Science.gov

Sample records for los andes caso

  1. Andes

    Atmospheric Science Data Center

    2013-04-18

    article title:  The Andes in True Color, Stereo, and Relief     Left: True Color Image View true color full resolution image in JPEG format ... view afforded by the stereo anaglyph image (viewed with red/blue glasses, with the red lens over the left eye), it is possible to ...

  2. [Medical education at Universidad de los Andes, Santiago, Chile].

    PubMed

    Orrego Vicuña, F

    1997-07-01

    Universidad de los Andes School of Medicine started in 1991 with a new medical curriculum aimed at providing a medical education for its students, that is, it attempts to give, together with technical proficiency in medical matters, formation of character and a strong ethical attitude. The curriculum lasts for seven years: five of basic, pre-clinical and clinical theoretical and practical courses, followed by two years of internships in Internal Medicine, Surgery, Obstetrics and Pediatrics, plus a four month period of an elective internship. The courses have an integrated design, in which each matter is presented from multiple perspectives, e.g. in Internal Medicine together with the clinical aspects of disease, the pathophysiology and the pharmacology of the drugs used are presented. Also the Pathology of each disease is given in coordination in the Pathology course. General educational matters such as Anthropology, Psychology, Origin of Living Beings, Theology and Medical Ethics are interspersed in the curriculum. An important feature is the personal counselling system, in which each student may choose an academic counsellor and discuss with him (her) the subjects of his choosing. Clinical practice is given in a system that includes five hospitals and five private clinics that range from general medical practice to Psychiatry or Ophthalmology.

  3. The use of radar and LANDSAT data for mineral and petroleum exploration in the Los Andes region, Venezuela

    NASA Technical Reports Server (NTRS)

    Vincent, R. K.

    1980-01-01

    A geological study of a 27,500 sq km area in the Los Andes region of northwestern Venezuela was performed which employed both X-band radar mosaics and computer processed Landsat images. The 3.12 cm wavelength radar data were collected with horizontal-horizontal polarization and 10 meter spatial resolution by an Aeroservices SAR system at an altitude of 12,000 meters. The radar images increased the number of observable suspected fractures by 27 percent over what could be mapped by LANDSAT alone, owing mostly to the cloud cover penetration capabilities of radar. The approximate eight fold greater spatial resolution of the radar images made possible the identification of shorter, narrower fractures than could be detected with LANDSAT data alone, resulting in the discovery of a low relief anticline that could not be observed in LANDSAT data. Exploration targets for petroleum, copper, and uranium were identified for further geophysical work.

  4. ASTER Andes

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In this image of the Andes along the Chile-Bolivia border, the visible and infrared data have been computer enhanced to exaggerate the color differences of the different materials. The scene is dominated by the Pampa Luxsar lava complex, occupying the upper right two-thirds of the scene. Lava flows are distributed around remnants of large dissected cones, the largest of which is Cerro Luxsar. On the middle left edge of the image are the Olca and Parumastrato volcanoes, which appear in blue due to a lack of vegetation (colored red in this composite). This image covers an area 60 kilometers (37 miles) wide and 60 kilometers (37 miles) long in three bands of the reflected visible and infrared wavelength region. It was acquired on April 7, 2000.

    The image is located at 21 degrees south latitude, 68.3 degrees west longitude.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial

  5. Rise of the Andes.

    PubMed

    Garzione, Carmala N; Hoke, Gregory D; Libarkin, Julie C; Withers, Saunia; MacFadden, Bruce; Eiler, John; Ghosh, Prosenjit; Mulch, Andreas

    2008-06-06

    The surface uplift of mountain belts is generally assumed to reflect progressive shortening and crustal thickening, leading to their gradual rise. Recent studies of the Andes indicate that their elevation remained relatively stable for long periods (tens of millions of years), separated by rapid (1 to 4 million years) changes of 1.5 kilometers or more. Periodic punctuated surface uplift of mountain belts probably reflects the rapid removal of unstable, dense lower lithosphere after long-term thickening of the crust and lithospheric mantle.

  6. Charles Darwin in the Andes

    ERIC Educational Resources Information Center

    Bizzo, Nelio; Bizzo, Luis Eduardo Maestrelli

    2006-01-01

    Considering geological time as an important epistemological obstacle to the construction of ideas on biological evolution, a study was carried out on the so-called "Darwin Papers". The conclusion was that Charles Darwin's excursion in the Andes during March-April 1835 was a crucial step in this regard. An expedition was carried out in…

  7. Lithospheric scale model of Merida Andes, Venezuela (GIAME Project)

    NASA Astrophysics Data System (ADS)

    Schmitz, M.; Orihuela, N. D.; Klarica, S.; Gil, E.; Levander, A.; Audemard, F. A.; Mazuera, F.; Avila, J.

    2013-05-01

    Merida Andes (MA) is one of the most important orogenic belt in Venezuela and represents the northern culmination of South America Andes. During the last 60 years, several models have been proposed to explain the shallow and deep structure, using different geological, geophysical, seismological, geochemical and petrologic concepts; nevertheless, most of them have applied local observation windows, and do not represent the major structure of MA. Therefore, a multidisciplinary research group, coordinated by FUNVISIS, in close cooperation with UCV, ULA and PDVSA, is proposed in order to get the outlined goals in the project entitled GIAME ("Geociencia Integral de los Andes de MErida") was established, which aims to generate a lithospheric scale model and the development of a temporal dynamic model for the MA. As a base for lithospheric investigations of the Merida Andes, we are proposing three wide angle seismic profiles across the orogen on three representative sites, in order to determine the inner structure and its relation with the orogen's gravimetric root. To the date, there are no seismic studies at lithospheric scale which cross MA. The wide angle seismic will be complemented with the re-processing and re-interpretation of existing reflection seismic data, which will allow to establish a relationship between MA and its associated flexural basins (Maracaibo and Barinas-Apure basins). Depending on the results of the VENCORP Project (VENezuelan COntinental Reflection Profiling), which might show some reliable results about crustal features and Moho reflectors along three long seismic profiles at Caribbean Moutain system, a reflection seismic profile across the central portion of MA is proposed. Additional tasks, consisting in MA quaternary deformation studies, using research methods like neotectonics and paleoseismology, georadar, numerical modeling, cinematic GPS, SAR interferometry, thermocronology, detailed studies on regional geology, flexural modeling

  8. POBREZA Y VULNERABILIDAD EN MÉXICO: EL CASO DE LOS JÓVENES QUE NO ESTUDIAN NI TRABAJAN*

    PubMed Central

    Aguila, Emma; Mejía, Nelly; Pérez, Francisco; Rivera, Alfonso; Ramírez, Edgar

    2015-01-01

    La situación de los jóvenes que no estudian ni trabajan (ninis) se ha vuelto evidente en los últimos años debido a los riesgos que enfrenta dicha población. Este artículo contribuye a la literatura al analizar las características económicas y laborales de los ninis, explora la situación laboral de sus parejas y provee proyecciones al año 2030. Asimismo, propone una clasificación de ninis para focalizar el diseño de políticas públicas, que identifica una tendencia a la baja de éstos debido a las mujeres que acceden al sistema educativo y al mercado laboral y que una mayor proporción de esta población estará compuesta por desempleados. PMID:25918452

  9. Tectonics of the central Andes

    NASA Technical Reports Server (NTRS)

    Bloom, Arthur L.; Isacks, Bryan L.; Fielding, Eric J.; Fox, Andrew N.; Gubbels, Timothy L.

    1989-01-01

    Acquisition of nearly complete coverage of Thematic Mapper data for the central Andes between about 15 to 34 degrees S has stimulated a comprehensive and unprecedented study of the interaction of tectonics and climate in a young and actively developing major continental mountain belt. The current state of the synoptic mapping of key physiographic, tectonic, and climatic indicators of the dynamics of the mountain/climate system are briefly reviewed.

  10. Western Slope of Andes, Peru

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Along the western flank of the Andes, 400 km SE of Lima Peru, erosion has carved the mountain slopes into long, narrow serpentine ridges. The gently-sloping sediments have been turned into a plate of worms wiggling their way downhill to the ocean.

    The image was acquired September 28, 2004, covers an area of 38 x 31.6 km, and is located near 14.7 degrees south latitude, 74.5 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  11. Andes

    Atmospheric Science Data Center

    2013-04-18

    ... provide a striking demonstration of the power of water erosion. This image pair was acquired by the Multi-angle Imaging ... with the red filter placed over your left eye. Two main erosion formations can be seen. The one above image center is carved by the Rio ...

  12. Group updates Gravity Database for central Andes

    NASA Astrophysics Data System (ADS)

    MIGRA Group; Götze, H.-J.

    Between 1993 and 1995 a group of scientists from Chile, Argentina, and Germany incorporated some 2000 new gravity observations into a database that covers a remote region of the Central Andes in northern Chile and northwestern Argentina (between 64°-71°W and 20°-29°S). The database can be used to study the structure and evolution of the Andes. About 14,000 gravity values are included in the database, including older, reprocessed data. Researchers at universities or governmental agencies are welcome to use the data for noncommercial purposes.

  13. Earth - False Color Mosaic of the Andes

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This false-color mosaic of the central part of the Andes mountains of South America (70 degrees west longitude, 19 degrees south latitude) is made up of 42 images acquired by the Galileo spacecraft from an altitude of about 25,000 kilometers (15,000 miles). A combination of visible (green) and near-infrared (0.76 and 1.0-micron) filters was chosen for this view to separate regions with distinct vegetation and soil types. The mosaic shows the area where Chile, Peru and Bolivia meet. The Pacific Coast appears at the left of the image-- Galileo captured this view as it traveled west over the Pacific Ocean, looking back at the Andes. Lakes Titicaca and Poopo are nearly black patches at the top and center, respectively; a large light-blue area below and to the left of Lake Poopo is Salar de Uyuni, a dry salt lake some 120 kilometers (75 miles) across. These lakes lie in the Altiplano, a region between the western and eastern Andes, which are covered by clouds. The vegetation-bearing Gran Chaco plains east of the Andes appear pale green. Light-blue patches in the mountains to the north are glaciers.

  14. LANDSAT imagery of the Central Andes

    NASA Technical Reports Server (NTRS)

    Komer, C. A.; Morgan, P.

    1986-01-01

    The central Andes of South America extend from approximately 14 deg. S to 28 deg. S as an unbroken chain of mountains and volcanoes over 2000 km long. It is here that the Nazca plate dives under the South American plate at angles varying from 10 deg to 30 deg. Very little is known about the volcanoes comprising this classic, subduction-type plate margin. A catalogue of the volcanoes in the central Andes is being prepared by Dr. P.W. Francis and Dr. C.A. Wood at the NASA Lunar and Planetary Institute. At present, more than 800 volcanoes of Cenozoic age have been recognized in the chain, with an estimated 75-80 major, active Quarternary volcanoes. Approximately one hundred 1536 x 1536 pixel color composite Optronics positives were produced from six full LANDSAT Thermatic Mapper scenes and three partial TM scenes. These positives cover a large portion of the central Andes. The positives were produced from LANDSAT data using the VAX imaging package, LIPS. The scenes were first transferred from magnetic tape to disk. The LIPS package was then used to select volcanically interesting areas which were then electronically enhanced. Finally, the selected areas were transferred back to tape and printed on the Optronics equipment. The pictures are color composites using LANDSAT TM bands 7,4, and 2 in the red, green, and blue filters, respectively.

  15. ANDES TOOLS: Promotional slides for Industrial Clients

    DTIC Science & Technology

    2015-09-03

    Briefing Charts 3. DATES COVERED (From - To) 10 August 2015 – 3 September 2015 4. TITLE AND SUBTITLE ANDES TOOLS: Promotional slides for Industrial ...Clients 5a. CONTRACT NUMBER FA9300-13-C-2014 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Tim Holmes, D.Sc. 5d. PROJECT NUMBER 5e. TASK... Industrial Clients PA Case Number: #15479; Clearance Date: 9/3/2015 14. ABSTRACT Briefing Charts/Viewgraphs 15. SUBJECT TERMS N/A 16. SECURITY

  16. The Glaciation of the Ecuadorian Andes

    NASA Astrophysics Data System (ADS)

    Schubert, Carlos

    This pleasing book fills the gap in the knowledge about Pleistocene and recent glaciation between Colombia and Peru. A significant amount of data exists already for Colombia and Venezuela and for Peru, Bolivia, and, particularly, Chile. Hastenrath has now given us a description of glaciers and glaciation underneath the equator in the Andes.The book begins with brief summaries of the physiography and the atmospheric circulation, which give the general setting of Ecuador. Then follow detailed descriptions of the glaciers and glacial morphology of all the important mountains of the Western and Eastern Cordilleras. These are well illustrated, and a particularly useful feature is the comparison of old photographs and paintings of glaciers with modern photographs, many taken by the author. All illustrate the spectacular retreat of the glaciers in the Ecuadorian Andes during the last century and correlate quite well with observations elsewhere. This retreat is snown quantitatively in Table 4, in terms of decrease in glacier-covered area since the glacial advance of moraine stage III. The area of present-day glaciers is about 10% of the area during that stage (compared with about 1.5% in the Sierra Nevada de Mérida, Venezuela). A series of maps show the glacial morphology of the mountains (unfortunately, some of the maps have been included within the binding, thus losing some information; they could have been reduced somewhat to fit a single page or, if too large, could have been included in the pocket, together with the map of Chimborazo-Carihuairazo).

  17. Orogenic float of the Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    Monod, Bernard; Dhont, Damien; Hervouët, Yves

    2010-07-01

    The Venezuelan (or Mérida) Andes are a NE-trending intracontinental orogen that started to rise from the Middle Miocene due to the E-W far field convergence between the Maracaibo block to the northwest and the Guyana shield to the southeast. Oblique convergence is responsible for strain partitioning with thrusting along both foreland basins and right-lateral strike-slip faulting along the NE-SW Boconó fault cutting the Venezuelan Andes along-strike. The central part of the belt is also cut by the N-S left-lateral strike-slip Valera fault that connects the Boconó fault, both faults bounding the Trujillo block that escapes towards the NNE. Even though the regional geology of belt is well known, its structure at depth remains a matter of debate. Our work, based on the integration of geological and geophysical data aims to better constrain the deep geometry of faults and the tectonic evolution of the mountain belt. We used the orogenic float model to construct two NW-SE trans-Andean crustal scale balanced sections. The Late Neogene-Quaternary shortening varies from 40 km in the south to 30 km in the north across the Trujillo block, indicating that a quarter of the deformation seems to be absorbed by the tectonic escape process. More importantly, a major reorganization in the crust took place in the Early Pliocene. It is characterized by the imbrication of the Maracaibo crust into the Guyana crust. This resulted in the subduction of the Guyana lower crust and the formation of a NW-vergent basement thrust propagating upwards and surfacing along the Las Virtudes thrust. Rapid uplift of the northern flank of the belt subsequently occurred together with massive deposition of the Plio-Quaternary coarse grained Betijoque formation in the northwestern foreland basin.

  18. Seismological Parameters in the Northern Andes, Venezuela

    NASA Astrophysics Data System (ADS)

    Sobiesiak, M.; Palme de Osechas, C.; Choy, J. E.; Morandi S., M. T.; Campo, M.; Granado Ruiz, C.

    2001-12-01

    Venezuelas tectonic setting as part of the plate boundary between the Caribbean and the South American plate causes two major seismologically active fault systems: the roughly west - east trending strike slip fault system along the coast with numerous sub-parallel faults and the Bocono fault system, which dominates the Venezuelan southwest - northeast striking Andes. The main Bocono fault reaches a total length of about 500 km and has a width of approximately 100 km between the southern and northern baseline of the mountain slopes which are marked by inverse faults. This is believed to be due to strain partitioning, a concept which seems to apply as well to the Bocono fault system. The whole fault system is characterized by a high seismicity rate of small scale and intermediate event magnitudes ranging from 1.5 to 6.3 in the last fifty years. In this study we would like to present an investigation on 39 focal mechanism solutions and a b-value mapping of the Andean region with the main goal to throw light on the stess and strain situation. For recompiling the focal memchanisms calculated from first motion polarities, various sources had to been used: seismograms from stations of the local and regional networks of the Seismological Center of ULA, the national seismic network operated by FUNVISIS, the seismic network Lago Maracaibo of PDVSA and the local seismic network of DESURCA. For the b-value mapping we used the two catalogues of ULA and DESURCA of which the last one registered more than 6500 events from 1994 to 1999. The set of focal mechanism solutions studied showed normal, strike slip, and reverse faulting mechanisms concentrated in distinct areas of the Bocono fault system and thus resulting in a zonation also supported by the determinations of the azimuths of the maximum horizontal stress SHmax. This hypothesis of the zonation of the Andes region is strongly supported by the results of the b-value mapping. The zonation as seen in the varying major stress

  19. ANDES Measurements for Advanced Reactor Systems

    NASA Astrophysics Data System (ADS)

    Plompen, A. J. M.; Hambsch, F.-J.; Kopecky, S.; Nyman, M.; Rouki, C.; Salvador Castiñeira, P.; Schillebeeckx, P.; Belloni, F.; Berthoumieux, E.; Gunsing, F.; Lampoudis, C.; Calviani, M.; Guerrero, C.; Cano-Ott, D.; Gonzalez Romero, E.; Aïche, M.; Jurado, B.; Mathieu, L.; Derckx, X.; Farget, F.; Rodrigues Tajes, C.; Bacquias, A.; Dessagne, Ph.; Kerveno, M.; Borcea, C.; Negret, A.; Colonna, N.; Goncalves, I.; Penttilä, H.; Rinta-Antila, S.; Kolhinen, V. S.; Jokinen, A.

    2014-05-01

    A significant number of new measurements was undertaken by the ANDES “Measurements for advanced reactor systems” initiative. These new measurements include neutron inelastic scattering from 23Na, Mo, Zr, and 238U, neutron capture cross sections of 238U, 241Am, neutron induced fission cross sections of 240Pu, 242Pu, 241Am, 243Am and 245Cm, and measurements that explore the limits of the surrogate technique. The latter study the feasibility of inferring neutron capture cross sections for Cm isotopes, the neutron-induced fission cross section of 238Pu and fission yields and fission probabilities through full Z and A identification in inverse kinematics for isotopes of Pu, Am, Cm and Cf. Finally, four isotopes are studied which are important to improve predictions for delayed neutron precursors and decay heat by total absorption gamma-ray spectrometry (88Br, 94Rb, 95Rb, 137I). The measurements which are performed at state-of-the-art European facilities have the ambition to achieve the lowest possible uncertainty, and to come as close as is reasonably achievable to the target uncertainties established by sensitivity studies. An overview is presented of the activities and achievements, leaving detailed expositions to the various parties contributing to the conference.

  20. 3D Geomodeling of the Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    Monod, B.; Dhont, D.; Hervouet, Y.; Backé, G.; Klarica, S.; Choy, J. E.

    2010-12-01

    The crustal structure of the Venezuelan Andes is investigated thanks to a geomodel. The method integrates surface structural data, remote sensing imagery, crustal scale balanced cross-sections, earthquake locations and focal mechanism solutions to reconstruct fault surfaces at the scale of the mountain belt into a 3D environment. The model proves to be essential for understanding the basic processes of both the orogenic float and the tectonic escape involved in the Plio-Quaternary evolution of the orogen. The reconstruction of the Bocono and Valera faults reveals the 3D shape of the Trujillo block whose geometry can be compared to a boat bow floating over a mid-crustal detachment horizon emerging at the Bocono-Valera triple junction. Motion of the Trujillo block is accompanied by a generalized extension in the upper crust accommodated by normal faults with listric geometries such as for the Motatan, Momboy and Tuñame faults. Extension may be related to the lateral spreading of the upper crust, suggesting that gravity forces play an important role in the escape process.

  1. The first ANDES elements: 9-DOF plate bending triangles

    NASA Technical Reports Server (NTRS)

    Militello, Carmelo; Felippa, Carlos A.

    1991-01-01

    New elements are derived to validate and assess the assumed natural deviatoric strain (ANDES) formulation. This is a brand new variant of the assumed natural strain (ANS) formulation of finite elements, which has recently attracted attention as an effective method for constructing high-performance elements for linear and nonlinear analysis. The ANDES formulation is based on an extended parametrized variational principle developed in recent publications. The key concept is that only the deviatoric part of the strains is assumed over the element whereas the mean strain part is discarded in favor of a constant stress assumption. Unlike conventional ANS elements, ANDES elements satisfy the individual element test (a stringent form of the patch test) a priori while retaining the favorable distortion-insensitivity properties of ANS elements. The first application of this formulation is the development of several Kirchhoff plate bending triangular elements with the standard nine degrees of freedom. Linear curvature variations are sampled along the three sides with the corners as gage reading points. These sample values are interpolated over the triangle using three schemes. Two schemes merge back to conventional ANS elements, one being identical to the Discrete Kirchhoff Triangle (DKT), whereas the third one produces two new ANDES elements. Numerical experiments indicate that one of the ANDES element is relatively insensitive to distortion compared to previously derived high-performance plate-bending elements, while retaining accuracy for nondistorted elements.

  2. Trench investigation along the Merida section of the Bocono fault (central Venezuelan Andes), Venezuela

    USGS Publications Warehouse

    Audemard, F.; Pantosti, D.; Machette, M.; Costa, C.; Okumura, K.; Cowan, H.; Diederix, H.; Ferrer, C.

    1999-01-01

    The Bocono fault is a major NE-SW-trending, dextral fault that extends for about 500 km along the backbone of the Venezuelan Andes. Several large historical earthquakes in this region have been attributed to the Bocono fault, and some of these have been recently associated with specific parts through paleoseismologic investigations. A new trench study has been performed, 60 km to the northeast of Merida in the central Venezuelan Andes, where the fault forms a releasing bend, comprising two conspicuous late Holocene fault strands that are about 1 km apart. The southern and northern strands carry about 70% and 30% (respectively) of the 7-10 mm/yr net slip rate measured in this sector, which is based on a 40 vs. 85-100 m right-lateral offset of the Late Pleistocene Los Zerpa moraines. A trench excavated on the northern strand of the fault (near Morros de los Hoyos, slightly northeast of Apartaderos) across a twin shutter ridge and related sag pond exposed two main fault zones cutting Late Pleistocene alluvial and Holocene peat deposits. Each zone forms a shutter ridge with peat deposits ponded against the uplifted block. The paleoearthquake reconstruction derived from this trench allow us to propose the occurrence of at least 6-8 earthquakes in the past 9000 yr, yielding a maximum average recurrence interval of about 1100-1500 yr. Based on the northern strands average slip rate (2.6 mm/yr), such as earthquake sequence should have accommodated about 23 m of slip since 9 ka, suggesting that the maximum slip per event ranges between 3 and 4 m. No direct evidence for the large 1812 earthquake has been found in the trench, although this earthquake may have ruptured this section of the fault. Further paleoseismic studies will investigate the possibility that this event occurred in the Bocono fault, but ruptured mainly its southern strand in this region.

  3. Reflections on Andes' Goal-Free User Interface

    ERIC Educational Resources Information Center

    VanLehn, Kurt

    2016-01-01

    Although the Andes project produced many results over its 18 years of activity, this commentary focuses on its contributions to understanding how a goal-free user interface impacts the overall design and performance of a step-based tutoring system. Whereas a goal-aligned user interface displays relevant goals as blank boxes or empty locations that…

  4. Andes Hantavirus Variant in Rodents, Southern Amazon Basin, Peru

    PubMed Central

    Tokarz, Rafal; Ghersi, Bruno M.; Salmon-Mulanovich, Gabriela; Guezala, M. Claudia; Albujar, Christian; Mendoza, A. Patricia; Tinoco, Yeny O.; Cruz, Christopher; Silva, Maria; Vasquez, Alicia; Pacheco, Víctor; Ströher, Ute; Guerrero, Lisa Wiggleton; Cannon, Deborah; Nichol, Stuart T.; Hirschberg, David L.; Lipkin, W. Ian; Bausch, Daniel G.; Montgomery, Joel M.

    2014-01-01

    We investigated hantaviruses in rodents in the southern Amazon Basin of Peru and identified an Andes virus variant from Neacomys spinosus mice. This finding extends the known range of this virus in South America and the range of recognized hantaviruses in Peru. Further studies of the epizoology of hantaviruses in this region are warranted. PMID:24447689

  5. Andes hantavirus variant in rodents, southern Amazon Basin, Peru.

    PubMed

    Razuri, Hugo; Tokarz, Rafal; Ghersi, Bruno M; Salmon-Mulanovich, Gabriela; Guezala, M Claudia; Albujar, Christian; Mendoza, A Patricia; Tinoco, Yeny O; Cruz, Christopher; Silva, Maria; Vasquez, Alicia; Pacheco, Víctor; Ströher, Ute; Guerrero, Lisa Wiggleton; Cannon, Deborah; Nichol, Stuart T; Hirschberg, David L; Lipkin, W Ian; Bausch, Daniel G; Montgomery, Joel M

    2014-02-01

    We investigated hantaviruses in rodents in the southern Amazon Basin of Peru and identified an Andes virus variant from Neacomys spinosus mice. This finding extends the known range of this virus in South America and the range of recognized hantaviruses in Peru. Further studies of the epizoology of hantaviruses in this region are warranted.

  6. Palynological signal of the Younger Dryas in the tropical Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    Rull, Valentí; Stansell, Nathan D.; Montoya, Encarni; Bezada, Maximiliano; Abbott, Mark B.

    2010-11-01

    The occurrence, or not, of the Younger Dryas cold reversal in the tropical Andes remains a controversial topic. This study reports a clear signal for this event in the Venezuelan Andes, employing high-resolution palynological analysis of a well-dated sediment core from Laguna de Los Anteojos, situated around 3900 m elevation, within grass páramo vegetation. The lake is surrounded by some Polylepis forests which are close to their upper distribution limit. The section of the core discussed here is 150-cm long and dated between about 14.68 and 9.35 cal kyr BP, using a polynomial age-depth model based on six AMS radiocarbon dates. Between 12.86 and 11.65 cal kyr BP, an abrupt shift occurred in the pollen assemblage, manifested by a decline of Podocarpus, Polylepis and Huperzia, combined with an increase in Poaceae and Asteraceae. The aquatic pteridophyte Isoëtes also decreased and disappeard, and the algae remains show their minimum values. Pollen assemblages from the Younger Dryas interval show maximum dissimilarity values compared with today's pollen assemblage, and are more similar to modern analogs from superpáramo vegetation, growing at elevations 400-500 m higher. A lowering of vegetation zones of this magnitude corresponds to a temperature decline of between 2.5 and 3.8 °C. During this colder interval lake levels may have been lower, suggesting a decrease in available moisture. The vegetation shift documented in Anteojos record between 12.86 and 11.65 cal kyr BP is comparable to the El Abra Stadial in the Colombian Andes but it differs in magnitude. The Anteojos shift is better dated and coincides with the Younger Dryas chron as recorded in the Cariaco Basin sea surface temperature reconstructions and records of continental runoff, as well as in the oxygen isotope measurements from the Greenland ice cores. When compared to other proxies of quasi-immediate response to climate, the time lag for the response of vegetation to climate is found to be negligible

  7. Synchronous interhemispheric Holocene climate trends in the tropical Andes.

    PubMed

    Polissar, Pratigya J; Abbott, Mark B; Wolfe, Alexander P; Vuille, Mathias; Bezada, Maximiliano

    2013-09-03

    Holocene variations of tropical moisture balance have been ascribed to orbitally forced changes in solar insolation. If this model is correct, millennial-scale climate evolution should be antiphased between the northern and southern hemispheres, producing humid intervals in one hemisphere matched to aridity in the other. Here we show that Holocene climate trends were largely synchronous and in the same direction in the northern and southern hemisphere outer-tropical Andes, providing little support for the dominant role of insolation forcing in these regions. Today, sea-surface temperatures in the equatorial Pacific Ocean modulate rainfall variability in the outer tropical Andes of both hemispheres, and we suggest that this mechanism was pervasive throughout the Holocene. Our findings imply that oceanic forcing plays a larger role in regional South American climate than previously suspected, and that Pacific sea-surface temperatures have the capacity to induce abrupt and sustained shifts in Andean climate.

  8. Synchronous interhemispheric Holocene climate trends in the tropical Andes

    PubMed Central

    Polissar, Pratigya J.; Abbott, Mark B.; Wolfe, Alexander P.; Vuille, Mathias; Bezada, Maximiliano

    2013-01-01

    Holocene variations of tropical moisture balance have been ascribed to orbitally forced changes in solar insolation. If this model is correct, millennial-scale climate evolution should be antiphased between the northern and southern hemispheres, producing humid intervals in one hemisphere matched to aridity in the other. Here we show that Holocene climate trends were largely synchronous and in the same direction in the northern and southern hemisphere outer-tropical Andes, providing little support for the dominant role of insolation forcing in these regions. Today, sea-surface temperatures in the equatorial Pacific Ocean modulate rainfall variability in the outer tropical Andes of both hemispheres, and we suggest that this mechanism was pervasive throughout the Holocene. Our findings imply that oceanic forcing plays a larger role in regional South American climate than previously suspected, and that Pacific sea-surface temperatures have the capacity to induce abrupt and sustained shifts in Andean climate. PMID:23959896

  9. Glacier shrinkage and water resources in the Andes

    NASA Astrophysics Data System (ADS)

    Francou, Bernard; Coudrain, Anne

    For more than a century glaciers around the world have been melting as air temperatures rise due to a combination of natural processes and human activity. The disappearance of these glaciers can have wide-ranging effects, such as the creation of new natural hazards or changes in stream flow that could threaten water suppliesSome of the most dramatic melting has occurred in the Andes mountain range in South America. To highlight the climatic and glacial change in the Andes and to encourage the scientific community to strengthen the glacier observation network that stretches from Colombia to the Patagonian ice fields, the Instituto Nacional de Recursos Naturales (INRENA), Perú, and the Institute of Research and Development (IRD), France, recently organized the second Symposium on Mass Balance of Andean Glaciers in Huaráz,Perú.

  10. Crustal-thickness variations in the central Andes

    NASA Astrophysics Data System (ADS)

    Beck, Susan L.; Zandt, George; Myers, Stephen C.; Wallace, Terry C.; Silver, Paul G.; Drake, Lawrence

    1996-05-01

    We estimated the crustal thickness along an east-west transect across the Andes at lat 20°S and along a north-south transect along the eastern edge of the Altiplano from data recorded on two arrays of portable broadband seismic stations (BANJO and SEDA). Waveforms of deep regional events in the downgoing Nazca slab and teleseismic earthquakes were processed to isolate the P-to-S converted phases from the Moho in order to compute the crustal thickness. We found crustal-thickness variations of nearly 40 km across the Andes. Maximum crustal thicknesses of 70 74 km under the Western Cordillera and the Eastern Cordillera thin to 32 38 km 200 km east of the Andes in the Chaco Plain. The central Altiplano at 20°S has crustal thicknesses of 60 to 65 km. The crust also appears to thicken from north (16°S, 55 60 km) to south (20°S, 70 74 km) along the Eastern Cordillera. The Subandean zone crust has intermediate thicknesses of 43 to 47 km. Crustal-thickness predictions for the Andes based on Airy-type isostatic behavior show remarkable overall correlation with observed crustal thickness in the regions of high elevation. In contrast, at the boundary between the Eastern Cordillera and the Subandean zone and in the Chaco Plain, the crust is thinner than predicted, suggesting that the crust in these regions is supported in part by the flexural rigidity of a strong lithosphere. With additional constraints, we conclude that the observation of Airy-type isostasy is consistent with thickening associated with compressional shortening of a weak lithosphere squeezed between the stronger lithosphere of the subducting Nazca plate and the cratonic lithosphere of the Brazilian craton.

  11. Synthetic Seismogram Study of the Eastern Central Andes

    DTIC Science & Technology

    2008-09-30

    gaps located in the coupling zone of the Nazca and the South American plates. The above-mentioned earthquakes were here used to generate the...the limits of gaps located in the coupling zone of the Nazca and the South American plates. The above-mentioned earthquakes were here used to generate...surrounding areas. RESEARCH PERFORMED The area of study is located in the Eastern Central Andes, in the region where the Nazca Plate subducts at 300

  12. Crustal-thickness variations in the central Andes

    SciTech Connect

    Beck, S.L.; Myers, S.C.; Wallace, T.C.; Zandt, G. |; Silver, P.G.; Drake, L.

    1996-05-01

    We estimated the crustal thickness along an east-west transect across the Andes at lat 20{degree}S and along a north-south transect along the eastern edge of the Altiplano from data recorded on two arrays of portable broadband seismic stations (BANJO and SEDA). We found crustal-thickness variations of nearly 40 km across the Andes. Maximum crustal thicknesses of 70-74 km under the Western Cordillera and the Eastern Cordillera thin to 32-38 km 200 km east of the Andes in the Chaco Plain. The central Altiplano at 20{degree}S has crustal thicknesses of 60 to 65 km. The crust also appears to thicken from north (16{degree}S, 55-60 km) to south (20{degree}S, 70-74 km) along the Eastern Cordillera. The Subandean zone crust has intermediate thicknesses of 43 to 47 km. Crustal-thickness predictions for the Andes based on Airy-type isostatic behavior show remarkable overall correlation with observed crustal thickness in the regions of high elevation. In contrast, at the boundary between the Eastern Cordillera and the Subandean zone and in the Chaco Plain, the crust is thinner than predicted, suggesting that the crust in these regions is supported in part by the flexural rigidity of a strong lithosphere. With additional constraints, we conclude that the observation of Airy-type isostasy is consistent with thickening associated with compressional shortening of a weak lithosphere squeezed between the stronger lithosphere of the subducting Nazca plate and the cratonic lithosphere of the Brazilian craton. 26 refs., 4 figs.

  13. Amplified warming at high elevation in the tropical Andes? (Invited)

    NASA Astrophysics Data System (ADS)

    Vuille, M. F.; Buytaert, W.; Zulkafli, Z.; Franquist, E.

    2013-12-01

    Theoretical and modeling studies suggest that adjustment of the moist-adiabatic lapse rate due to continued greenhouse gas radiative forcing will lead to accelerated warming of tropical high-elevation mountain regions in the 21st century. The scarcity of observational data at high-elevation sites in the tropics, however, has complicated the unambiguous detection and potential attribution of such a warming signal. Here we will focus on the tropical Andes, where such an enhanced warming is of special concern, given the important ecosystem services provided by wetlands and glaciers, both being very sensitive to enhanced warming and resulting changes in evaporation, melt rates, snow-rain ratios, etc. This presentation will review the potential of various feedbacks, such as snow-albedo feedback, water vapor feedback, lapse rate feedback and others to produce differential warming rates at different elevations in the Andes. These theoretical considerations will then be compared with the latest available observational and modeling results regarding evidence (or lack thereof) for enhanced warming at high elevation sites. Our analysis relies on an updated database of more than 850 stations from different elevations along the Andes, complemented by projections for several representative concentration pathways (RCP's) from the CMIP5 multi-model ensemble.

  14. Tectonics of the northern Venezuelan Andes from satellite images analysis

    NASA Astrophysics Data System (ADS)

    Dhont, D.; Backé, G.; Hervouët, Y.

    2003-04-01

    The northern part of the Venezuelan (or Merida) Andes is a complex area comprising a Cretaceous to Quaternary sedimentary sequence that recorded two main stages of deformation: (1) the uplifting of the Carribean belt in the Cretaceous-Eocene (Carribean stage), which is superimposed by (2) the building of the Venezuelan Andes since the Miocene (Andean stage). The study area is located at the junction between the Merida Andes and the Caribbean belt, and constitutes a key zone to understand the transition between these two orogens. Our aim is to implement the structural mapping in order to propose a new model of deformation at regional scale. The methodology is based on analysis of Landsat TM, SPOT, radarsat and DEM images, and is complemented by geological studies in the field. Integration of this complementary data set into a GIS enables a new understanding of the tectonics of the northern Venezuelan Andes during the Neogene-Quaternary. We focused on three main areas where the structures are clearly exposed. In the Mene Grande area, our structural analysis allows to precise the geometry and timing of deformations. The Cerro la Galera anticline is a fault bend fold propagating to the SW that developped along the Burro Negro fault during the Eocene-Oligocene and then eroded. The Cerro La Luna (or Cerro Misoa) is a pop-up structure that developped later during the Andean stage. In the Jirajara area, we have evidenced a releasing-bend basin at left-stepping offset of the Valera fault. To the east, this basin is surrounded by the relief of the Serrania de Jirajara which gravitationally collapses towards the lowland of the basin. In the Sierra de Barragua area, we mapped the left-lateral strike-slip Rio Diquiva fault 25 km east of the Valera fault. This fault is a major structure bounding two distincts areas of sedimentation during the Eocene. The synthesis of these observations shows that the northern Venezuelan Andes consist in a mosaic of independent crustal blocks

  15. Is tourism damaging ecosystems in the Andes? Current knowledge and an agenda for future research.

    PubMed

    Barros, Agustina; Monz, Christopher; Pickering, Catherine

    2015-03-01

    Despite the popularity of tourism and recreation in the Andes in South America and the regions conservation value, there is limited research on the ecological impacts of these types of anthropogenic use. Using a systematic quantitative literature review method, we found 47 recreation ecology studies from the Andes, 25 of which used an experimental design. Most of these were from the Southern Andes in Argentina (13 studies) or Chile (eight studies) with only four studies from the Northern Andes. These studies documented a range of impacts on vegetation, birds and mammals; including changes in plant species richness, composition and vegetation cover and the tolerance of wildlife of visitor use. There was little research on the impacts of visitors on soils and aquatic systems and for some ecoregions in the Andes. We identify research priorities across the region that will enhance management strategies to minimise visitor impacts in Andean ecosystems.

  16. Altiplano-Puna volcanic complex of the central Andes

    NASA Technical Reports Server (NTRS)

    De Silva, S. L.

    1989-01-01

    A model is presented accounting for many features of the Altiplano-Puna volcanic complex situated in the Central Volcanic Zone of the Andes which contains 50 recently active volcanoes. The dominant elements of the complex are several large nested caldera complexes which are the source structures for the major regionally distributed ignimbrite sheets that characterize the complex. The study of the complex reveals the importance of the intersection of subsidiary axis-oblique tectonic trends related to regional stress fields peculiar to individual oceanic ridge sections with the axis-parallel trends predominant at all spreading centers in localizing hydrothermal discharge zones.

  17. Early local last glacial maximum in the tropical Andes.

    PubMed

    Smith, Jacqueline A; Seltzer, Geoffrey O; Farber, Daniel L; Rodbell, Donald T; Finkel, Robert C

    2005-04-29

    The local last glacial maximum in the tropical Andes was earlier and less extensive than previously thought, based on 106 cosmogenic ages (from beryllium-10 dating) from moraines in Peru and Bolivia. Glaciers reached their greatest extent in the last glacial cycle approximately 34,000 years before the present and were retreating by approximately 21,000 years before the present, implying that tropical controls on ice volumes were asynchronous with those in the Northern Hemisphere. Our estimates of snowline depression reflect about half the temperature change indicated by previous widely cited figures, which helps resolve the discrepancy between estimates of terrestrial and marine temperature depression during the last glacial cycle.

  18. Toward quantifying geomorphic rates of crustal displacement, landscape development, and the age of glaciation in the Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    Wesnousky, Steven G.; Aranguren, Reina; Rengifo, Martin; Owen, Lewis A.; Caffee, Marc W.; Murari, Madhav Krishna; Pérez, Omar J.

    2012-03-01

    We present the results of dating glacial landforms in Venezuela using 10Be terrestrial cosmogenic nuclide (TCN) analysis and optical stimulated luminescence (OSL). Boulders on the La Victoria and Los Zerpa moraines of the Sierra Nevada that mark the extent of the local last glacial maximum (LLGM) yield 10Be TCN surface exposure ages of 16.7 ± 1.4 ka (8 samples). About 25 km to the west in the drainage basin of the Río Mucujún, 10Be TCN dates for boulders on moraines at La Culata in the Sierra Nevada Norte yield a younger average age of 15.2 ± 0.9 ka (8 samples). The data suggest that glaciation across the Venezuelan Andes during the LLGM was asynchronous. The LLGM in Venezuela may be broadly concurrent with Heinrich Event 1 at ~ 16.8 ka, implying that glaciation here is dominantly temperature driven. A moraine inset into the older laterofrontal moraines of La Culata has an age of 14.1 ± 1.0 ka (5 samples); it may have been deposited by a small Late Glacial readvance. Right-lateral offsets of the La Victoria and Los Zerpa moraines by the Boconó fault are each ~ 100 m. The 10Be TCN based Boconó fault slip rate is about <~5.5 to 6.5 mm a- 1, notably less than the total right-lateral slip of 12 ± 2 mm a- 1 of shear documented across the Andes from geodesy. The 10Be TCN dating of boulders on a faulted alluvial fan along the northwestern range front at Tucanízón yields a late Pleistocene uplift rate of the Andes at between ~ 1.7 ± 0.7 mm a- 1. Glacial outwash has produced valley-fill sequences within the central Andean valley along the trace of the Boconó fault and Río Chama. The valley-fill has been incised to produce the ‘meseta', a terrace surface that sits > 100 m above the Río Chama and on which the major city of Mérida is built. Geomorphic observations indicate that the meseta deposits were largely derived from the glaciers of La Culata. The OSL dating suggests that the final aggradation of the valley-fill deposits occurred rapidly over a period of

  19. Episodic Cenozoic volcanism and tectonism in the Andes of Peru

    USGS Publications Warehouse

    Noble, D.C.; McKee, E.H.; Farrar, E.; Petersen, U.

    1974-01-01

    Radiometric and geologic information indicate a complex history of Cenozoic volcanism and tectonism in the central Andes. K-Ar ages on silicic pyroclastic rocks demonstrate major volcanic activity in central and southern Peru, northern Chile, and adjacent areas during the Early and Middle Miocene, and provide additional evidence for volcanism during the Late Eocene. A provisional outline of tectonic and volcanic events in the Peruvian Andes during the Cenozoic includes: one or more pulses of igneous activity and intense deformation during the Paleocene and Eocene; a period of quiescence, lasting most of Oligocene time; reinception of tectonism and volcanism at the beginning of the Miocene; and a major pulse of deformation in the Middle Miocene accompanied and followed through the Pliocene by intense volcanism and plutonism. Reinception of igneous activity and tectonism at about the Oligocene-Miocene boundary, a feature recognized in other circum-Pacific regions, may reflect an increase in the rate of rotation of the Pacific plate relative to fixed or quasifixed mantle coordinates. Middle Miocene tectonism and latest Tertiary volcanism correlates with and probably is genetically related to the beginning of very rapid spreading at the East Pacific Rise. ?? 1974.

  20. Andes virus and first case report of Bermejo virus causing fatal pulmonary syndrome.

    PubMed

    Padula, Paula; Della Valle, Marcelo González; Alai, María Garcia; Cortada, Pedro; Villagra, Mario; Gianella, Alberto

    2002-04-01

    Two suspected hantavirus pulmonary syndrome (HPS) cases from Bolivia occurred in May and July 2000 and were confirmed by enzyme-linked immunosorbent assay (ELISA)-ANDES using N-Andes recombinant antigen serology. Clot RNAs from the two patients were subjected to reverse transcription-polymerase chain reaction (PCR) amplification and sequencing. We describe two characterized cases of HPS. One was caused by infection with Bermejo virus and the other with Andes Nort viral lineage, both previously obtained from Oligoryzomys species. This is the first report of molecular identification of a human hantavirus associated with Bermejo virus.

  1. Ancient ice islands in salt lakes of the Central Andes

    USGS Publications Warehouse

    Hurlbert, S.H.; Chang, Cecily C.Y.

    1984-01-01

    Massive blocks of freshwater ice and frozen sediments protrude from shallow, saline lakes in the Andes of southwestern Bolivia and northeastern Chile. These ice islands range up to 1.5 kilometers long, stand up to 7 meters above the water surface, and may extend out tens of meters and more beneath the unfrozen lake sediments. The upper surfaces of the islands are covered with dry white sediments, mostly aragonite or calcite. The ice blocks may have formed by freezing of the fresh pore water of lake sediments during the "little ice age." The largest blocks are melting rapidly because of possibly recent increases in geothermal heat flux through the lake bottom and undercutting by warm saline lake water during the summer.

  2. The last occurrence of Pleistocene megafauna in the Ecuadorian Andes

    NASA Astrophysics Data System (ADS)

    Coltorti, M.; Ficcarelli, G.; Jahren, H.; Espinosa, M. Moreno; Rook, L.; Torre, D.

    1998-12-01

    The latest Pleistocene—Holocene megafauna extinction is a global event, particularly dramatic in the Americas. In a previous paper the authors hypothesised a scenario for this extinction event in South America, where mastodonts first suffered from the changing climate environment, followed by the mylodonts and equids. These different latest Pleistocene—Holocene megafauna extinction "waves" in Ecuadorian Andes have been dated using 14C methods on material from selected sites in north and central Ecuadorian Interandean Depression. An outline of the physiographic evolution of the Interandean Depression in Ecuador is offered and the stratigraphic setting of the fossiliferous sites is discussed. The present results confirm the author's hypothesis on the megafauna extinction pattern, previously published in terms of relative age. The importance of climatic changes during Last Glacial Maximum at low latitudes is discussed.

  3. Modelling Andes Uplift Impact on Atmospheric Circulation: Consequences for Neogene Faunal and Floral Evolution ?

    NASA Astrophysics Data System (ADS)

    Sepulchre, P.; Sloan, L. C.; Fluteau, F.

    2007-12-01

    Tectonics in South America is marked by the uplift of the Andes during the Cenozoic. The Andes are approximately 7000 km long, oriented north-south, with some peak elevations in excess of 6000 m. Such a topographic structure has potentially a strong impact on atmospheric circulation. Climate model studies have showed that the Andes, as a topographic barrier, influence eastern Pacific Ocean climate and also meridional moisture transport above the south American continent. However, most studies have been done at the regional scale, and no quantification of rainfall changes due to a lower topography has been done. Here we use the high resolution Atmospheric General Circulation Model LMDz4 to quantify the impact of the Andes topography on the rainfall regime over the whole South American continent. Interpreting sensitivity experiments, we discuss about the tectonics history from 55 Ma to present-day and how to apply this method for Neogene paleoclimate, in a different continental configuration.

  4. Complex brittle deformation pattern along the Southern Patagonian Andes (Argentina)

    NASA Astrophysics Data System (ADS)

    Barberón, Vanesa; Sue, Christian; Ronda, Gonzalo; Ghiglione, Matías

    2016-04-01

    The Southern Patagonian Andes is located in the southern extreme of the Pacific subduction zone, where the Antartic oceanic plate sinks underneath South America. The history of the area begins with compression during Paleozoic, Jurassic extension associated to the rift and opening of the South Atlantic Ocean, then a sag stage in the Lower Cretaceous followed by a foreland phase as a result of plate tectonics (Ghiglione et al., 2016). The kinematic study is concentrated in the Argentinean foothills, between 46°40' and 48° SL. We measured around 800 fault planes and their striaes with the sense of movement in order to characterize the stress field. The software used to make the stress inversion were Tensor (Delvaux, 2011) and Multiple Inverse Method MIM (Yamaji et al., 2011). The stress field map was built with the results of the MIM. We present new data from 48 sites located in the northern sector of the Southern Patagonian Andes. The measurements were made in several rocks from Paleozoic to Lower Cretaceous, even though most were taken in pyroclastic jurassic rocks from El Quemado Complex. Paleostress tensors obtained are mostly strike-slip, although a 25% is normal and there are a few compresional. The pattern of faults found is complex. In some sites the tensor can be locally linked to satellite images and observations from the field or be related to a major thrust front. There is no clear correlation between the age and/or lithology with the tensor since the youngest rocks measured are Lower Cretaceous. Probably there are several generations of family faults connected to different and recent tectonic phases then the paleostress tensors might correspond to the latest tectonic events.

  5. PROTOPLANETARY DISK STRUCTURE WITH GRAIN EVOLUTION: THE ANDES MODEL

    SciTech Connect

    Akimkin, V.; Wiebe, D.; Pavlyuchenkov, Ya.; Zhukovska, S.; Semenov, D.; Henning, Th.; Vasyunin, A.; Birnstiel, T. E-mail: dwiebe@inasan.ru E-mail: zhukovska@mpia.de E-mail: henning@mpia.de E-mail: tbirnstiel@cfa.harvard.edu

    2013-03-20

    We present a self-consistent model of a protoplanetary disk: 'ANDES' ('AccretioN disk with Dust Evolution and Sedimentation'). ANDES is based on a flexible and extendable modular structure that includes (1) a 1+1D frequency-dependent continuum radiative transfer module, (2) a module to calculate the chemical evolution using an extended gas-grain network with UV/X-ray-driven processes and surface reactions, (3) a module to calculate the gas thermal energy balance, and (4) a 1+1D module that simulates dust grain evolution. For the first time, grain evolution and time-dependent molecular chemistry are included in a protoplanetary disk model. We find that grain growth and sedimentation of large grains onto the disk midplane lead to a dust-depleted atmosphere. Consequently, dust and gas temperatures become higher in the inner disk (R {approx}< 50 AU) and lower in the outer disk (R {approx}> 50 AU), in comparison with the disk model with pristine dust. The response of disk chemical structure to the dust growth and sedimentation is twofold. First, due to higher transparency a partly UV-shielded molecular layer is shifted closer to the dense midplane. Second, the presence of big grains in the disk midplane delays the freeze-out of volatile gas-phase species such as CO there, while in adjacent upper layers the depletion is still effective. Molecular concentrations and thus column densities of many species are enhanced in the disk model with dust evolution, e.g., CO{sub 2}, NH{sub 2}CN, HNO, H{sub 2}O, HCOOH, HCN, and CO. We also show that time-dependent chemistry is important for a proper description of gas thermal balance.

  6. Late Cenozoic bending of the Bolivian Andes: New paleomagnetic and kinematic constraints

    NASA Astrophysics Data System (ADS)

    Barke, Richard; Lamb, Simon; Macniocaill, Conall

    2007-01-01

    New paleomagnetic measurements of essentially undeformed Late Cenozoic volcanic rocks in the Bolivian Andes, South America, constrain rigid body rotations about vertical axes during the last ˜13 Myr on both limbs of the Bolivian orocline in the Eastern Cordillera. Thermal and alternating field demagnetization was carried out on samples from 52 sites in three major volcanic complexes: (1) 13-2 Ma Los Frailes ignimbritic volcanics, outcropping at ˜19.5°S; (2) 9-5 Ma Morococala ignimbritic volcanics, outcropping at ˜18°S; and (3) 13-5 Ma shoshonitic to acidic lavas and intrusives, outcropping at ˜17.5°S. Well-defined magnetic components were isolated, which are interpreted to represent the Earth's magnetic field at the time of volcanic activity. The mean magnetic vector for site groupings suggests regional tectonic rotations about vertical axes, with respect to stable South America, of 10° ± 8 clockwise for the 13-2 Ma Los Frailes volcanic complex (8° ± 9° clockwise for only the Miocene (13-5 Ma) Los Frailes volcanics), and 1° ± 18° anticlockwise for the combined 13-5 Ma Morococala and Eucalyptus volcanic complexes. These data are consistent with observed shortening gradients on the eastern margin of the Bolivian Andes, in the sub-Andean zone, suggesting rotation and shortening are synchronous. A joint inversion for both tectonic rotation and the amount of shortening, assuming a linear variation in the amount of rotation along the length of the southern limb of the Bolivian orocline, shows that rotation of the Eastern Cordillera in the last 10-15 Myr, relative to stable South America, varies from zero at the oroclinal hinge, at ˜18°S, to a maximum of ˜13.5° clockwise at ˜22°S, decreasing to zero, south of 23°S, with an average rotation in the range 5° to 10° clockwise. Concomitant with this, shortening in the sub-Andean zone decreases from a maximum of ˜86 km at the oroclinal hinge, to ˜47 km at 22°S, and then ˜33 km at 23°S. The lack of

  7. Glaciation and topographic evolution of the Central Patagonian Andes since 6 Ma

    NASA Astrophysics Data System (ADS)

    Christeleit, E. C.; Laemel, R.; De Wolf, W. E.; Shuster, D. L.; Brandon, M. T.

    2013-12-01

    New and existing thermochronological data are used to model glacial erosion and topographic evolution of the central Patagonian Andes (~47S) over the last 6 Ma. The modern Andes are cut by large valleys and fjords with local valley relief of at least 2.5 km. It is currently thought that a formerly uniformly high Andes was 'buzzed' down to the elevation of the equilibrium line altitude, presumably in the last 2 Ma concurrent with late Cenozoic global cooling. However, studies of glacial debris show that glaciers were present in Patagonia as early as 6 Ma. The extent of these early glaciations is unclear, but recent work suggests that glacial valleys in the central Patagonian Andes were carved at a steady rate beginning at 6 Ma, implying that valley incision may be an important process in the topographic evolution of glaciated mountain ranges, rather than cirque retreat. To understand how valley relief has formed in the Andes, we dated 30 samples from Steffen Fjord in Chile using apatite (U-Th)/He thermochronology. We use this new data and existing thermochronological data in the region to estimate the topographic form of the central Andes at 6 Ma and model how the valley relief has evolved since the initiation of glaciation using Pecube.

  8. Glacial recession in the Tropical Andes from the Little Ice Age: the case of Ampato Volcanic Complex (Southern Peru

    NASA Astrophysics Data System (ADS)

    Alcalá, J.; Palacios, D.; Zamorano, J. J.

    2010-03-01

    the Ampato volcanic complex (15º24´- 15º 51´ S, 71º 51´ - 73º W; 6.288 masl), one of the most important complexes of the northern sector of the CVZ. Photointerpretation of aerial photographs and teledetection through satellite images of Huayuray Valley (15º 41´ 14´´ S - 71º 51´ 53´´ W), located to the north of the complex, aided in accurately reconstructing the area occupied by the ice mass at different times (LIA, 1955, 2000 and 2008). Also the paleo-ELA (Equilibrium Line Altitude) and the ELA were calculated using the Accumulation Area (AA) method (Kaser and Osmaston, 2002; Osmaston, 2005) in a GIS. The ELA shows the relationship between climate and glacier mass balance (González Trueba, 2005). The data from Huayuray Valley show that the glaciers reached a minimum altitude of 5400 masl and covered an area of ~2.81 Km2 during the LIA. The paleo-ELA was located at ~5780 masl, ~120 m below the current ELA (~5900 m). Based on a vertical thermal gradient of 0.65ºC/100 m, the temperature during this event would have been about 0.7º C colder than present temperature in the Ampato volcanic complex. In 1955, Huayuray glacier covered ~2.45 km2, 12.8% less than in the LIA. In the same year, the glaciers in the Huayuray valley reached a minimum elevation of ~5660 masl and the ELA rose ~20 m, to 5800 masl. In only 45 years (1955 - 2000) the surface area of the ice was significantly reduced (~1 km2), i.e. 40.8%. The ELA continued to rise, until it reached 5890 masl in 2000. From 2000 - 2008, the Huayuray glacier was reduced to ~0.78 km2 and the ELA rised ~10 m to reach the 5900 masl These results from the CVZ confirm the dramatic recession of the glaciers in the tropical Andes during recent decades. They also suggest that if the rate of recession associated with the period 2000-2008 continues, glaciers in the Ampato volcanic complex will disappear in 10 years approximately. References González Trueba, J.J. (2005): La Pequeña Edad del Hielo en los Picos de

  9. [Biomass recovery through secondary succession in the Cordillera Central de los Andes, Colombia].

    PubMed

    del Valle, Jorge Ignacio; Restrepo, Héctor Iván; Londoño, Mónica María

    2011-09-01

    Estimations on biomass recovery rates by secondary tropical forests are needed to understand the complex tropical succession, and their importance on CO2 capture, to offset the warming of the planet. We conducted the study in the Porce River Canyon between 550 and 1 700m.a.s.l. covering tropical and premontane moist belts. We established 33 temporary plots of 50m x 20m in secondary forests, including fallows to succesional forests, and ranging between 3 and 36 years old; we measured the diameter at breast height (D) of all woody plants with D > or = 5cm. In each one of these plots we established five 10m x 10m subplots, in which we measured the diameter betweem 1cm < or = D < 5cm of all woody plants. We estimated the biomass of pastures by harvesting 54 plots of 2m x 2m, and of shrubs in the fallows by harvesting the biomass in 18 plots of 5m x 2m. We modeled Bav (above ground live biomass of woody plants) and Brg (coarse root biomass) as a function of succesional age (t) with the growth model of von Bertalanffy, using 247t/ha and 66t/ha as asymptote, respectively. Besides, we modeled the ratios brg/bav = f(D) and Brg/Bav = f(t). The model estimated that 87 years are required to recover the existing Bav of primary forests through secondary succession, and 217 years for the Brg of the primary forest. The maximum instantaneous growth rate of the Bav was 6.95 t/ha/yr at age 10. The maximum average growth rate of the Bav was 6.26 t/ha/yr at age 17. The weighted average of the absolute growth rate of the Bav reached 4.57t/ha/yr and the relative growth rate 10% annually. The ratio brg/bav decreases with increasing D. The ratio Brg/Bav initially increases very rapidly until age 5 (25%), then decreases to reach 25 years (18%) and increases afterwards until the ratio reaches the asymptote (26.7%).

  10. Tectonic control on denudation rates in the central Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Zeilinger, Gerold; Kober, Florian; Hippe, Kristina; Lendzioch, Theodora; Grischott, Reto; Pillco Zolá, Ramiro; Christl, Markus

    2013-04-01

    Effects of a positive feedback loop between erosion and tectonics have been shown by analogue and numerical models and have been inferred from field observations at the scale of mountain ranges. We present new data from the Bolivian Andes supporting these observations, although common geomorphic parameters do not indicate a simple correlation. The upper Rio Grande segment, located between Cochabamba, Santa Cruz and Sucre, drains a major catchment in the central Bolivian Cordillera, from the Eastern Cordillera (EC) in the W, through the Interandean Zone (IAZ) and the Subandes (SA) in the E. The catchment covers an area of 58939 km² with an altitude range from 400 to 5150 m above sea level. Geologically, the Bolivian Andes comprise (from W to E) the Altiplano, the EC, the IAZ and the SA fold and thrust belts. The Altiplano represents an almost perfectly closed basin with distinct barriers defined by the Western Cordillera and Eastern Cordillera. The Rio Grande does not reach the Altiplano (unlike Rio La Paz and Rio Consata) but has its western drainage divide along the high peaks of the EC that experienced a period of intense shortening between Late Oligocene and Miocene. Near Cochabamba, the EC comprises metasedimentary siliciclastic rocks of Ordovician age. These rocks are overlain by Cretaceous to Paleocene and / or Neogene sediments with an angular unconformity. The IAZ and SA form an east-vergent fold and thrust belt and comprise Paleozoic and Mesozoic units. Farther east, the structures of the SA progressively include Neogene foreland strata of the Chaco foreland basin. The Chaco basin rests on the Brazilian shield east of the Subandean Belt and forms the modern foreland basin, where the lower Rio Grande catchment is sited. We obtained 58 cosmogenic 10Be catchment wide denudation rates for the Rio Grande catchments upstream of Abapó. They range from 7 mm/kyr to 1550 mm/kyr thus integrating at maximum over the last 10.000 years, with a mean of 262 mm/kyr. In

  11. Into the Andes: multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina.

    PubMed

    Chazot, Nicolas; Willmott, Keith R; Condamine, Fabien L; De-Silva, Donna Lisa; Freitas, André V L; Lamas, Gerardo; Morlon, Hélène; Giraldo, Carlos E; Jiggins, Chris D; Joron, Mathieu; Mallet, James; Uribe, Sandra; Elias, Marianne

    2016-11-01

    Understanding why species richness peaks along the Andes is a fundamental question in the study of Neotropical biodiversity. Several biogeographic and diversification scenarios have been proposed in the literature, but there is confusion about the processes underlying each scenario, and assessing their relative contribution is not straightforward. Here, we propose to refine these scenarios into a framework which evaluates four evolutionary mechanisms: higher speciation rate in the Andes, lower extinction rates in the Andes, older colonization times and higher colonization rates of the Andes from adjacent areas. We apply this framework to a species-rich subtribe of Neotropical butterflies whose diversity peaks in the Andes, the Godyridina (Nymphalidae: Ithomiini). We generated a time-calibrated phylogeny of the Godyridina and fitted time-dependent diversification models. Using trait-dependent diversification models and ancestral state reconstruction methods we then compared different biogeographic scenarios. We found strong evidence that the rates of colonization into the Andes were higher than the other way round. Those colonizations and the subsequent local diversification at equal rates in the Andes and in non-Andean regions mechanically increased the species richness of Andean regions compared to that of non-Andean regions ('species-attractor' hypothesis). We also found support for increasing speciation rates associated with Andean lineages. Our work highlights the importance of the Andean slopes in repeatedly attracting non-Andean lineages, most likely as a result of the diversity of habitats and/or host plants. Applying this analytical framework to other clades will bring important insights into the evolutionary mechanisms underlying the most species-rich biodiversity hotspot on the planet.

  12. Large slope failures in the La Paz basin, Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Roberts, N. J.; Hermanns, R. L.; Rabus, B.; Guzmán, M. A.; Minaya, E.; Clague, J. J.

    2014-12-01

    The La Paz basin in the eastern Bolivian Andes has been a hotspot for large-scale, deep-seated gravitational slope deformation during the Holocene. In less than 2 Ma, a network of steep-sided valleys up to 800 m deep formed in sediments of the Altiplano Plateau and underlying basement rocks. We characterize the distribution, extent, mechanisms, and modern activity of large-scale failures within this landscape using optical image interpretation, existing geologic maps, synthetic RADAR interferometry (InSAR), and field investigation. Deposits of nearly 20 landslides larger than 100 Mm3 occur within the basin. Most failures have occurred in weakly lithified Late Miocene to Pliocene sedimentary rocks and include earth flows, translational and rotational landslides, and plug flows. Failures in underlying tectonized Paleozoic sedimentary rocks include bedding-parallel rockslides. The largest failure is the 3 km3 Achcocalla earth flow (ca. 11 ka BP), which ran out ~20 km. Other dated events span the period from the early Holocene to nearly the Colonial historic period. InSAR results show that many large slope failures, including the Achocalla earth flow, are currently moving at rates of a few centimeters to a few decimeters per year. Rapid deposition, shallow burial, and rapid incision of the basin fills produced steep slopes in weak geologic materials that, coupled with groundwater discharge from the valley walls, are the primary controls on instability. In contrast, the Altiplano surface has changed little in 2 Ma and the adjacent slopes of the Cordilleran Real, although steep, are relatively stable. Of the over 100 landslides that have occurred in the city of La Paz since the early twentieth century, most are at the margins of large, deep-seated prehistoric failures, and two of the most damaging historic landslides (Hanko-Hanko, 1582; Pampahasi, 2011) were large-scale reactivations of previously failed slopes. Improved understanding of large, deep-seated landslides in

  13. Active faulting in the Southwestern Venezuelan Andes and Colombia borderland

    SciTech Connect

    Singer, A.; Beltran, C.; Lugo, M. , Caracas )

    1993-02-01

    In the southern Andes, the Bocono fault shows a progressive disactivation of its right lateral movement, resulting from its attenuation against the transversal system of Bramon and its kinematic connection to the [open quotes]Pamplona indenter,[close quotes] considered as a part of the plate boundary between the Caribbean and South America. Near the Colombian frontier, the velocity of Bocono fault is probably less than 1 mm/yr. Such a decrease is explained because an increasing amount of the 1 cm/yr slip movement of the northern part of the fault is absorbed through a complex branching of the active trace, southwest Merida. Another significative amount of the rate movement of Bocono fault, considered as plate boundary, results absorbed by subparallel active faulting systems located to the east (Uribante and Caparo Systems) and to the west sides (San Simon-Seboruco, and San Pedro-Aguas Calientes-La Don Juana systems). The last system, extending beyond the frontier, shows a particular seimotectonic importance, as a probable source of the 1875 Cucata earthquake. In this way, the weight of the southwestern end of Bocono fault as a seismic source loses importance respect to the northern segment located between la Grita and Merida where the 1610 and 1894 earthquakes occurred, and also as compared to the faults that define the [open quotes]Pamplona indenter[close quotes] like probable source for several other destructive earthquakes.

  14. Membrane triangles with corner drilling freedoms. II - The ANDES element

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Militello, Carmelo

    1992-01-01

    This is the second article in a three-part series on the construction of 3-node, 9-dof membrane elements with normal-to-its-plane rotational freedoms (the so-called drilling freedoms) using parametrized variational principles. In this part, one such element is derived within the context of the assumed natural deviatoric strain (ANDES) formulation. The higher-order strains are obtained by constructing three parallel-to-sides pure-bending modes from which natural strains are obtained at the corner points and interpolated over the element. To attain rank sufficiency, an additional higher-order 'torsional' mode, corresponding to equal hierarchical rotations at each corner with all other motions precluded, is incorporated. The resulting formulation has five free parameters. When these parameters are optimized against pure bending by energy balance methods, the resulting element is found to coalesce with the optimal EFF element derived in Part I. Numerical integration as a strain filtering device is found to play a key role in this achievement.

  15. Meteorological Conditions of Floods In The Chilean Andes Mountains

    NASA Astrophysics Data System (ADS)

    Vergara, J.

    Catastrophic floods occurred on mountains River during 2000 and 2001. The meteo- rological conditions of flood during the last five years have analyzed. For example, the flood of June 29 of 2000 occurred after one of extremely wettest June of the last 40 years were snowfall was 991cm in the Aconcagua Valley. Infrequently storms activ- ity generated a huge snowfall and rainfall over the Andes mountains on June of 2000 (1525mm in El Maule Valley) and the end of the unusually period, the flood was trig- gered by rising temperatures on the mountains and heavy rain (199mm in 24 hours) fall over the fresh snow on the morning of June 29 and floods wave developed and moved down along of the all river located on Central part of Chile, the foods peak was 2970.5m3/s on the El Maule basin in the morning of June 29. The regional meteoro- logical models with the hydrological forecasting was used for alert of the floods.

  16. Over three millennia of mercury pollution in the Peruvian Andes

    PubMed Central

    Cooke, Colin A.; Balcom, Prentiss H.; Biester, Harald; Wolfe, Alexander P.

    2009-01-01

    We present unambiguous records of preindustrial atmospheric mercury (Hg) pollution, derived from lake-sediment cores collected near Huancavelica, Peru, the largest Hg deposit in the New World. Intensive Hg mining first began ca. 1400 BC, predating the emergence of complex Andean societies, and signifying that the region served as a locus for early Hg extraction. The earliest mining targeted cinnabar (HgS) for the production of vermillion. Pre-Colonial Hg burdens peak ca. 500 BC and ca. 1450 AD, corresponding to the heights of the Chavín and Inca states, respectively. During the Inca, Colonial, and industrial intervals, Hg pollution became regional, as evidenced by a third lake record ≈225 km distant from Huancavelica. Measurements of sediment-Hg speciation reveal that cinnabar dust was initially the dominant Hg species deposited, and significant increases in deposition were limited to the local environment. After conquest by the Inca (ca. 1450 AD), smelting was adopted at the mine and Hg pollution became more widely circulated, with the deposition of matrix-bound phases of Hg predominating over cinnabar dust. Our results demonstrate the existence of a major Hg mining industry at Huancavelica spanning the past 3,500 years, and place recent Hg enrichment in the Andes in a broader historical context. PMID:19451629

  17. Structural style on southern flank of Merida Andes, Venezuela

    SciTech Connect

    Urbina, C.; Cornelio, A. )

    1993-02-01

    The Merida Andes exhibit the most complex tectonics in western Venezuela. By studying the different ages and regional distribution of rocks, we can describe some tectonic features which are of interest to oil exploration in this area. Vertical basement movements accompanied extensional tectonics from pre-Cambrian until Eocene times. For this time interval, we reconstructed diverse normal fault systems and associated subsidence. From Eocene time onwards, compressional tectonics gave origin to anticlines and reverse, thrust and back-thrust faults. Neo-tectonic movements have modified existing structures by dislocation along transcurrent fault systems. Geochemical analyses have determined the presence of hydrocarbon source rocks equivalent to the a Luna Formation of the Maracaibo Basin; seismic, surface and subsurface data prove the existence of excellent seals in the Eocene Paguey Shale. The principal problem is to determine the timing of hydrocarbon migration with respect to the timing of trap formation. It is highly probable that the sapropelic strata of the Navay Formation, equivalent to the La Luna Formation, is presently expelling hydrocarbons to traps in the Barinas Basin, under presently existing temperature-pressure conditions.

  18. Epidemiology of Echinococcus granulosus infection in the central Peruvian Andes.

    PubMed Central

    Moro, P. L.; McDonald, J.; Gilman, R. H.; Silva, B.; Verastegui, M.; Malqui, V.; Lescano, G.; Falcon, N.; Montes, G.; Bazalar, H.

    1997-01-01

    The prevalence of human, canine, and ovine echinococcosis was determined in an endemic area of the Peruvian Andes where control programmes have not been operational since 1980. Prevalence of infection in humans was determined using portable ultrasound, chest X-rays, and an enzyme-linked immunoelectrotransfer blot (EITB) assay. Canine and ovine echinococcal prevalence was determined by microscopic stool examinations following arecoline purging for tapeworm detection and by examination of the viscera from slaughtered livestock animals, respectively. The prevalence among 407 humans surveyed was 9.1%. The frequency of disease in the liver, lung, and in both organs was 3.4%, 2.0%, and 0.2%, respectively. Portable ultrasound or portable chest X-ray has shown that, compared to adults, children under 11 years had significantly higher seropositive rates without evidence of hydatid disease (P < 0.05). Among the 104 dogs inspected for echinococcus after arecoline purging, 33 (32%) were positive for adult tapeworms. Among the 117 sheep slaughtered at the local abattoir, 102 (87%) had hydatid cysts. The prevalence of human hydatidosis in this endemic area of Peru is one of the highest in the world and nearly five times higher than previously reported in 1980. An increase in echinococcosis prevalence may result after premature cessation of control programmes. PMID:9509628

  19. Quaternary Glaciations in the Rio Mendoza Valley, Argentine Andes

    NASA Astrophysics Data System (ADS)

    Espizua, Lydia E.

    1993-09-01

    In the Rio Mendoza valley, five Pleistocene drifts and one Holocene drift are distinguished by multiple relative-age criteria, including surface-rock weathering, development of rock varnish, moraine morphology, soil-profile development, and stratigraphic relationships. Several absolute ages suggest a preliminary chronology. During the oldest (Uspallata) glaciation, a system of valley glaciers flowed 110 km from the Andean drainage divide and 80 km from Cerro Aconcagua to terminate at 1850 m. Drift of this ice advance is older than a widespread tephra dated by fission-track at 360,000 ± 36,000 yr. During the Punta de Vacas advance, ice terminated at 2350 m, while during the subsequent Penitentes advance, the glacier system ended at 2500 m. A travertine layer overlying Penitentes Drift has U-series age of 24,200 ± 2000 yr B.P. The distribution of Horcones Drift, which is inferred to represent the last glacial maximum, delimits an independent ice stream that flowed 22 km down Horcones valley to 2750 m. A later readvance (Almacenes) reached 3250 m. Confluencia Drift is considered to be Neoglacial in age and extends downvalley to 3300 m. The moraine sequence is compared with those studied by Caviedes (1972) along Rio Aconcagua on the Chilean flank of the Andes.

  20. [Description of the seismological network of the Venezuelan Andes].

    PubMed

    Guada, Carlos; Morandi, María; Silva, José

    2003-01-01

    Western Venezuela shows a broad zone characterized by a moderate seismicity level, which has been the scenery of various historic earthquakes of destructive character. The beginning of the seismic instrumentation in the area dates from 1969, nevertheless it was 10 years later when the seismological network of the Venezuelan Andes (REDSAV) was permanently installed in order to characterize the regional earthquake activity. The REDSAV is an array of 10 remote seismic stations that sends the seismic signals by analog telemetry to the central station, located in the city of Mérida, where the digitalization, automatic event detection in real time and the analysis and off-line processing of the seismic information is carried out. During the last 10 years important advances have been taken place in terms of its operativity, which includes a dynamic web site (http://lgula.ciens.ula.ve) with a catalog of western Venezuela earthquakes, where the user can visualize the seismograms, the P and S wave arrival time, the polarities and epicentral maps; moreover, it is possible to select events applying temporal, spatial and magnitute criteria. In this paper the technical characteristic of the equipment are described and the advances registered in the last years referring to the automatic acquisition system, processing of the information and seismologic catalog of the REDSAV, whose systematic use during a decade has permitted to gather the biggest information base of related with the seismicity of the south-western Venezuela.

  1. The Grenville-age basement of the Andes

    NASA Astrophysics Data System (ADS)

    Ramos, Victor A.

    2010-01-01

    The analysis of the basement of the Andes shows the strong Grenville affinities of most of the inliers exposed in the different terranes from Colombia to Patagonia. The terranes have different histories, but most of them participated in the Rodinia supercontinent amalgamation during the Mesoproterozoic between 1200 and 1000 Ma. After Rodinia break-up some terranes were left in the Laurentian side such as Cuyania and Chilenia, while others stayed in the Gondwanan side. Some of the terranes once collided with the Amazon craton remained attached, experiencing diverse rifting episodes all along the Phanerozoic, as the Arequipa and Pampia terranes. Some other basement inliers were detached in the Neoproterozoic and amalgamated again to Gondwana in the Early Cambrian, Middle Ordovician or Permian times. A few basement inliers with Permian metamorphic ages were transferred to Gondwana after Pangea break-up from the Laurentian side. Some of them were part of the present Middle America terrane. An exceptional case is the Oaxaquia terrane that was detached from the Gondwana margin after the Early Ordovician and is now one of the main Mexican terranes that collided with Laurentia. These displacements, detachments, and amalgamations indicate a complex terrane transfer between Laurentia and Gondwana during Paleozoic times, following plate reorganizations and changes in the absolute motion of Gondwana.

  2. Characteristics of Precipitation Features and Annual Rainfall during the TRMM Era in the Central Andes

    NASA Technical Reports Server (NTRS)

    Mohr, Karen I.; Slayback, Daniel; Yager, Karina

    2014-01-01

    The central Andes extends from 7 deg to 21 deg S, with its eastern boundary defined by elevation (1000m and greater) and its western boundary by the coastline. The authors used a combination of surface observations, reanalysis, and the University of Utah Tropical Rainfall Measuring Mission (TRMM) precipitation features (PF) database to understand the characteristics of convective systems and associated rainfall in the central Andes during the TRMM era, 1998-2012. Compared to other dry (West Africa), mountainous (Himalayas), and dynamically linked (Amazon) regions in the tropics, the central Andes PF population was distinct from these other regions, with small and weak PFs dominating its cumulative distribution functions and annual rainfall totals. No more than 10% of PFs in the central Andes met any of the thresholds used to identify and define deep convection (minimum IR cloud-top temperatures, minimum 85-GHz brightness temperature, maximum height of the 40-dBZ echo). For most of the PFs, available moisture was limited (less than 35mm) and instability low (less than 500 J kg(exp -1)). The central Andes represents a largely stable, dry to arid environment, limiting system development and organization. Hence, primarily short-duration events (less than 60 min) characterized by shallow convection and light to light-moderate rainfall rates (0.5-4.0 mm h(exp -1)) were found.

  3. Structure and tectonic evolution of the Fuegian Andes (southernmost South America) in the framework of the Scotia Arc development

    NASA Astrophysics Data System (ADS)

    Torres Carbonell, Pablo J.; Dimieri, Luis V.; Olivero, Eduardo B.; Bohoyo, Fernando; Galindo-Zaldívar, Jesús

    2014-12-01

    The major structural and tectonic features of the Fuegian Andes provide an outstanding onshore geological framework that aids in the understanding of the tectonic evolution of the Scotia Arc, mainly known from offshore studies. The orogenic history of the Fuegian Andes (Late Cretaceous-Miocene) is thus compared and integrated with the tectonic history of the Scotia Sea. Late Cretaceous-Paleocene structures in the Fuegian Andes suggest a N-directed contraction consistent with an oroclinal bending of the southernmost South America-Antarctic Peninsula continental bridge. This N-directed contraction in the Fuegian Andes continued during the spreading of the West Scotia Ridge, between 40-50 and 10 Ma ago. The onset of major strike-slip faulting in Tierra del Fuego is considered here to be not older than the late Miocene, consistent with the recent history of the North Scotia Ridge; thus forming part of a tectonic regime superposed to the prior contraction in the Fuegian Andes.

  4. Traditional use of the Andean flicker (Colaptes rupicola) as a galactagogue in the Peruvian Andes

    PubMed Central

    Froemming, Steve

    2006-01-01

    This paper explores the use of the dried meat and feathers of the Andean Flicker (Colaptes rupicola) to increase the milk supply of nursing women and domestic animals in the Andes. The treatment is of preColumbian origin, but continues to be used in some areas, including the village in the southern Peruvian highlands where I do ethnographic research. I explore the factors giving rise to and sustaining the practice, relate it to other galactagogues used in the Andes and to the use of birds in ethnomedical and ethnoveterinary treatments in general, and situate it within the general tendency in the Andes and elsewhere to replicate human relations in the treatment of valuable livestock. The bird's use as a galactagogue appears to be motivated by both metaphorical associations and its perceived efficacy, and conceptually blends human and animal healthcare domains. PMID:16677398

  5. Cenozoic climate change as a possible cause for the rise of the Andes.

    PubMed

    Lamb, Simon; Davis, Paul

    2003-10-23

    Causal links between the rise of a large mountain range and climate have often been considered to work in one direction, with significant uplift provoking climate change. Here we propose a mechanism by which Cenozoic climate change could have caused the rise of the Andes. Based on considerations of the force balance in the South American lithosphere, we suggest that the height of, and tectonics in, the Andes are strongly controlled both by shear stresses along the plate interface in the subduction zone and by buoyancy stress contrasts between the trench and highlands, and shear stresses in the subduction zone depend on the amount of subducted sediments. We propose that the dynamics of subduction and mountain-building in this region are controlled by the processes of erosion and sediment deposition, and ultimately climate. In central South America, climate-controlled sediment starvation would then cause high shear stress, focusing the plate boundary stresses that support the high Andes.

  6. Carbon stabilization mechanisms in soils in the Andes

    NASA Astrophysics Data System (ADS)

    Jansen, Boris; Cammeraat, Erik

    2015-04-01

    The volcanic ash soils of the Andes contain very large stocks of soil organic matter (SOM) per unit area. Consequently, they constitute significant potential sources or sinks of the greenhouse gas CO2. Climate and/or land use change potentially have a strong effect on these large SOM stocks. To clarify the role of chemical and physical stabilisation mechanisms in volcanic ash soils in the montane tropics, we investigated carbon stocks and stabilization mechanisms in the top- and subsoil along an altitudinal transect in the Ecuadorian Andes. The transect encompassed a sequence of paleosols under forest and grassland (páramo), including a site where vegetation cover changed in the last century. We applied selective extraction techniques, performed X-ray diffraction analyses of the clay fraction and estimated pore size distributions at various depths in the top- and subsoil along the transect. In addition, from several soils the molecular composition of SOM was further characterized with depth in the current soil as well as the entire first and the top of the second paleosol using GC/MS analyses of extractable lipids and Pyrolysis-GC/MS analyses of bulk organic matter. Our results show that organic carbon stocks in the mineral soil under forest a páramo vegetation were roughly twice as large as global averages for volcanic ash soils, regardless of whether the first 30cm, 100cm or 200cm were considered. We found the carbon stabilization mechanisms involved to be: i) direct stabilization of SOM in organo-metallic (Al-OM) complexes; ii) indirect protection of SOM through low soil pH and toxic levels of Al; and iii) physical protection of SOM due to a very high microporosity of the soil (Tonneijck et al., 2010; Jansen et al. 2011). When examining the organic carbon at a molecular level, interestingly we found extensive degradation of lignin in the topsoil while extractable lipids were preferentially preserved in the subsoil (Nierop and Jansen, 2009). Both vegetation

  7. Possible future lakes in the Andes of Peru

    NASA Astrophysics Data System (ADS)

    Colonia, Daniel; Haeberli, Wilfried; Torres, Judith; Giraldez, Claudia; Schauwecker, Simone; Santiago, Alexzander; Cochachin, Alejo; Huggel, Christian

    2015-04-01

    Climate change has caused large losses of glacier mass in the Andes of Peru. Also, given the projected changes in climate, based on different IPCC scenarios for 2050 and 2080, simulations with a tropical glacier-climate model indicate that glaciers will continue to retreat. According to the national Peruvian glacier inventories 43% of glacier area has disappeared between 1970 and 2003-2010 in the 19 snowy mountain ranges and a total of 8 355 new lakes have formed in deglaciating terrain. With glacier retreat new lakes form in parts of the glacier tongue where there is an overdeepening, and these lakes can be a source of natural hazards to downstrean populations. Therefore, the identification of possible future lakes is important to plan for preventive measures concerning possible lake outbursts as well as to understand changes in freshwater storage in the corresponding source areas. Modeling of glacier-bed overdeepenings and possible future lakes forming in such topographic depressions when becoming ice-free was done using the SRTM DEM from the year 2000 with a 90 m resolution and the 2003-2010 glacier outlines from the recently published national glacier inventory of Perú. The GIS-based analysis followed three main steps: (1) identification of flat glacier areas with less than 10° surface slope as a first-order spatial approximation to possible occurrences of glacier-bed overdeepenings; (2) application, using Google Earth, of three morphological indications of glacier-bed overdeepenings following Frey et al. (2010): steepening surface slope, onset of crevasse formation, lateral flow-narrowing; and (3) verification of the results from steps (1) and (2) by comparison with GlabTop modeling of bed topographies following Linsbauer et al. (2012) using the SRTM DEM, contour lines and constructed branch lines for all glaciers. A pilot study has already been carried out for the Cordillera Blanca. The results show that 31 major new lakes may form in the future. The total

  8. Evolution of Irruputuncu volcano, Central Andes, northern Chile

    NASA Astrophysics Data System (ADS)

    Rodríguez, I.; Roche, O.; Moune, S.; Aguilera, F.; Campos, E.; Pizarro, M.

    2015-11-01

    The Irruputuncu is an active volcano located in northern Chile within the Central Andean Volcanic Zone (CAVZ) and that has produced andesitic to trachy-andesitic magmas over the last ˜258 ± 49 ka. We report petrographical and geochemical data, new geochronological ages and for the first time a detailed geological map representing the eruptive products generated by the Irruputuncu volcano. The detailed study on the volcanic products allows us to establish a temporal evolution of the edifice. We propose that the Irruputuncu volcanic history can be divided in two stages, both dominated by effusive activity: Irruputuncu I and II. The oldest identified products that mark the beginning of Irruputuncu I are small-volume pyroclastic flow deposits generated during an explosive phase that may have been triggered by magma injection as suggested by mingling features in the clasts. This event was followed by generation of large lava flows and the edifice grew until destabilization of its SW flank through the generation of a debris avalanche, which ended Irruputuncu I. New effusive activity generated lavas flows to the NW at the beginning of Irruputuncu II. In the meantime, lava domes that grew in the summit were destabilized, as shown by two well-preserved block-and-ash flow deposits. The first phase of dome collapse, in particular, generated highly mobile pyroclastic flows that propagated up to ˜8 km from their source on gentle slopes as low as 11° in distal areas. The actual activity is characterized by deposition of sulfur and permanent gas emissions, producing a gas plume that reaches 200 m above the crater. The maximum volume of this volcanic system is of ˜4 km3, being one of the smallest active volcano of Central Andes.

  9. High resolution precipitation climatology for the Andes of South Ecuador

    NASA Astrophysics Data System (ADS)

    Trachte, Katja; Bendix, Jörg

    2014-05-01

    The climate of Ecuador is strongly dominated by the complex structure of the Andes Mountains. Due to their heights and north-south orientation they act like a barrier, which cause delineation between the western and eastern flanks, as well as the inner-Andean areas. Commonly the Ecuadorian climate is classified in three zones, Costa, Interandina and Oriente. Existing precipitation products such as the GPCC or TRMM data are enabled to represent these climate zones, but because of their spatial resolution, they pass to capture the different regimes within a zone. Especially the inner-Andean region (Interandina) with its characteristic complex terrain shows spatially high climate variability. Local circulation systems, e.g. mountain-valley breezes as well as effects of windward and lee-side, drive the climate conditions allowing for the differentiation of air temperature and rainfall distribution on relative small scales. These highly variable patterns are also reflected by the diversity of ecosystems, e.g. rainforest, dry forest and Paramo, in a relative small area. In order to represent the local systems a dynamical downscaling approach for the Ecuadorian region is applied. In doing so the Weather Research and Forecasting (WRF) model is used. A suitable model setup was evaluated within a sensitivity study, where various parametrization schemes were tested. The most suitable physics combination was used for a 30 year hint cast simulation. The poster presents first results of the high resolution climate simulations. On the basis of the spatial distribution of rainfall patterns distinct precipitation regimes within the Interandina will be shown. The aim is to highlight and discuss the importance of the adequately representation of the terrain in mountainous regions like the Andean Mountains.

  10. Erosion by Ice and Water in the Southern Andes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This scene on the remote, rugged Argentine/Chilean border in the far southern Andes Mountains offers numerous, dramatic examples of both erosional processes and features of ice and water. The sharp, glaciated crest of the Cerro San Lorenzo (center) exceeds 12,000 feet and casts a long shadow southeastward. Glaciers on its western flank flow into the valley. This Electronic Still Camera photo was taken from the International Space Station, in December 2000 (late spring) when most of the previous winter's snow had melted below an altitude of 6,000 feet. Lago Pueyrredon, and the other lakes visible here, have been excavated by geologically recent episodes of glacier erosion, when glaciers extended all the way onto the lowland plains (top right). Since the last melting of the glaciers (15,000 years ago) three distinct fan deltas (semicircular features, marked with arrows) have formed where rivers flow into the lake. Counterclockwise currents in the lake-driven by strong winds from the west-have generated thin sand spits from each fan-delta. The largest spit (attached to the largest fan-delta, see right arrow) has isolated an approximately 10-kilometer long segment of the south end of the lake. The river that constructed the largest fan presently discharges turbid water to this isolated basin, giving it a lighter color than the rest of the lake. Glacial data collected over the past 50 years indicate that small ice bodies are disappearing at accelerated rates. (EOS, vol 81, no. 24, June 13, 2000) Predictions are that large fluctuations in land ice, with significant implications to society, are possible in the coming decades and centuries due to natural and anthropogenic climate change. Before glacial data can be used to address critical problems pertaining to the world's economic and environmental health, more detailed information about such glaciers is needed. Image ISS001-ESC-5113 provided by the Earth Sciences and Image Analysis Laboratory, Johnson Space Center.

  11. The Little Ice Age in the tropical Andes

    NASA Astrophysics Data System (ADS)

    Jomelli, V.; Cooley, D.; Naveau, P.; Rabatel, A.

    2003-12-01

    The period known as the Little Ice Age, from the 17th to the 19th century, brought a cooling of around 0.5 degrees Celsius as well as varyingly humid episodes Eurasia and North America. Because of a lack of long paleoclimatic time series in the tropical Andes, it is still unclear if similar cooling occurred over these tropical and Southern Hemisphere regions. Furthermore, if changes did take place, it is currently not well established if they were temporally synchronous or shifted with respect of the variations in the Northern Hemisphere or the globe. To look into this important climatic question and for advancing our understanding of the past climate links between the tropics and higher latitudes, 25 glaciers located in Bolivia and in Peru were carefully selected. Glacial activity and environmental changes were analyzed using lichenometry. Largest lichen diameters were measured in the different glacial basins. To better analyze these maximum diameters and to more appropriately represent uncertainty and the character of this collected data, age estimates of the different moraine systems were derived using extreme value theory rather than the traditional averaging. The results reveal two particular phases of glacier growth, 1550-1600 and 1800-1850. These two phases have also been identified in other proxy records, such as ice-cores and documentary data (particularly from church chronicles). In order to understand the climatic changes that could have contributed to the glacial variations, a simple model based on both precipitations and temperatures is applied to estimate mass balance questions in the basins. A cooling of the order of 0.5 C seems to be the most consistent with the data. Finally, these findings are compared with the better-known histories of Northern Hemisphere mid-latitude glaciers.

  12. The nature of orogenic crust in the central Andes

    NASA Astrophysics Data System (ADS)

    Beck, Susan L.; Zandt, George

    2002-10-01

    The central Andes (16°-22°S) are part of an active continental margin mountain belt and the result of shortening of the weak western edge of South America between the strong lithospheres of the subducting Nazca plate and the underthrusting Brazilian shield. We have combined receiver function and surface wave dispersion results from the BANJO-SEDA project with other geophysical studies to characterize the nature of the continental crust and mantle lithospheric structure. The major results are as follows: (1) The crust supporting the high elevations is thick and has a felsic to intermediate bulk composition. (2) The relatively strong Brazilian lithosphere is underthrusting as far west (65.5°W) as the high elevations of the western part of the Eastern Cordillera (EC) but does not underthrust the entire Altiplano. (3) The subcrustal lithosphere is delaminating piecemeal under the Altiplano-EC boundary but is not completely removed beneath the central Altiplano. The Altiplano crust is characterized by a brittle upper crust decoupled from a very weak lower crust that is dominated by ductile deformation, leading to lower crustal flow and flat topography. In contrast, in the high-relief, inland-sloping regions of the EC and sub-Andean zone, the upper crust is still strongly coupled across the basal thrust of the fold-thrust belt to the underthrusting Brazilian Shield lithosphere. Subcrustal shortening between the Altiplano and Brazilian lithosphere appears to be accommodated by delamination near the Altiplano-EC boundary. Our study suggests that orogenic reworking may be an important part of the "felsification" of continental crust.

  13. Glacier loss and emerging hydrologic vulnerabilities in the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Mark, B. G.; McKenzie, J. M.; Baraer, M.; Lagos, P.; Lautz, L.; Carey, M.; Bury, J.; Crumley, R.; Wigmore, O.; Somers, L. D.

    2015-12-01

    Accelerating glacier recession in the tropical Andes is transforming downstream hydrology, while increasing demands for water by end-users (even beyond the watershed limits) is complicating the assessment of vulnerability. Future scenarios of hydro-climatic vulnerability require a better understanding of coupled hydrologic and human systems, involving both multiscale process studies and more robust models of glacier-climate interactions. We synthesize research in two proglacial valleys of glacierized mountain ranges in different regions of Peru that are both in proximity to growing water usage from urban sectors, agriculture, hydroelectric generation, and mining. In both the Santa River watershed draining the Cordillera Blanca and the Shullcas River watershed below Hyuatapallana Mountain in Junin, glaciers have receded over 25% since the 1980s. Historical runoff and glacier data, combined with glacier-climate modeling, show a long-term decrease in discharge resulting from a net loss of stored water. We find evidence that this altered hydrology is transforming proglacial wetland ecology and water quality, even while water resource use has intensified. Beyond glaciers, our results show that over 60% of the dry season base flow in each watershed is groundwater sourced from heterogeneous aquifers. Municipal water supply in Huancayo already relies on 18 groundwater wells. Perceptions of water availability and actual water use practices remain relatively divorced from the actual water resources provided from each mountain range. Critical changes in glacier volume and water supply are not perceived or acknowledged consistently amongst different water users, nor reflected in water management decisions. In order to identify, understand, model, and adapt to climate-glacier-water changes, it is vital to integrate the analysis of water availability and groundwater processes (the domain of hydrologists) with that of water use (the focus for social scientists). Attention must be

  14. Glaciological studies in the central Andes using AIRSAR/TOPSAR

    NASA Technical Reports Server (NTRS)

    Forster, Richard R.; Klein, Andrew G.; Blodgett, Troy A.; Isacks, Bryan L.

    1993-01-01

    The interaction of climate and topography in mountainous regions is dramatically expressed in the spatial distribution of glaciers and snowcover. Monitoring existing alpine glaciers and snow extent provides insight into the present mountain climate system and how it is changing, while mapping the positions of former glaciers as recorded in landforms such as cirques and moraines provide a record of the large past climate change associated with the last glacial maximum. The Andes are an ideal mountain range in which to study the response of snow and ice to past and present climate change. Their expansive latitudinal extent offers the opportunity to study glaciers in diverse climate settings from the tropical glaciers of Peru and Bolivia to the ice caps and tide-water glaciers of sub-polar Patagonia. SAR has advantages over traditional passive remote sensing instruments for monitoring present snow and ice and differentiating moraine relative ages. The cloud penetrating ability of SAR is indispensable for perennially cloud covered mountains. Snow and ice facies can be distinguished from SAR's response to surface roughness, liquid water content and grain size distribution. The combination of SAR with a coregestered high-resolution DEM (TOPSAR) provides a promising tool for measuring glacier change in three dimensions, thus allowing ice volume change to be measured directly. The change in moraine surface roughness over time enables SAR to differentiate older from younger moraines. Polarimetric SAR data have been used to distinguish snow and ice facies and relatively date moraines. However, both algorithms are still experimental and require ground truth verification. We plan to extend the SAR classification of snow and ice facies and moraine age beyond the ground truth sites to throughout the Cordillera Real to provide a regional view of past and present snow and ice. The high resolution DEM will enhance the SAR moraine dating technique by discriminating relative ages

  15. Bayesian spatiotemporal interpolation of rainfall in the Central Chilean Andes

    NASA Astrophysics Data System (ADS)

    Ossa-Moreno, Juan; Keir, Greg; McIntyre, Neil

    2016-04-01

    Water availability in the populous and economically significant Central Chilean region is governed by complex interactions between precipitation, temperature, snow and glacier melt, and streamflow. Streamflow prediction at daily time scales depends strongly on accurate estimations of precipitation in this predominantly dry region, particularly during the winter period. This can be difficult as gauged rainfall records are scarce, especially in the higher elevation regions of the Chilean Andes, and topographic influences on rainfall are not well understood. Remotely sensed precipitation and topographic products can be used to construct spatiotemporal multivariate regression models to estimate rainfall at ungauged locations. However, classical estimation methods such as kriging cannot easily accommodate the complicated statistical features of the data, including many 'no rainfall' observations, as well as non-normality, non-stationarity, and temporal autocorrelation. We use a separable space-time model to predict rainfall using the R-INLA package for computationally efficient Bayesian inference, using the gridded CHIRPS satellite-based rainfall dataset and digital elevation models as covariates. We jointly model both the probability of rainfall occurrence on a given day (using a binomial likelihood) as well as amount (using a gamma likelihood or similar). Correlation in space and time is modelled using a Gaussian Markov Random Field (GMRF) with a Matérn spatial covariance function which can evolve over time according to an autoregressive model if desired. It is possible to evaluate the GMRF at relatively coarse temporal resolution to speed up computations, but still produce daily rainfall predictions. We describe the process of model selection and inference using an information criterion approach, which we use to objectively select from competing models with various combinations of temporal smoothing, likelihoods, and autoregressive model orders.

  16. Two New Species of Black Flies (Diptera: Simuliidae) from the High Andes of Colombia.

    PubMed

    Mantilla, Juan S; Moncada, Ligia I; Matta, Nubia E; Adler, Peter H

    2013-01-01

    The females, males, pupae, and larvae of two new species of Simulium are described and illustrated from a small stream 3950 m above sea level in the Lake Otún area of the Colombian Andes Mountains. Simulium (Pternaspatha) quimbayium n. sp. represents a 630-km northeastern extension of the distributional range of previously known members of the subgenus Pternaspatha, and Simulium (Psilopelmia) machetorum n. sp. represents the highest altitude recorded for a species of the subgenus Psilopelmia. These species illustrate the unique simuliid biodiversity in the páramo ecosystem of the high northern Andes.

  17. Selection of astrophysical/astronomical/solar sites at the Argentina East Andes range taking into account atmospheric components

    NASA Astrophysics Data System (ADS)

    Piacentini, R. D.; García, B.; Micheletti, M. I.; Salum, G.; Freire, M.; Maya, J.; Mancilla, A.; Crinó, E.; Mandat, D.; Pech, M.; Bulik, T.

    2016-06-01

    In the present work we analyze sites in the Argentinian high Andes mountains as possible places for astrophysical/astronomical/solar observatories. They are located at: San Antonio de los Cobres (SAC) and El Leoncito/CASLEO region: sites 1 and 2. We consider the following atmospheric components that affect, in different and specific wavelength ranges, the detection of photons of astronomical/astrophysical/solar origin: ozone, microscopic particles, precipitable water and clouds. We also determined the atmospheric radiative transmittance in a day near the summer solstice at noon, in order to confirm the clearness of the sky in the proposed sites at SAC and El Leoncito. Consequently, all the collected and analyzed data in the present work, indicate that the proposed sites are very promising to host astrophysical/astronomical/solar observatories. Some atmospheric components, like aerosols, play a significant role in the attenuation of light (Cherencov and/or fluorescence) detected in cosmic rays (particles or gamma photons) astrophysical observatories, while others, like ozone have to be considered in astronomical/solar light detection.

  18. Evolution of crustal thickening in the central Andes, Bolivia

    NASA Astrophysics Data System (ADS)

    Eichelberger, Nathan; McQuarrie, Nadine; Ryan, Jamie; Karimi, Bobak; Beck, Susan; Zandt, George

    2015-09-01

    Paleoelevation histories from the central Andes in Bolivia have suggested that the geodynamic evolution of the region has been punctuated by periods of large-scale lithospheric removal that drive rapid increases in elevation at the surface. Here, we evaluate viable times and locations of material loss using a map-view reconstruction of the Bolivian orocline displacement field to forward-model predicted crustal thicknesses. Two volumetric models are presented that test assumed pre-deformation crustal thicknesses of 35 km and 40 km. Both models predict that modern crustal thicknesses were achieved first in the northern Eastern Cordillera (EC) by 30-20 Ma but remained below modern in the southern EC until ≤10 Ma. The Altiplano is predicted to have achieved modern crustal thickness after 10 Ma but only with a pre-deformation thickness of 50 km, including 10 km of sediment. At the final stage, the models predict 8-25% regional excess crustal volume compared to modern thickness, largely concentrated in the northern EC. The excess predicted volume from 20 to 0 Ma can be accounted for by: 1) crustal flow to the WC and/or Peru, 2) localized removal of the lower crust, or 3) a combination of the two. Only models with initial crustal thicknesses >35 km predict excess volumes sufficient to account for potential crustal thickness deficits in Peru and allow for lower crustal loss. However, both initial thickness models predict that modern crustal thicknesses were achieved over the same time periods that paleoelevation histories indicate the development of modern elevations. Localized removal of lower crust is only necessary in the northern EC where crustal thickness exceeds modern by 20 Ma, prior to paleoelevation estimates of modern elevations by 15 Ma. In the Altiplano, crustal thicknesses match modern values at 10 Ma and can only exceed modern values by 5 Ma, post-dating when modern elevations were thought to have been established. Collectively, these models predict that

  19. Motion of continental slivers and creeping subduction in the northern Andes

    NASA Astrophysics Data System (ADS)

    Nocquet, J.-M.; Villegas-Lanza, J. C.; Chlieh, M.; Mothes, P. A.; Rolandone, F.; Jarrin, P.; Cisneros, D.; Alvarado, A.; Audin, L.; Bondoux, F.; Martin, X.; Font, Y.; Régnier, M.; Vallée, M.; Tran, T.; Beauval, C.; Maguiña Mendoza, J. M.; Martinez, W.; Tavera, H.; Yepes, H.

    2014-04-01

    Along the western margin of South America, plate convergence is accommodated by slip on the subduction interface and deformation of the overriding continent. In Chile, Bolivia, Ecuador and Colombia, continental deformation occurs mostly through the motion of discrete domains, hundreds to thousands of kilometres in scale. These continental slivers are wedged between the Nazca and stable South American plates. Here we use geodetic data to identify another large continental sliver in Peru that is about 300-400 km wide and 1,500 km long, which we call the Inca Sliver. We show that movement of the slivers parallel to the subduction trench is controlled by the obliquity of plate convergence and is linked to prominent features of the Andes Mountains. For example, the Altiplano is located at the boundary of converging slivers at the concave bend of the central Andes, and the extending Gulf of Guayaquil is located at the boundary of diverging slivers at the convex bend of the northern Andes. Motion of a few large continental slivers therefore controls the present-day deformation of nearly the entire Andes mountain range. We also show that a 1,000-km-long section of the plate interface in northern Peru and southern Ecuador slips predominantly aseismically, a behaviour that contrasts with the highly seismic neighbouring segments. The primary characteristics of this low-coupled segment are shared by ~20% of the subduction zones in the eastern Pacific Rim.

  20. Lichenometric dating using Rhizocarpon subgenus Rhizocarpon in the Patagonian Andes, Argentina

    NASA Astrophysics Data System (ADS)

    Garibotti, Irene Adriana; Villalba, Ricardo

    2009-05-01

    This study represents the first attempt to develop and apply lichenometric dating curves of Rhizocarpon subgenus Rhizocarpon for dating glacier fluctuations in the Patagonian Andes. Six glaciers were studied along the Patagonian Andes. Surfaces of known ages (historical evidences and tree-ring analyses) were used as control sites to develop indirect lichenometric dating curves. Dating curves developed for the studied glaciers show the same general logarithmic form, indicating that growth rate of subgenus Rhizocarpon decreases over time. The strong west-east precipitation gradient across the Andean Cordillera introduces statistically significant differences in the growth curves, with faster growth rates in the moist west sites than the drier eastern sites. Latitudinal difference among the studied glaciers does not appear to be a major factor regulating lichen growth rates. Therefore, we developed two lichenometric curves for dating glacier fluctuations in wetter and drier sites in the Patagonian Andes during the past 450 yrs. Application of the developed curves to moraine dating allowed us to complement glacial chronologies previously obtained by tree-ring analyses. A first chronosequence for moraine formation in the Torrecillas Glacier (42°S) is presented. Our findings confirm the utility of lichenometry to date deglaciated surfaces in the Patagonian Andes.

  1. Knowledge and Learning in the Andes: Ethnographic Perspectives. Liverpool Latin American Studies, New Series 3.

    ERIC Educational Resources Information Center

    Stobart, Henry, Ed.; Howard, Rosaleen, Ed.

    This book presents research into the ways in which Indigenous peoples of the Andes create, transmit, maintain, and transform their knowledge, and the related processes of teaching and learning. Most chapters are based on papers delivered at a round-table conference at the University of Cambridge (England) in 1996 and include contributions from…

  2. A millennium of metallurgy recorded by lake sediments from Morococha, Peruvian Andes.

    PubMed

    Cooke, Colin A; Abbott, Mark B; Wolfe, Alexander P; Kittleson, John L

    2007-05-15

    To date, information concerning pre-Colonial metallurgy in South America has largely been limited to the archaeological record of artifacts. Here, we reconstruct a millennium of smelting activity in the Peruvian Andes using the lake-sediment stratigraphy of atmospherically derived metals (Pb, Zn, Cu, Ag, Sb, Bi, and Ti) and lead isotopic ratios (206Pb/ 207Pb) associated with smelting from the Morococha mining region in the central Peruvian Andes. The earliest evidence for metallurgy occurs ca. 1000 A.D., coinciding with the fall of the Wari Empire and decentralization of local populations. Smelting during this interval appears to have been aimed at copper and copper alloys, because of large increases in Zn and Cu relative to Pb. A subsequent switch to silver metallurgy under Inca control (ca. 1450 to conquest, 1533 A.D.) is indicated by increases in Pb, Sb, and Bi, a conclusion supported by further increases of these metals during Colonial mining, which targeted silver extraction. Rapid development of the central Andes during the 20th century raised metal burdens by an order of magnitude above previous levels. Our results represent the first evidence for pre-Colonial smelting in the central Peruvian Andes, and corroborate the sensitivity of lake sediments to pre-Colonial metallurgical activity suggested by earlier findings from Bolivia.

  3. "Nervios" and "Modern Childhood": Migration and Shifting Contexts of Child Life in the Ecuadorian Andes.

    ERIC Educational Resources Information Center

    Pribilsky, Jason

    2001-01-01

    Argues that beyond explanations predicated on psychological ideas of separation and attachment, "nervios," a depression-like disorder among children in the southern Ecuadorian Andes, reflects the limits of children's abilities to accept terms of family life increasingly defined through transnational migration and new consumption…

  4. Immune Serum Produced by DNA Vaccination Protects Hamsters against Lethal Respiratory Challenge with Andes Virus

    DTIC Science & Technology

    2008-02-01

    pulmonary syndrome in Argentina. Possibility of person to person transmission. Medicina (Buenos Aires) 56: 709–711. 8. Ferres, M., P. Vial, C. Marco, L...transmission of Andes virus. Medicina (Buenos Aires) 58(Suppl. 1):27–36. 20. Padula, P. J., A. Edelstein, S. D. Miguel, N. M. Lopez, C. M. Rossi, and R

  5. New host and lineage diversity of avian haemosporidia in the northern Andes

    PubMed Central

    Harrigan, Ryan J; Sedano, Raul; Chasar, Anthony C; Chaves, Jaime A; Nguyen, Jennifer T; Whitaker, Alexis; Smith, Thomas B

    2014-01-01

    The northern Andes, with their steep elevational and climate gradients, are home to an exceptional diversity of flora and fauna, particularly rich in avian species that have adapted to divergent ecological conditions. With this diversity comes the opportunity for parasites to exploit a wide breadth of avian hosts. However, little research has focused on examining the patterns of prevalence and lineage diversity of avian parasites in the Andes. Here, we screened a total of 428 birds from 19 species (representing nine families) and identified 133 infections of avian haemosporidia (31%), including lineages of Plasmodium, Haemoproteus, and Leucocytozoon. We document a higher prevalence of haemosporidia at higher elevations and lower temperatures, as well as an overall high diversity of lineages in the northern Andes, including the first sequences of haemosporidians reported in hummingbirds (31 sequences found in 11 species within the family Trochilidae). Double infections were distinguished using PHASE, which enables the separation of distinct parasite lineages. Results suggest that the ecological heterogeneity of the northern Andes that has given rise to a rich diversity of avian hosts may also be particularly conducive to parasite diversification and specialization. PMID:25469161

  6. Between Andes and Amazon: the genetic profile of the Arawak-speaking Yanesha.

    PubMed

    Barbieri, Chiara; Heggarty, Paul; Yang Yao, Daniele; Ferri, Gianmarco; De Fanti, Sara; Sarno, Stefania; Ciani, Graziella; Boattini, Alessio; Luiselli, Donata; Pettener, Davide

    2014-12-01

    The Yanesha are a Peruvian population who inhabit an environment transitional between the Andes and Amazonia. They present cultural traits characteristic of both regions, including in the language they speak: Yanesha belongs to the Arawak language family (which very likely originated in the Amazon/Orinoco lowlands), but has been strongly influenced by Quechua, the most widespread language family of the Andes. Given their location and cultural make-up, the Yanesha make for an ideal case study for investigating language and population dynamics across the Andes-Amazonia divide. In this study, we analyze data from high and mid-altitude Yanesha villages, both Y chromosome (17 STRs and 16 SNPs diagnostic for assigning haplogroups) and mtDNA data (control region sequences and 3 SNPs and one INDEL diagnostic for assigning haplogroups). We uncover sex-biased genetic trends that probably arose in different stages: first, a male-biased gene flow from Andean regions, genetically consistent with highland Quechua-speakers and probably dating back to Inca expansion; and second, traces of European contact consistent with Y chromosome lineages from Italy and Tyrol, in line with historically documented migrations. Most research in the history, archaeology and linguistics of South America has long been characterized by perceptions of a sharp divide between the Andes and Amazonia; our results serve as a clear case-study confirming demographic flows across that 'divide'.

  7. Holocene compression in the Acequión valley (Andes Precordillera, San Juan province, Argentina): Geomorphic, tectonic, and paleoseismic evidence

    NASA Astrophysics Data System (ADS)

    Audemard, M.; Franck, A.; Perucca, L.; Laura, P.; Pantano, Ana; Avila, Carlos R.; Onorato, M. Romina; Vargas, Horacio N.; Alvarado, Patricia; Viete, Hewart

    2016-04-01

    The Matagusanos-Maradona-Acequión Valley sits within the Andes Precordillera fold-thrust belt of western Argentina. It is an elongated topographic depression bounded by the roughly N-S trending Precordillera Central and Oriental in the San Juan Province. Moreover, it is not a piggy-back basin as we could have expected between two ranges belonging to a fold-thrust belt, but a very active tectonic corridor coinciding with a thick-skinned triangular zone, squeezed between two different tectonic domains. The two domains converge, where the Precordillera Oriental has been incorporated to the Sierras Pampeanas province, becoming the western leading edge of the west-verging broken foreland Sierras Pampeanas domain. This latter province has been in turn incorporated into the active deformation framework of the Andes back-arc at these latitudes as a result of enhanced coupling between the converging plates due to the subduction of the Juan Fernández ridge that flattens the Nazca slab under the South American continent. This study focuses on the neotectonics of the southern tip of this N-S elongated depression, known as Acequión (from the homonym river that crosses the area), between the Del Agua and Los Pozos rivers. This depression dies out against the transversely oriented Precordillera Sur, which exhibits a similar tectonic style as Precordillera Occidental and Central (east-verging fold-thrust belt). This contribution brings supporting evidence of the ongoing deformation during the Late Pleistocene and Holocene of the triangular zone bounded between the two leading and converging edges of Precordillera Central and Oriental thrust fronts, recorded in a multi-episodic lake sequence of the Acequión and Nikes rivers. The herein gathered evidence comprise Late Pleistocene-Holocene landforms of active thrusting, fault kinematics (micro-tectonic) data and outcrop-scale (meso-tectonic) faulting and folding of recent lake and alluvial sequences. In addition, seismically

  8. Hydrological interaction between glacier and páramos in the tropical Andes: implications for water resources availability

    NASA Astrophysics Data System (ADS)

    Villacís, Marcos; Cadier, Eric; Mena, Sandra; Anaguano, Marcelo; Calispa, Marlon; Maisisncho, Luis; Galárraga, Remigio; Francou, Bernard

    2010-05-01

    Preliminary hydro glacier estimates indicate that glacier contribution to the average annual consumption (5.6 m3 s-1) of the city of Quito (Capital of Ecuador, ~2'500.000 inhabitants, 2800 masl) represents only about 2%-4% of the total supply for human consumption. However, at the local level at the Antizana volcano (0°28'S, 78°09'W), the mass balance analysis of the system composed by the Humboldt catchment (area of 15.1 km2, 15% of glaciarized area, 5% of moraines area, 80% of the area is páramo-endemic ecosystem of the tropical Andes, range from 5670 masl to 4000 masl) and Los Crespos catchment (area of 2.4 km2, 67% glaciarized area, 27% moraines area, range from 5670 masl to 4500 masl), which is nested into the Humboldt catchment, allows us to identify that due to the presence of the glacier reservoirs there is an additional contribution of 24% to the annual volume at the Humboldt catchment and it helps to regulate the runoff during the dry season, where the daily additional glacier contribution from November to February in some cases could reach t 40%. The Humboldt catchment has similar physiographic characteristics than the sites where new diversions will be built in the future in order to satisfy the increasing demand of water for human consumption of the city of Quito and its surrounding populations. Based on detail hydrological observations (every 15 minutes measurements) during 2005 to 2009 and sporadic environmental trace analysis during the same period, the annual percentage of glacier contribution from the Humboldt catchment could potentially be as high as 37% due in part to the glacier melt contribution that gets infiltrated over 4750 masl it is then delivered around 4100 masl through underground circulation. Some of the sites where the glacier contribution reaches de surface has been identified through field work and the glacier origin of this water have been confirmed using a conductivity measurement, which seems to be a good indicator in when

  9. Structure and Evolution of the Central Andes of Peru

    NASA Astrophysics Data System (ADS)

    Gonzalez, L.; Pfiffner, O. A.

    2009-04-01

    Three major units make up the Andes in Peru: (1) The Western Cordillera consists of the Cretaceous Coastal Batholith intruding Jurassic to Cretaceous volcaniclastics (Casma group) in the west, and a fold-and-thrust belt of Mesozoic sediments in the east. Eocene and Miocene volcanics (Calipuy group and equivalents) overly all of these rock types. (2) The Central Highland contains a folded Paleozoic-Mesozoic sedimentary sequence overlain by thick Quaternary deposits. A major fault puts Neoproterozoic basement rocks of the Eastern Cordillera next to these units. (3) In the Eastern Cordillera, Late Paleozoic clastic successions unconformably overly folded Early Paleozoic sediments and a Neoproterozoic basement in the east. Permian (locally Triassic) granitoids intruded these units and were affected by folding and thrusting. In the core of the Eastern Cordillera, Early Cretaceous overly Early or Late Paleozoic strata. To the west, a thrust belt of Paleozoic to Cenozoic strata forms the transition to the foreland of the Brasilian shield. The most external part of this thrust belt involves Pliocene sediments and is referred to as Subandine zone. The Coastal Batholith is internally undeformed. The adjacent fold-and-thrust belt to the east is characterized by tight, nearly isoclinal upright folds with amplitudes of up to 1000 m. At the surface only Cretaceous rocks are observed. Using balancing techniques, a detachment horizon at the base of the Lowermost Cretaceous (Goyallarisquizga group - Oyon Formation) can be proposed. Further east, folds are more open, asymmetric and east verging, Jurassic sediments appear in the cores of the anticlines. The abrupt change in style from upright tight folding in the west to more open folding in the east is explained by a primary difference in the depositional sequence, most probably associated with synsedimentary faulting. The overlying volcanics of the Calipuy group and equivalents are, in turn, only slightly folded. In the Northern

  10. Episodic subgreenschist facies metamorphism in the Andes of Chile - is it a valid model?

    NASA Astrophysics Data System (ADS)

    Bevins, R. E.; Robinson, D.; Aguirre, L.; Vergara, M.

    2003-04-01

    The Central Andes of Chile are characterized by subgreenschist facies burial metamorphism that is reported as having developed in up to seven episodic cycles of some 40Myr duration. The main evidence in support of the model is reported as mineralogical breaks at major stratigraphic boundaries that are interpreted as documenting sharp breaks in metamorphic grade. Here we test this model by examination of the progressive secondary mineral development, reaction progress in mafic phyllosilicates, and topological variations of the low-grade assemblages in metabasites for Jurassic to Miocene sequences east of Santiago. The mafic phyllosilicates (smectite - mixed-layer chlorite/smectite - chlorite) show increasing reaction progress with stratigraphic age and there is a continuum across the main stratigraphic boundaries, such there is no offset or gap in the reaction progress at these boundaries. There are some differences in mineral assemblages between the various stratigraphic units, such as between prehnite+pumpellyite+/-laumonite or amphibole-bearing and non amphibole bearing rocks, from which contrasting subgreenschist facies can be recognised. However, consideration of the controls on mineral parageneses at subgreenschist facies conditions demonstrates that these different facies cannot be used solely as evidence of sharp breaks in metamorphic grade at unconformities, as has been reported in many previous publications for the Andes. The presently accepted model for the Central Andes, involving repeated cycles of episodic metamorphism developing in extensional basins, is, therefore, partly unfounded. Consideration of the overall tectonic evolution of this part of the Andes concurs that the burial metamorphism developed in extensional settings, but in only two events, namely in mid-late Cretaceous and Late Miocene times respectively. The results from this work suggest that the record of sharp metamorphic breaks and the episodic model of metamorphism reported for many

  11. Water and sediment quality of the Lake Andes and Choteau Creek basins, South Dakota, 1983-2000

    USGS Publications Warehouse

    Sando, Steven Kent; Neitzert, Kathleen M.

    2003-01-01

    The Bureau of Reclamation has proposed construction of the Lake Andes/Wagner Irrigation Demonstration Project to investigate environmental effects of irrigation of glacial till soils substantially derived from marine shales. During 1983-2000, the U.S. Geological Survey collected hydrologic, water-quality, and sediment data in the Lake Andes and Choteau Creek Basins, and on the Missouri River upstream and downstream from Choteau Creek, to provide baseline information in support of the proposed demonstration project. Lake Andes has a drainage area of about 230 mi2 (square miles). Tributaries to Lake Andes are ephemeral. Water-level fluctuations in Lake Andes can be large, and the lake has been completely dry on several occasions. The outlet aqueduct from Lake Andes feeds into Garden Creek, which enters Lake Francis Case just upstream from Fort Randall Dam on the Missouri River. For Lake Andes tributary stations, calcium, magnesium, and sodium are approximately codominant among the cations, and sulfate is the dominant anion. Dissolved-solids concentrations typically range from about 1,000 mg/L (milligrams per liter) to about 1,700 mg/L. Major-ion concentrations for Lake Andes tend to be higher than the tributaries and generally increase downstream in Lake Andes. Proportions of major ions are similar among the different lake units (with the exception of Owens Bay), with calcium, magnesium, and sodium being approximately codominant among cations, and sulfate being the dominant anion. Owens Bay is characterized by a calcium sulfate water type. Dissolved-solids concentrations for Lake Andes typically range from about 1,400 to 2,000 mg/L. Whole-water nitrogen and phosphorus concentrations are similar among the Lake Andes tributaries, with median whole-water nitrogen concentrations ranging from about 1.6 to 2.4 mg/L, and median whole-water phosphorus concentrations ranging from about 0.5 to 0.7 mg/L. Whole-water nitrogen concentrations in Lake Andes are similar among the

  12. The Largest Holocene Eruption of the Central Andes Found

    NASA Astrophysics Data System (ADS)

    Fernandez-Turiel, J.; Rodriguez-Gonzalez, A.; Saavedra, J.; Perez-Torrado, F.; Carracedo, J.; Osterrieth, M.; Carrizo, J.; Esteban, G.

    2013-12-01

    We present new data and interpretation about a major eruption -spreading ˜110 km3 ashes over 440.000 km2- long thought to have occurred around 4200 years ago in the Cerro Blanco Volcanic Complex (CBVC) in NW Argentina. This eruption may be the biggest during the past five millennia in the Central Volcanic Zone of the Andes, and possibly one of the largest Holocene eruptions in the world. The environmental effects of this voluminous eruption are still noticeable, as evidenced by the high content of arsenic and other trace elements in the groundwaters of the Chacopampean Plain. The recognition of this significant volcanic event may shed new light on interpretations of critical changes observed in the mid-Holocene paleontological and archaeological records, and offers researchers an excellent, extensive regional chronostratigraphic marker for reconstructing mid-Holocene geological history over a wide geographical area of South America. More than 100 ashes were sampled in Argentina, Chile and Uruguay during different field campaigns. Ash samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), grain size distributions laser diffraction, and geochemically by electron microprobe (EMPA) and laser ablation-HR-ICP-MS. New and published 14C ages were calibrated to calendar years BP. The age of the most recent CBVC eruption is 4407-4093 cal y BP, indirectly dated by 14C of associated organic sediment within the lower part of a proximal fall deposit of this event (26°53'16.05"S-67°44'48.68"W). This is the youngest record of a major volcanic event in the Southern Puna. This age is consistent with other radiocarbon dates of organic matter in palaeosols underlying or overlying distal ash fall deposits. Based on their products, all of rhyolitic composition, we have distinguished 8 main episodes during the evolution of the most recent CBVC eruption: 1) the eruption began with a white rhyolite lava dome extrusion; 2) followed by a Plinian

  13. Volcanological evolution of Paniri volcano, Central Andes, northern Chile

    NASA Astrophysics Data System (ADS)

    Lazcano, J.; Godoy, B.; Aguilera, F.; Wilke, H.

    2012-12-01

    San Pedro-Linzor volcanic chain (SPLVC) is located between 21°45'S-22°15'S, in the Recent volcanic arc of Central Andes. This volcanic chain comprises several volcanic edifices and dacitic domes, with a total lenght of ~65 km. Volcanic structures distributed in SPLVC show a NW-SE trending orientation and have been been built over Miocene ignimbrite fields. Paniri volcano (5946 m a.s.l.) is a composite stratovolcano located in SPLVC, and distributes southwards San Pedro - San Pablo volcanic complex, at the northern side of Chao Dacite. In this work, the volcanological evolution of Paniri is presented. This volcanic edifice is constituted by two cones, generated during four stages. The first stage corresponds to the plateau-type stage consituted by extensive andesitic and basaltic-andesite lavas and scoria flows that overlie the ignimbritic basement of the volcano. Over these mafic flows, thick dacitic flows were erupted at the northern, southern and southwestern flank of the volcano. After this stage, the main edifice was constructed, presenting two stages: the Old and the Young Cone. The Old Cone Stage was built on the southern part of the volcano. It is constituted by andesitic-to-dacitic lavas and pyroclastic flows. After that, lavic and pyroclastic flows were erupted north of the Old Cone, generating the Young Cone Stage, corresponding to lavas and pyroclastic flows that overlay the previous Old Cone. Composition of the flows of this stage vary from basaltic-andesite to dacite. An 40Ar/39Ar radiometric measure from an basaltic-andesite lava flow of the Young Cone Stage gave a plateau age of 400±50 ka. Significant dissection by glacial erosion affect southern flank of old cone and diverse parts of young cone, being in the last less pervasive. Frontal and lateral morraines deposits are present in the related glacial valleys. The last stage in the evolution of this volcano corresponds to emision of andesitic flows, with autobreccia textures. These flows reach up

  14. Screening for new accumulator plants in Andes Range mines

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Roca, Núria

    2016-04-01

    accumulated considerable concentrations of Cu and Zn. The species from the genus Bidens (Asteraceae) were able not only to accumulate high shoot As concentrations (> 1000 μg g-1 in B. cynapiifolia from Peru) but also considerable amounts of Pb (B. humilis from Chile). The highest Cu shoot concentrations were found in Mullinum spinosum (870 μg g-1) and in B. cynapiifolia (620 μg g-1). The shoot accumulation of Zn was highest in Baccharis amdatensis (>1900 μg g-1) and in Rumex crispus (1300 μg g-1) from the Ag mine in Ecuador (Bech et al., 2002). In the Peruvian Andes, B. triplinervia can be considered interesting for phytostabilization, due to its capacity to restrict the accumulation of elevated amounts of Pb and Zn in the shoots.

  15. Thermochronology and tectonics of the Mérida Andes and the Santander Massif, NW South America

    NASA Astrophysics Data System (ADS)

    van der Lelij, Roelant; Spikings, Richard; Mora, Andrés

    2016-04-01

    New apatite U-Pb and multiphase 40Ar/39Ar data constrain the high to medium temperature (~ 500 °C-~ 300 °C) thermal histories of igneous and metamorphic rocks exposed in the Mérida Andes of Venezuela, and new apatite and zircon fission track data constrain the ~ 500 °C-~ 60 °C thermal histories of pre-Jurassic igneous and metamorphic rocks of the adjacent Santander Massif of Colombia. Computed thermal history envelopes using apatite U-Pb dates and grain size information from an Early Palaeozoic granodiorite in the Mérida Andes suggest that it cooled from > 500 °C to < 350 °C between ~ 266 Ma and ~ 225 Ma. Late Permian to Triassic cooling is also recorded in Early Palaeozoic granitoids and metasedimentary rocks in the Mérida Andes by numerous new muscovite and biotite 40Ar/39Ar plateau dates spanning 257.1 ± 1.0 Ma to 205.1 ± 0.8 Ma. This episode of cooling is not recognised in the Santander Massif, where 40Ar/39Ar data suggest that some Early Palaeozoic rocks cooled below ~ 320 °C in the Early Palaeozoic. However, most data from pre-Jurassic rocks reveal a regional heat pulse at ~ 200 Ma during the intrusion of numerous shallow granitoids, resulting in temperatures in excess of ~ 520 °C, obscuring late Palaeozoic histories. The generally accepted timing of amalgamation of Pangaea along the Ouachita-Marathon suture pre-dates Late Permian to Triassic cooling recorded in basement rocks of the Mérida Andes by > 30 Ma, and its effect on rocks preserved in north-western South America is unknown. We interpret late Permian to Triassic cooling in the Mérida Andes to be driven by exhumation. Previous studies have suggested that a short phase of shortening and anatexis is recorded at ~ 253 Ma in the Maya Block, which may have been adjacent to the basement rocks of the Mérida Andes in the Late Permian. The coeval onset of exhumation in the Mérida Andes may be a result of increased coupling in the magmatic arc, which was located along the western margin of

  16. Hantaan/Andes virus DNA Vaccine Elicits a Broadly Cross-Reactive Neutralizing Antibody Response in Nonhuman Primates

    DTIC Science & Technology

    2006-01-01

    pulmonary syndrome (HPS). The most prevalent and lethal hantaviruses associated with HFRS and HPS are Hantaan virus (HTNV) and Andes virus (ANDV...Published by Elsevier Inc.Keywords: Hantavirus; DNA vaccine; Hantaan virus; Andes virus; Neutralizing antibodiesIntroduction Hantaviruses are rodent...borne viruses that cause hemor- rhagic fever in humans. Different hantaviruses are associated with different disease syndromes with varying degrees of

  17. Current state of glaciers in the tropical Andes: a perspective on glacier evolution and climate change

    NASA Astrophysics Data System (ADS)

    Rabatel, Antoine; Francou, Bernard; Soruco, Alvaro; Gomez, Jesus; Caceres, Bolivar; Ceballos, Jorge-Luis; Vuille, Mathias; Sicart, Jean-Emmanuel; Huggel, Christian

    2013-04-01

    This presentation provides a comprehensive overview of the studies of glaciers in the tropical Andes conducted in recent decades leading to the current status of the glaciers in the context of climate change. In terms of changes in surface area and length, we show that the glacier retreat in the tropical Andes over the last three decades is unprecedented since the maximum extension of the LIA (mid 17th - early 18th century). In terms of changes in mass balance, although there have been some sporadic gains on several glaciers, we show that the trend has been quite negative over the past 50 years, with a mean mass balance deficit for glaciers in the tropical Andes that is slightly more negative than the one computed on a global scale. A break point in the trend appeared in the late 1970s with mean annual mass balance per year decreasing from -0.2 m w.e. in the period 1964-1975 to -0.76 m w.e. in the period 1976-2010. In addition, even if glaciers are currently retreating everywhere in the tropical Andes, it should be noted that this is much more pronounced on small glaciers at low altitudes that do not have a permanent accumulation zone, and which could disappear in the coming years/decades. Monthly mass balance measurements performed in Bolivia, Ecuador and Colombia show that variability of the surface temperature of the Pacific Ocean is the main factor governing variability of the mass balance at the decadal time scale. Precipitation did not display a significant trend in the tropical Andes in the 20th century, and consequently cannot explain the glacier recession. On the other hand, temperature increased at a significant rate of 0.10°C/decade in the last 70 years. The higher frequency of El Niño events and changes in its spatial and temporal occurrence since the late 1970s together with a warming troposphere over the tropical Andes may thus explain much of the recent dramatic shrinkage of glaciers in this part of the world.

  18. Interseismic Rates From the CTO cGPS Andes and Nepal Networks

    NASA Astrophysics Data System (ADS)

    Genrich, J. F.; Galetzka, J.; Chowdhury, F.; Avouac, J.; Simons, M.; Barrientos, S. E.; Comte, D.; Norabuena, E. O.; Sapkota, S. N.

    2009-12-01

    To study crustal deformation at converging plate margins the Caltech Tectonics Observatory (CTO), together with partner institutions in the host countries, operates continuously observing GPS stations in the central Andes (northern Chile and southern Peru) and in Nepal. The currently 20-site Andes network was established in 2005 with 7 stations. Efforts are underway to provide data streaming links at near real time for the majority of sites. The Nepal network started with 10 sites in 2004 and has been expanded to 23 sites in the last couple of years. Dual frequency code and phase data from all sites are processed with the GAMIT/GLOBK processing package. Reliable interseismic velocities are now available for the majority of sites. Network metadata, rinex data files, processed time series and velocity estimates can be found online thru links at the CTO website: tectonics.caltech.edu.

  19. Illicit crops and armed conflict as constraints on biodiversity conservation in the Andes region.

    PubMed

    Fjeldså, Jon; Alvarez, María D; Lazcano, Juan Mario; León, Blanca

    2005-05-01

    Coca, once grown for local consumption in the Andes, is now produced for external markets, often in areas with armed conflict. Internationally financed eradication campaigns force traffickers and growers to constantly relocate, making drug-related activities a principal cause of forest loss. The impact on biodiversity is known only in general terms, and this article presents the first regional analysis to identify areas of special concern, using bird data as proxy. The aim of conserving all species may be significantly constrained in the Santa Marta and Perijá mountains, Darién, some parts of the Central Andes in Colombia, and between the middle Marañón and middle Huallaga valleys in Peru. Solutions to the problem must address the root causes: international drug markets, long-lasting armed conflict, and lack of alternative income for the rural poor.

  20. Climate change and water resources in arid mountains: an example from the Bolivian Andes.

    PubMed

    Rangecroft, Sally; Harrison, Stephan; Anderson, Karen; Magrath, John; Castel, Ana Paola; Pacheco, Paula

    2013-11-01

    Climate change is projected to have a strongly negative effect on water supplies in the arid mountains of South America, significantly impacting millions of people. As one of the poorest countries in the region, Bolivia is particularly vulnerable to such changes due to its limited capacity to adapt. Water security is threatened further by glacial recession with Bolivian glaciers losing nearly half their ice mass over the past 50 years raising serious water management concerns. This review examines current trends in water availability and glacier melt in the Bolivian Andes, assesses the driving factors of reduced water availability and identifies key gaps in our knowledge of the Andean cryosphere. The lack of research regarding permafrost water sources in the Bolivian Andes is addressed, with focus on the potential contribution to mountain water supplies provided by rock glaciers.

  1. The ANDES Deep Underground Laboratory in South America: status and prospects

    NASA Astrophysics Data System (ADS)

    Bertou, Xavier

    2017-01-01

    The construction of the Agua Negra tunnel through the Andes between Argentina and Chile is a unique opportunity to build a world class deep underground laboratory in the southern hemisphere, with 1750 m of rock overburden. At 30 degrees latitude south, far from nuclear power plants, it provides a unique site for Dark Matter searches and Neutrino experiments, and can host multidisciplinary experiments with a specific focus on Earth sciences given its location in a peculiar geoactive region. Its operation is foreseen to be coordinated by an international consortium and to start in 2026. In this presentation the current status of the Agua Negra tunnel and the ANDES initiative will be reviewed, and the scientific programme of the planned laboratory will be discussed.

  2. Surface uplift in the Central Andes driven by growth of the Altiplano Puna Magma Body

    NASA Astrophysics Data System (ADS)

    Perkins, Jonathan P.; Ward, Kevin M.; de Silva, Shanaka L.; Zandt, George; Beck, Susan L.; Finnegan, Noah J.

    2016-10-01

    The Altiplano-Puna Magma Body (APMB) in the Central Andes is the largest imaged magma reservoir on Earth, and is located within the second highest orogenic plateau on Earth, the Altiplano-Puna. Although the APMB is a first-order geologic feature similar to the Sierra Nevada batholith, its role in the surface uplift history of the Central Andes remains uncertain. Here we show that a long-wavelength topographic dome overlies the seismically measured extent of the APMB, and gravity data suggest that the uplift is isostatically compensated. Isostatic modelling of the magmatic contribution to dome growth yields melt volumes comparable to those estimated from tomography, and suggests that the APMB growth rate exceeds the peak Cretaceous magmatic flare-up in the Sierran batholith. Our analysis reveals that magmatic addition may provide a contribution to surface uplift on par with lithospheric removal, and illustrates that surface topography may help constrain the magnitude of pluton-scale melt production.

  3. Assessment of future regional precipitation pattern for an Andes region in Southern Peru

    NASA Astrophysics Data System (ADS)

    Salzmann, N.; Rohrer, M.; Acuna, D.; Calanca, P.; Huggel, C.

    2012-04-01

    The Cusco and Apurímac region (Southern Peru) in the outer tropical Andes is characterized by a distinct wet and dry season. The climatology of the Andes region in southern Peru is complex and mainly influenced by tropical and extra tropical upper level-large scale circulation as well as by local convection. For the past decades, observations from station data show a slight negative precipitation trend for the area. Scenarios for the future are associated with large uncertainties. Data from the few available Regional Climate Model simulations, and results from statistical downscaling show neither clear nor consistent future precipitation trends for this region The large biodiversity in the high altitude of the Andes and the critical socio-economic situation of the majority of the local population imply a high vulnerability to climate variability and change. Even small shifts in particular in the precipitation regime (sum, frequency or intensity) can therefore have significant impacts on the livelihood of the rural population. Droughts and flooding events that occurred in the past years have demonstrated the heavy repercussion of extreme events. In our study, we analysed and correlated past regional station observations with large-scale circulation patterns from Renanalyses in order to aim at improving our understanding of the major drivers for precipitation in the Cusco-Apurímac region. First results show an only moderate correlation with ENSO and a relative stronger correlation with moisture transported from the Amazon Basin. Our results are then related to large-scale pattern scenarios provided by GCMs and discussed in view of possible impacts of climate change for the Cusco - Apurímac region. In conclusion, we aim at showing at the example of this specific area of the Andes how process knowledge can be used to support the development of adaptation measures in regions with limited availability of data.

  4. Foreland shortening and crustal balancing in the Andes at 30°S latitude

    NASA Astrophysics Data System (ADS)

    Allmendinger, R. W.; Figueroa, D.; Synder, D.; Beer, J.; Mpodozis, C.; Isaacks, B. L.

    1990-08-01

    Excellent surface exposures, known Benioff zone geometry, a dynamic morphology, and the availability of industry seismic reflection data all make the Andes at 30°S an excellent transect for investigating crustal-scale balanced sections. 150-170 km of horizontal shortening has occurred in three major belts located between the trench and the foreland. The thin-skinned, east-verging Precordillera of western Argentina accounts for 60-75% of the total shortening and formed mostly since major volcanism ceased at ˜10 Ma. Industry seismic reflection data show that the décollement of the Precordillera belt is located anomalously deep at ˜15 km. The belt is dominated by fault propagation folds and contains several prominent out-of-sequence thrust faults. Seismic stratigraphie analysis shows that Miocene strata in the Iglesia Valley, located between the Precordillera and the crest of the Andes, accumulated in a piggy-back basin. Onlap relations on the western side indicate that the High Cordillera was uplifted as a major fault bend fold over a buried ramp. Thrusting in the two western belts, both in the High Cordillera of Chile, formed during the waning stages of arc volcanism, 11-16 Ma. and account for 25-40% of the shortening. The observed shortening is probably greater than can be accounted for with reasonable crustal thicknesses, indicating the possibility of continental truncation or erosion along the plate margin or an anomalously thick root held down by the nearly flat subducted Nazca Plate. Our preferred crustal geometry puts the ramp between upper and lower crustal deformation west of the high topography, requiring crustal scale tectonic wedging to thicken the crust beneath the crest of the Andes. This non-unique model provides a simple explanation of the first order morphology of the Andes at this latitude.

  5. A new species of Platydecticus (Orthoptera: Tettigoniidae: Tettigoniinae; Nedubini) from the Andes of Chile.

    PubMed

    Sánchez, Alejandro Vera

    2015-11-10

    A new species of the genus Platydecticus is described based on adult male and female specimens and the egg. The new species, Platydecticus diaguita, inhabits the Andes Range at 27º S latitude, above 3000 m elevation. Both sexes are easily identifiable by genital morphology characters and by the external characters of the fastigium of the vertex and the reduced number of spines in the hind tibia. It is also the smallest species described for the genus.

  6. Climate in the Western Cordillera of the Central Andes over the last 4300 years

    NASA Astrophysics Data System (ADS)

    Engel, Zbyněk; Skrzypek, Grzegorz; Chuman, Tomáš; Šefrna, Luděk; Mihaljevič, Martin

    2014-09-01

    The Distichia peat core obtained in the Carhuasanta valley near Nevado Mismi, Cordillera Chila, provides information on climatic and environmental conditions over the last ˜4300 years. The relative changes in the stable carbon isotope composition of plant remains preserved in the core reflect major temperature fluctuations in the Western Cordillera of the southern Peruvian Andes. These temperature variations can be additionally linked with the changes in precipitation patterns by analysing C% and C/N ratio in the core. Relatively warm and moist conditions prevailed from 4280 to 3040 cal. yrs BP (BC 2330-1090) with a short colder dry episode around 3850 cal. yrs BP (BC 1900). The most prominent climate changes recorded in the peat occurred between 3040 and 2750 cal. yrs BP (BC 1090-800) when the initial warming turned to a rapid cooling to temperatures at least 2 °C lower than the mean for the Late Holocene. Initially drier conditions within this event turned to a short wet phase after 2780 cal. yrs BP (BC 830) when the temperature increased again. This event coincides with significant changes in peat and ice core records in the Central Andes matching the timing of the global climate event around 2.8 cal. ka BP. Climatic conditions in the study area became relatively dry and stable after the event for about 800 years. Highly variable temperatures and humidity prevailed during the last 2000 years when an extended warm and relatively humid period occurred between 640 and 155 cal. yrs BP (AD 1310-1795) followed by predominantly colder and drier conditions. The established δ13C peat record represents the first continuous proxy for the temperature in the southern Peruvian Andes dated by the AMS 14C. Distichia peat is wide spread in the Andes and the proposed approach can be applied elsewhere in high altitudes, where no other traditional climate proxies are available.

  7. Application of the Orogenic Float Model for the Structural Evolution of the Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    Dhont, D.; Monod, B.; Hervouet, Y.; Klarica, S.

    2010-12-01

    The Venezuelan (or Mérida) Andes form a NE-SW-striking intracontinental orogen that started to uplift in the Middle Miocene due to E-W convergence between the Maracaibo block to the northwest and the Guyana shield to the southeast. Oblique collision resulted in strain partitioning accommodated by (1) transverse shortening along thrust faults bounding the belt on both flanks, (2) right-lateral slip along the Bocono fault running more or less along the chain axis and (3) tectonic escape of the Trujillo block moving towards the NE in between the Bocono and the N-S-striking sinistral Valera faults. Even though the surface geology of the Venezuelan Andes is well known, its structure at depth remains a matter of debate. Among the mechanisms that have proposed to account for the crustal architecture and evolution of the mountain belt, we develop the idea that the deformation process in this orogen is consistent with a model of orogenic float where the upper crust is decoupled from its underlying lithosphere above a large-scale mid-crustal detachment zone. According to this model, all the major faults involved in the strain partitioning sole into the detachment horizon and may therefore be considered as upper crustal faults. The integration of the orogenic float into a coherent evolutionary model provides further insight on both the crustal structure of the Venezuelan Andes and on the tectonic history of the region. A major reorganization in the crust occurred in the Early Pliocene when the Maracaibo block penetrated as a wedge into the Guyana crust. This event was accompanied by a rapid uplift of the Venezuelan Andes in association with the NE-ward crustal escape of the Trujillo block whose motion is accompanied by the lateral spreading of the upper crust.

  8. Spatial and temporal patterns of exhumation across the Venezuelan Andes: Implications for Cenozoic Caribbean geodynamics

    NASA Astrophysics Data System (ADS)

    Bermúdez, Mauricio A.; Kohn, Barry P.; van der Beek, Peter A.; Bernet, Matthias; O'Sullivan, Paul B.; Shagam, Reginald

    2010-10-01

    The Venezuelan Andes formed by complex geodynamic interaction between the Caribbean Plate, the Panamá Arc, the South American Plate and the continental Maracaibo block. We study the spatial and temporal patterns of exhumation across the Venezuelan Andes using 47 new apatite fission track (AFT) ages as well as topographic analyses. This approach permits the identification of at least seven tectonic blocks (Escalante, Cerro Azul, Trujillo, Caparo, Sierra Nevada, Sierra La Culata and El Carmen blocks) with contrasting exhumation and cooling histories. The Sierra Nevada, Sierra La Culata and El Carmen blocks, located in the central part of the Venezuelan Andes and separated by the Boconó fault system, cooled rapidly but diachronously during the late Miocene-Pliocene. Major surface uplift and exhumation occurred in the Sierra Nevada block since before 8 Ma. A second phase of uplift and exhumation affected the El Carmen and Sierra La Culata blocks to the north of the Boconó fault during the late Miocene-Pliocene. The highest topography and steepest relief of the belt coincides with these blocks. The Caparo and Trujillo blocks, located at the northeastern and southwestern ends of the orogen, cooled more slowly from the Oligocene to the late Miocene. These blocks are characterized by significantly lower mean elevations and slightly lower mean slopes than the central blocks. Unraveling the cooling history of the individual blocks is important to better understand the control of preexisting faults and regional Caribbean geodynamics on the evolution of the Venezuelan Andes. Our data indicate a strong control of major preexisting fault zones on exhumation patterns and temporal correlation between phases of rapid exhumation in different blocks with major tectonic events (e.g., collision of the Panamá arc; rotation of the Maracaibo block).

  9. Two new species of Siphocampylus (Campanulaceae, Lobelioideae) from the Central Andes

    PubMed Central

    Lagomarsino, Laura P.; Santamaría-Aguilar, Daniel

    2016-01-01

    Abstract Two species of Siphocampylus (Campanulaceae: Lobelioideae) from the Central Andes of Peru and Bolivia are described, illustrated, and discussed with reference to related species. One species, Siphocampylus antonellii, is endemic to high elevation grasslands of Calca, Peru, while the second, Siphocampylus siberiensis, is endemic to cloud forests of Cochabamba, Bolivia. Both species are robust shrubs that produce tubular pink flowers that are likely pollinated by hummingbirds. PMID:26884710

  10. Seismic evidence for blind thrusting of the northwestern flank of the Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    de Toni, Bruno; Kellogg, James

    1993-12-01

    Surface geology and seismic and well data from the northwestern flank of the Venezuelan Andes indicate overthrusting of Andean basement rocks toward the adjacent Maracaibo Basin along a blind thrust fault. The frontal monocline is interpreted as the forelimb of a northwestward verging fault-related fold deformed over a crustal-scale ramp. The Andean block has been thrust 20 km to the northwest and uplifted 10 km on a ramp that dips about 20°-30° southeastward. The thrust fault ramps up through crystalline basement rocks to a decollement horizon within the shaly units of the Cretaceous Colon-Mito Juan formations. Backthrusts in the monocline produce a wedge geometry and reduce the amount of blind slip required on the decollement northwest of the Andes. The rigid Andean uplift was caused by northwest-southeast compressive tectonic forces related to the convergence of the Caribbean plate, the Panama volcanic arc, and northwestern South America. The thick (up to 6 km) molasse deposits accumulated in the foredeep basin indicate that the Venezuelan Andes started to rise as early as the early Miocene. However, a late Miocene intramolasse unconformity marks the beginning of the formation of the monocline and the greatest uplift. The crustal-scale fault-related fold model may explain structural features seen in other areas of basement-involved foreland deformation.

  11. Miocene orographic uplift forces rapid hydrological change in the southern central Andes

    PubMed Central

    Rohrmann, Alexander; Sachse, Dirk; Mulch, Andreas; Pingel, Heiko; Tofelde, Stefanie; Alonso, Ricardo N.; Strecker, Manfred R.

    2016-01-01

    Rainfall in the central Andes associated with the South American Monsoon and the South American Low-Level Jet results from orographic effects on atmospheric circulation exerted by the Andean Plateau and the Eastern Cordillera. However, despite its importance for South American climate, no reliable records exist that allow decoding the evolution of thresholds and interactions between Andean topography and atmospheric circulation, especially regarding the onset of humid conditions in the inherently dry southern central Andes. Here, we employ multi-proxy isotope data of lipid biomarkers, pedogenic carbonates and volcanic glass from the Eastern Cordillera of NW Argentina and present the first long-term evapotranspiration record. We find that regional eco-hydrology and vegetation changes are associated with initiation of moisture transport via the South American Low-Level Jet at 7.6 Ma, and subsequent lateral growth of the orogen at 6.5 Ma. Our results highlight that topographically induced changes in atmospheric circulation patterns, not global climate change, were responsible for late Miocene environmental change in this part of the southern hemisphere. This suggests that mountain building over time fundamentally controlled habitat evolution along the central Andes. PMID:27767043

  12. The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes

    PubMed Central

    Goss, Erica M.; Tabima, Javier F.; Cooke, David E. L.; Restrepo, Silvia; Fry, William E.; Forbes, Gregory A.; Fieland, Valerie J.; Cardenas, Martha; Grünwald, Niklaus J.

    2014-01-01

    Phytophthora infestans is a destructive plant pathogen best known for causing the disease that triggered the Irish potato famine and remains the most costly potato pathogen to manage worldwide. Identification of P. infestan’s elusive center of origin is critical to understanding the mechanisms of repeated global emergence of this pathogen. There are two competing theories, placing the origin in either South America or in central Mexico, both of which are centers of diversity of Solanum host plants. To test these competing hypotheses, we conducted detailed phylogeographic and approximate Bayesian computation analyses, which are suitable approaches to unraveling complex demographic histories. Our analyses used microsatellite markers and sequences of four nuclear genes sampled from populations in the Andes, Mexico, and elsewhere. To infer the ancestral state, we included the closest known relatives Phytophthora phaseoli, Phytophthora mirabilis, and Phytophthora ipomoeae, as well as the interspecific hybrid Phytophthora andina. We did not find support for an Andean origin of P. infestans; rather, the sequence data suggest a Mexican origin. Our findings support the hypothesis that populations found in the Andes are descendants of the Mexican populations and reconcile previous findings of ancestral variation in the Andes. Although centers of origin are well documented as centers of evolution and diversity for numerous crop plants, the number of plant pathogens with a known geographic origin are limited. This work has important implications for our understanding of the coevolution of hosts and pathogens, as well as the harnessing of plant disease resistance to manage late blight. PMID:24889615

  13. Toxoplasma gondii and Neospora caninum seroprevalences in domestic South American camelids of the Peruvian Andes.

    PubMed

    Chávez-Velásquez, Amanda; Aguado-Martínez, Adriana; Ortega-Mora, Luis M; Casas-Astos, Eva; Serrano-Martínez, Enrique; Casas-Velásquez, Gina; Ruiz-Santa-Quiteria, Jose A; Alvarez-García, Gema

    2014-10-01

    The objective of this study was to investigate the presence of Toxoplasma gondii- and Neospora caninum-specific antibodies in domestic South American camelids (SAC) (llamas and alpacas) from the Peruvian Andes through a cross-sectional study. A wide panel of serum samples collected from 1,845 llamas and 2,874 alpacas from the two main SAC production areas of Peru was selected. Immunofluorescence antibody technique was employed to detect and titrate specific anti-T. gondii and anti-N. caninum immunoglobulins G in serum samples. The association between T. gondii and N. caninum seroprevalence and the geographical origin (Central and South Peruvian Andes) was evaluated. Anti-T. gondii antibodies were found in 460 (24.9 %) llamas and 706 (24.6 %) alpacas, whereas anti-N. caninum antibodies were detected in 153 (8.3 %) llamas and 425 (14.8 %) alpacas. Toxoplasma gondii infection was strongly associated with the South Peruvian Andes where moderate climate conditions, larger human population, compared to the Central region, and the presence of wildlife definitive hosts could favor horizontal transmission to SAC. In contrast, N. caninum infection was not associated with the geographical region. These results indicate that T. gondii and N. caninum infections are highly and moderately widespread, respectively, in both species of domestic SAC studied in the sampled areas and appropriate control measures should be undertaken to reduce the prevalence of both parasitic infections.

  14. Airborne Imaging Spectroscopy of Forest Canopy Chemistry in the Andes-Amazon Corridor

    NASA Astrophysics Data System (ADS)

    Martin, R.; Anderson, C.; Knapp, D. E.; Asner, G. P.

    2013-12-01

    The Andes-Amazon corridor is one of the most biologically diverse regions on Earth. Elevation gradients provide opportunities to explore the underlying sources and environmental controls on functional diversity of the forest canopy, however plot-based studies have proven highly variable. We used airborne imaging spectroscopy from the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS) to quantify changes canopy functional traits in a series of eleven 25-ha landscapes distributed along a 3300 m elevation gradient from lowland Amazonia to treeline in the Peruvian Andes. Each landscape encompassed a 1 ha field plot in which all trees reaching the canopy were climbed and leaves were sampled for 20 chemical traits. We used partial least squares regression to relate plot-level chemical values with airborne spectroscopy from the 1 ha area. Sixteen chemical traits produced predictable relationships with the spectra and were used to generate maps of the 25 ha landscape. Ten chemical traits were significantly related to elevation at the 25 ha scale. These ten traits displayed 35% greater accuracy (R2) and precision (rmse) when evaluated at the 25 ha scale compared to values derived from tree climbing alone. The results indicate that high-fidelity imaging spectroscopy can be used as surrogate for laborious tree climbing and chemical assays to understand chemical diversity in Amazonian forests. Understanding how these chemicals vary among forest communities throughout the Andes-Amazon corridor will facilitate mapping of functional diversity and the response of canopies to climate change.

  15. Calculated WIMP signals at the ANDES laboratory: comparison with northern and southern located dark matter detectors

    NASA Astrophysics Data System (ADS)

    Civitarese, O.; Fushimi, K. J.; Mosquera, M. E.

    2016-12-01

    Weakly interacting massive particles (WIMPs) are possible components of the Universe’s dark matter (DM). The detection of WIMPs is signaled by the recoil of the atomic nuclei which form a detector. CoGeNT at the Soudan Underground Laboratory (SUL) and DAMA at the Laboratori Nazionali del Gran Sasso (LNGS) have reported data on annual modulation of signals attributed to WIMPs. Both experiments are located in laboratories in the Northern Hemisphere. DM detectors are planned to operate (or already operate) in laboratories in the Southern Hemisphere, including SABRE at Stawell Underground Physics Laboratory (SUPL) in Australia, and DM-ICE in Antarctica. In this work we have analyzed the dependence of diurnal and annual modulation of signals, pertaining to the detection of WIMP, on the coordinates of the laboratory, for experiments which may be performed in the planned new Agua Negra Deep Experimental Site (ANDES) underground facility, to be built in San Juan, Argentina. We made predictions for NaI and Ge-type detectors placed in ANDES, to compare with DAMA, CoGeNT, SABRE and DM-ICE arrays, and found that the diurnal modulation of the signals, at the ANDES site, is amplified at its maximum value, both for NaI (Ge)-type detectors, while the annual modulation remains unaffected by the change in coordinates from north to south.

  16. Miocene orographic uplift forces rapid hydrological change in the southern central Andes

    NASA Astrophysics Data System (ADS)

    Rohrmann, Alexander; Sachse, Dirk; Mulch, Andreas; Pingel, Heiko; Tofelde, Stefanie; Alonso, Ricardo N.; Strecker, Manfred R.

    2016-10-01

    Rainfall in the central Andes associated with the South American Monsoon and the South American Low-Level Jet results from orographic effects on atmospheric circulation exerted by the Andean Plateau and the Eastern Cordillera. However, despite its importance for South American climate, no reliable records exist that allow decoding the evolution of thresholds and interactions between Andean topography and atmospheric circulation, especially regarding the onset of humid conditions in the inherently dry southern central Andes. Here, we employ multi-proxy isotope data of lipid biomarkers, pedogenic carbonates and volcanic glass from the Eastern Cordillera of NW Argentina and present the first long-term evapotranspiration record. We find that regional eco-hydrology and vegetation changes are associated with initiation of moisture transport via the South American Low-Level Jet at 7.6 Ma, and subsequent lateral growth of the orogen at 6.5 Ma. Our results highlight that topographically induced changes in atmospheric circulation patterns, not global climate change, were responsible for late Miocene environmental change in this part of the southern hemisphere. This suggests that mountain building over time fundamentally controlled habitat evolution along the central Andes.

  17. Miocene orographic uplift forces rapid hydrological change in the southern central Andes.

    PubMed

    Rohrmann, Alexander; Sachse, Dirk; Mulch, Andreas; Pingel, Heiko; Tofelde, Stefanie; Alonso, Ricardo N; Strecker, Manfred R

    2016-10-21

    Rainfall in the central Andes associated with the South American Monsoon and the South American Low-Level Jet results from orographic effects on atmospheric circulation exerted by the Andean Plateau and the Eastern Cordillera. However, despite its importance for South American climate, no reliable records exist that allow decoding the evolution of thresholds and interactions between Andean topography and atmospheric circulation, especially regarding the onset of humid conditions in the inherently dry southern central Andes. Here, we employ multi-proxy isotope data of lipid biomarkers, pedogenic carbonates and volcanic glass from the Eastern Cordillera of NW Argentina and present the first long-term evapotranspiration record. We find that regional eco-hydrology and vegetation changes are associated with initiation of moisture transport via the South American Low-Level Jet at 7.6 Ma, and subsequent lateral growth of the orogen at 6.5 Ma. Our results highlight that topographically induced changes in atmospheric circulation patterns, not global climate change, were responsible for late Miocene environmental change in this part of the southern hemisphere. This suggests that mountain building over time fundamentally controlled habitat evolution along the central Andes.

  18. The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes.

    PubMed

    Goss, Erica M; Tabima, Javier F; Cooke, David E L; Restrepo, Silvia; Fry, William E; Forbes, Gregory A; Fieland, Valerie J; Cardenas, Martha; Grünwald, Niklaus J

    2014-06-17

    Phytophthora infestans is a destructive plant pathogen best known for causing the disease that triggered the Irish potato famine and remains the most costly potato pathogen to manage worldwide. Identification of P. infestan's elusive center of origin is critical to understanding the mechanisms of repeated global emergence of this pathogen. There are two competing theories, placing the origin in either South America or in central Mexico, both of which are centers of diversity of Solanum host plants. To test these competing hypotheses, we conducted detailed phylogeographic and approximate Bayesian computation analyses, which are suitable approaches to unraveling complex demographic histories. Our analyses used microsatellite markers and sequences of four nuclear genes sampled from populations in the Andes, Mexico, and elsewhere. To infer the ancestral state, we included the closest known relatives Phytophthora phaseoli, Phytophthora mirabilis, and Phytophthora ipomoeae, as well as the interspecific hybrid Phytophthora andina. We did not find support for an Andean origin of P. infestans; rather, the sequence data suggest a Mexican origin. Our findings support the hypothesis that populations found in the Andes are descendants of the Mexican populations and reconcile previous findings of ancestral variation in the Andes. Although centers of origin are well documented as centers of evolution and diversity for numerous crop plants, the number of plant pathogens with a known geographic origin are limited. This work has important implications for our understanding of the coevolution of hosts and pathogens, as well as the harnessing of plant disease resistance to manage late blight.

  19. Grenvillian remnants in the Northern Andes: Rodinian and Phanerozoic paleogeographic perspectives

    NASA Astrophysics Data System (ADS)

    Cardona, A.; Chew, D.; Valencia, V. A.; Bayona, G.; Mišković, A.; Ibañez-Mejía, M.

    2010-01-01

    Grenvillian crust is encountered in several basement inliers in the northern Andes of Colombia, Ecuador and Peru and is also represented as a major detrital or inherited component within Neoproterozoic to Paleozoic sedimentary and magmatic rocks. This review of the tectonic and geochronological record of the Grenvillian belt in the northern Andes suggests that these crustal segments probably formed on an active continental margin in which associated arc and back-arc magmatism evolved from ca. 1.25 to 1.16 Ga, possibly extending to as young as 1.08 Ga. The lithostratigraphic and tectonic history of the Grenvillian belt in the northern Andes differs from that of the Sunsas belt on the southwest Amazonian Craton and from the Grenvillian belt of Eastern Laurentia. It is considered that this belt, along with similar terranes of Grenvillian age in Middle America and Mexico define a separate composite orogen which formed on the northwestern margin of the Amazonian Craton. Microcontinent accretion and interaction with the Sveconorwegian province on Baltica is a feasible tectonic scenario, in line with recent paleogeographic reconstructions of the Rodinian supercontinent. Although Phanerozoic tectonics may have redistributed some of these terranes, they are still viewed as para-autocthonous domains that remained in proximity to the margin of Amazonia. Paleogeographic data derived from Phanerozoic rocks suggest that some of the Colombian Grenvillian fragments were connected to northernmost Peru and Ecuador until the Mesozoic, whereas the Mexican terranes where attached to the Colombian margin until Pangea fragmentation in Late Triassic times.

  20. Aerosol transport along the Andes from Amazonia to the remote Pacific Ocean: A multiyear CALIOP assessment

    NASA Astrophysics Data System (ADS)

    Bourgeois, Quentin; Ekman, Annica; Krejci, Radovan

    2015-04-01

    The free troposphere over South America and the Pacific Ocean is a particularly interesting region to study due to the prevailing easterly wind direction, forcing air over Amazonia towards the Pacific Ocean but encountering a natural barrier - the Andes - in between which might play a significant role. In addition, the strong contrast between the wet, relatively clean season and the dry, relatively polluted season as well as the difference between day and night meteorological conditions may influence the vertical distribution of aerosols in the free troposphere. Six years (2007-2012) of CALIOP observations at both day and night were used to investigate the vertical distribution, transport and removal processes of aerosols over South America and the Pacific Ocean. The multiyear assessment shows that aerosols, mainly biomass burning particles emitted during the dry season in Amazonia, may be lifted along the Andes. During their lifting, aerosols remain in the boundary layer which makes them subject to scavenging and deposition processes. The removal aerosol extinction rate was quantified. After reaching the top of the Andes, free tropospheric aerosols are likely pushed by the large-scale subsidence towards the marine boundary layer (MBL) during their transport over the Pacific Ocean. CALIOP observations may indicate that aerosols are transported over thousands of kilometers in the free troposphere over the Pacific Ocean. During their long range transport, aerosols could be entrained into the MBL and may further act as cloud condensation nuclei, and influence climate and the radiative budget of the Earth.

  1. Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the Southern Andes

    USGS Publications Warehouse

    Futa, K.; Stern, C.R.

    1988-01-01

    Isotopic compositions of samples from six Quaternary volcanoes located in the northern and southern extremities of the Southern Volcanic Zone (SVZ, 33-46??S) of the Andes and from four centers in the Austral Volcanic Zone (AVZ, 49-54??S) range for 87Sr 86Sr from 0.70280 to 0.70591 and for 143Nd 144Nd from 0.51314 to 0.51255. The ranges are significantly greater than previously reported from the southern Andes but are different from the isotopic compositions of volcanoes in the central and northern Andes. Basalts and basaltic andesites from three centers just north of the Chile Rise-Trench triple junction have 87Sr 86Sr, 143Nd 144Nd, La Yb, Ba La, and Hf Lu that lie within the relatively restricted ranges of the basic magmas erupted from the volcanic centers as far north as 35??S in the SVZ of the Andes. The trace element and Sr and Nd isotopic characteristics of these magmas may be explained by source region contamination of subarc asthenosphere, with contaminants derived from subducted pelagic sediments and seawater-altered basalts by dehydration of subducted oceanic lithosphere. In the northern extremity of the SVZ between 33?? and 34??S, basaltic andesites and andesites have higher 87Sr 86Sr, Rb Cs, and Hf Lu, and lower 143Nd 144Nd than basalts and basaltic andesites erupted farther south in the SVZ, which suggests involvement of components derived from the continental crust. In the AVZ, the most primitive sample, high-Mg andesite from the southernmost volcanic center in the Andes (54??S) has Sr and Nd isotopic compositions and K Rb and Ba La similar to MORB. The high La Yb of this sample suggests formation by small degrees of partial melting of subducted MORB with garnet as a residue. Samples from centers farther north in the AVZ show a regionally regular northward increase in SiO2, K2O, Rb, Ba, Ba La, and 87Sr 86Sr and decrease in MgO, Sr, K Rb, Rb Cs, and 143Nd 144Nd, suggesting increasingly greater degrees of fractional crystallization and associated intra

  2. Late Miocene climate variability and surface elevation in the central Andes

    NASA Astrophysics Data System (ADS)

    Mulch, Andreas; Uba, Cornelius E.; Strecker, Manfred R.; Schoenberg, R.; Chamberlain, C. Page

    2010-02-01

    Temporal and spatial variations in topography and oxygen stable isotope ratios in precipitation in the central Andes have stimulated widespread discussion about the competing roles of mantle and crustal processes and their feedbacks with global-scale climatic change in uplifting and shaping the central Andes. In general, one of the major obstacles in assessing the relative contributions of long-term (10 5-10 6a) tectonic processes and precipitation (as a proxy for climate) to the uplift history of the Andean orogen is the lack of integrated data sets that record late Miocene patterns of uplift and climate. Radiogenic ( 87Sr/ 86Sr), sedimentologic, and stable isotope ( δ18O) data from Subandean foreland deposits of the Chaco Basin (Bolivia) show a rapid (< 200 ka) transition towards higher δ18O and 87Sr/ 86Sr values at ˜ 8.5 Ma that we interpret to reflect a change in precipitation patterns along the Eastern Cordillera and the Subandean fold-thrust belt. In agreement with δ13C studies on paleosol carbonates we attribute this change to a southward deflection of the South American low-level jet (LLJ) that currently exerts the dominant control over the seasonality and amount of precipitation along the Eastern flanks of the Andes. Deflection of the LLJ occurred most likely as the combined effects of readjustment of relief and topography within the Eastern Cordillera at 20-22°S and possibly associated surface uplift of the Altiplano. Contemporaneous rapid positive shifts in δ18O and 87Sr/ 86Sr of pedogenic carbonate in fluvial foreland deposits are consistent with a transition to more seasonal precipitation conditions and critical threshold elevations being attained that affected South American atmospheric circulation patterns. A four-fold increase in sedimentation rates in the foreland together with a shift to strongly radiogenic 87Sr/ 86Sr ratios in paleo-river water and sediment load as well as river incision into the well preserved San Juán del Oro paleo

  3. Developing services for climate impact and adaptation baseline information and methodologies for the Andes

    NASA Astrophysics Data System (ADS)

    Huggel, C.

    2012-04-01

    Impacts of climate change are observed and projected across a range of ecosystems and economic sectors, and mountain regions thereby rank among the hotspots of climate change. The Andes are considered particularly vulnerable to climate change, not only due to fragile ecosystems but also due to the high vulnerability of the population. Natural resources such as water systems play a critical role and are observed and projected to be seriously affected. Adaptation to climate change impacts is therefore crucial to contain the negative effects on the population. Adaptation projects require information on the climate and affected socio-environmental systems. There is, however, generally a lack of methodological guidelines how to generate the necessary scientific information and how to communicate to implementing governmental and non-governmental institutions. This is particularly important in view of the international funds for adaptation such as the Green Climate Fund established and set into process at the UNFCCC Conferences of the Parties in Cancun 2010 and Durban 2011. To facilitate this process international and regional organizations (World Bank and Andean Community) and a consortium of research institutions have joined forces to develop and define comprehensive methodologies for baseline and climate change impact assessments for the Andes, with an application potential to other mountain regions (AndesPlus project). Considered are the climatological baseline of a region, and the assessment of trends based on ground meteorological stations, reanalysis data, and satellite information. A challenge is the scarcity of climate information in the Andes, and the complex climatology of the mountain terrain. A climate data platform has been developed for the southern Peruvian Andes and is a key element for climate data service and exchange. Water resources are among the key livelihood components for the Andean population, and local and national economy, in particular for

  4. Out of Amazonia again and again: episodic crossing of the Andes promotes diversification in a lowland forest flycatcher

    PubMed Central

    Miller, Matthew J; Bermingham, Eldredge; Klicka, John; Escalante, Patricia; do Amaral, Fabio S. Raposo; Weir, Jason T; Winker, Kevin

    2008-01-01

    Most Neotropical lowland forest taxa occur exclusively on one side of the Andes despite the availability of appropriate habitat on both sides. Almost all molecular phylogenies and phylogenetic analyses of species assemblages (i.e. area cladograms) have supported the hypothesis that Andean uplift during the Late Pliocene created a vicariant barrier affecting lowland lineages in the region. However, a few widespread plant and animal species occurring in lowland forests on both sides of the Andes challenge the generality of this hypothesis. To understand the role of the Andes in the history of such organisms, we reconstructed the phylogeographic history of a widespread Neotropical flycatcher (Mionectes oleagineus) in the context of the other four species in the genus. A molecular phylogeny based on nuclear and mitochondrial sequences unambiguously showed an early basal split between montane and lowland Mionectes. The phylogeographic reconstruction of lowland taxa revealed a complex history, with multiple cases in which geographically proximate populations do not represent sister lineages. Specifically, three populations of M. oleagineus west of the Andes do not comprise a monophyletic clade; instead, each represents an independent lineage with origins east of the Andes. Divergence time estimates suggest that at least two cross-Andean dispersal events post-date Andean uplift. PMID:18285279

  5. Complex Adaptive System of Systems (CASoS) Engineering Applications. Version 1.0.

    SciTech Connect

    Linebarger, John Michael; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Brown, Theresa Jean; Ames, Arlo Leroy

    2011-10-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex eco-socio-economic-technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to highly-saturated interdependencies and allied vulnerabilities to cascades in associated systems. The Phoenix initiative approaches this high-impact problem space as engineers, devising interventions (problem solutions) that influence CASoS to achieve specific aspirations. CASoS embody the world's biggest problems and greatest opportunities: applications to real world problems are the driving force of our effort. We are developing engineering theory and practice together to create a discipline that is grounded in reality, extends our understanding of how CASoS behave, and allows us to better control those behaviors. Through application to real-world problems, Phoenix is evolving CASoS Engineering principles while growing a community of practice and the CASoS engineers to populate it.

  6. Phoenix : Complex Adaptive System of Systems (CASoS) engineering version 1.0.

    SciTech Connect

    Moore, Thomas W.; Quach, Tu-Thach; Detry, Richard Joseph; Conrad, Stephen Hamilton; Kelic, Andjelka; Starks, Shirley J.; Beyeler, Walter Eugene; Brodsky, Nancy S.; Verzi, Stephen J.; Brown, Theresa Jean; Glass, Robert John, Jr.; Sunderland, Daniel J.; Mitchell, Michael David; Ames, Arlo Leroy; Maffitt, S. Louise; Finley, Patrick D.; Russell, Eric Dean; Zagonel, Aldo A.; Reedy, Geoffrey E.; Mitchell, Roger A.; Corbet, Thomas Frank, Jr.; Linebarger, John Michael

    2011-08-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to pervasive interdependencies and attendant vulnerabilities to cascades in associated systems. Phoenix was initiated to address this high-impact problem space as engineers. Our overarching goals are maximizing security, maximizing health, and minimizing risk. We design interventions, or problem solutions, that influence CASoS to achieve specific aspirations. Through application to real-world problems, Phoenix is evolving the principles and discipline of CASoS Engineering while growing a community of practice and the CASoS engineers to populate it. Both grounded in reality and working to extend our understanding and control of that reality, Phoenix is at the same time a solution within a CASoS and a CASoS itself.

  7. Complex Adaptive Systems of Systems (CASoS) engineering and foundations for global design.

    SciTech Connect

    Brodsky, Nancy S.; Finley, Patrick D.; Beyeler, Walter Eugene; Brown, Theresa Jean; Linebarger, John Michael; Moore, Thomas W.; Glass, Robert John, Jr.; Maffitt, S. Louise; Mitchell, Michael David; Ames, Arlo Leroy

    2012-01-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which must be recognized and reckoned with to design a secure future for the nation and the world. Design within CASoS requires the fostering of a new discipline, CASoS Engineering, and the building of capability to support it. Towards this primary objective, we created the Phoenix Pilot as a crucible from which systemization of the new discipline could emerge. Using a wide range of applications, Phoenix has begun building both theoretical foundations and capability for: the integration of Applications to continuously build common understanding and capability; a Framework for defining problems, designing and testing solutions, and actualizing these solutions within the CASoS of interest; and an engineering Environment required for 'the doing' of CASoS Engineering. In a secondary objective, we applied CASoS Engineering principles to begin to build a foundation for design in context of Global CASoS

  8. A new species of Alopoglossus lizard (Squamata, Gymnophthalmidae) from the tropical Andes, with a molecular phylogeny of the genus.

    PubMed

    Torres-Carvajal, Omar; Lobos, Simón E

    2014-01-01

    We describe a new species of Alopoglossus from the Pacific slopes of the Andes in northern Ecuador based on morphological and molecular evidence. The new species differs most significantly from all other congeners in having a double longitudinal row of widened gular scales, lanceolate dorsal scales in transverse rows, 29-32 dorsal scales in a transverse row at midbody, and 4 longitudinal rows of ventrals at midbody. It is most similar in morphology to A. festae, the only species of Alopoglossus currently recognized in western Ecuador. We analyze the phylogenetic relationships among species of Alopoglossus based on the mitochondrial gene ND4. Cis-Andean [east of the Andes] and Trans-Andean [west of the Andes] species are nested in two separate clades, suggesting that the uplift of these mountains had an important effect in the diversification of Alopoglossus. In addition, we present an updated key to the species of Alopoglossus.

  9. Deformation of the central Andes (15-27 deg S) derived from a flow model of subduction zones

    NASA Technical Reports Server (NTRS)

    Wdowinski, Shimon; O'Connell, Richard J.

    1991-01-01

    A simple viscous flow model of a subduction zone is used to calculate the deformation within continental lithosphere above a subducting slab. This formulation accounts for two forces that dominate the deformation in the overriding lithosphere: tectonic forces and buoyancy forces. Numerical solutions, obtained by using a finite element technique, are compared with observations from the central Andes (15-27 deg S). The model predicts the observed deformation pattern of extension in the forearc, compression in the Western Monocline (corresponding to magmatic activity), extension in the Altiplano, compression in the Eastern Monocline and Subandes, and no deformation in the Brazilian Shield. By comparing the calculated solutions with the large-scale tectonic observations, the forces that govern the deformation in the central Andes are evaluated. The approximately constant subduction velocity in the past 26 million years suggests that the rate of crustal shortening in the Andes has decreased with time due to the thickening of the crust.

  10. Surface control on contrasts in deformation between eastern and western margins of the Central Andes

    NASA Astrophysics Data System (ADS)

    Schlunegger, F.; Norton, K. P.

    2012-04-01

    The deformation style and climate between the eastern and western escarpments of the Central Andes are strikingly different. The eastern side is in a tropical climate; it receives annual precipitation amounts of >3500 mm and experiences active shortening and thrusting, while the western side is one of the driest places on Earth and is deformed by long-wavelength warping. Indeed, climate is so dry that the western slopes can go decades without recorded rainfall. Here we show that the modern distribution of deformation in the Central Andes can be a result of enhanced orographic precipitation pattern beginning ca. 7-10 Ma (Norton and Schlunegger, 2011). Reduced erosion on the western side would have steepened the orogen, forcing deformation to shift to the east where high precipitation amounts would have enhanced erosion. We support this hypothesis with low erosion rates and a well-defined retreating knickzone in the Western Andes, and likewise by high erosion rates and channel morphologies indicative of transient orographic feedbacks in the east. Indeed, erosion rates as measured by cosmogenic nuclides are < 0.01 mm yr-1 in the west (Kober et al., 2007) and more than an order of magnitude higher, > 0.2 mm yr-1, in the east (Safran et al. 2005). Stream profiles from the Western Escarpment are indicative of slow knickzone retreat in the absence of modern tectonic forcing while streams on the Eastern Escarpment are the product of strong climate-tectonic feedbacks, indicated by steep and strongly concave segments in the orographically-affected reach. Reconstructions of the accretionary wedge geometry and high angle fault movements between the Miocene and today further support an erosion driven shift in the locus of deformation. In particular, at orogenic scales, critical taper calculations indicate that the near cessation of erosion on the western side ca. 7-10 Ma ago shifted the orogen into a super-critical state where deformation only occurs along the basal d

  11. Fore-arc structure, plate coupling and isostasy in the Central Andes: Insight from gravity data modelling

    NASA Astrophysics Data System (ADS)

    Rutledge, Sophia; Mahatsente, Rezene

    2017-02-01

    The central segment of the Peru-Chile subduction zone has not seen a major earthquake of similar scale to the megathrust Iquique event in 1877 (Magnitude ∼8.8). The plate interface between the subducting and overriding plates in the central segment of the subduction zone is highly coupled and is accumulating elastic energy. Here, we assessed the locking mechanism and isostatic state of the Central Andes based on gravity models of the crust and upper mantle structure. The density models are based on satellite gravity data and are constrained by velocity models and earthquake hypocenters. The gravity models indicate a high density batholithic structure in the fore-arc, overlying the subducting Nazca plate. This high density crustal structure is pressing downward into the slab and locking the plate interface. Thus, plate coupling in the Central Andes may result from pressure exerted by high density fore-arc structures and buoyancy force on the subducting Nazca plate. The increased compressive stress closer to the trench, due to the increased contact between the subducting and overriding plates, may increase the intraplate coupling in the Central Andes. To assess the isostatic state of the Central Andes, we determined the residual topography of the region (difference between observed and isostatic topography). There is a residual topography of ∼800 m in the western part of the Central Andes that cannot be explained by the observed crustal thicknesses. The residual topography may be attributed to mantle wedge flow and subduction of the Nazca plate. Thus, part of the observed topography in the western part of the Central Andes may be dynamically supported by mantle wedge flow below the overriding plate.

  12. Climate Change Driven Implications on Spatial Distribution of High Andean Peatlands in the Central Andes

    NASA Astrophysics Data System (ADS)

    Otto, Marco; Gibbons, Richard E.

    2013-04-01

    High Andean peatlands are among the most unique habitats in the tropical Andes and certainly among the least studied. High Andean peatlands occur patchily in montane grassland and scrub below snow line and above tree line. These high-elevation peatlands are sustained by glacial runoff and seasonal precipitation. We used remote sensing data to estimate that peatland habitat is approximately 2.5 % of our study region in the Puna, an ecoregion located in the high Andes above 4000 m a.s.l. Individual sizes of our estimated peatland polygons ranged from 0.72 ha to 1079 ha with a mean size of 4.9 ha. Climate change driven implications on spatial distribution of high Andean peatlands were assessed in two ways. First, we estimated the effect of predicted regional temperature increase by using the standard lapse rate of 2° C per 300 m for assessing peatland habitat patches that would remain above a critical thermocline. Nearly 80% of peatland habitat patches were predicted to occur below the thermocline if the prediction of 4° C temperature increase is realized. The second assessment relied on the quantified assumption that permanent snow or glacier cover, topographic characteristics (e.g. slope) and precipitation of a basin are essential variables in the occurrence of high Andean peatlands. All 17 basins were predicted to have a decrease in peatland habitat due to snow line uplift, decrease in precipitation and consequent insufficient wetland inflows. Total habitat loss was predicted for two basins in the semi-arid part of the study area with a snow line uplift to 5600 m and a projected decrease in precipitation of 1 mm per year over the next 40 years. A combined result of both assessments provides important information on climate change driven implications on the hydrology of high Andean peatlands and potential consequences for their spatial distribution within the Central Andes.

  13. Generation of the relationship between glacier area and volume for a tropical glacier in Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Liu, T.; Kinouchi, T.; Hasegawa, A.; Tsuda, M.; Iwami, Y.; Asaoka, Y.; Mendoza, J.

    2015-12-01

    In Andes, retreat of tropical glaciers is rapid, thus water resources currently available from glacierized catchments would be changed in its volume and temporal variations due to climate change and glacier shrinkage. The relationship between glacier area and volume is difficult to define however which is important to monitor glaciers especially those are remote or inaccessible. Water resources in La Paz and El Alto in Bolivia, strongly depend on the runoff from glacierized headwater catchments in the Cordillera Real, Andes, which is therefore selected as our study region.To predict annual glacier mass balances, PWRI-Distributed Hydrological Model (PWRI-DHM) was applied to simulate runoff from the partially glacierized catchments in high mountains (i.e. Condoriri-Huayna West headwater catchment located in the Cordillera Real, Bolivian Andes). PWRI-DHM is based on tank model concept in a distributed and 4-tank configuration including surface, unsaturated, aquifer, and river course tanks. The model was calibrated and validated with observed meteorological and hydrological data from 2011 to 2014 by considering different phases of precipitation, various runoff components from glacierized and non-glacierized areas, and the retarding effect by glacial lakes and wetlands. The model is then applied with MRI-AGCM outputs from 1987 to 2003 considering the shrinkage of glacier outlines since 1980s derived from Landsat data. Annual glacier mass balance in each 100m-grid was reproduced, with which the glacier area-volume relationship was generated with reasonable initial volume setting. Out study established a method to define the relationship between glacier area and volume by remote sensing information and glacier mass balances simulated by distributed hydrological model. Our results demonstrated that the changing trend of local glacier had a consistency the previous observed glacier area-volume relationship in the Cordillera Real.

  14. Setting practical conservation priorities for birds in the Western Andes of Colombia.

    PubMed

    Ocampo-Peñuela, Natalia; Pimm, Stuart L

    2014-10-01

    We aspired to set conservation priorities in ways that lead to direct conservation actions. Very large-scale strategic mapping leads to familiar conservation priorities exemplified by biodiversity hotspots. In contrast, tactical conservation actions unfold on much smaller geographical extents and they need to reflect the habitat loss and fragmentation that have sharply restricted where species now live. Our aspirations for direct, practical actions were demanding. First, we identified the global, strategic conservation priorities and then downscaled to practical local actions within the selected priorities. In doing this, we recognized the limitations of incomplete information. We started such a process in Colombia and used the results presented here to implement reforestation of degraded land to prevent the isolation of a large area of cloud forest. We used existing range maps of 171 bird species to identify priority conservation areas that would conserve the greatest number of species at risk in Colombia. By at risk species, we mean those that are endemic and have small ranges. The Western Andes had the highest concentrations of such species-100 in total-but the lowest densities of national parks. We then adjusted the priorities for this region by refining these species ranges by selecting only areas of suitable elevation and remaining habitat. The estimated ranges of these species shrank by 18-100% after accounting for habitat and suitable elevation. Setting conservation priorities on the basis of currently available range maps excluded priority areas in the Western Andes and, by extension, likely elsewhere and for other taxa. By incorporating detailed maps of remaining natural habitats, we made practical recommendations for conservation actions. One recommendation was to restore forest connections to a patch of cloud forest about to become isolated from the main Andes.

  15. On Restoring Sedimentary Basins for Post-Depositional Deformation - Paleozoic Basins of the Central Andes

    NASA Astrophysics Data System (ADS)

    Bahlburg, H.

    2015-12-01

    The reconstruction and interpretation of sedimentary basins incorporated into folded and thrusted mountain belts is strongly limited by the style and intensity of shortening. This problem is exacerbated if deformation is polyphasic as is the case for the Paleozoic basins in the central Andes. Some of these have been deformed by folding and thrusting during at least 3 events in the Late Ordovician, the Late Paleozoic and Cenozoic. A realistic reconstruction of the original basin dimensions and geometries from outcrops and maps appears to be almost impossible. We present results of a stepwise reconstruction of the Paleozoic basins of the central Andes by restoring basin areas and fills accounting for crustal shortening. The structurally most prominent feature of the central Andes is the Bolivian Orocline which accomodated shortening in the last 45 Ma on the order of between 300 and 500 km. In a first step basins were restored by accounting for Cenozoic rotation and shortening by deconvolving the basins using an enhanced version of the oroclinal bending model of Ariagada et al. (2008). Results were then restored stepwise for older deformation. Constraints on these subsequent steps are significantly poorer as values of shortening can be derived only from folds and thusts apparent in outcrops. The amount of shortening accomodated on unexposed and therefore unknown thrusts can not be quantified and is a significant source of error very likely leading to an underestimation of the amount of shortening. Accepting these limitations, basin restoration results in an increase in basin area by ≥100%. The volumes of stratigraphically controlled basin fills can now be redistributed over the wider, restored area, translating into smaller rates of accumulation and hence required subsidence. The restored rates conform to those of equivalent modern basin settings and permit a more realistic and actualistic analysis of subsidence drivers and the respective tectonic framework.

  16. The Glacier Inventory of the Central Andes of Argentina (31°-35°S)

    NASA Astrophysics Data System (ADS)

    Ferri Hidalgo, L.; Zalazar, L.; Castro, M.; Pitte, P.; Masiokas, M. H.; Ruiz, L.; Villalba, R.; Delgado, S.; Gimenez, M.; Gargantini, H.

    2015-12-01

    The National Law for protection of glaciers in Argentina envisages the development of a National Inventory of Glaciers. All glaciers and periglacial landforms which are important as strategic water resource must be properly identified and mapped. Here we present a detailed and complete glacier and rock glacier inventory of the Central Andes of Argentina between 31° and 35°S. This semi-arid region contains some of the highest mountains of South America and concentrates the second most glacierized area in Argentina after the Patagonian Andes. To develop the inventory, we used remotely sensed data and related techniques complemented with field surveys. Clean ice and perennial snowfields were identified applying an automatic extraction method on medium spatial-resolution images. Debris-covered and rock glaciers were manually digitized on higher spatial-resolution images. With minor modifications, the present digital inventory is consistent with GLIMS standards. For each glacier, we derived 38 database fields, adding five specific attributes for rock glaciers, which are not included in the original GLIMS database. In total we identified 8069 glaciers covering an area of 1768 km2. Debris-covered ice and rock glaciers represent 57% of the total inventoried area. In this region, rock glaciers are a common feature in the arid landscape and constitute an important water reserve at regional scale. Many glaciers were characterized by gradual transition from debris-covered glaciers, in the upper part, to rock glaciers, in the lower sector. The remaining 43% includes clean ice glaciers and permanent snowfields. These are mostly mountain and valley-type glaciers with medium-to-small sizes. This detailed inventory constitutes a valuable contribution to the ongoing global efforts (e.g. WGI, RGI and GLIMS) to map the world's glaciers. It is also the base for ongoing glaciological, climatological and hydrological studies in this portion of southern Andes.

  17. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes

    PubMed Central

    Hughes, Colin; Eastwood, Ruth

    2006-01-01

    Species radiations provide unique insights into evolutionary processes underlying species diversification and patterns of biodiversity. To compare plant diversification over a similar time period to the recent cichlid fish radiations, which are an order of magnitude faster than documented bird, arthropod, and plant radiations, we focus on the high-altitude flora of the Andes, which is the most species-rich of any tropical mountains. Because of the recent uplift of the northern Andes, the upland environments where much of this rich endemic flora is found have been available for colonization only since the late Pliocene or Pleistocene, 2–4 million years (Myr) ago. Using DNA sequence data we identify a monophyletic group within the genus Lupinus representing 81 species endemic to the Andes. The age of this clade is estimated to be 1.18–1.76 Myr, implying a diversification rate of 2.49–3.72 species per Myr. This exceeds previous estimates for plants, providing the most spectacular example of explosive plant species diversification documented to date. Furthermore, it suggests that the high cichlid diversification rates are not unique. Lack of key innovations associated with the Andean Lupinus clade suggests that diversification was driven by ecological opportunities afforded by the emergence of island-like habitats after Andean uplift. Data from other genera indicate that lupines are one of a set of similarly rapid Andean plant radiations, continental in scale and island-like in stimulus, suggesting that the high-elevation Andean flora provides a system that rivals other groups, including cichlids, for understanding rapid species diversification. PMID:16801546

  18. Land Use Change and Hydrologic Processes in High-Elevation Tropical Watersheds of the Northern Andes

    NASA Astrophysics Data System (ADS)

    Avery, W. A.; Riveros-Iregui, D. A.; Covino, T. P.; Peña, C.

    2013-12-01

    The humid tropics cover one-fifth of the Earth's land surface and generate the greatest amount of runoff of any biome globally, but remain poorly understood and understudied. Humid tropical regions of the northern and central Andes have experienced greater anthropogenic land-use/land-cover (LULC) change than nearly any other high mountain system in the world. Vast expanses of this region are currently undergoing rapid transformation to farmland for production of potatoes and pasture for cattle grazing. Although the humid tropics have some of the highest runoff ratios, precipitation, and largest river flows in the world, there is a lack of scientific literature that addresses hydrologic processes in these regions and very few field observations are available to inform management strategies to ensure the sustainability of water resources of present and future generations. We seek to improve understanding of hydrologic processes and feedbacks in the humid tropics using existing and new information from two high-elevation watersheds that span a LULC gradient in the Andes Mountains of Colombia. One site is located in the preserved Chingaza Natural National Park in Central Colombia (undisturbed). The second site is located ~60 km to the northwest and has experienced considerable LULC change over the last 40 years. Combined, these watersheds deliver over 80% of the water resources to Bogotá and neighboring communities. These watersheds have similar climatological characteristics (including annual precipitation), but have strong differences in LULC which result in substantial differences in hydrologic response and streamflow dynamics. We present an overview of many of the pressing issues and effects that land degradation and climate change are posing to the long-term sustainability of water resources in the northern Andes. Our overarching goal is to provide process-based knowledge that will be useful to prevent, mitigate, or respond to future water crises along the Andean

  19. High Resolution Simulations of Pollution Vertical Stratification over Santiago and its Transport to the Chilean Andes

    NASA Astrophysics Data System (ADS)

    Orfanoz-Cheuquelaf, A. P.; Gallardo, L.; Huneeus, N.; Lambert, F.

    2015-12-01

    Santiago, Chile (33.5 S, 70.5 W, 500 m.a.s.l., population 7 millions) is a large city situated in a basin surrounded by the Andes in the East and smaller mountain ranges to the North, West, and South. It is plagued by abnormally high pollution levels for its size due to climatological and topological features. To date, it is unclear how far the urban pollution plume reaches up the mountain. Here we explore the region's complex atmospheric circulation and particularly the transport of black carbon (BC) using a state of the art numerical model (WRF-Chem, Weather Research and Forecasting model).Observations indicate the presence of multiple layers within the boundary layer, as well as the occurrence of uncoupled layers above the boundary layer. Here we explore mechanisms within our simulation that may explain these features. Our results suggest that they may correspond to residual layers that are produced by recirculation along mountain slopes due to the complex terrain around the city.In late August 2013, a short multi-platform measuring campaign (DIVERSOL) took place in the Santiago basin, providing the first vertical profiles of BC, accompanied by meteorological soundings. We analyze the dispersion of a quasi-passive tracer (carbon monoxide) of black carbon in our simulation to improve our understanding of the governing mixing and transport processes. We also perform sensitivity studies with respect to vertical resolution and turbulence schemes, contrasting our results against DIVERSOL data. Our simulations suggest that pollutants emitted in Santiago could reach the high regions of Andes mountains during the afternoon circulation, thus affecting local glaciers. With an entire year of simulation we find that the stratification of pollutants within the basin displays a seasonal signal, as well as a capacity to reach the Chilean Andes and affect the Andean cryosphere.

  20. Constraints on deformation of the Southern Andes since the Cretaceous from anisotropy of magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Maffione, Marco; Hernandez-Moreno, Catalina; Ghiglione, Matias C.; Speranza, Fabio; van Hinsbergen, Douwe J. J.; Lodolo, Emanuele

    2015-12-01

    The southernmost segment of the Andean Cordillera underwent a complex deformation history characterized by alternation of contractional, extensional, and strike-slip tectonics. Key elements of southern Andean deformation that remain poorly constrained, include the origin of the orogenic bend known as the Patagonian Orocline (here renamed as Patagonian Arc), and the exhumation mechanism of an upper amphibolite facies metamorphic complex currently exposed in Cordillera Darwin. Here, we present results of anisotropy of magnetic susceptibility (AMS) from 22 sites in Upper Cretaceous to upper Eocene sedimentary rocks within the internal structural domain of the Magallanes fold-and-thrust belt in Tierra del Fuego (Argentina). AMS parameters from most sites reveal a weak tectonic overprint of the original magnetic fabric, which was likely acquired upon layer-parallel shortening soon after sedimentation. Magnetic lineation from 17 sites is interpreted to have formed during compressive tectonic phases associated to a continuous N-S contraction. Our data, combined with the existing AMS database from adjacent areas, show that the Early Cretaceous-late Oligocene tectonic phases in the Southern Andes yielded continuous contraction, variable from E-W in the Patagonian Andes to N-S in the Fuegian Andes, which defined a radial strain field. A direct implication is that the exhumation of the Cordillera Darwin metamorphic complex occurred under compressive, rather than extensional or strike-slip tectonics, as alternatively proposed. If we agree with recent works considering the curved Magallanes fold-and-thrust belt as a primary arc (i.e., no relative vertical-axis rotation of the limbs occurs during its formation), then other mechanisms different from oroclinal bending should be invoked to explain the documented radial strain field. We tentatively propose a kinematic model in which reactivation of variably oriented Jurassic faults at the South American continental margin controlled

  1. Detection of 18.6 year nodal induced drought in the Patagonian Andes

    NASA Astrophysics Data System (ADS)

    Currie, Robert G.

    1983-11-01

    Analysis of tree-ring chronologies from the Patagonian Andes yields evidence for the 18.6 yr lunar nodal term in drought/flood. The mean discrepancy between epochs of drought/flood and the nodal tide since AD 1600 is 0.7 ± 2.2 yr, but the polarity of the signal is apparently bimodal. From nodal epoch 1750.0 through 1898.9 drought and tide were in phase, whereas prior to 1750.0 and subsequent to 1898.9 drought and tide were out of phase. There is evidence also for the solar cycle drought signal in the data.

  2. Spatial distribution of rock glaciers in the semi-arid Andes of Argentina

    NASA Astrophysics Data System (ADS)

    Blöthe, Jan Henrik; Halla, Christian; Schrott, Lothar; Götz, Joachim; Trombotto, Dario

    2016-04-01

    Active rock glaciers are indicators for permafrost in periglacial environments of high mountain areas. Within the permafrost body and the seasonally frozen active layer, these rock glaciers potentially store large amounts of water. Especially in semiarid mountain belts, such as the central Andes of Argentina, rock glaciers attain several kilometres in length, covering surface areas of >106 m2. Here, rock glaciers even outrange ice glaciers in cumulative area and absolute number, indicating they might constitute a large water reservoir in this semiarid part of the Andes. Despite their potential hydrological importance, our knowledge about the rock glaciers' spatial distribution, subsurface composition and absolute ice content is still very limited. Our study addresses this shortcoming and aims at assessing the hydrological significance of rock glacier permafrost in the semi-arid Andes of Argentina by combining local geophysical investigations with regional remote sensing analysis. Our research focuses on the central Andes between 30°S and 33°S, where we have compiled an inventory that comprises more than 1200 rock glaciers, as well as 154 clear-ice and debris-covered glaciers. Two field sites that bracket this regional study area towards their northern and southern edge have been selected for local geophysical investigations. At these locations, earlier studies detected the presence of rock glacier permafrost by thermal monitoring and geophysical prospection. Preliminary results of the regional spatial distribution indicate that the spatial density of rock glaciers increases towards the south, concomitant with a twofold increase in mean annual precipitation. Rock glacier density peaks in the area of the Aconcagua massif, while precipitation is further increasing towards the south. Simultaneously, the lower altitudinal limit of intact rock glaciers slightly decreases, with the lowest rock glacier toe positions in the northern study area located at ~3800 m a. s. l

  3. Tectonic geomorphology of the Andes with SIR-A and SIR-B

    NASA Technical Reports Server (NTRS)

    Bloom, Arthur L.; Fielding, Eric J.

    1986-01-01

    Data takes from SIR-A and SIR-B (Shuttle Imaging Radar) crossed all of the principal geomorphic provinces of the central Andes between 17 and 34 S latitude. In conjunction with Thematic Mapping images and photographs from hand-held cameras as well as from the Large Format Camera that was flown with SIR-B, the radar images give an excellent sampling of Andean geomorphology. In particular, the radar images show new details of volcanic rocks and landforms of late Cenozoic age in the Puna, and the exhumed surfaces of tilted blocks of Precambrian crystalline basement in the Sierras Pampeanas.

  4. Geomorphic controls on availability of weathering-derived nutrients across an erosional gradient in the Andes

    NASA Astrophysics Data System (ADS)

    West, A.; Torres, M. A.; Kleinsasser, E.; Clark, K.; Asner, G. P.; Malhi, Y.; Quesada, C.

    2013-12-01

    Rock-derived nutrients are thought to play important roles in determining ecosystem productivity and function, particularly in tropical forests. Variation in the availability of key nutrients such as P and Ca has been attributed to changes in the supply from chemical weathering of bedrock minerals, with a general conceptual model that younger soils with higher weathering rates are capable of supplying more nutrients compared to older soils with lower weathering rates (e.g. Vitousek et al., 2003). In this study we present data from an elevational gradient in the eastern Andes of Peru, illustrating how the relationship between weathering and nutrient availability is manifest in an active erosional system. Our data suggest that weathering, driven by erosional supply of primary minerals, is important in supplying nutrients. However, there is complexity in this relationship that may be associated with the geomorphic controls on weathering geochemistry and hydrochemistry, including weathering that takes place at greater depths when erosion rates are higher (e.g. West, 2012). We compare measured weathering rates with nutrient status of soils and vegetation across a transect from high elevations in the Andes to low elevations in the foreland floodplain. Weathering rates determined from the dissolved chemistry of river samples are highest at high elevation sites in the Andes. Mineral weathering rates are significant in the floodplain, which we attribute to chemical reworking of material eroded from the Andes, but rates of mineral weathering are not as high in the floodplain as in the montane sites. Although Ca supply is highest in the mountains, the foliar Ca and Ca available in soils is lower than in the floodplain. We will explore hydrochemical reasons for this difference, which may be due to where Ca release takes place relative to the vegetation root zone. We will also explore the supply of P from weathering in relation to observed nutrient availability, based on

  5. Cryptic species diversity in marsupial frogs (Anura: Hemiphractidae: Gastrotheca) in the Andes of northern Peru.

    PubMed

    Duellman, William E; Barley, Anthony J; Venegas, Pablo J

    2014-02-25

    Molecular phylogenetic analysis revealed the existence of two undescribed species of the hemiphractid genus Gastrotheca in the Andes in northern Peru. Both species are similar morphologically to Gastrotheca dysprosita and G. monticola, but they differ from these species and from one another in subtleties of coloration and minor variances in size and proportions. Gastrotheca aguaruna sp. nov. (6˚10'50"S, 77˚37'01"W, 2480 m) is from humid forested areas in the northern part of the Cordillera Central, whereas G. aratia sp. nov. (6˚14'00"S, 78˚51'24"W, 2560 m ) is known from the northern part of the Cordillera Occidental.

  6. Slab flattening driving regional uplift in the Cordilleras Blanca and Negra, Western Andes

    NASA Astrophysics Data System (ADS)

    Margirier, Audrey; Audin, Laurence; Robert, Xavier; Bernet, Matthias; Gautheron, Cécile

    2015-04-01

    The Andean range topographic evolution is known to have had a strong impact on regional climate by building an orographic barrier that preserved its western flank from the south Atlantic moisture. Even if largely invoked, the impact of subduction processes on the uplift and relief building is not yet well understood in the Andes. The northern Peru is characterized by a present day flat subduction zone (3-15°S), where both the geometry and temporal evolution of the flat-slab are well constrained. The subduction of two buoyant anomalies, the Nazca ridge and the lost Inca plateau controlled the slab flattening. The highest Peruvian peaks in the Cordillera Blanca (6768 m), and the Cordillera Negra (5187 m) are located just above the flat-slab segment. Both ranges trend parallel to the subduction zone and are separated by the NW-SE Rio Santa valley. The Cordillera Blanca batholith emplaced at 8-5 Ma and renders of an abnormal magmatic activity over a planar subduction. This area is a perfect target to explore the impact of slab flattening on the topography and uplift in the Occidental Cordillera of the Andes. We present new AHe and AFT data from three vertical profiles located in both the Cordilleras Blanca and Negra. We compare time-temperature paths obtained from inverse modeling of the thermochronological data with the timing of the slab flattening, the arrival of the Nazca ridge and magmatism. Our thermochronological data evidences a regional exhumation in the Occidental Cordillera from ~10 Ma. We propose that the Nazca ridge subduction below the Occidental Cordillera (11 Ma) and slab flattening (8 Ma) drive the Occidental Cordillera uplift and thus exhumation. We evidence the important contribution of the magmatism in the Cordillera Blanca exhumation and high relief building in the Occidental Cordillera. Our new thermochronological data highlight the control of both the subduction processes and magmatism on the paleogeography and uplift in the Andes. Finally, the

  7. Cryptococcus gattii meningoencephalitis in an HIV-negative patient from the Peruvian Andes.

    PubMed

    Gutierrez, Ericson L; Valqui, Willi; Vilchez, Luis; Evangelista, Lourdes; Crispin, Sarita; Tello, Mercedes; Navincopa, Marcos; Béjar, Vilma; Gonzáles, José; Ortega-Loayza, Alex G

    2010-01-01

    We report a case of an immunocompetent Peruvian patient from the Andes with a one-month history of meningoencephalitis. Cryptococcus gattii was identified from a cerebrospinal fluid culture through assimilation of D-proline and D-tryptophan as the single nitrogen source. Initially, the patient received intravenous antifungal therapy with amphotericin B. The patient was discharged 29 days after hospitalization and continued with oral fluconazole treatment for ten weeks. During this period, the patient showed clinical improvement with slight right-side residual weakness. Through this case report, we confirm the existence of this microorganism as an infectious agent in Peru.

  8. Investigations on vertical crustal movements in the Venezuelan Andes by gravimetric methods

    NASA Technical Reports Server (NTRS)

    Drewes, H.

    1978-01-01

    A precise gravimetric network has been installed in the Venezuelan Andes to study eventual gravity changes due to vertical tectonic movements. The design and the measurements of the network are described and the accuracy is estimated. In the center of the region a local gravity network has been reobserved three times. The detected variations are discussed. In order to obtain a genuine statement as far as possible about the significance of observed gravity changes, requirements for the procedure of monitoring precise gravity networks are pointed out.

  9. Integrated Assessment of Climate Variability and Change in the Tropical Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Lagos, P.

    2004-12-01

    Considering that the intensity and frequency of recurrent extreme events associated with flooding, droughts and freezes observed in the tropical Peruvian Andes could change with future global warming, an effort has begun to: (1) investigate the causes of such extreme events using correlation and principal component analysis; (2) generate future climate scenarios using statistical and dynamical downscaling; (3) integrate with the studies of vulnerability and adaptation strategies in the region. The purpose of this paper is to describe the results of this effort, which is part of the national plan to strengthen the capacity to manage the impacts of climate change.

  10. Solar modulation of Little Ice Age climate in the tropical Andes

    PubMed Central

    Polissar, P. J.; Abbott, M. B.; Wolfe, A. P.; Bezada, M.; Rull, V.; Bradley, R. S.

    2006-01-01

    The underlying causes of late-Holocene climate variability in the tropics are incompletely understood. Here we report a 1,500-year reconstruction of climate history and glaciation in the Venezuelan Andes using lake sediments. Four glacial advances occurred between anno Domini (A.D.) 1250 and 1810, coincident with solar-activity minima. Temperature declines of −3.2 ± 1.4°C and precipitation increases of ≈20% are required to produce the observed glacial responses. These results highlight the sensitivity of high-altitude tropical regions to relatively small changes in radiative forcing, implying even greater probable responses to future anthropogenic forcing. PMID:16740660

  11. Structural Evolution of the Central Venezuelan Andes: Changes From Compression to Strike-slip and Extension

    NASA Astrophysics Data System (ADS)

    Hervouet, Y.; Dhont, D.; Backe, G.

    2006-12-01

    The Venezuelan Andes form a N50°E-trending belt extending from the colombian border in the SW to the Caribbean sea in the NE. The belt is 100 km wide and its highest summits reach 5000 m in its central part. Uplift of the belt is a consequence of the relative convergence between the triangular-shaped Maracaibo crustal block on the west and the Guyana shield belonging to South America. The Maracaibo block is cut by a series of strike-slip faults separating several crustal units. Among these, the easternmost Trujillo triangular block is limited on the west by the N-S left-lateral Valera fault and on the south-east by the NE-trending right-lateral Bocono fault. Our methodology, based on the analysis of radar satellite and digital elevation model imagery and implemented by structural field work and the compilation of seismotectonic data, presents a new understanding of the tectonic evolution of the Venezuelan Andes during the Neogene-Quaternary. We have characterized three stages of deformation. The first, Mio-Pliocene in age, corresponds to the NW-SE Andean compression responsible for the uplift of the Venezuelan Andes. The second tectonic stage is consitent with a strike-slip regime of deformation marked by shearing along the Bocono and Valera faults and hence individualizing the Trujillo block, which has been cut into two smaller triangular wedges. This strike-slip faulting- dominated compressional-extensional tectonic regime started at some point between the Pliocene and the Quaternary and allowed the Trujillo crustal block to move towards the NE. The third stage of deformation corresponds to extension in the Trujillo block and is still active today. The present-day distribution of the deformation in the Venezuelan Andes is consistent with strain partitioning. While compression is restricted on both flanks of the belt, strike-slip and extension occurs in the central part of the mountain range. Extension is associated with the motion of crustal blocks moving

  12. Prediction of extreme floods in the Central Andes by means of Complex Networks

    NASA Astrophysics Data System (ADS)

    Boers, Niklas; Bookhagen, Bodo; Barbosa, Henrique; Marwan, Norbert; Kurths, Jürgen; Marengo, Jose

    2014-05-01

    Based on a non-linear synchronisation measure and complex network theory, we present a novel framework for the prediction of extreme events of spatially embedded, interrelated time series. This method is general in the sense that it can be applied to any type of spatially sampled time series with significant interrelations, ranging from climate observables to biological or stock market data. In this presentation, we apply our method to extreme rainfall in South America and show how this leads to the prediction of more than 60% (90% during El Niño conditions) of extreme rainfall events in the eastern Central Andes of Bolivia and northern Argentina, with only 1% false alarms. From paleoclimatic to decadal time scales, the Central Andes continue to be subject to pronounced changes in climatic conditions. In particular, our and past work shows that frequency as well as magnitudes of extreme rainfall events have increased significantly during past decades, calling for a better understanding of the involved climatic mechanisms. Due to their large spatial extend and occurrence at high elevations, these extreme events often lead to severe floods and landslides with disastrous socioeconomic impacts. They regularly affect tens of thousands of people and produce estimated costs of the order of several hundred million USD. Alongside with the societal value of predicting natural hazards, our study provides insights into the responsible climatic features and suggests interactions between Rossby waves in polar regions and large scale (sub-)tropical moisture transport as a driver of subseasonal variability of the South American monsoon system. Predictable extreme events result from the propagation of extreme rainfall from the region of Buenos Aires towards the Central Andes given characteristic atmospheric conditions. Our results indicate that the role of frontal systems originating from Rossby waves in polar latitudes is much more dominant for controlling extreme rainfall in

  13. Jürgen Stock: From One End of the Andes to the Other

    NASA Astrophysics Data System (ADS)

    Vivas, A. K.; Stock, M. J.

    2015-05-01

    Jürgen Stock (1923-2004) will always be remembered for his work on astronomical site testing. He led the efforts to find the best place for CTIO, and his work had a large influence in the setting of other observatories in Chile. He was the first director of CTIO (1963-1966). After his time in Chile, he moved to the other end of the Andes and was in charge of the site selection and the construction of the only professional observatory in Venezuela, the Llano del Hato National Observatory.

  14. Development of a minigenome system for Andes virus, a New World hantavirus.

    PubMed

    Brown, Kyle S; Ebihara, Hideki; Feldmann, Heinz

    2012-11-01

    The development of reverse genetics systems for negative-stranded RNA viruses is a rapidly evolving field that has greatly advanced the study of the many different aspects of the viral life cycle. Andes virus (ANDV) is a highly pathogenic hantavirus found in South America that causes hantavirus pulmonary syndrome but to date remains poorly characterized due to the lack of a reverse genetics system for genetic manipulation. Here, we describe the first successful minigenome system for a New World hantavirus, as well as many of the obstacles that still exist in the development of such a system.

  15. Modeling modern glacier response to climate changes along the Andes Cordillera: A multiscale review

    NASA Astrophysics Data System (ADS)

    Fernández, Alfonso; Mark, Bryan G.

    2016-03-01

    Here we review the literature preferentially concerned with modern glacier-climate modeling along the Andes. We find a diverse range of modeling approaches, from empirical/statistical models to relatively complex energy balance procedures. We analyzed these models at three different spatial scales. First, we review global approaches that have included the Andes. Second, we depict and analyze modeling exercises aimed at studying Andean glaciers as a whole. Our revision shows only two studies dealing with glacier modeling at this continental scale. We contend that this regional approach is increasingly necessary because it allows for connecting the "average-out" tendency of global studies to local observations or models, in order to comprehend scales of variability and heterogeneity. Third, we revise small-scale modeling, finding that the overwhelming number of studies have targeted glaciers in Patagonia. We also find that most studies use temperature-index models and that energy balance models are still not widely utilized. However, there is no clear spatial pattern of model complexity. We conclude with a discussion of both the limitations of certain approaches, as for example the use of short calibration periods for long-term modeling, and also the opportunities for improved understanding afforded by new methods and techniques, such as climatic downscaling. We also propose ways to future developments, in which observations and models can be combined to improve current understanding of volumetric glacier changes and their climate causes.

  16. Remote Sensing of Snow as a Tool to Forecast Water Shortage in the Argentinian Dry Andes

    NASA Astrophysics Data System (ADS)

    Delbart, Nicolas; Dunesme, Samuel; Lavie, Emilie; Madelin, Malika

    2016-08-01

    In the Argentinian Dry Andes the annual snow melt is the main source of superficial water and aquifer recharge, essential for the population of the oases. Interannual variability in the snow cover in the Andes mountains causes variability in the water volumes available. In this study we analyze the errors of a water discharge forecast method based on the MODIS MOD10A2 snow cover product, with regards to the mass anomalies estimated by GRACE satellite at the scale of four watersheds.Because the high-water period (September-April) discharge is directly related to the snow extent at the beginning of the snowmelt period, i.e. in September and October, we use MOD10A2 images to forecast the average high water season discharge. Despite an average uncertainty of 15%, uncertainty peaks to about 50% in several years. Comparison with mass anomalies retrieved GRACE satellite data suggests that overestimation of our forecast method comes from snowbed thickness interannual variations.

  17. Geomorphic Response to Flat Slab Subduction along the Eastern Foothills of the Colombian Andes

    NASA Astrophysics Data System (ADS)

    Veloza, G.; Taylor, M. H.; Gosse, J. C.; Mora, A.; Becker, T. W.

    2013-12-01

    It is thought that in northwest South America flat slab subduction plays a key role in the recent development of the eastern Colombian Andes. Here we show that the geomorphic response to flat slab subduction is presently occurring >500 km inboard of the subduction zone plate boundary. The Llanos basin located along the eastern edge of the Colombian Andes is experiencing active uplift along the seismically active Cusiana, Yopal, Paz de Ariporo and Tame thrust faults, which we refer to as the Llanos Foothills thrust system (LFTS). The LFTS is comprised of east-directed thrust faults that are listric in geometry with shallowly west-dipping decollements. Locally, actively growing north-south plunging folds are cored by blind thrust faults, and are being incised by antecedent east-flowing streams. Using a combination of field-based observations on the geometry of faulted and folded fluvial terraces, and geochronology from terrestrial cosmogenic nuclides, we show that the fluvial terraces have been uplifted, and locally, incised >200 meters at incision rates exceeding 3 mm/yr. The field observations in combination with earthquakes and geodynamic simulations can be reconciled by flat slab subduction, but it is presently unknown whether the flat slab has a Caribbean or Nazca plate affinity. Different geodynamic scenarios can be tested to understand how the leading edge of the flat slab interacts with the South American craton, and how that interaction controls upper crustal deformation.

  18. Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy.

    PubMed Central

    Hooghiemstra, Henry; Van der Hammen, Thomas

    2004-01-01

    Pollen records from lacustrine sediments of deep basins in the Colombian Andes provide records of vegetation history, the development of the floristic composition of biomes, and climate variation with increasing temporal resolution. Local differences in the altitudinal distribution of present-day vegetation belts in four Colombian Cordilleras are presented. Operating mechanisms during Quaternary Ice-Age cycles that stimulated speciation are discussed by considering endemism in the asteraceous genera Espeletia, Espeletiopsis and Coespeletia. The floristically diverse lower montane forest belt (1000-2300 m) was compressed by ca. 55% during the last glacial maximum (LGM) (20 ka), and occupied the slopes between 800 m and 1400 m during that period. Under low LGM atmospheric pCO2 values, C4-dominated vegetation, now occurring below 2200 m, expanded up to ca. 3500 m. Present-day C3-dominated paramo vegetation is therefore not an analogue for past C4-dominated vegetation (with abundant Sporobolus lasiophyllus). Quercus immigrated into Colombia 478 ka and formed an extensive zonal forest from 330 ka when former Podocarpus-dominated forest was replaced by zonal forest with Quercus and Weinmannia. During the last glacial cycle the ecological tolerance of Quercus may have increased. In the ecotone forests Quercus was rapidly and massively replaced by Polylepis between 45 and 30 ka illustrating complex forest dynamics in the tropical Andes. PMID:15101574

  19. A new species of Andean poison frog, Andinobates (Anura: Dendrobatidae), from the northwestern Andes of Colombia.

    PubMed

    Amézquita, Adolfo; Márquez, Roberto; Medina, Ricardo; Mejía-Vargas, Daniel; Kahn, Ted R; Suárez, Gustavo; Mazariegos, Luis

    2013-01-01

    The poison frogs of the Colombian Andes, Pacific lowlands and Panama have been recently recognized as a new, monophyletic and well-supported genus: Andinobates. The species richness and distribution within Andinobates remain poorly understood due to the paucity of geographic, genetic and phenotypic data. Here we use a combination of molecular, bioacoustic and morphometric evidence to describe a new species of Andean poison frog: Andinobates cassidyhornae sp. nov. from the high elevation cloud forests of the Colombian Cordillera Occidental, in the northwestern Andes. The new species is associated to the bombetes group and characterized by a unique combination of ventral and dorsal color patterns. Data on 1119 bp from two mitochondrial markers allowed us to reject the null hypotheses that A. cassidyhornae sp. nov. is part of the phenotypically similar and geographically less distant species: A. opisthomelas, A. virolinensis or A. bombetes. The best available phylogenetic trees and the genetic distance to other Andinobates species further support this decision. Altogether, the advertisement call parameters unambiguously separated A. cassidyhornae sp. nov. calls from the calls of the three closest species. The new species adds to a poorly known and highly endangered genus of poison frogs that requires further studies and urgent conservation measures.

  20. Late Pleistocene equilibrium-line reconstructions in the northern Peruvian Andes

    USGS Publications Warehouse

    Rodbell, D.T.

    1992-01-01

    ELA reconstructions using the toe-to-headwall-altitude ratio method for paleoglaciers in the Cordilleras Blanca and Oriental, northern Peruvian Andes indicate that ELAs during the last glacial maximum (LGM; marine isotope stage 2)) were c.4300 m in the Cordillera Blanca, c.3900-3600 m on the west side of the Cordillera Oriental, and c.3200 m on the east (Amazon Basin) side of the Cordillera Oriental. Comparison with estimated modern ELAs and glaciation thresholds indicate that ELA depression ranged from c.700 m in the Cordillera Blanca to c.1200 m on the east side of the Cordillera Oriental. Palynological evidence for drier conditions during the LGM in the tropical Andes suggests that ELA depression of this amount involved a temperature reduction (>5-6??C) that greatly exceeded the tropical sea-surface temperature depression estimates of CLIMAP (<2??C). The west to east increase in ELA depression during the LGM indicates that the steep modern precipitation gradients may have been even steeper during the LGM. -from Author

  1. Thermal physiology, disease, and amphibian declines on the eastern slopes of the Andes.

    PubMed

    Catenazzi, Alessandro; Lehr, Edgar; Vredenburg, Vance T

    2014-04-01

    Rising temperatures, a widespread consequence of climate change, have been implicated in enigmatic amphibian declines from habitats with little apparent human impact. The pathogenic fungus Batrachochytrium dendrobatidis (Bd), now widespread in Neotropical mountains, may act in synergy with climate change causing collapse in thermally stressed hosts. We measured the thermal tolerance of frogs along a wide elevational gradient in the Tropical Andes, where frog populations have collapsed. We used the difference between critical thermal maximum and the temperature a frog experiences in nature as a measure of tolerance to high temperatures. Temperature tolerance increased as elevation increased, suggesting that frogs at higher elevations may be less sensitive to rising temperatures. We tested the alternative pathogen optimal growth hypothesis that prevalence of the pathogen should decrease as temperatures fall outside the optimal range of pathogen growth. Our infection-prevalence data supported the pathogen optimal growth hypothesis because we found that prevalence of Bd increased when host temperatures matched its optimal growth range. These findings suggest that rising temperatures may not be the driver of amphibian declines in the eastern slopes of the Andes. Zoonotic outbreaks of Bd are the most parsimonious hypothesis to explain the collapse of montane amphibian faunas; but our results also reveal that lowland tropical amphibians, despite being shielded from Bd by higher temperatures, are vulnerable to climate-warming stress.

  2. Bird conservation would complement landslide prevention in the Central Andes of Colombia

    PubMed Central

    Ocampo-Peñuela, Natalia

    2015-01-01

    Conservation and restoration priorities often focus on separate ecosystem problems. Inspired by the November 11th (2011) landslide event near Manizales, and the current poor results of Colombia’s Article 111 of Law 99 of 1993 as a conservation measure in this country, we set out to prioritize conservation and restoration areas where landslide prevention would complement bird conservation in the Central Andes. This area is one of the most biodiverse places on Earth, but also one of the most threatened. Using the case of the Rio Blanco Reserve, near Manizales, we identified areas for conservation where endemic and small-range bird diversity was high, and where landslide risk was also high. We further prioritized restoration areas by overlapping these conservation priorities with a forest cover map. Restoring forests in bare areas of high landslide risk and important bird diversity yields benefits for both biodiversity and people. We developed a simple landslide susceptibility model using slope, forest cover, aspect, and stream proximity. Using publicly available bird range maps, refined by elevation, we mapped concentrations of endemic and small-range bird species. We identified 1.54 km2 of potential restoration areas in the Rio Blanco Reserve, and 886 km2 in the Central Andes region. By prioritizing these areas, we facilitate the application of Article 111 which requires local and regional governments to invest in land purchases for the conservation of watersheds. PMID:25737819

  3. A new species of Telmatobius (Amphibia, Anura, Telmatobiidae) from the Pacific slopes of the Andes, Peru.

    PubMed

    Catenazzi, Alessandro; García, Víctor Vargas; Lehr, Edgar

    2015-01-01

    We describe a new species of Telmatobius from the Pacific slopes of the Andes in central Peru. Specimens were collected at 3900 m elevation near Huaytará, Huancavelica, in the upper drainage of the Pisco river. The new species has a snout-vent length of 52.5 ± 1.1 mm (49.3-55.7 mm, n = 6) in adult females, and 48.5 mm in the single adult male. The new species has bright yellow and orange coloration ventrally and is readily distinguished from all other central Peruvian Andean species of Telmatobius but Telmatobiusintermedius by having vomerine teeth but lacking premaxillary and maxillary teeth, and by its slender body shape and long legs. The new species differs from Telmatobiusintermedius by its larger size, flatter head, and the absence of cutaneous keratinized spicules (present even in immature females of Telmatobiusintermedius), and in males by the presence of minute, densely packed nuptial spines on dorsal and medial surfaces of thumbs (large, sparsely packed nuptial spines in Telmatobiusintermedius). The hyper-arid coastal valleys of Peru generally support low species richness, particularly for groups such as aquatic breeding amphibians. The discovery of a new species in this environment, and along a major highway crossing the Andes, shows that much remains to be done to document amphibian diversity in Peru.

  4. Glacier change and glacial lake outburst flood risk in the Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Cook, Simon J.; Kougkoulos, Ioannis; Edwards, Laura A.; Dortch, Jason; Hoffmann, Dirk

    2016-10-01

    Glaciers of the Bolivian Andes represent an important water resource for Andean cities and mountain communities, yet relatively little work has assessed changes in their extent over recent decades. In many mountain regions, glacier recession has been accompanied by the development of proglacial lakes, which can pose a glacial lake outburst flood (GLOF) hazard. However, no studies have assessed the development of such lakes in Bolivia despite recent GLOF incidents here. Our mapping from satellite imagery reveals an overall areal shrinkage of 228.1 ± 22.8 km2 (43.1 %) across the Bolivian Cordillera Oriental between 1986 and 2014. Shrinkage was greatest in the Tres Cruces region (47.3 %), followed by the Cordillera Apolobamba (43.1 %) and Cordillera Real (41.9 %). A growing number of proglacial lakes have developed as glaciers have receded, in accordance with trends in most other deglaciating mountain ranges, although the number of ice-contact lakes has decreased. The reasons for this are unclear, but the pattern of lake change has varied significantly throughout the study period, suggesting that monitoring of future lake development is required as ice continues to recede. Ultimately, we use our 2014 database of proglacial lakes to assess GLOF risk across the Bolivian Andes. We identify 25 lakes that pose a potential GLOF threat to downstream communities and infrastructure. We suggest that further studies of potential GLOF impacts are urgently required.

  5. Surface uplift in the Central Andes driven by growth of the Altiplano Puna Magma Body

    PubMed Central

    Perkins, Jonathan P.; Ward, Kevin M.; de Silva, Shanaka L.; Zandt, George; Beck, Susan L.; Finnegan, Noah J.

    2016-01-01

    The Altiplano-Puna Magma Body (APMB) in the Central Andes is the largest imaged magma reservoir on Earth, and is located within the second highest orogenic plateau on Earth, the Altiplano-Puna. Although the APMB is a first-order geologic feature similar to the Sierra Nevada batholith, its role in the surface uplift history of the Central Andes remains uncertain. Here we show that a long-wavelength topographic dome overlies the seismically measured extent of the APMB, and gravity data suggest that the uplift is isostatically compensated. Isostatic modelling of the magmatic contribution to dome growth yields melt volumes comparable to those estimated from tomography, and suggests that the APMB growth rate exceeds the peak Cretaceous magmatic flare-up in the Sierran batholith. Our analysis reveals that magmatic addition may provide a contribution to surface uplift on par with lithospheric removal, and illustrates that surface topography may help constrain the magnitude of pluton-scale melt production. PMID:27779183

  6. Recent Seismic and Geodetic Activity at Multiple Volcanoes in the Ecuadorean Andes

    NASA Astrophysics Data System (ADS)

    Hernandez, S.; Ruiz, M. C.; McCausland, W. A.; Prejean, S. G.; Mothes, P. A.; Bell, A. F.; Hidalgo, S.; Barrington, C.; Yepez, M.; Aguaiza, S.; Plain, M.

    2015-12-01

    The state of volcanic activity often fluctuates between periods of repose and unrest. The transition time between a period of repose and unrest, or vice versa for an open system, can occur within a matter of hours or days. Because of this short time scale, real-time seismic and geodetic (e.g. tiltmeter, GPS) monitoring networks are crucial for characterizing the state of activity of a volcano. In the Ecuadorean Andes, 5 volcanoes demonstrate long-term (Tungurahua, Reventador, and Guagua Pichincha) or recently reactivated (Cotopaxi, Chiles-Cerro Negro) seismic and geodetic activity. The Instituto Geofisico regularly characterizes volcano seismicity into long period, very long period, volcano-tectonic, and tremor events. Significant recent changes at these volcanoes include: rigorous reactivation of glacier-capped Cotopaxi, drumbeat seismicity absent a dome extrusion at Tungurahua, and regularly reoccurring (~7 day recurrence interval), shallow seismic swarms at Guagua Pichincha. These volcanoes locate along both the Western and Eastern Cordillera of the Ecuadorean Andes and, where data are available, manifest important variations in chemical composition, daily gas flux, and surficial deformation. We summarize the long-term geophysical parameters measured at each volcano and place recent changes in each parameter in a larger magmatic and hydrothermal context. All of the studied volcanoes present significant societal hazards to local and regional communities.

  7. Temperature and Rainfall Variability in the Northern Andes Over the Past Two Millennia

    NASA Astrophysics Data System (ADS)

    Shanahan, T. M.; Bixler, C. W.; Mora, A.

    2014-12-01

    Recent studies of tropical glaciers have shown that most are retreating rapidly, with some of the most dramatic changes occurring since the mid-1970s, most likely as a result of increasing global temperatures. However, a longer-term perspective is needed to place these changes in the context of natural climate variability. To better understand the climatological factors driving long-term variations in the mass balance of tropical glaciers, we reconstructed changes in precipitation and temperature in the northern tropical Andes using variations in the hydrogen isotope composition of sedimentary leaf waxes and branched GDGT distributions in a high-resolution varved sediment record from Lago Chingaza, Colombia. Br-GDGT derived temperatures are significantly correlated with instrumental temperature data and indicate that recent warming in the northern tropical Andes is unprecedented over the past two millennia. Furthermore, the magnitude of warming since the Little Ice Age is substantially larger than suggested by high latitude temperature reconstructions. Hydrogen isotope data indicated that colder conditions during the Little Ice Age were accompanied by a decrease in rainfall, likely associated with a southward shift in the position of the ITCZ. Over the past few centuries, warmer temperatures were accompanied by an increase in rainfall and a northward expansion of the tropical rainbelt. Together, these data suggest that the dominant control on the retreat of Andean glaciers has been the unprecedented rate and magnitude of recent warming.

  8. Comparative Phylogeography of Direct-Developing Frogs (Anura: Craugastoridae: Pristimantis) in the Southern Andes of Colombia

    PubMed Central

    García-R, Juan C.; Crawford, Andrew J.; Mendoza, Ángela María; Ospina, Oscar; Cardenas, Heiber; Castro, Fernando

    2012-01-01

    The Andes of South America hosts perhaps the highest amphibian species diversity in the world, and a sizable component of that diversity is comprised of direct-developing frogs of the genus Pristimantis (Anura: Craugastoridae). In order to better understand the initial stages of species formation in these frogs, this study quantified local-scale spatial genetic structuring in three species of Pristimantis. DNA sequences of two mitochondrial gene fragments (16S and COI) were obtained from P. brevifrons, P. palmeri and P. jubatus at different locations in the Cordillera Occidental. We found high levels of genetic diversity in the three species, with highly structured populations (as measured by FST) in P. brevifrons and P. palmeri while P. jubatus showed panmixia. Large effective population sizes, inferred from the high levels of genetic diversity, were found in the three species and two highly divergent lineages were detected within P. jubatus and P. palmeri. Estimated divergence times among populations within P. brevifrons and P. palmeri coincide with the Pleistocene, perhaps due to similar responses to climatic cycling or recent geological history. Such insights have important implications for linking alpha and beta diversity, suggesting regional scale patterns may be associated with local scale processes in promoting differentiation among populations in the Andes. PMID:23049941

  9. Permafrost distribution map of San Juan Dry Andes (Argentina) based on rock glacier sites

    NASA Astrophysics Data System (ADS)

    Esper Angillieri, María Yanina

    2017-01-01

    Rock glaciers are frozen water reservoirs in mountainous areas. Water resources are important for the local populations and economies. The presence of rock glaciers is commonly used as a direct indicator of mountain permafrost conditions. Over 500 active rock glaciers have been identified, showing that elevations between 3500 and 4500 m asl., a south-facing or east-facing aspect, areas with relatively low solar radiation and low mean annual air temperature (-4 to 0 °C) favour the existence of rock glaciers in this region. The permafrost probability model, for Dry Andes of San Juan Province between latitudes 28º30‧S and 32°30‧S, have been analyzed by logistic regression models based on the active rock glaciers occurrence in relation to some topoclimatic variables such as altitude, aspect, mean annual temperature, mean annual precipitation and solar radiation, using optical remote sensing techniques in a GIS environment. The predictive performances of the model have been estimated by known rock glaciers locations and by the area under the receiver operating characteristic curve (AUROC). This regional permafrost map can be applied by the Argentinean Government for their recent initiatives which include creating inventories, monitoring and studying ice masses along the Argentinean Andes. Further, this generated map provides valuable input data for permafrost scenarios and contributes to a better understanding of our geosystem.

  10. Unearthing the basement of the Central Andes: insights from crustal xenoliths

    NASA Astrophysics Data System (ADS)

    McLeod, C. L.; Davidson, J. P.; Nowell, G.; de Silva, S. L.

    2011-12-01

    The continental crust of the Central Andes is the thickest at any subduction on Earth today reaching an estimated 80 km in thickness (Zandt et al., 1994). However, little is known about the nature and geological evolution of the crustal basement upon which the Central Andes sit due to the extensive sedimentary cover sequences which blanket the region today. Crustal xenoliths entrained within Plio-Pleistocene andesitic-dacitic lavas on the Bolivian Altiplano offer a rare insight into the nature of the poorly exposed Central Andean basement. The samples are lithologically diverse ranging from almost pure quartzite to garnet-mica schists, with rarer granulites and several igneous lithologies including diorites and microgranites. This diversity is reflected in their significant geochemical heterogeneity (87Sr/86Sr: 0.7105-0.7445; 143Nd/144Nd: 0.5118-0.5123; 208Pb/204Pb: 17.25-18.93). Relative trace element abundances and P-T estimates are consistent with sampling of the upper continental crust at ~23 km depth. Additionally these xenoliths provide key crustal end-member compositions for modelling the petrogenesis of Central Andean volcanic rocks. It is hoped that in-situ U-Pb analysis of zircon within this rock suite will provide further insights into the nature and evolution of the Central Andean continental crust. References Zandt, G., Velasco, A. A., and Beck, S. L., (1994). Composition and thickness of southern Altiplano crust, Bolivia. Geology v. 22, pp: 1003-1006.

  11. Altitudinal variation in fish assemblage diversity in streams of the central Andes of Colombia.

    PubMed

    Jaramillo-Villa, U; Maldonado-Ocampo, J A; Escobar, F

    2010-06-01

    This study documents differences in fish assemblages for 32 freshwater streams located between 258 and 2242 m a.s.l. on the eastern slopes of the central range of the Colombian Andes. A total of 2049 fishes belonging to 62 species, 34 genera and 16 families were collected. Species richness declined rapidly with altitude; nearly 90% of the species were recorded between 250 and 1250 m a.s.l. Three of the four physico-chemical variables, of the water, temperature, dissolved oxygen and pH, explained 53.5% of the variation in species richness along the altitudinal gradient, with temperature the most important (37.6%). An analysis of species composition showed that the distinctiveness of the fish fauna increased with elevation, with the greatest turnover observed between 1000 and 1750 m a.s.l. On this altitudinal gradient, turnover was dominated by the loss of species rather than gain, and dominance by just a few species was greater at higher elevations. Turnover was also observed along the altitudinal gradient in the structure of the three functional groups (torrential, pool and pelagic species). The study focused on understanding the pattern of diversity of fish communities inhabiting the Andes in Colombia. Anthropogenic effects on the altitudinal distribution of fish species in the region, however, are largely unknown and would require further investigations.

  12. Regionalisation of Hydrological Indices to Assess Land-Use Change Impacts in the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Buytaert, W.; Ochoa Tocachi, B. F.

    2014-12-01

    Andean ecosystems are major water sources for cities and communities located in the Tropical Andes; however, there is a considerable lack of knowledge about their hydrology. Two problems are especially important: (i) the lack of monitoring to assess the impacts of historical land-use and cover change and degradation (LUCCD) at catchment scale, and (ii) the high variability in climatic and hydrological conditions that complicate the evaluation of land management practices. This study analyses how a reliable LUCCD impacts assessment can be performed in an environment of high variability combined with data-scarcity and low-quality records. We use data from participatory hydrological monitoring activities in 20 catchments distributed along the tropical Andes. A set of 46 hydrological indices is calculated and regionalized by relating them to 42 physical catchment properties. Principal Component Analysis (PCA) is performed to maximise available data while minimising redundancy in the sets of variables. Hydrological model parameters are constrained by estimated indices, and different behavioural predictions are assembled to provide a generalised response on which we assess LUCCD impacts. Results from this methodology show that the attributed effects of LUCCD in pair-wise catchment comparisons may be overstated or hidden by different sources of uncertainty, including measurement inaccuracies and model structural errors. We propose extrapolation and evaluation in ungauged catchments as a way to regionalize LUCCD predictions and to provide statistically significant conclusions in the Andean region. These estimations may deliver reliable knowledge to evaluate the hydrological impact of different watershed management practices.

  13. Orographic precipitation gradient over the west slope of the Andes at 30 degrees south

    NASA Astrophysics Data System (ADS)

    Scaff, M. L.; Rutllant, J. A.; Rondanelli, R. F.

    2011-12-01

    The Elqui valley around 30°S in Chile is located within a semi-arid region in which the mean annual precipitation (80-180 mm) accumulates in austral winter in connection with mid-latitude weather disturbances: fronts and cut-off lows. Given the steep topography of the Andes in this region (0 - 5000 m in ~ 200 km) the flow and precipitation are strongly influenced by the Andes. Typically, the precipitation increases with elevation due to the forced ascent over the topography in a well-mixed atmosphere. However, it has been observed that some particular storms produce an inverse orographic precipitation gradient (OPG). An eventual increase in the frequency of this type of storms would lead to decreased water availability during the warm, rainless season and consequently to the damming capacity of the watershed. Therefore, clarifying the mechanism that produce either positive or negative OPGs within individual storms may shed light on the issue of expected climate variability. In this work we characterize OPGs according to the Froude number and associated intensity and location of the barrier jet when orographic blocking occurs. The flow blocking and stability parameters will be estimated using CFSR Reanalysis winds and temperatures along the slope from surface weather stations. These results are contrasted with studies over the Sierra Nevada that show a negative correlation between the height of the barrier jet and OPGs, and also a positive correlation between Froude number and a OPG.

  14. Perspectives from Meteorological Measurements on High Elevation Ice Caps in the Topical Andes

    NASA Astrophysics Data System (ADS)

    Bradley, R. S.; Hardy, D. R.; Diaz, H. F.

    2008-12-01

    IPCC model simulations show that large temperature changes can be expected in the high mountains of the Tropics due to anthropogenic greenhouse gas increases. Many of these areas are extensively glacierized, and so contain important water resources for the region as a whole. However, the highest mountains are devoid of meteorological measurements, so detection of changes from instrumental records is problematical. This is a critical 'data gap' in the global observing network. In an attempt to remedy this situation, hourly meteorological measurements have been made over the last decade at several high elevation ice cap and glacier sites in the tropical Andes, from Bolivia to Ecuador. These provide insight into contemporary conditions at elevations far above any long-term weather stations. The measurements complement ice core records which suggest that recent changes are unique in the context of the last millennium. We examine the meteorological data and their implications for the interpretation of the ice core records. We also discuss large-scale changes in atmospheric (free air) freezing levels in the Tropics and the factors that control such changes, with implications for the paleo record. Finally, we discuss the recent establishment of a high elevation observing network along the crest of the Tropical Andes, and argue for a Pan-American Cordilleran transect of high mountain meteorological stations, from Alaska to southern Chile.

  15. A new species of Telmatobius (Amphibia, Anura, Telmatobiidae) from the Pacific slopes of the Andes, Peru

    PubMed Central

    Catenazzi, Alessandro; García, Víctor Vargas; Lehr, Edgar

    2015-01-01

    Abstract We describe a new species of Telmatobius from the Pacific slopes of the Andes in central Peru. Specimens were collected at 3900 m elevation near Huaytará, Huancavelica, in the upper drainage of the Pisco river. The new species has a snout–vent length of 52.5 ± 1.1 mm (49.3–55.7 mm, n = 6) in adult females, and 48.5 mm in the single adult male. The new species has bright yellow and orange coloration ventrally and is readily distinguished from all other central Peruvian Andean species of Telmatobius but Telmatobius intermedius by having vomerine teeth but lacking premaxillary and maxillary teeth, and by its slender body shape and long legs. The new species differs from Telmatobius intermedius by its larger size, flatter head, and the absence of cutaneous keratinized spicules (present even in immature females of Telmatobius intermedius), and in males by the presence of minute, densely packed nuptial spines on dorsal and medial surfaces of thumbs (large, sparsely packed nuptial spines in Telmatobius intermedius). The hyper-arid coastal valleys of Peru generally support low species richness, particularly for groups such as aquatic breeding amphibians. The discovery of a new species in this environment, and along a major highway crossing the Andes, shows that much remains to be done to document amphibian diversity in Peru. PMID:25685025

  16. A continuum model of continental deformation above subduction zones - Application to the Andes and the Aegean

    NASA Technical Reports Server (NTRS)

    Wdowinski, Shimon; O'Connell, Richard J.; England, Philip

    1989-01-01

    A continuum model of continental deformation above subduction zones was developed that combines the viscous sheet and the corner flow models; the continental lithosphere is described by a two-dimensional sheet model that considers basal drag resulting from the viscous asthenosphere flow underneath, and a corner flow model with a deforming overlying plate and a rigid subducting plate is used to calculate the shear traction that acts on the base of the lithosphere above a subduction zone. The continuum model is applied to the Andes and the Aegean deformations, which represent, respectively, compressional and extensional tectonic environments above subduction zones. The models predict that, in a compressional environment, a broad region of uplifted topography will tend to develop above a more steeply dippping slab, rather than above a shallower slab, in agreement with observations in the various segments of the central Andes. For an extensional environment, the model predicts that a zone of compression can develop near the trench, and that extensional strain rate can increase with distance from the trench, as is observed in the Aegean.

  17. Bird conservation would complement landslide prevention in the Central Andes of Colombia.

    PubMed

    Ocampo-Peñuela, Natalia; Pimm, Stuart L

    2015-01-01

    Conservation and restoration priorities often focus on separate ecosystem problems. Inspired by the November 11th (2011) landslide event near Manizales, and the current poor results of Colombia's Article 111 of Law 99 of 1993 as a conservation measure in this country, we set out to prioritize conservation and restoration areas where landslide prevention would complement bird conservation in the Central Andes. This area is one of the most biodiverse places on Earth, but also one of the most threatened. Using the case of the Rio Blanco Reserve, near Manizales, we identified areas for conservation where endemic and small-range bird diversity was high, and where landslide risk was also high. We further prioritized restoration areas by overlapping these conservation priorities with a forest cover map. Restoring forests in bare areas of high landslide risk and important bird diversity yields benefits for both biodiversity and people. We developed a simple landslide susceptibility model using slope, forest cover, aspect, and stream proximity. Using publicly available bird range maps, refined by elevation, we mapped concentrations of endemic and small-range bird species. We identified 1.54 km(2) of potential restoration areas in the Rio Blanco Reserve, and 886 km(2) in the Central Andes region. By prioritizing these areas, we facilitate the application of Article 111 which requires local and regional governments to invest in land purchases for the conservation of watersheds.

  18. Intraseasonal variability of organized convective systems in the Central Andes: Relationship to Regional Dynamical Features

    NASA Astrophysics Data System (ADS)

    Mohr, K. I.; Slayback, D. A.; Nicholls, S.; Yager, K.

    2013-12-01

    The Andes extend from the west coast of Colombia (10N) to the southern tip of Chile (53S). In southern Peru and Bolivia, the Central Andes is split into separate eastern and western cordilleras, with a high plateau (≥ 3000 m), the Altiplano, between them. Because 90% of the Earth's tropical mountain glaciers are located in the Central Andes, our study focuses on this region, defining its zonal extent as 7S-21S and the meridional extent as the terrain 1000 m and greater. Although intense convection occurs during the wet season in the Altiplano, it is not included in the lists of regions with frequent or the most intense convection. The scarcity of in-situ observations with sufficient density and temporal resolution to resolve individual storms or even mesoscale-organized cloud systems and documented biases in microwave-based rainfall products in poorly gauged mountainous regions have impeded the development of an extensive literature on convection and convective systems in this region. With the tropical glaciers receding at unprecedented rates, leaving seasonal precipitation as an increasingly important input to the water balance in alpine valley ecosystems and streams, understanding the nature and characteristics of the seasonal precipitation becomes increasingly important for the rural economies in this region. Previous work in analyzing precipitation in the Central Andes has emphasized interannual variability with respect to ENSO, this is the first study to focus on shorter scale variability with respect to organized convection. The present study took advantage of the University of Utah's Precipitation Features database compiled from 14 years of TRMM observations (1998-2012), supplemented by field observations of rainfall and streamflow, historical gauge data, and long-term WRF-simulations, to analyze the intraseasonal variability of precipitating systems and their relationship regional dynamical features such as the Bolivian High. Through time series and

  19. An Ancestral Language to Speak with the "Other": Closing down Ideological Spaces of a Language Policy in the Peruvian Andes

    ERIC Educational Resources Information Center

    Zavala, Virginia

    2014-01-01

    Using a multilayered, ethnographic and critical approach to language policy and planning, this article examines a language policy favoring Quechua in Apurímac in the Southern Peruvian Andes, which is being imagined as an integrated community unified by the local language. This study presents a case in which top-down policies open up ideological…

  20. Crustal Thickness in Northern Andes Using pP and sS Precursors at Teleseismic Distances

    NASA Astrophysics Data System (ADS)

    Aranda Camacho, N. M.; Assumpcao, M.

    2013-12-01

    The Andean belt is a result of the subduction of the Nazca plate beneath the South American continental plate. It has an extension of 8000 km from Venezuela to Tierra del Fuego. While the crustal-thickness is a well-known property in Southern and Central Andes, it is still poorly known in the Northern Andes (between 10°N and 4° S). The crustal thickness is a very important property to understand the crustal evolution such as in geodynamic models and in modeling wave-propagation in global and regional seismic studies. Due to the high seismic activity at intermediate depths in the Northern Andes, it is possible to use the teleseismic P-wave and S-wave trains to find the crustal-thickness. In this study, we analyze the reflections from the underside of the Moho for intermediate and deep earthquakes in the northern Andes recorded at teleseismic distances (between 40°- 85°), and estimate the crustal-thickness at the bounce points of the pP and sS wave by converting the delay time between the phases pP and pmP and also between sS and smS into crustal thickness. This method can be applied in zones with earthquakes having magnitude larger than 6 for that reason the Northern Andes is a favorable area to develop it. We analyzed five events from the Northern Andes with magnitude larger than 6 and deeper than 100 km. The crustal thickness was calculated using the P wave with the vertical component and the S wave using both transverse SH and radial SV components. We find that the crustal-thickness in this area varied from 27.9 × 2.4 km at (76.48 W, 4.82 N) to 55.7 × 5.2 km at (77.92 W, 2 S). Our results show a crustal-thickness consistent with a compilation made for a larger region that includes our research area, showing residuals between -4 km and 4 km in most of the bounce points . We are getting results in areas that have not been studied previously so it will help to increase the database of crustal-thicknesses for the Northern Andes.

  1. New constraints on the uplift history of the western Andes, north Chile, using cosmogenic He-3 in alluvial boulders

    NASA Astrophysics Data System (ADS)

    Evenstar, Laura; Stuart, Finlay; Hartley, Adrian

    2014-05-01

    To constrain mechanisms responsible for mountain belt growth independent methods for determining accurately the rate and timing of surface uplift are needed. Within the Central Andes paleoelevation proxies are afflicted by either large uncertainties or reliance on assumptions about past climate-elevation histories (Barnes and Ehmer. 2009). This leads to paleoelevation data being unable to distinguish between the two main uplift models of the Andes; gradual uplift of the Andes from the Late Eocene due to crustal shortening/thickening, and rapid uplift in the Late Miocene due to large-scale mantle delamination (Barnes and Ehmer. 2009). Here we present a new paleoelevation tool based on the varying production rate of in situ cosmogenic isotopes with elevation. It can constrain surface uplift histories independently of paleoclimatic fluctuations, making it potentially more accurate than previous methods. Within the Atacama Desert Northern Chile, a stable arid-hyperarid climate has persisted over the last 23 Ma (Dunai et al. 2005). This has lead to exceptionally low erosion rates and high cosmogenic nuclide concentrations within alluvial boulders overlying the Pacific Planation Surface (PPS). In the Aroma Quebrada region, the PPS can be constrained as forming post 13.4 Ma, using underlying volcanics (Evenstar 2007). Alluvial boulders that lie on this PPS have high concentrations of cosmogenic He-3 that suggest deposition soon after surface formation. Comparing concentrations of cosmogenic 3He in the boulders to those calculated for varying uplift histories the timing of the uplift of the western margin of the Andes can be constrained. The models require the Pacific Planation Surface to reach at least 2/3 of its current elevation by 13.4 Ma. These results are not consistent with rapid uplift of the Andes due to mantle delamination in the Late Miocene but support progressive shortening and thickening of continental crust initiating in the Early Miocene or earlier.

  2. Prediction of glacier melt and runoff for a high-altitude headwater catchment in Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Liu, T.; Kinouchi, T.; Mendoza, J.; Asaoka, Y.

    2013-12-01

    In Andes, retreat of tropical glaciers is rapid, thus water resources currently available from glacierized catchments would be changed in its volume and temporal variations due to climate change and glacier shrinkage. Water resources in La Paz and El Alto, Bolivia, strongly depend on the runoff from glacierized headwater catchments in the Cordillera Real, Andes, which is a combined contribution from glacier and snow melts in glacierized areas and surface and subsurface runoff due to snowmelt and rainfall in non-glacierized areas. To predict long-term availability of water resources from glacierized catchments in the Cordillera Real, we developed a semi-distributed conceptual glacio-hydrological model applicable for the partially glacierized catchments in high mountains by considering different phases of precipitation, various runoff components from glacierized and non-glacierized areas, the retarding effect by lakes and wetlands, and the change of glacierized areas based on the area-volume relationship. The model was successfully applied to the Huayna West headwater catchment located in the Cordillera Real, Bolivian Andes, for the period of June 2011 to May 2013, after calibrating by observed meteorological and hydrological conditions. Our results indicate that the glacier melt is enhanced during two transition periods, i.e. from the dry to wet season (October to early December) and the wet to dry season (March to May), while the surface runoff from snowmelt and subsurface runoff are more dominant between the two periods from December to February. It was found that the simulated runoff was highly sensible to spatial and temporal variation of air temperature, and smoothed by the subsurface flow and retarding processes in lakes and wetlands. We predicted the change of glacierized area and runoff until 2050 under different climate scenarios, which indicates that the glacier continues to shrink by 2050 resulting in the areal reduction ranging from 65% to 73% and

  3. What controls millennial-scale denudation rates across the Central Andes?

    NASA Astrophysics Data System (ADS)

    Zeilinger, Gerold; Korup, Oliver; Schlunegger, Fritz; Kober, Florian

    2015-04-01

    Sustainable planning of erosion control measures in the Central Andes requires robust knowledge about natural denudation rates. We explore a large dataset combining new and published 10Be (and 26Al) catchment-wide denudation rates from a swath at 17 to 19° S spanning the Western Cordillera that rises from sea level to 5500 m elevation; the Altiplano at ~4000 m; the Eastern Cordillera with elevations up to 6500 m; the Interandean Zone; the Subandean Zone; and the Chaco Plain at 300 m. The selected catchments span a large spread regarding morphometric and climate properties where mean slope angles range from 1 to 31°, and mean precipitation from 100 to 3900 mm/a. The denudation rates (0.0036 to 1.93 mm/a) are averaged over millennia, and reveal two to three magnitudes difference across the Central Andes. The regional distribution of denudation rates clearly demonstrates a more complex interaction of geomorphological, geological and meteorological parameters with the dominant geomorphological processes. In order to elucidate the key controls on denudation, we use multivariate statistics such as principal component analysis in order to remove potentially redundant predictors of denudation in the studied catchments. These predictors include catchment elevation, topographic relief, hillslope inclination, mean precipitation, tree cover, specific stream power, channel steepness indices, sinuosity, drainage density and hypsometric index that we derived from the SRTM 90 m Digital Elevation Database, the Tropical Rainfall Measuring Mission (TRMM) data, and the Terra MODIS Vegetation Continuous Fields dataset. Additionally, the rock strength index (PLI) was estimated based on geological units. Preliminary results allow distinguishing five different longitudinal domains of denudation on the basis of climatic regime, hillslope steepness, and the degree of accumulated crustal deformation. We find that the pattern of 10Be catchment-wide denudation rates in the Central Andes

  4. Orogenic Float Model: an Explanation for the Dynamics of the Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    Monod, B.; Dhont, D.; Hervouet, Y.

    2008-12-01

    The Venezuelan (or Merida) Andes are a NE-trending intracontinental orogen that started to rise from the late Miocene due to the E-W far field convergence between the Maracaibo block to the northwest and the Guyana shield to the southeast. Oblique convergence is responsible for strain partitioning with thrusting along both foreland basins and right-lateral strike-slip faulting along the NE-SW Bocono fault cutting the Venezuelan Andes along-strike. The central part of the belt is also cut by the N-S left-lateral strike-slip Valera fault that branches the Bocono fault in the triple junction geometry, favoring the crustal escape of the Trujillo triangular block towards the NE. Onset of strike-slip motion along major faults and their geometry at depth remains a matter of debate. Our work, based on the integration of geologic and geophysical data aims to better constrain both the geometry and the tectonic evolution of the major tectonic structures. We use the orogenic float model (Oldow et al., 1990) as a first hypothesis to construct two NW-SE trans-Andean crustal scale balanced sections. The late Neogene-Quaternary shortening varies from 40 km in the south to 30 km in the north across the Trujillo block, indicating that a quarter of the deformation seems to be absorbed by the tectonic escape process. The cross-sections served also as the basis for the building of a 3-D geologic model of the Venezuelan Andes, permitting to clearly understand the link and geometry of the faults at depth. The decollement level used for the orogenic float model, located at 20 km depth, is crucial for the motion of the Trujillo block. Both the Bocono and Valera faults have listric shapes connecting to the decollement level. The connexion of the two fault surfaces forms a hinge line dipping towards the north in a geometry favoring the escape of the Trujillo block and allowing the gravity forces to play an important role in the process. Oldow J. S., Bally A. W., Ave Lallemant H. G., 1990

  5. The Andes as a peripheral orogen of the breaking-up Pangea

    NASA Astrophysics Data System (ADS)

    Lomize, M. G.

    2008-05-01

    Formation conditions of the peripheral orogen are expressed most fully in the Central Andes, a mountain system almost not yielding in height to the Himalayan-Tibetan system but formed at the margin of ocean without any relations to intercontinental collision. The marine transgression and rejuvenation of subduction in the Early Jurassic during the origination of foldbelt at the margin of Pangea marked the transition to a new supercontinental cycle, and the overall further evolution began and continues now in the frame of the first half of this cycle. The marginal position of this belt above the subduction zone, the rate and orientation of convergence of the lithospheric plates, the age of “absolute” movement of the continental plate, variation in slab velocity, and subduction of heterogeneities of the oceanic crust were the crucial factors that controlled the evolution of the marginal foldbelt. At the stage of initial subsidence (Jurassic-Mid-Cretaceous), during extension of the crust having a moderate thickness (30-35 km), the Andean continental margin comprises the full structural elements of an ensialic island arc that resembled the present-day Sunda system. These conditions changed with the separation and onset of the western drift of the South American continent. Being anchored in the mantle and relatively young, the slab of the Andean subduction zone served as a stop that brought about compression that controlled the subsequent evolution. Due to the contribution of deep magma sources along with marine sediments and products of tectonic erosion removed to a depth, the growth of crust above the subduction zone was favorable for heating of the crust. By the middle Eocene, when compression enhanced owing to the acceleration of subduction, the thermal evolution of the crust had already prepared the transition to the orogenic stage of evolution, i.e., to the progressive viscoplastic shortening and swelling of the mechanically weakened lower crust and the

  6. Andes Virus Antigens Are Shed in Urine of Patients with Acute Hantavirus Cardiopulmonary Syndrome▿ ‡

    PubMed Central

    Godoy, Paula; Marsac, Delphine; Stefas, Elias; Ferrer, Pablo; Tischler, Nicole D.; Pino, Karla; Ramdohr, Pablo; Vial, Pablo; Valenzuela, Pablo D. T.; Ferrés, Marcela; Veas, Francisco; López-Lastra, Marcelo

    2009-01-01

    Hantavirus cardiopulmonary syndrome (HCPS) is a highly pathogenic emerging disease (40% case fatality rate) caused by New World hantaviruses. Hantavirus infections are transmitted to humans mainly by inhalation of virus-contaminated aerosol particles of rodent excreta and secretions. At present, there are no antiviral drugs or immunotherapeutic agents available for the treatment of hantaviral infection, and the survival rates for infected patients hinge largely on early virus recognition and hospital admission and aggressive pulmonary and hemodynamic support. In this study, we show that Andes virus (ANDV) interacts with human apolipoprotein H (ApoH) and that ApoH-coated magnetic beads or ApoH-coated enzyme-linked immunosorbent assay plates can be used to capture and concentrate the virus from complex biological mixtures, such as serum and urine, allowing it to be detected by both immunological and molecular approaches. In addition, we report that ANDV-antigens and infectious virus are shed in urine of HCPS patients. PMID:19279096

  7. The Flying Telescope: How to Reach Remote Areas in the Colombian Andes for Astronomy Outreach

    NASA Astrophysics Data System (ADS)

    Seidel, M. K.; Buelhoff, K.

    2016-12-01

    The project Cielo y Tierra, Spanish for Sky and Earth, was undertaken in order to bring astronomy and ecology to remote villages throughout Colombia using sustainable transport. This transport included three horses and two paragliders. The innovative approach of the expedition helped to keep an extremely low budget whilst making it possible to cross the Colombian Andes from northeast to southwest. This article will show how projects like these can succeed, the need for this kind of project, and the possible impact, with this project reaching more than 1500 people. We hope to encourage others not to be afraid of going into countries like Colombia on a low-budget educational expedition. The success of this project shows that outreach and education projects are possible in these remote areas where little or no governmental or other support reaches.

  8. Mapping advanced argillic alteration zones with ASTER and Hyperion data in the Andes Mountains of Peru

    NASA Astrophysics Data System (ADS)

    Ramos, Yuddy; Goïta, Kalifa; Péloquin, Stéphane

    2016-04-01

    This study evaluates Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion hyperspectral sensor datasets to detect advanced argillic minerals. The spectral signatures of some alteration clay minerals, such as dickite and alunite, have similar absorption features; thus separating them using multispectral satellite images is a complex challenge. However, Hyperion with its fine spectral bands has potential for good separability of features. The Spectral Angle Mapper algorithm was used in this study to map three advanced argillic alteration minerals (alunite, kaolinite, and dickite) in a known alteration zone in the Peruvian Andes. The results from ASTER and Hyperion were analyzed, compared, and validated using a Portable Infrared Mineral Analyzer field spectrometer. The alterations corresponding to kaolinite and alunite were detected with both ASTER and Hyperion (80% to 84% accuracy). However, the dickite mineral was identified only with Hyperion (82% accuracy).

  9. The major cellular sterol regulatory pathway is required for Andes virus infection.

    PubMed

    Petersen, Josiah; Drake, Mary Jane; Bruce, Emily A; Riblett, Amber M; Didigu, Chukwuka A; Wilen, Craig B; Malani, Nirav; Male, Frances; Lee, Fang-Hua; Bushman, Frederic D; Cherry, Sara; Doms, Robert W; Bates, Paul; Briley, Kenneth

    2014-02-01

    The Bunyaviridae comprise a large family of RNA viruses with worldwide distribution and includes the pathogenic New World hantavirus, Andes virus (ANDV). Host factors needed for hantavirus entry remain largely enigmatic and therapeutics are unavailable. To identify cellular requirements for ANDV infection, we performed two parallel genetic screens. Analysis of a large library of insertionally mutagenized human haploid cells and a siRNA genomic screen converged on components (SREBP-2, SCAP, S1P and S2P) of the sterol regulatory pathway as critically important for infection by ANDV. The significance of this pathway was confirmed using functionally deficient cells, TALEN-mediated gene disruption, RNA interference and pharmacologic inhibition. Disruption of sterol regulatory complex function impaired ANDV internalization without affecting virus binding. Pharmacologic manipulation of cholesterol levels demonstrated that ANDV entry is sensitive to changes in cellular cholesterol and raises the possibility that clinically approved regulators of sterol synthesis may prove useful for combating ANDV infection.

  10. Tectonic, volcanic, and climatic geomorphology study of the Sierras Pampeanas Andes, northwestern Argentina

    NASA Technical Reports Server (NTRS)

    Bloom, A. L.; Strecker, M. R.; Fielding, E. J.

    1984-01-01

    A proposed analysis of Shuttle Imaging Radar-B (SIR-B) data extends current research in the Sierras Pampeanas and the Puna of northwestern Argentina to the determination - by the digital analysis of mountain-front sinuousity - of the relative age and amount of fault movement along mountain fronts of the late-Cenozoic Sierras Pampeanas basement blocks; the determination of the age and history of the boundary across the Andes at about 27 S latitude between continuing volcanism to the north and inactive volcanism to the south; and the determination of the age and extent of Pleistocene glaciation in the High Sierras, as well as the comparative importance of climatic change and tectonic movements in shaping the landscape. The integration of these studies into other ongoing geology projects contributes to the understanding of landform development in this active tectonic environment and helps distinguish between climatic and tectonic effects on landforms.

  11. Multiethnicity, pluralism, and migration in the south central Andes: An alternate path to state expansion

    PubMed Central

    Goldstein, Paul S.

    2015-01-01

    The south central Andes is known as a region of enduring multiethnic diversity, yet it is also the cradle of one the South America’s first successful expansive-state societies. Social structures that encouraged the maintenance of separate identities among coexistent ethnic groups may explain this apparent contradiction. Although the early expansion of the Tiwanaku state (A.D. 600–1000) is often interpreted according to a centralized model derived from Old World precedents, recent archaeological research suggests a reappraisal of the socio-political organization of Tiwanaku civilization, both for the diversity of social entities within its core region and for the multiple agencies behind its wider program of agropastoral colonization. Tiwanaku’s sociopolitical pluralism in both its homeland and colonies tempers some of archaeology’s global assumptions about the predominant role of centralized institutions in archaic states. PMID:26195732

  12. Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes

    NASA Technical Reports Server (NTRS)

    Francis, P. W.; Wells, G. L.

    1988-01-01

    Remote sensing with the Landsat Thematic Mapper of debris avalanche deposits in the Central Andes between 18 and 27 deg S revealed, for the first time, the presence of 28 breached volcanic cones and 11 major volcanic debris avalanche deposits, several of which cover areas in excess of 100 sq km. It is concluded that such avalanche deposits are normal products of the evolution of large composite volcanoes, comparable with lava and pyroclastic flow deposits. A statistical survey of 578 composite volcanoes in the same area indicated that a majority of cones which achieve edifice heights between 2000 and 3000 m may undergo sector collapse. The paper describes morphological criteria for identifying breached composite cones and volcanic debris avalanches using orbital images.

  13. Hydrogeochemistry Characterization of Hot Springs Located in The Andes of Ecuador

    NASA Astrophysics Data System (ADS)

    Vinicio Carrera-Villacrés, David; Hidalgo-Hidalgo, Alexander; Guevara-García, Paulina; Vivero-Balarezo, María; Delgado-Rodríguez, Vicente

    2016-10-01

    The formation of several sources of hot springs in the Andes from Ecuador is the result of an intense volcanic activity due to the subduction of the Nazca oceanic plate under the South American continental plate. The aim of this study was to describe the hydrogeochemistry water geothermal origin, its chemical classification and relationship with the complex geology of Ecuador, using different hydro chemical diagrams (Stiff, Piper and Schoeller-Berkaloff). Geothermal waters can be divided into two groups. The first group, associated with an extinct volcanic activity produced in the Cenozoic, represents the Na+-Cl- type. The second group is associated with a young Quaternary volcanic activity and its types of water are Mg2+-HCO3-, Na+-HCO3-, Na+-SO42-, Mg2+-SO42-.

  14. Contrasting response of glacierized catchments in the Central Himalaya and the Central Andes to climate change

    NASA Astrophysics Data System (ADS)

    Ragettli, Silvan; Pellicciotti, Francesca; Immerzeel, Walter

    2015-04-01

    The Andes of South America and the Himalaya in high-mountain Asia are two regions where advanced simulation models are of vital importance to anticipate the impacts of climate change on water resources. The two mountain systems hold the largest ice masses outside the polar regions. Major rivers originate here and downstream regions are densely populated. In the long run, glacier recession generates concerns about the sustainability of summer runoff. This study benefits from recent efforts of carefully planned short-term field experiments in two headwater catchments in the Central Andes of Chile and in the Central Himalaya in Nepal. The two study catchments contrast in terms of their climate and in the characteristics of their glaciers. A systematic approach is developed, built upon the available local data, to reduce the predictive uncertainty of a state-of-the-art glacio-hydrological model used for the projection of 21st century glacier changes and catchment runoff. The in-situ data are used for model development and step-wise, multivariate parameter calibration. Catchment runoff and remotely sensed MODIS and Landsat snow cover are used for model validation. The glacio-hydrological model simulates the water cycle with a high temporal (hourly time steps) and spatial (100 m grid cells) resolution and accounts for processes typical of both regions like glacier melt under debris cover or mass redistribution through avalanching. Future projections are based on the outputs of twelve stochastically downscaled global climate models for two emission scenarios (RCP 4.5 and RCP 8.5). This is one of the first truly intercomparative modeling studies at the catchment scale across mountain regions of the world to assess and compare future changes in glaciers and snow cover and associated impacts on streamflow production. Both catchments will experience significant glacier mass loss throughout the twenty-first century. However, the trajectories of simulated future runoff and

  15. Novel Strain of Andes Virus Associated with Fatal Human Infection, Central Bolivia

    PubMed Central

    Cruz, Cristhopher D.; Vallejo, Efrain; Agudo, Roberto; Vargas, Jorge; Blazes, David L.; Guevara, Carolina; Laguna-Torres, V. Alberto; Halsey, Eric S.; Kochel, Tadeusz J.

    2012-01-01

    To better describe the genetic diversity of hantaviruses associated with human illness in South America, we screened blood samples from febrile patients in Chapare Province in central Bolivia during 2008–2009 for recent hantavirus infection. Hantavirus RNA was detected in 3 patients, including 1 who died. Partial RNA sequences of small and medium segments from the 3 patients were most closely related to Andes virus lineages but distinct (<90% nt identity) from reported strains. A survey for IgG against hantaviruses among residents of Chapare Province indicated that 12.2% of the population had past exposure to >1 hantaviruses; the highest prevalence was among agricultural workers. Because of the high level of human exposure to hantavirus strains and the severity of resulting disease, additional studies are warranted to determine the reservoirs, ecologic range, and public health effect of this novel strain of hantavirus. PMID:22515983

  16. Molecular method for the detection of Andes hantavirus infection: validation for clinical diagnostics

    PubMed Central

    Vial, Cecilia; Martinez-Valdebenito, Constanza; Rios, Susana; Martinez, Jessica; Vial, Pablo; Ferres, Marcela; Rivera, Juan Carlos; Perez, Ruth; Valdivieso, Francisca

    2016-01-01

    Hantavirus Cardiopulmonary Syndrome is a severe disease caused by exposure to New World hantaviruses. Early diagnosis is difficult due to the lack of specific initial symptoms. Anti-hantavirus antibodies are usually negative until late in the febrile prodrome or the beginning of cardiopulmonary phase while Andes hantavirus (ANDV) RNA genome can be detected before symptoms onset. We analyzed the effectiveness of RTqPCR as a diagnostic tool detecting ANDV-Sout genome in peripheral blood cells from 78 confirmed hantavirus patients and 166 negative controls. Our results indicate that RTqPCR had a low detection limit (~10 copies), with a specificity of 100% and a sensitivity of 94.9%. This suggests the potential for establishing RT-qPCR as the assay of choice for early diagnosis, promoting early effective care of patients and improve other important aspects of ANDV infection management, such as compliance of biosafety recommendations for health personnel in order to avoid nosocomial transmission. PMID:26508102

  17. Black carbon and other light-absorbing impurities in the Andes of Northern Chile

    NASA Astrophysics Data System (ADS)

    Rowe, P. M.; Cordero, R.; Warren, S. G.; Pankow, A.; Jorquera, J.; Schrempf, M.; Doherty, S. J.; Cabellero, M.; Carrasco, J. F.; Neshyba, S.

    2015-12-01

    Black carbon (BC) and other light-absorbing impurities in snow absorb solar radiation and thus have the potential to accelerate glacial retreat and snowmelt. In Chile, glaciers and seasonal snow are important sources of water for irrigation and domestic uses. In July 2015 (Austral winter) we sampled snow in the western Andes in a north-south transect of Chile from 18 S to 34 S. Most of the sampled snow had fallen during a single synoptic event, during 11-13 July. The snow was melted and passed through 0.4 micrometer nuclepore filters. Preliminary estimates indicate that (1) the ratio of BC to dust in snow increases going south from Northern to Central Chile, and (2) in snow sampled during the two weeks following the snowstorm, the impurities were concentrated in the upper 5 cm of snow, indicating that the surface layer became polluted over time by dry deposition.

  18. Multiethnicity, pluralism, and migration in the south central Andes: An alternate path to state expansion.

    PubMed

    Goldstein, Paul S

    2015-07-28

    The south central Andes is known as a region of enduring multiethnic diversity, yet it is also the cradle of one the South America's first successful expansive-state societies. Social structures that encouraged the maintenance of separate identities among coexistent ethnic groups may explain this apparent contradiction. Although the early expansion of the Tiwanaku state (A.D. 600-1000) is often interpreted according to a centralized model derived from Old World precedents, recent archaeological research suggests a reappraisal of the socio-political organization of Tiwanaku civilization, both for the diversity of social entities within its core region and for the multiple agencies behind its wider program of agropastoral colonization. Tiwanaku's sociopolitical pluralism in both its homeland and colonies tempers some of archaeology's global assumptions about the predominant role of centralized institutions in archaic states.

  19. Controls on continental strain partitioning above an oblique subduction zone, Northern Andes

    NASA Astrophysics Data System (ADS)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2016-04-01

    Strain partitioning is a common process at obliquely convergent plate margins dividing oblique convergence into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the subduction margin. In subduction zones, strain partitioning in the upper continental plate is mainly controlled by the shear forces acting on the plate interface and the strength of the continental crust. The plate interface forces are influenced by the subducting plate dip angle and the obliquity angle between the normal to the plate margin and the convergence velocity vector, and the crustal strength of the continent is strongly affected by the presence or absence of a volcanic arc, with the presence of the volcanic arcs being common at steep subduction zones. Along the ˜7000 km western margin of South America the convergence obliquity, subduction dip angles and presence of a volcanic arc all vary, but strain partitioning is only observed along parts of it. This raises the questions, to what extent do subduction zone characteristics control strain partitioning in the overriding continental plate, and which factors have the largest influence? We address these questions using lithospheric-scale 3D numerical geodynamic experiments to investigate the influence of subduction dip angle, convergence obliquity, and weaknesses in the crust owing to the volcanic arc on strain partitioning behavior. We base the model design on the Northern Volcanic Zone of the Andes (5° N - 2° S), characterized by steep subduction (˜ 35°), a convergence obliquity between 31° -45° and extensive arc volcanism, and where strain partitioning is observed. The numerical modelling software (DOUAR) solves the Stokes flow and heat transfer equations for a viscous-plastic creeping flow to calculate velocity fields, thermal evolution, rock uplift and strain rates in a 1600 km x 1600 km box with depth 160 km. Subduction geometry and material properties are based on a

  20. Two new species of Salamanders, Genus Bolitoglossa (Amphibia: Plethodontidae), from the Eastern Colombian Andes.

    PubMed

    Acevedo, Aldemar A; Wake, David B; Márquez, Roberto; Silva, Karen; Franco, Rosmery; Amézquita, Adolfo

    2013-01-25

    The salamander fauna of Colombia is very poorly known, probably because most research efforts have been devoted to anurans during the last two decades. Here, we describe two new species of the genus Bolitoglossa (Eladinea) from the eastern flank of the Eastern Colombian Andes (Cordillera Oriental), near the border with Venezuela. Bolitoglossa tamaense sp. nov. is distributed between 2000 to 2700 m.a.s.l. and Bolitoglossa leandrae sp. nov. is distributed in the low-lands at about 600 m. The new species are diagnosed by a combination of molecular (16S rRNA sequences), coloration, body size, and morphometric (number of maxillary and vomerine teeth and differences in foot webbing) characters. Both species face threats such as chytridiomycosis infections and habitat fragmentation that have already affected other sala-manders in the country. Thus, intensive field and museum work is needed to better document and perhaps protect the local salamander diversity.

  1. Terrane-boundary reactivation: A control on the evolution of the Northern Andes

    NASA Astrophysics Data System (ADS)

    Litherland, M.; Aspden, J. A.

    1992-01-01

    The Andes of northern Ecuador and southern Colombia comprise two post-Oligocene cordilleras, each with its Plio-Pleistocene volcanic chain separated by the fault-bounded, inter-Andean depression or graben. Along the eastern Peltetec-Romeral fault occur Upper Jurassic ophiolitic rocks marking an ancient suture between the allochthonous Chaucah terrane in the west and the South American plate. Along the western Pujilí-Cauca fault are Upper Cretaceous-lower Eocene ophiolites marking the accretion of the Cretaceous-Eocene Westner Cordillera. Post-Oligocne reactivation of these terane boundaries accounts for the origin of the cordilleras and graben and helps to explain the location of the double chain of Plio-Pleistocene volcanic centers. A caldera-graben model is suggested.

  2. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    SciTech Connect

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

  3. High-resolution satellite-gauge merged precipitation climatologies of the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Manz, Bastian; Buytaert, Wouter; Zulkafli, Zed; Lavado, Waldo; Willems, Bram; Robles, Luis Alberto; Rodríguez-Sánchez, Juan-Pablo

    2016-02-01

    Satellite precipitation products are becoming increasingly useful to complement rain gauge networks in regions where these are too sparse to capture spatial precipitation patterns, such as in the Tropical Andes. The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (TPR) was active for 17 years (1998-2014) and has generated one of the longest single-sensor, high-resolution, and high-accuracy rainfall records. In this study, high-resolution (5 km) gridded mean monthly climatological precipitation is derived from the raw orbital TPR data (TRMM 2A25) and merged with 723 rain gauges using multiple satellite-gauge (S-G) merging approaches. The resulting precipitation products are evaluated by cross validation and catchment water balances (runoff ratios) for 50 catchments across the Tropical Andes. Results show that the TPR captures major synoptic and seasonal precipitation patterns and also accurately defines orographic gradients but underestimates absolute monthly rainfall rates. The S-G merged products presented in this study constitute an improved source of climatological rainfall data, outperforming the gridded TPR product as well as a rain gauge-only product based on ordinary Kriging. Among the S-G merging methods, performance of inverse distance interpolation of satellite-gauge residuals was similar to that of geostatistical methods, which were more sensitive to gauge network density. High uncertainty and low performance of the merged precipitation products predominantly affected regions with low and intermittent precipitation regimes (e.g., Peruvian Pacific coast) and is likely linked to the low TPR sampling frequency. All S-G merged products presented in this study are available in the public domain.

  4. Calcite Twin Analysis in the Central Andes of Northern Argentina and Southern Bolivia

    NASA Astrophysics Data System (ADS)

    Hardesty, E.; Hindle, D.

    2005-12-01

    The use of calcite twinning to infer compression directions and strain axes patterns has been applied widely in both fold and thrust belts, and continental interiors. Calcite twinning is noted to be one of the most precise methods for determining the internal strain of deformed rocks. Until now, such data from the deformed plate boundary of the Central Andes were lacking. This study has examined twinning orientations along the deformed Andean foreland (southern Bolivia and northern Argentina) from -25 to -20 latitude. In the Central Andes, we find an abundance of calcite twins in intervals of the Cretaceous age Yacorite limestone. Twin samples were collected, measured for orientation and type (I and II can be best used for strain analysis), and processed using the Groshong method, to give resultant strain tensors. The orientations of the twin short axes trend mostly NE-SW, which is close to the plate convergence direction. However, in a limited number of samples from the north, adjacent to the southern culmination of the active Subandean fold thrust belt, they trend NW-SE. This difference may be related to the more active, or more recent, shortening of the southern portion of the Eastern Cordillera, south of the culmination of the Subandean belt. This implies that twin short axes vary consistently with respect to geographic location and local tectonic regime. NW-SE trends in the northern region match well with fault kinematic studies in rocks pre-dating the San Juan del Oro unconformity (9-10 Ma). NE-SW trends in the south could correspond to much younger (~1-3 Ma) fault kinematic trends. In the Eastern Cordillera, where there is present day tectonic activity, the plunges of the twin short axes are found to be almost horizontal. This suggests that the twins were formed after folding occurred.

  5. Duck plague in free-flying waterfowl observed during the Lake Andes epizootic

    USGS Publications Warehouse

    Proctor, S.J.; Pearson, G.L.; Leibovitz, L.

    1975-01-01

    The first major epizootic of duck plague in free-flying waterfowl occurred at Lake Andes, South Dakota, in January and February, 1973. Duck plague was diagnosed in black ducks, mallards, pintail-mallard hybrids, redheads, common mergansers, common golden eyes, canvasbacks, American widgeon, wood ducks, and Canada geese, indicating the general susceptibility of ducks to duck plague. Clinical signs observed in mallards were droopiness, polydipsia, lethargy, reduced wariness, weakness, reluctance to fly, swimming in circles, bloody diarrhea, bloody fluid draining from the nares and bill, and terminal convulsions.Because the mallard was the most numerous and heavily infected species during the Lake Andes epizootic, gross and microscopic lesions of the gastrointestinal tract, liver, spleen, thymus, bursa of Fabricius, heart, lung, bone marrow, pancreas, and ovaries were described. Lesions of the esophagus and cloaca were in the stratified submucosal glands. In the small and large intestine, lesions were located in lymphocytic aggregates, lamina propria, and crypt epithelium. Hemorrhages and necrosis of hepatocytes and bile duct epithelium were noted in the liver. Diffuse necrosis of lymphocytic and reticuloendothelial tissue were evident in the spleen, bursa of Fabricius, and thymus. Hemorrhages in other tissues such as the lung and heart were often associated with lymphoid nodules, while those in organs such as the pancreas were associated with acinar necrosis. Intranuclear inclusion bodies were seen in stratified squamous epithelium of the esophagus and cloaca, crypt epithelium of the intestine, hepatocytes, bile duct epithelium, cells of Hassel's corpuscles, splenic periarteriolar reticular cells, and epithelial cells in the bursa of Fabricius.

  6. Exploring pain in the Andes--learning from the Quichua (Inca) people experience.

    PubMed

    Incayawar, Mario; Saucier, Jean-François

    2015-05-01

    There is a mounting recognition that culture profoundly shapes human pain experience. The 28 million indigenous people of the Andes in South America, mainly the Quichua (Inca) people, share a distinctive culture. However, little is known about their pain experience and suffering. The aim of the present study was to explore how Quichua adults perceive, describe, and cope with the pain. An exploratory qualitative/descriptive study was conducted with a convenience sample of 40 Quichua adults, including 15 women and 25 men, in the Northern Highlands of Ecuador. Data were collected through structured interviews of approximately 3 h, using a Quichua questionnaire called "The Nature of Pain" [Nanay Jahua Tapuicuna]. The interviews covered the notions of causation of pain, vulnerability to pain, responses to pain, aggravating factors, frequent locations of pain, types of pain, duration, characteristics of pain, control of pain, pathways to care, and preventive measures of pain. Basic descriptive analyses were performed. The Quichuas' pain experience is complex and their strategies to cope with it are sophisticated. According to the Quichuas, emotions, life events, co-morbid conditions, and spirits, among others factors play an important role in the origin, diagnosis, and treatment of pain. They strongly embrace biomedicine and physicians as well as Quichua traditional medicine and traditional healers. Family members and neighbors are also valuable sources of health care and pain control. The pathway to pain care that the Quichua people prefer is inclusive and pluralistic. The knowledge of the Quichua ethnographic "emic" details of their belief system and coping strategies to control pain are clinically useful not only for the health professional working in the Andes, some Quichua cultural characteristics related to pain could be useful to the culturally competent health practitioner who is making efforts to provide high-quality medical care in rural and multicultural

  7. Vitamin D Status among Older Adults Residing in the Littoral and Andes Mountains in Ecuador

    PubMed Central

    Orces, Carlos H.

    2015-01-01

    Objectives. To estimate the prevalence of 25-hydroxyvitamin D (25(OH)D) deficiency and its determinants among older adults in Ecuador. Methods. 25(OH)D deficiency and insufficiency prevalence rates were examined among participants in the National Survey of Health, Wellbeing, and Aging. Logistic regression models were used to evaluate demographic characteristics associated with 25(OH)D deficiency. Results. Of 2,374 participants with a mean age of 71.0 (8.3) years, 25(OH)D insufficiency and deficiency were present in 67.8% (95% CI, 65.3–70.2) and 21.6% (95% CI, 19.5–23.7) of older adults in Ecuador, respectively. Women (OR, 3.19; 95% CI, 3.15–3.22), self-reported race as Indigenous (OR, 2.75; 95% CI, 2.70–2.80), and residents in rural (OR, 4.49; 95% CI, 4.40–4.58) and urban (OR, 2.74; 95% CI, 2.69–2.80) areas of the Andes Mountains region were variables significantly associated with 25(OH)D deficiency among older adults. Conclusions. Despite abundant sunlight throughout the year in Ecuador, 25(OH)D deficiency was significantly prevalent among older women, Indigenous subjects, and subjects residing in the Andes Mountains region of the country. The present findings may assist public health authorities to implement policies of vitamin D supplementation among older adults at risk for this condition. PMID:26301259

  8. Inter-twined Hydrometeorology and Hydrogeomorphology in the Central Andes - Implications for Geomorphological Hazards

    NASA Astrophysics Data System (ADS)

    Deitz, R.; Barros, A. P.; Erlingis, J.

    2011-12-01

    The focus of this study includes the Central Andes Mountains between 11-15S and 70-75W, with heights ranging from about 230 m to 5700 meters. On March 4, 2010 an overnight storm caused over 200 landslides within one small river valley alone. The geologically young region is abundant with streams ranging from first to seventh order, as well as steep slopes, deep gorges, and broad valleys. Stream orders vary from 1-7 and watersheds of stream order 4 or higher were analyzed in detail. This resulted in the delineation of 112 watersheds ranging in area from roughly 360 km2 to 90,000 km2. Morphometric analysis, including Order and Hypsometry, were conducted for these basins. Results show that Horton's ratios are lower in the Central Andes compared to previous studies, and this is especially true for area ratios. A joint analysis of the hypsometric curve and distribution of stream orders with elevation shows that sharp breaks in the hypsometric curve are associated with specific stream orders and their distributions in the landscape. We hypothesize that these breaks are associated with extreme orographic precipitation events such as that which caused the March 2010 landslides. Subsequently, 10 years of TRMM precipitation features over the region were analyzed and mapped to investigate the co-organization of the drainage network and orographic precipitation patterns for the monsoon and dry seasons separately. The results will be discussed in the context of Montgomery al. (2001, Geology) and Giovannetone and Barros (2009, Journal of Hydrometeorology).

  9. Proliferation of Hydroelectric Dams in the Andean Amazon and Implications for Andes-Amazon Connectivity

    PubMed Central

    Finer, Matt; Jenkins, Clinton N.

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics. PMID:22529979

  10. Drivers of atmospheric methane uptake by montane forest soils in the southern Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Jones, Sam P.; Diem, Torsten; Huaraca Quispe, Lidia P.; Cahuana, Adan J.; Reay, Dave S.; Meir, Patrick; Arn Teh, Yit

    2016-07-01

    The soils of tropical montane forests can act as sources or sinks of atmospheric methane (CH4). Understanding this activity is important in regional atmospheric CH4 budgets given that these ecosystems account for substantial portions of the landscape in mountainous areas like the Andes. We investigated the drivers of net CH4 fluxes from premontane, lower and upper montane forests, experiencing a seasonal climate, in south-eastern Peru. Between February 2011 and June 2013, these soils all functioned as net sinks for atmospheric CH4. Mean (standard error) net CH4 fluxes for the dry and wet season were -1.6 (0.1) and -1.1 (0.1) mg CH4-C m-2 d-1 in the upper montane forest, -1.1 (0.1) and -1.0 (0.1) mg CH4-C m-2 d-1 in the lower montane forest, and -0.2 (0.1) and -0.1 (0.1) mg CH4-C m-2 d-1 in the premontane forest. Seasonality in CH4 exchange varied among forest types with increased dry season CH4 uptake only apparent in the upper montane forest. Variation across these forests was best explained by available nitrate and water-filled pore space indicating that nitrate inhibition of oxidation or diffusional constraints imposed by changes in water-filled pore space on methanotrophic communities may represent important controls on soil-atmosphere CH4 exchange. Net CH4 flux was inversely related to elevation; a pattern that differs to that observed in Ecuador, the only other extant study site of soil-atmosphere CH4 exchange in the tropical Andes. This may result from differences in rainfall patterns between the regions, suggesting that attention should be paid to the role of rainfall and soil moisture dynamics in modulating CH4 uptake by the organic-rich soils typical of high-elevation tropical forests.

  11. The Southern Andes Between 36o and 40o S Latitude: Seismicity and Average Velocities

    NASA Astrophysics Data System (ADS)

    Bohm, M.; Bruhn, C.; Asch, G.; Bataille, K.; Rietbrock, A.; ISSA Working Group,; ISSA Working Group,; ISSA Working Group,; ISSA Working Group,; ISSA Working Group,

    2001-12-01

    A temporary seismological network was installed as part of the project ISSA 2000 (Integrated Seismological experiment in the Southern Andes) between 36o and 40o S above the active continental margin in the Southern Andes reaching from the Chilean Pacific coast to 68o W in Argentina. The network consisted of 62 seismographs recording continuously from November 1999 to April 2000. We recorded on average 3 to 4 local earthquakes per day, mainly concentrated in the northwestern part of the network, resulting in a data set of 300 seismic events. High quality P and S arrival times of 120 earthquakes were inverted simultanously for 1-D velocity structure and hypocentral coordinates. Precise hypocenter locations of local earthquakes are determinted resulting in the first accurate image of the Wadati-Benioff zone south of Concepcion. The 1-D velocity model serves as initial reference model of seismic velocity tomographic studies, preliminary results of which will be presented. A further research interest of this seismological experiment is the determination of source mechanisms. Moment tensor inversions provide important information on the current stress field. It is postulated by several authors that dehydration processes are the cause of intermediate depth earthquakes while the focal mechanisms in the seismic coupling zone will be controlled by the deformation processes of the continental crust. A distinct non double couple part of the moment tensor will be expected in the zones of dehydration processes. The recorded data base allows a detailed investigation of local events in a higher frequency range. Instead of using the seismograms directly, the inversion for the moment tensor can also be performed on amplitude spectra. This method has the advantage that slight misalignments between seismograms and Greens functions do not bias the outcome, because the phase spectrum is not used at all.

  12. Reconstruction of Late Cretaceous Magmatic Arcs in the Northern Andes: Single Versus Multiple Arc Systems

    NASA Astrophysics Data System (ADS)

    Cardona, A.; Jaramillo, J. S.; Leon, S.; Hincapie, S.; Mejia, D.; Patino, A. M.; Vanegas, J.; Zapata, S.; Valencia, V.; Jimenez, G.; Monsalve, G.

    2014-12-01

    Although magmatic rocks are major tracers of the geological evolution of convergent margins, pre-collisional events such as subduction erosion, collisional thrusting or late collisional strike slip segmentation may difficult the recognizing of multiple arc systems and therefore the existence of paleogeographic scenarios with multiple subduction systems. New field, U-Pb geochronology and whole rock geochemistry constraints from the northwestern segment of the Central Cordillera in the states of Antioquia and Caldas (Colombia) are used to understand the nature of the Late Cretaceous arc magmatism and evaluate the existence of single or multiple Pacific and Caribbean arc systems in the growth of the Northwestern Andes. The new results integrated with additional field and published information is used to suggest the existence of at least three different magmatic arcs. (1) An Eastern Continental arc built within a well defined Permian to Triassic continental crust that record a protracted 90-70 Ma magmatic evolution, (2) a 90-80 arc formed within attenuated continental crust and associated oceanic crust, (3) 90-88 Ma arc formed over a Late Cretaceous plateau crust. The eastern arcs were formed as part of double eastern vergent subduction system, where the most outboard arc represent a fringing arc formed over detached fragments of continental crust, whereas the easternmost continental arc growth by the closure an subduction of and older and broad Triassic to Early Jurassic back-arc ocean. Its closure also end up in ophiolite emplacement. The third allochtonous oceanic arc was formed over the Caribbean plateau crust and was accreted to the continental margin in the Late Cretaceous. Ongoing paleomagnetic, deformational, gravimetric and basin analysis will be integrate to test this model and understand the complex Late Cretaceous tectonic evolution of the Northern Andes.

  13. Subduction and collision processes in the Central Andes constrained by converted seismic phases.

    PubMed

    Yuan, X; Sobolev, S V; Kind, R; Oncken, O; Bock, G; Asch, G; Schurr, B; Graeber, F; Rudloff, A; Hanka, W; Wylegalla, K; Tibi, R; Haberland, C; Rietbrock, A; Giese, P; Wigger, P; Röwer, P; Zandt, G; Beck, S; Wallace, T; Pardo, M; Comte, D

    The Central Andes are the Earth's highest mountain belt formed by ocean-continent collision. Most of this uplift is thought to have occurred in the past 20 Myr, owing mainly to thickening of the continental crust, dominated by tectonic shortening. Here we use P-to-S (compressional-to-shear) converted teleseismic waves observed on several temporary networks in the Central Andes to image the deep structure associated with these tectonic processes. We find that the Moho (the Mohorovicić discontinuity--generally thought to separate crust from mantle) ranges from a depth of 75 km under the Altiplano plateau to 50 km beneath the 4-km-high Puna plateau. This relatively thin crust below such a high-elevation region indicates that thinning of the lithospheric mantle may have contributed to the uplift of the Puna plateau. We have also imaged the subducted crust of the Nazca oceanic plate down to 120 km depth, where it becomes invisible to converted teleseismic waves, probably owing to completion of the gabbro-eclogite transformation; this is direct evidence for the presence of kinetically delayed metamorphic reactions in subducting plates. Most of the intermediate-depth seismicity in the subducting plate stops at 120 km depth as well, suggesting a relation with this transformation. We see an intracrustal low-velocity zone, 10-20 km thick, below the entire Altiplano and Puna plateaux, which we interpret as a zone of continuing metamorphism and partial melting that decouples upper-crustal imbrication from lower-crustal thickening.

  14. Eccentricity-driven fluvial fill terrace formation in the southern-central Andes, NW Argentina

    NASA Astrophysics Data System (ADS)

    Tofelde, Stefanie; Savi, Sara; Wickert, Andrew D.; Wittmann, Hella; Alonso, Ricardo; Strecker, Manfred R.; Schildgen, Taylor F.

    2016-04-01

    Across the world, fill-terrace formation in glaciated catchments has been linked to variable sediment production and river discharge over glacial-interglacial cycles. Little is known, however, how variability in global climate may have affected rainfall patterns and associated surface-processes on multi-millennial timescales in regions far from major glaciers and ice sheets, and how those changes might be reflected in the landscape. Here, we investigate the timing of fluvial fill terrace planation and abandonment in the Quebrada del Toro, an intermontane basin located in the Eastern Cordillera of the southern-central Andes of NW Argentina. Fluvial fills in the valley reach more than 150 m above the current river level. Sculpted into the fills, we observe at least 5 terrace levels with pronounced differences in their extent and preservation. We sampled four TCN (in situ 10Be) depth profiles to date the abandonment of the most extensive terrace surfaces in locations, where subsequent overprint by erosion and deposition was not pronounced. We interpret unexpectedly low 10Be concentrations at shallow depths and surface samples to be related to aeolian input, causing surface inflation. Correcting the depth profiles for inflation results in a reduction of the terrace surface ages by up to 70 ka. The inflation-corrected ages fall within the late Pleistocene (~140 - 370 ka) and suggest a potential link to orbital eccentricity (~100 ka) cycles. The studied fills in the Toro Basin document successive episodes of incision, punctuated by periods of lateral planation and possible partial re-filling. We propose climate cycles as a potentially-dominant factor in forming these terraces. To our knowledge, none of the previously studied fluvial terraces in the Andes date back more than 2 glacial cycles, thus making the Quebrada del Toro an important archive of paleoenvironmental conditions over longer timescales.

  15. Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia

    PubMed Central

    Carvajal-Quintero, Juan D; Escobar, Federico; Alvarado, Fredy; Villa-Navarro, Francisco A; Jaramillo-Villa, Úrsula; Maldonado-Ocampo, Javier A

    2015-01-01

    Studies on elevation diversity gradients have covered a large number of taxa and regions throughout the world; however, studies of freshwater fish are scarce and restricted to examining their changes along a specific gradient. These studies have reported a monotonic decrease in species richness with increasing elevation, but ignore the high taxonomic differentiation of each headwater assemblage that may generate high β-diversity among them. Here, we analyzed how fish assemblages vary with elevation among regional elevation bands, and how these changes are related to four environmental clines and to changes in the distribution, habitat use, and the morphology of fish species. Using a standardized field sampling technique, we assessed three different diversity and two structural assemblage measures across six regional elevation bands located in the northern Andes (Colombia). Each species was assigned to a functional group based on its body shape, habitat use, morphological, and/or behavioral adaptations. Additionally, at each sampling site, we measured four environmental variables. Our analyses showed: (1) After a monotonic decrease in species richness, we detected an increase in richness in the upper part of the gradient; (2) diversity patterns vary depending on the diversity measure used; (3) diversity patterns can be attributed to changes in species distribution and in the richness and proportions of functional groups along the regional elevation gradient; and (4) diversity patterns and changes in functional groups are highly correlated with variations in environmental variables, which also vary with elevation. These results suggest a novel pattern of variation in species richness with elevation: Species richness increases at the headwaters of the northern Andes owing to the cumulative number of endemic species there. This highlights the need for large-scale studies and has important implications for the aquatic conservation of the region. PMID:26257874

  16. Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing.

    PubMed

    Román-Cuesta, R M; Carmona-Moreno, C; Lizcano, G; New, M; Silman, M; Knoke, T; Malhi, Y; Oliveras, I; Asbjornsen, H; Vuille, M

    2014-06-01

    Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger temperature rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in mountainous ecosystems, and there is a global evidence of increased fire activity with elevation. Whilst fire research has become popular in the tropical lowlands, much less is known of the tropical high Andean region (>2000 masl, from Colombia to Bolivia). This study examines fire trends in the high Andes for three ecosystems, the Puna, the Paramo and the Yungas, for the period 1982-2006. We pose three questions: (i) is there an increased fire response with elevation? (ii) does the El Niño- Southern Oscillation control fire activity in this region? (iii) are the observed fire trends human driven (e.g., human practices and their effects on fuel build-up) or climate driven? We did not find evidence of increased fire activity with elevation but, instead, a quasicyclic and synchronous fire response in Ecuador, Peru and Bolivia, suggesting the influence of high-frequency climate forcing on fire responses on a subcontinental scale, in the high Andes. ENSO variability did not show a significant relation to fire activity for these three countries, partly because ENSO variability did not significantly relate to precipitation extremes, although it strongly did to temperature extremes. Whilst ENSO did not individually lead the observed regional fire trends, our results suggest a climate influence on fire activity, mainly through a sawtooth pattern of precipitation (increased rainfall before fire-peak seasons (t-1) followed by drought spells and unusual low temperatures (t0), which is particularly common where fire is carried by low fuel loads (e.g., grasslands and fine fuel). This climatic sawtooth appeared as the main driver of fire trends, above local human influences and fuel build

  17. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity.

    PubMed

    Finer, Matt; Jenkins, Clinton N

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics.

  18. Progenitor–derivative speciation in Pozoa (Apiaceae, Azorelloideae) of the southern Andes

    PubMed Central

    López, Patricio; Tremetsberger, Karin; Kohl, Gudrun; Stuessy, Tod

    2012-01-01

    Background and Aims Studies examining patterns and processes of speciation in South America are fewer than in North America and Europe. One of the least well documented processes has been progenitor–derivative speciation. A particularly instructive example occurs in the southern Andes in the genus Pozoa (Apiaceae, Azorelloideae), which consists of only two diploid outcrossing species, the widespread P. coriacea and the geographically and ecologically restricted P. volcanica. This paper tests the hypothesis that the latter species originated from the former through local geographical and ecological isolation by progenitor–derivative speciation. Methods DNA sequences were analysed from Pozoa and the related South American genera Asteriscium, Eremocharis and Gymnophyton from non-coding regions of the plastid genome, ndhF-rpl32 and rpl32-trnL, plus incorporation of previously reported rpl16 intron and trnD-trnT intergenic spacer sequences. Amplified fragment length polymorphism (AFLP) data from 105 individuals in 21 populations throughout the entire range of distribution of the genus were used for estimation of genetic diversity, divergence and SplitsTree network analysis. Ecological factors, including habitat and associated species, were also examined. Key Results Pozoa coriacea is more similar genetically to the outgroup genera, Asteriscium and Eremocharis, than is P. volcanica. At the population level, only P. volcanica is monophyletic, whereas P. coriacea is paraphyletic. Analyses of genetic differentiation among populations and genetic divergence and diversity of the species show highest values in P. coriacea and clear reductions in P. volcanica. Pozoa coriacea occurs in several types of high elevation habitats, whereas P. volcanica is found only in newly formed open volcanic ash zones. Conclusions All facts support that Pozoa represents a good example of progenitor–derivative speciation in the Andes of southern South America. PMID:22112441

  19. On the Nature of Severe Orographic Thunderstorms near the Andes in Subtropical South America

    NASA Astrophysics Data System (ADS)

    Rasmussen, Kristen Lani Emi

    Identifying common features and differences between the mechanisms producing extreme convection near major mountain ranges of the world is an essential step toward a general understanding of orographic precipitation on a global scale. The overarching objective of this dissertation is to understand and examine orographic convective processes in general, while specifically focusing on systems in the lee of the Andes Mountains. Diagnosing the key ingredients necessary for generating high impact weather near extreme topography is crucial to our understanding of orographic precipitating systems. An investigation of the most intense storms in 11 years of TRMM Precipitation Radar (PR) data has shown a tendency for squall lines to initiate and develop east of the Andes with a mesoscale organization similar to storms in the U.S. Great Plains (Rasmussen and Houze 2011). In subtropical South America, however, the topographical influence on the convective initiation and maintenance of the mesoscale convective systems (MCSs) is unique. The Andes and other mountainous terrain of Argentina focus deep convective initiation in the foothills of western Argentina (Romatschke and Houze 2010; Rasmussen and Houze 2011). Subsequent to initiation, the convection often evolves into propagating MCSs similar to those seen over the U.S. Great Plains sometimes producing damaging tornadoes, hail and floods across a wide agricultural region (Rasmussen and Houze 2011; Rasmussen et al. 2014b). The TRMM satellite was designed to determine the spatial and temporal variation of tropical and subtropical rainfall amounts and storm structures around the globe with the goal of understanding the factors controlling the precipitation. However, the TRMM PR algorithm significantly underestimates surface rainfall in deep convection over land (Nesbitt et al. 2004; Iguchi et al. 2009; Kozu et al. 2009). When the algorithm rates are compared to a range of conventional Z-R relations, the rain bias tends to be

  20. Isotopic characterization of mountain precipitation along the eastern flank of the Andes between 32.5 - 35°S

    NASA Astrophysics Data System (ADS)

    Hoke, G. D.; Aranibar, J. N.; Viale, M.; Araneo, D. C.; LLano, C. L.

    2011-12-01

    Data describing the isotopic composition of precipitation in the Andes are sparse: on the South American continent one IAEA Global Network of Isotopes in Precipitation (GNIP) station above 1500 m elevation exists south of La Paz. Better spatial density is necessary to improve our understanding of isotopes in mountain precipitation, which has implications for how to interpret isotopic information from the geologic record and the validation of isotope tracking modules in climate models. We present finding from two-years of quasi-monthly precipitation collection on the eastern flank of the Andes between 32.5 and 35°S latitude. A total of 123 samples were collected from 10 stations from Setember 2008 until September 2010. North of 33°S, the 2500 m average elevation Precordillera forms a steep front orographic barrier and the 2000 m elevation Uspallata Valley separates the Precordillera from the high Andes to the East. South of 33°S the Precordillera ends and the Andes return to a simple linear morphology. The low-leeward (eastern) side of the Andes receives predominately summer precipitation from convective storms, usually triggered by daytime upslope flow or synoptic-scale easterly flow over the Precordillera. Moving westward from the low-leeward side to the range crest, the influence of the easterly summer precipitation wanes and winter spillover precipitation from mid-latitude westerly storms beings to dominate. Our results show the local meteoric water line is slightly steeper (~0.5) than the global meteoric water line and a y-intercept of 14. The most negative δ18O values vary as much as 15 per mil seasonally, while averages weighted by precipitation amount show a strong cross-barrier (elevation) dependence. At these latitudes, the weighted average precipitation δ18O values show a significant deviation from river water near the range crest. The influence of the different moisture sources, from synoptic-scale easterly or westerly flow, is distinguished by

  1. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change

    NASA Astrophysics Data System (ADS)

    Rabatel, A.; Francou, B.; Soruco, A.; Gomez, J.; Cáceres, B.; Ceballos, J. L.; Basantes, R.; Vuille, M.; Sicart, J.-E.; Huggel, C.; Scheel, M.; Lejeune, Y.; Arnaud, Y.; Collet, M.; Condom, T.; Consoli, G.; Favier, V.; Jomelli, V.; Galarraga, R.; Ginot, P.; Maisincho, L.; Mendoza, J.; Ménégoz, M.; Ramirez, E.; Ribstein, P.; Suarez, W.; Villacis, M.; Wagnon, P.

    2013-01-01

    The aim of this paper is to provide the community with a comprehensive overview of the studies of glaciers in the tropical Andes conducted in recent decades leading to the current status of the glaciers in the context of climate change. In terms of changes in surface area and length, we show that the glacier retreat in the tropical Andes over the last three decades is unprecedented since the maximum extension of the Little Ice Age (LIA, mid-17th-early 18th century). In terms of changes in mass balance, although there have been some sporadic gains on several glaciers, we show that the trend has been quite negative over the past 50 yr, with a mean mass balance deficit for glaciers in the tropical Andes that is slightly more negative than the one computed on a global scale. A break point in the trend appeared in the late 1970s with mean annual mass balance per year decreasing from -0.2 m w.e. in the period 1964-1975 to -0.76 m w.e. in the period 1976-2010. In addition, even if glaciers are currently retreating everywhere in the tropical Andes, it should be noted that this is much more pronounced on small glaciers at low altitudes that do not have a permanent accumulation zone, and which could disappear in the coming years/decades. Monthly mass balance measurements performed in Bolivia, Ecuador and Colombia show that variability of the surface temperature of the Pacific Ocean is the main factor governing variability of the mass balance at the decadal timescale. Precipitation did not display a significant trend in the tropical Andes in the 20th century, and consequently cannot explain the glacier recession. On the other hand, temperature increased at a significant rate of 0.10 °C decade-1 in the last 70 yr. The higher frequency of El Niño events and changes in its spatial and temporal occurrence since the late 1970s together with a warming troposphere over the tropical Andes may thus explain much of the recent dramatic shrinkage of glaciers in this part of the world.

  2. Quantitative Temperature Reconstructions from Holocene and Late Glacial Lake Sediments in the Tropical Andes using Chironomidae (non-biting midges)

    NASA Astrophysics Data System (ADS)

    Matthews-Bird, F.; Gosling, W. D.; Brooks, S. J.; Montoya, E.; Coe, A. L.

    2014-12-01

    Chironomidae (non-biting midges) is a family of two-winged aquatic insects of the order Diptera. They are globally distributed and one of the most diverse families within aquatic ecosystems. The insects are stenotopic, and the rapid turnover of species and their ability to colonise quickly favourable habitats means chironomids are extremely sensitive to environmental change, notably temperature. Through the development of quantitative temperature inference models chironomids have become important palaeoecological tools. Proxies capable of generating independent estimates of past climate are crucial to disentangling climate signals and ecosystem response in the palaeoecological record. This project has developed the first modern environmental calibration data set in order to use chironomids from the Tropical Andes as quantitative climate proxies. Using surface sediments from c. 60 lakes from Bolivia, Peru and Ecuador we have developed an inference model capable of reconstructing temperatures, with a prediction error of 1-2°C, from fossil assemblages. Here we present the first Lateglacial and Holocene chironomid-inferred temperature reconstructions from two sites in the tropical Andes. The first record, from a high elevation (4153 m asl) lake in the Bolivian Andes, shows persistently cool temperatures for the past 15 kyr, punctuated by warm episodes in the early Holocene (9-10 kyr BP). The chironomid-inferred Holocene temperature trends from a lake sediment record on the eastern Andean flank of Ecuador (1248 m asl) spanning the last 5 millennia are synchronous with temperature changes in the NGRIP ice core record. The temperature estimates suggest along the eastern flank of the Andes, at lower latitudes (~1°S), climate closely resemble the well-established fluctuations of the Northern Hemisphere for this time period. Late-glacial climate fluctuations across South America are still disputed with some palaeoecological records suggesting evidence for Younger Dryas

  3. Prediction of the most extreme rainfall events in the South American Andes: A statistical forecast based on complex networks

    NASA Astrophysics Data System (ADS)

    Boers, Niklas; Bookhagen, Bodo; Barbosa, Henrique; Marwan, Norbert; Kurths, Jürgen; Marengo, Jose

    2015-04-01

    During the monsoon season, the subtropical Andes in South America are exposed to spatially extensive extreme rainfall events that frequently lead to flashfloods and landslides with severe socio-economic impacts. Since dynamical weather forecast has substantial problems with predicting the most extreme events (above the 99th percentile), alternative forecast methods are called for. Based on complex network theory, we developed a general mathematical framework for statistical prediction of extreme events in significantly interrelated time series. The key idea of our approach is to make the internal synchronization structure of extreme events mathematically accessible in terms of the topology of a network which is constructed from measuring the synchronization of extreme events at different locations. The application of our method to high-spatiotemporal resolution rainfall data (TRMM 3B42) reveals a migration pattern of large convective systems from southeastern South America towards the Argentinean and Bolivian Andes, against the direction of the northwesterly low-level moisture flow from the Amazon Basin. Once these systems reach the Andes, they lead to spatially extensive extreme events up to elevations above 4000m, leading to substantial risks of associated natural hazards. Based on atmospheric composites, we could identify an intricate interplay of frontal systems approaching from the South, low-level moisture flow from the Amazon Basin to the North, and the Andean orography as responsible climatic mechanism. These insights allow to formulate a simple forecast rule predicting 60% (90% during El Niño conditions) of extreme rainfall events at the eastern slopes of the subtropical Andes. The rule can be computed from readily available rainfall and pressure data and is already being tested by local institutions for disaster preparation.

  4. Description and phylogeny of three new species of Synophis (Colubridae, Dipsadinae) from the tropical Andes in Ecuador and Peru

    PubMed Central

    Torres-Carvajal, Omar; Echevarría, Lourdes Y.; Venegas, Pablo J.; Germán Chávez; Camper, Jeffrey D.

    2015-01-01

    Abstract The discovery of three new species of Synophis snakes from the eastern slopes of the tropical Andes in Ecuador and Peru is reported. All previous records of Synophis bicolor from eastern Ecuador correspond to Synophis bogerti sp. n., which occurs between 1000–1750 m along a large part of the Amazonian slopes of the Ecuadorian Andes. In contrast, Synophis zamora sp. n. is restricted to southeastern Ecuador, including Cordillera del Cóndor, between 1543–1843 m. Synophis insulomontanus sp. n. is from the eastern slopes of the Andes in central and northern Peru, between 1122–1798 m, and represents the first record of Synophis from this country. All three new species share in common a large lateral spine at the base of the hemipenial body. A molecular phylogenetic tree based on three mitochondrial genes is presented, including samples of Diaphorolepis wagneri. Our tree strongly supports Synophis and Diaphorolepis as sister taxa, as well as monophyly of the three new species described here and Synophis calamitus. Inclusion of Synophis and Diaphorolepis within Dipsadinae as sister to a clade containing Imantodes, Dipsas, Ninia, Hypsiglena and Pseudoleptodeira is also supported. PMID:26798310

  5. Description and phylogeny of three new species of Synophis (Colubridae, Dipsadinae) from the tropical Andes in Ecuador and Peru.

    PubMed

    Torres-Carvajal, Omar; Echevarría, Lourdes Y; Venegas, Pablo J; Germán Chávez; Camper, Jeffrey D

    2015-01-01

    The discovery of three new species of Synophis snakes from the eastern slopes of the tropical Andes in Ecuador and Peru is reported. All previous records of Synophis bicolor from eastern Ecuador correspond to Synophis bogerti sp. n., which occurs between 1000-1750 m along a large part of the Amazonian slopes of the Ecuadorian Andes. In contrast, Synophis zamora sp. n. is restricted to southeastern Ecuador, including Cordillera del Cóndor, between 1543-1843 m. Synophis insulomontanus sp. n. is from the eastern slopes of the Andes in central and northern Peru, between 1122-1798 m, and represents the first record of Synophis from this country. All three new species share in common a large lateral spine at the base of the hemipenial body. A molecular phylogenetic tree based on three mitochondrial genes is presented, including samples of Diaphorolepis wagneri. Our tree strongly supports Synophis and Diaphorolepis as sister taxa, as well as monophyly of the three new species described here and Synophis calamitus. Inclusion of Synophis and Diaphorolepis within Dipsadinae as sister to a clade containing Imantodes, Dipsas, Ninia, Hypsiglena and Pseudoleptodeira is also supported.

  6. Age of Terrestrial Biomarkers in Fluvial Transit Across the Andes-Amazon Reveal Timescales of Carbon Storage and Turnover

    NASA Astrophysics Data System (ADS)

    Ponton, C.; Feakins, S. J.; West, A. J.; Galy, V.

    2014-12-01

    Environmental signatures carried by fluvially-exported terrestrial organic matter are shaped by storage, remineralization and replacement at various spatial and temporal scales. Uncertainties in the timescales of these processes are key caveats in the accurate interpretation of sedimentary records. As part of a multi-isotope leaf wax biomarker project, we report the age of biomarkers transported by rivers from mountain to floodplain across the Andes-Amazon transition in southern Peru. We tracked the age of organic carbon using the radiocarbon (14ΔC) composition of plant leaf waxes extracted from particulate organic carbon (POC) in river suspended sediments. Leaf waxes from POC are younger in mountain headwaters (<500 yrs old) and increase in age across the floodplain (>1000 yrs). Downstream aging is associated with the greater storage potential and residence times in lowland mineral soils and sedimentary sequences that include Pleistocene age eroding river terraces. Given three key observations that 1) carbon loading in suspended sediment does not substantively change from Andes to Amazon, 2) ~80% of sediment is sourced in the Andes, and 3) age increases downstream (this study); we find proof of the decoupling of organic carbon from sediment, which we attribute to loss of Andean carbon and replacement during transport.

  7. Genome of Plant Maca (Lepidium meyenii) Illuminates Genomic Basis for High-Altitude Adaptation in the Central Andes.

    PubMed

    Zhang, Jing; Tian, Yang; Yan, Liang; Zhang, Guanghui; Wang, Xiao; Zeng, Yan; Zhang, Jiajin; Ma, Xiao; Tan, Yuntao; Long, Ni; Wang, Yangzi; Ma, Yujin; He, Yuqi; Xue, Yu; Hao, Shumei; Yang, Shengchao; Wang, Wen; Zhang, Liangsheng; Dong, Yang; Chen, Wei; Sheng, Jun

    2016-07-06

    Maca (Lepidium meyenii Walp, 2n = 8x = 64), belonging to the Brassicaceae family, is an economic plant cultivated in the central Andes sierra in Peru (4000-4500 m). Considering that the rapid uplift of the central Andes occurred 5-10 million years ago (Ma), an evolutionary question arises regarding how plants such as maca acquire high-altitude adaptation within a short geological period. Here, we report the high-quality genome assembly of maca, in which two closely spaced maca-specific whole-genome duplications (WGDs; ∼6.7 Ma) were identified. Comparative genomic analysis between maca and closely related Brassicaceae species revealed expansions of maca genes and gene families involved in abiotic stress response, hormone signaling pathway, and secondary metabolite biosynthesis via WGDs. The retention and subsequent functional divergence of many duplicated genes may account for the morphological and physiological changes (i.e., small leaf shape and self-fertility) in maca in a high-altitude environment. In addition, some duplicated maca genes were identified with functions in morphological adaptation (i.e., LEAF CURLING RESPONSIVENESS) and abiotic stress response (i.e., GLYCINE-RICH RNA-BINDING PROTEINS and DNA-DAMAGE-REPAIR/TOLERATION 2) under positive selection. Collectively, the maca genome provides useful information to understand the important roles of WGDs in the high-altitude adaptation of plants in the Andes.

  8. Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes.

    PubMed

    Bitocchi, Elena; Bellucci, Elisa; Giardini, Alessandro; Rau, Domenico; Rodriguez, Monica; Biagetti, Eleonora; Santilocchi, Rodolfo; Spagnoletti Zeuli, Pierluigi; Gioia, Tania; Logozzo, Giuseppina; Attene, Giovanna; Nanni, Laura; Papa, Roberto

    2013-01-01

    We have studied the nucleotide diversity of common bean, Phaseolus vulgaris, which is characterized by two independent domestications in two geographically distinct areas: Mesoamerica and the Andes. This provides an important model, as domestication can be studied as a replicate experiment. We used nucleotide data from five gene fragments characterized by large introns to analyse 214 accessions (102 wild and 112 domesticated). The wild accessions represent a cross-section of the entire geographical distribution of P. vulgaris. A reduction in genetic diversity in both of these gene pools was found, which was three-fold greater in Mesoamerica compared with the Andes. This appears to be a result of a bottleneck that occurred before domestication in the Andes, which strongly impoverished this wild germplasm, leading to the minor effect of the subsequent domestication bottleneck (i.e. sequential bottleneck). These findings show the importance of considering the evolutionary history of crop species as a major factor that influences their current level and structure of genetic diversity. Furthermore, these data highlight a single domestication event within each gene pool. Although the findings should be interpreted with caution, this evidence indicates the Oaxaca valley in Mesoamerica, and southern Bolivia and northern Argentina in South America, as the origins of common bean domestication.

  9. The Southern Andes between 36° and 40°S latitude: seismicity and average seismic velocities

    NASA Astrophysics Data System (ADS)

    Bohm, Mirjam; Lüth, Stefan; Echtler, Helmut; Asch, Günter; Bataille, Klaus; Bruhn, Carsten; Rietbrock, Andreas; Wigger, Peter

    2002-10-01

    The project ISSA 2000 (Integrated Seismological experiment in the Southern Andes) consists of a temporary seismological network and a seismic refraction profile. A network of 62 seismological stations was deployed across the Southern Andes at ˜38°S. Three hundred thirty-three local seismic events were observed in a 3-month period. P and S arrival times of a subset of high quality data were inverted simultaneously for 1-D velocity structure, hypocentral coordinates and station delays. Seismic refraction data along a transect at 39°S provide further constraints on the crustal structure. Low crustal velocities beneath the forearc may be either due to subducted trench sediments or serpentinized mantle material of the continental lithosphere. The continental Moho is not clearly observed in this region. Average velocities of the crust beneath the arc are higher than those beneath the forearc. Crustal thickness is about 40 km. Crustal seismicity concentrates in the forearc region along the Bio-Bio and Gastre fault zones. The area between these two prominent fault zones seems to be nearly devoid of crustal seismicity but shows highest uplift and topography in the forearc region. Benioff seismicity is observed down to 150 km depth resulting in the first accurate image of the Benioff zone in the Southern Andes. A maximum of seismicity at 60 km depth may be caused by dehydration embrittlement.

  10. Cenozoic stratigraphy and basin tectonics of the Andes Mountains, 20/sup 0/-28/sup 0/ south latitude

    SciTech Connect

    Jordan, T.E.; Alonso, R.N.

    1987-01-01

    Clastic sedimentary basins have evolved during the past 40 m.y. in the central Andes (lat. 20/sup 0/-28/sub 0/S) in response to shifting patterns of magmatism and deformation. The distribution of these basins and their genetic relations to uplifted areas are analogous to the basins and mountain belts of the North American Rocky Mountains during the Late Cretaceous and early Cenozoic. Petroleum exploration has focused on zones underlying the upper Cenozoic strata along the eastern margin of the Andes mountain belt. Between about 40 and 25 Ma, a nonmarine basin extended across the region that is now the Andes Mountains. Between about 25 and 10 Ma, the western part of the former basin became the site of a volcanic arc; sediment accumulation continued in the east, where marine intercalations demonstrate the low elevation of the basin. After 10 Ma, the volcanic arc remained active and locally widened, and crustal shortening caused regionally important thrust and reverse faulted ranges. During the past 10 m.y., up to 4000 m of coarse clastic debris accumulated in a foreland basin on the eastern flank of the mountains; meanwhile in the interior of the mountains, over 4,0000 m of fine-grained strata and evaporites accumulated in local depocenters. 8 figures.

  11. Air temperature change in the northern and southern tropical Andes linked to North-Atlantic stadials and Greenland interstadials

    NASA Astrophysics Data System (ADS)

    Urrego, Dunia H.; Hooghiemstra, Henry

    2016-04-01

    We use eight pollen records reflecting climatic and environmental change from northern and southern sites in the tropical Andes. Our analysis focuses on the signature of millennial-scale climate variability during the last 30,000 years, in particular the Younger Dryas (YD), Heinrich stadials (HS) and Greenland interstadials (GI). We identify rapid responses of the vegetation to millennial-scale climate variability in the tropical Andes. The signature of HS and the YD are generally recorded as downslope migrations of the upper forest line (UFL), and are likely linked to air temperature cooling. The GI1 signal is overall comparable between northern and southern records and indicates upslope UFL migrations and warming in the tropical Andes. Our marker for lake level changes indicates a north to south difference that could be related to moisture availability. The direction of air temperature change recorded by the Andean vegetation is consistent with millennial-scale cryosphere and sea surface temperature records from the American tropics, but suggests a potential difference between the magnitude of temperature change in the ocean and the atmosphere.

  12. Phylogeography in the northern Andes: complex history and cryptic diversity in a cloud forest frog, Pristimantis w-nigrum (Craugastoridae).

    PubMed

    Kieswetter, Charles M; Schneider, Christopher J

    2013-12-01

    We investigated the pattern of genetic and morphological variation and the timing of diversification in a Neotropical direct developing frog, Pristimantis w-nigrum (Craugastoridae) to gain insight into the historical biogeography of the northern Andes. Phylogenetic inference and analyses of genetic differentiation at mitochondrial and nuclear markers reveal eight mitochondrial clades that display concordant and highly structured nuclear genetic variation along both eastern and western slopes of the Ecuadorian Andes. These eight phylogroups are deeply divergent and show little evidence of change in effective size over substantial periods of time. Consistent with other phylogenetic studies of vertebrates in the Andes, the timing of genetic divergence among lineages coincides with sequential bouts of Andean orogenesis during the late Miocene and early Pliocene. Morphometric analyses recover little morphological variation among populations in spite of considerable genetic divergence. The deep genetic differentiation among populations of P. w-nigrum suggests that this species harbors unrecognized diversity and may represent a complex of cryptic species. These results illuminate the evolutionary processes that generate diversity in tropical montane biomes and underscore the fact that cryptic diversity may be an important component of Neotropical montane biodiversity.

  13. Mycorrhizal and Dark-Septate Fungi in Plant Roots above 4270 Meters Elevation in the Andes and Rocky Mountains

    SciTech Connect

    Schmidt, Steven K.; Sobieniak-Wiseman, L. Cheyanne; Kageyama, Stacy A.; Halloy, Stephen; Schadt, Christopher Warren

    2008-01-01

    Arbuscular mycorrhizal (AM) and dark-septate endophytic (DSE) fungi were quantified in plant roots from high-elevation sites in the Cordillera Vilcanota of the Andes (Per ) and the Front Range of the Colorado Rocky Mountains (U.S.A.). At the highest sites in the Andes (5391 m) AM fungi were absent in the two species of plants sampled (both Compositae) but roots of both were heavily colonized by DSE fungi. At slightly lower elevations (5240 5250 m) AM fungi were present in roots while DSE fungi were rare in plants outside of the composite family. At the highest sites sampled in Colorado (4300 m) AM fungi were present, but at very low levels and all plants sampled contained DSE fungi. Hyphae of coarse AM fungi decreased significantly in plant roots at higher altitude in Colorado, but no other structures showed significant decreases with altitude. These new findings indicate that the altitudinal distribution of mycorrhizal fungi observed for European mountains do not necessarily apply to higher and drier mountains that cover much of the Earth (e.g. the Himalaya, Hindu Kush, Andes, and Rockies) where plant growth is more limited by nutrients and water than in European mountains. This paper describes the highest altitudinal records for both AM and DSE fungi, surpassing previous reported altitudinal maxima by about 1500 meters.

  14. Impact of glaciations on the long-term erosion in Southern Patagonian Andes

    NASA Astrophysics Data System (ADS)

    Simon-Labric, Thibaud; Herman, Frederic; Baumgartner, Lukas; Shuster, David L.; Braun, Jean; Reiners, Pete W.; Valla, Pierre G.; Leuthold, Julien

    2014-05-01

    The Southern Patagonian Andes are an ideal setting to study the impact of Late-Cenozoic climate cooling and onset of glaciations impact on the erosional history of mountain belts. The lack of tectonic activity during the last ~12 Myr makes the denudation history mainly controlled by surface processes, not by tectonics. Moreover, the glaciations history of Patagonia shows the best-preserved records within the southern hemisphere (with the exception of Antarctica). Indeed, the dry climate on the leeward side of Patagonia and the presence of lava flows interbedded with glacial deposits has allowed an exceptional preservation of late Cenozoic moraines with precise dating using K-Ar analyses on lava flow. The chronology of moraines reveals a long history covering all the Quaternary, Pliocene, and up to the Upper Miocene. The early growth of large glaciers flowing on eastern foothills started at ~7-6 Myr, while the maximum ice-sheet extent dates from approximately 1.1 Myr. In order to quantify the erosion history of the Southern Patagonian Andes and compare it to the glaciations sediment record, we collected samples along an age-elevation profile for low-temperature thermochronology in the eastern side of the mountain belt (Torres del Paine massif). The (U-Th)/He age-elevation relationship shows a clear convex shape providing an apparent long-term exhumation rate of ~0.2 km/Myr followed by an exhumation rate increase at ~6 Myr. Preliminary results of 4He/3He thermochronometry for a subset of samples complete the erosion history for the Plio-Pleistocene epoch. We used inverse procedure predicting 4He distributions within an apatite grain using a radiation-damage and annealing model to quantify He-diffusion kinetics in apatite. The model also allows quantifying the impact of potential U-Th zonation throughout each apatite crystal. Inversion results reveal a denudation history composed by a pulse of denudation at ~6 Ma, as suggested by the age-elevation relationship

  15. TRMM- and GPM-based precipitation analysis and modelling in the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Manz, Bastian; Buytaert, Wouter; Zulkafli, Zed; Onof, Christian

    2016-04-01

    Despite wide-spread applications of satellite-based precipitation products (SPPs) throughout the TRMM-era, the scarcity of ground-based in-situ data (high density gauge networks, rainfall radar) in many hydro-meteorologically important regions, such as tropical mountain environments, has limited our ability to evaluate both SPPs and individual satellite-based sensors as well as accurately model or merge rainfall at high spatial resolutions, particularly with respect to extremes. This has restricted both the understanding of sensor behaviour and performance controls in such regions as well as the accuracy of precipitation estimates and respective hydrological applications ranging from water resources management to early warning systems. Here we report on our recent research into precipitation analysis and modelling using various TRMM and GPM products (2A25, 3B42 and IMERG) in the tropical Andes. In an initial study, 78 high-frequency (10-min) recording gauges in Colombia and Ecuador are used to generate a ground-based validation dataset for evaluation of instantaneous TRMM Precipitation Radar (TPR) overpasses from the 2A25 product. Detection ability, precipitation time-series, empirical distributions and statistical moments are evaluated with respect to regional climatological differences, seasonal behaviour, rainfall types and detection thresholds. Results confirmed previous findings from extra-tropical regions of over-estimation of low rainfall intensities and under-estimation of the highest 10% of rainfall intensities by the TPR. However, in spite of evident regionalised performance differences as a function of local climatological regimes, the TPR provides an accurate estimate of climatological annual and seasonal rainfall means. On this basis, high-resolution (5 km) climatological maps are derived for the entire tropical Andes. The second objective of this work is to improve the local precipitation estimation accuracy and representation of spatial patterns of

  16. 18,000 years of environmental change in the Eastern Cordillera of the Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Williams, J. J.; Gosling, W. D.; Coe, A. L.; Brooks, S. J.

    2010-12-01

    Mountainous regions are considered to be early warning sites for climatic change because narrow vertical species ranges mean even small temperature/precipitation variation can result in species movement. This is especially true in the tropical Andes where the complex topography of the Andean valleys allows biodiverse woodland to be separated from grassland and snow dominated peaks by just a few kilometers, with microclimates clearly playing an important role. To begin to predict the likely impacts of future climatic changes and to help protect Andean woodlands, an understanding of baseline ecological conditions and previous responses to longer-term climatic shifts is vital. The Cochabamba Basin and surrounding mountain peaks is situated within the Eastern Andean Cordillera on the margin between the Altiplano and Yungas cloud forest. We present here multi-proxy data from two high elevation (>3400 m) lake sediment records which reveal sub-500 year ecosystem response to climatic shifts since the last glacial period and the impact of pre-Hispanic human populations. The sediment cores recovered from Lakes Challacaba (17°33’ S, 65°34’ W, 3400 m) and Khomer Kocha (17°16’ S, 65°43’ W, 4153 m) span the last c. 4000 and c. 18,000 years respectively. The two sites are only 35 km apart but are positioned within very different climatic and vegetation zones; Challacaba is within a cold and seasonally dry valley, and Khomer Kotcha is located on the steep slopes above the Yungas cloud forests. Analysis of pollen, chironomid, charcoal, geochemical and physical proxies from within the sediment cores provided insight into the drivers of environmental change at a local and regional scale. The Challacaba and Khomer Kocha records are the first from the eastern flank of the Bolivian Andes to record the last 4000 years and help to fill a gap in our understanding of vegetation succession and subsequent climatic variability since the late glacial. Our results suggest that, prior

  17. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile

    NASA Astrophysics Data System (ADS)

    Janke, Jason R.; Bellisario, Antonio C.; Ferrando, Francisco A.

    2015-07-01

    In the Dry Andes of Chile (17 to 35° S), debris-covered glaciers and rock glaciers are differentiated from true glaciers based on the percentage of surface debris cover, thickness of surface debris, and ice content. Internal ice is preserved by an insulating cover of thick debris, which acts as a storage reservoir to release water during the summer and early fall. These landforms are more numerous than glaciers in the central Andes; however, the existing legislation only recognizes uncovered or semicovered glaciers as a water resource. Glaciers, debris-covered glaciers, and rock glaciers are being altered or removed by mining operations to extract valuable minerals from the mountains. In addition, agricultural expansion and population growth in this region have placed additional demands on water resources. In a warmer climate, as glaciers recede and seasonal water availability becomes condensed over the course of a snowmelt season, rock glaciers and debris-covered glaciers contribute a larger component of base flow to rivers and streams. As a result, identifying and locating these features to implement sustainable regional planning for water resources is important. The objective of this study is to develop a classification system to identify debris-covered glaciers and rock glaciers based on the interpretation of satellite imagery and aerial photographs. The classification system is linked to field observations and measurements of ice content. Debris-covered glaciers have three subclasses: surface coverage of semi (class 1) and fully covered (class 2) glaciers differentiates the first two forms, whereas debris thickness is critical for class 3 when glaciers become buried with more than 3 m of surface debris. Based on field observations, the amount of ice decreases from more than 85%, to 65-85%, to 45-65% for semi, fully, and buried debris-covered glaciers, respectively. Rock glaciers are characterized by three stages. Class 4 rock glaciers have pronounced

  18. Surface exposure dating of moraines and alluvial fans in the Southern Central Andes

    NASA Astrophysics Data System (ADS)

    Terrizzano, Carla; Zech, Roland; García Morabito, Ezequiel; Haghipour, Negar; Christl, Marcus; Likermann, Jeremías; Tobal, Jonathan; Yamin, Marcela

    2016-04-01

    The role of tectonics versus climate in controlling the evolution of alluvial fans in discussed controversially. The southern Central Andes and their forelands provide a perfect setting to study climate versus tectonic control of alluvial fans. On the one hand, the region is tectonically active and alluvial fan surfaces are offset by faults. The higher summits, on the other hand, are glaciated today, and glacial deposits document past periods of lower temperatures and increased precipitation. We applied 10Be surface exposure dating on 5 fan terraces 4 moraines of the Ansilta range (31.6°S - 69.8°W) using boulders and amalgamated pebbles to explore their chronological relationship. From youngest to oldest, the alluvial fan terraces yield minimum ages of 15 ± 1 ka (T1), 97 ± 9 ka (T2), 141 ± 9 ka (T3), 286 ± 14 ka (T4) and 570 ± 57 ka (T5). Minimum ages derived from moraines are 14 ± 1 ka (M1), 22 ± 2 ka (M2), 157 ± 14 ka (M3) and 351 ± 33 ka (M4), all calculations assuming no erosion and using the scaling scheme for spallation based on Lal 1991, Stone 2000. The moraines document glacial advances during cold periods at the marine isotope stages (MIS) 2, 6 and 10. The terraces T1, T3 seem to be geomorphologic counterparts during MIS 2 and 6. We suggest that T2, T4 and T5 document aggradation during the cold periods MIS 5d, 8 and 14 in response to glacial advances, although the respective moraines are not preserved. Our results highlight: i) the arid climate in the Southern Central Andes favors the preservation of glacial and alluvial deposits allowing landscape and climate reconstructions back to ~570 ka), ii) alluvial deposits correlate with moraines or fall into cold glacial times, so that climate, and in particular the existence of glaciers, seems to be the main forcing of alluvial fan formation at our study site. References Lal, D., 1991: Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth and Planetary

  19. Lateglacial temperature reconstruction in the Eastern Tropical Andes (Bolivia) inferred from paleoglaciers and paleolakes

    NASA Astrophysics Data System (ADS)

    Martin, L.; Blard, P. H.; Lave, J.; Prémaillon, M.; Jomelli, V.; Brunstein, D.; Lupker, M.; Charreau, J.; Mariotti, V.; Condom, T.; Bourles, D. L.

    2015-12-01

    Recent insights shed light on the global mechanisms involved in the abrupt oscillations of the Earth climate for the Late Glacial Maximum (LGM) to Holocene period (Zhang et al., 2014; Banderas et al., 2015). Yet the concomitant patterns of regional climate reorganization on continental areas are for now poorly documented. Particularly, few attempts have been made to propose temporal reconstructions of the regional climate variables in the High Tropical Andes, a region under the direct influence of the upper part of the troposphere. We present new glacial chronologies from the Zongo (16.3°S - 68.1°W, Bolivia) and Wara-Wara (17.3°S - 66.1°W, Bolivia) valleys based on Cosmic Ray Exposure dating (CRE) from an exceptional suite of recessive moraines. These new data permitted to refine existing chronologies (Smith et al., 2005 ; Zech et al., 2010): the Zongo valley is characterized by an older local last glacial maximum than the Wara Wara valley. Both sites however exhibit similar glacier behaviours, with a progressive regression between 18 ka and the Holocene. In both sites, glaciers recorded stillstand episodes synchronous with the cold events of the Norther Hemisphere (Henrich 1 event, Younger Dryas). Since the nearby Altiplano basin registered lake level variations over the same period, we were able to apply a joint modelling of glaciers Equilibrium Line Altitude (ELA) and lake budget. This permits to derive a temporal evolution of temperature and precipitation for both sites. These new reconstructions show for both sites that glaciers of the Eastern Tropical Andes were both influenced by the major climatic events of the Northern and Southern Hemispheres. However, precipitation variability is more influenced by the Northern Atlantic events. This observation is in good agreement with the theories suggesting that North Hemisphere cold events are coeval with an important southward deflexion of the Intertropical Convergence Zone (ITCZ) due to the inter

  20. Geometry and State of Stress of the Slab Beneath the North Central Andes

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Beck, S. L.; Wagner, L. S.; Zandt, G.; Long, M. D.

    2012-12-01

    The central Andean plateau of southern Peru and Bolivia is one of the largest topographic features on Earth. It has strongly influenced the local and regional climate since the early Miocene by affecting the regional dynamics that control circulation and precipitation. The surface and subsurface processes responsible for the plateau formation and evolution are still unclear. There are two end member models proposed for this uplift: (1) Slow and steady rise since the late Eocene (~40 Ma) with maximum upper crustal shortening between 30 and 10 Ma or (2) rapid surface uplift of ~2.5 km in the late Miocene between 10.3 and 6.7 Ma. The rapid uplift theory argues for the wholesale removal of a thick portion of the lower eclogitic crust and upper mantle lithosphere. A slow and steady uplift of the Andes would suggest a continuous removal of the lower lithosphere or piecemeal delamination, proportional to the rate of shortening. We present earthquake locations and focal mechanisms using data from two ongoing temporary arrays: the network of 50 broadband seismic stations that was part of the NSF-Continental Dynamics-funded project "CAUGHT" (Central Andean Uplift and the Geodynamics of High Topography) and the 40 station NSF- Geophysics funded "PULSE" array (PerU Lithosphere and Slab Experiment). Our new earthquake locations provide an improved insight about the geometry of subducting Nazca slab and also put an upper bound on the thickness of overriding lithosphere. Obvious clustering of intermediate depth earthquakes suggests strong and localized release of tectonic stress in the slab at ~15.5oS. The seismic section drawn from the precisely located slab events provide a better idea about the lateral variations of the slab geometry and the geometry of asthenoshperic corner flow to help understand its geodynamic effect on the lithospheric delamination or ablative subduction process. . Focal mechanisms of the slab events are helpful in understanding the stress state of the

  1. Comparing reconstructed Pleistocene equilibrium-line altitudes in the tropical Andes of central Peru

    NASA Astrophysics Data System (ADS)

    Ramage, Joan M.; Smith, Jacqueline A.; Rodbell, Donald T.; Seltzer, Geoffrey O.

    2005-10-01

    Glacier equilibrium-line altitude (ELA), and the difference between modern and palaeo-ELA can be interpreted as a proxy for climate change. One issue in ELA reconstruction is that different methods of ELA reconstruction may produce a range of results for the same palaeoglacier. When a range of methods is used to reconstruct ELAs across a region, resulting variations may be related to the method rather than the past climate. Palaeoclimatic interpretation of ELAs that were reconstructed by different methods may prompt spurious inferences if the ELA range is the result of methodological differences rather than climatic variation. We address the relationship and degree of variation between methods by comparing terminus-to-headwall-altitude ratio (THAR), accumulation-area ratio (AAR), and accumulation-area balance ratio (AABR) methods for palaeoglaciers in four valleys in the tropical Andes. Valleys in the eastern cordillera of the Peruvian Andes bordering the Junin Plain (11° S, 76° W, ca. 4100 m a.s.l.) are presently ice-free but were glaciated repeatedly during the Pleistocene. We use a combination of 90-m shuttle radar topography mission (SRTM) data, 15-m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data, and 1:25 000 topographic maps to reconstruct ELAs. Within each of three groups of moraines, map-based THAR and AABR estimates of ELA tend to be highest, followed by DEM-derived THAR ELAs, with AAR-reconstructed ELAs somewhat lower in this region. ELA estimates for the local Last Glacial Maximum (LLGM) range from ca. 4250 to 4570 m a.s.l., with ELAs of ca. -220 to -550 m (depending on valley and method used). Within individual valleys, ELAs for the same palaeoglaciers calculated by different methods vary by +/- 100 m. ELAs of the LLGM glaciers and those of the largest glaciers to occupy the Junin valleys (> 65 ka) are not markedly different from each other, regardless of the method used in their calculation, which is largely a reflection

  2. Style, rate and pattern of erosion on stratovolcanoes and ignimbrite surfaces in the Central Andes

    NASA Astrophysics Data System (ADS)

    Karátson, D.; Telbisz, T.; Székely, B.; Wörner, G.

    2009-04-01

    In our work, erosion of active and extinct (Holocene to Miocene)stratovolcanoes (18-24° and 70-67° W) and various-aged (22-2 Ma old) ignimbrite surfaces (16-20° deg S, 72-69° W) of the Central Andes in Peru-Chile-Bolivia-Argentina have been studied by DEM analysis. Starting from the SRTM data base, we created various maps including slope, ridge and aspect maps, in order to see how erosion operates with time and what kinds of erosion pattern result. Style and pattern of erosion of Central Andean stratovolcanoes strongly depend on climate, elevation and latitudinal position. Valley development, enhanced by episodic glaciations, play a key role in the typical evolutionary scheme of stratocones. We can distinguish crater-topped active volcano, cone-shaped volcano with initial planezes without crater or enlarged erosion crater (depending on the presence or absence of glaciation), remnant cone with well-developed planezes at the periphery, and a final "valley-stage" where headward erosion of large valleys result in a flat-topped, lowered cone. These stages can be quantified by morphometric variables such as ridge pattern analysis, surface roughness, cone shape ratios, etc. Original landforms can be reliably reconstructed by using planeze remnants that can survive in the long term especially under arid climates. Missing volumes of valleys and eroded summit help to calculate erosion rates of stratovolcanoes. Valley incision and landscape evolution can also be studied quantitatively on large ignimbrite sheets, that are especially well-preserved along the arid to hyperarid Western Andean Escarpment. At these areas, long-term landscape evolution include gully incision (parasol ribbing), quebrada retreatment by sapping and headward erosion, as well as large-volume landslides, all these types controlled by episodic, long-term uplift and various climates in the Central Andes during the past 20 Ma. Valley volumes can be calculated by using ridge pattern and restored valley

  3. Observations and models of ground deformation from the PLUTONS Project: Lazufre and Uturuncu, Central Andes

    NASA Astrophysics Data System (ADS)

    Henderson, S. T.; Pritchard, M. E.; Elliott, J.; Del Potro, R.; Delgado, F.

    2014-12-01

    The Central Andes Volcanic Zone (CVZ, 14°-28°S) is one of three distinct arc segments the Nazca-South America subduction system. In comparison to the Northern and Southern segments, the CVZ contains approximately 40% of volcanoes active during the Holocene, but less than 20% of documented eruptions. It is therefore surprising that synoptic geodetic observations since 1992 have so far revealed half of the 20 known uplifting volcanoes in the Andes are in the CVZ. Furthermore, an especially high concentration of Miocene ignimbrite deposits (> 10,000 km^3) suggests that in the past large volumes of eruptible magma traversed the crust in this region. We utilize geodetic modeling to address the following questions: What are physically plausible depths, geometries, volumes, and transport mechanisms of intrusions? What are the conditions for plutonism versus volcanism in the CVZ? Our modeling efforts are focused on two of the spatially largest (>2,000 km^2) volcanic uplift events observed globally (Lazufre and Uturuncu). We present a synthesis of InSAR, continuous GPS, and campaign GPS (collected from a small network of sites around Lazurfre in Nov. 2011 and March 2014). New InSAR processing of Envisat ScanSAR (09/2003 - 11/2009), ALOS (02/2007 - 02/2011), and TSX (04/2008 - 07/2014) confirm continued Lazufre uplift rates of approximately 3 cm/yr. Neither TSX data (06/2012 - 07/2014), nor two continuous GPS sites on and around Uturuncu show evidence of continued 1 cm/yr vertical motion since the sites were installed in April 2010. Analytic elastic models of uplift suggest intrusions accumulate in reservoirs in the mid-to-upper crust at both volcanic centers. However, peripheral subsidence at Uturuncu and observations of an extensive low velocity zone motivate the exploration of alternative realistic models that consider the influence of a feeder reservoir in the lower crust and heterogeneous crustal structure. The dual-reservoir model provides a first-order estimate of

  4. Diatom Assemblages on Lacustrine Sediments from the Tropical Andes, Southern Peru: Modern Analogs for Ancient Environments

    NASA Astrophysics Data System (ADS)

    Tapia, P. M.; Vargas, J.; Beal, S. A.; Stroup, J. S.; Kelly, M. A.

    2012-12-01

    Diatom analysis of surface sediments from 17 high-altitude lakes (~3,100-5,000 m asl) in the Cuzco area, Peru, reveals several potential environmental settings that have been observed in biostratigraphy records from lakes in the tropical Andes. The sedimentation rates in several lakes from this area range between 1 and 1.6 mm yr-1 during the late Quaternary, thus we assume our surface samples represent conditions spanning from 6 to 10 years for the top 1cm. Physical and chemical analysis show a high variability in water depth (0.5-12.3 m), pH (7.5-9.7), temperature (4.6-16.5 °C) and conductivity (5.6-3205 μS cm -1), as well as cationic (Na+, K+, Mg2+, Ca2+, Al3+, Mn3+, Fe3+) and anionic (F-, Cl-, Br-, SO42-) composition. Most of the lakes were oligotrophic (PO43-and NO32- below limit of detection) with the exception of nitrite. Principle Component Analysis suggests that the sites follows a strong gradient in conductivity + anions & cations (Axis 1, explaining 51.61 % of variance), and pH + water depth (Axis 2, 17.36 %). Diatoms are quite abundant (108-1010 valves g dry sed-1) in these samples, indicating oligotrophic to mesotrophic conditions and fresh to brackish waters, sometimes forming almost monospecific associations. Applications of these assemblages may be found in the Lake Junin, Central Peruvian Andes. The high abundance (92%) of the pennate diatom Denticula elegans from Site PLS-9 is similar at the Junin Biozone JU-3 that covers most of the Holocene. This species prospers in shallow (1.3-m), high conductivity (3205 μS cm-1) and alkaline (pH 9.39) waters with high values in Ca, Mg and sulfate. Similarly, the dominance (95%) of the centric diatom Discotella stelligera at Site PLS-8 resemble Biozone JU-2, ~17,000 cal yr BP, with deeper (10.9 m), lower conductivity (48.8 μS cm-1) and slightly-alkaline (pH 7.82) waters, with at least 2 orders of magnitude lower in chemical parameters than Site PLS-9. These findings encourage the survey of additional modern

  5. Interseismic coupling and seismic potential along the Central Andes subduction zone

    NASA Astrophysics Data System (ADS)

    Chlieh, Mohamed; Perfettini, Hugo; Tavera, Hernando; Avouac, Jean-Philippe; Remy, Dominique; Nocquet, Jean-Mathieu; Rolandone, FréDéRique; Bondoux, Francis; Gabalda, Germinal; Bonvalot, Sylvain

    2011-12-01

    We use about two decades of geodetic measurements to characterize interseismic strain build up along the Central Andes subduction zone from Lima, Peru, to Antofagasta, Chile. These measurements are modeled assuming a 3-plate model (Nazca, Andean sliver and South America Craton) and spatially varying interseismic coupling (ISC) on the Nazca megathrust interface. We also determine slip models of the 1996 Mw = 7.7 Nazca, the 2001 Mw = 8.4 Arequipa, the 2007 Mw = 8.0 Pisco and the Mw = 7.7 Tocopilla earthquakes. We find that the data require a highly heterogeneous ISC pattern and that, overall, areas with large seismic slip coincide with areas which remain locked in the interseismic period (with high ISC). Offshore Lima where the ISC is high, a Mw˜8.6-8.8 earthquake occurred in 1746. This area ruptured again in a sequence of four Mw˜8.0 earthquakes in 1940, 1966, 1974 and 2007 but these events released only a small fraction of the elastic strain which has built up since 1746 so that enough elastic strain might be available there to generate a Mw > 8.5 earthquake. The region where the Nazca ridge subducts appears to be mostly creeping aseismically in the interseismic period (low ISC) and seems to act as a permanent barrier as no large earthquake ruptured through it in the last 500 years. In southern Peru, ISC is relatively high and the deficit of moment accumulated since the Mw˜8.8 earthquake of 1868 is equivalent to a magnitude Mw˜8.4 earthquake. Two asperities separated by a subtle aseismic creeping patch are revealed there. This aseismic patch may arrest some rupture as happened during the 2001 Arequipa earthquake, but the larger earthquakes of 1604 and 1868 were able to rupture through it. In northern Chile, ISC is very high and the rupture of the 2007 Tocopilla earthquake has released only 4% of the elastic strain that has accumulated since 1877. The deficit of moment which has accumulated there is equivalent to a magnitude Mw˜8.7 earthquake. This study thus

  6. Intra- and interspecific tree growth across a long altitudinal gradient in the Peruvian Andes.

    PubMed

    Rapp, Joshua M; Silman, Miles R; Clark, James S; Girardin, Cecile A J; Galiano, Darcy; Tito, Richard

    2012-09-01

    Tree growth response across environmental gradients is fundamental to understanding species distributional ecology and forest ecosystem ecology and to predict future ecosystem services. Cross-sectional patterns of ecosystem properties with respect to climatic gradients are often used to predict ecosystem responses to global change. Across sites in the tropics, primary productivity increases with temperature, suggesting that forest ecosystems will become more productive as temperature rises. However, this trend is confounded with a shift in species composition and so may not reflect the response of in situ forests to warming. In this study, we simultaneously studied tree diameter growth across the altitudinal ranges of species within a single genus across a geographically compact temperature gradient, to separate the direct effect of temperature on tree growth from that of species compositional turnover. Using a Bayesian state space modeling framework we combined data from repeated diameter censuses and dendrometer measurements from across a 1700-m altitudinal gradient collected over six years on over 2400 trees in Weinmannia, a dominant and widespread genus of cloud forest trees in the Andes. Within species, growth showed no consistent trend with altitude, but higher-elevation species had lower growth rates than lower-elevation species, suggesting that species turnover is largely responsible for the positive correlation between productivity and temperature in tropical forests. Our results may indicate a significant difference in how low- and high-latitude forests will respond to climate change, since temperate and boreal tree species are consistently observed to have a positive relationship between growth and temperature. If our results hold for other tropical species, a positive response in ecosystem productivity to increasing temperatures in the Andes will depend on the altitudinal migration of tree species. The rapid pace of climate change, and slow observed

  7. Limb sounders tracking topographic gravity wave activity from the stratosphere to the ionosphere around midlatitude Andes

    NASA Astrophysics Data System (ADS)

    Alexander, P.; Torre, A.; Schmidt, T.; Llamedo, P.; Hierro, R.

    2015-10-01

    Several studies have shown that the surroundings of the highest Andes mountains at midlatitudes in the Southern Hemisphere exhibit gravity waves (GWs) generated by diverse sources which may traverse the troposphere and then penetrate the upper layers if conditions are favorable. There is a specific latitude band where that mountain range is nearly perfectly aligned with the north-south direction, which favors the generation of wavefronts parallel to this orientation. This fact may allow an optimization of procedures to identify topographic GW in some of the observations. We analyze data per season to the east and west of these Andes latitudes to find possible significant differences in GW activity between both sectors. GW effects generated by topography and convection are expected essentially on the eastern side. We use satellite data from two different limb sounding methods: the Global Positioning System radio occultation (RO) technique and the Sounding of the Atmosphere using Broadband Emission Radiometry instrument, which are complementary with respect to the height intervals, in order to study the effects of GW from the stratosphere to the ionosphere. Activity becomes quantified by the GW average potential energy in the stratosphere and mesosphere and by the electron density variance content in the ionosphere. Consistent larger GW activity on the eastern sector is observed from the stratosphere to the ionosphere (night values). However, this fact remains statistically significant at the 90% significance level only during winter, when GWs generated by topography dominate the eastern sector. On the contrary, it is usually assumed that orographic GWs have nearly zero horizontal phase speed and will therefore probably be filtered at some height in the neutral atmosphere. However, this scheme relies on the assumption that the wind is uniform and constant. Our results also suggest that it is advisable to separate night and day cases to study GWs in the ionosphere, as

  8. Morphostructural Analysis of an Escape Tectonic Zone : the North-Western Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    Dhont, D.; Backe, G.; Hervouet, Y.; Niviere, B.

    2004-12-01

    Lateral motions in active collisional areas have been mainly described in the Asian and European belts. The most common view is that part of the intracontinental convergence between to plates is accommodated by major strike-slip faults bounding a lithospheric block that laterally moves away. This process, privileging horizontal compressional forces at boundaries of the moving block corresponds to an extrusion or escape of the continental landmass. Diffuse extensional deformation within the block implies that buoyancy forces, leading eventually to an extensional collapse, must be taken into account. Escape of the block is perpendicular to the convergence direction of the orogen and can only occur if a free lateral boundary exists. Our study concerns the analysis of the deformation in the northwestern part of the Venezuelan Andes, located in the northern part of South America. It is based on analysis of satellite and Digital Elevation Model imagery, complemented by field structural observations. We shall describe new tectonic features advocating that part of the belt is subjected to lateral escape tectonics during the Plio-Quaternary. The zone displays major active faults forming crustal blocks having a triangular shape pattern, and which are moving toward the north-east. The triangular corners are composed of smaller pluri-kilometre size crustal blocks bounded by normal faults. A major result is that in an area characterized by on-going intracontinental convergence, extension and strike-slip deformations predominate. In order to better constrain the depth of the deformation, we have generated a 3-D geologic model displaying the seismicity the area showing that the earthquakes are mainly restricted to the crust. The type and distribution of the deformation are not consitent with the behaviour of a simple rigid extrusion. The Venezuelan Andes are rather composed of crustal blocks that are tilted and move relative to each others. This is consistent with extensional

  9. The Basement of the Andes: the Gondwana-Laurentia Connections Revisited

    NASA Astrophysics Data System (ADS)

    Ramos, V. A.

    2009-05-01

    The research performed in the last decade in the basement of the Andes have shown that the Precambrian and Paleozoic rocks have recorded a series of igneous and metamorphic events through time. These episodes can be grouped in discrete orogenic events, which have different paleogeographic distribution and intensity. The first and most important orogenic event is widely distributed along the margin and correspond to the Sunsas-Grenville orogen. Evidence of metamorphism and associated magmatic rocks are found from Colombia to the southernmost Patagonia. This episode produced the amalgamation of Amazonia, Pampia and Patagonia, among other cratonic blocks, to form Rodinia. The Rodinia break-up leaved several cratonic blocks accreted in the Gondwana side, such as Marañón, Arequipa, and Antofalla, although the generalized extension of this period produced crustal attenuation, rifted basins, and limited oceanic realms during late Proterozoic times. The Brasiliano-Pampean orogeny reamalgamated these blocks against the Gondwana margin. A new episode of break-up produced the dispersal of several Gondwanian blocks, separation along some previous sutures, crustal attenuation and magmatism in Late Cambrian times, until the new amalgamation occurred in Middle Late Ordovician times. These processes led to the Famatinian orogeny when metamorphism and arc magmatism was widely spread along the continental margin, as seen in Chibcha, Marañón, Arequipa and Sierras Pampeanas. Besides the re-accretion of some parautochthonous terranes, new exotic blocks were derived from Laurentia, such as the Cuyania terrane, which finally collided against the Andean proto-margin at ~ 460 Ma to form the Argentine Precordillera and surrounding regions. Late accretion in Early to Middle Devonian times of Chilenia and related terranes formed most of the basement of Central Andes. Final collision between Laurentia and Gondwana in the Late Carboniferous - Early Permian times to form the Alleghanides

  10. Methane fluxes from a wet puna ecosystem in the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Diem, Torsten; Priscila Huaraca Quispe, Lidia; Quispe Ccahuana, Adan Julian; Meir, Patrick; Arn Teh, Yit

    2014-05-01

    Discrepancies exist between top-down and bottom-up estimates of the tropical South American atmospheric methane budget. This suggests that current source-sink inventories fail to adequately characterise the landscapes of the region. This may be particularly true of Andean environments where very few field observations have been made. The high tropical Andes, between tree and permanent snow-lines, is home to diverse grass, shrub and giant rosette dominated ecosystems known variously from Venezuela to northern Chile and Argentina as paramo, jalca and puna. In humid regions these are characterised by wet, organic-rich mineral soils, peat-forming wetlands and shallow lakes. Such conditions are likely to promote methane production and potentially represent a regionally significant source to the atmosphere that should be considered. We report on methane fluxes from a bunch-grass dominated puna habitat at 3500 m above sea level in south-eastern Peru. Mean annual temperature and precipitation are 11 °C and 2500 mm, respectively. Temperature is aseasonal but experiences considerable diurnal variations with overnight frosting common-place. In contrast, rainfall is intensely episodic and has a pronounced wet season between September and March. Sampling encompassed a range of topographic features, such as grassland on freely draining, gently inclined or steep slopes and depressions containing bogs, over a 3 ha ridge to basin transition. Monthly sampling was carried out between January 2011 and June 2013 to investigate seasonal variability in methane fluxes. Intensive sampling campaigns were conducted to investigate spatial and short-term variations on a daily basis in two nine-day campaigns during wet and dry season. The site was a net source of methane to the atmosphere during the period of study. Methane fluxes were dominated by emissions from bogs, whereas, freely draining grassland exhibited weak source or marginal sink activity. Temporal variations were most notable at

  11. Magnetic signatures of the orogenic crust of the Patagonian Andes with implication for planetary exploration

    NASA Astrophysics Data System (ADS)

    Díaz Michelena, Marina; Kilian, Rolf

    2015-11-01

    The Patagonian Andes represent a good scenario of study because they have outcrops of diverse plutonic rocks representative of an orogenic crust on Earth and other planets. Furthermore, metamorphic surface rocks provide a window into deeper crustal lithologies. In such remote areas, satellite and aerial magnetic surveys could provide important geological information concerning exposed and not exposed rocks, but they integrate the magnetic anomalies in areas of kilometres. For the southernmost Andes long wavelength satellite data show clear positive magnetic anomalies (>+100 nT) for the Patagonian Batholith (PB), similar as parts of the older martian crust. This integrated signal covers regions with different ages and cooling histories during magnetic reversals apart from the variability of the rocks. To investigate the complex interplay of distinct magnetic signatures at short scale, we have analysed local magnetic anomalies across this orogen at representative sites by decimeter-scale magnetic ground surveys. As expected, the investigated sites have positive and negative local anomalies. They are related to surface and subsurface rocks, and their different formation and alternation processes including geomagnetic inversions, distinct Curie depths of the magnetic carriers, intracrustal deformation among other factors. Whole rock chemistry (ranging from 45 to >80 wt.% SiO2 and from 1 to 18 wt.% FeOtot.), magnetic characteristics (susceptibilities, magnetic remanence and Königsberger ratios) as well as the composition and texture of the magnetic carriers have been investigated for representative rocks. Rocks of an ultramafic to granodioritic intrusive suite of the western and central PB contain titanomagnetite as major magnetic carrier. Individual magnetic signatures of these plutonic rocks reflect their single versus multidomain status, complex exolution processes with ilmenite lamella formations and the stoichiometric proportions of Cr, Fe and Ti in the oxides. At

  12. Future runoff from glacierized catchments in the Central Andes could substantially decrease

    NASA Astrophysics Data System (ADS)

    Kronenberg, Marlene; Schauwecker, Simone; Huggel, Christian; Salzmann, Nadine; Drenkhan, Fabian; Frey, Holger; Giráldez, Claudia; Gurgiser, Wolfgang; Kaser, Georg; Suarez, Wilson; García Hernández, Javier; Fluixá-Sanmartín, Javier; Ayros, Edwin; Rohrer, Mario

    2016-04-01

    In Peru, about 50% of the energy is produced from hydropower plants. An important amount of this energy is produced with water from glaciated catchments. In these catchments river streamflow is furthermore needed for other socio-economic activities such as agriculture. However, the amount and seasonality of water from glacial melt is expected to undergo strong changes. As glaciers are projected to further decline with continued warming, runoff will become more and more sensitive to possible changes in precipitation patterns. Moreover, as stated by a recent study (Neukom et al., 2015), wet season precipitation sums in the Central Andes could decrease up to 19-33 % by the end of the 21st century compared to present-day conditions. Here, we investigate future runoff availability for selected glacierized catchments in the Peruvian Andes. In a first step, we apply a simplified energy balance and runoff model (ITGG-2.0-R) for current conditions. Thereafter, we model future runoff for different climate scenarios, including the possibility of strongly reduced precipitation. Preliminary findings indicate (i) changes in the seasonal distribution of runoff and (ii) significant reductions of the annual runoff in future for the mentioned scenario with significant precipitation decreases. During early phases of glacier recession, melt leads to increased runoff - respectively compensates for the precipitation reduction in the corresponding scenario - depending on the fraction of catchment glaciation. Glaciers are acting as natural water reservoirs and may buffer the decreasing precipitation in glacierized catchments for a limited period. However, strongly reduced precipitation will have noticeable consequences on runoff, particularly when glacier melt contribution gets smaller and finally is completely missing. This will have consequences on the water availability for hydropower production, agriculture, mining and other water uses. Critical conditions may emerge in particular

  13. Preliminary Results From the CAUGHT Experiment: Investigation of the North Central Andes Subsurface Using Receiver Functions and Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Ryan, J. C.; Ward, K. M.; Porter, R. C.; Beck, S. L.; Zandt, G.; Wagner, L. S.; Minaya, E.; Tavera, H.

    2011-12-01

    Jamie Ryan, Kevin M. Ward, Ryan Porter, Susan Beck, George Zandt, Lara Wagner, Estela Minaya, and Hernando Tavera The University of Arizona The University of North Carolina San Calixto Observatorio, La Paz, Bolivia IGP, Lima, Peru In order to investigate the interplay between crustal shortening, lithospheric removal, and surface uplift we have deployed 50 broadband seismometers in northwestern Bolivia and southern Peru as part of the interdisciplinary Central Andean Uplift and Geodynamics of High Topography (CAUGHT) project. The morphotectonic units of the central Andes from west to east, consist of the Western Cordillera, the active volcanic arc, the Altiplano, an internally drained basin (~4 km elevation), the Eastern Cordillera, the high peaks (~6 km elevation) of an older fold and thrust belt, the Subandean zone, the lower elevation active fold and thrust belt, and the foreland Beni basin. Between northwestern Bolivia and southern Peru, the Altiplano pinches out north of Lake Titicaca as the Andes narrow northward. The CAUGHT seismic instruments were deployed between 13° to 18° S latitudes to investigate the crust and mantle lithosphere of the central Andes in this transitional zone. In northwest Bolivia, perpendicular to the strike of the Andes, there is a total of 275 km of documented upper crustal shortening (15° to 17°S) (McQuarrie et al, 2008). Associated with the shortening is crustal thickening and possibly lithospheric removal as the thickening lithospheric root becomes unstable. An important first order study is to compare upper crustal shortening estimates with present day crustal thickness. To estimate crustal thickness, we have calculated receiver functions using an iterative deconvolution method and used common conversion point stacking along the same profile as the geologically based shortening estimates. In our preliminary results, we observed a strong P to S conversion corresponding to the Moho at approximately 60-65 km depth underneath the

  14. The location of tropical precipitation in idealized atmospheric general circulation models forced with andes topography and surface heat fluxes

    NASA Astrophysics Data System (ADS)

    Maroon, Elizabeth Allison

    This aquaplanet modeling study examines how ocean heat transport (OHT) and topography influence the location of tropical precipitation. Two global atmospheric general circulation models from the GFDL hierarchy of models are used to test how the atmosphere responds to the same forcing. One model (GRaM) has simplified (gray) radiation and lacks cloud and water vapor feedbacks, while the other model (AM2) has more complex radiation, cloud processes, and feedbacks; both atmospheric models are coupled to a slab ocean. In both models, adding an Andes-like mountain range or adding realistic Andes topography regionally displaces rainfall from the equator into the northern hemisphere, even when wind-evaporation feedback is disabled. The relative importance of the Andes to the asymmetric hemispheric heating of the atmosphere by ocean transport is examined by including idealized and realistic zonally-averaged surface heat fluxes (also known as q-fluxes) to the slab ocean. A hemispherically asymmetric q-flux displaces the tropical rainfall toward the hemisphere receiving the greatest heating by the ocean. In the zonal mean, the displacement of rainfall from the equator is greater in simulations with a realistic q-flux than with realistic Andes topography. Simulations with both a q-flux and topography show that the rainfall in the vicinity of the mountains is displaced slightly farther to the north in the region 50 (120) degrees to the west of the Andes in simulations using the GRaM (AM2) model than in simulations that only have a q-flux. In both models, the displacement of precipitation is always into the hemisphere receiving the greatest ocean heating, but the displacements in the simulations using the AM2 model are greater than those using GRaM. The output in GRaM shows that the atmospheric energy transport (AET) under-responds to a given OHT, while the cloud and radiative feedbacks active in AM2 result in an overcompensation of the AET. As a result, experiments using the AM

  15. The Understanding of Astronomy Concepts by Students from Basic Education of a Public School. (Spanish Title: El Entendimiento de Conceptos de Aastronmía Por Los Alumnos de Educación Básica en Una Escuela Pública.) O Entendimento de Conceitos de Astronomia Por Alunos da Educação Básica: O Caso de Uma Escola Pública Brasileira

    NASA Astrophysics Data System (ADS)

    Iria Machado, Daniel; dos Santos, Carlos

    2011-07-01

    We present the results obtained in a research on the comprehension of basic astronomical concepts, in which 561 students from fifth grade middle school to third grade high school of a public school of the city of Foz do Iguaçu (Brazil) took part. A test with 20 multiple-choice questions was applied to indentify the most common conceptions expressed by the students. This test was elaborated based on the literature about misconceptions and covered the following topics: the day-night cycle; the time zones; the seasons of the year; the phases of the Moon; the movement of the Moon; the apparent movement of the Sun in the celestial sphere; the eclipses; the dimensions and distances in the Universe; the brightness of the stars and its observation from Earth. Though a small progress was verified in the proportion of scientifically acceptable answers when comparing the eighth grade of middle school to the fifth, and the third grade of high school to the first, there was an overall predominance of alternative conceptions regarding most of the explored subjects, which persisted up to the last year of secondary school. The comparison to data found in this research made in other socio-cultural contexts revealed, in many aspects, similar notions and difficulties revealed by the students. Se presentan los resultados de una investigación sobre la comprensión de conceptos astronómicos básicos, en la cual participaron 561 estudiantes que cursaban entre el quinto grado de la enseñanza primaria y el tercer año de la enseñanza secundaria de una escuela pública de la ciudad de Foz do Iguaçu (Brasil). Se utilizó un test de 20 preguntas de opción múltiple para identificar las concepciones más comunes expresadas por los estudiantes. Este instrumento de recolección de datos se desarrolló en base a la literatura sobre las concepciones alternativas y trató los siguientes temas: el ciclo día-noche, los husos horarios, las estaciones del año, las fases de la Luna, el

  16. La implantacion del enfoque constructivista en el aula de ciencia: Estudio de caso multiple

    NASA Astrophysics Data System (ADS)

    Arroyo Betancourt, Luz I.

    Esta investigacion estudia la implantacion del enfoque constructivista en tres aulas de ciencia del contexto puertorriqueno. Se auscultaron las practicas educativas que utilizan maestras consideradas constructivistas y la correspondencia de sus practicas educativas con los elementos esenciales de la didactica que proponen los teoricos de los planteamientos constructivistas. Se ausculto, ademas, a que vision del enfoque constructivista responden las expresiones de las maestras acerca de su practica educativa y como compara con su quehacer, a la luz de los elementos esenciales de las visiones constructivistas piagetiana, social y radical. Se utilizo el diseno de estudio descriptivo de caso multiple. El estudio se baso en entrevistas a profundidad, revision de documentos y observacion no participativa a la sala de clases. El contexto fueron tres escuelas publicas de la Region Educativa de San Juan, una elemental, una intermedia y una superior. Los resultados confirmaron que la transicion hacia el enfoque constructivista es un proceso que toma tiempo, dedicacion y la participacion en adiestramientos y readiestramientos acerca del nuevo enfoque. Las maestras coinciden en la mayoria de las practicas educativas que utilizan para implantar el enfoque constructivista de ensenanza y difieren en algunas debido, probablemente, a que han tenido que adaptarlas a los correspondientes niveles de ensenanza: elemental, intermedio y superior. Dos de las maestras planifican por conceptos generadores, mientras que una de ellas planifica siguiendo la guia que recibe del Departamento de Educacion. Difieren ademas, en el enfasis que confieren al inquirir cientifico. Con relacion a la correspondencia entre la vision manifestada por las maestras a la luz de las visiones piagetiana, social y radical, aparentemente, las preguntas del protocolo de entrevistas no lograron evocar la informacion con suficiente profundidad, por lo que la investigadora tuvo que inferir las visiones de las

  17. La masa de los grandes impactores

    NASA Astrophysics Data System (ADS)

    Parisi, M. G.; Brunini, A.

    Los planetas han sido formados fundamentalmente acretando masa a través de colisiones con planetesimales sólidos. La masa más grande de la distribución de planetesimales y las masas máxima y mínima de los impactores, han sido calculadas usando los valores actuales del período y de la inclinación de los planetas (Lissauer & Safronov 1991; Parisi & Brunini 1996). Recientes investigaciones han mostrado, que las órbitas de los planetas gigantes no han sufrido variaciones con el tiempo, siendo su movimiento regular durante su evolución a partir de la finalización de la etapa de acreción (Laskar 1990, 1994). Por lo tanto, la eccentricidad actual de los planetas gigantes se puede utilizar para imponer una cota máxima a las masas y velocidades orbitales de los grandes impactores. Mediante un simple modelo dinámico, y considerando lo arriba mencionado, obtenemos la cota superior para la masa del planetesimal más grande que impactó a cada planeta gigante al final de su etapa de acreción. El resultado más importante de este trabajo es la estimación de la masa máxima permitida para impactar a Júpiter, la cúal es ~ 1.136 × 10 -1, siendo en el caso de Neptuno ~ 3.99 × 10 -2 (expresada en unidades de la masa final de cada planeta). Además, fue posible obtener la velocidad orbital máxima permitida para los impactores como una función de su masa, para cada planeta. Las cotas obtenidas para la masa y velocidad de los impactores de Saturno y Urano (en unidades de la masa y velocidad final de cada planeta respectivamente) son casi las mismas que las obtenidas para Júpiter debido a que estos tres planetas poseen similar eccentricidad actual. Nuestros resultados están en buen acuerdo con los obtenidos por Lissauer & Safronov (1991). Estas cotas podrían ser utilizadas para obtener la distribución de planetesimales en el Sistema Solar primitivo.

  18. Late Tertiary northwestward-vergent thrusting in Valle del Cauca, Colombian Andes

    SciTech Connect

    Alfonso, C.A.; Sacks, P.E.; Secor, D.T. Jr.; Cordoba, F.

    1989-03-01

    The Valle del Cauca is a topographic basin situated between the Cordillera Central and the Cordillera Occidental in the Colombian Andes. The basement is Mesozoic mafic igneous rock of the Volcanic and Amaime Formations and clastic sediments and chert of the Espinal and Cisneros Formations. The basement was intruded by middle Cretaceous granodiorites (including the Batolito de Buga) and was deformed and metamorphosed to greenschist facies. The Mesozoic rocks originated in an oceanic setting and were accreted to northwestern South America during the Cretaceous or early Tertiary. Unconformably overlying the Mesozoic basement are the Eocene and Oligocene Vijes (marine limestone) and Guachinte and Cinta de Piedra (fluvial and deltaic sandstone and mudstone). In the Cordillera Central, the Cinta de Piedra is unconformably overlain by fanglomerate of the Miocene La Paila Formation. These clastics coarsen and thicken eastward. Geologic mapping and structural analyses show that the Mesozoic basement and its Tertiary cover are faulted and folded. Folds are asymmetric and overturned westward. Faults dip at shallow to moderate angles to the east and carry older sedimentary or basement rocks westward over younger rocks.

  19. Tectonic geomorphology of large normal faults bounding the Cuzco rift basin within the southern Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Byers, C.; Mann, P.

    2015-12-01

    The Cuzco basin forms a 80-wide, relatively flat valley within the High Andes of southern Peru. This larger basin includes the regional capital of Cuzco and the Urubamba Valley, or "Sacred Valley of the Incas" favored by the Incas for its mild climate and broader expanses of less rugged and arable land. The valley is bounded on its northern edge by a 100-km-long and 10-km-wide zone of down-to-the-south systems of normal faults that separate the lower area of the down-dropped plateau of central Peru and the more elevated area of the Eastern Cordillera foldbelt that overthrusts the Amazon lowlands to the east. Previous workers have shown that the normal faults are dipslip with up to 600 m of measured displacements, reflect north-south extension, and have Holocene displacments with some linked to destructive, historical earthquakes. We have constructed topographic and structural cross sections across the entire area to demonstrate the normal fault on a the plateau peneplain. The footwall of the Eastern Cordillera, capped by snowcapped peaks in excess of 6 km, tilts a peneplain surface northward while the hanging wall of the Cuzco basin is radially arched. Erosion is accelerated along the trend of the normal fault zone. As the normal fault zone changes its strike from east-west to more more northwest-southeast, normal displacement decreases and is replaced by a left-lateral strike-slip component.

  20. [Breastfeeding, complimentary feeding practices and childhood malnutrition in the Bolivian Andes].

    PubMed

    Cruz Agudo, Yesmina; Jones, Andrew D; Berti, Peter R; Larrea Macías, Sergio

    2010-03-01

    Northern Potosi is one of the poorest parts of Bolivia with the highest indicators of rural poverty, malnutrition and food insecurity in the Bolivian Andes. The objective of this research was to characterize the levels of malnutrition and describe infant feeding practices in Potosi, Bolivia and use this information to develop an effective, gender sensitive and culturally relevant intervention encouraging good infant feeding practices. Standard methods were used to collect anthropometric data. Weight and height data were collected for 400 children under five years of age from 30 communities. In six of these communities, interviews and focus group discussions were conducted with 33 mothers and other families in addition to household observational data that were collected to describe infant feeding practices. Nearly 20% of children were underweight; stunting was widespread as well. 38% of mothers initiated breastfeeding 12 hours or more after birth. 39% of mothers initiated complementary feeding in the first three months following birth. The type of complementary food given to children was usually inadequate. With this research we could see that nutritional deficiencies often begin when the mother starts breastfeeding and when first introduced complementary feeding. Interventions aimed at improving maternal and child nutrition will require changes in parents' behavior, greater recognition and community support of the importance of child feeding, and the inclusion of strategies to reach young people, involve men, and make high quality nutrition promotion more widely available in the communities.

  1. Warm Storms Associated with Avalanches Hazard and Floods in the Andes Mountains

    NASA Astrophysics Data System (ADS)

    Vergara, J.

    2003-04-01

    Rain-on-snow events produce avalanches of different magnitude depending on the snowpack properties, air temperatures and rain intensities. Winter storms in this mountain range typically have rain/snow levels between 1000 and 2200 m. above sea level, but warm storms with higher rain/snow of to 3000 m. above sea level. occur in extreme winters and have the potential to generate rain on snow floods and wet-snow avalanches. For example, the flood of June 29 of 2000 occurred after one of extremely wet June of the last 40 years were snowfall was 991cm in the Aconcagua Valley. Infrequently storms activity generated a huge snowfall and rainfall over the Andes mountains on June of 2000 (1525mm in El Maule Valley) and the end of the unusually period, the flood was triggered by rising temperatures on the mountains and heavy rain (199mm in 24 hours) fall over the fresh snow on the morning of June 29 and floods wave developed and moved down along of the all river located on Central part of Chile, the foods peak was 2970.5m3/s on the El Maule basin in the morning of June 29. This paper studies the characteristics of warm storms the had the potential to generate wet-snow avalanches and floods.

  2. Distribution models and species discovery: the story of a new Solanum species from the Peruvian Andes.

    PubMed

    Särkinen, Tiina; Gonzáles, Paúl; Knapp, Sandra

    2013-01-01

    A new species of Solanum sect. Solanum from Peru is described here. Solanum pseudoamericanum Särkinen, Gonzáles & S.Knapp sp. nov. is a member of the Morelloid clade of Solanum, and is characterized by the combination of mostly forked inflorescences, flowers with small stamens 2.5 mm long including the filament, and strongly exerted styles with capitate stigmas. The species was first thought to be restricted to the seasonally dry tropical forests of southern Peru along the dry valleys of Río Pampas and Río Apurímac. Results from species distribution modelling (SDM) analysis with climatic predictors identified further potential suitable habitat areas in northern and central Peru. These areas were visited during field work in 2013. A total of 17 new populations across the predicted distribution were discovered using the model-based sampling method, and five further collections were identified amongst herbarium loans. Although still endemic to Peru, Solanum pseudoamericanum is now known from across northern, central and southern Peru. Our study demonstrates the usefulness of SDM for predicting new occurrences of rare plants, especially in the Andes where collection densities are still low in many areas and where many new species remain to be discovered.

  3. Potato-associated arbuscular mycorrhizal fungal communities in the Peruvian Andes.

    PubMed

    Senés-Guerrero, Carolina; Torres-Cortés, Gloria; Pfeiffer, Stefan; Rojas, Mercy; Schüßler, Arthur

    2014-08-01

    The world's fourth largest food crop, potato, originates in the Andes. Here, the community composition of arbuscular mycorrhizal fungi (AMF) associated with potato in Andean ecosystems is described for the first time. AMF were studied in potato roots and rhizosphere soil at four different altitudes from 2,658 to 4,075 m above mean sea level (mamsl) and in three plant growth stages (emergence, flowering, and senescence). AMF species were distinguished by sequencing an approx. 1,500 bp nuclear rDNA region. Twenty species of AMF were identified, of which 12 came from potato roots and 15 from rhizosphere soil. Seven species were found in both roots and soil. Interestingly, altitude affected species composition with the highest altitude exhibiting the greatest species diversity. The three most common colonizers of potato roots detected were Funneliformis mosseae, an unknown Claroideoglomus sp., and Rhizophagus irregularis. Notably, the potato-associated AMF diversity observed in this Andean region is much higher than that reported for potato in other ecosystems. Potato plants were colonized by diverse species from 8 of the 11 Glomeromycota families. Identification of the AMF species is important for their potential use in sustainable management practices to improve potato production in the Andean region.

  4. Endocytic Pathways Used by Andes Virus to Enter Primary Human Lung Endothelial Cells

    PubMed Central

    Flint, Mike; Lin, Jin-Mann S.; Spiropoulou, Christina F.

    2016-01-01

    Andes virus (ANDV) is the major cause of hantavirus pulmonary syndrome (HPS) in South America. Despite a high fatality rate (up to 40%), no vaccines or antiviral therapies are approved to treat ANDV infection. To understand the role of endocytic pathways in ANDV infection, we used 3 complementary approaches to identify cellular factors required for ANDV entry into human lung microvascular endothelial cells. We screened an siRNA library targeting 140 genes involved in membrane trafficking, and identified 55 genes required for ANDV infection. These genes control the major endocytic pathways, endosomal transport, cell signaling, and cytoskeleton rearrangement. We then used infectious ANDV and retroviral pseudovirions to further characterize the possible involvement of 9 of these genes in the early steps of ANDV entry. In addition, we used markers of cellular endocytosis along with chemical inhibitors of known endocytic pathways to show that ANDV uses multiple routes of entry to infect target cells. These entry mechanisms are mainly clathrin-, dynamin-, and cholesterol-dependent, but can also occur via a clathrin-independent manner. PMID:27780263

  5. Atlantic Multidecadal Oscillation (AMO) forcing on the late Holocene Cauca paleolake dynamics, northern Andes of Colombia

    NASA Astrophysics Data System (ADS)

    Martínez, J. I.; Obrochta, S.; Yokoyama, Y.; Battarbee, R. W.

    2015-07-01

    The Atlantic Multidecadal Oscillation (AMO), is a major driving climate mechanism, in the eastern Caribbean Sea and the South Atlantic Ocean in relation to the dynamics of the South American Monsoon System (SAMS) for the late Holocene. Here we document the AMO signal in the San Nicolás-1 core of the Cauca paleolake (Santa Fé-Sopetrán Basin) in the northern Andes. Wavelet spectrum analysis of the gray scale of the San Nicolás-1 core provides evidence for a 70 yr AMO periodicity for the 3750 to 350 yr BP time interval, whose pattern is analogous to the one documented for the Cariaco Basin. This supports a possible correlation between enhanced precipitation and ENSO variability with a positive AMO phase during the 2000 to 1500 yr BP interval, and its forcing role on the Cauca ria lake deposits, which led to increased precipitation and to the transition from a igapo (black water) to a varzea (white water) environment ca. 3000 yr BP.

  6. SIR-B radar imagery of volcanic deposits in the Andes

    NASA Technical Reports Server (NTRS)

    Fielding, E. J.; Knox, W. J., Jr.; Bloom, A. L.

    1986-01-01

    Synthetic-aperture radar imagery from the Shuttle Imaging Radar - mission B (SIR-B) was collected in October 1984 over the central Andes between 20 deg S and 24 deg S and also south of 42 deg S. Despite signal-strength problems that drastically reduced the signal-to-noise ratio of the images, volcanic features of both areas show up well. In particular, ignimbrite sheets formed by large explosive eruptions stand out as very strong radar reflectors. High backscatter is apparently caused by erosional relief on the ignimbrites at scales ranging from the radar wavelength (23 cm for SIR-B) to the 30-200-m scale of quebradas (gullies and canyons). The consistent regional erosional pattern appears unrelated to the emplacement of the ignimbrites, and is probably caused by preferential eolian erosion in the directions of the prevailing wind. Hand-held space photographs, ground observations, and Landsat Thematic Mapper imagery support the interpretation of the ignimbrite radar signature. The Chilean volcano Michinmahuida was imaged by four radar data takes at different incidence angles, which show tectonic, glacial, and volcanic features of that nearly inaccessible and often cloud-covered region. Stereo viewing of radar images from two data takes greatly enhances the geologic interpretation of this rugged area.

  7. A phytosociological analysis and synopsis of the dry woodlands and succulent vegetation of the Peruvian Andes.

    PubMed

    Galán-DE-Mera, Antonio; Sánchez-Vega, Isidoro; Linares-Perea, Eliana; Campos, José; Montoya, Juan; Vicente-Orellana, José A

    2016-01-01

    A phytosociological approach to dry forest and cactus communities on the occidental slopes of the Peruvian Andes is presented in base of 164 plots carried out following the Braun-Blanquet method. From them, 52 have been made recently, and the other 112 were taken from the literature. After a multivariate analysis, using a hierarchical clustering and a detendred correspondence analysis, the Acacio-Prosopidetea class (dry forest and cactus communities, developed on soils with some edaphic humidity or precipitations derived from El Niño Current), the Opuntietea sphaericae class (cactus communities of central and southern Peru, on few stabilized rocky or sandy soils) and the Carico-Caesalpinietea class (dry forests of the Peruvian coastal desert, influenced by the maritime humidity of the cold Humboldt Current), are differentiated. Within the Acacio-Prosopidetea class, two alliances are commented: the Bursero-Prosopidion pallidae (with two new associations Loxopterygio huasanginis-Neoraimondietum arequipensis and Crotono ruiziani-Acacietum macracanthae), and the new alliance Baccharido-Jacarandion acutifoliae (with the new associations Armatocereo balsasensis-Cercidietum praecocis and Diplopterydo leiocarpae-Acacietum macracanthae). For the Opuntietea sphaericae class, the association Haageocereo versicoloris-Armatocereetum proceri (Espostoo-Neoraimondion) is described on the basis of plots from hyperarid localities of central Peru. Finally, a typological classification of the studied plant communities is given.

  8. Ceremonial tobacco use in the Andes: implications for smoking prevention among indigenous youth.

    PubMed

    Alderete, Ethel; Erickson, Pamela I; Kaplan, Celia P; Pérez-Stable, Eliseo J

    2010-04-01

    The purpose of this study was to identify Andean youth's beliefs regarding ceremonial tobacco use and to discuss potential applications of findings in tobacco control interventions. The study was conducted in the Province of Jujuy, Argentina among 202 boys and girls, 10 to 20 years of age, living in rural and urban areas. The world of beliefs and meanings became accessible by asking youth to focus on tangible experiences regarding the Pachamama ceremony, a ritual honoring Mother Earth. Concepts such as reciprocity, the unity of material and spiritual realms, and the complementary nature of opposite forces were linked to beliefs about ceremonial tobacco use. Three domains for understanding smoking behaviour beliefs and norms were identified including mechanisms of production, conceptual tenants and behavioural expressions. These findings suggest that tobacco control interventions based on solidarity, reciprocity, and non-rational ways of learning are more culturally appropriate for native populations in the Andes than the current individual behaviour change models and have the potential applications with other indigenous populations. The research methods also have the potential for generalized application in cross-cultural studies of health behaviours in understudied populations in middle and low-income countries.

  9. Geographical Information Systems risk assessment models for zoonotic fascioliasis in the South American Andes region.

    PubMed

    Fuentes, M V; Sainz-Elipe, S; Nieto, P; Malone, J B; Mas-Coma, S

    2005-03-01

    The WHO recognises Fasciola hepatica to be an important human health problem. The Andean countries of Peru, Bolivia and Chile are those most severely affected by this distomatosis, though areas of Ecuador, Colombia and Venezuela are also affected. As part of a multidisciplinary project, we present results of use of a Geographical Information Systems (GIS) forecast model to conduct an epidemiological analysis of human and animal fasciolosis in the central part of the Andes mountains. The GIS approach enabled us to develop a spatial and temporal epidemiological model to map the disease in the areas studied and to classify transmission risk into low, moderate and high risk areas so that areas requiring the implementation of control activities can be identified. Current results are available on a local scale for: (1) the northern Bolivian Altiplano, (2) Puno in the Peruvian Altiplano, (3) the Cajamarca and Mantaro Peruvian valleys, and (4) the Ecuadorian provinces of Azuay, Cotopaxi and Imbabura. Analysis of results demonstrated the validity of a forecast model that combines use of climatic data to calculate of forecast indices with remote sensing data, through the classification of Normalized Difference Vegetation Index (NDVI) maps.

  10. Recent rapid uplift in the Bolivian Andes: Evidence from fission-track dating

    NASA Astrophysics Data System (ADS)

    Benjamin, Michael T.; Johnson, Noye M.; Naeser, Charles W.

    1987-07-01

    Apatite and zircon fission-track cooling ages constrain the Tertiary cooling and uplift history of the eastern Cordillera and Altiplano of Bolivia. Fission-track data are from two Triassic plutons and surrounding Paleozoic metasedimentary rocks in the eastern Andes north of La Paz. Zircon cooling ages indicate that the roof of the Huayna Potosi pluton was emplaced in the zircon partial annealing zone and that the Zongo pluton was emplaced entirely in the zircon total annealing zone. Apatite cooling ages for both plutons record uplift in the past 5 15 m.y., and zircon cooling ages from the Zongo pluton reflect uplift in the past 25 45 m.y. Uplift rates calculated by these apatite and zircon cooling ages suggest that uplift rates were 0.1 0.2 mm/yr between 20 and 40 Ma and increased significantly between 10 and 15 Ma. By 3 Ma, uplift rates may have been as high as 0.7 mm/yr. *Present address: Geochemistry Division, Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964

  11. Taenia solium infection in a rural community in the Peruvian Andes.

    PubMed

    Moro, P L; Lopera, L; Bonifacio, N; Gilman, R H; Silva, B; Verastegui, M; Gonzales, A; Garcia, H H; Cabrera, L

    2003-06-01

    An epidemiological study was conducted in a highland, rural community in Peru, to determine the seroprevalences of human and porcine infection with Taenia solium and the risk factors associated with human infection. The seroprevalences, determined using an assay based on enzyme-linked-immuno-electrotransfer blots (EITB), were 21% (66/316) in the humans and 65% (32/49) in the pigs. The human subjects aged <30 years were more likely to be positive for anti-T. solium antibodies than the older subjects (P < 0.001). The risk factors associated with human seropositivity were lack of education beyond the elementary level [odds ratio (OR)=2.69; 95% confidence interval (CI)=1.09-6.65] and pig-raising (OR=1.68; CI=0.96-2.92). Curiously, sheep-raising was inversely associated with human T. solium infection (OR=0.50; CI=0.28-0.90). The study site appears to be a new endemic focus for T. solium in the central Peruvian Andes. Although, in earlier studies, the seroprevalence of T. solium infection has generally been found to increase with age, the opposite trend was observed in the present study. The results of follow-up studies should help determine if the relatively high seroprevalence in the young subjects of the present study is the result of a transient antibody response.

  12. Determinants of School Performance Among Quechua Children in the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Jacoby, Enrique; Cueto, Santiago; Pollitt, Ernesto

    1999-01-01

    In the rural Andes of Peru, primary school inefficiency ranks higher than in the rest of the country, with a nearly 50 per cent rate of first grade repetition. In 1993 the investigators administered a battery of four psycho-educational tests to 360 schoolchildren in the fourth and fifth grades at ten primary schools in the Andean region of Huaraz. They also recorded the children's individual characteristics, i.e. family background, nutritional status, and educational attainment, and rated the schools according to educational features such as classroom size, time devoted to learning, and student-teacher ratio. A year later, in 1994, children were re-examined in the schools using the same test battery. All subjects were small for their age, had poor diets, spoke mostly Quechua at home (Spanish in school), lived in a rural environment, and walked considerable distances to school. Regression analyses of the 1993 data indicated that the performance of Quechua children on verbal tests was heavily influenced by family background, while their mathematical competence was related to school experience. On the other hand, improvement in test scores from one year to the next appeared to be strongly related to test performance in 1993 and less clearly to the other recorded variables. Finally, the schools' promotion rates were clearly associated with test scores from the previous year but less clearly with grade repetition rates.

  13. Accesible hydrological monitoring for better decision making and modelling: a regional initiative in the Andes

    NASA Astrophysics Data System (ADS)

    De Bievre, B.; Célleri, R.; Crespo, P.; Ochoa, B.; Buytaert, W.; Tobón, C.; Villacís, M.; Villazon, M. F.; Llerena, C.; Rodriguez, M.; Viñas, P.

    2013-05-01

    The goal of the Hydrological Monitoring of Andean Ecosystems Initiative is to improve the conservation and management of High-Andean ecosystems by providing information on the hydrological response of these ecosystems and how different land-uses affect their water yield and regulation capacity. The initiative fills a gap left by widespread hydrological modeling exercises that suffer from lack of data, and by glacier monitoring under climate change. The initiative proposes a hydrological monitoring system involving precipitation, discharge and land cover monitoring in paired catchments. The methodology is accessible for non-specialist organizations, and allows for generation of evidence of land use impact on hydrology on the short term (i.e. a few years). Nevertheless, long term monitoring is pursued with the aim of identifying trends in hydrological response (as opposed to trends in climate) under global change. In this way it supports decision making on the preservation of the hydrological services of the catchment. The initiative aims at a high number of paired catchment sites along the Andes, in order to draw regional conclusions and capture variability, and is connected to more detailed hydrological research sites of several Andean universities. We present preliminary results of a dozen of sites from Venezuela to Bolivia, summarized in hydrological performance indicators that were agreed upon among hydrologists, local stakeholders, and water authorities. The success factors, as well as limitations, of the network are discussed.

  14. Contact in the Andes: bioarchaeology of systemic stress in colonial Mórrope, Peru.

    PubMed

    Klaus, Haagen D; Tam, Manuel E

    2009-03-01

    The biocultural interchange between the Eastern and Western Hemispheres beginning in the late fifteenth century initiated an unprecedented adaptive transition for Native Americans. This article presents findings from the initial population biological study of contact in the Central Andes of Peru using human skeletal remains. We test the hypothesis that as a consequence of Spanish colonization, the indigenous Mochica population of Mórrope on the north coast of Peru experienced elevated systemic biological stress. Using multivariate statistical methods, we examine childhood stress reflected in the prevalence of linear enamel hypoplasias and porotic hyperostosis, femoral growth velocity, and terminal adult stature. Nonspecific periosteal infection prevalence and D(30+)/D(5+) ratio estimations of female fertility characterized adult systemic stress. Compared to the late pre-Hispanic population, statistically significant patterns of increased porotic hyperostosis and periosteal inflammation, subadult growth faltering, and depressed female fertility indicate elevated postcontact stress among both children and adults in Mórrope. Terminal adult stature was unchanged. A significant decrease in linear enamel hypoplasia prevalence may not indicate improved health, but reflect effects of high-mortality epidemic disease. Various lines of physiological, archaeological, and ethnohistoric evidence point to specific socioeconomic and microenvironmental factors that shaped these outcomes, but the effects of postcontact population aggregation in this colonial town likely played a fundamental role in increased morbidity. These results inform a model of postcontact coastal Andean health outcomes on local and regional scales and contribute to expanding understandings of the diversity of indigenous biological variation in the postcontact Western Hemisphere.

  15. Ice-core evidence of earliest extensive copper metallurgy in the Andes 2700 years ago

    NASA Astrophysics Data System (ADS)

    Eichler, A.; Gramlich, G.; Kellerhals, T.; Tobler, L.; Rehren, Th.; Schwikowski, M.

    2017-01-01

    The importance of metallurgy for social and economic development is indisputable. Although copper (Cu) was essential for the wealth of pre- and post-colonial societies in the Andes, the onset of extensive Cu metallurgy in South America is still debated. Comprehensive archaeological findings point to first sophisticated Cu metallurgy during the Moche culture ~200–800 AD, whereas peat-bog records from southern South America suggest earliest pollution potentially from Cu smelting as far back as ~2000 BC. Here we present a 6500-years Cu emission history for the Andean Altiplano, based on ice-core records from Illimani glacier in Bolivia, providing the first complete history of large-scale Cu smelting activities in South America. We find earliest anthropogenic Cu pollution during the Early Horizon period ~700–50 BC, and attribute the onset of intensified Cu smelting in South America to the activities of the central Andean Chiripa and Chavin cultures ~2700 years ago. This study provides for the first time substantial evidence for extensive Cu metallurgy already during these early cultures.

  16. Ice-core evidence of earliest extensive copper metallurgy in the Andes 2700 years ago.

    PubMed

    Eichler, A; Gramlich, G; Kellerhals, T; Tobler, L; Rehren, Th; Schwikowski, M

    2017-01-31

    The importance of metallurgy for social and economic development is indisputable. Although copper (Cu) was essential for the wealth of pre- and post-colonial societies in the Andes, the onset of extensive Cu metallurgy in South America is still debated. Comprehensive archaeological findings point to first sophisticated Cu metallurgy during the Moche culture ~200-800 AD, whereas peat-bog records from southern South America suggest earliest pollution potentially from Cu smelting as far back as ~2000 BC. Here we present a 6500-years Cu emission history for the Andean Altiplano, based on ice-core records from Illimani glacier in Bolivia, providing the first complete history of large-scale Cu smelting activities in South America. We find earliest anthropogenic Cu pollution during the Early Horizon period ~700-50 BC, and attribute the onset of intensified Cu smelting in South America to the activities of the central Andean Chiripa and Chavin cultures ~2700 years ago. This study provides for the first time substantial evidence for extensive Cu metallurgy already during these early cultures.

  17. Simulation of Potato Late Blight in the Andes. II: Validation of the LATEBLIGHT Model.

    PubMed

    Andrade-Piedra, Jorge L; Hijmans, Robert J; Juárez, Henry S; Forbes, Gregory A; Shtienberg, Dani; Fry, William E

    2005-10-01

    ABSTRACT LATEBLIGHT, a mathematical model that simulates the effect of weather, host growth and resistance, and fungicide use on asexual development and growth of Phytophthora infestans on potato foliage, was validated for the Andes of Peru. Validation was needed due to recent modifications made to the model, and because the model had not been formally tested outside of New York State. Prior to validation, procedures to estimate the starting time of the epidemic, the amount of initial inoculum, and leaf wetness duration were developed. Observed data for validation were from field trials with three potato cultivars in the Peruvian locations of Comas and Huancayo in the department of Junín, and Oxapampa in the department of Pasco in 1999 and 2000 for a total of 12 epidemics. These data had not been used previously for estimating model parameters. Observed and simulated epidemics were compared graphically using disease progress curves and numerically using the area under the disease progress curve in a confidence interval test, an equivalence test, and an envelope of acceptance test. The level of agreement between observed and simulated epidemics was high, and the model was found to be valid according to subjective and objective performance criteria. The approach of measuring fitness components of potato cultivars infected with isolates of a certain clonal lineage of P. infestans under controlled conditions and then using the experimental results as parameters of LATEBLIGHT proved to be effective. Fungicide treatments were not considered in this study.

  18. The population genetic structure of Rhizoctonia solani AG-3PT from potato in the Colombian Andes.

    PubMed

    Ferrucho, Rosa L; Ceresini, Paulo C; Ramirez-Escobar, Ursula M; McDonald, Bruce A; Cubeta, Marc A; García-Domínguez, Celsa

    2013-08-01

    The soilborne fungus Rhizoctonia solani anastomosis group 3 (AG-3PT) is a globally important potato pathogen. However, little is known about the population genetic processes affecting field populations of R. solani AG-3PT, especially in the South American Colombian Andes, which is near the center of diversity of the two most common groups of cultivated potato, Solanum tuberosum and S. phureja. We analyzed the genetic structure of 15 populations of R. solani AG-3PT infecting potato in Colombia using 11 simple-sequence repeat (SSR) markers. In total, 288 different multilocus genotypes were identified among 349 fungal isolates. Clonal fractions within field populations were 7 to 33%. RST statistics indicated a very low level of population differentiation overall, consistent with high contemporary gene flow, though moderate differentiation was found for the most distant southern populations. Genotype flow was also detected, with the most common genotype found widely distributed among field populations. All populations showed evidence of a mixed reproductive mode, including both asexual and sexual reproduction, but two populations displayed evidence of inbreeding.

  19. Agriculture at the Edge: Landscape Variability of Soil C Stocks and Fluxes in the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Riveros-Iregui, D. A.; Peña, C.

    2015-12-01

    Paramos, or tropical alpine grasslands occurring right above the forest tree-line (2,800 - 4,700 m), are among the most transformed landscapes in the humid tropics. In the Tropical Andes, Paramos form an archipelago-like pattern from Northern Colombia to Central Peru that effectively captures atmospheric moisture originated in the Amazon-Orinoco basins, while marking the highest altitude capable of sustaining vegetation growth (i.e., 'the edge'). This study investigates the role of land management on mediating soil carbon stocks and fluxes in Paramo ecosystems of the Eastern Cordillera of Colombia. Observations were collected at a Paramo site strongly modified by land use change, including active potato plantations, pasture, tillage, and land abandonment. Results show that undisturbed Paramos soils have high total organic carbon (TOC), high soil water content (SWC), and low soil CO2 efflux (RS) rates. However, Paramo soils that experience human intervention show lower TOC, higher and more variable RS rates, and lower SWC. This study demonstrates that changes in land use in Paramos affect differentially the accumulation and exchange of soil carbon with the atmosphere and offers implications for management and protection strategies of what has been deemed the fastest evolving biodiversity ecosystem in the world.

  20. Long-term human response to uncertain environmental conditions in the Andes

    PubMed Central

    Dillehay, Tom D.; Kolata, Alan L.

    2004-01-01

    Human interaction with the physical environment has increasingly transformed Earth-system processes. Reciprocally, climate anomalies and other processes of environmental change of natural and anthropogenic origin have been affecting, and often disrupting, societies throughout history. Transient impact events, despite their brevity, can have significant long-term impact on society, particularly if they occur in the context of ongoing, protracted environmental change. Major climate events can affect human activities in critical conjunctures that shape particular trajectories of social development. Here we report variable human responses to major environmental events in the Andes with a particular emphasis on the period from anno Domini 500–1500 on the desert north coast of Perú. We show that preindustrial agrarian societies implemented distinct forms of anticipatory response to environmental change and uncertainty. We conclude that innovations in production strategies and agricultural infrastructures in these indigenous societies reflect differential social response to both transient (El Niño–Southern Oscillation events) and protracted (desertification) environmental change. PMID:15024122

  1. New evidence for mid-Pliocene-early Pleistocene glaciation in the northern Patagonian Andes Argentina

    SciTech Connect

    Stephens, G.C.; Evenson, E.B.; Rabassa, J.

    1985-01-01

    Mount Tronador is an extinct, glacially eroded strato-volcano located in the northern Patagonian Andes. With a summit elevation of 3556 m, Mount Tronador lies mostly above the present regional snowline (2000 m) and is largely covered by extensive snow fields and glaciers. The rocks of Mount Tronador comprise the Tronador Formation, a 2000 m thick sequence of interlayered basalts, andesites, ignimbrites, agglomerates, volcanic mudflows and lahars. This volcanic edifice is built on an erosional land surface of Tertiary age. Three K-Ar dates from the Tronador Formation yield radiometric ages of 3.2, 0.34 and 0.18 m.y. Striated clasts have been found included in several large glacial boulders derived from volcanic mudflows and lahars of the Tronador Fm. These boulders have been eroded by the Rio Manso Glacier and deposited in its Neoglacial moraines. The lahar boulders themselves contain pebbles and boulders of andesitic rocks in a vitroclastic matrix of pyroclastic origin. The striated clasts are well-rounded, shaped and polished, and the striations can be traced beneath the volcanic matrix. Thus these striated clasts represent a pre-Holocene cycle of glaciation. Mercer (1976) and Ciesielski (1982) document glaciations from southern Patagonia (2.1-3.5 m.y.) and from the southwestern Atlantic (2.1-3.9 m.y.) respectively. The discovery of striated clasts in lahars and mudflows of the Tronador Fm. indicates the existence of a heretofore undocumented Pliocene-Pleistocene glaciation in northern Patagonia.

  2. Geodetic observations of megathrust earthquakes and backarc wedge deformation across the central Andes

    NASA Astrophysics Data System (ADS)

    Weiss, J. R.; Brooks, B. A.; Foster, J. H.; Bevis, M. G.; Echalar, A.; Caccamise, D.; Heck, J. M.

    2014-12-01

    High-precision Global Positioning System (GPS) data offer an opportunity to investigate active orogenic wedges yet surface velocity fields are available for only a few examples worldwide. More observations are needed to link deformation processes across multiple timescales and to better understand strain accumulation and release in active wedge settings. Here we present a new GPS velocity field for the central Andes and the backarc orogenic wedge comprising the southern Subandes of Bolivia (SSA), a region previously thought to be mostly isolated from the plate boundary earthquake cycle. The time span of our observations (2000 to mid-2014) includes two megathrust earthquakes along the Chile trench that affected the SSA. The 2007 Mw 7.7 Tocopilla, Chile earthquake resulted in a regional postseismic decrease in the eastward component of horizontal surface velocities. Preliminary analysis of the deformation field from the April 01 2014 Mw 8.2 Pisagua, Chile earthquake also indicates a postseismic signal extending into the SSA. We create an interseismic velocity field for the SSA by correcting campaign GPS site velocities for the seasonal cycles estimated from continuous GPS site time series. We remove the effects of both megathrust events by estimating coseismic steps and fitting linear and logarithmic functions to the postseismic GPS site motions. The velocity estimates at most locations increase after correcting for the transients. This finding suggests that forces leading to shortening and earthquakes in the backarc wedge are not as temporally consistent as previously considered.

  3. Homogeneous temperature and precipitation series for a Peruvian High Andes regions from 1965 to 2009

    NASA Astrophysics Data System (ADS)

    Acuña, D.; Serpa Lopez, B.; Silvestre, E.; Konzelmann, Th.; Rohrer, M.; Schwarb, M.; Salzmann, N.

    2010-09-01

    As a basis of a joint Swiss-Peruvian effort focused on water resources, food security and disaster preparedness (Peruvian Climate Adaptation Project, PACC) clean and homogenized meteorological datasets have been elaborated for the Cusco and Apurimac Regions in the Central Andes. Operational and historical data series of more than 100 stations of the Peruvian Meteorological and Hydrological Service (SENAMHI) were available as a data base. Additionally, meteorological data provided by the National Climatic Data Centre (NCDC) or the Meteorological Aerodrome Records (METAR), have been considered. In contrast to many European countries, where most conventional sensors have been replaced by automated sensors during the last decades, instrumentation of climatological stations remained unchanged in Peru. Station records and station history of the Cusco-Apurimac-region are partially fragmentary or lost, mainly because of armed conflicts, particularly in the 1980ies. Moreover, many stations do observe precipitation as only variable. As a consequence, it was only possible so far to elaborate four complete homogenized air temperature series (Curahuasi 2763m a.s.l., Granja Kcayra-Cusco 3219m, Sicuani, 3574m and La Angostura, 4150m) since 1965. For precipitation a larger number of stations was available for elaboration, which is important because of the small scaled characteristics of the mostly convective type precipitation events in these regions. Based on these homogenized series, linear and gaussian low pass filtered trends have been calculated for all series of precipitation and air temperature records.

  4. Does external funding help adaptation? Evidence from community-based water management in the Colombian Andes.

    PubMed

    Murtinho, Felipe; Eakin, Hallie; López-Carr, David; Hayes, Tanya M

    2013-11-01

    Despite debate regarding whether, and in what form, communities need external support for adaptation to environmental change, few studies have examined how external funding impacts adaptation decisions in rural resource-dependent communities. In this article, we use quantitative and qualitative methods to assess how different funding sources influence the initiative to adapt to water scarcity in the Colombian Andes. We compare efforts to adapt to water scarcity in 111 rural Andean communities with varied dependence on external funding for water management activities. Findings suggest that despite efforts to use their own internal resources, communities often need external support to finance adaptation strategies. However, not all external financial support positively impacts a community's abilities to adapt. Results show the importance of community-driven requests for external support. In cases where external support was unsolicited, the results show a decline, or "crowding-out," in community efforts to adapt. In contrast, in cases where communities initiated the request for external support to fund their own projects, findings show that external intervention is more likely to enhance or "crowds-in" community-driven adaptation.

  5. Ice-core evidence of earliest extensive copper metallurgy in the Andes 2700 years ago

    PubMed Central

    Eichler, A.; Gramlich, G.; Kellerhals, T.; Tobler, L.; Rehren, Th.; Schwikowski, M.

    2017-01-01

    The importance of metallurgy for social and economic development is indisputable. Although copper (Cu) was essential for the wealth of pre- and post-colonial societies in the Andes, the onset of extensive Cu metallurgy in South America is still debated. Comprehensive archaeological findings point to first sophisticated Cu metallurgy during the Moche culture ~200–800 AD, whereas peat-bog records from southern South America suggest earliest pollution potentially from Cu smelting as far back as ~2000 BC. Here we present a 6500-years Cu emission history for the Andean Altiplano, based on ice-core records from Illimani glacier in Bolivia, providing the first complete history of large-scale Cu smelting activities in South America. We find earliest anthropogenic Cu pollution during the Early Horizon period ~700–50 BC, and attribute the onset of intensified Cu smelting in South America to the activities of the central Andean Chiripa and Chavin cultures ~2700 years ago. This study provides for the first time substantial evidence for extensive Cu metallurgy already during these early cultures. PMID:28139760

  6. Molecular method for the detection of Andes hantavirus infection: validation for clinical diagnostics.

    PubMed

    Vial, Cecilia; Martinez-Valdebenito, Constanza; Rios, Susana; Martinez, Jessica; Vial, Pablo A; Ferres, Marcela; Rivera, Juan C; Perez, Ruth; Valdivieso, Francisca

    2016-01-01

    Hantavirus cardiopulmonary syndrome is a severe disease caused by exposure to New World hantaviruses. Early diagnosis is difficult due to the lack of specific initial symptoms. Antihantavirus antibodies are usually negative until late in the febrile prodrome or the beginning of cardiopulmonary phase, while Andes hantavirus (ANDV) RNA genome can be detected before symptoms onset. We analyzed the effectiveness of quantitative reverse transcription polymerase chain reaction (RT-qPCR) as a diagnostic tool detecting ANDV-Sout genome in peripheral blood cells from 78 confirmed hantavirus patients and 166 negative controls. Our results indicate that RT-qPCR had a low detection limit (~10 copies), with a specificity of 100% and a sensitivity of 94.9%. This suggests the potential for establishing RT-qPCR as the assay of choice for early diagnosis, promoting early effective care of patients, and improving other important aspects of ANDV infection management, such as compliance of biosafety recommendations for health personnel in order to avoid nosocomial transmission.

  7. Distribution models and species discovery: the story of a new Solanum species from the Peruvian Andes

    PubMed Central

    Särkinen, Tiina; Gonzáles, Paúl; Knapp, Sandra

    2013-01-01

    Abstract A new species of Solanum sect. Solanum from Peru is described here. Solanum pseudoamericanum Särkinen, Gonzáles & S.Knapp sp. nov. is a member of the Morelloid clade of Solanum, and is characterized by the combination of mostly forked inflorescences, flowers with small stamens 2.5 mm long including the filament, and strongly exerted styles with capitate stigmas. The species was first thought to be restricted to the seasonally dry tropical forests of southern Peru along the dry valleys of Río Pampas and Río Apurímac. Results from species distribution modelling (SDM) analysis with climatic predictors identified further potential suitable habitat areas in northern and central Peru. These areas were visited during field work in 2013. A total of 17 new populations across the predicted distribution were discovered using the model-based sampling method, and five further collections were identified amongst herbarium loans. Although still endemic to Peru, Solanum pseudoamericanum is now known from across northern, central and southern Peru. Our study demonstrates the usefulness of SDM for predicting new occurrences of rare plants, especially in the Andes where collection densities are still low in many areas and where many new species remain to be discovered. PMID:24399901

  8. Ceremonial Tobacco Use in the Andes: Implications for Smoking Prevention among Indigenous Youth

    PubMed Central

    Alderete, Ethel; Erickson, Pamela I.; Kaplan, Celia P.; Pérez-Stable, Eliseo J.

    2010-01-01

    The purpose of the study was to identify Andean youth’s beliefs regarding ceremonial tobacco use and to discuss potential applications of findings in tobacco control interventions. The study was conducted in the Province of Jujuy, Argentina among 202 boys and girls, 10 to 20 years of age, living in rural and urban areas. The world of beliefs and meanings became accessible by asking youth to focus on tangible experiences regarding the Pachamama ceremony, a ritual honoring Mother Earth. Concepts like reciprocity, the unity of material and spiritual realms, and the complementary nature of opposite forces were linked to beliefs about ceremonial tobacco use. Three domains for understanding smoking behavior beliefs and norms were identified including mechanisms of production, conceptual tenants and behavioral expressions. These findings suggest that tobacco control interventions based on solidarity, reciprocity, and non-rational ways of learning are more culturally appropriate for native populations in the Andes than the current individual behavior change models and have the potential application with other indigenous populations. The research methods also have the potential for generalized application in cross-cultural studies of health behaviors in understudied populations in middle and low-income countries. PMID:20419515

  9. Evidence for Holocene stability of steep slopes, northern Peruvian Andes, based on soils and radiocarbon dates

    USGS Publications Warehouse

    Miller, D.C.; Birkeland, P.W.; Rodbell, D.T.

    1993-01-01

    Radiocarbon dating and soil relationships indicate that landscapes in highaltitude glaciated valleys of the northern Peruvian Andes have been remarkably stable during the Holocene. Radiocarbon dates show that deglaciation was underway by 12 ka, and that slopes and alluvial fans at the bases of slopes were essentially stabilized by at least 8 ka. The soils consist of fine-grained loessial A horizons overlying Bw horizons in gravelly till or alluvial-fan gravel. Following deglaciation, widespread gullying took place in till on the steep (maximum angle: 37??) sideslopes of most valleys; the eroded material was deposited as fans at the bases of the slopes. Loess was then deposited as a fairly uniform blanket across most elements of the landscape. Soil formation began during or following loess deposition, and because soil-profile morphology is sufficiently similar at most sites, soil formation has been a dominant process during much of the Holocene. This remarkable stability, especially for such steep slopes, is attributed to a combination of tight packing of the till, permeability of the capping loess, rapid revegetation following ice retreat, and roots from the present grassland vegetation and possibly former forests. ?? 1993.

  10. Accommodation of shortening in southern central Andes: a multiscale structural approach

    NASA Astrophysics Data System (ADS)

    Branellec, Matthieu; Jean-Paul, Callot; Bertrand, Nivière; Charles, Aubourg; Jean-Claude, Ringenbach

    2016-04-01

    The Malargue fold and thrust belt is located in the northern part of the Neuquén basin in the Central Andes of Argentina. A full structural analysis of this hybrid thin and thick-skinned fold belt has been undertaken using several methods that cover a wide range of spatial and temporal scales. The way in which shortening was accommodated in the upper crust has first been investigated on a regional basis by means of cross sections building. Several field examples show that localization of deformation on rift-related inherited structure is frequent allowing us to target a common mode of deformation propagation. The structural geometries and the associated mechanisms governing during the Miocene shortening phase were subsequently compared to the present day pattern of active deformation enabling us to state about whether or not deformational mechanisms are continuous through times. In addition, meter-scale and millimetre-scale deformation were analysed thank to fracturing and Anisotropy of Magnetic Susceptibility data. Respectively, both of these methods shed new light on (1) the record of the several LPS related convergence phases that affected the Andean retro-arc since the late Cretaceous and (2) the relationships between the matrix strain pattern and the large scale distribution of macroscopic deformation.

  11. Study of Andes virus entry and neutralization using a pseudovirion system.

    PubMed

    Ray, Neelanjana; Whidby, Jillian; Stewart, Shaun; Hooper, Jay W; Bertolotti-Ciarlet, Andrea

    2010-02-01

    Andes virus (ANDV), a member of the Hantavirus genus in the family Bunyaviridae, causes an acute disease characteristic of New-World hantaviruses called hantavirus pulmonary syndrome (HPS). HPS is a highly pathogenic disease with a case-fatality rate of 40%. ANDV is the only hantavirus reported to spread directly from human-to-human. The aim of the present study was to develop a quantitative and high-throughput pseudovirion assay to study ANDV infection and neutralization in biosafety level 2 facilities (BSL-2). This pseudovirion assay is based on incorporation of ANDV glycoproteins onto replication-defective vesicular stomatitis virus (VSV) cores in which the gene for the surface G protein has been replaced by that encoding Renilla luciferase. Infection by the pseudovirions can be quantified by luciferase activity of infected cell lysates. ANDV pseudovirions were neutralized by ANDV-specific antisera, and there was good concordance between specificity and neutralization titers of ANDV hamster sera as determined by our pseudovirion assay and a commonly used plaque reduction neutralization titer (PRNT) assay. In addition, the pseudovirions were used to evaluate the requirements for ANDV entry, like pH dependency and the role of beta3 integrin, the reported receptor for other pathogenic hantaviruses, on entry.

  12. Linking coastal uplift with the earthquake cycle along the Central Andes

    NASA Astrophysics Data System (ADS)

    Melnick, Daniel

    2016-04-01

    The largest subduction-zones earthquakes commonly drown the adjacent coastline, even as geomorphic features evidence permanent emergence of such coastlines at global scale. Deformation rates are needed to understand the mechanisms linking coastal emergence with the earthquake cycle, and to gain insight into the along-strike segmentation of megathrust ruptures. Here uplift rates are estimated from a coastal geomorphic feature exposed ubiquitously along >2,000 km of the Central Andes at 104 sites using morphometric analysis combined with a landscape evolution model of wave erosion under an oscillating sea level and tectonic uplift. The results suggest slow but steady emergence during the Quaternary, with long-wavelength variations along-strike. The obtained long-term uplift rates are compared with decadal rates estimated from space geodesy, depth to the plate interface, simulated uplift resulting from coseismic slip along the A-B-C deep domains of the plate boundary, and uplift rates resulting from interseismic coupling. The relation between short- and long-term deformation suggests stable downdip seismotectonic segmentation of the plate boundary over hundreds to millions of years.

  13. Shrinking forests under warming: evidence of Podocarpus parlatorei (pino del cerro) from the subtropical Andes.

    PubMed

    Quiroga, María Paula; Pacheco, Silvia; Malizia, Lucio R; Premoli, Andrea C

    2012-01-01

    Phylogeography in combination with ecological niche modeling (ENM) is a robust tool to analyze hypotheses on range shifts under changing climates particularly of taxa and areas with scant fossil records. We combined phylogeographic analysis and ENM techniques to study the effects of alternate cold and warm (i.e., glacial and interglacial) periods on the subtropical montane cold-tolerant conifer Podocarpus parlatorei from Yungas forests of the central Andes. Twenty-one populations, comprising 208 individuals, were analyzed by sequences of the trnL -trnF cpDNA region, and 78 sites were included in the ENM. Eight haplotypes were detected, most of which were widespread while 3 of them were exclusive of latitudinally marginal areas. Haplotype diversity was mostly even throughout the latitudinal range. Two distribution models based on 8 bioclimatic variables indicate a rather continuous distribution during cooling, while under warming remained within stable, yet increasingly fragmented, areas. Although no major range shifts are expected with warming, long-lasting persistence of cold-hardy taxa inhabiting subtropical mountains may include in situ and ex situ conservation actions particularly toward southern (colder) areas.

  14. The Basement of the Central Andes: The Arequipa and Related Terranes

    NASA Astrophysics Data System (ADS)

    Ramos, Victor A.

    2008-05-01

    The basement of the Central Andes provides insights for the dispersal of Rodinia, the reconstruction of Gondwana, and the dynamics of terrane accretion along the Pacific. The Paleoproterozoic Arequipa terrane was trapped during collision between Laurentia and Amazonia in the Mesoproterozoic. Ultrahigh-temperature metamorphism correlates with the collapse of the Sunsás-Grenville orogen after 1000 Ma and is related to slab break-off and dispersal of Rodinia. The Antofalla terrane separated in the Neoproterozoic, forming the Puncoviscana basin. Its closure was coeval with the collision of the eastern Sierras Pampeanas. The rift-drift transitions of the early Paleozoic clastic platform showed a gradual younging to the north, in agreement with counterclockwise rotation based on paleomagnetic data of Antofalla. North of Arequipa arc magmatism and high-grade metamorphism are linked to collision of the Paracas terrane in the Ordovician, during the Famatinian orogeny in the Sierras Pampeanas. The early Paleozoic history of the Arequipa massif is explained by a backarc, which further south changed to open oceanic conditions and subsequent collision. The Antofalla terrane reaccreted to the continental margin by the late Ordovician. These accretions and subsequent separations during the Mesoproterozoic, Neoproterozoic early Cambrian, and late Cambrian middle Ordovician are explained by changes in absolute motion of the Gondwana supercontinent during plate global reorganization.

  15. Mitochondrial Variation among the Aymara and the Signatures of Population Expansion in the Central Andes

    PubMed Central

    BATAI, KEN; WILLIAMS, SLOAN R.

    2015-01-01

    Objectives The exploitation of marine resources and intensive agriculture led to a marked population increase early in central Andean prehistory. Constant historic and prehistoric population movements also characterize this region. These features undoubtedly affected regional genetic variation, but the exact nature of these effects remains uncertain. Methods Mitochondrial DNA (mtDNA) hypervariable region I sequence variation in 61 Aymara individuals from La Paz, Bolivia, was analyzed and compared to sequences from 47 other South American populations to test hypotheses of whether increased female effective population size and gene flow influenced the mtDNA variation among central Andean populations. Results The Aymara and Quechua were genetically diverse showing evidence of population expansion and large effective population size, and a demographic expansion model fits the mtDNA variation found among central Andean populations well. Estimated migration rates and the results of AMOVA and multidimensional scaling analysis suggest that female gene flow was also an important factor, influencing genetic variation among the central Andeans as well as lowland populations from western South America. mtDNA variation in south central Andes correlated better with geographic proximity than with language, and fit a population continuity model. Conclusion The mtDNA data suggests that the central Andeans experienced population expansion, most likely because of rapid demographic expansion after introduction of intensive agriculture, but roles of female gene flow need to be further explored. PMID:24449040

  16. Hydrothermal System of the Lastarria Volcano (Central Andes) Imaged by Magnetotellurics

    NASA Astrophysics Data System (ADS)

    Diaz, D.

    2015-12-01

    Lazufre volcanic complex, located in the central Andes, is recently undergoing an episode of uplift, conforming one of the most extensive deforming volcanic systems worldwide. Recent works have focused on the subsurface of this volcanic system at different scales, using surface deformation data, seismic noise tomography and magnetotellurics. Here we image the electrical resistivity structure of the Lastarria volcano, one of the most important features in the Lazufre area, using broadband magnetotelluric data at 30 locations around the volcanic edifice. Results from 3-D modeling show a conductive zone at 6 km depth south of the Lastarria volcano interpreted as a magmatic heat source, which is connected to a shallower conductive area beneath the volcanic edifice and its close vicinity. This shallow highly conductive zone fits with geochemical analysis results of thermal fluid discharges, related to fumaroles present in this area, in terms of depth extent and possible temperatures of fluids, and presents also a good correlation with seismic tomography results. The horizontal extension of this shallow conductive zone, related to the hydrothermal system of Lastarria, suggests that it has been draining one of the lagoons in the area (Laguna Azufrera), forming a sulfur rich area which can be observed at the southern side of this lagoon. Joint modeling of the hydrothermal system using magnetotellurics and seismic data is part of the current work.

  17. Trade-off analysis in the Northern Andes to study the dynamics in agricultural land use.

    PubMed

    Stoorvogel, J J; Antle, J M; Crissman, C C

    2004-08-01

    In this paper we hypothesize that land use change can be induced by non-linearities and thresholds in production systems that impact farmers' decision making. Tradeoffs between environmental and economic indicators is a useful way to represent dynamic properties of agricultural systems. The Tradeoff Analysis (TOA) System is software designed to implement the integrated analysis of tradeoffs in agricultural systems. The TOA methodology is based on spatially explicit econometric simulation models linked to spatially referenced bio-physical simulation models to simulate land use and input decisions. The methodology has been applied for the potato-pasture production system in the Ecuadorian Andes. The land use change literature often describes non-linearity in land use change as a result of sudden changes in the political (e.g. new agricultural policies) or environmental setting (e.g. earthquakes). However, less attention has been paid to the non-linearities in production systems and their consequences for land use change. In this paper, we use the TOA system to study agricultural land use dynamics and to find the underlying processes for non-linearities. Results show that the sources of non-linearities are in the properties of bio-physical processes and in the decision making-process of farmers.

  18. A new species of Phrynopus (Anura: Craugastoridae) from the central Peruvian Andes.

    PubMed

    Mamani, Luis; Malqui, Sergio

    2014-07-17

    We describe a new species of Phrynopus from the humid grassland of Distrito de Comas, Provincia Concepcion, Department of Junin. The new species is diagnosed by the lack of dentigerous processes of vomers, tympanic annulus and membrane imperceptible through the skin, males with nuptial pads and vocal slits, warty dorsal skin, and aerolate throat, belly and ventral surfaces of thighs, by possessing pronounced subconical tubercles in the post-tympanic area, by having rounded finger and toe tips with no disc structure, and by its overall dark brown to black coloration with few white and yellow spots in the dorsum and a dark-brown belly with white to gray blotches. Specimens were found under stones at a single area of the central Peruvian Andes at elevations between 4205-4490 m.a.s.l. The eggs had an average diameter of 4.3 mm. With the description and naming of the new species, the genus Phrynopus now contains 26 species, all of them endemic to Peru, and five of which are restricted to Departamento Junin.

  19. Comprension de los conceptos de los enlaces ionico y covalente en estudiantes universitarios del primer curso de quimica general

    NASA Astrophysics Data System (ADS)

    Ballesteros Benavides, Maria Elvira

    Para este trabajo utilizamos el estudio de casos cualitativo que se llevo a cabo en una universidad privada de Puerto Rico. Empleamos como unidad de analisis el concepto de enlace quimico, ionico y covalente. Los participantes fueron los estudiantes de la seccion nocturna del curso de Quimica General I. La investigacion se desarrollo por medio de dos entrevistas de persona a persona, observaciones de las expresiones no verbales y la hoja de identificacion de conceptos. Para la triangulacion tomamos en consideracion las preconcepciones erroneas, las concepciones alternativas y el mapa de conceptos de cada participante. Preparamos un mapa de conceptos para el enlace quimico validado por un comite de expertos. Tambien, elaboramos los mapas de conceptos de los participantes que sirvieron para varios propositos: conocer la estructura conceptual, expresar los logros, hacer comparaciones e identificar la presencia de concepciones alternativas. Entre los hallazgos encontramos que todos los participantes poseen conocimiento previo de los enlaces quimicos ionico y covalente y dentro de ese conocimiento existen preconcepciones erroneas mas numerosas para el enlace ionico. Al principio del semestre el 50% de los participantes demostraron tener "carencia fuerte de conceptos" tanto para el enlace ionico como para el covalente. Al finalizar el semestre encontramos en el 40% de los participantes concepciones alternativas tanto para el enlace ionico como para el covalente y el 90% no lograron distinguir un enlace del otro. Nuestras conclusiones fueron que los participantes sin distincion del aprovechamiento academico demostraron tener la tendencia de "carencia fuerte de conceptos" tanto para el enlace ionico como para el covalente, presentaron dificultad al integrar los conceptos de los enlaces quimicos ionico y covalente que se pusieron de manifiesto al dar los ejemplos. Las preconcepciones erroneas contribuyen en el desarrollo de las concepciones alternativas. Ademas, los

  20. Reconstruction of cryospheric changes in the Maipo and Juncal river basins, central Andes of Chile: an integrative geomorphological approach

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Samuel U.; García, Juan L.; Gómez, Gabriel; Vega, Rodrigo M.; Gärtner-Roer, Isabelle; Salzmann, Nadine

    2016-04-01

    Water in the central Andes (32-38° S), a semi-arid mountainous area with elevations over 6000 m asl., is of great importance and a critical resource especially in the dry summer months. Ice bodies, such as glaciers and rock glaciers (permafrost) in the high mountains, provide a substantial part of the fresh-water resources but also for intensive economical use for the lowlands including Santiago metropolitan region, Chile. However the evolution of these ice bodies since the last deglaciation (i.e., Holocene, last ˜12,000 years), and in particular during historical times, and their feedback with climate is fairly unknown. In view of projected climate change, this is striking because it is also unknown whether these natural resources could be used as sustainable fresh-water source in the future. Within the presented project, we develop and apply an integrative geomorphologic approach to study glaciers and their long-term evolution in the central Andes of Chile. Apart from glaciers (with variable debris-coverage), rock glaciers have evolved over time as striking geomorphological landforms in this area. We combine geomorphologic mapping using remote-sensing and in-situ data with an innovative surface exposure dating technique to determine the ages of distinct moraine ridges at three study sites in watersheds of the Santiago region: Juncal Norte, Loma Larga and Nieves Negras glaciers. First results of the project are presented, including a detailed geomorphological mapping and first analysis of the landform dynamics. At all three sites, we distinguished at least three moraine systems of a Holocene putative age. These prominent moraine belts show that glaciers were at least 5 km longer than at present. Deglaciation from these ice marginal positions was gradual and complex in response to the detrital cover on the glaciers. Differences in ice thickness of the main glaciers in the respective valleys amount to about 100 m. Due to the partial, extensive debris coverage, the

  1. Holocene changes in monsoon precipitation in the Andes of NE Peru based on δ18O speleothem records

    NASA Astrophysics Data System (ADS)

    Bustamante, M. G.; Cruz, F. W.; Vuille, M.; Apaéstegui, J.; Strikis, N.; Panizo, G.; Novello, F. V.; Deininger, M.; Sifeddine, A.; Cheng, H.; Moquet, J. S.; Guyot, J. L.; Santos, R. V.; Segura, H.; Edwards, R. L.

    2016-08-01

    Two well-dated δ18O-speleothem records from Shatuca cave, situated on the northeastern flank of the Peruvian Andes (1960 m asl) were used to reconstruct high-resolution changes in precipitation during the Holocene in the South American Summer Monsoon region (SASM). The records show that precipitation increased gradually throughout the Holocene in parallel with the austral summer insolation trend modulated by the precession cycle. Additionally the Shatuca speleothem record shows several hydroclimatic changes on both longer- and shorter-term time scales, some of which have not been described in previous paleoclimatic reconstructions from the Andean region. Such climate episodes, marked by negative excursions in the Shatuca δ18O record were logged at 9.7-9.5, 9.2, 8.4, 8.1, 5.0, 4.1, 3.5, 3.0, 2.5, 2.1 and 1.5 ka b2k, and related to abrupt multi-decadal events in the SASM. Some of these events were likely associated with changes in sea surface temperatures (SST) during Bond events in the North Atlantic region. On longer time scales, the low δ18O values reported between 5.1-5.0, 3.5-3.0 and 1.5 ka b2k were contemporaneous with periods of increased sediment influx at Lake Pallcacocha in the Andes of Ecuador, suggesting that the late Holocene intensification of the monsoon recorded at Shatuca site may also have affected high altitudes of the equatorial Andes further north. Numerous episodes of low SASM intensity (dry events) were recorded by the Shatuca record during the Holocene, in particular at 10.2, 9.8, 9.3, 6.5, 5.1, 4.9, 2.5 and 2.3 ka b2k, some of them were synchronous with dry periods in previous Andean records.

  2. Diversity of bacteria producing pigmented colonies in aerosol, snow and soil samples from remote glacial areas (Antarctica, Alps and Andes)

    NASA Astrophysics Data System (ADS)

    González-Toril, E.; Amils, R.; Delmas, R. J.; Petit, J.-R.; Komárek, J.; Elster, J.

    2008-04-01

    Four different communities and one culture of pigmented microbial assemblages were obtained by incubation in mineral medium of samples collected from high elevation snow in the Alps (Mt. Blanc area) and the Andes (Nevado Illimani summit, Bolivia), from Antarctic aerosol (French station Dumont d'Urville) and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas). Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. The phylogenetic comparison with the currently available rDNA database allowed the identification of sequences belonging to Proteobacteria (Alpha-, Beta- and Gamma-proteobacteria), Actinobacteria and Bacteroidetes phyla. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified) and the maritime Antarctic soil the poorest (only one). Snow samples from Col du midi (Alps) and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones). These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteria clone). The only microorganism identified in the maritime Antarctica soil (Brevundimonas sp.) was also detected in the Antarctic aerosol. The two snow samples from the Alps only shared one common microorganism. Most of the identified microorganisms have been detected previously in cold environments (Dietzia kujamenisi, Pseudonocardia Antarctica, Hydrogenophaga palleronii and Brebundimonas sp.), marine sediments (Aquiflexus balticus, Pseudomonas pseudoalkaligenes, Pseudomonas sp. and one uncultured Alphaproteobacteria), and soils and rocks (Pseudonocardia sp., Agrobactrium sp., Limnobacter sp. and two uncultured Alphaproteobacetria clones). Air current dispersal is the best model to explain the presence of very specific microorganisms, like those

  3. 3D geological modeling of the Trujillo block: Insights for crustal escape models of the Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    Dhont, Damien; Monod, Bernard; Hervouët, Yves; Backé, Guillaume; Klarica, Stéphanie; Choy, José E.

    2012-11-01

    The Venezuelan Andes form a N50°E-trending mountain belt extending from the Colombian border in the SW to the Caribbean Sea in the NE. The belt began to rise since the Middle Miocene in response to the E-W collision between the Maracaibo block to the NW and the Guyana shield belonging to South America to the SE. This oblique collision led to strain partitioning with (1) shortening along opposite-vergent thrust fronts, (2) right-lateral slip along the Boconó fault crossing the belt more or less along-strike and (3) crustal escape of the Trujillo block moving towards the NE in between the Boconó fault and the N-S-striking left-lateral Valera fault. The geology of the Venezuelan Andes is well described at the surface, but its structure at depth remains hypothetic. We investigated the deep geometry of the Mérida Andes by a 3D model newly developed from geological and geophysical data. The 3D fault model is restricted to the crust and is mainly based on the surface data of outcropping fault traces. The final model reveals the orogenic float concept where the mountain belt is decoupled from its underlying lithosphere over a horizontal décollement located either at the upper/lower crust boundary. The reconstruction of the Boconó and Valera faults results in a 3D shape of the Trujillo block, which floats over a mid-crustal décollement horizon emerging at the Boconó-Valera triple junction. Motion of the Trujillo block is accompanied by a widespread extension towards the NE accommodated by normal faults with listric geometries such as for the Motatan, Momboy and Tuñame faults. Extension is explained by the gravitational spreading of the upper crust during the escape process.

  4. Exceptional Isotopic Variability in Stream Waters of the Central Andes: Large-Scale or Local Controls?

    NASA Astrophysics Data System (ADS)

    Fiorella, R. P.; Poulsen, C. J.; Ehlers, T. A.; Jeffery, M. L.; Pillco Zola, R. S.

    2012-12-01

    Modern precipitation on the Altiplano in central South America shows large seasonal and interannual variability and is dominated by seasonal convection during austral summer. The stable isotopic compositions of oxygen and hydrogen in precipitation and surface waters may be useful in diagnosing atmospheric processes over the Altiplano as they reflect the atmospheric history of the water vapor forming precipitation. Few data exist about the spatial and temporal isotopic variability of precipitation or surface water in the region, however, and therefore, the controls governing isotope distribution over the Altiplano are poorly understood. Samples of stream water were collected from small catchments on the Altiplano and along two elevation transects on the eastern cordillera of the Andes (at 17°30' and 21°15'S) between April 2009 and April 2012. As precipitation over the Altiplano is highly seasonal and the environment is otherwise arid, the isotopic signature of these streams is thought integrate the composition of rainy season precipitation. We limit our analysis to ephemeral streams with no groundwater component. Sampled waters show high spatial and interannual isotopic variability. As expected, stream water becomes increasingly depleted with increased elevation along a transect, but the isotopic lapse rates along the two transects are different and show high interannual variability. The average isotopic lapse rate for the northern transect was 1.09‰/km, but varied from 0.79‰/km in 2010 to 1.36‰/km in 2011 (only collected 2010-2012), while the average isotopic lapse rate for the southern transect was 1.74‰/km and varied between 1.50‰/km in 2010 and 1.92‰/km in 2009. Across the Altiplano itself, stream water varies by over 10‰ (δ18O) within a single season (2011), and by over 13‰ across the entire collection period. The high spatial variability of the stream water isotopic composition on the Altiplano suggests that simple Rayleigh fractionation is

  5. Near-surface temperature lapse rates in a mountainous catchment in the Chilean Andes

    NASA Astrophysics Data System (ADS)

    Ayala; Schauwecker, S.; Pellicciotti, F.; McPhee, J. P.

    2011-12-01

    In mountainous areas, and in the Chilean Andes in particular, the irregular and sparse distribution of recording stations resolves insufficiently the variability of climatic factors such as precipitation, temperature and relative humidity. Assumptions about air temperature variability in space and time have a strong effect on the performance of hydrologic models that represent snow processes such as accumulation and ablation. These processes have large diurnal variations, and assumptions that average over longer time periods (days, weeks or months) may reduce the predictive capacity of these models under different climatic conditions from those for which they were calibrated. They also introduce large uncertainties when such models are used to predict processes with strong subdiurnal variability such as snowmelt dynamics. In many applications and modeling exercises, temperature is assumed to decrease linearly with elevation, using the free-air moist adiabatic lapse rate (MALR: 0.0065°C/m). Little evidence is provided for this assumption, however, and recent studies have shown that use of lapse rates that are uniform in space and constant in time is not appropriate. To explore the validity of this approach, near-surface (2 m) lapse rates were calculated and analyzed at different temporal resolution, based on a new data set of spatially distributed temperature sensors setup in a high elevation catchment of the dry Andes of Central Chile (approx. 33°S). Five minutes temperature data were collected between January 2011 and April 2011 in the Ojos de Agua catchment, using two Automatic Weather Stations (AWSs) and 13 T-loggers (Hobo H8 Pro Temp with external data logger), ranging in altitude from 2230 to 3590 m.s.l.. The entire catchment was snow free during our experiment. We use this unique data set to understand the main controls over temperature variability in time and space, and test whether lapse rates can be used to describe the spatial variations of air

  6. Abundance and Morphological Effects of Large Woody Debris in Forested Basins of Southern Andes

    NASA Astrophysics Data System (ADS)

    Andreoli, A.; Comiti, F.; Lenzi, M. A.

    2006-12-01

    The Southern Andes mountain range represents an ideal location for studying large woody debris (LWD) in streams draining forested basins thanks to the presence of both pristine and managed woodland, and to the general low level of human alteration of stream corridors. However, no published investigations have been performed so far in such a large region. The investigated sites of this research are three basins (9-13 km2 drainage area, third-order channels) covered by Nothofagus forests: two of them are located in the Southern Chilean Andes (the Tres Arroyos in the Malalcahuello National Reserve and the Rio Toro within the Malleco Natural Reserve) and one basin lies in the Argentinean Tierra del Fuego (the Buena Esperanza basin, near the city of Ushuaia). Measured LWD were all wood pieces larger than 10 cm in diameter and 1 m in length, both in the active channel and in the adjacent active floodplain. Pieces forming log jams were all measured and the geometrical dimensions of jams were taken. Jam type was defined based on Abbe and Montgomery (2003) classification. Sediment stored behind log-steps and valley jams was evaluated approximating the sediment accumulated to a solid wedge whose geometrical dimensions were measured. Additional information relative to each LWD piece were recorded during the field survey: type (log, rootwad, log with rootwads attached), orientation to flow, origin (floated, bank erosion, landslide, natural mortality, harvest residuals) and position (log-step, in-channel, channel-bridging, channel margins, bankfull edge). In the Tres Arroyos, the average LWD volume stored within the bankfull channel is 710 m3 ha-1. The average number of pieces is 1,004 per hectare of bankfull channel area. Log-steps represent about 22% of all steps, whereas the elevation loss due to LWD (log-steps and valley jams) results in 27% loss of the total stream potential energy. About 1,600 m3 of sediment (assuming a porosity of 20%) is stored in the main channel

  7. Vernal Point and Seismic Activity in Tibet Mountains and Andes Mountains

    NASA Astrophysics Data System (ADS)

    Chavez-Sumarriva, Israel; Chavez-Campos, Teodosio; Chavez S, Nadia

    2014-05-01

    The gravitational influence of the sun and moon on the equatorial bulges of the mantle of the rotating earth causes the precession of the earth. The retrograde motion of the vernal point through the zodiacal band is 26,000 years and passes through each constellation in an average of 2000 years (Milankovitch subcycle). The vernal point retrogrades one precessional degree approximately in 72 years (Gleissberg-cycle), and approximately enters into the Aquarius constellation (declination 11.5° S) on March 20, 1940. On earth this entry was verify through: a) stability of the magnetic equator in the south central zone of Peru and in the north zone of Bolivia (11.5º South latitude) since 1940 b) the greater intensity of equatorial electrojet (EEJ) in Peru and Bolivia since 1940. Besides, there was a long history of studies of coupling between earthquake-ionosphere. In IUGG (Italy-2007), Cusco was proposed as a prime meridian that was based on: (1) the new prime meridian (72º W == 0º) was parallel to the Andes and its projection the meridian (108° E == 180º) intersects the Tibetan plate (Asia). (2) On earth these two areas present the greatest thickness of the crust with an average depth of 70 kilometers. The aim was to synchronize the earth sciences phenomena (e.g. geology, geophysics, etc.). The coordinate system had the vernal point from meridian (72º W== 0º) and March 20, 1940. The retrograde movement of the vernal point was the first precessional degree (2012 = 1940 + 72). The west coast of South America (parallel to meridian 72º W== 0º) was a segment of the circum-pacific seismic belt where more than two thirds of major earthquakes in the world happened. During the first precessional degree (1940 +72 ==2012) seismic activity were: (a) near the new prime meridian (72° W == 0°) occurs in: (a1) Haiti (18.4° N, 72.5° W), January 12, 2010 with magnitude of 7.0 Mw. (a2) Chile (36.28° S, 73.23° W), February 27, 2010 with Magnitude of 8.8 Mw. (a3) Chile (35

  8. Weathering as the limiting factor of denudation in the Western escarpment of the Andes

    NASA Astrophysics Data System (ADS)

    Abbühl, L. M.; Schlunegger, F.; Kracht, O.; Ramseyer, K.; Rieke-Zapp, D.; Aldahan, A.; von Blanckenburg, F.

    2009-04-01

    A crucial issue in process geomorphology is the search for the scale and the extent to which precipitation, and climate in general, influences the nature and the rates of sediment transfer (weathering, erosion, sediment transport and deposition). We present an analysis of the possible interplay between precipitation, weathering and denudation rates for the western Andean slope between the Cordillera and the Pacific coast. It is based on morphometric studies and quantitative 10Be denudation rate estimates of three transverse river systems (Piura at 5°S, Pisco at 13°S, and Lluta at 18°S) draining the Western escarpment of the Peruvian and North Chilean Andes. The systems originate at elevations >3000 m above sea level, cover an area between 3000 and 10'000 km2 and discharge into the Pacific Ocean. The precipitation rate pattern implies a hyperarid climate at the coast, and semi-arid to semi-humid conditions in the Cordillera where the streams rise. There, climatic conditions are generally controlled by the easterlies that deliver moisture from the Atlantic Ocean via the low level Andean jet. The precipitation rate pattern of the Cordillera shows a North-South decreasing trend, from ca. 1000 mm/yr in Northern Peru to 150 mm/yr in Northern Chile. In these higher regions of the drainage basins, hillslopes are convex with nearly constant curvatures and are mantled by a >1 m thick regolith cover. In addition, hillslope erosion is limited to the regolith-bedrock interface. We interpret these geomorphic features to indicate weathering-controlled sediment discharge. In the lower river segments, beyond tectonic knickzones, regular precipitation is almost absent. For the case of the Piura river in Northern Peru, precipitation in this segment occurs in relation to highly episodic El Niño events related to the westerlies. This results in a supply-limited sediment discharge, leading to predominance of channelized processes on the hillslopes, a spare regolith cover and an

  9. Long-lasting wrenching tectonism in the Fuegian Andes: An overview

    NASA Astrophysics Data System (ADS)

    Sue, Christian; Ghiglione, Matias

    2016-04-01

    Beyond its formal beauty, the geodynamic complexity of the connection between the Southernmost Andes and the Scotia plate, through the active Magallanes-Fagnano Fault system (MFF) and North Scotia Ridge (NSR), ask for proper geodynamic model(s), which could account for the discrepencies between long-term and actual co-seismic deformation and earthquake recurrence time. We focus here on the most recent and current deformation of the region, including a synthesis on the fault system carving the area, together with a critical review of the available kinematic and micro-tectonic data, an overview of the seismicity and paleoseismicity leading to current fault mechanism and actual seismic deformation, which then could be compared to geodetically-related deformation observed by GPS. Fault kinematic studies are coherent with main shortening consistently oriented NE-SW, without significant rotation of the axes across the orogen. These observation, together with the stability of the stress pattern and orientation of the shortening axes on a bigger scale reflects a steady E-W to NNE-SSW σ1/shortening direction since middle Eocene times, reflecting that the global left-lateral motion between Antarctica-Scotia-South America plate circuit, is the main driving forced for the entire area and in particular for the southernmost Andes, over the last 40 or 50 Ma. In terms of seismicity, elastic rebound theory predicts that the major earthquakes on a fault are time dependent, as they are linked to a period of built-up energy (interseismic) with abrupt relaxation stages (coseismic). Regarding both the short-term geodetic and the long-term geological observation, slip rates of the MFF system are pretty low (c.a. 5 mm/yr). Therefore, the time span between major earthquakes should be larger than the one obtained over the last 2 or 3 centuries. Considering a simple tectonic setting of a pure left-lateral strike-slip fault with a constant 5 mm/yr slip rate able to generate ~6 m of left

  10. Unexpectedly High Beta-Diversity of Root-Associated Fungal Communities in the Bolivian Andes.

    PubMed

    Barnes, Christopher J; Maldonado, Carla; Frøslev, Tobias G; Antonelli, Alexandre; Rønsted, Nina

    2016-01-01

    Bolivia is one of the most biologically diverse countries on the planet. Between the Andes and the Amazon drainage basin spans the Yungas, a vast forested region shown to be extremely species rich in macro-organisms. However, it remains unclear whether this high diversity is also reflected in microbial diversity. Here we assess the genetic, taxonomic and functional diversity of root-associated fungi surrounding Cinchona calisaya trees, a typical element of the intermediate altitudes of the Bolivian Yungas. We determine the relative effects of edaphic properties, climate, and geography in regulating fungal community assembly. We show that α-diversity for these fungal communities was similar to temperate and arid ecosystems, averaging 90.1 operational taxonomic units (OTUs) per sample, with reads predominantly assigned to the Ascomycota phylum and with a saprotrophic lifestyle. ß-diversity was calculated as the distance-decay rate, and in contrast to α-diversity, was exceptionally high with a rate of -0.407. Soil properties (pH and P) principally regulated fungal community assembly in an analogous manner to temperate environments, with pH and phosphorus explaining 7.8 and 7.2% of community variation respectively. Surprisingly, altitude does not influence community formation, and there is limited evidence that climate (precipitation and temperature) play a role. Our results suggest that sampling should be performed over a wide geographical and environmental range in order to capture the full root-associated fungal diversity in subtropical regions. This study sheds further light on the diversity and distribution of the world's "hidden biodiversity."

  11. Elevational Ranges of Montane Birds and Deforestation in the Western Andes of Colombia.

    PubMed

    Ocampo-Peñuela, Natalia; Pimm, Stuart L

    2015-01-01

    Deforestation causes habitat loss, fragmentation, degradation, and can ultimately cause extinction of the remnant species. Tropical montane birds face these threats with the added natural vulnerability of narrower elevational ranges and higher specialization than lowland species. Recent studies assess the impact of present and future global climate change on species' ranges, but only a few of these evaluate the potentially confounding effect of lowland deforestation on species elevational distributions. In the Western Andes of Colombia, an important biodiversity hotspot, we evaluated the effects of deforestation on the elevational ranges of montane birds along altitudinal transects. Using point counts and mist-nets, we surveyed six altitudinal transects spanning 2200 to 2800 m. Three transects were forested from 2200 to 2800 m, and three were partially deforested with forest cover only above 2400 m. We compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analysing the effect of deforestation on 134 species, we tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species' elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species' elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.

  12. A Multi-species Assessment of Post-dispersal Seed Predation in the Central Chilean Andes

    PubMed Central

    MUÑOZ, ALEJANDRO A.; CAVIERES, LOHENGRIN A.

    2006-01-01

    • Background and Aims Post-dispersal seed predation in alpine communities has received little attention despite evidence that seeds removed by granivores can decrease plant recruitment into ecosystems. Moreover, few studies have assessed the effects of removal of seeds of a range of species after dispersal on the seeds remaining in ecosystems. A comparison was made of the magnitude of seed removal by ants and birds of nine different shrubby-, herbaceous- and cushion-plant species in the central Chilean Andes in order to assess the interactions between birds, ants and wind, and the types of seeds. • Methods A total of 324 soil-covered plates, each containing 50 seeds of one species, were placed in the field at an altitude of 2700 m and assigned to one of four treatments: control, exclusion of ants, birds, and both. The design also allowed the effects of wind to be assessed. Seed removal from plates was monitored over 20 d. • Key Results Mean accumulative seed removal by granivores averaged over all nine species combined was 25 %. However, large differences between species were evident, with limited seed removal (3–11 %) in three herbaceous species (Alstroemeria pallida, Sisyrinchium arenarium, Pozoa coriacea), moderate (18–33 %) in five species, including a shrub (Chuquiraga oppositifolia), two herbs (Taraxacum officinale, Rhodophiala rhodolirion), and two cushion-plants (Laretia acaulis, Azorella monantha), and substantial (78 %) in the shrub Anarthrophyllum cumingii. The magnitudes of losses caused by birds compared with ants did not differ for the majority of species, although removal by birds was greater than by ants in A. cumingii, and smaller for C. oppositifolia. • Conclusions Post-dispersal seed removal is shown to be an important cause of decreased potential plant species recruitment into alpine ecosystems. The substantial differences in the magnitude of seed losses to ants and birds demonstrate the need for evaluation of seed removal

  13. Ocean-Atmosphere Coupled Model Simulations of Precipitation in the Central Andes

    NASA Technical Reports Server (NTRS)

    Nicholls, Stephen D.; Mohr, Karen I.

    2015-01-01

    The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. In addition, South American meteorology and climate are also made further complicated by ENSO, a powerful coupled ocean-atmosphere phenomenon. Modelling studies in this region have typically resorted to either atmospheric mesoscale or atmosphere-ocean coupled global climate models. The latter offers full physics and high spatial resolution, but it is computationally inefficient typically lack an interactive ocean, whereas the former offers high computational efficiency and ocean-atmosphere coupling, but it lacks adequate spatial and temporal resolution to adequate resolve the complex orography and explicitly simulate precipitation. Explicit simulation of precipitation is vital in the Central Andes where rainfall rates are light (0.5-5 mm hr-1), there is strong seasonality, and most precipitation is associated with weak mesoscale-organized convection. Recent increases in both computational power and model development have led to the advent of coupled ocean-atmosphere mesoscale models for both weather and climate study applications. These modelling systems, while computationally expensive, include two-way ocean-atmosphere coupling, high resolution, and explicit simulation of precipitation. In this study, we use the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST), a fully-coupled mesoscale atmosphere-ocean modeling system. Previous work has shown COAWST to reasonably simulate the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data when ECMWF interim analysis data were used for boundary conditions on a 27-9-km grid configuration (Outer grid extent: 60.4S to 17.7N and 118.6W to 17.4W).

  14. Plant leaf wax biomarkers capture gradients in hydrogen isotopes of precipitation from the Andes and Amazon

    NASA Astrophysics Data System (ADS)

    Feakins, Sarah J.; Bentley, Lisa Patrick; Salinas, Norma; Shenkin, Alexander; Blonder, Benjamin; Goldsmith, Gregory R.; Ponton, Camilo; Arvin, Lindsay J.; Wu, Mong Sin; Peters, Tom; West, A. Joshua; Martin, Roberta E.; Enquist, Brian J.; Asner, Gregory P.; Malhi, Yadvinder

    2016-06-01

    Plant leaf waxes have been found to record the hydrogen isotopic composition of precipitation and are thus used to reconstruct past climate. To assess how faithfully they record hydrological signals, we characterize leaf wax hydrogen isotopic compositions in forest canopy trees across a highly biodiverse, 3 km elevation range on the eastern flank of the Andes. We sampled the dominant tree species and assessed their relative abundance in the tree community. For each tree we collected xylem and leaf samples for analysis of plant water and plant leaf wax hydrogen isotopic compositions. In total, 176 individuals were sampled across 32 species and 5 forest plots that span the gradient. We find both xylem water and leaf wax δD values of individuals correlate (R2 = 0.8 and R2 = 0.3 respectively) with the isotopic composition of precipitation (with an elevation gradient of -21‰ km-1). Minimal leaf water enrichment means that leaf waxes are straightforward recorders of the isotopic composition of precipitation in wet climates. For these tropical forests we find the average fractionation between source water and leaf wax for C29n-alkanes, -129 ± 2‰ (s.e.m., n = 136), to be indistinguishable from that of temperate moist forests. For C28n-alkanoic acids the average fractionation is -121 ± 3‰ (s.e.m., n = 102). Sampling guided by community assembly within forest plots shows that integrated plant leaf wax hydrogen isotopic compositions faithfully record the gradient of isotopes in precipitation with elevation (R2 = 0.97 for n-alkanes and 0.60 for n-alkanoic acids). This calibration study supports the use of leaf waxes as recorders of the isotopic composition of precipitation in lowland tropical rainforest, tropical montane cloud forests and their sedimentary archives.

  15. Stratotype for the Mérida Glaciation at Pueblo Llano in the northern Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    Mahaney, W. C.; Milner, M. W.; Voros, J.; Kalm, V.; Hütt, G.; Bezada, M.; Hancock, R. G. V.; Aufreiter, S.

    2000-12-01

    The Mérida Glaciation (cf. Wisconsinan, Weichselian) as proposed by Schubert (1974b) culminated at about 18 ka during the last glacial maximum (LGM) and ended at about 13 ka as indicated by 14C dating and correlation with the Cordillera Oriental of Colombia. Moraines of an early stade of Mérida Glaciation reached to 2800 m a.s.l. and were largely overrun or eradicated by the maximum Wisconsinan advance (LGM); where they outcrop, the older moraines are characterized by eroded, weathered glacial diamictons and outwash fans. At Pueblo Llano in the central Mérida Andes (Cordillera de Trujillo), older to younger beds of contorted glacitectonized diamict, overlying beds of bouldery till and indurated outwash, all belong to the early Mérida stade. Overlying the early Mérida stade, deposits of rhythmically bedded glaciolacustrine sediments are in turn overlain with contorted sand and silt beds capped with outwash. Above the outwash terrace a loop moraine of LGM age completely encircles the margins of the basin. A stream cut exposed by catastrophic (tectonic or surge?) release of meltwater displays a lithostratigraphic succession that is bereft of organic material for radiocarbon dating. Five optically-stimulated luminescence (OSL) dates place the maximum age of the lowest till at 81 ka. Particle size distributions allow clear distinctions between major lithic units. Heavy mineral analysis of the middle and lower coarse units in the section provide information on sediment sourcing and on major lithostratigraphic divisions. Trace element concentrations provide information on the relative homogeneity of the deposits. The HREE (heavy rare earth element) concentrations allow discrimination of the lower till from the rest of the section; the LREE (light rare earth element) concentrations highlight differences between the lower till, LGM till, and the rest of the section.

  16. Moderate, strong and strongest earthquake-prone areas in the Caucasus, California and the Andes

    NASA Astrophysics Data System (ADS)

    Dzeboev, Boris; Gvishiani, Alexei

    2016-04-01

    We present this study on recognition of areas of possible occurrence of strong earthquakes. The study deals with the earthquake-prone areas in three regions with different geological and tectonic structures located in different parts of the world. The authors created a new method (FCAZ - Fuzzy Clustering and Zoning) for recognition of highly seismic areas, where epicenters of earthquakes with magnitude M≥M0 can occur. The magnitude threshold M0 depends on the seismic activity of the region. The objects of clustering are earthquake epicenters. The new method allows us to implement uniformly necessary clustering of the recognition objects respectively for moderate, strong and strongest events. Suggested approach consists of two steps: clustering of known earthquake epicenters by the original DPS (Discrete Perfect Sets) algorithm and delineating highly seismic zones around the recognized clusters by another original E2XT algorithm. By means of this method we detected the areas of possible occurrence of the epicenters of strong earthquakes in the Caucasus (M≥5), in California (M≥6.5) and in the mountain belt of the Andes (M≥7.75). The latter case relates to the possible areas of natural disaster occurence. Reliability of the results is confirmed by numerous control experiments, including individual and complete seismic history. Two strongest recent Chilean earthquakes occurred in 2014 and 2015 after the moment the results were published. Their epicenters belong to the zone recognized as high seismically hazardous. It is a strong independent argument which confirms the reliability of the results. The presented results integrate most recent outcomes of more than 40 years of research in pattern recognition and systems analysis for seismic zoning implemented in Russian Academy of Science. This research is supported by the Russian Science Foundation (project № 15-17-30020).

  17. Elevational Ranges of Montane Birds and Deforestation in the Western Andes of Colombia

    PubMed Central

    2015-01-01

    Deforestation causes habitat loss, fragmentation, degradation, and can ultimately cause extinction of the remnant species. Tropical montane birds face these threats with the added natural vulnerability of narrower elevational ranges and higher specialization than lowland species. Recent studies assess the impact of present and future global climate change on species’ ranges, but only a few of these evaluate the potentially confounding effect of lowland deforestation on species elevational distributions. In the Western Andes of Colombia, an important biodiversity hotspot, we evaluated the effects of deforestation on the elevational ranges of montane birds along altitudinal transects. Using point counts and mist-nets, we surveyed six altitudinal transects spanning 2200 to 2800m. Three transects were forested from 2200 to 2800m, and three were partially deforested with forest cover only above 2400m. We compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analysing the effect of deforestation on 134 species, we tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species’ elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species’ elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations. PMID:26641477

  18. Quantifying modern erosion rates and river-sediment contamination in the Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Vezzoli, Giovanni; Ghielmi, Giacomo; Mondaca, Gonzalo; Resentini, Alberto; Villarroel, Elena Katia; Padoan, Marta; Gentile, Paolo

    2013-08-01

    We use petrographic, mineralogical and geochemical data on modern river sediments of the Tupiza basin in the Bolivian Andes to investigate the relationships among human activity, heavy-metal contamination of sediments and modern erosion rates in mountain fluvial systems. Forward mixing model was used to quantify the relative contributions from each main tributary to total sediment load of the Tupiza River. The absolute sediment load was estimated by using the Pacific Southwest Inter Agency Committee model (PSIAC, 1968) after two years of geological field surveys (2009; 2010), together with data obtained from the Instituto Nacional del Agua public authority (INA, 2007), and suspended-load data from Aalto et al. (2006). Our results indicate that the sediment yield in the drainage basin is 910 ± 752 ton/km2year and the mean erosion rate is 0.40 ± 0.33 mm/year. These values compare well with erosion rates measured by Insel et al. (2010) using 10Be cosmogenic radionuclide concentrations in Bolivian river sediments. More than 40% of the Tupiza river load is produced in the upper part of the catchment, where highly tectonized and weathered rocks are exposed and coupled with sporadic land cover and intense human activity (mines). In the Rio Chilco basin strong erosion of upland valleys produce an increase of erosion (˜10 mm/year) and the influx of large amounts of sediment by mass wasting processes. The main floodplain of the Tupiza catchment represents a significant storage site for the heavy metals (˜657 ton/year). Fluvial sediments contain zinc, lead, vanadium, chromium, arsenic and nickel. Since the residence time of these contaminants in the alluvial plain may be more than 100 years, they may represent a potential source of pollution for human health.

  19. Floristic Relationships Among Vegetation Types of New Zealand and the Southern Andes: Similarities and Biogeographic Implications

    PubMed Central

    Ezcurra, Cecilia; Baccalá, Nora; Wardle, Peter

    2008-01-01

    Background and Aims Similarities between the floras of geographically comparable regions of New Zealand (NZ) and the southern Andes (SA) have interested biologists for over 150 years. The present work selects vegetation types that are physiognomically similar between the two regions, compares their floristic composition, assesses the environmental factors that characterize these matching vegetation types, and determines whether phylogenetic groups of ancestral versus modern origin are represented in different proportions in their floras, in the context of their biogeographic history. Methods Floristic relationships based on 369 genera of ten vegetation types present in both regions were investigated with correspondence analysis (CA) and ascending hierarchical clustering (AHC). The resulting ordination and classification were related to the environmental characteristics of the different vegetation types. The proportions of different phylogenetic groups between the regions (NZ, SA) were also compared, and between forest and non-forest communities. Key Results Floristic similarities between NZ and SA tend to increase from forest to non-forest vegetation, and are highest in coastal vegetation and bog. The floras of NZ and SA also differ in their phylogenetic origin, NZ being characterized by an ‘excess’ of genera of basal origin, especially in forests. Conclusions The relatively low similarities between forests of SA and NZ are related to the former being largely of in situ South American and Gondwanan origin, whereas the latter have been mostly reconstituted though transoceanic dispersal of propagules since the Oligocene. The greater similarities among non-forest plant communities of the two regions result from varied dispersal routes, including relatively recent transoceanic dispersal for coastal vegetation, possible dispersal via a still-vegetated Antarctica especially for bog plants, and independent immigration from Northern Hemisphere sources for many genera

  20. Giant magmatic water reservoir beneath Uturuncu volcano and Altiplano-Puna region (Central Andes)

    NASA Astrophysics Data System (ADS)

    Laumonier, Mickael; Gaillard, Fabrice; Muir, Duncan; Blundy, Jon; Unsworth, Martyn

    2016-04-01

    Volcanism at continental arcs is the surface manifestation of long-lived crustal magmatic processes whereby mantle-derived hydrous basalt magma differentiates to more silica-rich magmas by a combination of crystallization and crustal melting. What erupts is just a fraction of the total volume of magma produced by these processes; the unerupted, plutonic residues solidify and are inaccessible to direct study until millions of years of uplift and erosion bring them to the surface. In contrast, geophysical surveys, using electromagnetic and seismic waves, can provide real-time images of subduction zone magmatic systems. Several such studies have revealed that arc volcanoes are underlain by large partially molten regions at depths of >10 km, the largest known example being the Altiplano-Puna magma body (APMB) in central Andes. Interpreting such geophysical images in terms of amount, composition and distribution of partial melts is limited by our lack of knowledge of the physical properties of silicate melts at elevated pressures and temperatures. Here we present high-pressure, in situ experimental data showing that the electrical conductivity of andesitic melts is primarily controlled by their dissolved water contents. Linking our new measurements to petrological constraints from andesites erupted on the Altiplano, we show that the APMB is composed of 10-20% of an andesitic melt containing 8-10 wt% dissolved water. This implies that the APMB is a giant water anomaly in the global subduction system, with a total mass of dissolved magmatic water about half of the water contained within the Adriatic Sea. In addition to the controls on the physical properties of the melts, the abundance of dissolved water governs the structural levels of magma ponding, equivalent to the depth of water saturation, where degassing and crystallisation promote partial melting and weakening of the upper crust. Unexpectedly, very high concentrations of water in andesite magmas shall impede their

  1. The paradigm of paraglacial megafans of the San Juan river basin, Central Andes, Argentina

    NASA Astrophysics Data System (ADS)

    Suvires, Graciela M.

    2014-11-01

    The spatial distribution and several morphometric characteristics of the Quaternary alluvial fans of the San Juan River, in the province of San Juan, at the Central and Western part of Argentina, have been studied to classify them as paraglacial megafans, as well to ratify its depositional environmental conditions. The high sedimentary load exported by San Juan river from the Central Andes to the foreland depressions is estimated about 3,682,200 hm3. The large alluvial fans of Ullum-Zonda and Tulum valleys were deposited into deep tectonic depressions, during the Upper Pleistocene deglaciation stages. The outcome of collecting remotely sensed data, map and DEM data, geophysical data and much fieldwork gave access to morphometric, morphographic and morphogenetic data of these alluvial fans. The main drainage network was mapped on processed images using QGis (vers.2.0.1). Several fan morphometric parameters were measured, such as the size, the shape, the thickness, the surface areas and the sedimentary volume of exported load. The analyzed fans were accumulated in deep tectonic depressions, where the alluvium fill reaches 700 to 1200 m thick. Such fans do not reach the large size that other world megafans have, and this is due to tectonic obstacles, although the sedimentary fill average volume surpasses 514,000 hm3. The author proposes to consider Ullum-Zonda and Tulum alluvial fans as paraglacial megafans. According to the stratigraphic relationships of the tropical South American Rivers, the author considers that the San Juan paraglacial megafans would have occurred in the period before 24 ka BP , possibly corresponding to Middle Pleniglacial (ca 65-24ka BP). They record colder and more humid conditions compared with the present arid and dry conditions.

  2. Multi-sensor geophysical constraints on crustal melt in the central Andes: the PLUTONS project

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Comeau, M. J.; West, M. E.; Christensen, D. H.; Mcfarlin, H. L.; Farrell, A. K.; Del Potro, R.; Gottsmann, J.; McNutt, S. R.; Michelfelder, G.; Diez, M.; Elliott, J.; Henderson, S. T.; Keyson, L.; Delgado, F.; Unsworth, M. J.

    2015-12-01

    The central Andes is a key global location to quantify storage, transport, and volumes of magma in the Earth's crust as it is home to the world's largest zone of partial melt (the Altiplano-Puna Magma or Mush Body, APMB) as well as the more recently documented Southern Puna Magma Body (SPMB). We describe results from the recently completed international PLUTONS project that focused inter-disciplinary study on two sites of large-scale surface uplift that presumably represent ongoing magmatic intrusions in the mid to upper crust - Uturuncu, Bolivia (in the center of the APMB) and Lazufre on the Chile-Argentina border (on the edge of the SPMB). In particular, a suite of geophysical techniques (seismology, gravity, surface deformation, and electro-magnetic methods) have been used to infer the current subsurface distribution and quantity of partial melts in combination with geochemical and lab studies on samples from the area. Both Uturuncu and Lazufre show separate geophysical anomalies in the upper and mid/lower crust (e.g., low seismic velocity, low resistivity, etc.) indicating multiple distinct reservoirs of magma and/or hydrothermal fluids with different properties. The characteristics of the geophysical anomalies differ somewhat depending on the technique used - reflecting the different sensitivity of each method to subsurface melt of different compositions, connectivity, and volatile content. For example, the depth to the top of the APMB is shallower in a joint ambient noise tomography and receiver function analysis compared to a 3D magnetotelluric inversion. One possibility is that the seismic methods are detecting brines above the APMB that do not have a large electromagnetic signature. Comparison of the geophysical measurements with laboratory experiments at the APMB indicate a minimum of 4-25% melt averaged over the region is needed -- higher melt volumes are permitted by the gravity and MT data and may exist in small regions. However, bulk melt values above

  3. Between hearth and labor market: the recruitment of peasant women in the Andes.

    PubMed

    Radcliffe, S A

    1990-01-01

    To cover subsistence requirements, peasant women from the Peruvian Andes increasingly are being forced to engage in income-generating activities, including domestic service, marketing, manufacturing, and herding. In many cases, recruitment into waged labor involves migration from rural communities. Case studies of the placement of peasant women in external labor markets illustrate the complex micro- and macro-level factors that determine the mix of productive and reproductive labor. The sexual division of labor in the domestic economy and community is the critical in regulating the length of absence of peasant women from the home, the types of jobs taken, and the migratory destination. In 1 such case study, 56 women from the village of Kallarayan (all of whom had migrated at some point) were interviewed during 13 months of fieldwork in 1984-85. There is no paid employment in Kallarayan, so 14% of the village's population is involved in migration to urban areas or commercial agricultural areas in jungle valleys at any point. Male migration is high in the 11-40-year age group, but becomes seasonal once men marry. Female migrants tend to remain away from the village for longer periods, but are almost exclusively single. Recruitment of peasant women into paid labor is achieved by 5 types of agents: family, godparents and friends, authority figures, recruiting agents, and employers. Peasant girls under 15 years of age tend to be allocated to external labor markets (largely domestic services) by parents and godparents; after 15 years, however, when children are considered to reach adulthood, there is a shift toward self-motivated migration or recruitment by employers and agents. The eldest daughter typically enters migration at age 14 years and sacrifices her education, while younger siblings remain in the home longer. In all but the poorest families, female migration for waged labor ends with marriage.

  4. An analysis of surface air temperature trends and variability along the Andes

    NASA Astrophysics Data System (ADS)

    Franquist, Eric S.

    Climate change is difficult to study in mountainous regions such as the Andes since steep changes in elevation cannot always be resolved by climate models. However, it is important to examine temperature trends in this region as rises in surface air temperature are leading to the melting of tropical glaciers. Local communities rely on the glacier-fed streamflow to get their water for drinking, irrigation, and livestock. Moreover, communities also rely on the tourism of hikers who come to the region to view the glaciers. As the temperatures increase, these glaciers are no longer in equilibrium with their current climate and are receding rapidly and decreasing the streamflow. This thesis examines surface air temperature from 858 weather stations across Ecuador, Peru, and Chile in order to analyze changes in trends and variability. Three time periods were studied: 1961--1990, 1971--2000, and 1981--2010. The greatest warming occurred during the period of 1971--2000 with 92% of the stations experiencing positive trends with a mean of 0.24°C/decade. There was a clear shift toward cooler temperatures at all latitudes and below elevations of 500 m during the most recent time period studied (1981--2010). Station temperatures were more strongly correlated with the El Nino Southern Oscillation (ENSO), than the Pacific Decadal Oscillation (PDO), and the Southern Annular Mode (SAM). A principal component analysis confirmed ENSO as the main contributor of variability with the most influence in the lower latitudes. There were clear multidecadal changes in correlation strength for the PDO. The PDO contributed the most to the increases in station temperature trends during the 1961--1990 period, consistent with the PDO shift to the positive phase in the middle of this period. There were many strong positive trends at individual stations during the 1971--2000 period; however, these trends could not fully be attributed to ENSO, PDO, or SAM, indicating anthropogenic effects of

  5. Miocene fossil hydrothermal system associated with a volcanic complex in the Andes of central Chile

    NASA Astrophysics Data System (ADS)

    Fuentes, Francisco; Aguirre, Luis; Vergara, Mario; Valdebenito, Leticia; Fonseca, Eugenia

    2004-11-01

    Cenozoic deposits in the Andes of central Chile have been affected by very low-grade burial metamorphism. At about 33°S in the Cuesta de Chacabuco area, approximately 53 km north of Santiago, two Oligocene and Miocene volcanic units form a ca. 1300-m-thick rock pile. The Miocene unit corresponds to a volcanic complex composed of two eroded stratovolcanoes. Secondary mineral assemblages in both units were studied petrographically and using X-ray diffraction and electron microprobe analyses. Most of the igneous minerals are wholly or partially preserved, and the ubiquitous secondary minerals are zeolites and mafic phyllosilicates. The alteration pattern observed is characterized by a lateral zonation in secondary mineralogy related to a lateral increase in temperature but not to stratigraphic depth. The following three zones were established, mainly based on the distribution of zeolites: zone I comprises heulandite, thomsonite, mesolite, stilbite and tri-smectite; zone II contains laumontite, yugawaralite, prehnite, epidote and chlorite; and zone III comprises wairakite, epidote, chlorite, diopside, biotite and titanite. For each zone, the following temperature ranges were estimated: zone I, 100-180 °C; zone II, 180-270 °C; and zone III, 245-310 °C. The alteration episode was characterized by a high Pfluid/ Ptotal ratio (ca. 1.0), although slightly variable, a high geothermal gradient of ca. 160 °C km -1 and fluid pressures below 500 bars. Although temperature was the main control on the mineral zonation, several interrelated parameters, mainly fluid composition, porosity and permeability, were also important. Hot, near neutral to slightly alkaline pH, alkali chloride hydrothermal fluids with very low dissolved CO 2 contents deposited the secondary minerals. The alteration pattern is the result of depositing fluids in outflow regions from a hydrothermal system developed inside a volcanic complex during the Miocene. The hydrothermal system has been eroded to a

  6. Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile

    NASA Astrophysics Data System (ADS)

    Gascoin, S.; Kinnard, C.; Ponce, R.; Lhermitte, S.; MacDonell, S.; Rabatel, A.

    2011-12-01

    Quantitative assessment of glacier contribution to present-day streamflow is a prerequisite to the anticipation of climate change impact on water resources in the Dry Andes. In this paper we focus on two glaciated headwater catchments of the Huasco Basin (Chile, 29° S). The combination of glacier monitoring data for five glaciers (Toro 1, Toro 2, Esperanza, Guanaco, Estrecho and Ortigas) with five automatic streamflow records at sites with glacier coverage of 0.4 to 11 % allows the estimation of the mean annual glacier contribution to discharge between 2003/2004 and 2007/2008 hydrological years. In addition, direct manual measurements of glacier runoff were conducted in summer at the snouts of four glaciers, which provide the instantaneous contribution of glacier meltwater to stream runoff during summer. The results show that the mean annual glacier contribution to streamflow ranges between 3.3 and 23 %, which is greater than the glaciated fraction of the catchments. We argue that glacier contribution is partly enhanced by the effect of snowdrift from the non-glacier area to the glacier surface. Glacier mass loss is evident over the study period, with a mean of -0.84 m w.e. yr-1 for the period 2003/2004-2007/2008, and also contributes to increase glacier runoff. An El Niño episode in 2002 resulted in high snow accumulation, modifying the hydrological regime and probably reducing the glacier contribution in favor of seasonal snowmelt during the subsequent 2002/2003 hydrological year. At the hourly timescale, summertime glacier contributions are highly variable in space and time, revealing large differences in effective melting rates between glaciers and glacierets (from 1 mm w.e. h-1 to 6 mm w.e. h-1).

  7. The Andes Virus Nucleocapsid Protein Directs Basal Endothelial Cell Permeability by Activating RhoA

    PubMed Central

    Gorbunova, Elena E.; Simons, Matthew J.; Gavrilovskaya, Irina N.

    2016-01-01

    ABSTRACT Andes virus (ANDV) predominantly infects microvascular endothelial cells (MECs) and nonlytically causes an acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients, virtually every pulmonary MEC is infected, MECs are enlarged, and infection results in vascular leakage and highly lethal pulmonary edema. We observed that MECs infected with the ANDV hantavirus or expressing the ANDV nucleocapsid (N) protein showed increased size and permeability by activating the Rheb and RhoA GTPases. Expression of ANDV N in MECs increased cell size by preventing tuberous sclerosis complex (TSC) repression of Rheb-mTOR-pS6K. N selectively bound the TSC2 N terminus (1 to 1403) within a complex containing TSC2/TSC1/TBC1D7, and endogenous TSC2 reciprocally coprecipitated N protein from ANDV-infected MECs. TSCs normally restrict RhoA-induced MEC permeability, and we found that ANDV infection or N protein expression constitutively activated RhoA. This suggests that the ANDV N protein alone is sufficient to activate signaling pathways that control MEC size and permeability. Further, RhoA small interfering RNA, dominant-negative RhoA(N19), and the RhoA/Rho kinase inhibitors fasudil and Y27632 dramatically reduced the permeability of ANDV-infected MECs by 80 to 90%. Fasudil also reduced the bradykinin-directed permeability of ANDV and Hantaan virus-infected MECs to control levels. These findings demonstrate that ANDV activation of RhoA causes MEC permeability and reveal a potential edemagenic mechanism for ANDV to constitutively inhibit the basal barrier integrity of infected MECs. The central importance of RhoA activation in MEC permeability further suggests therapeutically targeting RhoA, TSCs, and Rac1 as potential means of resolving capillary leakage during hantavirus infections. PMID:27795403

  8. A paleolimnological perspective on industrial-era metal pollution in the central Andes, Peru.

    PubMed

    Cooke, Colin A; Abbott, Mark B

    2008-04-15

    To date, few studies have investigated the environmental legacy associated with industrialization in the South American Andes. Here, we present an environmental archive of industrial pollution from (210)Pb-dated lake cores recovered from Laguna Chipian, located near the Cerro de Pasco metallurgical region and Laguna Pirhuacocha, located near the Morococha mining region and the La Oroya smelting complex. At Laguna Chipian, trace metal concentrations increase beginning ~1900 AD, coincident with the construction of the central Peruvian railway, and the rapid industrial development of the Cerro de Pasco region. Trace metal concentrations and fluxes peak during the 1950s before subsequently declining up-core (though remaining well above background levels). While Colonial mining and smelting operations are known to have occurred at Cerro de Pasco since at least 1630 AD, our sediment record preserves no associated metal deposition. Based on our (14)C and (210)Pb data, we suggest that this is due to a depositional hiatus, rather than a lack of regional Colonial pollution. At Laguna Pirhuacocha, industrial trace metal deposition first begins ~1925 AD, rapidly increasing after ~1950 AD and peaking during either the 1970s or 1990s. Trace metal concentrations from these lakes are comparable to some of the most polluted lakes in North America and Europe. There appears to be little diagenetic alteration of the trace metal record at either lake, the exception being arsenic (As) accumulation at Laguna Pirhuacocha. There, a correlation between As and the redox-sensitive element manganese (Mn) suggests that the sedimentary As burden is undergoing diagenetic migration towards the sediment-water interface. This mobility has contributed to surface sediment As concentrations in excess of 1100 microg g(-1). The results presented here chronicle a rapidly changing Andean environment, and highlight a need for future research in the rate and magnitude of atmospheric metal pollution.

  9. Looking for Biosignatures in Carbonate Microbialites from the Laguna Negra, Argentinian Andes

    NASA Astrophysics Data System (ADS)

    Boidi, F. J.; Gomez, F. J.; Fike, D. A.; Bradley, A. S.; Farías, M. E.; Beeler, S.

    2015-12-01

    The distinction between biotic and abiotic control on microbialites formation and its signatures is relevant since stromatolites are considered the oldest evidence for life on Earth and a target for astrobiological research. The Laguna Negra is a shallow hypersaline lake placed at the Andes, Northwest Argentina, where carbonate microbialites and microbial mats develop. It is a unique system where microbial influence on carbonate precipitation and potential preserved biosignatures in the microbialites can be studied. Here we compare three distinct microbialites systems: carbonate laminar crusts with no visible microbial mats, stromatolites and dm-size oncoids, both related with different microbial mats. Our goal is to unravel the biotic controls on their formation, and the biosignatures there recorded. Laminar crusts are composed of stacked regular and isopachous carbonate lamina. Oncoids laminae are typically characterized by irregular hybrid micro-textures, composed of alternating micritic and botryoidal laminae, and the stromatolites are mostly composed by irregular micritic laminae. Sulfur isotopes of carbonate associated sulphate show similar values but they show differences in the pyrite sulfur isotopes suggesting differences in the fractionation degree, possibly related to sulphate reducing bacteria and variable sulphate reservoirs in the case of stromatolites and oncoids. δ13C fractionation between organic carbon and carbonates suggests photosynthesis, but other metabolisms cannot yet be discarded. 16S rDNA data of the microbial communities associated with the carbonate structures indicate the presence of these taxonomic groups and those that are known to influence carbonate precipitation, particularly in the stromatolites associated microbial community. Our data indicate significant differences between the three systems in terms of stable isotopes, textures and associated microbial diversity, suggesting a microbial control on stromatolites and oncoids

  10. Peltephilidae and Mesotheriidae (Mammalia) from late Miocene strata of Northern Chilean Andes, Caragua

    NASA Astrophysics Data System (ADS)

    Montoya-Sanhueza, Germán; Moreno, Karen; Bobe, René; Carrano, Matthew T.; García, Marcelo; Corgne, Alexandre

    2017-04-01

    Until now, only one Cenozoic fossil mammal from the Chilean Precordillera (Arica and Parinacota Region) has been reported, Caraguatypotherium munozi (Mesotheriidae: Notoungulata). In this study, we describe a fourth specimen of C. munozi and a new armadillo species, Epipeltephilus caraguensis (Peltephilidae: Cingulata), both collected from a new site closer to the fossiliferous outcrops of the Caragua area (Serravallian - Tortonian). E. caraguensis differs from other members of the family in having: two sulci in the articular surface of the mobile osteoderm; having a tubular, rough and raised anterior edge; a conspicuous transverse depression; and four widely spaced foramina. This taxon represents the youngest known peltephilid from intermediate latitudes and indicates a wide geographic distribution (Patagonia to Central Andes) of the family just prior to its extinction. The new mesothere specimen is 19% larger than previous records. The revision of the dental features of C. munozi allowed the identification of an ambiguous trait in its original diagnosis, i.e. an enamel fracture was misinterpreted with the presence of a posterior sulcus on the talonid of the m3, suggesting that further taxonomic and systematic revision for the Caragua mesothere is necessary. Although the fossil record from the Caragua area is still scarce, mesotheriines seem to be abundant at this latitude, just as has been observed at several early to late Miocene sites such as Chucal (Chile), Cerdas and Nazareno (Bolivia), as well as in southern regions such as Arroyo Chasicó and Mendoza (Argentina). The presence of a new peltephilid species in Caragua sustains the hypothesis of provincialism during the Miocene in intermediate latitudes. Our findings also provide further support for probable faunal movements between intermediate and higher latitudes rather than to lower ones.

  11. Comparative phylogeography of co-distributed Phrygilus species (Aves, Thraupidae) from the Central Andes.

    PubMed

    Álvarez-Varas, R; González-Acuña, D; Vianna, J A

    2015-09-01

    The Neotropical ecoregion has been an important place of avian diversification where dispersal and allopatric events coupled with periods of active orogeny and climate change (Late Pliocene-Pleistocene) have shaped the biogeography of the region. In the Neotropics, avian population structure has been sculpted not only by geographical barriers, but also by non-allopatric factors such as natural selection and local adaptation. We analyzed the genetic variation of six co-distributed Phrygilus species from the Central Andes, based on mitochondrial and nuclear markers in conjunction with morphological differentiation. We examined if Phrygilus species share patterns of population structure and historical demography, and reviewed the intraspecific taxonomy in part of their geographic range. Our results showed different phylogeographic patterns between species, even among those belonging to the same phylogenetic clade. P. alaudinus, P. atriceps, and P. unicolor showed genetic differentiation mediated by allopatric mechanisms in response to specific geographic barriers; P. gayi showed sympatric lineages in northern Chile, while P. plebejus and P. fruticeti showed a single genetic group. We found no relationship between geographic range size and genetic structure. Additionally, a signature of expansion was found in three species related to the expansion of paleolakes in the Altiplano region and the drying phase of the Atacama Desert. Morphological analysis showed congruence with molecular data and intraspecific taxonomy in most species. While we detected genetic and phenotypic patterns that could be related to natural selection and local adaptation, our results indicate that allopatric events acted as a major factor in the population differentiation of Phrygilus species.

  12. Temporal Analysis of Andes Virus and Sin Nombre Virus Infections of Syrian Hamsters▿

    PubMed Central

    Wahl-Jensen, Victoria; Chapman, Jennifer; Asher, Ludmila; Fisher, Robert; Zimmerman, Michael; Larsen, Tom; Hooper, Jay W.

    2007-01-01

    Andes virus (ANDV) and Sin Nombre virus (SNV) are rodent-borne hantaviruses that cause a highly lethal hemorrhagic fever in humans known as hantavirus pulmonary syndrome (HPS). There are no vaccines or specific drugs to prevent or treat HPS, and the pathogenesis is not understood. Syrian hamsters infected with ANDV, but not SNV, develop a highly lethal disease that closely resembles HPS in humans. Here, we performed a temporal pathogenesis study comparing ANDV and SNV infections in hamsters. SNV was nonpathogenic and viremia was not detected despite the fact that all animals were infected. ANDV was uniformly lethal with a mean time to death of 11 days. The first pathology detected was lymphocyte apoptosis starting on day 4. Animals were viremic and viral antigen was first observed in multiple organs by days 6 and 8, respectively. Levels of infectious virus in the blood increased 4 to 5 logs between days 6 and 8. Pulmonary edema was first detected ultrastructurally on day 6. Ultrastructural analysis of lung tissues revealed the presence of large inclusion bodies and substantial numbers of vacuoles within infected endothelial cells. Paraendothelial gaps were not observed, suggesting that fluid leakage was transcellular and directly attributable to infecting virus. Taken together, these data imply that HPS treatment strategies aimed at preventing virus replication and dissemination will have the greatest probability of success if administered before the viremic phase; however, because vascular leakage is associated with infected endothelial cells, a therapeutic strategy targeting viral replication might be effective even at later times (e.g., after disease onset). PMID:17475651

  13. Recent geodetic mass balance of Monte Tronador glaciers, northern Patagonian Andes

    NASA Astrophysics Data System (ADS)

    Ruiz, Lucas; Berthier, Etienne; Viale, Maximiliano; Pitte, Pierre; Masiokas, Mariano H.

    2017-02-01

    Glaciers in the northern Patagonian Andes (35-46° S) have shown a dramatic decline in area in the last decades. However, little is known about glacier mass balance changes in this region. This study presents a geodetic mass balance estimate of Monte Tronador (41.15° S; 71.88° W) glaciers by comparing a Pléiades digital elevation model (DEM) acquired in 2012 with the Shuttle Radar Topography Mission (SRTM) X-band DEM acquired in 2000. We find a slightly negative Monte-Tronador-wide mass budget of -0.17 m w.e. a-1 (ranging from -0.54 to 0.14 m w.e. a-1 for individual glaciers) and a slightly negative trend in glacier extent (-0.16 % a-1) over the 2000-2012 period. With a few exceptions, debris-covered valley glaciers that descend below a bedrock cliff are losing mass at higher rates, while mountain glaciers with termini located above this cliff are closer to mass equilibrium. Climate variations over the last decades show a notable increase in warm season temperatures in the late 1970s but limited warming afterwards. These warmer conditions combined with an overall drying trend may explain the moderate ice mass loss observed at Monte Tronador. The almost balanced mass budget of mountain glaciers suggests that they are probably approaching a dynamic equilibrium with current (post-1977) climate, whereas the valley glaciers tongues will continue to retreat. The slightly negative overall mass budget of Monte Tronador glaciers contrasts with the highly negative mass balance estimates observed in the Patagonian ice fields further south.

  14. Evidence from the northwestern Venezuelan Andes for extraterrestrial impact: The black mat enigma

    NASA Astrophysics Data System (ADS)

    Mahaney, W. C.; Kalm, V.; Krinsley, D. H.; Tricart, P.; Schwartz, S.; Dohm, J.; Kim, K. J.; Kapran, B.; Milner, M. W.; Beukens, R.; Boccia, S.; Hancock, R. G. V.; Hart, K. M.; Kelleher, B.

    2010-03-01

    A carbon-rich black layer encrusted on a sandy pebbly bed of outwash in the northern Venezuelan Andes, previously considered the result of an alpine grass fire, is now recognized as a 'black mat' candidate correlative with Clovis Age sites in North America, falling within the range of 'black mat' dated sites (~ 12.9 ka cal BP). As such, the bed at site MUM7B, which dates to < 11.8 ka 14C years BP (raw dates) and appears to be contemporaneous with the Younger Dryas (YD) cooling event, marks a possibly much more extensive occurrence than previously identified. No fossils (megafauna) or tool assemblages were observed at this newly identified candidate site (3800 a.m.s.l.), as in the case of the North American sites. Here, evidence is presented for an extraterrestrial impact event at ~ 12.9 ka. The impact-related Andean bed, located ~ 20 cm above 13.7-13.3 ka cal BP alluvial and glaciolacustrine deposits, falls within the sediment characteristics and age range of 'black mat' dated sites (~ 12.9 ka cal BP) in North America. Site sediment characteristics include: carbon, glassy spherules, magnetic microspherules, carbon mat 'welded' onto coarse granular material, occasional presence of platinum group metals (Rh and Ru), planar deformation features (pdfs) in fine silt-size fragmental grains of quartz, as well as orthoclase, and monazite (with an abundance of Rare Earth Elements—REEs). If the candidate site is 'black mat', correlative with the 'black mat' sites of North America, such an extensive occurrence may support the hypothesized airburst/impact over the Laurentide Glacier, which led to a reversal of Allerød warming and the onset of YD cooling and readvance of glaciers. While this finding does not confirm such, it merits further investigation, which includes the reconnaissance for additional sites in South America. Furthermore, if confirmed, such an extensive occurrence may corroborate an impact origin.

  15. Application of Radio Echo Sounding at the arid Andes of Argentina: the Agua Negra Glacier

    NASA Astrophysics Data System (ADS)

    Milana, Juan Pablo; Maturano, Aníbal

    1999-10-01

    The results of ground-based Radio Echo Sounding (RES) of the Agua Negra Glacier of the arid Andes of Argentina are analyzed. The glacier (30°15'S, 69°50'W) extends from 5.200 to 4600 m in altitude, and presents a smooth and convex upward surface without evident crevasses. Most potential crevasses seem to be sealed by the high rate of melting-freezing due to extreme differences between positive (diurnal) and negative (night) energy peaks. Seismic methods suggest the existence of a thick unit of debris or altered rock at the base of the glacier. Higher than normal seismic velocities indicate a very compact ice system (ice+voids), very dense near the glacier terminus. An impulse transmitter of 12 MHz was used for the RES survey, with 4 m half-length antennas, and an antenna separation of 30 m. Three profiles were surveyed and isolated measurements were taken in addition, covering about a tenth of the total glacier surface. Very clear bottom echoes occurred in most cases, indicating a maximum ice thickness of 50 to 55 m and an ice volume beneath the surveyed area of 2.0×10 6 m 3. The total glacier volume is estimated as 10 times higher, representing an important water resource for this region. It is also possible that an older ice body lies beneath the debris that forms the present glacier base. The multistorey structure of local glaciers may be an inheritance of past glacial cycles, modulating the evolution of a complex glaciolithic system. These preliminary results, suggest the RES method works well on local glaciers, provided one take into account problems such as debris saturation, low-scale relief producing scattered echoes and low ice thickness. Its application should contribute to studies of the water reserves in this largely glacier-dependent arid region.

  16. Hydrogen Isotope Biogeochemistry of Plant Biomarkers in Tropical Trees from the Andes to Amazon

    NASA Astrophysics Data System (ADS)

    Feakins, S. J.; Ponton, C.; West, A. J.; Malhi, Y.; Goldsmith, G.; Salinas, N.; Bentley, L. P.

    2014-12-01

    Plant leaf waxes are well known biomarkers for terrestrial vegetation. Generally, their hydrogen isotopic composition (D/H) records the isotopic composition of precipitation, modulated by leaf water processes and a large biosynthetic fractionation. In addition, the D/H of methoxyl groups on tree wood lignin is an emerging technique thought to record the D/H of source waters, without leaf water complications. Using each of these biomarkers as proxies requires understanding D/H fractionations in plant systems, but few studies have directly studied hydrogen isotope biogeochemistry in tropical plants. An approach that has proven helpful is the paired analysis of plant waters and plant biomarkers: in order that fractionations can be directly computed rather than assumed. This presents logistical challenges in remote tropical forest environments. We report on a unique dataset collected by tree-climbers from 6 well-studied vegetation plots across a 4km elevation transect in the Peruvian Andes and Amazonia. We have measured the D/H of stem water and leaf water, and we compare these to precipitation isotopes and stream waters. The goal of the plant water studies is to understand plant water uptake and stem-leaf water isotopic offsets which can vary due to both transpiration and foliar uptake of water in tropical montane forests. We are in the process of measuring the D/H of plant biomarkers (n-alkanoic acids, n-alkanes and lignin methoxyl) in order to assess how these water isotopic signals are encoded in plant biomarkers. We compare the species-specific modern plant insights to the plant leaf wax n-alkanoic acid D/H that we have recently reported from soils and river sediments from the same region, in order to understand how signals of plant biogeochemistry are integrated into geological sedimentary archives. Progress and open questions in tropical isotope biogeochemistry will be discussed at the meeting.

  17. The Tropical Andes without Snow and Ice - Impacts, Uncertainties and Challenges Ahead

    NASA Astrophysics Data System (ADS)

    Vuille, M. F.

    2015-12-01

    Climate change has lead to significant glacier retreat in the tropical Andes over the past several decades. Despite the apparent hiatus in warming along the Pacific coast, temperature continues to rise at higher elevations, putting smaller glaciers in lower lying mountain ranges on the verge of complete disappearance. As a result water availability and water quality in glacier-fed river systems will be reduced during the dry season. The lack of a seasonal snow cover in the tropics, which provides for an additional hydrologic buffer in mid-latitude mountain ranges, further exacerbates the situation. Altered precipitation regimes, including changes in total precipitation amount, changes in the rain/snow ratio, or changes in the wet season length will also affect water availability, but projections of these changes are currently fraught with uncertainty. The importance of glacier-fed water supply varies between regions and depends on the presence of other water regulators (reservoirs, wetlands), the length of the dry season and the trajectory of water demand (population growth, expanding economic activities). Here we will review downscaled CMIP5 model results for some of these mountain ranges and discuss the consequences of future warming and projected precipitation changes for the Andean cryosphere, while considering uncertainties associated with downscaling methodology, model dependency and choice of emission scenario. Adaptation strategies will be evaluated in the light of these results, discussing the need to pursue no-regret strategies, when implementing water conservation measures. Lessons learned from past adaptation and capacity building activities in the region will be discussed, emphasizing a) the need to strengthen the institutional standing of authorities involved in glacier research, b) alignment of capacity building and international cooperation with the national and regional needs and c) improvements to long-term climate and glacier monitoring programs

  18. Unexpectedly High Beta-Diversity of Root-Associated Fungal Communities in the Bolivian Andes

    PubMed Central

    Barnes, Christopher J.; Maldonado, Carla; Frøslev, Tobias G.; Antonelli, Alexandre; Rønsted, Nina

    2016-01-01

    Bolivia is one of the most biologically diverse countries on the planet. Between the Andes and the Amazon drainage basin spans the Yungas, a vast forested region shown to be extremely species rich in macro-organisms. However, it remains unclear whether this high diversity is also reflected in microbial diversity. Here we assess the genetic, taxonomic and functional diversity of root-associated fungi surrounding Cinchona calisaya trees, a typical element of the intermediate altitudes of the Bolivian Yungas. We determine the relative effects of edaphic properties, climate, and geography in regulating fungal community assembly. We show that α-diversity for these fungal communities was similar to temperate and arid ecosystems, averaging 90.1 operational taxonomic units (OTUs) per sample, with reads predominantly assigned to the Ascomycota phylum and with a saprotrophic lifestyle. ß-diversity was calculated as the distance-decay rate, and in contrast to α-diversity, was exceptionally high with a rate of −0.407. Soil properties (pH and P) principally regulated fungal community assembly in an analogous manner to temperate environments, with pH and phosphorus explaining 7.8 and 7.2% of community variation respectively. Surprisingly, altitude does not influence community formation, and there is limited evidence that climate (precipitation and temperature) play a role. Our results suggest that sampling should be performed over a wide geographical and environmental range in order to capture the full root-associated fungal diversity in subtropical regions. This study sheds further light on the diversity and distribution of the world's “hidden biodiversity.” PMID:27630629

  19. Thermophilization of adult and juvenile tree communities in the northern tropical Andes

    PubMed Central

    Duque, Alvaro; Stevenson, Pablo R.; Feeley, Kenneth J.

    2015-01-01

    Climate change is expected to cause shifts in the composition of tropical montane forests towards increased relative abundances of species whose ranges were previously centered at lower, hotter elevations. To investigate this process of “thermophilization,” we analyzed patterns of compositional change over the last decade using recensus data from a network of 16 adult and juvenile tree plots in the tropical forests of northern Andes Mountains and adjacent lowlands in northwestern Colombia. Analyses show evidence that tree species composition is strongly linked to temperature and that composition is changing directionally through time, potentially in response to climate change and increasing temperatures. Mean rates of thermophilization [thermal migration rate (TMR), °C⋅y−1] across all censuses were 0.011 °C⋅y−1 (95% confidence interval = 0.002–0.022 °C⋅y−1) for adult trees and 0.027 °C⋅y−1 (95% confidence interval = 0.009–0.050 °C⋅y−1) for juvenile trees. The fact that thermophilization is occurring in both the adult and juvenile trees and at rates consistent with concurrent warming supports the hypothesis that the observed compositional changes are part of a long-term process, such as global warming, and are not a response to any single episodic event. The observed changes in composition were driven primarily by patterns of tree mortality, indicating that the changes in composition are mostly via range retractions, rather than range shifts or expansions. These results all indicate that tropical forests are being strongly affected by climate change and suggest that many species will be at elevated risk for extinction as warming continues. PMID:26261350

  20. The Andes hantavirus NSs protein is expressed from the viral small mRNA by a leaky scanning mechanism.

    PubMed

    Vera-Otarola, Jorge; Solis, Loretto; Soto-Rifo, Ricardo; Ricci, Emiliano P; Pino, Karla; Tischler, Nicole D; Ohlmann, Théophile; Darlix, Jean-Luc; López-Lastra, Marcelo

    2012-02-01

    The small mRNA (SmRNA) of all Bunyaviridae encodes the nucleocapsid (N) protein. In 4 out of 5 genera in the Bunyaviridae, the smRNA encodes an additional nonstructural protein denominated NSs. In this study, we show that Andes hantavirus (ANDV) SmRNA encodes an NSs protein. Data show that the NSs protein is expressed in the context of an ANDV infection. Additionally, our results suggest that translation initiation from the NSs initiation codon is mediated by ribosomal subunits that have bypassed the upstream N protein initiation codon through a leaky scanning mechanism.

  1. The complete mitochondrial genome of the endemic and threatened killifish Orestias ascotanensis Parenti, 1984 (Cyprinodontiformes, Cyprinodontidae) from the High Andes.

    PubMed

    Quezada-Romegialli, Claudio; Guerrero, Claudia Jimena; Véliz, David; Vila, Irma

    2016-07-01

    The killifish Orestias ascotanensis is endemic to the small isolated springs of Ascotán salt pan in the Central High Andes, Chile. Due to small populations, mining activity, and increasing aridity, this species is catalogued in danger of extinction. The complete mitochondrial genome of O. ascotanesis was assembled with an Ion Torrent sequencer (chip 318) that produced 2.61 million of reads. The 16 617 bp of the entire genome consisted of 22 transfer RNAs, 2 ribosomal RNAs, 13 protein-coding genes, and a control region, showing that the gene composition and arrangement match to that reported for most fishes.

  2. The Andes Hantavirus NSs Protein Is Expressed from the Viral Small mRNA by a Leaky Scanning Mechanism

    PubMed Central

    Vera-Otarola, Jorge; Solis, Loretto; Soto-Rifo, Ricardo; Ricci, Emiliano P.; Pino, Karla; Tischler, Nicole D.; Ohlmann, Théophile; Darlix, Jean-Luc

    2012-01-01

    The small mRNA (SmRNA) of all Bunyaviridae encodes the nucleocapsid (N) protein. In 4 out of 5 genera in the Bunyaviridae, the smRNA encodes an additional nonstructural protein denominated NSs. In this study, we show that Andes hantavirus (ANDV) SmRNA encodes an NSs protein. Data show that the NSs protein is expressed in the context of an ANDV infection. Additionally, our results suggest that translation initiation from the NSs initiation codon is mediated by ribosomal subunits that have bypassed the upstream N protein initiation codon through a leaky scanning mechanism. PMID:22156529

  3. Description and molecular diagnosis of a new species of Brunfelsia (Solanaceae) from the Bolivian and Argentinean Andes.

    PubMed

    Filipowicz, Natalia; Nee, Michael H; Renner, Susanne S

    2012-01-01

    Brunfelsia plowmaniana N.Filipowicz & M.Nee sp. nov., a species from humid and cloud forests of the Bolivian and Argentinean Andes, is described and provided with a molecular diagnosis, using provisions available in the recently approved International Code of Nomenclature for algae, fungi and plants. Specimens belonging to the new species were previously placed in the polymorphic Brunfelsia uniflora (Pohl) D.Don, which a molecular phylogeny revealed as polyphyletic. Revision of numerous collections revealed clear morphological differences between the new species and Brunfelsia uniflora, the type locality of which is in the state of São Paulo, Brazil.

  4. On trends and climatic effects of multi-type and cascading hazards in the Andes of Peru

    NASA Astrophysics Data System (ADS)

    Huggel, C.; Raissig, A.; Romero, G.; Rohrer, M.; Salzmann, N.; Díaz, A.; Acuña, D.

    2012-04-01

    Multi-type hydrometeorological hazards such as landslides, debris flows and floods are recurring all over the Andes region and cause death to local people and widespread damage to population centers and infrastructure. Such disastrous events are also a threat to development because they often destroy livelihood conditions of the most poor and vulnerable people. The southern Peruvian Andes are formed by steep and complex terrain, with many remote settlements. A distinctly dry, cold, and a wet, warmer season characterize the climate. Heavy precipitation events have observed to cause landslides and debris flows with volumes of 104 up to as much as 107 m3. The climatic conditions causing the landslides are often poorly understood which is an drawback for more effective risk management. Furthermore, it is unclear whether the frequency of these events has increased over the past decades and whether there is a relation to climate change. Here we systematically analyze existing multi-type disaster inventories over the period 1970-2010 and their spatio-temporal patterns. To better understand the climatic effects we compiled a record of available meteorological stations. However, these stations are relatively sparse and therefore we included satellite data such as from the Tropical Rainfall Measurement Mission (TRMM) in the analysis. The results show that no clear trend can be detected in the disaster series, but important insight into spatio-temporal patterns reveal that some regions have experienced an increase over some periods of the past 40 years. Heavy precipitation events have generally increased since the mid-1960s but the effect on landslide and flooding activity cannot yet be clearly observed. Improved understanding of multi-type hydrometerological hazards is likely to come from more detailed investigations of selected case studies. We could show, for instance, that both rainfall intensity and antecedent rainfall are important factors for landslide generation in

  5. Cenozoic crustal shortening and thickening contributions to Andean orogenesis: Preliminary results from structural mapping in the southern Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Perez, N.; Horton, B. K.

    2012-12-01

    Estimates of Cenozoic crustal shortening and thickening from the southern Peruvian Andes are necessary to address ongoing debates regarding growth of the Andes and Altiplano plateau. However, limited regional studies in southern Peru prevent accurate assessments of the structural contributions to high topography. This study provides new structural mapping along a >200 km transect spanning the northernmost Altiplano to Subandes at 13-15.5°S and fills the gap between existing central Peruvian and northern Bolivian studies. New stratigraphic data, fault relationships and fold orientations are used to create an updated geologic map and provide insights into the style, timing and magnitude of crustal deformation. Preliminary cross sections accompanying these map transects illustrate deformation style and provide first-order estimates of shortening. Further cross section analyses will be balanced and provide estimates of total crustal shortening and associated thickening in southern Peru. The study transect is subdivided into belts according to the age of exposed rocks and style of deformation. From west to east these belts include: Cretaceous strata dominated by tight folds, closely spaced faults and multiple detachments; Permo-Triassic strata dominated by thicker thrust sheets and fault-fold orientations departing from typical Andean trends; and Paleozoic rocks characterized by thick thrust sheets and deformation focused near major faults. The Cretaceous belt is composed of marine limestones and upward coarsening, siltstone to coarse sandstone progradational sequences. Disharmonic and detachment folds in the Cretaceous section demonstrate the importance of interbedded gypsum and mudstone layers. Fault relationships suggest local shortening during the Early Cretaceous. The Permo-Triassic belt is composed of thick Permian carbonates (Copacabana Formation) and interbedded sandstones, conglomerates and volcanics of the Mitu Formation. This study defines the orientation of

  6. Description and molecular diagnosis of a new species of Brunfelsia (Solanaceae) from the Bolivian and Argentinean Andes

    PubMed Central

    Filipowicz, Natalia; Nee, Michael H.; Renner, Susanne S.

    2012-01-01

    Abstract Brunfelsia plowmaniana N.Filipowicz & M.Nee sp. nov., a species from humid and cloud forests of the Bolivian and Argentinean Andes, is described and provided with a molecular diagnosis, using provisions available in the recently approved International Code of Nomenclature for algae, fungi and plants. Specimens belonging to the new species were previously placed in the polymorphic Brunfelsia uniflora (Pohl) D.Don, which a molecular phylogeny revealed as polyphyletic. Revision of numerous collections revealed clear morphological differences between the new species and Brunfelsia uniflora, the type locality of which is in the state of São Paulo, Brazil. PMID:22461731

  7. Meteorological control of air pollution in a complex topography, high-altitude valley in the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Jimenez Pizarro, R.; Arango, C. D.; Peña, J. A.

    2011-12-01

    About two-thirds of the Latin-American population lives on the Andes. In Colombia, 70% of the population lives at altitudes over 1 km above the sea level (ASL) on a complex topography 3 Andean mountain-chain system. Understanding and properly modeling air pollution in the Tropical Andes is thus a challenging task not just because of the complexity of horizontal and vertical transport in the Intertropical Convergence Zone but because of the strong influence of regional- and local-scale circulation phenomena. The Sogamoso Valley (5 degrees 43' N, 72 degrees 55' W, 2570 m ASL), located on the Colombian Andes Eastern Mountain Chain, is one of the most industrialized regions of Colombia. Air quality in this region is affected by a heterogeneous group of emission sources, which include truck traffic, heavy industry (including steelworks and cement), medium- and small-scale industry, and around 600 low-technology, highly polluting brick and quicklime production furnaces. 24-h average PM10 concentrations frequently double the Colombian standard (150 μg/m3). Measurements and analysis conducted in 2002 found that relatively rapid changes in the regional atmospheric circulation patterns strongly influence the Sogamoso Valley air quality, including drastic PM10 concentration variations observed during periods of fairly steady emissions. The strong linear dependence of the daily temperature variation amplitude and the maximum wind speed on the daily accumulated solar radiation suggests that air quality is ultimately determined by the synoptic activation of local and mesoscale circulation patterns and meteorological conditions, including mountain and valley winds, strong anabatic and katabatic winds from the lowlands (at both sides of the Colombian Andes Eastern Mountain Chain), channeling, and radiative cooling temperature inversion. During clear sky periods, katabatic advection of pollution from furnaces on the foothills resulted in recurrent nocturnal pollution episodes with

  8. Lithologic discrimination of volcanic and sedimentary rocks by spectral examination of Landsat TM data from the Puma, Central Andes Mountains

    NASA Technical Reports Server (NTRS)

    Fielding, E. J.

    1986-01-01

    The Central Andes are widely used as a modern example of noncollisional mountain-building processes. The Puna is a high plateau in the Chilean and Argentine Central Andes extending southward from the altiplano of Bolivia and Peru. Young tectonic and volcanic features are well exposed on the surface of the arid Puna, making them prime targets for the application of high-resolution space imagery such as Shuttle Imaging Radar B and Landsat Thematic Mapper (TM). Two TM scene quadrants from this area are analyzed using interactive color image processing, examination, and automated classification algorithms. The large volumes of these high-resolution datasets require significantly different techniques than have been used previously for the interpretation of Landsat MSS data. Preliminary results include the determination of the radiance spectra of several volcanic and sedimentary rock units and the use of the spectra for automated classification. Structural interpretations have revealed several previously unknown folds in late Tertiary strata, and key zones have been targeted to be investigated in the field. The synoptic view of space imagery is already filling a critical gap between low-resolution geophysical data and traditional geologic field mapping in the reconnaissance study of poorly mapped mountain frontiers such as the Puna.

  9. River-discharge dynamics in the Southern Central Andes and the 1976-77 global climate shift

    NASA Astrophysics Data System (ADS)

    Castino, F.; Bookhagen, B.; Strecker, M. R.

    2016-11-01

    Recent studies have shown that the 1976-77 global climate shift strongly affected the South American climate. In our study, we observed a link between this climate shift and river-discharge variability in the subtropical Southern Central Andes. We analyzed the daily river-discharge time series between 1940 and 1999 from small to medium mountain drainage basins (102-104 km2) across a steep climatic and topographic gradient. We document that the discharge frequency distribution changed significantly, with higher percentiles exhibiting more pronounced trends. A change point between 1971 and 1977 marked an intensification of the hydrological cycle, which resulted in increased river discharge. In the upper Rio Bermejo basin of the northernmost Argentine Andes, the mean annual discharge increased by 40% over 7 years. Our findings are important for flood risk management in areas impacted by the 1976-77 climate shift; discharge frequency distribution analysis provides important insights into the variability of the hydrological cycle in the Andean realm.

  10. Crustal structure of the high Andes in the North Pampean flat slab segment from magnetic and gravity data

    NASA Astrophysics Data System (ADS)

    Sánchez, Marcos A.; Winocur, Diego; Álvarez, Orlando; Folguera, Andrés; Martinez, Myriam P.

    2017-01-01

    The Main Andes at the northern Chilean-Pampean flat slab segment were formed by the inversion of late Oligocene to early Miocene extensional depocenters in Neogene times. Their structure, size and depth are loosely constrained by field data since these sequences have amalgamated forming an almost continuous blanket with scarce basement outcrops. Satellite and aerial gravity and magnetic data are used in this work to define a 3D model that shows the basement structure at depth and adjust 2D structural sections previously based on field data. The results indicate complex basin geometry with depocenters of variable size and depth buried beneath Mesozoic (?)-Paleogene and Neogene sections. Additionally, previously proposed crustal heterogeneities across this orogenic segment are geophysically constrained with a new crustal heterogeneity identified on the basis of a modeled 2D crustal section. We propose hypothetically, that this crustal discontinuity could have played a role in controlling Paleogene extension at the hanging wall of an asymmetric rift basin, explaining the locus and development of the Doña Ana Basin. Finally, this work provides new information about Cenozoic structure and Paleozoic basement architecture, presumably derived from amalgamation history of one of the highest and more inaccessible regions of the Andes.

  11. Boron isotope composition of geothermal fluids and borate minerals from salar deposits (central Andes/NW Argentina)

    NASA Astrophysics Data System (ADS)

    Kasemann, Simone A.; Meixner, Anette; Erzinger, Jörg; Viramonte, José G.; Alonso, Ricardo N.; Franz, Gerhard

    2004-06-01

    We have measured the boron concentration and isotope composition of regionally expansive borate deposits and geothermal fluids from the Cenozoic geothermal system of the Argentine Puna Plateau in the central Andes. The borate minerals borax, colemanite, hydroboracite, inderite, inyoite, kernite, teruggite, tincalconite, and ulexite span a wide range of δ11B values from -29.5 to -0.3‰, whereas fluids cover a range from -18.3 to 0.7‰. The data from recent coexisting borate minerals and fluids allow for the calculation of the isotope composition of the ancient mineralizing fluids and thus for the constraint of the isotope composition of the source rocks sampled by the fluids. The boron isotope composition of ancient mineralizing fluids appears uniform throughout the section of precipitates at a given locality and similar to values obtained from recent thermal fluids. These findings support models that suggest uniform and stable climatic, magmatic, and tectonic conditions during the past 8 million years in this part of the central Andes. Boron in fluids is derived from different sources, depending on the drainage system and local country rocks. One significant boron source is the Paleozoic basement, which has a whole-rock isotopic composition of δ11B=-8.9±2.2‰ (1 SD); another important boron contribution comes from Neogene-Pleistocene ignimbrites ( δ11B=-3.8±2.8‰, 1 SD). Cenozoic andesites and Mesozoic limestones ( δ11B≤+8‰) provide a potential third boron source.

  12. Effect of Moxidectin Treatment at Peripartum on Gastrointestinal Parasite Infections in Ewes Raised under Tropical Andes High Altitude Conditions

    PubMed Central

    Vargas-Duarte, J. J.; Lozano-Márquez, H.; Grajales-Lombana, H. A.; Manrique-Perdomo, C.; Martínez-Bello, D. A.; Saegerman, C.; Raes, M.; Kirschvink, N.

    2015-01-01

    This study tested the impact of moxidectin at peripartum on nematode fecal egg count (FEC) and clinical parameters on ewes in the high altitude tropical Andes of Colombia. FEC and clinical evaluations were performed on 9 occasions in 43 naturally infected ewes before and during gestation and after lambing. Moxidectin (Mox, 200 µg kg−1) was applied at late pregnancy (T1, n = 15) or 48 hours after parturition (T2, n = 14). 14 untreated ewes served as controls (C). Suckling lambs (n = 58) remained untreated and underwent four clinical and parasitological evaluations until 8 weeks after birth. Mox efficacy equaled 99.3% (T1) and 96.9% (T2). Highest mean FEC value reflecting periparturient nematode egg rise (PPER) was recorded in C ewes at 4–6 weeks after lambing. Significant FEC reductions were found in T1 (94.8%) and T2 (96.7%) ewes (p < 0.05). All lambs showed a significant and ewes-group independent increase in FEC before weaning (p < 0.05). Clinical parameters (anemia and diarrhea) showed time- and treatment-related differences (p < 0.05). Monitoring of FEC and clinical parameters linked to gastrointestinal parasite infections allowed demonstrating that postpartum or preweaning are two critical periods to nematode infection for sheep raised under tropical Andes high altitude conditions. Use of Mox as anthelmintic treatment prevented PPER. PMID:26078913

  13. Unexpected climatological behavior of MLT gravity wave momentum flux in the lee of the Southern Andes hot spot

    NASA Astrophysics Data System (ADS)

    Wit, R. J.; Janches, D.; Fritts, D. C.; Stockwell, R. G.; Coy, L.

    2017-01-01

    The Southern Argentina Agile MEteor Radar (SAAMER), located at Tierra del Fuego (53.7°S, 67.7°W), has been providing near-continuous high-resolution measurements of winds and high-frequency gravity wave (GW) momentum fluxes of the mesopause region since May 2008. As SAAMER is located in the lee of the largest seasonal GW hot spot on Earth, this is a key location to study GWs and their interaction with large-scale motions. GW momentum flux climatologies are shown for the first time for this location and discussed in light of these unique dynamics. Particularly, the large eastward GW momentum fluxes during local winter are surprising, as these observations cannot be explained by the direct upward propagation of expected large-amplitude mountain waves (MWs) through the eastward stratospheric jet. Instead, these results are interpreted as secondary GWs propagating away from stratospheric sources over the Andes accompanying MW breaking over the Southern Andes.

  14. Estimation of slip scenarios of mega-thrust earthquakes and strong motion simulations for Central Andes, Peru

    NASA Astrophysics Data System (ADS)

    Pulido, N.; Tavera, H.; Aguilar, Z.; Chlieh, M.; Calderon, D.; Sekiguchi, T.; Nakai, S.; Yamazaki, F.

    2012-12-01

    We have developed a methodology for the estimation of slip scenarios for megathrust earthquakes based on a model of interseismic coupling (ISC) distribution in subduction margins obtained from geodetic data, as well as information of recurrence of historical earthquakes. This geodetic slip model (GSM) delineates the long wavelength asperities within the megathrust. For the simulation of strong ground motion it becomes necessary to introduce short wavelength heterogeneities to the source slip to be able to efficiently simulate high frequency ground motions. To achieve this purpose we elaborate "broadband" source models constructed by combining the GSM with several short wavelength slip distributions obtained from a Von Karman PSD function with random phases. Our application of the method to Central Andes in Peru, show that this region has presently the potential of generating an earthquake with moment magnitude of 8.9, with a peak slip of 17 m and a source area of approximately 500 km along strike and 165 km along dip. For the strong motion simulations we constructed 12 broadband slip models, and consider 9 possible hypocenter locations for each model. We performed strong motion simulations for the whole central Andes region (Peru), spanning an area from the Nazca ridge (16^o S) to the Mendana fracture (9^o S). For this purpose we use the hybrid strong motion simulation method of Pulido et al. (2004), improved to handle a general slip distribution. Our simulated PGA and PGV distributions indicate that a region of at least 500 km along the coast of central Andes is subjected to a MMI intensity of approximately 8, for the slip model that yielded the largest ground motions among the 12 slip models considered, averaged for all assumed hypocenter locations. This result is in agreement with the macroseismic intensity distribution estimated for the great 1746 earthquake (M~9) in central Andes (Dorbath et al. 1990). Our results indicate that the simulated PGA and PGV for

  15. Monitoring rock glacier dynamics and ground temperatures in the semiarid Andes (Chile, 30°S)

    NASA Astrophysics Data System (ADS)

    Brenning, Alexander; Azócar, Guillermo F.; Bodin, Xavier

    2013-04-01

    Rock glaciers and mountain permafrost are widespread in the high semiarid Andes of Chile, where they concentrate greater amounts of ice than glaciers. Rock glaciers are of particular interest because in some cases the permafrost they contain might be in a degrading in response to climatic warming. This could result in increased dynamics and even to destabilization, which has been observed on some rock glaciers in the studied area. Displacement rates and active-layer temperatures of two rock glaciers as well as ground surface temperatures of the periglacial environment in the upper Elqui valley have been monitored since summer 2009/10 with funding from the Chilean Dirección General de Aguas. Differential GPS measurements of 115 points on the surface of two rock glaciers since April 2010 showed horizontal displacements of up to 1.3 m/a on the Llano de las Liebres rock glacier and up to 1.2 m/a on the Tapado rock glacier. General velocity patterns are consistent with the morphological evidence of activity (e.g., front slopes, looseness of debris) and for the Tapado complex, a clearly distinct activity from the debris-covered glacier was observed. Temperature measurements in four boreholes indicate active-layer depths of about 2.5 m at the highest locations on the Tapado rock glacier (~4400 m a.s.l.) and about 8 m near the front of the Llano rock glacier (3786 m a.s.l.). Spatial patterns of mean ground surface temperature (MGST) were analyzed with regards to influences of elevation, potential incoming solar radiation, location on ice-debris landforms (rock and debris-covered glaciers), and snow cover duration using linear mixed-effects models. While accounting for the other variables, sites with long-lasting snow patches had ~0.4°C lower MGST, and ice-debris landforms had ~0.4-0.6°C lower MGST than general debris surfaces, highlighting important local modifications to the general topographic variation of ground thermal conditions.

  16. Wide-Angle Seismic Experiment Across the Oeste Fault Zone, Central Andes, Northern Chile.

    NASA Astrophysics Data System (ADS)

    Lorenzo, J. M.; Yáñez, G. A.; Vera, E. E.; Sepúlveda, J.

    2008-12-01

    From December 6-21, 2007, we conducted a 3-component, radio-telemetric, seismic survey along a ~ 15-km wide E-W transect in the Central Andes, at a latitude of ~ 22.41° S, centered north of the city of Calama (68.9° W), Chile. The study area is sandwiched between the Central Depression in the west and the Andean Western Cordillera of Chile. Recording stations, nominally spaced at intervals of either 125 or 250 m collected up to 3.5 s of refracted seismic arrivals at maximum source-receiver offsets exceeding 15 km. Ten shothole sources, spaced 2-6 km apart focused energy on the shallow (0-3 km), crustal, Paleogene-age structures. Preliminary, tomographic inversions of refracted first arrivals show the top of a shallow (< 1km), high- velocity (VP, ~5 km/s) crust, deepening sharply eastward to at least 2 km. At the surface, this central basement step correlates to a regionally extensive (> 600 km), strike-slip fault zone known as the Oeste fault. Turning ray densities suggest the base of the overlying velocity gradient unit (VP, 2-4 km/s) dips inwardly from both east and west directions toward the Oeste fault to depths of almost 1 km. Plate reorganization commencing at least by the latter half of the Oligocene led from oblique to more orthogonal convergence between the South American and the Nazca (Farallon) Plates. We interpret previously mapped, older, minor faults as being generated within the right-lateral, orogen-parallel, Oeste strike-slip fault zone, and postdated by Neogene, N-S striking thrust faults. In this context we also interpret that the spatial distribution of velocity units requires an period of extensional activity that may (1) postdate the transpressional strike slip fault activity of the Neogene, (2) be related to a later releasing bend through the translation and interaction of rigid blocks hidden at depth or even (3) be the consequence of inelastic failure from the result of flexural loading.

  17. Modelling distributed ablation on Juncal Norte Glacier, dry Andes of central Chile

    NASA Astrophysics Data System (ADS)

    Carenzo, Marco; Pellicciotti, Francesca; Helbing, Jakob; Dadic, Ruzica; Burlando, Paolo

    2010-05-01

    In the Aconcagua River Basin, in the dry Andes of central Chile, water resources in summer originate mostly from snow and ice glacier melt. Summer seasons are dry and stable, with precipitation close to zero, low relative humidity and very intense solar radiation. The region's economic activities are dependent on these water resources, but their assessment is still incomplete and an effort is needed to evaluate present and future changes in water from glacier and seasonal snow covers in this area. The main aim of this paper is to simulate glacier melt and runoff from Juncal Norte Glacier, in the upper Aconcagua Basin, using models of various complexity and data requirement. We simulate distributed glacier ablation for two seasons using an energy-balance model (EB) and an enhanced temperature-index model (ETI). Meteorological variables measured at Automatic Weather Stations (AWSs) located on and off-glacier are extrapolated from point observations to the glacier-wide scale. Shortwave radiation is modelled with a parametric model taking into account shading, reflection from slopes and atmospheric transmittance. In the energy-balance model, the longwave radiation flux is computed from Stefan-Boltzmann relationships and turbulent fluxes are calculated using the bulk aerodynamic method. The EB model includes subsurface heat conduction and gravitational redistribution of snow. Glacier runoff is modelled using a linear reservoir approach accounting for the temporal evolution of the system. Hourly simulations of glacier melt are validated against ablation observations (ultrasonic depth gauge and ablation stakes) and runoff measured at the glacier snout is compared to a runoff record obtained from a combination of radar water level measurements and tracer experiments. Results show that extrapolation of meteorological input data, and of temperature in particular, is the largest source of model uncertainty, together with snow water equivalent initial conditions. We explore

  18. Leaf Wax δ13C Varies with Elevation in the Peruvian Andes and Western Amazonia

    NASA Astrophysics Data System (ADS)

    Wu, M. S.; Feakins, S. J.; Ponton, C.; Peters, T.; West, A. J.; Galy, V.; Bentley, L. P.; Salinas, N.; Shenkin, A.; Martin, R.; Asner, G. P.; Malhi, Y.

    2015-12-01

    Plant leaf wax carbon isotopic composition (δ13Cwax) reflects the net isotopic effects associated with diffusion into the leaf, fixation of carbon by Rubisco and biosynthesis of individual leaf wax biochemicals. As declining pCO2 with elevation affects the first two fractionations, we expect to find an isotopic gradient in δ13Cwax, if the fractionation of leaf wax biosynthesis is constant. To test this, we report δ13Cwax values from 500 samples of leaves collected by tree-climbers from the upper canopy from 9 forest-inventory plots spanning a 3.5km elevation transect in the Peruvian Andes and western Amazonia during the CHAMBASA field campaign. These samples provide a unique opportunity to study the relationship between δ13Cwax and pCO2 in diverse species across this remote tropical montane forest and lowland rainforest. The very wet climate throughout (2-5 m rainfall per year) minimizes fractionation effects due to stomatal restrictions (i.e. water use efficiency) that may be an important factor elsewhere. Preliminary results show δ13Cwax values on average increase with elevation by ~1.5‰/km, a trend consistent with bulk plant δ13C in previous studies. The mean epsilon between bulk and C29 n-alkane is -7.3±2.2‰. Inter-sample differences are large on the order of 10‰. Shaded leaves and understory leaves are found to be depleted relative to sunlit leaves, presumably due to a lower photosynthetic rate and use of respired CO2 in the understory. C29 n-alkanes are on average ~2.5‰ more depleted than C30 n-alkanoic acids, indicating fractionation during selective decarboxylation. We further compare results from plants with soil and river sediments to provide insights into how leaf wax signals are archived in soils and exported from the landscape. We find a ~1.4‰/km gradient in forest soils similar to plants. We observe a ~2‰ offset between C29 n-alkane in plant leaves and in soils across the elevation profile, which is likely a signal of degradation

  19. Temperature as a key driver of ecological sorting among invasive pest species in the tropical Andes.

    PubMed

    Dangles, O; Carpio, C; Barragan, A R; Zeddam, J L; Silvain, J F

    2008-10-01

    Andes, as in other mountain ecosystems, the wide range of thermal environments found along elevational gradients may be one reason why the risks of invasion by successively introduced pest species could increase in the near future. More data on potential biological risks associated with climatic warming trends in mountain systems are therefore urgently needed, especially in developing nations where such studies are lacking.

  20. Inner structure of La Pacana Caldera (Central Andes, Chile) using gravimetry data

    NASA Astrophysics Data System (ADS)

    Delgado, F.; Pavez Alvarado, A.

    2010-12-01

    La Pacana caldera is located in the Altiplano Puna Volcanic Complex in the Chilean Andes and is a 60 by 35 km NS elongated body. It is one of the largest resurgent calderas in the world, comparable to the supervolcanoes of La Garita, Toba and Yellowstone. It has been described as being formed 4 My ago during an eruption with a VEI of 8,7, which makes it the fifth largest eruption ever in the geological record. This eruption was followed by a subsidence of 0,9 up to 2 km according to previous studies. Different models for this caldera formation were proposed but with a lack of sub surface information. We hence carried a gravimetry study to investigate its inner structure and to better off constrains on these proposed models. The residual Bouguer anomaly (figure 1) is asymetric with multiple high and low gravity, with an average amplitude of -14 mGal, which reaches -24 mGal near the resurgent dome, interpreted as the deepest part of the caldera. Based on this, we propose that the main collapse zone is not related to the topographic border, but to resurgent dome edges. This is compatible with a piecemeal collapse geometry. There are several gravity highs below strato-volcanoes and postcaldera domes within La Pacana caldera, which are interpreted as magmatic reservoirs. Our data combined with previous geological studies allowed us to separate La Pacana in two nested calderas and to trace its NNW, N and NNE borders, previously unrecognized features. The 2,5 D forward modelling cross sections constrained with geological data showed that the maximum caldera depth is 1,3 km with a minimum of 0,6 km in its southern part. We finally suggest that caldera rims are surrounded by paleozoic basement uplifted by thrust fault systems. La Pacana's residual Bouguer anomaly is small (1/2) when compared with the ones associated to other supervolcanoes (Toba, Yellowstone). La Pacana caldera constitutes then an anomaly for supervolcanoes internal structure due to its interpreted low

  1. Drivers of methane uptake by montane forest soils in the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Diem, Torsten; Huaraca Quispe, Lidia; Cahuana, Adan; Meir, Patrick; Teh, Yit

    2016-04-01

    The exchange of methane between the soils of humid tropical forests and the atmosphere is relatively poorly documented. This is particularly true of montane settings where variations between uptake and emission of atmospheric methane have been observed. Whilst most of these ecosystems appear to function as net sinks for atmospheric methane, some act as considerable sources. In regions like the Andes, humid montane forests are extensive and a better understanding of the magnitude and controls on soil-atmosphere methane exchange is required. We report methane fluxes from upper montane cloud forest (2811 - 2962 m asl), lower montane cloud forest (1532 - 1786 m asl), and premontane forest (1070 - 1088 m asl) soils in south-eastern Peru. Between 1000 and 3000 m asl, mean annual air temperature and total annual precipitation decrease from 24 ° C and 5000 mm to 12 ° C and 1700 mm. The study region experiences a pronounced wet season between October and April. Monthly measurements of soil-atmosphere gas exchange, soil moisture, soil temperature, soil oxygen concentration, available ammonium and available nitrate were made from February 2011 in the upper and lower montane cloud forests and July 2011 in the premontane forest to June 2013. These soils acted as sinks for atmospheric methane with mean net fluxes for wet and dry season, respectively, of -2.1 (0.2) and -1.5 (0.1) mg CH4 m-2 d-1 in the upper montane forest; -1.5 (0.2) and -1.4 (0.1) mg CH4 m-2 d-1in the lower montane forest; and -0.3 (0.2) and -0.2 (0.2) mg CH4 m-2 d-1 in the premontane forest. Spatial variations among forest types were related to available nitrate and water-filled pore space suggesting that nitrate inhibition of oxidation or constraints on the diffusional supply of methane to methanotrophic communities may be important controls on methane cycling in these soils. Seasonality in methane exchange, with weaker uptake related to increased water-filled pore space and soil temperature during the wet

  2. Variation of the upper mantle velocity structure along the central-south Andes

    NASA Astrophysics Data System (ADS)

    Liang, X.; Sandvol, E. A.; Shen, Y.; Gao, H.; Zhang, Z.

    2013-12-01

    Variations in the subduction angle of the Nazca plate beneath the South American plate has lead to different modes of deformation and volcanism along the Andean active margin. The volcanic gap between the central and southern Andean volcanic zones is correlated with the Pampean flat-slab subduction zone, where the subducting Nazca slab changes from a 30-degree dipping slab beneath the Puna plateau to a horizontal slab beneath the Sierras Pampeanas, and then to a 30-degree dipping slab beneath the south Andes from north to south. The Pampean flat-slab subduction correlates spatially with the track of the Juan Fernandez Ridge, and is associated with the inboard migration of crustal deformation. A major Pliocene delamination event beneath the southern Puna plateau has previously been inferred from geochemical, geological, and preliminary geophysical data. The mechanisms for the transition between dipping- and flat-subduction slab and the mountain building process of the central Andean plateau are key issues to understanding the Andean-type orogenic process. We use a new frequency-time normalization approach to extract very-broadband (up to 300 second) empirical Green's functions (EGFs) from continuous seismic records. The long-period EGFs provide the sensitivity needed to constrain the deep mantle structure. The broadband waveform data are from 393 portable stations of eight temporary networks: PUNA, SIEMBRA, CHARGE, RAMP, East Sierras Pampeanas, BANJO/SEDA, REFUCA, ANCORP, and 31 permanent stations accessed from both the IRIS DMC and GFZ GEOFON DMC. A finite difference wave propagation method is used to generate synthetic seismograms from 3-D velocity model. We use 3-D traveltime sensitivity kernels, and traveltime residuals measured by waveform cross-correlation to directly invert the upper mantle shear-wave velocity structure. The preliminary model shows strong along-strike velocity variations within in the mantle wedge and the subducting NAZCA slab. Low upper

  3. Broadband regional waveform modeling to investigate crustal structure and tectonics of the central Andes

    NASA Astrophysics Data System (ADS)

    Swenson, Jennifer Lyn

    We use broadband regional waveform modeling of earthquakes in the central Andes to determine seismic properties of the Altiplano crust. Properties of the shear-coupled P-wavetrain (SPL ) from intermediate-depth events provide particularly important information about the structure of the crust. We utilize broadband seismic data recorded at the BANJO and SEDA stations, and synthetic seismograms computed with a reflectivity technique to study the sensitivity of SPL to crustal and upper mantle parameters at regional distances. We find that the long-period SPL-wavetrain is most sensitive to crustal and mantle Poisson's ratios, average crustal velocity, and crustal thickness. A comprehensive grid search method developed to investigate these four parameters suggests that although trade-offs exist between model parameters, models of the Altiplano which provide the best fit between the data and synthetic seismograms are characterized by low Poisson's ratios, low average crustal velocity and thick crust. We apply our grid search technique and sensitivity analysis results to model the full waveforms from 6 intermediate-depth and 2 shallow-focus earthquakes recorded at regional distances by BANJO and SEDA stations. Results suggest that the Altiplano crust is much thicker (55--65 km) and slower (5.75--6.25 km/s) than global average values. Low crustal and mantle Poisson's ratios together with the lack of evidence for a high-velocity lower crust suggests a bulk felsic crustal composition, resulting in an overall weak crust. Our results favor a model of crustal thickening involving large-scale tectonic shortening of a predominantly felsic crust. To better understand the mechanics of earthquake rupture along the South American subduction zone, we have analyzed broadband teleseismic P-waves and utilize single- and multi-station inversion techniques to constrain source characteristics for the 12 November 1996 Peru subduction zone earthquake. Aftershock locations, intensity reports

  4. Variation of the upper mantle velocity structure along the central-south Andes

    NASA Astrophysics Data System (ADS)

    Liang, Xiaofeng; Sandvol, Eric; Shen, Yang; Gao, Haiying

    2014-05-01

    Variations in the subduction angle of the Nazca plate beneath the South American plate has lead to different modes of deformation and volcanism along the Andean active margin. The volcanic gap between the central and southern Andean volcanic zones is correlated with the Pampean flat-slab subduction zone, where the subducting Nazca slab changes from a 30-degree dipping slab beneath the Puna plateau to a horizontal slab beneath the Sierras Pampeanas, and then to a 30-degree dipping slab beneath the south Andes from north to south. The Pampean flat-slab subduction correlates spatially with the track of the Juan Fernandez Ridge, and is associated with the inboard migration of crustal deformation. A major Pliocene delamination event beneath the southern Puna plateau has previously been inferred from geochemical and geological and preliminary geophysical data. The mechanisms for the transition between dipping- and flat-subduction slab and the mountain building process of the central Andean plateau are key issues to understanding the Andean-type orogenic process. We use a new frequency-time normalization approach with non-linear stacking to extract very-broadband (up to 300 second) empirical Green's functions (EGFs) from continuous seismic records. The long-period EGFs provide the deeper depth-sensitivity needed to constrain the mantle structure. The broadband waveform data are from 393 portable stations of four temporary networks: PUNA, SIEMBRA, CHARGE, RAMP, East Sierras Pampeanas, BANJO/SEDA, REFUCA, ANCORP, and 31 permanent stations accessed from both the IRIS DMC and GFZ GEOFON DMC. A finite difference waveform propagation method is used to generate synthetic seismograms from 3-D velocity model. We use 3-D traveltime sensitivity kernels, and traveltime residuals measurement by waveform cross-correlation to directly invert the upper mantle shear-wave velocity structure. The preliminary model shows strong along-strike velocity variations within in the mantle wedge and

  5. Regional distance shear-coupled PL propagation within the northern Altiplano, central Andes

    NASA Astrophysics Data System (ADS)

    Swenson, Jennifer L.; Beck, Susan L.; Zandt, George

    1999-12-01

    Properties of the shear-coupled P wavetrain (SPL) from regional earthquakes provide important information about the structure of the crust and upper mantle. We investigate broad-band seismic data from intermediate-depth earthquakes and develop a grid search technique using synthetic seismograms to study the sensitivity of SPL and to model the crustal structure of the northern Altiplano, central Andes. Waveforms from an earthquake that occurred on 1994 December 12 within the Nazca slab beneath the Altiplano display a clear SPL wavetrain at the temporary stations deployed during the BANJO and SEDA experiments. We relocate this event and determine the moment tensor by inverting the complete long-period waveforms. With these source parameters fixed, we perform sensitivity analyses using a reflectivity technique to compute synthetic seismograms at a distance of 313 km (BANJO station 2, SALI). We find that, at this distance, the long-period SPL wavetrain is sensitive to the following model parameters, in order of decreasing sensitivity: crustal VP/VS, mantle VP/VS, average crustal velocity, crustal thickness, focal depth, distance (location), crustal Qα and Qβ, and mantle velocity. We develop a grid search method to investigate the four parameters of the crust/upper mantle model to which the synthetic seismograms are most sensitive at SALI (crustal VP/VS, mantle VP/VS, average crustal velocity, crustal thickness). Trade-offs exist among all four of the model parameters, resulting in a range of acceptable crustal models that provide excellent fits between the data and synthetic seismograms in the passband of 15-100 s at a single station. However, by using data at a range of distances (150-450 km) we find that the model that provides the best overall fit between the data and synthetic seismograms, and thus best approximates the average characteristics of the crust and upper mantle structure of the northern Altiplano, is characterized by an average crustal velocity of 6

  6. Microbial Diversity in Maras Salterns, a Hypersaline Environment in the Peruvian Andes

    PubMed Central

    Maturrano, Lenin; Santos, Fernando; Rosselló-Mora, Ramon; Antón, Josefa

    2006-01-01

    Maras salterns are located 3,380 m above sea level in the Peruvian Andes. These salterns consist of more than 3,000 little ponds which are not interconnected and act as crystallizers where salt precipitates. These ponds are fed by hypersaline spring water rich in sodium and chloride. The microbiota inhabiting these salterns was examined by fluorescence in situ hybridization (FISH), 16S rRNA gene clone library analysis, and cultivation techniques. The total counts per milliliter in the ponds were around 2 × 106 to 3 × 106 cells/ml, while the spring water contained less than 100 cells/ml and did not yield any detectable FISH signal. The microbiota inhabiting the ponds was dominated (80 to 86% of the total counts) by Archaea, while Bacteria accounted for 10 to 13% of the 4′,6′-diamidino-2-phenylindole (DAPI) counts. A total of 239 16S rRNA gene clones were analyzed (132 Archaea clones and 107 Bacteria clones). According to the clone libraries, the archaeal assemblage was dominated by microorganisms related to the cosmopolitan square archaeon “Haloquadra walsbyi,” although a substantial number of the sequences in the libraries (31% of the 16S rRNA gene archaeal clones) were related to Halobacterium sp., which is not normally found in clone libraries from solar salterns. All the bacterial clones were closely related to each other and to the γ-proteobacterium “Pseudomonas halophila” DSM 3050. FISH analysis with a probe specific for this bacterial assemblage revealed that it accounted for 69 to 76% of the total bacterial counts detected with a Bacteria-specific probe. When pond water was used to inoculate solid media containing 25% total salts, both extremely halophilic Archaea and Bacteria were isolated. Archaeal isolates were not related to the isolates in clone libraries, although several bacterial isolates were very closely related to the “P. halophila” cluster found in the libraries. As observed for other hypersaline environments, extremely

  7. Cloud forest restoration for erosion control in a Kichwa community of the Ecuadorian central Andes Mountains

    NASA Astrophysics Data System (ADS)

    Backus, L.; Giordanengo, J.; Sacatoro, I.

    2013-12-01

    The Denver Professional Chapter of Engineers Without Borders (EWB) has begun conducting erosion control projects in the Kichwa communities of Malingua Pamba in the Andes Mountains south of Quito, Ecuador. In many high elevation areas in this region, erosion of volcanic soils on steep hillsides (i.e., < 40%) is severe and often associated with roads, water supply systems, and loss of native cloud forests followed by burning and cultivation of food crops. Following a 2011 investigation of over 75 erosion sites, the multidisciplinary Erosion Control team traveled to Malingua Pamba in October 2012 to conduct final design and project implementation at 5 sites. In partnership with the local communities, we installed woody cloud forest species, grass (sig-sig) contour hedges, erosion matting, and rock structures (toe walls, plunge pools, bank armoring, cross vanes, contour infiltration ditches, etc.) to reduce incision rates and risk of slump failures, facilitate aggradation, and hasten revegetation. In keeping with the EWB goal of project sustainability, we used primarily locally available resources. High school students of the community grew 5000 native trees and some naturalized shrubs in a nursery started by the school principal, hand weavers produced jute erosion mats, and rocks were provided by a nearby quarry. Where possible, local rock was harvested from landslide areas and other local erosion features. Based on follow up reports and photographs from the community and EWB travelers, the approach of using locally available materials installed by the community is successful; plants are growing well and erosion control structures have remained in place throughout the November to April rainy season. The community has continued planting native vegetation at several additional erosion sites. Formal monitoring will be conducted in October 2013, followed by analysis of data to determine if induced meandering and other low-maintenance erosion control techniques are working

  8. Variations of surface albedo of glaciers in the semi-arid Andes of Chile

    NASA Astrophysics Data System (ADS)

    Abermann, J.; Kinnard, C.; MacDonell, S.

    2012-04-01

    The net short-wave radiation is a crucial factor of the surface energy balance of glaciers. It is governed by the quantity of incoming radiation, which is related to the latitude and the atmospheric turbidity, and by the surface albedo, which is a function of the surface properties and meteorological conditions. The high amount of incident solar radiation at the study site, together with the complicated snow accumulation patterns, make an understanding of temporal and spatial albedo variations essential for distributed energy balance studies. The Guanaco Glacier (GUA) and the Toro 1 Glacieret (TOR1) (which we call a 'glacier' in the following for simplicity) in the dry Andes of Chile at 29.3°S and 70.0°W are studied. On each of them there is an on-glacier automated weather station (AWS) and three years of data are presented. Although less than 2 km apart, these two glaciers show different surface properties: whereas the AWS at GUA is standing on a smooth surface, the AWS at TOR1 is in a field of large penitents during summer. We apply a statistical model based on multivariate stepwise regression that takes independent AWS data as input in order to model temporal albedo variations. The model is calibrated over a one year period (Nov. 2008 - Nov. 2009) and validated over the remaining period (until Jan. 2011). The correlation coefficient (r) between the modeled and observed daily albedo was 0.77 for GUA and 0.87 for TOR1 over the validation period. The model results do not improve when taking more than eight predictor variables into account. Clouds have by far the most significant influence on the albedo at GUA (incoming long-wave radiation is correlated with albedo; r: 0.63), whereas at TOR1 snow height variations (r: 0.47) are important as well. We show a comparison with other albedo parameterizations suggested in the literature. To complement the point-wise results presented, we present time-lapse photographs to show spatial patterns of albedo and their temporal

  9. Adaptation to Life in the High Andes: Nocturnal Oxyhemoglobin Saturation in Early Development

    PubMed Central

    Hill, Catherine Mary; Baya, Ana; Gavlak, Johanna; Carroll, Annette; Heathcote, Kate; Dimitriou, Dagmara; L'Esperance, Veline; Webster, Rebecca; Holloway, John; Virues-Ortega, Javier; Kirkham, Fenella Jane; Bucks, Romola Starr; Hogan, Alexandra Marie

    2016-01-01

    observations. Citation: Hill CM, Baya A, Gavlak J, Carroll A, Heathcote K, Dimitriou D, L'Esperance V, Webster R, Holloway J, Virues-Ortega J, Kirkham FJ, Bucks RS, Hogan AM. Adaptation to life in the high andes: nocturnal oxyhemoglobin saturation in early development. SLEEP 2016;39(5):1001–1008. PMID:26951394

  10. Eocene extensional exhumation of basement and arc rocks along southwesternmost Peru, Central Andes.

    NASA Astrophysics Data System (ADS)

    Noury, Mélanie; Bernet, Matthias; Sempéré, Thierry

    2014-05-01

    The overthickened crust of the current Central Andes is commonly viewed as the result of tectonic shortening. However, in the present-day terrestrial forearc and arc of southwesternmost Peru, crustal thickness increases from 30 km along the coastline to >60 km below the active arc, whereas the upper crust exhibits little to no evidence of crustal shortening and, in constrast, many extensional features. How (and when) crustal overthickness was acquired in this region is thus little understood. Because crustal overthickening often results in extensional collapse and/or significant erosion, here we address this issue through a regional-scale study of exhumation using fission-track thermochronology. The limited fission-track data previously available in the area suggested that exhumation began during the Mesozoic. In this study, we present new apatite and zircon fission-track data obtained along the current terrestrial forearc of southwesternmost Peru. This relatively restricted area presents the interest of providing extensive outcrops of Precambrian to Ordovician basement and Early Jurassic to Late Cretaceous arc plutons. In order to compare the chronology of exhumation of these units, we performed extensive sampling for fission-track dating, as well as structural mapping. Our results indicate that the basement rocks and Jurassic plutons that crop out in the Arequipa region, where the crust is now >50 km-thick, experienced a rapid cooling through the 240-110°C temperature range between ~65 and ~35 Ma. This period of rapid exhumation coincided in time with the accumulation of terrestrial forearc deposits (the Lower Moquegua Group), that exhibit many syn-sedimentary extensional features and are bounded by conspicuous normal faults, specifically along the region where intense activity of the main arc between ~90 and ~60 Ma had led to voluminous magma emplacement. This close succession of (1) intense magmatic activity and (2) regional-scale exhumation associated with

  11. Lead-isotopic signatures of porphyry copper deposits in oceanic and continental settings, Colombian Andes

    NASA Astrophysics Data System (ADS)

    Sillitoe, R. H.; Hart, S. R.

    1984-10-01

    Three discrete sub-belts of porphyry copper-type mineralization are recognized in the Colombian Andes: a western Eocene sub-belt, an eastern Jurassic to early Cretaceous sub-belt and, between them, a central Miocene sub-belt. The western sub-belt is part of an oceanic domain constituted by oceanic crust and overlying immature island-arc rocks, the eastern sub-belt is within a continental domain underlain by the leading edge of the Guayana shield, and the central sub-belt spans the faulted boundary between them. The thicker continental crust includes important granulitic rocks which crop out locally, as in the vicinity of the Mocoa porphyry copper deposit. Pb-isotopic ratios were determined for pyrite samples collected from 6 porphyry copper centers, 3 in the western sub-belt, 2 in the eastern sub-belt, and one in the central sub-belt. Ratios fall into 3 discrete populations: the most radiogenic values represent the western sub-belt, the least radiogenic represent the eastern sub-belt, and an intermediate value corresponds to the central sub-belt. Ratios therefore become progressively less radiogenic from the western oceanic domain to the eastern cratonic domain. Comparison of the Pb-isotopic ratios with those given in the literature for possible source materials for Colombian porphyry copper leads enables the subcontinental mantle wedge, subducted oceanic crust and subducted metalliferous sediments to be discounted as principal sources. The relatively radiogenic signatures of 5 of the porphyry copper centers appear to be broadly compatible with either a subducted pelagic sediment source or an upper continental crust source, whereas the sixth center, Mocoa, is characterized by a distinctly less radiogenic 206Pb /204Pb ratio. An admixture of a relatively small percentage of non-radiogenic Pb from granulitic material in the upper crust with the more radiogenic Pb typical of the western sub-belt centers could account for the Mocoa data. Because much of the upper

  12. Along-Strike Variations in Crustal Seismicity in the Central Andes and Geodynamic Implications

    NASA Astrophysics Data System (ADS)

    Metcalf, K.; Pearson, D. M.; Kapp, P. A.; McGroder, M.; Kendall, J. J.

    2011-12-01

    For the central Andes, we compiled relocated crustal earthquakes (magnitude ≥ 4.5) from the EHB Bulletin and Nipress et al. [2007] and focal mechanisms from the Global CMT catalog and published literature [Alvarado et al., 2005]. These data were plotted in map, cross section, and 3D views in the context of local tomography [Koulakov et al., 2006] and lithospheric boundaries [Tassara et al., in prep]. The results imply major along-strike variations in the mechanisms of crustal deformation. At the latitude of the Altiplano, there is scarce forearc seismicity. The thin-skinned Bolivian retroarc thrust belt shows no seismic events (magnitude ≥ 4.5), suggesting that it is deforming aseismically or locked. In contrast, at the latitude of the Puna to the south (20-25°S), crustal seismicity is more prevalent in both the forearc and retroarc. Within this region, active deformation in the Coastal Cordillera near Antofagasta is occurring along steeply east-dipping normal faults at 15-41 km depth; this is the only part of the central Andean forearc that displays prominent extension. Outboard of this, thrust events at ~15 km depth in the forearc wedge display gently dipping nodal planes, and may be signatures of underplating crust that was tectonically eroded at the trench. Underplating is a likely process by which this region of the forearc has undergone ~1 km of surface uplift during the Neogene. Seismicity with thrust or reverse and oblique focal mechanisms in the retroarc wedge is localized beneath the frontal part of the thick-skinned Eastern Cordilleran thrust belt and the Santa Barbara ranges. Seismicity along discrete, east- and west-dipping planes occurs to near Moho depths (~50 km). While retroarc crustal seismicity continues to the south toward the Juan Fernandez flat slab, there is a concentration of seismic events in the retroarc at the latitude (22-23°S) where there is prominent normal faulting in the forearc. We interpret the compiled data to suggest that

  13. Tectonic development of the North Patagonian Andes and their related Miocene foreland basin (41°30‧-43°S)

    NASA Astrophysics Data System (ADS)

    Orts, DaríO. Leandro; Folguera, AndréS.; Encinas, Alfonso; Ramos, Miguel; Tobal, Jonathan; Ramos, VíCtor A.

    2012-06-01

    The Northern Patagonian Andes have been constructed through multiple mechanisms that range from tectonic inversion of extensional structures of Early to Middle Jurassic age in the Main Andes to Oligocene in the Precordilleran region. These have acted during two distinctive orogenic stages, first in late Early Cretaceous and later in Miocene times Late Oligocene extension separates these two contractional periods and is recorded by half-grabens developed in the retroarc region. The last contractional stage coexists with an eastward foreland expansion of the late Miocene arc whose roots are presently exposed as minor granitic stocks and volcanic piles subordinately in the Main Andes, east of the present arc. As a consequence of this orogenic stage a foreland basin has developed, having progressed from 18 Ma in the main North Patagonian Andes, where the mountain front was flooded by a marine transgression corresponding to the base of the Ñirihuau Formation, to 11 Ma in the foreland area. Cannibalization of this foreland basin occurred initially in the hinterland and then progressed to the foreland zone. Blind structures formed a broken foreland at the frontal zone inferred from growth strata geometries. During Pliocene to Quaternary times most of the contractional deformation was dissipated in the orogenic wedge at the time when the arc front retracted to its present position.

  14. Intra-to multidecadel variations of snowpack and streamflow records in the Andes of Chile and Argentina between 30 degrees and 37 degrees S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regional composites of winter snowpack (1951-2008) and mean annual river discharges (1906-2007) are used to evaluate the main intra- to multi-decadal hydrologic variations in the Andes of Chile and Argentina between 30° and 37°S. The streamflow record shows a non-significant negative trend but two s...

  15. Los Alamos National Laboratory.

    ERIC Educational Resources Information Center

    Hammel, Edward F., Jr.

    1982-01-01

    Current and post World War II scientific research at the Los Alamos National Laboratory (New Mexico) is discussed. The operation of the laboratory, the Los Alamos consultant program, and continuation education, and continuing education activities at the laboratory are also discussed. (JN)

  16. Direction and timing of uplift propagation in the Peruvian Andes deduced from molecular phylogenetics of highland biotaxa

    NASA Astrophysics Data System (ADS)

    Picard, Damien; Sempere, Thierry; Plantard, Olivier

    2008-07-01

    Physical paleoaltimetric methods are increasingly used to estimate the amount and timing of surface uplift in orogens. Because the rise of mountains creates new ecosystems and triggers evolutionary changes, biological data may also be used to assess the development and timing of regional surface uplift. Here we apply this idea to the Peruvian Andes through a molecular phylogeographic and phylochronologic analysis of Globodera pallida, a potato parasite nematode that requires cool temperatures and thus thrives above 2.0-2.5 km in these tropical highlands. The Peruvian populations of this species exhibit a clear evolutionary pattern with deeper, more ancient lineages occurring in Andean southern Peru and shallower, younger lineages occurring progressively northwards. Genetically diverging G. pallida populations thus progressively colonized highland areas as these were expanding northwards, demonstrating that altitude in the Peruvian Andes was acquired longitudinally from south to north, i.e. in the direction of decreasing orogenic volume. This phylogeographic structure is recognized in other, independent highland biotaxa, and point to the Central Andean Orocline (CAO) as the region where high altitudes first emerged. Moreover, molecular clocks relative to Andean taxa, including the potato-tomato group, consistently estimate that altitudes high enough to induce biotic radiation were first acquired in the Early Miocene. After calibration by geological and biological tie-points and intervals, the phylogeny of G. pallida is used as a molecular clock, which estimates that the 2.0-2.5 km threshold elevation range was reached in the Early Miocene in southernmost Peru, in the Middle and Late Miocene in the Abancay segment (NW southern Peru), and from the latest Miocene in central and northern Peru. Although uncertainties attached to phylochronologic ages are significantly larger than those derived from geochronological methods, these results are fairly consistent with coeval

  17. Dynamics and Upper Mantle Structure Beneath the Northwestern Andes: Subduction Segments, Moho Depth, and Possible Relationships to Mantle Flow

    NASA Astrophysics Data System (ADS)

    Monsalve, G.; Yarce, J.; Becker, T. W.; Porritt, R. W.; Cardona, A.; Poveda, E.; Posada, G. A.

    2014-12-01

    The northwestern South American plate shows a complex tectonic setting whose causes and relationship to mantle structure are still debated. We combine different techniques to elucidate some of the links between slabs and surface deformation in Colombia. Crustal structure beneath the Northern Andes was inferred from receiver functions where we find thicknesses of nearly 60 km beneath the plateau of the Eastern Cordillera and underneath the southern volcanic area of the Central Cordillera. We infer that such crustal thickening resulted from shortening, magmatic addition, and accretion-subduction. Analyses of relative teleseismic travel time delays and estimates of residual surface topography based on our new crustal model suggest that there are at least two subduction segments underneath the area. The Caribbean slab lies at a low angle beneath northernmost Colombia and steepens beneath the Eastern Cordillera. Such steepening is indicated by negative travel time relative residuals in the area of the Bucaramanga Nest, implying a cold anomaly in the upper mantle, and by positive residual topography just off the east of this area, perhaps generated by slab-associated return flow. Results for the western Andes and the Pacific coastal plains are consistent with "normal" subduction of the Nazca plate: travel time relative residuals there are predominantly positive, and the residual topography shows an W-E gradient, going from positive at the Pacific coastline to negative at the Magdalena Valley, which separates the eastern cordillera from the rest of the Colombian Andean system. Azimuthal analysis of relative travel time residuals further suggests the presence of seismically slow materials beneath the central part of the Eastern Cordillera. Azimuthal anisotropy from SKS splitting in that region indicates that seismically fast orientations do not follow plate convergence, different from what we find for the western Colombian Andes and the Caribbean and Pacific coastal plains

  18. Cosmogenic 10Be Dating of Early and Latest Holocene Moraines on Nevado Salcantay in the Southern Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Licciardi, J. M.; Schaefer, J. M.; Lund, D. C.

    2007-12-01

    A two-fold sequence of nested lateral and end moraines was mapped in a glacial trough emanating from the southwest flank of Nevado Salcantay (6271 m; ~13°S latitude), the highest peak in the Cordillera Vilcabamba of southern Peru. The field area is situated 25 km due south of the archaeological site of Machu Picchu. Outer and inner moraines in the sequence were deposited by valley glaciers that terminated ~5 km and ~3 km, respectively, from their headwall on the Salcantay summit massif. Cosmogenic 10Be surface exposure dating of granitic boulders sampled on the Salcantay moraines is underway and has provided the first numerical ages for these deposits. Initial results indicate ages of 8.1 ± 0.1 10Be ka for the outer moraine and 200 ± 20 10Be years for the sharp-crested inner moraine. These ages are derived using the CRONUS-Earth 10Be exposure age calculator (version 2.0) and expressed with respect to the Lal- Stone production rate scaling scheme using the standard atmosphere. The outer and inner moraine ages correspond to glacial events during the early and latest Holocene, respectively. Further 10Be dating of the mapped moraines and similar deposits observed in adjacent drainages on Nevado Salcantay is anticipated to yield a high-resolution chronology of valley glaciation in this segment of the southern Peruvian Andes. The new results bridge an important gap between existing Andean glacier records to the north and south, and complement available ice core and lacustrine paleoclimate records in the vicinity, thereby expanding spatial and temporal coverage for identifying patterns of Holocene climate change in the tropical Andes. Notably, the inner moraine age correlates with the timing of the Little Ice Age as defined in northern mid- and high latitude glacier records, and suggests considerable expansion of valley glaciers in the southern Peruvian Andes during this climatic minimum. Apart from their paleoclimatic significance, the initial results also demonstrate

  19. Characterizing the Linkages Between landform and Precipitation Regime in the Sierra Madre Meridional and in the Andes

    NASA Astrophysics Data System (ADS)

    Giovannettone, J. P.; Barros, A. P.

    2005-12-01

    Mountains play an important role in the hydrologic cycle in many parts of the world. About 25% of the world's population lives in mountainous terrain, and 60% of people rely on freshwater from mountainous regions for drinking water and other purposes. This is especially the case in the western US, in Central America and along the Andes. Whereas quantitative estimation of precipitation in mountainous regions is of critical importance, sparse raingauge networks and the operational difficulties of ground-based radar in the vicinity of high terrain, leave us without substantive observations to work with. By contrast, satellites provide a unique opportunity to look at large regions simultaneously and at high resolution. Although terrain complexity can also cause substantial uncertainty in the interpretation of remotely-sensed data, there is great value in the small-scale structure captured by high spatial resolution sensors. A comprehensive study including surface measurements, observations from the NASA TRMM satellite, and coupled land-atmosphere modeling to characterize the diurnal cycle of precipitation over the Sierra Madre Meridional (east of Mexico City) and over the Andes is currently under way. The objective of this work is to investigate the role of landform as the organizing principle of convective activity in mountainous regions and to determine whether this spatial organization can be linked to the diurnal cycle of rainfall. For this purpose, TRMM data were analyzed over the Sierra Madre and Andes Mountains using an algorithm developed by Nesbitt et al. (2000) to determine the location of precipitation features (PF's) over a time period extending from 1998 to 2004. The algorithm uses two types of data provided by the TRMM satellite: the near-surface precipitation radar (PR) and the TRMM Microwave Imager (TMI) polarization-corrected temperatures (PCT's) at 85.5 GHz. A PF is defined as an area of 75 km2 or greater in which reflectivities are greater than 20 d

  20. Preliminary Depositional and Provenance Records of Mesozoic Basin Evolution and Cenozoic Shortening in the High Andes, La Ramada Fold-Thrust Belt, Southern-Central Andes (32-33°S)

    NASA Astrophysics Data System (ADS)

    Mackaman-Lofland, C.; Horton, B. K.; Fuentes, F.; Constenius, K. N.; McKenzie, R.; Alvarado, P. M.

    2015-12-01

    The Argentinian Andes define key examples of retroarc shortening and basin evolution above a zone of active subduction. The La Ramada fold-thrust belt (RFTB) in the High Andes provides insights into the relative influence and temporal records of diverse convergent margin processes (e.g. flat-slab subduction, convergent wedge dynamics, structural inversion). The RFTB contains Mesozoic extensional basin strata deformed by later Andean shortening. New detrital zircon U-Pb analyses of Mesozoic rift sediments reveal: (1) a dominant Permo-Triassic age signature (220-280 Ma) associated with proximal sources of effective basement (Choiyoi Group) during Triassic synrift deposition; (2) upsection younging of maximum depositional ages from Late Triassic through Early Cretaceous (230 to 100 Ma) with the increasing influence of western Andean arc sources; and (3) a significant Late Cretaceous influx of Paleozoic (~350-550 Ma) and Proterozoic (~650-1300 Ma) populations during the earliest shift from back-arc post-extensional subsidence to upper-plate shortening. The Cenozoic detrital record of the Manantiales foreland basin (between the Frontal Cordillera and Precordillera) records RFTB deformation prior to flat-slab subduction. A Permo-Triassic Choiyoi age signature dominates the Miocene succession, consistent with sources in the proximal Espinacito range. Subordinate Mesozoic (~80-250 Ma) to Proterozoic (~850-1800 Ma) U-Pb populations record exhumation of the Andean magmatic arc and recycling of different structural levels in the RFTB during thrusting/inversion of Mesozoic rift basin strata and subjacent Paleozoic units. Whereas maximum depositional ages of sampled Manantiales units cluster at 18-20 Ma, the Estancia Uspallata basin (~50 km to the south) shows consistent upsection younging of Cenozoic populations attributed to proximal volcanic centers. Ongoing work will apply low-temperature thermochronology to pinpoint basin accumulation histories and thrust timing.

  1. Stockpile Stewardship: Los Alamos

    ScienceCinema

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2016-07-12

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  2. Paleozoic evolution of active margin basins in the southern Central Andes (northwestern Argentina and northern Chile)

    NASA Astrophysics Data System (ADS)

    Bahlburg, H.; Breitkreuz, C.

    The geodynamic evolution of the Paleozoic continental margin of Gondwana in the region of the southern Central Andes is characterized by the westward progression of orogenic basin formation through time. The Ordovician basin in the northwest Argentinian Cordillera Oriental and Puna originated as an Early Ordovician back-arc basin. The contemporaneous magmatic arc of an east-dipping subduction zone was presumably located in northern Chile. In the back-arc basin, a ca. 3500 meter, fining-up volcaniclastic apron connected to the arc formed during the Arenigian. Increased subsidence in the late Arenigian allowed for the accomodation of large volumes of volcaniclastic turbidites during the Middle Ordovician. Subsidence and sedimentation were caused by the onset of collision between the para-autochthonous Arequipa Massif Terrane (AMT) and the South American margin at the Arenigian-Llanvirnian transition. This led to eastward thrusting of the arc complex over its back-arc basin and, consequently, to its transformation into a marine foreland basin. As a result of thrusting in the west, a flexural bulge formed in the east, leading to uplift and emergence of the Cordillera Oriental shelf during the Guandacol Event at the Arenigian-Llanvirnian transition. The basin fill was folded during the terminal collision of the AMT during the Oclóyic Orogeny (Ashgillian). The folded strata were intruded post-tectonically by the presumably Silurian granitoids of the "Faja Eruptiva de la Puna Oriental." The orogeny led to the formation of the positive area of the Arco Puneño. West of the Arco Puneño, a further marine basin developed during the Early Devonian, the eastern shelf of which occupied the area of the Cordillera Occidental, Depresión Preandina, and Precordillera. The corresponding deep marine turbidite basin was located in the region of the Cordillera de la Costa. Deposition continued until the basin fill was folded in the early Late Carboniferous Toco Orogeny. The basin

  3. Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean.

    PubMed

    Moquet, Jean-Sébastien; Guyot, Jean-Loup; Crave, Alain; Viers, Jérôme; Filizola, Naziano; Martinez, Jean-Michel; Oliveira, Tereza Cristina; Sánchez, Liz Stefanny Hidalgo; Lagane, Christelle; Casimiro, Waldo Sven Lavado; Noriega, Luis; Pombosa, Rodrigo

    2016-06-01

    The aim of the present study is to estimate the export fluxes of major dissolved species at the scale of the Amazon basin, to identify the main parameters controlling their spatial distribution and to identify the role of discharge variability in the variability of the total dissolved solid (TDS) flux through the hydrological cycle. Data are compiled from the monthly hydrochemistry and daily discharge database of the "Programa Climatologico y Hidrologico de la Cuenca Amazonica de Bolivia" (PHICAB) and the HYBAM observatories from 34 stations distributed over the Amazon basin (for the 1983-1992 and 2000-2012 periods, respectively). This paper consists of a first global observation of the fluxes and temporal dynamics of each geomorphological domain of the Amazon basin. Based on mean interannual monthly flux calculations, we estimated that the Amazon basin delivered approximately 272 × 10(6) t year(-1) (263-278) of TDS during the 2003-2012 period, which represents approximately 7 % of the continental inputs to the oceans. This flux is mainly made up by HCO3, Ca and SiO2, reflecting the preferential contributions of carbonate and silicate chemical weathering to the Amazon River Basin. The main tributaries contributing to the TDS flux are the Marañon and Ucayali Rivers (approximately 50 % of the TDS production over 14 % of the Amazon basin area) due to the weathering of carbonates and evaporites drained by their Andean tributaries. An Andes-sedimentary area-shield TDS flux (and specific flux) gradient is observed throughout the basin and is first explained by the TDS concentration contrast between these domains, rather than variability in runoff. This observation highlights that, under tropical context, the weathering flux repartition is primarily controlled by the geomorphological/geological setting and confirms that sedimentary areas are currently active in terms of the production of dissolved load. The log relationships of concentration vs discharge have

  4. Declining Lake Habitats in the Andes: Implications for Early Mars, Life, and Exploration (Invited)

    NASA Astrophysics Data System (ADS)

    Cabrol, N. A.; Grin, E. A.; High Lakes Project Team

    2010-12-01

    The environment of the Andes presents analogies with Mars when the planet was transitioning from a wetter to a drier, colder climate: thin atmosphere, high solar irradiance, depleted ozone, high temperature fluctuations with low averages, ice, low precipitation and RH, and volcanic activity. This region is also among three areas of the world most impacted by climate change, which results in enhanced evaporation and high negative water balance that modifies lake habitat rapidly. Data shows strong interannual fluctuations in precipitation, water balance, major ion concentration, and pH are well marked. Microorganisms dwelling near the surface are exposed to a UV flux 170% that of sea level, and exceptionally high UVB levels. The thin cold atmosphere generates sudden and significant inverse relationship between UV and temperatures. In this cold, unstable environment lake habitats host abundant life. In addition to adaptation strategies, the timing of key cycles appears to be a critical factor in life’ survival. Environmental analogy with early Mars is multifold. Aridification has resulted in an evaporative environment. Latitude and altitude generate a UV-flux double that of present-day Mars at the equator and UVB only half that of the red planet, low average total ozone, and a low atmospheric pressure. Yearly temperature extremes range from -40C to +9C. Lakes are ice-covered starting austral fall, reaching maximum thickness by mid-winter. Thawing occurs in spring, but negative night temperatures result in the formation of a thin film of ice that thaws by mid-morning in spring and summer. Because of their geophysical environment, rapid climate change, isolation, and mostly uncharted ecosystems, these lakes are representative of an end-member class of terrestrial lakes and are meaningful analogs to early martian lakes. With differences inherent to the study of terrestrial analogs, the overall environmental similarity of Andean lakes with Mars at the Noachian

  5. Recent trends in human migrations: the case of the Venezuelan Andes.

    PubMed

    Suarez, M M; Torrealba, R

    1982-01-01

    studies identified that use demographic, economic, or phychosocial approaches have provided partial explanations of the current status of Andean migrations. The explanations they offer, by not transcending the current reality of the migrants, overlook the historical traits of internal migration. Migratory flows do not spring up suddenly. They result from specific socio-political circumstances which, when closely linked to demographic evidence, serve as a basis for understanding the process. Review of studies on internal migration in the Northern Andes, as presented here, reveals a series of distinguishing characteristics: there are 5 migratory patterns--rural to rural, rural to urban, urban to urban, seasonal worker migration, and return migration, and the predominant pattern has been rural to urban; the demographic data show the importance of rural migrants to urban growth in the region and a complementary loss of population in the rural areas; depopulation of the countryside has been selective; and there is a marked disparity in employment remuneration between rural and urban areas.

  6. Modelling and monitoring vegetation and evapotranspiration on an anthropogenic grassland succession in the Andes of Ecuador

    NASA Astrophysics Data System (ADS)

    Silva, B.; Bendix, J.

    2012-04-01

    In the eastern Andes of southern Ecuador the infestation of pasture (mostly C4-grass Setaria sphacelata) by the aggressive bracken fern (Pteridium sp.) still is an unsolved problem. Environmental and exogenous factors and direct plant competition have been hypothesized to drive bracken occurrence. Special attention is given to pasture burning, which stimulates bracken growth, and is common in the relative dry season (Oct-Dec). However, no knowledge is available for a quantitative hypothesis investigation on bracken occurrence under current and future local climate. In this work a modeling approach is presented, in which initial investigations support the application of a two-big-leaf model, and parameterization and model forcing are made with extensive data on physiological traits and on the physical environment. Our main aims here are (i) to show field investigations on a plant scale, which are the basis for a proper model parameterization; and (ii) to provide initialization data, which is based on estimation of green leaf area index from very-high and high resolution optical remote sensing (air-photos and Quickbird images); (iii) to simulate vegetation succession after burn on an experimental site, using in situ climate data and future climate-change scenarios. The modeling approach is based in the main on the vegetation dynamic model called Southern Bracken Competition Model (SoBraCoMo), which has been coupled to a hydrological model written on the catchment model framework (CMF), to simulate soil-vegetation dynamics. Main initialization variables are biochemical parameters (quantum and carboxylation efficiency) and the green leaf area index (green-LAI). Forcing data include soil, leaf and air temperature, soil and air humidity and radiation. The model has been developed and tested on the experimental site (2100 m asl) in the Rio San Francisco Valley, Ecuador. Simulation results on the burn experiment of 2009 showed that stimulation by fire could not boost fern

  7. Evolution of Rhyolite at Laguna del Maule, a Rapidly Inflating Volcanic Field in the Southern Andes

    NASA Astrophysics Data System (ADS)

    Andersen, N. L.; Singer, B. S.; Jicha, B. R.; Hildreth, E. W.; Fierstein, J.; Rogers, N. W.

    2012-12-01

    The Laguna del Maule Volcanic Field (LdM) is host to both the foremost example of post-glacial rhyolitic volcanism in the southern Andes and rapid, ongoing crustal deformation. The flare-up of high-silica eruptions was coeval with deglaciation at 24 ka. Rhyolite and rhyodacite domes and coulees totaling 6.5 km3 form a 20 km ring around the central lake basin. This spatial and temporal concentration of rhyolite is unprecedented in the history of the volcanic field. Colinear major and trace element variation suggests these lavas share a common evolutionary history (Hildreth et al., 2010). Moreover, geodetic observations (InSAR & GPS) have identified rapid inflation centered in the western side of the rhyolite dome ring at a rate of 17 cm/year for five years, which has accelerated to 30 cm/yr since April 2012. The best fit to the geodetic data is an expanding magma body located at 5 km depth (Fournier et al., 2010; Le Mevel, 2012). The distribution of high-silica volcanism, most notably geochemically similar high-silica rhyolite lavas erupted 12 km apart of opposite sides of the lake within a few kyr of each other, raises the possibility that the shallow magma intrusion represents only a portion of a larger rhyolitic body, potentially of caldera forming dimensions. We aim to combine petrologic models with a precise geochronology to formulate a model of the evolution of the LdM magma system to its current state. New 40Ar/39Ar age determinations show rhyolitic volcanism beginning at 23 ka with the eruption of the Espejos rhyolite, followed by the Cari Launa Rhyolite at 14.5 ka, two flows of the Barrancas complex at 6.4 and 3.9 ka, and the Divisoria rhyolite at 2.2 ka. In contrast, significant andesitic and dacitic volcanism is largely absent from the central basin of LdM since the early post-glacial period suggesting a coincident basin-wide evolution from andesite to dacite to rhyolite and is consistent with a shallow body of low-density rhyolite blocking the eruption

  8. A new species of dactyloid anole (Iguanidae, Polychrotinae, Anolis) from the southeastern slopes of the Andes of Ecuador

    PubMed Central

    Ayala-Varela, Fernando P.; Omar, Torres-Carvajal

    2010-01-01

    Abstract We describe a new species of Anolis from the southeastern slopes of the Andes of Ecuador, province of Zamora-Chinchipe, Parque Nacional Podocarpus. It belongs to (1) the aequatorialis species-group by being of moderate to large size with narrow toe lamellae, and (2) the eulaemus sub-group by having a typical Anolis digit, in which the distal lamellae of phalanx II distinctly overlap the proximal scales of phalanx I. The new species is most similar morphologically to Anolis fitchi but differs from it mainly by having a dewlap with longitudinal rows of 2−5 granular, minute scales separated by naked skin (longitudinal rows of one or two keeled, large scales separated by naked skin in Anolis fitchi) and a vertically shorter dewlap (longer dewlap in Anolis fitchi). PMID:21594133

  9. A new species of iguanid lizard, genus Stenocercus (Squamata, Iguania), from the Central Andes in Peru.

    PubMed

    Venegas, Pablo J; Echevarría, Lourdes Y; García-Burneo, Karla; Koch, Claudia

    2016-12-04

    We describe a new species of Stenocercus from the montane forest of the right margin of the Marañón river in the northern portion of the Central Andes in northern Peru (Amazonas and La Libertad departments), at elevations ranging from 2300 to 3035 m. Stenocercus omari sp. nov. differs from other Stenocercus species, with the exception of S. amydrorhytus, S. chrysopygus, S. cupreus, S. johaberfellneri, S. latebrosus, S. melanopygus, S. modestus, S. ornatissimus, S. orientalis, and S. stigmosus, by having granular scales on the posterior surfaces of thighs, a conspicuous antehumeral fold and by lacking a vertebral crest. However, Stenocercus omari sp. nov. is easily distinguished from the aforementioned species, except S. orientalis, by the presence of prominently keeled dorsal head scales. The new species differs from S. orientalis by lacking a prominent oblique neck fold and by having a distinct deep postfemoral mite pocket.

  10. A large and unusually colored new snake species of the genus Tantilla (Squamata; Colubridae) from the Peruvian Andes.

    PubMed

    Koch, Claudia; Venegas, Pablo J

    2016-01-01

    A new colubrid species of the genus Tantilla from the dry forest of the northern Peruvian Andes is described on the basis of two specimens, which exhibit a conspicuous sexual dimorphism. Tantilla tjiasmantoi sp. nov. represents the third species of the genus in Peru. The new species is easily distinguished from its congeners by the combination of scalation characteristics and the unusual transversely-banded color pattern on the dorsum. A detailed description of the skull morphology of the new species is given based on micro-computed tomography images. The habitat of this new species is gravely threatened due to human interventions. Conservation efforts are urgently needed in the inter-Andean valley of the Maranon River.

  11. A large and unusually colored new snake species of the genus Tantilla (Squamata; Colubridae) from the Peruvian Andes

    PubMed Central

    Venegas, Pablo J.

    2016-01-01

    A new colubrid species of the genus Tantilla from the dry forest of the northern Peruvian Andes is described on the basis of two specimens, which exhibit a conspicuous sexual dimorphism. Tantilla tjiasmantoi sp. nov. represents the third species of the genus in Peru. The new species is easily distinguished from its congeners by the combination of scalation characteristics and the unusual transversely-banded color pattern on the dorsum. A detailed description of the skull morphology of the new species is given based on micro-computed tomography images. The habitat of this new species is gravely threatened due to human interventions. Conservation efforts are urgently needed in the inter-Andean valley of the Maranon River. PMID:27994975

  12. Description of Thecavermiculatus andinus n.sp. (Meloidoderidae), a Round Cystoid Nematode from the Andes Mountains of Peru

    PubMed Central

    Golden, A. M.; Franco, J.; Jatala, P.; Astogaza, E.

    1983-01-01

    Thecavermiculatus andinus n.sp. is described and illustrated from Oxalis tuberosa originally collected in the vicinity of Lake Titicaca high in the Andes mountains of southern Peru. This new species differs markedly front the other two species in the genus, especially in having a much greater female vulval-anal distance and annules with lined punctation on most of the female body with a lacelike pattern restricted to the posterior portion, particularly at the vulva and anus which do not protrude. Females are essentially spherical with protruding neck, white to yellowish in color, and can easily be mistaken for potato cyst nematodes. Among the dozen or more known weed and crop host plants are potato and eggplant. In order to accommodate this new species, the genus Thecavermieulatus is emended. A key to the species of this genus is presented. PMID:19295818

  13. A new species of the Pristimantis orestes group (Amphibia: Strabomantidae) from the high Andes of Ecuador, Reserva Mazar.

    PubMed

    Guayasamin, Juan M; Arteaga, Alejandro F

    2013-02-21

    We describe a new Pristimantis from La Libertad and Rumiloma, Reserva Mazar, Andes of Southeastern Ecuador, at elevations between 2895-3415 m. This species is assigned to the P. orestes group, from whose members it differs by its small body size (adult males ≤ 18.1 mm; adult females ≤ 23.7 mm), usually reticulated ventral pattern, and visible tympanum. The vocalization of the new species consists of a series of calls; each call is composed by a pulsed, non-modulated note in frequency, and with a dominant frequency of 3122-3171 Hz. A molecular phylogeny based on a fragment of the mitochondrial gene 12S shows that the new species is sister to Pristimantis simonbolivari.

  14. A new species of dactyloid anole (Iguanidae, Polychrotinae, Anolis) from the southeastern slopes of the Andes of Ecuador.

    PubMed

    Ayala-Varela, Fernando P; Omar, Torres-Carvajal

    2010-08-27

    We describe a new species of Anolis from the southeastern slopes of the Andes of Ecuador, province of Zamora-Chinchipe, Parque Nacional Podocarpus. It belongs to (1) the aequatorialis species-group by being of moderate to large size with narrow toe lamellae, and (2) the eulaemus sub-group by having a typical Anolis digit, in which the distal lamellae of phalanx II distinctly overlap the proximal scales of phalanx I. The new species is most similar morphologically to Anolis fitchi but differs from it mainly by having a dewlap with longitudinal rows of 2-5 granular, minute scales separated by naked skin (longitudinal rows of one or two keeled, large scales separated by naked skin in Anolis fitchi) and a vertically shorter dewlap (longer dewlap in Anolis fitchi).

  15. Comparison of the chemical composition of Valeriana parviflora essential oils collected in the Venezuelan Andes in two different seasons.

    PubMed

    Fernández, Sammy; Rondón, María; Rojas, Janne; Morales, Antonio; Rojas-Fermin, Luis

    2015-04-01

    The essential oils obtained by hydrodistillation of the aerial parts of Valerianaparviflora (Trevir) BM Vadillo, an endemic species of the Venezuelan Andes, collected from the same location in two different seasons (dry and rainy) of the year, were analyzed by GC/MS. The essential oil obtained during the dry season showed linalool (11.9%), eugenol (8.9%), p-menth-l-en-9-al (8.7%) and α-terpineol (7.7%) as main components, while the oil obtained from the rainy season collection showed o-xylol (16.2%), 3-methyl isovaleric acid (10.6%) and geranial (9.5%) as major compounds. Some of the differences in the composition of these oils might be due to the climatic conditions at the time of harvesting.

  16. Cenozoic uplift of the Central Andes in northern Chile and Bolivia - reconciling paleoaltimetry with the geological evolution.

    NASA Astrophysics Data System (ADS)

    Lamb, S. H.

    2015-12-01

    The Cenozoic geological evolution of the Central Andes, along two transects between ~17.5°S and 21°S, is compared with paleo-topography, determined from published paleo-altimetry studies. Surface and rock uplift are quantified using simple 2-D models of crustal shortening and thickening, together with estimates of sedimentation, erosion and magmatic addition. Prior to ~25 Ma, during a phase of amagmatic flat-slab subduction, thick skinned crustal shortening and thickening was focused in the Eastern and Western Cordilleras, separated by a broad basin up to 300 km wide and close to sea level, which today comprises the high Altiplano. Surface topography in the Eastern Cordillera appears to be ~1 km lower than anticipated from crustal thickening, which may be due to the pull-down effect of the subducted slab, coupled to the overlying lithosphere by a cold mantle wedge. Oligocene steepening of the subducted slab is indicated by the initiation of the volcanic arc at ~27 - 25 Ma, and widespread mafic volcanism in the Altiplano between 25 and 20 Ma. This may have resulted in detachment of mantle lithosphere and possibly dense lower crust, triggering 1 - 1.5 km of rapid uplift (over << 5 Myrs) of the Altiplano and western margin of the Eastern Cordillera and establishing the present day lithospheric structure beneath the high Andes. Since ~25 Ma, surface uplift has been the direct result of crustal shortening and thickening, locally modified by the effects of erosion, sedimentation and magmatic addition from the mantle. The rate of crustal shortening and thickening varies with location and time, with two episodes of rapid shortening in the Altiplano, lasting < 5 Myrs, that are superimposed on a long term history of ductile shortening in the lower crust, driven by underthrusting of the Brazilian Shield on the eastern margin.

  17. Investigating links between climate and orography in the central Andes: Coupling erosion and precipitation using a physical-statistical model

    NASA Astrophysics Data System (ADS)

    Lowman, Lauren E. L.; Barros, Ana P.

    2014-06-01

    Prior studies evaluated the interplay between climate and orography by investigating the sensitivity of relief to precipitation using the stream power erosion law (SPEL) for specified erosion rates. Here we address the inverse problem, inferring realistic spatial distributions of erosion rates for present-day topography and contemporaneous climate forcing. In the central Andes, similarities in the altitudinal distribution and density of first-order stream outlets and precipitation suggest a direct link between climate and fluvial erosion. Erosion rates are estimated with a Bayesian physical-statistical model based on the SPEL applied at spatial scales that capture joint hydrogeomorphic and hydrometeorological patterns within five river basins and one intermontane basin in Peru and Bolivia. Topographic slope and area data were generated from a high-resolution (˜90 m) digital elevation map, and mean annual precipitation was derived from 14 years of Tropical Rainfall Measuring Mission 3B42v.7 product and adjusted with rain gauge data. Estimated decadal-scale erosion rates vary between 0.68 and 11.59 mm/yr, with basin averages of 2.1-8.5 mm/yr. Even accounting for uncertainty in precipitation and simplifying assumptions, these values are 1-2 orders of magnitude larger than most millennial and million year timescale estimates in the central Andes, using various geological dating techniques (e.g., thermochronology and cosmogenic nuclides), but they are consistent with other decadal-scale estimates using landslide mapping and sediment flux observations. The results also reveal a pattern of spatially dependent erosion consistent with basin hypsometry. The modeling framework provides a means of remotely estimating erosion rates and associated uncertainties under current climate conditions over large regions. 2014. American Geophysical Union. All Rights Reserved.

  18. The Relative Impact of Climate Change on the Extinction Risk of Tree Species in the Montane Tropical Andes

    PubMed Central

    Tejedor Garavito, Natalia; Newton, Adrian C.; Golicher, Duncan; Oldfield, Sara

    2015-01-01

    There are widespread concerns that anthropogenic climate change will become a major cause of global biodiversity loss. However, the potential impact of climate change on the extinction risk of species remains poorly understood, particularly in comparison to other current threats. The objective of this research was to examine the relative impact of climate change on extinction risk of upper montane tree species in the tropical Andes, an area of high biodiversity value that is particularly vulnerable to climate change impacts. The extinction risk of 129 tree species endemic to the region was evaluated according to the IUCN Red List criteria, both with and without the potential impacts of climate change. Evaluations were supported by development of species distribution models, using three methods (generalized additive models, recursive partitioning, and support vector machines), all of which produced similarly high AUC values when averaged across all species evaluated (0.82, 0.86, and 0.88, respectively). Inclusion of climate change increased the risk of extinction of 18–20% of the tree species evaluated, depending on the climate scenario. The relative impact of climate change was further illustrated by calculating the Red List Index, an indicator that shows changes in the overall extinction risk of sets of species over time. A 15% decline in the Red List Index was obtained when climate change was included in this evaluation. While these results suggest that climate change represents a significant threat to tree species in the tropical Andes, they contradict previous suggestions that climate change will become the most important cause of biodiversity loss in coming decades. Conservation strategies should therefore focus on addressing the multiple threatening processes currently affecting biodiversity, rather than focusing primarily on potential climate change impacts. PMID:26177097

  19. The Plutón Diorítico Moat: Mildly alkaline monzonitic magmatism in the Fuegian Andes of Argentina

    NASA Astrophysics Data System (ADS)

    González Guillot, M.; Escayola, M.; Acevedo, R.; Pimentel, M.; Seraphim, G.; Proenza, J.; Schalamuk, I.

    2009-12-01

    The Plutón Diorítico Moat (Moat Dioritic Pluton, PDM) is the largest of several isolated Cretaceous plutons exposed in the Fuegian Andes of Argentina. It is made of a large variety of rock types ranging from ultramafic bodies (pyroxenites and hornblendites) to syenites. The petrological diversity is thought to have been originated by fractional crystallization of a mantle-derived magma combined with minor assimilation of continental crust (AFC). Its geochemical characteristics indicate a mildly-alkaline monzonitic affinity, contrasting with the typical calc-alkaline plutons of the Southern Patagonian Batholith (PB) to the south, in the Chilean archipelago. The PDM original magma is arc-related and its crystallization, as indicated by the Rb-Sr mineral isochron age of 115 ± 3 Ma, is coeval with some plutons of the PB. Therefore a similar tectonic regime is assumed for the emplacement of these plutonic bodies, both south and north of the Beagle channel. Differences in magma sources and degree of partial melting are inferred to account for the contrasting lithological and geochemical characteristics of the PB and PDM. The data suggest that the original magmas of the PDM were generated at greater depths in the mantle, by a smaller degree of partial melting, compared with the PB. The Barros Arana basalts, exposed to the north in Chile, forming a back-arc volcanic complex, display the same mildly-alkaline shoshonitic affinity, and are considered in this study as the volcanic equivalents of the PDM. All the plutons in the Argentinean Fuegian Andes display similar lithological and geochemical characteristics and are, therefore, grouped in this work under the name of Magmatismo Potásico Fueguino ( Fuegian Potassic Magmatism).

  20. The Relative Impact of Climate Change on the Extinction Risk of Tree Species in the Montane Tropical Andes.

    PubMed

    Tejedor Garavito, Natalia; Newton, Adrian C; Golicher, Duncan; Oldfield, Sara

    2015-01-01

    There are widespread concerns that anthropogenic climate change will become a major cause of global biodiversity loss. However, the potential impact of climate change on the extinction risk of species remains poorly understood, particularly in comparison to other current threats. The objective of this research was to examine the relative impact of climate change on extinction risk of upper montane tree species in the tropical Andes, an area of high biodiversity value that is particularly vulnerable to climate change impacts. The extinction risk of 129 tree species endemic to the region was evaluated according to the IUCN Red List criteria, both with and without the potential impacts of climate change. Evaluations were supported by development of species distribution models, using three methods (generalized additive models, recursive partitioning, and support vector machines), all of which produced similarly high AUC values when averaged across all species evaluated (0.82, 0.86, and 0.88, respectively). Inclusion of climate change increased the risk of extinction of 18-20% of the tree species evaluated, depending on the climate scenario. The relative impact of climate change was further illustrated by calculating the Red List Index, an indicator that shows changes in the overall extinction risk of sets of species over time. A 15% decline in the Red List Index was obtained when climate change was included in this evaluation. While these results suggest that climate change represents a significant threat to tree species in the tropical Andes, they contradict previous suggestions that climate change will become the most important cause of biodiversity loss in coming decades. Conservation strategies should therefore focus on addressing the multiple threatening processes currently affecting biodiversity, rather than focusing primarily on potential climate change impacts.

  1. Compositional Trends of Cretaceous Conglomerate Provenance: Tracing The Evolving Nature of Tectonic Environments in the Northwestern Colombian Andes

    NASA Astrophysics Data System (ADS)

    Patino, A. M.; Zapata, S.; Cardona, A.; Jaramillo, J. S.

    2014-12-01

    The composition and provenance of the sedimentary record is a sensible marker of the evolving nature of source , basin paleogeography and tectonic assemblage. The Cretaceous geological evolution of the northern Andes is characterized by the succession of different tectonic environments that include: An early Cretaceous magmatic quiescence that follow former Jurassic arc magmatism, Albian-Aptian subduction resume and associated arc - back-arc formation and the late Cretaceous collision with an allocthonous oceanic arc that marks the beginning of the Andean orogeny. Such tectonic evolution had been mostly reconstructed from the magmatic record or the stratigraphic analysis of inland basin far from the arcs and suture zones. Along the western flank of the central cordillera outcrops two different stratigraphic units with notable differences in the provenance and timing of accumulation. The Abejorral Formation is the oldest sedimentary sequence (Albian-Aptian) that discordantly overlies the Triassic continental margin. this unit include two lithofacies clearly distinguishable, a lithofacies consist mostly of conglomerate, characterized by abundant quartz content , low compaction, rounded clasts and moderate sorting ; and the other is a interbedded of fine size sandstone, mudstone and chert; also with abundant quartz content further muscovite, containing basement and volcanic material . To the west, sedimentary rocks including within the Quebradagrande Formation conform a turbidite sequence with a well defined Bouma type succession that concordantly overlied a Campanian marine volcanic arc succession. The conglomerates associated to this unit are characterized by containing mainly sedimentary and volcanic rock fragments ,high compaction, subrounded clast, and low sorting. This sequence is overlying by the volcanic component in a concord contact. Whereas the Albian-Aptian record of the Abejorral Formation exhibit the unroofing of the continental basement and deepening of

  2. Tectonic Evolution of the Central Andes during Mesozoic-Cenozoic times: Insights from the Salar de Atacama Basin

    NASA Astrophysics Data System (ADS)

    Peña Gomez, M. A.; Bascunan, S. A.; Becerra, J.; Rubilar, J. F.; Gómez, I.; Narea, K.; Martínez, F.; Arriagada, C.; Le Roux, J.; Deckart, K.

    2015-12-01

    The classic Salar de Atacama Basin, located in the Central Andes of northern Chile, holds a remarkable yet not fully understood record of tectonic events since mid-Cretaceous times. Based on the growing amount of data collected over the last years, such as high-detail maps and U-Pb geochronology, we present an updated model for the development of this area after the Triassic. A major compressional event is recorded around the mid-Late Cretaceous (ca. 107 Ma) with the deposition of synorogenic continental successions reflecting the uplift of the Coastal Cordillera area farther to the west, and effectively initiating the foreland basin. The deformation front migrated eastwards during the Late Campanian (ca. 79 Ma), where it exhumed and deformed the Late Cretaceous magmatic arc and the crystalline basement of Cordillera de Domeyko. The K-T Event (ca. 65 Ma), recently identified in the basin, involved the same source areas, though the facies indicate a closer proximity to the source. The compressional record of the basin is continued by the Eocene Incaic Event (ca. 45 Ma), with deep exhumation of the Cordillera de Domeyko and the cannibalization of previous deposits. A change to an extensional regime during the Oligocene (ca. 28 Ma) is shown by the deposition of more than 4 km of evaporitic and clastic successions. A partial inversion of the basin occurred during the Miocene (ca.10 Ma-present), as shown by the deformation seen in the Cordillera de la Sal. As such, the basin shows that the uplift of the Cordillera de Domeyko was not one isolated episode, but a prolonged and complex event, punctuated by episodes of major deformation. It also highlights the need to take into account the Mesozoic-Cenozoic deformation events for any model trying to explain the building of the modern-day Andes.

  3. Socioeconomic status and chronic child malnutrition: Wealth and maternal education matter more in the Peruvian Andes than nationally.

    PubMed

    Urke, Helga B; Bull, Torill; Mittelmark, Maurice B

    2011-10-01

    This study investigated the association of parents' socioeconomic status (SES) with child stunting in the Peruvian Andes and in Peru nationally. It was hypothesized that the relationship of SES to child stunting would be weaker in the Andean compared with the national sample. This is consistent with earlier research indicating that the relationship of SES to health may be weak in poor regions. The data were from the Demographic and Health Survey 2004 to 2006. Two samples of children 3 to 60 months old were compared: a national sample (n = 1426) and an Andean sample (n = 543). Malnutrition was measured using the indicator "stunting," which is small stature for age. Socioeconomic status was measured using parental education, occupation, and household wealth index (WI). In both samples, SES was significantly related to stunting. The odds of stunting in the poorest WI quintile were significantly higher than in the richest quintile. The same pattern was observed in children of mothers having incomplete primary education compared with children of mothers having complete secondary or higher education. The odds of stunting were significantly lower in children of mothers working at home compared with mothers in professional occupations. The associations of WI and maternal education with stunting were significantly stronger in the Andean compared with the national sample; the study did not find support for the hypothesis. Even in very poor regions such as the Andes, SES may be associated with child health, suggesting the importance of public health measures to overcome the health disadvantages experienced by children living in low SES households.

  4. Rainfall variability and trends of the past six decades (1950-2014) in the subtropical NW Argentine Andes

    NASA Astrophysics Data System (ADS)

    Castino, F.; Bookhagen, B.; Strecker, M. R.

    2017-02-01

    The eastern flanks of the Central Andes are characterized by deep convection, exposing them to hydrometeorological extreme events, often resulting in floods and a variety of mass movements. We assessed the spatiotemporal pattern of rainfall trends and the changes in the magnitude and frequency of extreme events (≥95th percentile) along an E-W traverse across the southern Central Andes using rain-gauge and high-resolution gridded datasets (CPC-uni and TRMM 3B42 V7). We generated different climate indices and made three key observations: (1) an increase of the annual rainfall has occurred at the transition between low (<0.5 km) and intermediate (0.5-3 km) elevations between 1950 and 2014. Also, rainfall increases during the wet season and, to a lesser degree, decreases during the dry season. Increasing trends in annual total amounts characterize the period 1979-2014 in the arid, high-elevation southern Andean Plateau, whereas trend reversals with decreasing annual total amounts were found at low elevations. (2) For all analyzed periods, we observed small or no changes in the median values of the rainfall-frequency distribution, but significant trends with intensification or attenuation in the 95th percentile. (3) In the southern Andean Plateau, extreme rainfall events exhibit trends towards increasing magnitude and, to a lesser degree, frequency during the wet season, at least since 1979. Our analysis revealed that low (<0.5 km), intermediate (0.5-3 km), and high-elevation (>3 km) areas respond differently to changing climate conditions, and the transition zone between low and intermediate elevations is characterized by the most significant changes.

  5. Late Cretaceous-early Eocene counterclockwise rotation of the Fueguian Andes and evolution of the Patagonia-Antarctic Peninsula system

    NASA Astrophysics Data System (ADS)

    Poblete, F.; Roperch, P.; Arriagada, C.; Ruffet, G.; Ramírez de Arellano, C.; Hervé, F.; Poujol, M.

    2016-02-01

    The southernmost Andes of Patagonia and Tierra del Fuego present a prominent arc-shaped structure: the Patagonian Bend. Whether the bending is a primary curvature or an orocline is still matter of controversy. New paleomagnetic data have been obtained south of the Beagle Channel in 39 out of 61 sites. They have been drilled in Late Jurassic and Early Cretaceous sediments and interbedded volcanics and in mid-Cretaceous to Eocene intrusives of the Fuegian Batholith. The anisotropy of magnetic susceptibility was measured at each site and the influence of magnetic fabric on the characteristic remanent magnetizations (ChRM) in plutonic rocks was corrected using inverse tensors of anisotropy of remanent magnetizations. Normal polarity secondary magnetizations with west-directed declination were obtained in the sediments and they did not pass the fold test. These characteristic directions are similar to those recorded by mid Cretaceous intrusives suggesting a remagnetization event during the normal Cretaceous superchron and describe a large (> 90°) counterclockwise rotation. Late Cretaceous to Eocene rocks of the Fueguian Batholith, record decreasing counterclockwise rotations of 45° to 30°. These paleomagnetic results are interpreted as evidence of a large counterclockwise rotation of the Fueguian Andes related to the closure of the Rocas Verdes Basin and the formation of the Darwin Cordillera during the Late Cretaceous and Paleocene. The tectonic evolution of the Patagonian Bend can thus be described as the formation of a progressive arc from an oroclinal stage during the closure of the Rocas Verdes basin to a mainly primary arc during the final stages of deformation of the Magallanes fold and thrust belt. Plate reconstructions show that the Antarctic Peninsula would have formed a continuous margin with Patagonia between the Early Cretaceous and the Eocene, and acted as a non-rotational rigid block facilitating the development of the Patagonian Bend.

  6. Cenozoic Evolution of the Eastern Colombian Andes: a New Perspective from Thermokinematic Modeling and Quantitative Detrital Geochronology

    NASA Astrophysics Data System (ADS)

    Parra, M.; Mora, A.; Caballero, V. M.; Horton, B. K.; Reyes-Harker, A.; Ramirez-Arias, J. C.

    2015-12-01

    The reconstruction of the kinematic evolution of the northern Andes in Eastern Colombia reveals two main stages of orogenic development, each one displaying a different dominant factor controlling mountain building. In a context of oblique arc-continent convergence associated to dextral shearing along the Caribbean-South American plate boundary, the Late Cretaceous to late Miocene growth of the Andes in eastern Colombia was mainly modulated by the location of inherited basement anisotropies that constituted normal faults in the early Mesozoic. Shortening budget reconstructions show that the main exogenous driver for this first stage of Cenozoic deformation is the Oligocene increase in westward drift of the South American Plate. A second stage is characterized by thick-skinned basement uplift occurring at peak rates in the last ~5 Ma. This rapid uplift has led to the main topographic construction and the ensuing orographic precipitation favoring enhanced erosion in the eastern Andean watersheds, which in turn has potentially triggered positive tectonic-climate feedbacks. Thermokinematic modeling of detrital apatite fission track and apatite and zircon (U-Th)/He data suggest that up to 50% of the shortening along the main frontal reverse fault that bounds the Eastern Cordillera to the east occurred in the last ~2 My. This Cenozoic portrait of orogen evolution results from the detailed reconstruction of the upper crustal architecture and deformation kinematics enabled by the integration of (1) surface mapping and subsurface geology based interpretation of industry seismic reflection data, (2) a new detailed biostratrigraphically constrained chronology of foreland basin sediment accumulation, (3) the evolution of sediment source areas based on the quantitative comparison of various sedimentary provenance proxies, mainly detrital zircon U-Pb, and (4) thermokinematic modeling of a multi-method thermochronometric extensive database using our own software development.

  7. Modern and late Pleistocene glacial studies in the central Andes of Peru and Bolivia: Application of satellite remote sensing and digital terrain analysis

    NASA Astrophysics Data System (ADS)

    Klein, Andrew George

    Changes in the glaciers of the central Andes provide insight into changes in the region's climate on timescales ranging from decades to tens or hundreds of thousands of years. Satellite remote sensing was used to map the current extent of glaciers and snow cover as well as the maximum extent of late Pleistocene glaciation. The former extents of glaciers were reconstructed from the position of late Pleistocene moraines. Between 15sp° and 22sp°S, the central Andes contained approximately 11,000 paleo-glaciers with an area of 29,800 kmsp2 and an estimated volume of 3700 kmsp3. These reconstructed glaciers, combined with cirque floor elevations in Peru, were used to determine the late Pleistocene snowline for the central Andes which was 500 to 1200+ meters lower than at present. Mass balance modeling shows the 1200+ meter snowline depression observed in the humid portions of the central Andes to be consistent with a 5sp° to 9sp°C cooling. Extensive glacier expansion in the arid western portion of the central Andes, where the elevation of glaciers today is limited by precipitation, indicates wetter conditions existed during the late Pleistocene as well. This cooling is in agreement with paleoclimate proxy records from other continental sites in South America, but disagrees with current estimates of late Pleistocene sea surface temperatures which indicate only a 1 to 2sp°C cooling. Modern glaciers in the central Andes are presently rapidly retreating. This shrinking has economic implications because glaciers are a valuable water resource. However, no comprehensive monitoring program exists. The ablation and accumulation zones, as well as the transient snowline, were mapped at two tropical sites: Zongo Glacier, Bolivia, and the Quelccaya Ice Cap, Peru, using spectral mixture analysis applied to Landsat Thematic Mapper. Because the transient snowline is a proxy for the equilibrium line altitude (ELA), this technique shows promise in enabling the relative health of

  8. Review article of the current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change

    NASA Astrophysics Data System (ADS)

    Rabatel, A.; Francou, B.; Soruco, A.; Gomez, J.; Cáceres, B.; Ceballos, J. L.; Basantes, R.; Vuille, M.; Sicart, J.-E.; Huggel, C.; Scheel, M.; Lejeune, Y.; Arnaud, Y.; Collet, M.; Condom, T.; Consoli, G.; Favier, V.; Jomelli, V.; Galarraga, R.; Ginot, P.; Maisincho, L.; Mendoza, J.; Ménégoz, M.; Ramirez, E.; Ribstein, P.; Suarez, W.; Villacis, M.; Wagnon, P.

    2012-07-01

    The aim of this paper is to provide the community with a comprehensive overview of the studies of glaciers in the tropical Andes conducted in recent decades leading to the current status of the glaciers in the context of climate change. In terms of changes in surface area and length, we show that the glacier retreat in the tropical Andes over the last three decades is unprecedented since the maximum extension of the LIA (mid 17th-early 18th century). In terms of changes in mass balance, although there have been some sporadic gains on several glaciers, we show that the trend has been quite negative over the past 50 yr, with a mean mass balance deficit for glaciers in the tropical Andes that is slightly more negative than the computed global average. A break point in the trend appeared in the late 1970s with mean annual mass balance per year decreasing from -0.2 m w.e. in the period 1964-1975 to -0.76 m w.e. in the period 1976-2010. In addition, even if glaciers are currently retreating everywhere in the tropical Andes, it should be noted that as a percentage, this is much more pronounced on small glaciers at low altitudes that do not have a permanent accumulation zone, and which could disappear in the coming years/decades. Monthly mass balance measurements performed in Bolivia, Ecuador and Colombia showed that variability of the surface temperature of the Pacific Ocean is the main factor governing variability of the mass balance variability at the interannual to decadal time scale. Precipitation did not display a significant trend in the tropical Andes in the 20th century, and consequently cannot explain the glacier recession. On the other hand, temperature increased at a significant rate of 0.10 °C decade-1 in the last 70 yr. The higher frequency of El Niño events and changes in its spatial and temporal occurrence since the late 1970s together with a warming troposphere over the tropical Andes may thus explain much of the recent dramatic shrinkage of glaciers in

  9. Spatial and temporal relationships between compression, strike-slip and extension in the Central Venezuelan Andes: Clues for Plio-Quaternary tectonic escape

    NASA Astrophysics Data System (ADS)

    Backé, Guillaume; Dhont, Damien; Hervouët, Yves

    2006-10-01

    The geometry of tectonic structures, attributed to the Neogene-Quaternary time interval, is described in the active setting of the Venezuelan Andes. Our methodology is based on the analysis of radar satellite and Digital Elevation Model imagery, complemented by structural fieldwork and the compilation of seismotectonic data to make a structural analysis on a regional scale. Radar images provide first class data for morphostructural analysis in areas of dense vegetation and frequent cloud covering, like the Venezuelan Andes. We focused our analysis in the Burbusay-Río Momboy and Boconó faults corner located in the central part of the belt. We have described three stages of deformation during the Neogene-Quaternary. The first one, Mio-Pliocene in age, is a NW-SE compression responsible for the uplift of the Venezuelan Andes. The second tectonic stage corresponds to a strike-slip regime of deformation marked by shearing along the Boconó, Burbusay and Valera faults, which separates two triangular wedges in the larger Trujillo block. This strike-slip faulting-dominated compressional-extensional tectonic regime allowed the Trujillo crustal block to move towards the NE. Wrenching has therefore started at some point between the Pliocene and the Quaternary. These two tectonic events are consistent with ongoing strain partitioning in the Venezuelan Andes. The third stage corresponds to extensional deformation limited to the Trujillo block and is still active today. Extension is associated with the motion of crustal blocks moving relative to each other, probably above the upper-lower crust boundary. Such extensional deformation can be understood considering that the crust extends and stretches at the same time as it moves towards the NE. The combination of both horizontal lateral motion and extension is characteristic of a tectonic escape process. The northeastward escape of the Trujillo block, which belongs to the larger North Andes block, occurs as a result of the

  10. The Loma Seca tuff and the Calabozos caldera: a major ash-flow and caldera complex in the southern Andes of central Chile.

    USGS Publications Warehouse

    Hildreth, W.; Grunder, A.L.; Drake, Robert E.

    1984-01-01

    A composite ring-structure caldera of Late Pleistocene age, 26 X 14km in size, has been discovered and mapped near the Andean crest in central Chile (35o 30'S). Rhyolitic to dacitic zoned ashflow sheets, each representing 150-300 km3 of magma, were erupted 0.8, 0.3 and 0.15 m.y. ago; the youngest of the associated collapses was closely followed by resurgent doming of the caldera floor and the development of a longitudinal graben. Post-caldera eruption of dacite and andesite have persisted into Holocene time and active hot springs are abundant along caldera-marginal and resurgent fault systems, suggesting a significant geothermal energy resource. The ash-flow magmatism has been no less important in this segment of the glaciated S Andes than in the arid central Andes and may well be accounted for by the existence of thicker crust in both regions.- L.H.

  11. Hemangioblastomas de fosa posterior: Reporte de 16 casos y revisión de la literatura

    PubMed Central

    Campero, Alvaro; Ajler, Pablo; Fernandez, Julio; Isolan, Gustavo; Paiz, Martin; Rivadeneira, Conrado

    2016-01-01

    Resumen Objetivo: El propósito del presente trabajo es presentar los resultados de 16 pacientes con diagnóstico de hemangioblastoma de fosa posterior (HBFP), operados con técnicas microquirúrgicas. Método: Desde junio de 2005 a diciembre de 2015, 16 pacientes con diagnóstico de HBFP fueron intervenidos quirúrgicamente. Se evaluó: sexo, edad, tipo de lesión (quística con nódulo, quística sin nódulo, sólida y sólida-quística), sintomatología y resultados postoperatorios. Resultados: De los 16 pacientes intervenidos, 11 fueron varones y 5 mujeres. La edad promedio fue de 44 años. La forma más frecuente fue quística con nódulo (57%), seguida por forma sólida (31%). Un solo caso presentó la forma quística sin nódulo (6%), y uno solo la forma sólido-quística (6%). La sintomatología más frecuente fue cefalea acompañada de síndrome cerebeloso (43%), seguido de síndrome de hipertensión endocraneana (25%). En todos los casos la resección fue completa, siendo necesario en un caso una embolización previa. Como complicaciones postoperatorias, 2 pacientes presentaron ataxia (mejoró al cabo de 3 meses), y 1 paciente presentó una fístula de LCR (se solucionó con un drenaje espinal externo). Se registró un óbito por complicaciones postoperatorias. Conclusión: Lo más frecuente de ver en pacientes con HBFP es la forma quística con nódulo, siendo su sintomatología predominante la cefalea acompañada de síndrome cerebeloso. La resección quirúrgica completa es posible, con una baja tasa de morbimortalidad. PMID:27999708

  12. Los Alamos offers Fellowships

    NASA Astrophysics Data System (ADS)

    Los Alamos National Laboratory in New Mexico is calling for applications for postdoctoral appointments and research fellowships. The positions are available in geoscience as well as other scientific disciplines.The laboratory, which is operated by the University of California for the Department of Energy, awards J. Robert Oppenheimer Research Fellowships to scientists that either have or will soon complete doctoral degrees. The appointments are for two years, are renewable for a third year, and carry a stipend of $51,865 per year. Potential applicants should send a resume or employment application and a statement of research goals to Carol M. Rich, Div. 89, Human Resources Development Division, MS P290, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 by mid-November.

  13. Seismic studies in the southern Puna plateau and the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Calixto Mory, Frank Jimmy

    I present three studies in two regions, both within the Central Andes. In both regions it is clear that there are significant variations in the subduction geometry. I have used surface wave tomography to investigate the shear wave velocity structure beneath the southern Puna plateau and found evidence of widespread melting of the crust beneath the high elevations which correlates with a gap in intermediate depth seismicity and the recent eruptions of ignimbrite complexes. All of these observations can be explained by the delamination of the lithospheric mantle beneath it. I measured Rayleigh wave phase velocities as a function of frequency and inverted then to obtain shear wave velocities as a function of depth. The results show a high velocity body sitting above the subducting Nazca plate beneath the northern edge of the Cerro Galan ignimbrite. This high velocity body is interpreted to be the delaminated piece of lithosphere that detached and sank leading to a localized upwelling of asthenosphere that, in turn, caused widespread crustal melting leading to the eruption of the most recent ignimbrite complexes. Furthermore it is possible that this upwelling also thermally eroded the slab in this region. It is apparent that there is a significant slab gap or hole where there are very few intermediate depth earthquakes. In addition, I have used shear wave splitting analysis and shear wave splitting tomography in the southern Puna plateau to investigate the patterns of seismic anisotropy and mantle flow. The results show very complex shear wave splitting and seismic anisotropy patterns throughout the southern Puna plateau. The observations suggest that different mechanisms are driving the mantle flow from region to region. The subslab mantle outside the region where delamination took place is mostly driven by slab roll back and small degree of coupling between the subducting slab and the mantle below it. In the region apparently dominated by delamination, the subslab

  14. Forecasting Excessive Rainfall and Low-Cloud Bases East of the Northern Andes and Mesoscale Convective Complex Movement in Central South America

    DTIC Science & Technology

    2003-03-01

    diurnal differences in sensible heating, local topography ( highlands in Suriname and French Guiana ), and synoptic scale changes also affect its...northern Andes and adjacent highlands from 7˚ N to 7˚ S. In addition, powerful mesoscale convective complexes (MCCs) traversing Northern Argentina...develop 1 forecasting tools for fog and low-cloud base events in the Columbian Highlands and Western Amazon Basin, to develop forecasting guidance to

  15. Quantifying the change in equilibrium-line altitude during the Last Glacial Maximum in the Subtropical Andes using a mass-balance model

    NASA Astrophysics Data System (ADS)

    Vargo, L.; Galewsky, J.

    2014-12-01

    Quantifying changes in equilibrium-line altitude (ELA) can be used to better understand past regional climates. We use a glacial mass-balance model in conjunction with global climate model (GCM) output data to calculate the change in ELA between modern and Last Glacial Maximum (LGM; 21 ka) climates in the presently hyper-arid subtropical Andes. The region is currently unglaciated, despite cold enough temperatures, as there is too little moisture to sustain glaciers. Previous studies suggest this area was glaciated during the LGM, however, little is known about the extent of the glaciation or the climate required to sustain it. The mass-balance model used in this study calculates the change in ELA using the positive degree-day (PDD) sum, the sum of daily mean air temperatures that are above zero. The PDD sum is used to calculate ablation, which is then assumed to be proportional to temperature, in order to calculate the change in ELA. Using output from several GCM simulations, we compare the change in ELA between LGM and modern climates across the different models for the subtropical Andes. These simulations suggest that the changes in climate resulted in a lowering of ELAs to the extent that parts of the subtropical Andes were glaciated during the LGM.

  16. Uplift sequence of the Andes at 30°S: Insights from sedimentology and U/Pb dating of synorogenic deposits

    NASA Astrophysics Data System (ADS)

    Suriano, J.; Mardonez, D.; Mahoney, J. B.; Mescua, J. F.; Giambiagi, L. B.; Kimbrough, D.; Lossada, A.

    2017-04-01

    The South Central Andes at 30°S represent a key area to understand the Andes geodynamics as it is in the middle of the flat slab segment and all the morphotectonic units of the Central Andes are well developed. This work is focused in the proximal synorogenic deposits of the Western Precordillera, in the La Tranca valley, in order to unravel the uplift sequence of this belt. Nine facies associations were recognized; most of them represent piedmont facies with local provenance from Precordillera and were deposited in the wedge-top depozone, as is expected for proximal sinorogenic deposits. However there are intercalations of transference fluvial systems, which show mixed provenance indicating that Permo-Triassic igneous rocks were already exposed to the west (Frontal Cordillera). There are also lacustrine deposits which are interpreted as the result of damming by fault activity at east of the studied basin. Finally, two maximum depositional ages at ca. 11 Ma and 8 Ma of these deposits indicate that the onset of uplift of the Precordillera at 30°S is little older than 11 Ma. These data change two previous ideas about the evolution of the Precordillera: its uplift at 30° S is younger than proposed by previous works and it is nearly synchronous along strike.

  17. Elevation-dependent changes in n-alkane δD and soil GDGTs across the South Central Andes

    NASA Astrophysics Data System (ADS)

    Nieto-Moreno, Vanesa; Rohrmann, Alexander; van der Meer, Marcel T. J.; Sinninghe Damsté, Jaap S.; Sachse, Dirk; Tofelde, Stefanie; Niedermeyer, Eva M.; Strecker, Manfred R.; Mulch, Andreas

    2016-11-01

    Surface uplift of large plateaus may significantly influence regional climate and more specifically precipitation patterns and temperature, sometimes complicating paleoaltimetry interpretations. Thus, understanding the topographic evolution of tectonically active mountain belts benefits from continued development of reliable proxies to reduce uncertainties in paleoaltimetry reconstructions. Lipid biomarker-based proxies provide a novel approach to stable isotope paleoaltimetry and complement authigenic or pedogenic mineral proxy materials, in particular outside semi-arid climate zones where soil carbonates are not abundant but (soil) organic matter has a high preservation potential. Here we present δD values of soil-derived n-alkanes and mean annual air temperature (MAT) estimates based on branched glycerol dialkyl glycerol tetraether (brGDGT) distributions to assess their potential for paleoelevation reconstructions in the southern central Andes. We analyzed soil samples across two environmental and hydrological gradients that include a hillslope (26-28°S) and a valley (22-24°S) transect on the windward flanks of Central Andean Eastern Cordillera in NW Argentina. Our results show that present-day n-alkane δD values and brGDGT-based MAT estimates are both linearly related with elevation and in good agreement with present-day climate conditions. Soil n-alkanes show a δD lapse rate (Δ (δD)) of - 1.64 ‰ / 100 m (R2 = 0.91, p < 0.01) at the hillslope transect, within the range of δD lapse rates from precipitation and surface waters in other tropical regions in the Andes like the Eastern Cordillera in Colombia and Bolivia and the Equatorial and Peruvian Andes. BrGDGT-derived soil temperatures are similar to monitored winter temperatures in the region and show a lapse rate of ΔT = - 0.51 °C / 100 m (R2 = 0.91, p < 0.01), comparable with lapse rates from in situ soil temperature measurements, satellite-derived land-surface temperatures at this transect, and

  18. River runoff and regional climate of a small glaciated catchment area in the Andes in southernmost Patagonia, Chile

    NASA Astrophysics Data System (ADS)

    Schneider, C.; Moritz, M.; Kilian, R.

    2003-04-01

    The river runoff from a small partly glaciated catchment area in southernmost Patagonian Andes in Chile is measured to analyse the influence of regional precipitation and climate dependent glacier ablation on runoff. The first data from March to September 2002 were compared to climate data recorded at an automatic weather station in the area. The poster presents the first detailed hydrometeorological investigation from this part of the Andes. The investigation area is located at 53°S in southernmost South America exactly east of the main divide of the mountain range of the Andes at 72.5°W. The catchment area of about 15 km2 comprises parts of the Gran Campo Nevado Ice Cap reaching up to 1500 m asl, and the outlet glacier Glaciar Lengua which ends at a proglacial lake at 100 m asl. The Gran Campo Nevado Ice Cap is the major ice mass between the Southern Patagonian Ice field in the north and the Strait of Magallan to the South. Climate in the area is characterised by whole-year round cool and super-humid conditions with a mean annual air temperature of 5,6°C at sea level and an annual precipitation sum of approximately 7,000 mm. The Río Lengua itself meets approximately 3.5 km downstreams from the proglacial lake into the fjord system of Canal Garjado which is a branch of Seno Skyring. A continuous hourly record of water levels in the river was obtained from two digital water depth sensors. Runoff was calibrated against river level by measuring runoff at different times with the tracer method of salt dilution and with velocity measurements employing a hydrometric vane. Mean runoff was computed to about 3 m3/s with peak flows exceeding 10 m3/s. Ablation on the glacier was estimated using the degree-day method with a degree-day factor that has been calibrated previously using data from a temporal energy balance weather station on Glacíar Lengua. The correlation between runoff and air temperature and precipitation returned significant correlation coefficients of rt

  19. A glassy lava flow from Toconce volcano and its relation with the Altiplano-Puna Magma Body in Central Andes

    NASA Astrophysics Data System (ADS)

    Godoy, B.; Rodriguez, I.; Aguilera, F.

    2012-12-01

    Toconce is a composite stratovolcano located at the San Pedro - Linzor volcanic chain (SPLVC). This volcanic chain distributes within the Altiplano-Puna region (Central Andes) which is characterized by extensive rhyodacitic-to-rhyolitic ignimbritic fields, and voluminous domes of dacitic-to-rhyolitic composition (de Silva, 1989). The felsic melts that gave origin to ignimbrites and domes at this area were generated by mixing of mantle-derived magmas and anatectic melts assimilated during their ascent through the thick crust. Thus, partially molten layers exist in the upper crust below the APVC (de Silva et al., 2006). Evidence of large volumes of such melts has been also proposed by geophysical methods (i.e. the Altiplano-Puna Magma Body; Chmielowsky et al., 1999) In this work, petrography and whole rock, mineralogical and melt inclusions geochemistry of a glassy lava flow of Toconce volcano are presented. Petrographically, this lava flow shows a porphyric texture, with euhdral to subhedral plagioclase, ortho- and clino-pyroxene phenocrysts immersed in a glassy groundmass. Geochemically, the lava flow has 64.7% wt. SiO2. The glassy groundmass (~70% wt. SiO2) is more felsic than all the lavas in the volcanic chain (47-68% wt., Godoy et al., 2011). Analyzed orthopyroxene-hosted melt inclusions show an even higher SiO2 content (72-75% wt.), and a decreasing on Al2O3, Na2O, and CaO content with differentiation. Crystallization pressures of this lava flow, obtained using Putirka's two-pyroxene and clinopyroxene-liquid models (Putirka, 2008), range between 6 and 9 kbar. According to crystallization pressures, and major element composition, a felsic source located at shallow crustal pressures - where plagioclase is a stable mineralogical phase - originated the inclusions. This could be related to the presence of the Altiplano-Puna Magma Body (APMB) located below SPLVC. On the other hand, glassy groundmass, and disequilibrium textures in minerals of this lava flow could

  20. The ash deposits of the 4200 BP Cerro Blanco eruption: the largest Holocene eruption of the Central Andes

    NASA Astrophysics Data System (ADS)

    Fernandez-Turiel, Jose-Luis; Saavedra, Julio; Perez-Torrado, Francisco-Jose; Rodriguez-Gonzalez, Alejandro; Carracedo, Juan-Carlos; Lobo, Agustin; Rejas, Marta; Gallardo, Juan-Fernando; Osterrieth, Margarita; Carrizo, Julieta; Esteban, Graciela; Martinez, Luis-Dante; Gil, Raul-Andres; Ratto, Norma; Baez, Walter

    2015-04-01

    We present new data about a major eruption -spreading approx. 110 km3 ashes over 440.000 km2- long thought to have occurred around 4200 years ago in the Cerro Blanco Volcanic Complex (CBVC) in the Central Andes of NW Argentina (Southern Puna, 26°45' S, 67°45' W). This eruption may be the biggest during the past five millennia in the Central Volcanic Zone of the Andes, and possibly one of the largest Holocene eruptions in the world. Discrimination and correlation of pyroclastic deposits of this eruption of Cerro Blanco was conducted comparing samples of proximal (domes, pyroclastic flow and fall deposits) with distal ash fall deposits (up to 400 km from de vent). They have been characterized using optical and electron microscopy (SEM), X-ray diffraction, particle-size distribution by laser diffraction and electron microprobe and HR-ICP-MS with laser ablation for major and trace element composition of glass, feldspars and biotite. New and published 14C ages were calibrated using Bayesian statistics. An one-at-a-time inversion method was used to reconstruct the eruption conditions using the Tephra2 code (Bonadonna et al. 2010, https://vhub.org/resources/tephra2). This method allowed setting the main features of the eruption that explains the field observations in terms of thickness and grain size distributions of the ash fall deposit. The main arguments that justify the correlation are four: 1) Compositional coincidence for glass, feldspars, and biotite in proximal and distal materials; 2) Stratigraphic and geomorphological relationships, including structure and thickness variation of the distal deposits; 3) Geochronological consistency, matching proximal and distal ages; and 4) Geographical distribution of correlated outcrops in relation to the eruption centre at the coordinates of Cerro Blanco. With a magnitude of 7.0 and a volcanic explosivity index or VEI 7, this eruption of ~4200 BP at Cerro Blanco is the largest in the last five millennia known in the Central

  1. High-Resolution ∂18O record of middle-late Holocene hydrologic variability from the central Peruvian Andes (Invited)

    NASA Astrophysics Data System (ADS)

    Rodbell, D. T.; Abbott, M.; Bird, B. W.; Stansell, N.

    2009-12-01

    Laguna Yuraicocha in the western cordillera of the central Peruvian Andes (12.53°S; 75.50°W; 4460 masl) is dammed by late glacial moraines and is underlain and surrounded by Jurassic and Cretaceous limestone interbedded with siliciclastic rocks. A 6.9 meter-long sediment core from the distal end of the lake is dominated by authigenic calcite (marl) with a mean concentration of 82 weight percent that has accumulated at a rate of ~ 1 mm yr-1 for the past 6200 years. The age model for the core is based on a combination of 210Pb and AMS 14C ages from charcoal; modern lake water is ~1‰ evaporatively enriched from mean regional precipitation. Marl samples were taken with an average sampling interval of 8 years; samples were treated to remove organic matter, sieved to concentrate the <75 µm fraction, and the clay fraction was removed by repeated pipette withdrawal. The <75 µm fraction contains abundant euhedral grains of calcite that are not abraded or corroded, thus reflecting their authigenic origin in Laguna Yuraicocha. The 18O and 13C stratigraphy reveals decadal, century, and millennial-scale variability that is comparable to isotope records from other carbonate lakes and ice cores in the region. The 18O and 13C records generally covary with similar amplitudes; δ13C ranges from -0.5 to 3.5 ‰ (PDB). A pronounced linear trend of δ18O depletion (from -10.5 to -14.5 ‰) spans the length of record and likely reflects a progressive increase in hydrologic balance (i.e., the ratio of precipitation/evaporation) through the middle and late Holocene. This interpretation is consistent with basal core sediment that records pronounced lake low stands, and possible periodic dessication in the early-middle Holocene. The last 1200 yr of record reveals a 2‰ depletion culminating with the most depleted isotopes on record ~ AD 1800 followed by an abrupt 1.5 ‰ enrichment that began ~AD 1900 and continues to the present. These trends match closely the 18O record from the

  2. Taxquake in Los Angeles

    ERIC Educational Resources Information Center

    Koltai, Leslie

    1978-01-01

    Outlines educational, personnel, legal, and political considerations facing the Los Angeles Community College District contingency planning committee in their efforts to develop plans to meet budgetary limitations foreseen in the passage of the Jarvis-Gann property tax limitation initiative. (TP)

  3. The Los Alamos primer

    SciTech Connect

    Serber, R.

    1992-01-01

    This book contains the 1943 lecture notes of Robert Serber. Serber was a protege of J. Robert Oppenheimer and member of the team that built the first atomic bomb - reveal what the Los Alamos scientists knew, and did not know, about the terrifying weapon they were building.

  4. Climate Variability and Surface Processes in Tectonically Active Orogens: Insights From the Southern Central Andes and the Northwest Himalaya

    NASA Astrophysics Data System (ADS)

    Strecker, M. R.; Bookhagen, B.

    2008-12-01

    The Southern Central Andes of NW Argentina and the NW Himalaya are important orographic barriers that intercept moisture-bearing winds associated with monsoonal circulation. Changes in both atmospheric circulation systems on decadal to millennial timescales fundamentally influence differences in the amount and location of rainfall in both orogens. In India, the eastern arm of the monsoonal circulation draws moisture from the Bay of Bengal and transports humid air masses along the southern Himalayan front to the northwest. There, at the end of the monsoonal conveyer belt, rainfall is diminished and moisture typically does not reach far into the orogen interior. Similar conditions apply to the NW Argentine Andes, which are located within the precipitation regime of the South American Monsoon. Here, pronounced local relief blocks humid air masses from the Amazon region, resulting in extreme gradients in rainfall that leave the orogen interior dry. However, during negative ENSO years (La Niña) and intensified Indian Summer Monsoon years, moisture penetrates farther into the Andean and Himalayan orogens, respectively. Structurally pre- conditioned valley systems may enhance this process and funnel moisture far into the orogen interior. The greater availability of moisture increases runoff, lateral scouring of mountin streams, and ultimately triggers intensified hillslope processes on decadal to centennial timescales. In both environments, the scenario of intensified present-day surface processes and rates is analogous to protracted episodes of enhanced mass removal from hillslopes via deep-seated landslides during the early Holocene and late Pleistocene. Apparently, these episodes were also associated with transient storage of voluminous conglomerates and lacustrine deposits in narrow intermontane basins. Subsequently, these deposits were incised, partly removed, and the fluvial systems adjusted themselves to the pre-depositional base levels through a readjustment and

  5. Miocene development of alpine glacial relief in the Patagonian Andes, as revealed by low-temperature thermochronometry

    NASA Astrophysics Data System (ADS)

    Christeleit, Elizabeth C.; Brandon, Mark T.; Shuster, David L.

    2017-02-01

    Apatite thermochronometry and synthetic maps of ages and rates for thermochronometric data are used to estimate the timing of incision of valley relief in the Andes. Central Patagonia offers a unique location to study the feedbacks between long-term climate, topography, and erosion due to the high relief and well-resolved mid-latitude glacial history. New apatite (U-Th)/He ages from two vertical transects and two 4He/3He release spectra in the fjord network around 47°S reveal fast cooling (15-30 °C/Ma) from ∼10 to 5 Ma. Samples currently at the surface cooled below ∼35 °C by ∼5 Ma, indicating slow cooling and little erosion in those regions since 5 Ma. We show that these very low-temperature thermochronometric data are useful indicators of changes in topography, and insensitive to deep thermal processes, such as migration of the Chile triple junction. Map-based predictions of the thermochronometric signatures of disparate topographic scenarios show the distribution of sample data necessary to resolve the timing of relief change. Comparisons to predicted cooling ages and rates indicate that our new apatite He data are most consistent with a pulse of early glacial incision, with much of the observed valley relief in Patagonia carved between 10 and 5 Ma. Early onset of glaciation in Patagonia is supported by glacial till with bracketing ages of 7.4 and 5 Ma. We therefore conclude that the observed thermochronometric signal of fast cooling from 10 to 5 Ma is likely due to an increase in valley relief coinciding with these early glaciations in the Andes. In other glaciated areas at lower latitudes, studies have found a dramatic increase in valley relief at ∼1 Ma. This timing has generated the idea that incision of glacial valleys may be related to the mid-Pleistocene transition, when the global glacial cycle changed from 40 to 100 ka periods. Our results from a higher latitude indicate an alternative, that glacial valleys incised rapidly after the onset of

  6. Losing fat, gaining treatments: the use of biomedicine as a cure for folk illnesses in the Andes

    PubMed Central

    2014-01-01

    Background This article explores how people in the Andes incorporate beliefs from both biomedical and ethnomedical systems in treating folk illnesses that often involve spiritual beings. The article focuses on the kharisiri—one who is believed to steal fat and blood from unsuspecting humans to make exchanges with the devil. The kharisiri in turn is rewarded with good fortune. Victims of kharisiris, however, fall ill and may die if untreated. Historically, kharisiri victims relied on ethnomedicine for treatment, but it appears biomedical pills are now perceived by some as an effective treatment. By drawing on participants’ attitudes towards biomedicine, and how people in the Andes conceptualize health, this article theorizes as to why biomedical pills are sought to treat kharisiri attacks but not for other folk illnesses. Methods Fieldwork was conducted in Arequipa and Yunguyo among market vendors, who make up a significant portion of Peru’s working population. This type of work increases the risk of different illnesses due to work conditions like exposure to extreme temperatures, long-distance travel, and social dynamics. Biomedical and ethnomedical products are often sold in and around marketplaces, making vendors a compelling group for exploring issues relating to treatment systems. Qualitative data was collected in 2011 with a follow-up visit in 2013. Participant observation, informal conversations, and unstructured interviews with 29 participants informed the study. Results Participants unanimously reported that biomedical pills are not capable of treating folk illnesses such as susto and mal de ojo. Several participants reported that pharmaceutical pills can cure kharisiri victims. Conclusions In comparison to other folk illnesses that involve spiritual beings, those who fall ill from a kharisiri attack lose physical elements (fat and blood) rather than their soul (ánimo) or becoming ill due to a misbalance in reciprocal relations—either with humans

  7. Changing Precipitation Patterns or Waning Glaciers? Identifying Water Supply Vulnerabilities to Climate Change in the Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Guido, Z. S.; McIntosh, J. C.; Papuga, S. A.

    2010-12-01

    The Bolivian Andes have become an iconic example for the impacts of climate change. Glaciers are rapidly melting and some have already completely disappeared. More than 75 percent of the water consumed by 2 million people living on the flanks of the Bolivian Andes comes from mountains and it is often cited that the dwindling ice threatens the water supply of the expanding and destitute population living in the twin cities of La Paz and El Alto. However, the wet and the warm seasons and the cold and dry seasons coincide, causing high precipitation and ice melt—and therefore high streamflows—to occur only in the austral summer (October-March); during the austral winter, cold conditions limit glacier melt. This suggests that reductions in the water supply could be influenced more by changing precipitation amounts than continued glacial mass-wasting. We hypothesize that precipitation is the principal component of groundwater recharge for the aquifers at the base of the central Cordillera Real. Oxygen and hydrogen isotopes from rivers partially fed by glaciers, groundwater, and glacial melt water can help determine the relative contribution of precipitation and glacial melt to important water supplies. During the dry season in August 2010, we sampled 23 sites that follow the flow path of water in the Condiriri watershed, beginning in the glacial headwaters and ending several kilometers upriver from Lake Titicaca. We collected five samples at the toe of the Pequeño Alpamayo glacier and four samples from three tributary rivers that drain glaciated headwaters, which include meltwater from the Pequeño Alpamayo glacier. W also collected 14 water samples from shallow and deep wells in rural communities within 40 kilometers of the glaciers. If the isotopic values of groundwater are similar to rain values, as we suspect, precipitation is likely the largest contributor to groundwater resources in the region and will suggest that changing precipitation patterns present the

  8. Compositional variations of ignimbrite magmas in the Central Andes over the past 26 Ma - A multivariate statistical perspective

    NASA Astrophysics Data System (ADS)

    Brandmeier, M.; Wörner, G.

    2016-10-01

    Multivariate statistical and geospatial analyses based on a compilation of 890 geochemical and 1200 geochronological data for 194 mapped ignimbrites from the Central Andes document the compositional and temporal patterns of large-volume ignimbrites (so-called "ignimbrite flare-ups") during Neogene times. Rapid advances in computational science during the past decade led to a growing pool of algorithms for multivariate statistics for large datasets with many predictor variables. This study applies cluster analysis (CA) and linear discriminant analysis (LDA) on log-ratio transformed data with the aim of (1) testing a tool for ignimbrite correlation and (2) distinguishing compositional groups that reflect different processes and sources of ignimbrite magmatism during the geodynamic evolution of the Central Andes. CA on major and trace elements allows grouping of ignimbrites according to their geochemical characteristics into rhyolitic and dacitic "end-members" and to differentiate characteristic trace element signatures with respect to Eu anomaly, depletions in middle and heavy rare earth elements (REE) and variable enrichments in light REE. To highlight these distinct compositional signatures, we applied LDA to selected ignimbrites for which comprehensive datasets were available. In comparison to traditional geochemical parameters we found that the advantage of multivariate statistics is their capability of dealing with large datasets and many variables (elements) and to take advantage of this n-dimensional space to detect subtle compositional differences contained in the data. The most important predictors for discriminating ignimbrites are La, Yb, Eu, Al2O3, K2O, P2O5, MgO, FeOt, and TiO2. However, other REE such as Gd, Pr, Tm, Sm, Dy and Er also contribute to the discrimination functions. Significant compositional differences were found between (1) the older (> 13 Ma) large-volume plateau-forming ignimbrites in northernmost Chile and southern Peru and (2) the

  9. Severe deep convection events in the Andes region (Mendoza, Argentina) and their relation with large amplitude mountain waves

    NASA Astrophysics Data System (ADS)

    de la Torre, Alejandro; Hierro, Lic. R.; Llamedo, Lic. P.; Rolla, Lic. A.; Alexander, Peter

    In addition to an environmental lapse rate conditionally unstable and sufficient available mois-ture, some process by which a parcel is lifted to its LFC is required for the occurrence of deep convection. Since rising motions associated with synoptic scale processes are too weak to lift a moist parcel to its LFC, some strong sub-synoptic mechanism such us upward motion over a frontal zone, anabatic/katabatic winds or mountain waves are required to supply the necessary energy to trigger deep convection. We analyze here, two selected recent severe storms developed in the absence of fronts and registered at the south of Mendoza, Argentina, a semiarid region situated at midlatitudes (roughly between 32S and 36S) at the east of the highest Andes tops. The storms were initiated at the same local time. In both cases, large amplitude stationary mountain waves with similar wavelengths were generated through the forcing of the NW wind by the Andes Range, just before the first cell was detected in the S-band radar. Mesoscale model simulatons (WRF3V, three domains, inner at 4 km) were conducted. The wave pat-tern was analyzed at several constant pressure levels with a Morlet wavelet. This wavelet has proven to be a useful technique for this purpose, as propagating mountain waves are well local-ized within a horizontal domain of some hundred kilometers. The simulated evolution in space and time of vertical wind oscillations (even better than reflectivity) reveal their influence in the genesis zone of both storms. The synoptic conditions observed (low-pressure system over the NW of Argentina, slow displacement of anticyclones in Pacific and Atlantic oceans, a low level jet carrying warm and moist air from the N and geopotential distribution at 1000, 500 and 300 hPa) are consistent with earlier works. We describe and discuss, in both cases, i) the vertical and horizontal wavelengths, ii) the direction of propagation of the main wave modes, iii) their lineal polarization and phase

  10. Controls on the isotopic composition of surface water and precipitation in the Northern Andes, Colombian Eastern Cordillera

    NASA Astrophysics Data System (ADS)

    Saylor, Joel E.; Mora, Andrés; Horton, Brian K.; Nie, Junsheng

    2009-12-01

    Empirical datasets provide the constraints on the variability and causes of variability in stable isotope compositions (δD or δ 18O) of surface water and precipitation that are essential not only for models of modern and past climate but also for investigations of paleoelevation. This study presents stable isotope data for 76 samples from four elevation transects and three IAEA GNIP stations in the Eastern Cordillera of Colombia and the northern Andean foreland. These data are largely consistent with theories of stable isotope variability developed based on a global dataset. On a monthly basis, the precipitation-amount effect exerts the dominant control on δD p and δ 18O p values at the IAEA GNIP stations. At the Bogotá station (2547 m), the δD p and δ 18O p values vary seasonally, with isotopic minima correlating with maxima in precipitation-amount. Although surface water samples from Eastern Cordilleran streams and rivers fall on the Global Meteoric Water Line, samples from three of four lakes (2842-3459 m) have evaporatively elevated δD sw and δ 18O sw values. The IAEA GNIP station data averaged over multiple years, combined with stream and river water data, define vertical lapse rates of -1.8‰ km -1 for Δδ 18O and -14.6‰ km -1 for ΔδD, and are a close fit to a common thermodynamically based Rayleigh distillation model. Elevation uncertainties for these relationships are also evaluated. Comparison of this Colombian dataset with the elevation uncertainties generated by the thermodynamically based model shows that the model underestimates uncertainty at high Δδ 18O and ΔδD values while overestimating it for low Δδ 18O and ΔδD values. This study presents an independent, empirical assessment of stable isotope-based elevation uncertainties for the northern Andes based on a dataset of sufficient size to ensure statistical integrity. These vertical lapse rates and associated uncertainties form the basis for stable isotope paleoelevation studies

  11. Paleoecological potential of mid-altitude peat deposits in the Tropical Andes: evidence from subfossil wood and palynology

    NASA Astrophysics Data System (ADS)

    Gonzalez Arango, Catalina; Andres Ayala Usma, David; Boom, Arnoud; Archila, Sonia; Montes, Camilo

    2016-04-01

    The understanding of past climatic and ecological phenomena at mid-altitudes in the tropical Andes is limited by the lack of ancient lakes and other well preserved paleoclimatological archives. During the opening of a main road a decade ago in the Central Cordillera of Colombia, some buried peat deposits became exposed within the Pereira Volcanodetritic Fan (~2000 m.a.s.l), revealing a rich resource of organic remains, including big fragments of subfossil trees and micro and macro plant remains ideal for multiproxy analysis. Radiocarbon dating and palynological analysis suggest that the deposit dates back to the last glacial period. We present the first δ13C results of a subfossil wood sample with visible tree rings, that was identified as a member of the genus Chrysochlamys (Clusiaceae) and that revealed a periodic signal that might be attributed to climatic variability. A clear seasonal pattern arises suggesting a different climatic configuration, most likely related to a broader migrational range of the ITCZ related to higher eccentricity. Pollen analysis reveals the prevalence of montane Andean forests and Paramo elements (today ca. 1200 meters higher) indicating much colder climates than today. These first findings indicate that mid-altitude Andean peats are highly sensitive to climatic variability and provide an excellent opportunity to study ancient environmental phenomena at extremely high resolution.

  12. Climate Warming and Soil Carbon in Tropical Forests: Insights from an Elevation Gradient in the Peruvian Andes

    PubMed Central

    Nottingham, Andrew T.; Whitaker, Jeanette; Turner, Benjamin L.; Salinas, Norma; Zimmermann, Michael; Malhi, Yadvinder; Meir, Patrick

    2015-01-01

    The temperature sensitivity of soil organic matter (SOM) decomposition in tropical forests will influence future climate. Studies of a 3.5-kilometer elevation gradient in the Peruvian Andes, including short-term translocation experiments and the examination of the long-term adaptation of biota to local thermal and edaphic conditions, have revealed several factors that may regulate this sensitivity. Collectively this work suggests that, in the absence of a moisture constraint, the temperature sensitivity of decomposition is regulated by the chemical composition of plant debris (litter) and both the physical and chemical composition of preexisting SOM: higher temperature sensitivities are found in litter or SOM that is more chemically complex and in SOM that is less occluded within aggregates. In addition, the temperature sensitivity of SOM in tropical montane forests may be larger than previously recognized because of the presence of “cold-adapted” and nitrogen-limited microbial decomposers and the possible future alterations in plant and microbial communities associated with warming. Studies along elevation transects, such as those reviewed here, can reveal factors that will regulate the temperature sensitivity of SOM. They can also complement and guide in situ soil-warming experiments, which will be needed to understand how this vulnerability to temperature may be mediated by altered plant productivity under future climatic change. PMID:26955086

  13. Fissural volcanism, polygenetic volcanic fields, and crustal thickness in the Payen Volcanic Complex on the central Andes foreland (Mendoza, Argentina)

    NASA Astrophysics Data System (ADS)

    Mazzarini, F.; Fornaciai, A.; Bistacchi, A.; Pasquarè, F. A.

    2008-09-01

    Shield volcanoes, caldera-bearing stratovolcanoes, and monogenetic cones compose the large fissural Payen Volcanic Complex, located in the Andes foreland between latitude 35°S and 38°S. The late Pliocene-Pleistocene and recent volcanic activity along E-W trending eruptive fissures produced basaltic lavas showing a within-plate geochemical signature. The spatial distribution of fractures and monogenetic vents is characterized by self-similar clustering with well defined power law distributions. Vents have average spacing of 1.27 km and fractal exponent D = 1.33 defined in the range 0.7-49.3 km. The fractal exponent of fractures is 1.62 in the range 1.5-48.1 km. The upper cutoffs of fractures and vent fractal distributions (about 48-49 km) scale to the crustal thickness in the area, as derived from geophysical data. This analysis determines fractured media (crust) thickness associated with basaltic retroarc eruptions. We propose that the Payen Volcanic Complex was and is still active under an E-W crustal shortening regime.

  14. Climate Warming and Soil Carbon in Tropical Forests: Insights from an Elevation Gradient in the Peruvian Andes.

    PubMed

    Nottingham, Andrew T; Whitaker, Jeanette; Turner, Benjamin L; Salinas, Norma; Zimmermann, Michael; Malhi, Yadvinder; Meir, Patrick

    2015-09-01

    The temperature sensitivity of soil organic matter (SOM) decomposition in tropical forests will influence future climate. Studies of a 3.5-kilometer elevation gradient in the Peruvian Andes, including short-term translocation experiments and the examination of the long-term adaptation of biota to local thermal and edaphic conditions, have revealed several factors that may regulate this sensitivity. Collectively this work suggests that, in the absence of a moisture constraint, the temperature sensitivity of decomposition is regulated by the chemical composition of plant debris (litter) and both the physical and chemical composition of preexisting SOM: higher temperature sensitivities are found in litter or SOM that is more chemically complex and in SOM that is less occluded within aggregates. In addition, the temperature sensitivity of SOM in tropical montane forests may be larger than previously recognized because of the presence of "cold-adapted" and nitrogen-limited microbial decomposers and the possible future alterations in plant and microbial communities associated with warming. Studies along elevation transects, such as those reviewed here, can reveal factors that will regulate the temperature sensitivity of SOM. They can also complement and guide in situ soil-warming experiments, which will be needed to understand how this vulnerability to temperature may be mediated by altered plant productivity under future climatic change.

  15. A comparison of the morphology of instability features seen at the Andes Lidar Observatory with those observed over Maui

    NASA Astrophysics Data System (ADS)

    Hecht, J. H.; Walterscheid, R. L.; Gelinas, L. J.; Franke, S. J.; Swenson, G. R.; Liu, A. Z.; Taylor, M. J.; Pautet, P.

    2011-12-01

    The Aerospace near-IR (ANI) camera images at night OH emission (near 1.6 microns) every 2 seconds over an approximate 73 degree field of view. Data from ANI have previously been used to investigate the properties of small-scale instability features in the upper mesosphere/lower thermosphere over Mt Haleakala in Maui. These features are thought to be mostly due to the presence of large wind-shears (producing a Kelvin-Helmholtz instability) or super adiabatic lapse rates (producing a Rayleigh-Taylor instability). In late 2009 the camera was moved to the new Andes Lidar Observatory at Cerro Pachon, Chile where it is co-located with a number of other instruments including a Meteor Radar. The initial data have revealed a significant difference in the lifecycle of the instability features between those observed over an essentially open ocean site in Maui and those observed over a mountainous region of Chile. In particular the instability features decay much more rapidly over Chile than over Maui. A survey of the results obtained to date will be presented including the background wind characteristics for selected events.

  16. Soluble iron inputs to the Southern Ocean through recent andesitic to rhyolitic volcanic ash eruptions from the Patagonian Andes

    NASA Astrophysics Data System (ADS)

    Simonella, L. E.; Palomeque, M. E.; Croot, P. L.; Stein, A.; Kupczewski, M.; Rosales, A.; Montes, M. L.; Colombo, F.; García, M. G.; Villarosa, G.; Gaiero, D. M.

    2015-08-01

    Patagonia, due to its geographic position and the dominance of westerly winds, is a key area that contributes to the supply of nutrients to the Southern Ocean, both through mineral dust and through the periodic deposits of volcanic ash. Here we evaluate the characteristics of Fe dissolved (into soluble and colloidal species) from volcanic ash for three recent southern Andes volcanic eruptions having contrasting features and chemical compositions. Contact between cloud waters (wet deposition) and end-members of andesitic (Hudson volcano) and rhyolitic (Chaitén volcano) materials was simulated. Results indicate higher Fe release and faster liberation rates in the andesitic material. Fe release during particle-seawater interaction (dry deposition) has higher rates in rhyolitic-type ashes. Rhyolitic ashes under acidic conditions release Fe in higher amounts and at a slower rate, while in those samples containing mostly glass shards, Fe release was lower and faster. The 2011 Puyehue eruption was observed by a dust monitoring station. Puyehue-type eruptions can contribute soluble Fe to the ocean via dry or wet deposition, nearly reaching the limit required for phytoplankton growth. In contrast, the input of Fe after processing by an acidic eruption plume could raise the amount of dissolved Fe in surface ocean waters several times, above the threshold required to initiate phytoplankton blooms. A single eruption like the Puyehue one represents more than half of the yearly Fe flux contributed by dust.

  17. A survey of genetic diversity and reproductive biology of Puya raimondii (Bromeliaceae), the endangered queen of the Andes.

    PubMed

    Sgorbati, S; Labra, M; Grugni, E; Barcaccia, G; Galasso, G; Boni, U; Mucciarelli, M; Citterio, S; Benavides Iramátegui, A; Venero Gonzales, L; Scannerini, S

    2004-01-01

    Puya raimondii Harms is an outstanding giant rosette bromeliad found solely around 4000 m above sea level in the Andes. It flowers at the end of an 80 - 100-year or even longer life cycle and yields an enormous (4 - 6 m tall) spike composed of from 15,000 to 20,000 flowers. It is endemic and currently endangered, with populations distributed from Peru to the north of Bolivia. A genomic DNA marker-based analysis of the genetic structure of eight populations representative of the whole distribution of P. raimondii in Peru is reported in this paper. As few as 14 genotypes out of 160 plants were detected. Only 5 and 18 of the 217 AFLP marker loci screened were polymorphic within and among these populations, respectively. Four populations were completely monomorphic, each of the others displayed only one to three polymorphic loci. Less than 4 % of the total genomic variation was within populations and genetic similarity among populations was as high as 98.3 %. Results for seven cpSSR marker loci were in agreement with the existence of a single progenitor. Flow cytometry of seed nuclear DNA content and RAPD marker segregation analysis of progeny plantlets demonstrated that the extremely uniform genome of P. raimondii populations is not compatible with agamospermy (apomixis), but consistent with an inbreeding reproductive strategy. There is an urgent need for a protection programme to save not only this precious, isolated species, but also the unique ecosystem depending on it.

  18. Genetic Variations in the TP53 Pathway in Native Americans Strongly Suggest Adaptation to the High Altitudes of the Andes

    PubMed Central

    Peréz, Orlando; de Azevedo, Soledad; Macedo, Gabriel Souza; Sandoval, José Raul; Salazar-Granara, Alberto; Villena, Mercedes; Dugoujon, Jean-Michel; Bisso-Machado, Rafael; Petzl-Erler, Maria Luiza; Salzano, Francisco Mauro; Ashton-Prolla, Patricia; Ramallo, Virginia; Bortolini, Maria Cátira

    2015-01-01

    The diversity of the five single nucleotide polymorphisms located in genes of the TP53 pathway (TP53, rs1042522; MDM2, rs2279744; MDM4, rs1563828; USP7, rs1529916; and LIF, rs929271) were studied in a total of 282 individuals belonging to Quechua, Aymara, Chivay, Cabanaconde, Yanke, Taquile, Amantani, Anapia, Uros, Guarani Ñandeva, and Guarani Kaiowá populations, characterized as Native American or as having a high level (> 90%) of Native American ancestry. In addition, published data pertaining to 100 persons from five other Native American populations (Surui, Karitiana, Maya, Pima, and Piapoco) were analyzed. The populations were classified as living in high altitude (≥ 2,500 m) or in lowlands (< 2,500 m). Our analyses revealed that alleles USP7-G, LIF-T, and MDM2-T showed significant evidence that they were selected for in relation to harsh environmental variables related to high altitudes. Our results show for the first time that alleles of classical TP53 network genes have been evolutionary co-opted for the successful human colonization of the Andes. PMID:26382048

  19. Intra- and inter-community variation in leaf water repellency along a 4000 m elevation transect in the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Goldsmith, G. R.; Doughty, C.; Bentley, L. P.; Shenkin, A.; Castro-Ccoscco, R. M.; Salinas, N.; Malhi, Y.

    2014-12-01

    Leaf water repellency is a measure of the hydrophobicity, or wettability, of leaf surfaces. At the scale of the plant, leaf water repellency can affect gas exchange, nutrient exchange, and pathogen growth. At the scale of the ecosystem, it can affect canopy water storage, throughfall, and evaporation. To date, very few studies have measured intra- and inter- community variation in leaf water repellency of tropical forest ecosystems. In the context of a broad survey of plant functional traits, we measured leaf water repellency in nine forest plots occurring across a 4000 m elevation gradient in the eastern Andes of Peru. Observed angles of incidence (63 ± 13°) indicate high leaf wettability, with no significant difference between sun and shade leaves. In contrast with previous research along elevation gradients, we find no strong evidence for variation across sites, but rather find high variation within a given site. Finally, we find that leaf water repellency may be predicted using sunlit leaf spectra with a low RMSE (<25% of the mean), indicating that future research on leaf water repellency could be carried out using high resolution hyperspectral remote sensing. As the climate of tropical ecosystems changes, the resultant changes in leaf water repellency will impact plants, communities and ecosystems. Our results inform our understanding of where and to what extent these impacts are most likely to occur.

  20. Initial study of arthropods succession and pig carrion decomposition in two freshwater ecosystems in the Colombian Andes.

    PubMed

    Barrios, Maria; Wolff, Marta

    2011-10-10

    Entomological succession and trophic roles of arthropods associated with different stages of carcass decomposition were studied to estimate the post-mortem submersion interval in two freshwater ecosystems in the Colombian Andes, at an altitude of 2614 m. Pig carcasses were employed as models placed 68 m apart, one in a stream (lotic) and another in an artificial lake (lentic). Decomposition time to skeletal remains was 74 days in the lake and 80 days in the stream. Six phases of decomposition were established: submerged fresh, early floating, floating decay, bloated deterioration, floating remains and sunken remains. A total of 18,832 organisms associated with the carcasses were collected: 11,487 in the lake (four orders, 19 families and 33 species) and 7345 in the stream (eight orders, 15 families and 25 species). Organisms were classified in the following ecological categories: shredders, collectors, predators, necrophagous, sarcosaprophagous and opportunists. Physical and chemical properties of the habitats, such as water temperature, CO(2) and conductivity, varied according to rainfall. In the lake, shredders (Coleoptera: Tropisternus sp. and Berosus sp.) and collectors (Diptera: Chironomus sp.) were found to be associated with submerged phases. Predators (Odonata) were only present during the first phases. Coleoptera (Dytiscidae) were found during floating decay and bloated deterioration stages. In the stream, shredders (Hyalella sp.) and collectors (Simulium sp.) were found during all stages, whereas the predator Oxelytrum discicolle was found exclusively during the floating stages, during which body temperature increased in a fashion similar to active decay in terrestrial environments.

  1. A new species of Cryptotis (Mammalia, Eulipotyphla, Soricidae) from the Sierra de Perijá, Venezuelan-Colombian Andes

    USGS Publications Warehouse

    Quiroga-Carmona, Marcial; Woodman, Neal

    2015-01-01

    The Sierra de Perijá is the northern extension of the Cordillera Oriental of the Andes and includes part of the border between Colombia and Venezuela. The population of small-eared shrews (Mammalia, Eulipotyphla, Soricidae, Cryptotis) inhabiting the Sierra de Perijá previously was known from only a single skull from an individual collected in Colombia in 1989. This specimen had been referred to alternatively as C. thomasi and C. meridensis, but more precise definition of the known Colombian and Venezuelan species of Cryptotis has since excluded the Sierra de Perijá population from any named species. The recent collection of a specimen from the Venezuelan slope of Sierra de Perijá, prompted us to re-evaluate the taxonomic status of this population and determine its relationship with other Andean shrews. Our examination of the available specimens revealed that they possess a unique suite of morphological and morphometrical characters, and we describe the Sierra de Perijá population as a new species in the South American C. thomasi species group. Recognition of this new species adds to our knowledge of this genus in South America and to the biodiversity of the Sierra de Perijá.

  2. Zonda downslope winds in the central Andes of South America in a 20-year climate simulation with the Eta model

    NASA Astrophysics Data System (ADS)

    Antico, Pablo L.; Chou, Sin Chan; Mourão, Caroline

    2015-12-01

    The Zonda wind is a local version of the alpine foehn in the central Andes Mountains in South America. It blows on the eastern slopes and produces an extremely warm and dry condition in Argentina. In this study, the occurrence of Zonda wind events during a 20-year simulation from the regional Eta model is analyzed and results are compared to previous studies of Zonda wind events based on weather observations. We define a set of parameters to account for the zonal pressure gradient across the mountain, vertical movement, and air humidity typical of Zonda wind events. These parameters are applied to characterize Zonda wind events in model run and to classify them as surface-level or high-level episodes. The resulting annual distribution of Zonda occurrences based on composite analyses shows a preference for winter and spring with rare occurrences during summer. For the surface-level Zonda wind events, the highest frequency occurs during spring. Whereas surface-level Zonda wind episodes more commonly initiate in the afternoon, high-level Zonda wind events show no preference for a given initiation time. Our result