potentials in predicting antidepressant treatment response: An iSPOT-D report.

    PubMed

    van Dinteren, Rik; Arns, Martijn; Kenemans, Leon; Jongsma, Marijtje L A; Kessels, Roy P C; Fitzgerald, Paul; Fallahpour, Kamran; Debattista, Charles; Gordon, Evian; Williams, Leanne M

    2015-11-01

    It is essential to improve antidepressant treatment of major depressive disorder (MDD) and one way this could be achieved is by reducing the number of treatment steps by employing biomarkers that can predict treatment outcome. This study investigated differences between MDD patients and healthy controls in the P3 and N1 component from the event-related potential (ERP) generated in a standard two-tone oddball paradigm. Furthermore, the P3 and N1 are investigated as predictors for treatment outcome to three different antidepressants. In the international Study to Predict Optimized Treatment in Depression (iSPOT-D)--a multi-center, international, randomized, prospective practical trial--1008 MDD participants were randomized to escitalopram, sertraline or venlafaxine-XR. The study also recruited 336 healthy controls. Treatment response and remission were established after eight weeks using the 17-item Hamilton Rating Scale for Depression. P3 and N1 latencies and amplitudes were analyzed using a peak-picking approach and further replicated by using exact low resolution tomography (eLORETA). A reduced P3 was found in MDD patients compared to controls by a peak-picking analysis. This was validated in a temporal global field power analysis. Source density analysis revealed that the difference in cortical activity originated from the posterior cingulate and parahippocampal gyrus. Male non-responders to venlafaxine-XR had significantly smaller N1 amplitudes than responders. This was demonstrated by both analytical methods. Male non-responders to venlafaxine-XR had less activity originating from the left insular cortex. The observed results are discussed from a neural network viewpoint. PMID:26282359

  10. Can you catch a liar? How negative emotions affect brain responses when lying or telling the truth.

    PubMed

    Proverbio, Alice Mado; Vanutelli, Maria Elide; Adorni, Roberta

    2013-01-01

    The capacity to deceive others is a complex mental skill that requires the ability to suppress truthful information. The polygraph is widely used in countries such as the USA to detect deception. However, little is known about the effects of emotional processes (such as the fear of being found guilty despite being innocent) on the physiological responses that are used to detect lies. The aim of this study was to investigate the time course and neural correlates of untruthful behavior by analyzing electrocortical indexes in response to visually presented neutral and affective questions. Affective questions included sexual, shameful or disgusting topics. A total of 296 questions that were inherently true or false were presented to 25 subjects while ERPs were recorded from 128 scalp sites. Subjects were asked to lie on half of the questions and to answer truthfully on the remaining half. Behavioral and ERP responses indicated an increased need for executive control functions, namely working memory, inhibition and task switching processes, during deceptive responses. Deceptive responses also elicited a more negative N400 over the prefrontal areas and a smaller late positivity (LP 550-750 ms) over the prefrontal and frontal areas. However, a reduction in LP amplitude was also elicited by truthful affective responses. The failure to observe a difference in LP responses across conditions likely results from emotional interference. A swLORETA inverse solution was computed on the N400 amplitude (300-400 ms) for the dishonest - honest contrast. These results showed the activation of the superior, medial, middle and inferior frontal gyri (BA9, 11, 47) and the anterior cingulate cortex during deceptive responses. Our results conclude that the N400 amplitude is a reliable neural marker of deception. PMID:23536874

  11. Bayesian model selection of template forward models for EEG source reconstruction.

    PubMed

    Strobbe, Gregor; van Mierlo, Pieter; De Vos, Maarten; Mijović, Bogdan; Hallez, Hans; Van Huffel, Sabine; López, José David; Vandenberghe, Stefaan

    2014-06-01

    Several EEG source reconstruction techniques have been proposed to identify the generating neuronal sources of electrical activity measured on the scalp. The solution of these techniques depends directly on the accuracy of the forward model that is inverted. Recently, a parametric empirical Bayesian (PEB) framework for distributed source reconstruction in EEG/MEG was introduced and implemented in the Statistical Parametric Mapping (SPM) software. The framework allows us to compare different forward modeling approaches, using real data, instead of using more traditional simulated data from an assumed true forward model. In the absence of a subject specific MR image, a 3-layered boundary element method (BEM) template head model is currently used including a scalp, skull and brain compartment. In this study, we introduced volumetric template head models based on the finite difference method (FDM). We constructed a FDM head model equivalent to the BEM model and an extended FDM model including CSF. These models were compared within the context of three different types of source priors related to the type of inversion used in the PEB framework: independent and identically distributed (IID) sources, equivalent to classical minimum norm approaches, coherence (COH) priors similar to methods such as LORETA, and multiple sparse priors (MSP). The resulting models were compared based on ERP data of 20 subjects using Bayesian model selection for group studies. The reconstructed activity was also compared with the findings of previous studies using functional magnetic resonance imaging. We found very strong evidence in favor of the extended FDM head model with CSF and assuming MSP. These results suggest that the use of realistic volumetric forward models can improve PEB EEG source reconstruction.

  12. Beta-Band Functional Connectivity is Reorganized in Mild Cognitive Impairment after Combined Computerized Physical and Cognitive Training.

    PubMed

    Klados, Manousos A; Styliadis, Charis; Frantzidis, Christos A; Paraskevopoulos, Evangelos; Bamidis, Panagiotis D

    2016-01-01

    Physical and cognitive idleness constitute significant risk factors for the clinical manifestation of age-related neurodegenerative diseases. In contrast, a physically and cognitively active lifestyle may restructure age-declined neuronal networks enhancing neuroplasticity. The present study, investigated the changes of brain's functional network in a group of elderly individuals at risk for dementia that were induced by a combined cognitive and physical intervention scheme. Fifty seniors meeting Petersen's criteria of Mild Cognitive Impairment were equally divided into an experimental (LLM), and an active control (AC) group. Resting state electroencephalogram (EEG) was measured before and after the intervention. Functional networks were estimated by computing the magnitude square coherence between the time series of all available cortical sources as computed by standardized low resolution brain electromagnetic tomography (sLORETA). A statistical model was used to form groups' characteristic weighted graphs. The introduced modulation was assessed by networks' density and nodes' strength. Results focused on the beta band (12-30 Hz) in which the difference of the two networks' density is maximum, indicating that the structure of the LLM cortical network changes significantly due to the intervention, in contrast to the network of AC. The node strength of LLM participants in the beta band presents a higher number of bilateral connections in the occipital, parietal, temporal and prefrontal regions after the intervention. Our results show that the combined training scheme reorganizes the beta-band functional connectivity of MCI patients. ClinicalTrials.gov Identifier: NCT02313935 https://clinicaltrials.gov/ct2/show/NCT02313935.

  13. Neural Patterns of the Implicit Association Test

    PubMed Central

    Healy, Graham F.; Boran, Lorraine; Smeaton, Alan F.

    2015-01-01

    The Implicit Association Test (IAT) is a reaction time based categorization task that measures the differential associative strength between bipolar targets and evaluative attribute concepts as an approach to indexing implicit beliefs or biases. An open question exists as to what exactly the IAT measures, and here EEG (Electroencephalography) has been used to investigate the time course of ERPs (Event-related Potential) indices and implicated brain regions in the IAT. IAT-EEG research identifies a number of early (250–450 ms) negative ERPs indexing early-(pre-response) processing stages of the IAT. ERP activity in this time range is known to index processes related to cognitive control and semantic processing. A central focus of these efforts has been to use IAT-ERPs to delineate the implicit and explicit factors contributing to measured IAT effects. Increasing evidence indicates that cognitive control (and related top-down modulation of attention/perceptual processing) may be components in the effective measurement of IAT effects, as factors such as physical setting or task instruction can change an IAT measurement. In this study we further implicate the role of proactive cognitive control and top-down modulation of attention/perceptual processing in the IAT-EEG. We find statistically significant relationships between D-score (a reaction-time based measure of the IAT-effect) and early ERP-time windows, indicating where more rapid word categorizations driving the IAT effect are present, they are at least partly explainable by neural activity not significantly correlated with the IAT measurement itself. Using LORETA, we identify a number of brain regions driving these ERP-IAT relationships notably involving left-temporal, insular, cingulate, medial frontal and parietal cortex in time regions corresponding to the N2- and P3-related activity. The identified brain regions involved with reduced reaction times on congruent blocks coincide with those of previous studies

  14. Can You Catch a Liar? How Negative Emotions Affect Brain Responses when Lying or Telling the Truth

    PubMed Central

    Proverbio, Alice Mado; Vanutelli, Maria Elide; Adorni, Roberta

    2013-01-01

    The capacity to deceive others is a complex mental skill that requires the ability to suppress truthful information. The polygraph is widely used in countries such as the USA to detect deception. However, little is known about the effects of emotional processes (such as the fear of being found guilty despite being innocent) on the physiological responses that are used to detect lies. The aim of this study was to investigate the time course and neural correlates of untruthful behavior by analyzing electrocortical indexes in response to visually presented neutral and affective questions. Affective questions included sexual, shameful or disgusting topics. A total of 296 questions that were inherently true or false were presented to 25 subjects while ERPs were recorded from 128 scalp sites. Subjects were asked to lie on half of the questions and to answer truthfully on the remaining half. Behavioral and ERP responses indicated an increased need for executive control functions, namely working memory, inhibition and task switching processes, during deceptive responses. Deceptive responses also elicited a more negative N400 over the prefrontal areas and a smaller late positivity (LP 550–750 ms) over the prefrontal and frontal areas. However, a reduction in LP amplitude was also elicited by truthful affective responses. The failure to observe a difference in LP responses across conditions likely results from emotional interference. A swLORETA inverse solution was computed on the N400 amplitude (300–400 ms) for the dishonest – honest contrast. These results showed the activation of the superior, medial, middle and inferior frontal gyri (BA9, 11, 47) and the anterior cingulate cortex during deceptive responses. Our results conclude that the N400 amplitude is a reliable neural marker of deception. PMID:23536874

  15. Neural Mechanisms of Rapid Sensitivity to Syntactic Anomaly

    PubMed Central

    Kim, Albert E.; Gilley, Phillip M.

    2013-01-01

    Recent psycholinguistic models hypothesize that anticipatory processing can speed the response to linguistic input during language comprehension by pre-activating representations necessary for word recognition. We investigated the neurocognitive mechanisms of anticipatory processing by recording event-related potentials (ERPs) to syntactically anomalous (The thief was caught by for police) and well-formed (e.g., The thief was caught by the police) sentences. One group of participants saw anomalies elicited by the same word in every instance (e.g., for; low-variability stimuli), providing high affordances for predictions about the word-form appearing in the critical position. A second group saw anomalies elicited by seven different prepositions (at, of, on, for, from, over, with; high-variability stimuli) across the study, creating a more difficult prediction task. Syntactic category anomalies enhanced the occipital-temporal N170 component of the ERP, indicating rapid sensitivity – within 200 ms of word-onset – to syntactic anomaly. For low-variability but not the high-variability stimuli, syntactic anomaly also enhanced the earlier occipital-temporal P1 component, around 130 ms after word-onset, indicating that affordances for prediction engendered earlier sensitivity to syntactic anomaly. Independent components analysis revealed three sources within the ERP signal whose functional dynamics were consistent with predictive processing and early responses to syntactic anomaly. Distributed neural source modeling (sLORETA) of these early active sources produced a candidate network for early responses to words during reading in the right posterior occipital, left occipital-temporal, and medial parietal cortex. PMID:23515395

  16. Neurocognitive Function in Acromegaly after Surgical Resection of GH-Secreting Adenoma versus Naïve Acromegaly

    PubMed Central

    Martín-Rodríguez, Juan Francisco; Madrazo-Atutxa, Ainara; Venegas-Moreno, Eva; Benito-López, Pedro; Gálvez, María Ángeles; Cano, David A.; Tinahones, Francisco J.; Torres-Vela, Elena; Soto-Moreno, Alfonso; Leal-Cerro, Alfonso

    2013-01-01

    Patients with active untreated acromegaly show mild to moderate neurocognitive disorders that are associated to chronic exposure to growth hormone (GH) and insulin-like growth factor (IGF-I) hypersecretion. However, it is unknown whether these disorders improve after controlling GH/IGF-I hypersecretion. The aim of this study was to compare neurocognitive functions of patients who successfully underwent GH-secreting adenoma transsphenoidal surgery (cured patients) with patients with naive acromegaly. In addition, we wanted to determine the impact of different clinical and biochemical variables on neurocognitive status in patients with active disease and after long-term cure. A battery of six standardized neuropsychological tests assessed attention, memory and executive functioning. In addition, a quantitative electroencephalography with Low-Resolution Electromagnetic Tomography (LORETA) solution was performed to obtain information about the neurophysiological state of the patients. Neurocognitive data was compared to that of a healthy control group. Multiple linear regression analysis was also conducted using clinical and hormonal parameters to obtain a set of independent predictors of neurocognitive state before and after cure. Both groups of patients scored significantly poorer than the healthy controls on memory tests, especially those assessing visual and verbal recall. Patients with cured acromegaly did not obtain better cognitive measures than naïve patients. Furthermore memory deficits were associated with decreased beta activity in left medial temporal cortex in both groups of patients. Regression analysis showed longer duration of untreated acromegaly was associated with more severe neurocognitive complications, regardless of the diagnostic group, whereas GH levels at the time of assessment was related to neurocognitive outcome only in naïve patients. Longer duration of post-operative biochemical remission of acromegaly was associated with better

  17. Can you catch a liar? How negative emotions affect brain responses when lying or telling the truth.

    PubMed

    Proverbio, Alice Mado; Vanutelli, Maria Elide; Adorni, Roberta

    2013-01-01

    The capacity to deceive others is a complex mental skill that requires the ability to suppress truthful information. The polygraph is widely used in countries such as the USA to detect deception. However, little is known about the effects of emotional processes (such as the fear of being found guilty despite being innocent) on the physiological responses that are used to detect lies. The aim of this study was to investigate the time course and neural correlates of untruthful behavior by analyzing electrocortical indexes in response to visually presented neutral and affective questions. Affective questions included sexual, shameful or disgusting topics. A total of 296 questions that were inherently true or false were presented to 25 subjects while ERPs were recorded from 128 scalp sites. Subjects were asked to lie on half of the questions and to answer truthfully on the remaining half. Behavioral and ERP responses indicated an increased need for executive control functions, namely working memory, inhibition and task switching processes, during deceptive responses. Deceptive responses also elicited a more negative N400 over the prefrontal areas and a smaller late positivity (LP 550-750 ms) over the prefrontal and frontal areas. However, a reduction in LP amplitude was also elicited by truthful affective responses. The failure to observe a difference in LP responses across conditions likely results from emotional interference. A swLORETA inverse solution was computed on the N400 amplitude (300-400 ms) for the dishonest - honest contrast. These results showed the activation of the superior, medial, middle and inferior frontal gyri (BA9, 11, 47) and the anterior cingulate cortex during deceptive responses. Our results conclude that the N400 amplitude is a reliable neural marker of deception.

  18. How Negative Social Bias Affects Memory for Faces: An Electrical Neuroimaging Study

    PubMed Central

    Proverbio, Alice Mado; La Mastra, Francesca; Zani, Alberto

    2016-01-01

    During social interactions, we make inferences about people’s personal characteristics based on their appearance. These inferences form a potential prejudice that can positively or negatively bias our interaction with them. Not much is known about the effects of negative bias on face perception and the ability to recognize people faces. This ability was investigated by recording event-related potentials (ERPs) from 128 sites in 16 volunteers. In the first session (encoding), they viewed 200 faces associated with a short fictional story that described anecdotal positive or negative characteristics about each person. In the second session (recognition), they underwent an old/new memory test, in which they had to distinguish 100 new faces from the previously shown faces. ERP data relative to the encoding phase showed a larger anterior negativity in response to negatively (vs. positively) biased faces, indicating an additional processing of faces with unpleasant social traits. In the recognition task, ERPs recorded in response to new faces elicited a larger FN400 than to old faces, and to positive than negative faces. Additionally, old faces elicited a larger Old-New parietal response than new faces, in the form of an enlarged late positive (LPC) component. An inverse solution SwLORETA (450–550 ms) indicated that remembering old faces was associated with the activation of right superior frontal gyrus (SFG), left medial temporal gyrus, and right fusiform gyrus. Only negatively connoted faces strongly activated the limbic and parahippocampal areas and the left SFG. A dissociation was found between familiarity (modulated by negative bias) and recollection (distinguishing old from new faces). PMID:27655327

  19. External Error Monitoring in Subclinical Obsessive-Compulsive Subjects: Electrophysiological Evidence from a Gambling Task

    PubMed Central

    Ye, Rong; Chen, Xingui; Dong, Yi; Li, Dan; Zhang, Long; Li, Dandan; Wang, Kai

    2014-01-01

    Background Feedback-related negativity (FRN) is believed to be an important electrophysiology index of “external” negative feedback processing. Previous studies on FRN in obsessive-compulsive (OC) individuals are scarce and controversial. In these studies, anxiety symptoms were not evaluated in detail. However, OC disorders have a number of radical differences from anxiety disorders. It is necessary to study FRN and its neuroanatomical correlates in OC individuals without anxious symptoms. Methods A total of 628 undergraduate students completed an OC questionnaire. We chose 14 students who scored in the upper 10% and 14 students who scored in the lowest 10% without anxiety symptoms as a subclinical OC group (SOC) and a low obsessive-compulsive group (LOC). The students all performed the revised Iowa Gambling Task. We used the event-related potentials (ERP) and standardized low-resolution brain electromagnetic tomography (sLORETA) to track external negative feedback processing and its substrate in the brain. Results Our study revealed poorer decision-making ability and greater FRN amplitudes in SOC subjects compared with LOC controls. The SOC subjects displayed anterior prefrontal cortex (aPFC) hyperactivation during the loss feedback condition. Specifically, we found an intercorrelation of current source density during the loss condition between the dorsal anterior cingulate cortex (dACC) and aPFC in the LOC subjects but not in the SOC group. Conclusions Our results support the notion that overactive external feedback error processing may reflect a candidate endophenotype of OC. We also provide important information on the dysfunction in the interaction between aPFC and dACC in populations with OC. Nevertheless, the findings support that OC may be distinguished from other anxiety disorders using a new electrophysiology perspective. PMID:24609106

  20. Similarities between explicit and implicit motor imagery in mental rotation of hands: an EEG study.

    PubMed

    Osuagwu, Bethel A; Vuckovic, Aleksandra

    2014-12-01

    Chronometric and imaging studies have shown that motor imagery is used implicitly during mental rotation tasks in which subjects for example judge the laterality of human hand pictures at various orientations. Since explicit motor imagery is known to activate the sensorimotor areas of the cortex, mental rotation is expected to do similar if it involves a form of motor imagery. So far, functional magnetic resonance imaging and positron emission tomography have been used to study mental rotation and less attention has been paid to electroencephalogram (EEG) which offers a high time-frequency resolution. The time-frequency analysis is an established method for studying explicit motor imagery. Although hand mental rotation is claimed to involve motor imagery, the time-frequency characteristics of mental rotation have never been compared with those of explicit motor imagery. In this study, time-frequency responses of EEG recorded during explicit motor imagery and during a mental rotation task, inducing implicit motor imagery, were compared. Fifteen right-handed healthy volunteers performed motor imagery of hands in one condition and hand laterality judgement tasks in another while EEG of the whole head was recorded. The hand laterality judgement was the mental rotation task used to induce implicit motor imagery. The time-frequency analysis and sLORETA localisation of the EEG showed that the activities in the sensorimotor areas had similar spatial and time-frequency characteristics in explicit motor imagery and implicit motor imagery conditions. Furthermore this sensorimotor activity was different for the left and for the right hand in both explicit and implicit motor imagery. This result supports that motor imagery is used during mental rotation and that it can be detected and studied with EEG technology. This result should encourage the use of mental rotation of body parts in rehabilitation programmes in a similar manner as motor imagery.

  1. Hypnotizability, Hypnosis and Prepulse Inhibition of the Startle Reflex in Healthy Women: An ERP Analysis

    PubMed Central

    De Pascalis, Vilfredo; Russo, Emanuela

    2013-01-01

    A working model of the neurophysiology of hypnosis suggests that highly hypnotizable individuals (HHs) have more effective frontal attentional systems implementing control, monitoring performance, and inhibiting unwanted stimuli from conscious awareness, than low hypnotizable individuals (LHs). Recent studies, using prepulse inhibition (PPI) of the auditory startle reflex (ASR), suggest that HHs, in the waking condition, may show reduced sensory gating although they may selectively attend and disattend different stimuli. Using a within subject design and a strict subject selection procedure, in waking and hypnosis conditions we tested whether HHs compared to LHs showed a significantly lower inhibition of the ASR and startle-related brain activity in both time and intracerebral source localization domains. HHs, as compared to LH participants, exhibited (a) longer latency of the eyeblink startle reflex, (b) reduced N100 responses to startle stimuli, and (c) higher PPI of eyeblink startle and of the P200 and P300 waves. Hypnosis yielded smaller N100 waves to startle stimuli and greater PPI of this component than in the waking condition. sLORETA analysis revealed that, for the N100 (107 msec) elicited during startle trials, HHs had a smaller activation in the left parietal lobe (BA2/40) than LHs. Auditory pulses of pulse-with prepulse trials in HHs yielded less activity of the P300 (280 msec) wave than LHs, in the cingulate and posterior cingulate gyrus (BA23/31). The present results, on the whole, are in the opposite direction to PPI findings on hypnotizability previously reported in the literature. These results provide support to the neuropsychophysiological model that HHs have more effective sensory integration and gating (or filtering) of irrelevant stimuli than LHs. PMID:24278150

  2. 250 ms to code for action affordance during observation of manipulable objects.

    PubMed

    Proverbio, Alice Mado; Adorni, Roberta; D'Aniello, Guido Edoardo

    2011-07-01

    It is well known that viewing graspable tools (but not other objects) activates motor-related brain regions, but the time course of affordance processing has remained relatively unexplored. In this study, EEG was continuously recorded from 128 scalp sites in 15 right-handed university students while they received stimuli in the form of 150 pictures of familiar non-tool objects and 150 pictures of manipulable tools, matched for size, luminance and perceptual familiarity. To select the 300 images for the study, a wider set of preliminary stimuli was screened for motoric content by 20 judges using a 3-point scale (0=absent; 2=strong); pictures that scored below 1.5 or above 0.6 were excluded from the tool and non-tool categories, respectively. Tools and non-tools were presented in random order, interspersed with 25 photos of live plants. Each slide was presented for 1000 ms, with an interval ranging from 1500 to 1900 ms. The task consisted of responding to the photos of plants while ignoring the other stimuli. Both an anterior negativity (210-270 ms) and a centroparietal P300 (550-600 ms) were larger in response to tools than objects, particularly in the left hemisphere. swLORETA inverse solution identified the occipito-temporal cortex (BA19 and BA37) as the most significant source of activity (in the 210-270-ms time window) for both types of visual objects and the left postcentral gyrus (BA3) and the left and right premotor cortex (BA6) as the most significant source of activity for tools only. These data hint at an automatic access to motoric object properties even under conditions in which attention is devoted to other stimulus categories.

  3. Intracranial EEG potentials estimated from MEG sources: A new approach to correlate MEG and iEEG data in epilepsy.

    PubMed

    Grova, Christophe; Aiguabella, Maria; Zelmann, Rina; Lina, Jean-Marc; Hall, Jeffery A; Kobayashi, Eliane

    2016-05-01

    Detection of epileptic spikes in MagnetoEncephaloGraphy (MEG) requires synchronized neuronal activity over a minimum of 4cm2. We previously validated the Maximum Entropy on the Mean (MEM) as a source localization able to recover the spatial extent of the epileptic spike generators. The purpose of this study was to evaluate quantitatively, using intracranial EEG (iEEG), the spatial extent recovered from MEG sources by estimating iEEG potentials generated by these MEG sources. We evaluated five patients with focal epilepsy who had a pre-operative MEG acquisition and iEEG with MRI-compatible electrodes. Individual MEG epileptic spikes were localized along the cortical surface segmented from a pre-operative MRI, which was co-registered with the MRI obtained with iEEG electrodes in place for identification of iEEG contacts. An iEEG forward model estimated the influence of every dipolar source of the cortical surface on each iEEG contact. This iEEG forward model was applied to MEG sources to estimate iEEG potentials that would have been generated by these sources. MEG-estimated iEEG potentials were compared with measured iEEG potentials using four source localization methods: two variants of MEM and two standard methods equivalent to minimum norm and LORETA estimates. Our results demonstrated an excellent MEG/iEEG correspondence in the presumed focus for four out of five patients. In one patient, the deep generator identified in iEEG could not be localized in MEG. MEG-estimated iEEG potentials is a promising method to evaluate which MEG sources could be retrieved and validated with iEEG data, providing accurate results especially when applied to MEM localizations. Hum Brain Mapp 37:1661-1683, 2016. © 2016 Wiley Periodicals, Inc.

  4. Source-space ICA for MEG source imaging

    NASA Astrophysics Data System (ADS)

    Jonmohamadi, Yaqub; Jones, Richard D.

    2016-02-01

    Objective. One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. Approach. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Main Results. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. Significance. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.

  5. Classification of Single Normal and Alzheimer's Disease Individuals from Cortical Sources of Resting State EEG Rhythms

    PubMed Central

    Babiloni, Claudio; Triggiani, Antonio I.; Lizio, Roberta; Cordone, Susanna; Tattoli, Giacomo; Bevilacqua, Vitoantonio; Soricelli, Andrea; Ferri, Raffaele; Nobili, Flavio; Gesualdo, Loreto; Millán-Calenti, José C.; Buján, Ana; Tortelli, Rosanna; Cardinali, Valentina; Barulli, Maria Rosaria; Giannini, Antonio; Spagnolo, Pantaleo; Armenise, Silvia; Buenza, Grazia; Scianatico, Gaetano; Logroscino, Giancarlo; Frisoni, Giovanni B.; del Percio, Claudio

    2016-01-01

    Previous studies have shown abnormal power and functional connectivity of resting state electroencephalographic (EEG) rhythms in groups of Alzheimer's disease (AD) compared to healthy elderly (Nold) subjects. Here we tested the best classification rate of 120 AD patients and 100 matched Nold subjects using EEG markers based on cortical sources of power and functional connectivity of these rhythms. EEG data were recorded during resting state eyes-closed condition. Exact low-resolution brain electromagnetic tomography (eLORETA) estimated the power and functional connectivity of cortical sources in frontal, central, parietal, occipital, temporal, and limbic regions. Delta (2–4 Hz), theta (4–8 Hz), alpha 1 (8–10.5 Hz), alpha 2 (10.5–13 Hz), beta 1 (13–20 Hz), beta 2 (20–30 Hz), and gamma (30–40 Hz) were the frequency bands of interest. The classification rates of interest were those with an area under the receiver operating characteristic curve (AUROC) higher than 0.7 as a threshold for a moderate classification rate (i.e., 70%). Results showed that the following EEG markers overcame this threshold: (i) central, parietal, occipital, temporal, and limbic delta/alpha 1 current density; (ii) central, parietal, occipital temporal, and limbic delta/alpha 2 current density; (iii) frontal theta/alpha 1 current density; (iv) occipital delta/alpha 1 inter-hemispherical connectivity; (v) occipital-temporal theta/alpha 1 right and left intra-hemispherical connectivity; and (vi) parietal-limbic alpha 1 right intra-hemispherical connectivity. Occipital delta/alpha 1 current density showed the best classification rate (sensitivity of 73.3%, specificity of 78%, accuracy of 75.5%, and AUROC of 82%). These results suggest that EEG source markers can classify Nold and AD individuals with a moderate classification rate higher than 80%. PMID:26941594

  6. Neural Patterns of the Implicit Association Test.

    PubMed

    Healy, Graham F; Boran, Lorraine; Smeaton, Alan F

    2015-01-01

    The Implicit Association Test (IAT) is a reaction time based categorization task that measures the differential associative strength between bipolar targets and evaluative attribute concepts as an approach to indexing implicit beliefs or biases. An open question exists as to what exactly the IAT measures, and here EEG (Electroencephalography) has been used to investigate the time course of ERPs (Event-related Potential) indices and implicated brain regions in the IAT. IAT-EEG research identifies a number of early (250-450 ms) negative ERPs indexing early-(pre-response) processing stages of the IAT. ERP activity in this time range is known to index processes related to cognitive control and semantic processing. A central focus of these efforts has been to use IAT-ERPs to delineate the implicit and explicit factors contributing to measured IAT effects. Increasing evidence indicates that cognitive control (and related top-down modulation of attention/perceptual processing) may be components in the effective measurement of IAT effects, as factors such as physical setting or task instruction can change an IAT measurement. In this study we further implicate the role of proactive cognitive control and top-down modulation of attention/perceptual processing in the IAT-EEG. We find statistically significant relationships between D-score (a reaction-time based measure of the IAT-effect) and early ERP-time windows, indicating where more rapid word categorizations driving the IAT effect are present, they are at least partly explainable by neural activity not significantly correlated with the IAT measurement itself. Using LORETA, we identify a number of brain regions driving these ERP-IAT relationships notably involving left-temporal, insular, cingulate, medial frontal and parietal cortex in time regions corresponding to the N2- and P3-related activity. The identified brain regions involved with reduced reaction times on congruent blocks coincide with those of previous studies.

  7. Core networks for visual-concrete and abstract thought content: a brain electric microstate analysis.

    PubMed

    Lehmann, Dietrich; Pascual-Marqui, Roberto D; Strik, Werner K; Koenig, Thomas

    2010-01-01

    Commonality of activation of spontaneously forming and stimulus-induced mental representations is an often made but rarely tested assumption in neuroscience. In a conjunction analysis of two earlier studies, brain electric activity during visual-concrete and abstract thoughts was studied. The conditions were: in study 1, spontaneous stimulus-independent thinking (post-hoc, visual imagery or abstract thought were identified); in study 2, reading of single nouns ranking high or low on a visual imagery scale. In both studies, subjects' tasks were similar: when prompted, they had to recall the last thought (study 1) or the last word (study 2). In both studies, subjects had no instruction to classify or to visually imagine their thoughts, and accordingly were not aware of the studies' aim. Brain electric data were analyzed into functional topographic brain images (using LORETA) of the last microstate before the prompt (study 1) and of the word-type discriminating event-related microstate after word onset (study 2). Conjunction analysis across the two studies yielded commonality of activation of core networks for abstract thought content in left anterior superior regions, and for visual-concrete thought content in right temporal-posterior inferior regions. The results suggest that two different core networks are automatedly activated when abstract or visual-concrete information, respectively, enters working memory, without a subject task or instruction about the two classes of information, and regardless of internal or external origin, and of input modality. These core machineries of working memory thus are invariant to source or modality of input when treating the two types of information.

  8. Hemispheric activation during planning and execution phases in reaching post stroke: a consort study.

    PubMed

    Fang, Yin; Daly, Janis J; Hansley, Jeff; Yao, Wan X; Yang, Qi; Sun, Jiayang; Hvorat, Ken; Pundik, Svetlana; Yue, Guang H

    2015-01-01

    Enhanced activation in the non-lesion hemisphere in stroke patients was widely observed during movement of the affected upper limb, but its functional role related to motor planning and execution is still unknown.This study was to characterize the activation in the non-lesion hemisphere during movement planning and execution by localizing sources of high-density electroencephalography (EEG) signal and estimating the source strength (current density [A/m]).Ten individuals with chronic stroke and shoulder/elbow coordination deficits and 5 healthy controls participated in the study.EEG (64 channels) was recorded from scalp electrodes while the subjects performed a reach task involving shoulder flexion and elbow extension of the affected (patients) or dominant (controls) upper extremity. Sources of the EEG were obtained and analyzed at 17 time points across movement preparation and execution phases. A 3-layer boundary element model was overlaid and used to identify the brain activation sources. A distributed current density model, low-resolution electromagnetic tomography (LORETA) L1 norm method, was applied to the data pre-processed by independent component analysis.Subjects with stroke had stronger source strength in the sensorimotor cortices during the movement compared with the controls. Their contralesional/lesional activation ratio (CTLR) for the primary motor cortices was significantly higher than that of the controls during the movement-planning phase, but not during the execution phase. The CTLR was higher in planning than in the execution phase in the stroke group.Excessive contralesional motor cortical activation appears to be more related to movement preparation rather than execution in chronic stroke.

  9. Sparse imaging of cortical electrical current densities via wavelet transforms

    NASA Astrophysics Data System (ADS)

    Liao, Ke; Zhu, Min; Ding, Lei; Valette, Sébastien; Zhang, Wenbo; Dickens, Deanna

    2012-11-01

    While the cerebral cortex in the human brain is of functional importance, functions defined on this structure are difficult to analyze spatially due to its highly convoluted irregular geometry. This study developed a novel L1-norm regularization method using a newly proposed multi-resolution face-based wavelet method to estimate cortical electrical activities in electroencephalography (EEG) and magnetoencephalography (MEG) inverse problems. The proposed wavelets were developed based on multi-resolution models built from irregular cortical surface meshes, which were realized in this study too. The multi-resolution wavelet analysis was used to seek sparse representation of cortical current densities in transformed domains, which was expected due to the compressibility of wavelets, and evaluated using Monte Carlo simulations. The EEG/MEG inverse problems were solved with the use of the novel L1-norm regularization method exploring the sparseness in the wavelet domain. The inverse solutions obtained from the new method using MEG data were evaluated by Monte Carlo simulations too. The present results indicated that cortical current densities could be efficiently compressed using the proposed face-based wavelet method, which exhibited better performance than the vertex-based wavelet method. In both simulations and auditory experimental data analysis, the proposed L1-norm regularization method showed better source detection accuracy and less estimation errors than other two classic methods, i.e. weighted minimum norm (wMNE) and cortical low-resolution electromagnetic tomography (cLORETA). This study suggests that the L1-norm regularization method with the use of face-based wavelets is a promising tool for studying functional activations of the human brain.

  10. Orthographic familiarity, phonological legality and number of orthographic neighbours affect the onset of ERP lexical effects

    PubMed Central

    Proverbio, Alice M; Adorni, Roberta

    2008-01-01

    Background It has been suggested that the variability among studies in the onset of lexical effects may be due to a series of methodological differences. In this study we investigated the role of orthographic familiarity, phonological legality and number of orthographic neighbours of words in determining the onset of word/non-word discriminative responses. Methods ERPs were recorded from 128 sites in 16 Italian University students engaged in a lexical decision task. Stimuli were 100 words, 100 quasi-words (obtained by the replacement of a single letter), 100 pseudo-words (non-derived) and 100 illegal letter strings. All stimuli were balanced for length; words and quasi-words were also balanced for frequency of use, domain of semantic category and imageability. SwLORETA source reconstruction was performed on ERP difference waves of interest. Results Overall, the data provided evidence that the latency of lexical effects (word/non-word discrimination) varied as a function of the number of a word's orthographic neighbours, being shorter to non-derived than to derived pseudo-words. This suggests some caveats about the use in lexical decision paradigms of quasi-words obtained by transposing or replacing only 1 or 2 letters. Our findings also showed that the left-occipito/temporal area, reflecting the activity of the left fusiform gyrus (BA37) of the temporal lobe, was affected by the visual familiarity of words, thus explaining its lexical sensitivity (word vs. non-word discrimination). The temporo-parietal area was markedly sensitive to phonological legality exhibiting a clear-cut discriminative response between illegal and legal strings as early as 250 ms of latency. Conclusion The onset of lexical effects in a lexical decision paradigm depends on a series of factors, including orthographic familiarity, degree of global lexical activity, and phonologic legality of non-words. PMID:18601726

  11. Relation Between Frontal Alpha Asymmetry and Anxiety in Young Patients with Generalized Anxiety Disorder.

    PubMed

    Demerdzieva, Aneta; Pop-Jordanova, Nada

    2015-01-01

    Frontal alpha asymmetry (the relative difference in power between two signals in different hemispheres) has been suggested as biomarker for anxiety. The goal of this study was to evaluate alpha asymmetry in the frontal region for young people (7-18 years) with generalized anxiety disorder, diagnosed according to two statistic manuals (DMS-IV-R and ICD-10), the medical history and the neuropsychological assessment. The QEEG recording and analysis of the obtained results from alpha spectra power and log of alpha spectra power are made in four conditions (eyes open, eyes closed, VCPT and ACPT). The obtained results for alpha power in general showed higher cortical activity in the right hemisphere, associated with negative emotions. The calculated alpha asymmetry separate for eyes open, eyes closed, VCPT and ACPT conditions showed the right activation in all four conditions. In addition, the right frontal asymmetry was specific for the Fp(1)-Fp(2) region, while a greater left frontal activation was recorded for the F(7)-F(8) region. The log of alpha power in general was additionally analyzed. The calculated asymmetry score in general (in a way that the left log transformed score was subtracted from the right) confirmed a greater right activation. Testing the power of the whole alpha band (μV(2)) in general, for all four conditions and for frontal region confirmed the right alpha asymmetries in all participants. The right alpha asymmetry in the frontal region was specific only for the Fp(1)-Fp(2) region (frontopolar region). The only greater left frontal activation was registered between the F(7)-F(8) region. Our findings are supported by many other studies using specific localization methods like fMRI or LORETA source localization. PMID:27442382

  12. Reduced processing of alcohol cues predicts abstinence in recently detoxified alcoholic patients in a three-month follow up period: an ERP study.

    PubMed

    Petit, Géraldine; Cimochowska, Agnieszka; Cevallos, Carlos; Cheron, Guy; Kornreich, Charles; Hanak, Catherine; Schroder, Elisa; Verbanck, Paul; Campanella, Salvatore

    2015-04-01

    One of the major challenges in alcohol dependence is relapse prevention, as rates of relapse following detoxification are high. Drug-related motivational processes may represent key mechanisms in alcoholic relapse. In the present study, event-related potentials (ERPs) were recorded during a visual oddball task administered to 29 controls (11 females) and 39 patients (9 females). Deviant stimuli were related or unrelated to alcohol. For patients, the task was administered following a 3-week detoxification course. Of these, 19 relapsed during the three months follow-up period. The P3, an ERP component associated with activation of arousal systems in the brain and motivational engagement, was examined with the aim to link the fluctuation of its amplitude in response to alcohol versus non-alcohol cues to the observed relapse rate. Results showed that compared to relapsers, abstainers presented with a decreased P3 amplitude for alcohol related compared to non-alcohol related pictures (p=.009). Microstate analysis and sLORETA topography showed that activation for both types of deviant cues in abstainers originated from the inferior and medial temporal gyrus and the uncus, regions implicated in detection of target stimuli in oddball tasks and of biologically relevant stimuli. Through hierarchical regression, it was found that the P3 amplitude difference between alcohol and non-alcohol related cues was the best predictor of relapse vulnerability (p=.013). Therefore, it seems that a devaluation of the motivational significance of stimuli related to alcohol, measurable through electrophysiology, could protect from a relapse within three months following detoxification in alcohol-dependent patients.

  13. The left fusiform area is affected by written frequency of words.

    PubMed

    Proverbio, Alice M; Zani, Alberto; Adorni, Roberta

    2008-01-01

    The recent neuroimaging literature gives conflicting evidence about whether the left fusiform gyrus (FG) might recognize words as unitary visual objects. The sensitivity of the left FG to word frequency might provide a neural basis for the orthographic input lexicon theorized by reading models [Patterson, K., Marshall, J. C., & Coltheart, M. (1985). Surface dyslexia: Cognitive and neuropsychological studies of phonological reading. London: Lawrence Erlbaum]. The goal of this study was to investigate the time course and neural correlates of word processing in right-handed readers engaged in an orthographic decision task. Three hundred and twenty Italian words of high and low written frequency and 320 non-derived legal pseudo-words were presented for 250ms in the central visual field. ERPs were recorded from 128 scalp sites in 10 Italian University students. Behavioural data showed a word superiority effect, with faster RTs to words than pseudo-words. Left occipito/temporal N2 (240ms) was greater to high-frequency than low-frequency words and pseudo-words. According to the swLORETA inverse solution, the underlying neural source of this effect was located in the left fusiform gyrus of the occipital lobe (X=-29, Y=-66, Z=-10, BA19) and the right superior temporal gyrus (X=51, Y=6, Z=-5, BA22), which are probably involved in word recognition and semantic representation, respectively. Later frontal ERP components, LPN (300-350) and P3 (400-500), also showed strong lexical sensitivity, thus suggesting implicit semantic processes. The results shed some light on the possible neural substrate of visual reading disabilities such as developmental surface dyslexia or pure alexia. PMID:18485421

  14. Beta-Band Functional Connectivity is Reorganized in Mild Cognitive Impairment after Combined Computerized Physical and Cognitive Training.

    PubMed

    Klados, Manousos A; Styliadis, Charis; Frantzidis, Christos A; Paraskevopoulos, Evangelos; Bamidis, Panagiotis D

    2016-01-01

    Physical and cognitive idleness constitute significant risk factors for the clinical manifestation of age-related neurodegenerative diseases. In contrast, a physically and cognitively active lifestyle may restructure age-declined neuronal networks enhancing neuroplasticity. The present study, investigated the changes of brain's functional network in a group of elderly individuals at risk for dementia that were induced by a combined cognitive and physical intervention scheme. Fifty seniors meeting Petersen's criteria of Mild Cognitive Impairment were equally divided into an experimental (LLM), and an active control (AC) group. Resting state electroencephalogram (EEG) was measured before and after the intervention. Functional networks were estimated by computing the magnitude square coherence between the time series of all available cortical sources as computed by standardized low resolution brain electromagnetic tomography (sLORETA). A statistical model was used to form groups' characteristic weighted graphs. The introduced modulation was assessed by networks' density and nodes' strength. Results focused on the beta band (12-30 Hz) in which the difference of the two networks' density is maximum, indicating that the structure of the LLM cortical network changes significantly due to the intervention, in contrast to the network of AC. The node strength of LLM participants in the beta band presents a higher number of bilateral connections in the occipital, parietal, temporal and prefrontal regions after the intervention. Our results show that the combined training scheme reorganizes the beta-band functional connectivity of MCI patients. ClinicalTrials.gov Identifier: NCT02313935 https://clinicaltrials.gov/ct2/show/NCT02313935. PMID:26973445

  15. Beta-Band Functional Connectivity is Reorganized in Mild Cognitive Impairment after Combined Computerized Physical and Cognitive Training

    PubMed Central

    Klados, Manousos A.; Styliadis, Charis; Frantzidis, Christos A.; Paraskevopoulos, Evangelos; Bamidis, Panagiotis D.

    2016-01-01

    Physical and cognitive idleness constitute significant risk factors for the clinical manifestation of age-related neurodegenerative diseases. In contrast, a physically and cognitively active lifestyle may restructure age-declined neuronal networks enhancing neuroplasticity. The present study, investigated the changes of brain's functional network in a group of elderly individuals at risk for dementia that were induced by a combined cognitive and physical intervention scheme. Fifty seniors meeting Petersen's criteria of Mild Cognitive Impairment were equally divided into an experimental (LLM), and an active control (AC) group. Resting state electroencephalogram (EEG) was measured before and after the intervention. Functional networks were estimated by computing the magnitude square coherence between the time series of all available cortical sources as computed by standardized low resolution brain electromagnetic tomography (sLORETA). A statistical model was used to form groups' characteristic weighted graphs. The introduced modulation was assessed by networks' density and nodes' strength. Results focused on the beta band (12–30 Hz) in which the difference of the two networks' density is maximum, indicating that the structure of the LLM cortical network changes significantly due to the intervention, in contrast to the network of AC. The node strength of LLM participants in the beta band presents a higher number of bilateral connections in the occipital, parietal, temporal and prefrontal regions after the intervention. Our results show that the combined training scheme reorganizes the beta-band functional connectivity of MCI patients. ClinicalTrials.gov Identifier: NCT02313935 https://clinicaltrials.gov/ct2/show/NCT02313935. PMID:26973445

  16. The Competitive Influences of Perceptual Load and Working Memory Guidance on Selective Attention.

    PubMed

    Tan, Jinfeng; Zhao, Yuanfang; Wang, Lijun; Tian, Xia; Cui, Yan; Yang, Qian; Pan, Weigang; Zhao, Xiaoyue; Chen, Antao

    2015-01-01

    The perceptual load theory in selective attention literature proposes that the interference from task-irrelevant distractor is eliminated when perceptual capacity is fully consumed by task-relevant information. However, the biased competition model suggests that the contents of working memory (WM) can guide attentional selection automatically, even when this guidance is detrimental to visual search. An intriguing but unsolved question is what will happen when selective attention is influenced by both perceptual load and WM guidance. To study this issue, behavioral performances and event-related potentials (ERPs) were recorded when participants were presented with a cue to either identify or hold in memory and had to perform a visual search task subsequently, under conditions of low or high perceptual load. Behavioural data showed that high perceptual load eliminated the attentional capture by WM. The ERP results revealed an obvious WM guidance effect in P1 component with invalid trials eliciting larger P1 than neutral trials, regardless of the level of perceptual load. The interaction between perceptual load and WM guidance was significant for the posterior N1 component. The memory guidance effect on N1 was eliminated by high perceptual load. Standardized Low Resolution Electrical Tomography Analysis (sLORETA) showed that the WM guidance effect and the perceptual load effect on attention can be localized into the occipital area and parietal lobe, respectively. Merely identifying the cue produced no effect on the P1 or N1 component. These results suggest that in selective attention, the information held in WM could capture attention at the early stage of visual processing in the occipital cortex. Interestingly, this initial capture of attention by WM could be modulated by the level of perceptual load and the parietal lobe mediates target selection at the discrimination stage.

  17. Early differential sensitivity of evoked-potentials to local and global shape during the perception of three-dimensional objects.

    PubMed

    Leek, E Charles; Roberts, Mark; Oliver, Zoe J; Cristino, Filipe; Pegna, Alan J

    2016-08-01

    Here we investigated the time course underlying differential processing of local and global shape information during the perception of complex three-dimensional (3D) objects. Observers made shape matching judgments about pairs of sequentially presented multi-part novel objects. Event-related potentials (ERPs) were used to measure perceptual sensitivity to 3D shape differences in terms of local part structure and global shape configuration - based on predictions derived from hierarchical structural description models of object recognition. There were three types of different object trials in which stimulus pairs (1) shared local parts but differed in global shape configuration; (2) contained different local parts but shared global configuration or (3) shared neither local parts nor global configuration. Analyses of the ERP data showed differential amplitude modulation as a function of shape similarity as early as the N1 component between 146-215ms post-stimulus onset. These negative amplitude deflections were more similar between objects sharing global shape configuration than local part structure. Differentiation among all stimulus types was reflected in N2 amplitude modulations between 276-330ms. sLORETA inverse solutions showed stronger involvement of left occipitotemporal areas during the N1 for object discrimination weighted towards local part structure. The results suggest that the perception of 3D object shape involves parallel processing of information at local and global scales. This processing is characterised by relatively slow derivation of 'fine-grained' local shape structure, and fast derivation of 'coarse-grained' global shape configuration. We propose that the rapid early derivation of global shape attributes underlies the observed patterns of N1 amplitude modulations. PMID:27396674

  18. Resting state cortical electroencephalographic rhythms in subjects with normal and abnormal body weight.

    PubMed

    Babiloni, Claudio; Marzano, Nicola; Lizio, Roberta; Valenzano, Anna; Triggiani, Antonio Ivano; Petito, Annamaria; Bellomo, Antonello; Lecce, Brunello; Mundi, Ciro; Soricelli, Andrea; Limatola, Cristina; Cibelli, Giuseppe; Del Percio, Claudio

    2011-09-15

    It is well known that resting state regional cerebral blood flow is abnormal in obese when compared to normal-weight subjects but the underlying neurophysiological mechanisms are poorly known. To address this issue, we tested the hypothesis that amplitude of resting state cortical electroencephalographic (EEG) rhythms differ among underweight, normal-weight, and overweight/obese subjects as a reflection of the relationship between cortical neural synchronization and regulation of body weight. Eyes-closed resting state EEG data were recorded in 16 underweight subjects, 25 normal-weight subjects, and 18 overweight/obese subjects. All subjects were psychophysically healthy (no eating disorders or major psychopathologies). EEG rhythms of interest were delta (2-4Hz), theta (4-8Hz), alpha 1 (8-10.5Hz), alpha 2 (10.5-13Hz), beta 1 (13-20Hz), beta 2 (20-30Hz), and gamma (30-40Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography (LORETA). Statistical results showed that parietal and temporal alpha 1 sources fitted the pattern underweight>normal-weight>overweight/obese (p<0.004), whereas occipital alpha 1 sources fitted the pattern normal-weight>underweight>overweight/obese (p<0.00003). Furthermore, amplitude of the parietal, occipital, and temporal alpha 2 sources was stronger in the normal-weight subjects than in the underweight and overweight/obese subjects (p<0.0007). These results suggest that abnormal weight in healthy overweight/obese subjects is related to abnormal cortical neural synchronization at the basis of resting state alpha rhythms and fluctuation of global brain arousal. PMID:21704716

  19. Regional Patterns of Elevated Alpha and High-Frequency Electroencephalographic Activity during Nonrapid Eye Movement Sleep in Chronic Insomnia: A Pilot Study

    PubMed Central

    Riedner, Brady A.; Goldstein, Michael R.; Plante, David T.; Rumble, Meredith E.; Ferrarelli, Fabio; Tononi, Giulio; Benca, Ruth M.

    2016-01-01

    Study Objectives: To examine nonrapid eye movement (NREM) sleep in insomnia using high-density electroencephalography (EEG). Methods: All-night sleep recordings with 256 channel high-density EEG were analyzed for 8 insomnia subjects (5 females) and 8 sex and age-matched controls without sleep complaints. Spectral analyses were conducted using unpaired t-tests and topographical differences between groups were assessed using statistical non-parametric mapping. Five minute segments of deep NREM sleep were further analyzed using sLORETA cortical source imaging. Results: The initial topographic analysis of all-night NREM sleep EEG revealed that insomnia subjects had more high-frequency EEG activity (> 16 Hz) compared to good sleeping controls and that the difference between groups was widespread across the scalp. In addition, the analysis also showed that there was a more circumscribed difference in theta (4–8 Hz) and alpha (8–12 Hz) power bands between groups. When deep NREM sleep (N3) was examined separately, the high-frequency difference between groups diminished, whereas the higher regional alpha activity in insomnia subjects persisted. Source imaging analysis demonstrated that sensory and sensorimotor cortical areas consistently exhibited elevated levels of alpha activity during deep NREM sleep in insomnia subjects relative to good sleeping controls. Conclusions: These results suggest that even during the deepest stage of sleep, sensory and sensorimotor areas in insomnia subjects may still be relatively active compared to control subjects and to the rest of the sleeping brain. Citation: Riedner BA, Goldstein MR, Plante DT, Rumble ME, Ferrarelli F, Tononi G, Benca RM. Regional patterns of elevated alpha and high-frequency electroencephalographic activity during nonrapid eye movement sleep in chronic insomnia: a pilot study. SLEEP 2016;39(4):801–812. PMID:26943465

  20. Neural correlate of spatial presence in an arousing and noninteractive virtual reality: an EEG and psychophysiology study.

    PubMed

    Baumgartner, Thomas; Valko, Lilian; Esslen, Michaela; Jäncke, Lutz

    2006-02-01

    Using electroencephalography (EEG), psychophysiology, and psychometric measures, this is the first study which investigated the neurophysiological underpinnings of spatial presence. Spatial presence is considered a sense of being physically situated within a spatial environment portrayed by a medium (e.g., television, virtual reality). Twelve healthy children and 11 healthy adolescents were watching different virtual roller coaster scenarios. During a control session, the roller coaster cab drove through a horizontal roundabout track. The following realistic roller coaster rides consisted of spectacular ups, downs, and loops. Low-resolution brain electromagnetic tomography (LORETA) and event-related desynchronization (ERD) were used to analyze the EEG data. As expected, we found that, compared to the control condition, experiencing a virtual roller coaster ride evoked in both groups strong SP experiences, increased electrodermal reactions, and activations in parietal brain areas known to be involved in spatial navigation. In addition, brain areas that receive homeostatic afferents from somatic and visceral sensations of the body were strongly activated. Most interesting, children (as compared to adolescents) reported higher spatial presence experiences and demonstrated a different frontal activation pattern. While adolescents showed increased activation in prefrontal areas known to be involved in the control of executive functions, children demonstrated a decreased activity in these brain regions. Interestingly, recent neuroanatomical and neurophysiological studies have shown that the frontal brain continues to develop to adult status well into adolescence. Thus, the result of our study implies that the increased spatial presence experience in children may result from the not fully developed control functions of the frontal cortex.

  1. OCCIPITAL SOURCES OF RESTING STATE ALPHA RHYTHMS ARE RELATED TO LOCAL GRAY MATTER DENSITY IN SUBJECTS WITH AMNESIC MILD COGNITIVE IMPAIRMENT AND ALZHEIMER’S DISEASE

    PubMed Central

    Claudio, Babiloni; Claudio, Del Percio; Marina, Boccardi; Roberta, Lizio; Susanna, Lopez; Filippo, Carducci; Nicola, Marzano; Andrea, Soricelli; Raffaele, Ferri; Ivano, Triggiani Antonio; Annapaola, Prestia; Serenella, Salinari; Rasser Paul, E; Erol, Basar; Francesco, Famà; Flavio, Nobili; Görsev, Yener; Durusu, Emek-Savaş Derya; Gesualdo, Loreto; Ciro, Mundi; Thompson Paul, M; Rossini Paolo, M.; Frisoni Giovanni, B

    2014-01-01

    Occipital sources of resting state electroencephalographic (EEG) alpha rhythms are abnormal, at the group level, in patients with amnesic mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Here we evaluated the hypothesis that amplitude of these occipital sources is related to neurodegeneration in occipital lobe as measured by magnetic resonance imaging (MRI). Resting-state eyes-closed EEG rhythms were recorded in 45 healthy elderly (Nold), 100 MCI, and 90 AD subjects. Neurodegeneration of occipital lobe was indexed by weighted averages of gray matter density (GMD), estimated from structural MRIs. EEG rhythms of interest were alpha 1 (8–10.5 Hz) and alpha 2 (10.5–13 Hz). EEG cortical sources were estimated by low resolution brain electromagnetic tomography (LORETA). Results showed a positive correlation between occipital GMD and amplitude of occipital alpha 1 sources in Nold, MCI and AD subjects as a whole group (r=0.3, p=0.000004, N=235). Furthermore, there was a positive correlation between amplitude of occipital alpha 1 sources and cognitive status as revealed by Mini Mental State Evaluation (MMSE) score across all subjects (r=0.38, p=0.000001, N=235). Finally, amplitude of occipital alpha 1 sources allowed a moderate classification of individual Nold and AD subjects (sensitivity: 87.8%; specificity: 66.7%; area under the Receiver Operating Characteristic (ROC) curve: 0.81). These results suggest that the amplitude of occipital sources of resting state alpha rhythms is related to AD neurodegeneration in occipital lobe along pathological aging. PMID:25442118

  2. Brain processing of consonance/dissonance in musicians and controls: a hemispheric asymmetry revisited.

    PubMed

    Proverbio, Alice Mado; Orlandi, Andrea; Pisanu, Francesca

    2016-09-01

    It was investigated to what extent musical expertise influences the auditory processing of harmonicity by recording event-related potentials. Thirty-four participants (18 musicians and 16 controls) were asked to listen to hundreds of chords, differing in their degree of consonance, their complexity (from two to six composing sounds) and their range (distance of two adjacent pitches, from quartertones to more than 18 semitone steps). The task consisted of detecting rare targets. An early auditory N1 was observed that was modulated by chord dissonance in both groups. The response was generated in the right medial temporal gyrus (MTG) for consonant chords but in the left MTG for dissonant chords according to swLORETA reconstruction performed. An anterior negativity (N2) was enhanced only in musicians in response to chords featuring quartertones, thus suggesting a greater pitch sensitivity for simultaneous pure tones in the skilled brain. The P300 was affected by the frequency range only in musicians, who also showed a greater sensitivity to sound complexity. A strong left hemispheric specialization for processing quartertones in the left temporal cortex of musicians was observed at N2 level (250-350 ms), which was observed on the right side in controls. Additionally, in controls, widespread activity of the right limbic area was associated with listening to close frequencies causing disturbing beats, possibly suggesting a negative aesthetic appreciation for these stimuli. Overall, the data show a finer and more tuned neural representation of pitch intervals in musicians, linked to a marked specialization of their left temporal cortex (BA21/38). PMID:27421883

  3. The effect of acute effort on EEG in healthy young and elderly subjects.

    PubMed

    Moraes, Helena; Deslandes, Andrea; Silveira, Heitor; Ribeiro, Pedro; Cagy, Mauricio; Piedade, Roberto; Pompeu, Fernando; Laks, Jerson

    2011-01-01

    The effects of physical exercise on mental health have been extensively investigated, mainly in older people. Recent studies have looked into the acute effect of exercise on the brain using standardized low-resolution brain electromagnetic tomography (sLORETA). We assessed EEG power and mood changes after 20 min of aerobic exercise in elderly (N = 10) and young (N = 19) healthy individuals. Both groups showed improvement in total mood disturbance (TMD) post exercise (young: P = 0.03; elderly: P = 0.02). Only the young group showed significant improvement in anger (P = 0.05) and vigor (P = 0.006). Comparison pre versus post-exercise for each group separately revealed significant changes in the young group (an increase in alpha, beta-1 and beta-2 activity in Brodmann areas 24, 33 and 23, respectively). However, the elderly group did not show significant changes. An inverse correlation was found between alpha asymmetry and STAI (rs = -0.50; P = 0.029) in the young group. On the other hand, a significant correlation between beta-1 activity and TMD was observed in the elderly group (rs = 0.67; P = 0.045). We conclude that acute exercise can have distinct effects on brain activity and mood variables in young individuals when compared with elderly adults. However, additional studies are necessary to further investigate the role of exercise intensity in these results.

  4. Low and then high frequency oscillations of distinct right cortical networks are progressively enhanced by medium and long term Satyananda Yoga meditation practice.

    PubMed

    Thomas, John; Jamieson, Graham; Cohen, Marc

    2014-01-01

    Meditation proficiency is related to trait-like (learned) effects on brain function, developed over time. Previous studies show increases in EEG power in lower frequency bands (theta, alpha) in experienced meditators in both meditation states and baseline conditions. Higher gamma band power has been found in advanced Buddhist meditators, yet it is not known if this occurs in Yoga meditation practices. This study used eLORETA to compare differences in cortical source activity underlying scalp EEG from intermediate (mean experience 4 years) and advanced (mean experience 30 years) Australian meditators from the Satyananda Yoga tradition during a body-steadiness meditation, mantra meditation, and non-meditation mental calculation condition. Intermediate Yoga meditators showed greater source activity in low frequencies (particularly theta and alpha1) during mental calculation, body-steadiness and mantra meditation. A similar spatial pattern of significant differences was found in all conditions but the number of significant voxels was double during body-steadiness and mantra meditation than in the non-meditation (calculation) condition. These differences were greatest in right (R) superior frontal and R precentral gyri and extended back to include the R parietal and occipital lobes. Advanced Yoga meditators showed greater activity in high frequencies (beta and especially gamma) in all conditions but greatly expanded during meditation practice. Across all conditions (meditation and non-meditation) differences were greatest in the same regions: R insula, R inferior frontal gyrus and R anterior temporal lobe. Distinct R core networks were identified in alpha1 (8-10 Hz) and gamma (25-42 Hz) bands, respectively. The voxels recruited to these networks greatly expanded during meditation practice to include homologous regions of the left hemisphere. Functional interpretation parallels traditionally described stages of development in Yoga proficiency. PMID:24959124

  5. Location of brain rhythms and their modulation by preparatory attention estimated by current density.

    PubMed

    Gómez, C M; Marco-Pallarés, J; Grau, C

    2006-08-30

    To test the hypothesis that there is a functional modulation of conventional EEG bands associated with preparatory attention, putative changes in the spontaneous brain rhythms and their associated cerebral sources were addressed. The goals of the present report were, first, to find the brain areas with maximal rhythmic activity before warning and imperative stimuli in a classic contingent negative variation (CNV) paradigm, and, second, to study the modulation of the EEG rhythms of these areas during the preparatory attention interval which precedes the S2 (imperative) stimulus. Trial by trial LORETA analysis found similar brain rhythm generators during both pre-S1 and pre-S2 intervals. Each theta, alpha and beta traditional EEG rhythm originates in several anatomically distinct brain structures. Preparatory attention is associated with a decrease in power in alpha (right and left occipital and temporal areas) and low-beta (left frontal, bilateral occipital and middle frontal areas) EEG bands. In these structures power changes associated with preparatory attention modulated either a dominant or a non-dominant oscillatory band, suggesting that non-dominant rhythms of a cerebral area have some functional relevance. Our results imply distributed regional sources for brain rhythms and support the view that during preparatory attention there is a modulation of the brain sources generating alpha and beta brain rhythms. Moreover, the proposed combined approach makes it possible to explore the definition of a given brain area not only anatomically, but also by the frequency content and the functional reactivity of the electrical rhythms that it generates. PMID:16875680

  6. Sensorimotor and cognitive involvement of the beta-gamma oscillation in the frontal N30 component of somatosensory evoked potentials.

    PubMed

    Cebolla, A M; Cheron, G

    2015-12-01

    The most consistent negative cortical component of somatosensory evoked potentials (SEPs), namely the frontal N30, can be considered more multidimensional than a strict item of standard somatosensory investigation, dedicated to tracking the afferent volley from the peripheral sensory nerve potentials to the primary somatosensory cortex. In this review, we revisited its classical sensorimotor implication within the framework of the recent oscillatory model of ongoing electroencephalogram (EEG) rhythms. Recently, the N30 component was demonstrated to be related to an increase in the power of beta-gamma EEG oscillation and a phase reorganization of the ongoing EEG oscillations (phase locking) in this frequency band. Thanks to high density EEG recordings and the inverse modeling method (swLORETA), it was shown that different overlapping areas of the motor and premotor cortex are specifically involved in generating the N30 in the form of a beta gamma oscillatory phase locking and power increase. This oscillatory approach has allowed a re-investigation of the movement gating behavior of the N30. It was demonstrated that the concomitant execution of finger movements by a stimulated hand impinges the temporal concentration of the ongoing beta/gamma EEG oscillations and abolished the N30 component. It was hypothesized that the involvement of neuronal populations in both the sensorimotor cortex and other related areas were unable to respond to the phasic sensory activation so could not phase-lock their oscillatory signals to the external sensory input during the movement. In this case, the actual movement has primacy over the artificial somatosensory input. The contribution of the ongoing oscillatory activity in the N30 emergence calls for a reappraisal of fundamental and clinical interpretations of the frontal N30 component. An absent or reduced amplitude of the N30 can now be viewed not only as a deficit in the activation of the somatosensory synaptic network in response

  7. Sensorimotor and cognitive involvement of the beta-gamma oscillation in the frontal N30 component of somatosensory evoked potentials.

    PubMed

    Cebolla, A M; Cheron, G

    2015-12-01

    The most consistent negative cortical component of somatosensory evoked potentials (SEPs), namely the frontal N30, can be considered more multidimensional than a strict item of standard somatosensory investigation, dedicated to tracking the afferent volley from the peripheral sensory nerve potentials to the primary somatosensory cortex. In this review, we revisited its classical sensorimotor implication within the framework of the recent oscillatory model of ongoing electroencephalogram (EEG) rhythms. Recently, the N30 component was demonstrated to be related to an increase in the power of beta-gamma EEG oscillation and a phase reorganization of the ongoing EEG oscillations (phase locking) in this frequency band. Thanks to high density EEG recordings and the inverse modeling method (swLORETA), it was shown that different overlapping areas of the motor and premotor cortex are specifically involved in generating the N30 in the form of a beta gamma oscillatory phase locking and power increase. This oscillatory approach has allowed a re-investigation of the movement gating behavior of the N30. It was demonstrated that the concomitant execution of finger movements by a stimulated hand impinges the temporal concentration of the ongoing beta/gamma EEG oscillations and abolished the N30 component. It was hypothesized that the involvement of neuronal populations in both the sensorimotor cortex and other related areas were unable to respond to the phasic sensory activation so could not phase-lock their oscillatory signals to the external sensory input during the movement. In this case, the actual movement has primacy over the artificial somatosensory input. The contribution of the ongoing oscillatory activity in the N30 emergence calls for a reappraisal of fundamental and clinical interpretations of the frontal N30 component. An absent or reduced amplitude of the N30 can now be viewed not only as a deficit in the activation of the somatosensory synaptic network in response

  8. Integration of EEG source imaging and fMRI during continuous viewing of natural movies.

    PubMed

    Whittingstall, Kevin; Bartels, Andreas; Singh, Vanessa; Kwon, Soyoung; Logothetis, Nikos K

    2010-10-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are noninvasive neuroimaging tools which can be used to measure brain activity with excellent temporal and spatial resolution, respectively. By combining the neural and hemodynamic recordings from these modalities, we can gain better insight into how and where the brain processes complex stimuli, which may be especially useful in patients with different neural diseases. However, due to their vastly different spatial and temporal resolutions, the integration of EEG and fMRI recordings is not always straightforward. One fundamental obstacle has been that paradigms used for EEG experiments usually rely on event-related paradigms, while fMRI is not limited in this regard. Therefore, here we ask whether one can reliably localize stimulus-driven EEG activity using the continuously varying feature intensities occurring in natural movie stimuli presented over relatively long periods of time. Specifically, we asked whether stimulus-driven aspects in the EEG signal would be co-localized with the corresponding stimulus-driven BOLD signal during free viewing of a movie. Secondly, we wanted to integrate the EEG signal directly with the BOLD signal, by estimating the underlying impulse response function (IRF) that relates the BOLD signal to the underlying current density in the primary visual area (V1). We made sequential fMRI and 64-channel EEG recordings in seven subjects who passively watched 2-min-long segments of a James Bond movie. To analyze EEG data in this natural setting, we developed a method based on independent component analysis (ICA) to reject EEG artifacts due to blinks, subject movement, etc., in a way unbiased by human judgment. We then calculated the EEG source strength of this artifact-free data at each time point of the movie within the entire brain volume using low-resolution electromagnetic tomography (LORETA). This provided for every voxel in the brain (i.e., in 3D space) an