Science.gov

Sample records for los genes apc

  1. Novel strategies for comprehensive mutation screening of the APC gene.

    PubMed

    Wachsmannova, L; Mego, M; Stevurkova, V; Zajac, V; Ciernikova, S

    2017-03-03

    Colorectal cancer is the 4th most common cause of cancer related deaths worldwide and new possibilities in accurate diagnosis and targeted treatment are highly required. Mutations in adenomatous polyposis coli (APC) gene play a pivotal role in adenoma-carcinoma pathway of colorectal tumorigenesis. The quarter century from its´ first cloning, APC became one of the most frequently mutated, known driver genes in colorectal cancer. Intensive routine molecular testing of APC has brought the benefits for patients with family history of polyposis or colorectal cancer. Nevertheless, multiple mutational disease-causing mechanisms make the genetic testing still challenging. This minireview is focused on implementation of novel APC mutation screening diagnostic strategies for polyposis families according to the current findings. A further understanding and improved algorithms may help to increase the mutation detection rate. APC germline mutations achieve close to 100% penetrance, so more comprehensive approach followed by preventive and therapeutic strategies might reflect in decrease in burden of colorectal cancer.

  2. A CA-repeat polymorphism close to the adenomatous polyposis coli (APC) gene offers improved diagnostic testing for familial APC

    SciTech Connect

    Spirio, L.; Nelson, L.; Ward, K.; Burt, R.; White, R.; Leppert, M. )

    1993-02-01

    Presymptomatic genetic testing for the presence of a mutant allele causing familial adenomatous polyposis coli (APC) has been difficult to perform effectively in the past because DNA markers surrounding the APC gene on chromosome 5q have not been very informative. The authors report results of genetic linkage studies on both research families and clinical families by using D5S346, a highly polymorphic dinucleotide (CA)-repeat locus 30-70 kb from the APC gene. Linkage analysis with this marker in a large APC pedigree showed an increase of at least 9.0 LOD units, in likelihood of linkage of the disease-causing allele to the APC locus, when compared with the highest LOD score attained with any other closely linked marker. When the first 14 APC families that requested genotypic analysis by the DNA Diagnostic Laboratory at the University of Utah were tested with D5S346, 20 of the 31 at-risk individuals were identified as either carriers or noncarriers of an APC-predisposing allele. The authors see this marker as an important tool for research studies and for the presymptomatic diagnosis of APC. 28 refs., 3 figs., 2 tabs.

  3. Analysis of adenomatous polyposis coli gene expression, APC locus-microsatellite instability and APC promoter methylation in the progression of melanocytic tumours.

    PubMed

    Korabiowska, Monika; Schlott, Thilo; Siems, Nils; Müller, Anegret; Cordon-Cardo, Carlos; Fischer, Gösta; Brinck, Ulrich

    2004-12-01

    Adenomatous polyposis coli gene (APC) defects have been demonstrated for the first time in familial adenomatous polyposis. Recent reports indicate that the APC gene is an intermediary between cell adhesion molecules and the cytoskeleton and that it may function as a gatekeeper of colonic epithelial proliferation. The objective of this study was to analyse APC's presence in lentigos, primary melanomas and melanoma metastases. By immunohistochemistry, APC was demonstrated in all lentigos, in 75 out of 88 primary melanomas and in 16 out of 28 melanoma lymphatic metastases. The percentage of immunolabelled tumour cells (APC index) in lentigos ranged between 5 and 69%, in primary melanomas between 0 and 98% and in melanoma metastases between 0 and 52%. Statistically significant differences between lentigos and primary melanomas and between lentigos and metastases in APC expression were found. In a multivariate analysis, APC showed an independent prognostic impact. Analysis of microsatellite instability in the APC locus was performed on 29 melanomas. Microsatellite instability was found in 5/29 melanomas and loss of heterozygosity in 1/29 melanomas. Promoter methylation of APC was found in 6/10 APC-negative primary melanomas and in 9/10 APC-negative melanoma lymphatic metastases investigated. We conclude about important role of APC alterations for melanoma progression.

  4. ApcMin, A Mutation in the Murine Apc Gene, Predisposes to Mammary Carcinomas and Focal Alveolar Hyperplasias

    NASA Astrophysics Data System (ADS)

    Moser, Amy Rapaich; Mattes, Ellen M.; Dove, William F.; Lindstrom, Mary J.; Haag, Jill D.; Gould, Michael N.

    1993-10-01

    ApcMin (Min, multiple intestinal neoplasia) is a point mutation in the murine homolog of the APC gene. Min/+ mice develop multiple intestinal adenomas, as do humans carrying germ-line mutations in APC. Female mice carrying Min are also prone to develop mammary tumors. Min/+ mammary glands are more sensitive to chemical carcinogenesis than are +/+ mammary glands. Transplantation of mammary cells from Min/+ or +/+ donors into +/+ hosts demonstrates that the propensity to develop mammary tumors is intrinsic to the Min/+ mammary cells. Long-term grafts of Min/+ mammary glands also gave rise to focal alveolar hyperplasias, indicating that the presence of the Min mutation also has a role in the development of these lesions.

  5. Regulation of the metabolite profile by an APC gene mutation in colorectal cancer.

    PubMed

    Yoshie, Tomoo; Nishiumi, Shin; Izumi, Yoshihiro; Sakai, Aya; Inoue, Jun; Azuma, Takeshi; Yoshida, Masaru

    2012-06-01

    Mutation of the APC gene occurs during the early stages of colorectal cancer development. To obtain new insights into the mechanisms underlying the aberrant activation of the Wnt pathway that accompanies APC mutation, we carried out a gas chromatography-mass spectrometry-based semiquantitative metabolome analysis. In vitro experiments comparing SW480 cells expressing normal APC and truncated APC indicated that the levels of metabolites involved in the latter stages of the intracellular tricarboxylic acid cycle, including succinic acid, fumaric acid, and malic acid, were significantly higher in the SW480 cells expressing the truncated APC. In an in vivo study, we found that the levels of most amino acids were higher in the non-polyp tissues of APC(min/+) mice than in the normal tissues of the control mice and the polyp tissues of APC(min/+) mice. Ribitol, the levels of which were decreased in the polyp lesions of the APC(min/+) mice and the SW480 cells expressing the truncated APC, reduced the growth of SW480 cells with the APC mutation, but did not affect the growth of SW480 transfectants expressing full-length APC. The level of sarcosine was found to be significantly higher in the polyp tissues of APC(min/+) mice than in their non-polyp tissues and the normal tissues of the control mice, and the treatment of SW480 cells with 50 μM sarcosine resulted in a significant increase in their growth rate. These findings suggest that APC mutation causes changes in energetic metabolite pathways and that these alterations might be involved in the development of colorectal cancer.

  6. Detection of APC gene deletions in colorectal malignancies using quantitative PCR in a Chinese population.

    PubMed

    Fang, Zhengyu; Xiong, Yi; Li, Jiana; Liu, Li; Li, Manhui; Zhang, Wei; Shi, Lei; Wan, Jun

    2011-09-01

    The adenomatous polyposis coli (APC) gene has been shown to be involved in genetic instability and to be downregluated in several human carcinomas. The chromosome locus of APC, 5q21-22, is frequently deleted in colorectal cancers (CRCs). The functional impact of such regions needs to be extensively investigated in large amount of clinical samples. Case-matched tissues of CRC and adjacent normal epithelium (n = 134) were included in this study. Quantitative PCR was carried out to examine the copy number as well as mRNA expression of APC gene in colorectal malignancies. Our results showed that copy number deletions of APC were present in a relatively high percentage of colorectal cancer samples (26.1%, 35 out of 134). There was a positive correlation between copy number decrease of APC and tumor progression in CRCs. Furthermore, copy number loss of APC was correlated with decreased mRNA expression. However, mRNA levels of APC were also impaired in CRC samples with unaltered copy numbers, indicating that sporadic CRCs exhibit different mechanisms of APC regulation.

  7. Three novel mutations of APC gene in Chinese patients with familial adenomatous polyposis.

    PubMed

    Liu, Qi; Li, Xiaoxia; Li, Sen; Qu, Shengqiang; Wang, Yu; Tang, Qingzhu; Ma, Hongwei; Luo, Yang

    2016-08-01

    Familial adenomatous polyposis (FAP) is an autosomal dominant disorder characterized by the development of hundreds to thousands of colonic adenomas and an increased risk of colorectal cancer. Adenomatous polyposis coli (APC), encoding a large multidomain protein involved in antagonizing the Wnt signaling pathway, has been identified as the main causative gene responsible for FAP. In this study, we identified three novel mutations as well as two recurrent mutations in the APC in five Chinese FAP families by sequencing. Immunohistochemical analysis revealed that among these mutations, a nonsense mutation (c.2510C>G) and two small deletions (c.2016_2047del, c.3180_3184del) led to the truncation of the APC protein and the cytoplasmic and nuclear accumulation of β-catenin in the colorectal samples from affected individuals, respectively. Our study expands the database on mutations of APC and provides evidence to understand the function of APC in FAP.

  8. Evidence for a novel exon in the coding region of the adenomatous polyposis coli (APC) gene

    SciTech Connect

    Xia, Ling; St. Denis, K.A.; Bapat, B.

    1995-08-10

    Germline mutations of the tumor suppressor gene APC cause familial adenomatous polyposis. Somatic APC alterations are involved in several sporadic neoplasma, including colorectal, duodenal, gastric, and esophageal carcinoma. The APC mRNA is encoded by 15 exons. Additional transcripts have been reported, due to alternative splicing of coding as well as noncoding regions. Two mRNA isoforms occur due to a deletion of exon 7 or a partial deletion of exon 9. We have identified a novel exon, flanked by APC exons 10 and 11, which is expressed as an alternatively transcribed product of the gene. Further, we have shown that the novel exon consists of a heptad repeat motif and is conserved across species. 18 refs., 2 figs.

  9. Polymorphisms in the adenomatous polyposis coli (APC) gene and advanced colorectal adenoma risk.

    PubMed

    Wong, Hui-Lee; Peters, Ulrike; Hayes, Richard B; Huang, Wen-Yi; Schatzkin, Arthur; Bresalier, Robert S; Velie, Ellen M; Brody, Lawrence C

    2010-09-01

    While germline mutations in the adenomatous polyposis coli (APC) gene cause the hereditary colon cancer syndrome (familial adenomatous polyposis (FAP)), the role of common germline APC variants in sporadic adenomatous polyposis remains unclear. We studied the association of eight APC single nucleotide polymorphisms (SNPs), possibly associated with functional consequences, and previously identified gene-environment (dietary fat intake and hormone replacement therapy (HRT) use) interactions, in relation to advanced colorectal adenoma in 758 cases and 767 sex- and race-matched controls, randomly selected from the screening arm of the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Cases had at least one verified advanced adenoma of the distal colon; controls, a negative sigmoidoscopy. We did not observe an association between genotypes for any of the eight APC SNPs and advanced distal adenoma risk (P(global gene-based)=0.92). Frequencies of identified common haplotypes did not differ between cases and controls (P(global haplotype test)=0.97). However, the risk for advanced distal adenoma was threefold higher for one rare haplotype (cases: 2.7%; controls: 1.6%) (odds ratio (OR)=3.27; 95% confidence interval (CI)=1.08-9.88). The genetic association between D1822V and advanced distal adenoma was confined to persons consuming a high-fat diet (P(interaction)=0.03). Similar interactions were not observed with HRT use. In our large, nested case-control study of advanced distal adenoma and clinically verified adenoma-free controls, we observed no association between specific APC SNPs and advanced adenoma. Fat intake modified the APC D1822V-adenoma association, but further studies are warranted.

  10. Frequent alteration of the tumor suppressor gene APC in sporadic canine colorectal tumors.

    PubMed

    Youmans, Lydia; Taylor, Cynthia; Shin, Edwin; Harrell, Adrienne; Ellis, Angela E; Séguin, Bernard; Ji, Xinglai; Zhao, Shaying

    2012-01-01

    Sporadic canine colorectal cancers (CRCs) should make excellent models for studying the corresponding human cancers. To molecularly characterize canine CRC, we investigated exonic sequence mutations of adenomatous polyposis coli (APC), the best known tumor suppressor gene of human CRC, in 23 sporadic canine colorectal tumors, including 8 adenomas and 15 adenocarcinomas, via exon-resequencing analysis. As a comparison, we also performed the same sequencing analysis on 10 other genes, either located at human 5q22 (the same locus as APC) or 18q21 (also frequently altered in human CRC), or known to play a role in human carcinogenesis. We noted that APC was the most significantly mutated gene in both canine adenomas and adenocarcinomas among the 11 genes examined. Significantly, we detected large deletions of ≥ 10 bases, many clustered near the mutation cluster region, as well as single or two base deletions in ~70% canine tumors of both subtypes. These observations indicate that like in the human, APC is also frequently altered in sporadic colorectal tumors in the dog and its alteration is an early event in canine colorectal tumorigenesis. Our study provides further evidence demonstrating the molecular similarity in pathogenesis between sporadic human and canine CRCs. This work, along with our previous copy number abnormality study, supports that sporadic canine CRCs are valid models of human CRCs at the molecular level.

  11. Analysis of APC and IGFBP7 promoter gene methylation in Swedish and Vietnamese colorectal cancer patients.

    PubMed

    Dimberg, Jan; Hong, Thai Trinh; Skarstedt, Marita; Löfgren, Sture; Zar, Niklas; Matussek, Andreas

    2013-01-01

    The tumour suppressor gene adenomatous polyposis coli (APC) is a key component that drives colorectal carcinogenesis. The reported DNA methylation in the promoter of APC varies greatly among studies of colorectal cancer (CRC) in different populations. Insulin-like growth factor binding protein 7 (IGFBP7), also known as IGFBP-related protein 1 (IGFBP-rP1), is expressed in various tissue types, including the lung, brain, prostate and gastrointestinal tract, and has been suggested to play a tumour suppressor role against colorectal carcinogenesis. Studies have indicated that IGFBP7 is inactivated by DNA methylation in human colon, lung and breast cancer. In the present study, we used the methylation-specific polymerase chain reaction to study the methylation status of the APC and IGFBP7 gene promoters in cancerous and paired normal tissue to evaluate its impact on clinical factors and association with ethnicity, represented by Swedish and Vietnamese CRC patients. We also investigated the distribution of CpG islands and the CpG dinucleotide density of each CpG island in the regions which were the subject of our investigation. Overall, normal tissue from Swedish patients exhibited a significantly higher frequency of IGFBP7 gene methylation in comparison with that of Vietnamese patients. Moreover, a significantly higher number of cancer tissues from Vietnamese individuals showed higher levels of methylation versus the paired normal tissue compared with that of Swedish patients. When we studied the methylation in cancer compared with the matched normal tissue in individuals, we found that a significantly higher number of Vietnamese patients had a higher degree of IGFBP7 gene methylation in cancer versus matched normal tissue in comparison with Swedish patients. Taken together, our results suggest that the methylation of the APC and IGFBP7 gene promoter region in cancerous tissue, in combination with the predominance of methylation in normal tissue, may serve as a

  12. Molecular analysis of the APC and MUTYH genes in Galician and Catalonian FAP families: a different spectrum of mutations?

    PubMed Central

    Gómez-Fernández, Nuria; Castellví-Bel, Sergi; Fernández-Rozadilla, Ceres; Balaguer, Francesc; Muñoz, Jenifer; Madrigal, Irene; Milà, Montserrat; Graña, Begoña; Vega, Ana; Castells, Antoni; Carracedo, Ángel; Ruiz-Ponte, Clara

    2009-01-01

    Background Familial adenomatous polyposis (FAP) is an autosomal dominant-inherited colorectal cancer syndrome, caused by germline mutations in the APC gene. Recently, biallelic mutations in MUTYH have also been identified in patients with multiple colorectal adenomas and in APC-negative patients with FAP. The aim of this work is therefore to determine the frequency of APC and MUTYH mutations among FAP families from two Spanish populations. Methods Eighty-two unrelated patients with classical or attenuated FAP were screened for APC germline mutations. MUTYH analysis was then conducted in those APC-negative families and in 9 additional patients from a previous study. Direct sequencing, SSCP analysis and TaqMan genotyping were used to identify point and frameshift mutations, meanwhile large rearrangements in the APC gene were screened by multiplex ligation-dependent probe amplification (MLPA). Results APC germline mutations were found in 39% of the patients and, despite the great number of genetic variants described so far in this gene, seven new mutations were identified. The two hotspots at codons 1061 and 1309 of the APC gene accounted for 9,4% of the APC-positive families, although they were underrepresented in Galician samples. The deletion at codon 1061 was not found in 19 APC-positive Galician patients but represented 23% of the Catalonian positive families (p = 0,058). The same trend was observed at codon 1309, even though statistical analysis showed no significance between populations. Twenty-four percent of the APC-negative patients carried biallelic MUTYH germline mutations, and showed an attenuated polyposis phenotype generally without extracolonic manifestations. New genetic variants were found, as well as the two hotspots already reported (p.Tyr165Cys and p.Gly382Asp). Conclusion The results we present indicate that in Galician patients the frequency of the hotspot at codon 1061 in APC differs significantly from the Catalonian and also other Caucasian

  13. Association between the APC gene D1822V variant and the genetic susceptibility of colorectal cancer.

    PubMed

    Feng, Maohui; Fang, Xiping; Yang, Qian; Ouyang, Gang; Chen, Daping; Ma, Xiang; Li, Huachi; Xie, Wei

    2014-07-01

    Adenomatous polyposis coli (APC) gene polymorphisms are believed to contribute to tumor susceptibility. However, the association between genetic variants (A/T) in the APC gene D1822V polymorphism and colorectal cancer (CRC) susceptibility remains unknown. To determine this association, a case-control study was performed. The genotype of the APC gene D1822V variants was analyzed by DNA sequencing in blood samples collected from 196 patients with CRC and 279 healthy subjects. There were no significant associations between the case and control groups in the distribution of AT [odds ratio (OR), 0.604; 95% confidence interval (CI), 0.355-1.029) and TT genotypes (OR, 0.438; 95% CI, 0.045-4.247) relative to the AA genotype. The ratio of the T allele was significantly lower (P=0.047) in the case group compared with the control group (OR, 0.611; 95% CI, 0.374-0.997), indicating that the T allele conferred a protective effect in CRC. The frequency of the AT genotype among the subjects diagnosed at >45 years of age was lower than those diagnosed at a younger age (P<0.05). The present study demonstrates that the T allele of the D1822V polymorphism may exert a protective effect against CRC, however, these findings require further validation in a larger sample size.

  14. Cables1 is a tumor suppressor gene that regulates intestinal tumor progression in Apc(Min) mice.

    PubMed

    Arnason, Thomas; Pino, Maria S; Yilmaz, Omer; Kirley, Sandra D; Rueda, Bo R; Chung, Daniel C; Zukerberg, Lawrence R

    2013-07-01

    The transformation of colonic mucosal epithelium to adenocarcinoma requires progressive oncogene activation and tumor suppressor gene inactivation. Loss of chromosome 18q is common in colon cancer but not in precancerous adenomas. A few candidate tumor suppressor genes have been identified in this region, including CABLES1 at 18q11.2-12.1. This study investigates the role of CABLES1 in an in vivo mouse model of intestinal adenocarcinoma and in human colon cancer cell culture. Apc(Min/+) mice were crossed with mice harboring targeted inactivation of the Cables1 gene (Cables1(-/-)). The intestinal tumor burden and tumor expression of β-catenin and PCNA was compared in Cables1(+/+)Apc(Min/+) and Cables1(-/-)Apc(Min/+) mice. β-catenin activity in human colon cancer cells with CABLES1 inactivation and intestinal progenitor cell function in Cables1(-/-) mice were assayed in vitro. The mean number of small intestinal tumors per mouse was 3.1 ± 0.6 in Cables1(+/+)Apc(Min/+) mice, compared with 32.4 ± 3.5 in the Cables1(-/-)Apc(Min/+) mice (P < 0.0001). Fewer colonic tumors were observed in Cables1(+/+)Apc(Min/+) mice (mean 0.6 ± 0.1) compared with the Cables1(-/-)Apc(Min/+) mice (mean 1.3 ± 0.3, P = 0.01). Tumors from Cables1(-/-)Apc(Min/+) mice demonstrated increased nuclear expression of β-catenin and an increased number of PCNA-positive cells. In vitro studies revealed that CABLES1 deficiency increased β-catenin dependent transcription and increased intestinal progenitor cell activity. Loss of Cables1 enhances tumor progression in the Apc(Min/+) mouse model and activates the Wnt/β-catenin signaling pathway. Cables1 is a tumor suppressor gene on chromosome 18q in this in vivo mouse model and likely has a similar role in human colon cancer.

  15. Mutation analysis of the p53, APC, and p16 genes in the Barrett's oesophagus, dysplasia, and adenocarcinoma.

    PubMed Central

    González, M V; Artímez, M L; Rodrigo, L; López-Larrea, C; Menéndez, M J; Alvarez, V; Pérez, R; Fresno, M F; Pérez, M J; Sampedro, A; Coto, E

    1997-01-01

    AIMS: To study the loss of heterozygosity and the presence of mutations at the p53, p16/CDKN2, and APC genes in Barrett's oesophagus, low grade dysplastic oesophageal epithelium, and adenocarcinoma of the oesophagus; to relate the presence of alterations at these genes with the progression from Barrett's oesophagus to adenocarcinoma. METHODS: DNA was extracted from paraffin blocks containing tissue from Barrett's oesophagus (12 samples), low grade dysplasia (15 cases), and adenocarcinoma (14 cases). Loss of heterozygosity (LOH) at the p53, p16, and APC genes was determined by comparing the autoradiographic patterns of several microsatellite markers between the normal tissue and the malignant tissue counterpart. SSCP was used to determine the presence of mutations at p53 (exons 5 to 8), p16 (exon 2), and APC. Homozygous deletion of the p16 gene was defined through polymerase chain reaction followed by Southern blot. RESULTS: LOH at the p53, p16, and APC genes was not observed in Barrett's oesophagus without dysplasia, and increased to 90% (p53), 89% (p16), and 60% (APC) in the adenocarcinomas. The p53 gene was mutated in only two adenocarcinomas (codons 175 and 245). In one case a mutation at the APC gene (codon 1297) was found. No patient had mutation at the second exon of p16. However, this gene was homozygously deleted in three of the 12 adenocarcinomas. CONCLUSIONS: The tumour suppressor genes p53, p16, and APC are often deleted in adenocarcinomas derived from Barrett's oesophagus. Mutations at these genes are also found in the adenocarcinomas, including the homozygous deletion of the p16 gene. However, the absence of genetic alterations in the Barrett's oesophagus and the low grade dysplastic epithelia suggest that mutations at these genes develop later in the progression from Barrett's oesophagus to adenocarcinoma. Images PMID:9155671

  16. Severe Gardner Syndrome in Families with Mutations Restricted to a Specific Region of the APC Gene

    PubMed Central

    Davies, D. Rhodri; Armstrong, John G.; Thakker, Nalin; Horner, Keith; Guy, Simon P.; Clancy, Tara; Sloan, Phil; Blair, Val; Dodd, Chris; Warnes, Tom W.; Harris, Rodney; Evans, D. Gareth R.

    1995-01-01

    Familial adenomatous polyposis (FAP) is associated with a number of extraintestinal manifestations, which include osteomas, epidermoid cysts, and desmoid tumors, often referred to as “Gardner syndrome.” Recent studies have suggested that some of the phenotypic features of FAP are dependent on the position of the mutation within the APC gene. In particular, the correlation between congenital hypertrophy of the retinal pigment epithelium (CHRPE) and APC genotype indicates that affected families may be divided into distinct groups. We have investigated the association between the dento-osseous features of GS on dental panoramic radiographs (DPRs) and APC genotype in a regional cohort of FAP families. DPRs were performed on 84 affected individuals from 36 families, and the dento-osseous features of FAP were quantified by a weighted scoring system. Significant DPR abnormalities were present in 69% of affected individuals. The APC gene mutation was identified in 27 of these families, and for statistical analysis these were subdivided into three groups. Group 1 comprised 18 affected individuals from seven families with mutations 5' of exon 9; these families (except one) did not express CHRPE. Groups 2 comprised 38 individuals from 16 families with mutations between exon 9 and codon 1444, all of whom expressed CHRPE. Group 3 comprised 11 individuals from four families with mutations 3' of codon 1444, none of whom expressed CHRPE. Families with mutations 3' of codon 1444 had significantly more lesions on DPRs (P < .001) and appeared to have a higher incidence of desmoid tumors. These results suggest that the severity of some of the features of Gardner syndrome may correlate with genotype in FAP. ImagesFigure 2 PMID:7485167

  17. Antitumor Molecular Mechanism of Chlorogenic Acid on Inducting Genes GSK-3β and APC and Inhibiting Gene β-Catenin

    PubMed Central

    Xu, Ruoshi; Kang, Qiumei; Ren, Jie; Li, Zukun; Xu, Xiaoping

    2013-01-01

    Objective. Inhibiting gene β-catenin and inducting genes GSK-3β and APC, promoting the tumor cell apoptosis in Wnt pathway, by chlorogenic acid were discussed (CGA). Method. The different genes were scanned by the 4∗44K mouse microarray chips. The effect of the three genes was confirmed by RT-PCR technique with CGA dosage of 5, 10, and 20 mg/kg. Result. The expression of GSK-3β and APC was upregulated in group of 20 mg/kg dosage (P < 0.05) and the expression of β-catenin was downregulated in the same dosage (P < 0.05). Conclusion. The results infer that the multimeric protein complex of β-catenin could be increased by CGA upregulated genes GSK-3β and APC, which could inhibit the free β-catenin into the nucleus to connect with TCF. So the transcriptional expression of the target genes will be cut to abnormal cell proliferation. It is probably one of the ways that can stop the tumor increase by CGA. PMID:23844319

  18. Molecular analysis of mutations for the adenomatous polyposis coli (APC) gene in Romanian patients with colorectal cancer.

    PubMed

    Toma, M; Cimponeriu, D; Pompilia, A; Stavarachi, M; Beluşică, L; Radu, I; Gavrilă, L

    2008-01-01

    Mutations in adenomatous polyposis coli (APC) gene have not been previously characterized among Romanian patients with colorectal cancer (CRC). We initiate this study to detect the mutations in APC gene in blood and tumor samples collected from 16 patients (10 men and 6 women) and blood samples from 21 first and second degree relatives of the patients. For this the presence of mutations in exons 6, 7, 12, 13, 14 as well as in regions B, L and W of exon 15 was investigated using PCR multiplex. In the same time, we have searched for 5 bp deletions at codon 1061 of APC gene by PAGE and SSCP methods. These methods allowed us to evidence identification of the presence of mutations in samples from 7 individuals. In one patient, was detected a deletion of exon 13th of APC gene both in DNA extracted from blood and tumor samples. Multiple deletions (e.g. in exon 6, 12, and in 15L and 15W regions) in DNA extracted from the tumor sample were detected, but not in DNA probe obtained from blood cells. We can speculate that these mutations are an example of genomic instability accompanying the malignancy. Till now, no mutation affecting 1061 codon of APC gene was identified in the patients investigated in our study.

  19. Restoration of APC gene function in colorectal cancer cells by aminoglycoside- and macrolide-induced read-through of premature termination codons.

    PubMed

    Zilberberg, Alona; Lahav, Lital; Rosin-Arbesfeld, Rina

    2010-04-01

    Adenomatous polyposis coli (APC) is a multifunctional tumour suppressor protein that negatively regulates the Wnt signalling pathway. The APC gene is ubiquitously expressed in tissues and organs, including the large intestine and central nervous system. The majority of patients with sporadic and hereditary colorectal cancer have mutations in the gene encoding APC. Approximately 30% of these mutations are single nucleotide changes that result in premature stop codons (nonsense mutations). A potential therapeutic approach for treatment of this subset of patients is the use of aminoglycosides and macrolides that induce nonsense mutation read-through and restore levels of full-length protein. We have used reporter plasmids and colorectal cancer cell lines to demonstrate that several aminoglycosides and tylosin, a member of the macrolide family, induced read-through of nonsense mutations in the APC gene. In xenograft experiments and in the Apc(Min/+) mouse model, these compounds ameliorated the tumorigenic clinical symptoms caused by nonsense mutations in the APC gene.

  20. Report on mutation in exon 15 of the APC gene in a case of brain metastasis.

    PubMed

    Pećina-Slaus, Nives; Majić, Zeljka; Musani, Vesna; Zeljko, Martina; Cupić, Hrvoje

    2010-03-01

    The study analyzes exon 15 of the adenomatous polyposis coli gene (APC) in a 49-year-old male patient with brain metastasis. The primary site was lung carcinoma. PCR method and direct DNA sequencing of the metastasis and autologous lymphocyte samples identified the presence of a somatic mutation. The substitution was at position 5883 G-A in the metastasis tissue. The mutation was confirmed by RFLP analysis using Msp I endonuclease, since the mutation strikes the Msp I restriction site. Immunohistochemical analysis revealed the lack of protein expression of this tumor suppressor gene. The main molecular activator of the wnt pathway, beta-catenin, was expressed, and located in the nucleus. The mutation is a silent mutation that might have consequences in the creation of a new splice site. Different single-base substitutions in APC exons need not only be evaluated by the predicted change in amino acid sequence, but rather at the nucleotide level itself. In our opinion, such silent mutations should also be incorporated in mutation detection rate and validation.

  1. Methylation of the CpG Sites Only on the Sense Strand of the APC Gene Is Specific for Hepatocellular Carcinoma

    PubMed Central

    Jain, Surbhi; Lin, Selena Y.; Lin, Yih-Jyh; Evans, Alison A.; Selaru, Florin M.; Lin, Pin- Wen; Chen, Shun-Hua; Block, Timothy M.; Hu, Chi-Tan; Song, Wei; Meltzer, Stephen J.; Su, Ying-Hsiu

    2011-01-01

    Hypermethylation of the promoter of the tumor suppressor gene, adenomatous polyposis coli (APC), occurs in various malignancies, including hepatocellular carcinoma (HCC). However, reports on the specificity of the methylation of the APC gene for HCC have varied. To gain insight into how these variations occur, bisulfite PCR sequencing was performed to analyze the methylation status of both sense and antisense strands of the APC gene in samples of HCC tissue, matched adjacent non-HCC liver tissue, hepatitis, cirrhosis, and normal liver tissues. DNA derived from fetal liver and 12 nonhepatic normal tissue was also examined. These experiments revealed liver-specific, antisense strand-biased CpG methylation of the APC gene and suggested that, although methylation of the antisense strand of the APC gene exists in normal liver and other non-HCC disease liver tissue, methylation of the sense strand of the APC gene occurs predominantly in HCC. To determine the effect of the DNA strand on the specificity of the methylated APC gene as a biomarker for HCC detection, quantitative methylation-specific PCR assays for sense and antisense strand DNA were developed and performed on DNA isolated from HCC (n = 58), matched adjacent non-HCC (n = 58), cirrhosis (n = 41), and hepatitis (n = 39). Receiver operating characteristic curves were constructed. With the cutoff value set at the limit of detection, the specificity of sense and antisense strand methylation was 84% and 43%, respectively, and sensitivity was 67.2% and 72.4%, respectively. This result demonstrated that the identity of the methylated DNA strand impacted the specificity of APC for HCC detection. Interestingly, methylation of the sense strand of APC occurred in 40% of HCCs from patients with serum AFP levels less than 20 ng/mL, suggesting a potential role for APC as a biomarker to complement AFP in HCC screening. PMID:22073196

  2. Frequent mutation of Apc gene in rat colon tumors and mucin-depleted foci, preneoplastic lesions in experimental colon carcinogenesis.

    PubMed

    Femia, Angelo Pietro; Dolara, Piero; Giannini, Augusto; Salvadori, Maddalena; Biggeri, Annibale; Caderni, Giovanna

    2007-01-15

    Mucin-depleted foci (MDF) are microscopic dysplastic lesions induced in the colon of rodents by specific colon carcinogens. Most MDF show Wnt pathway activation, whereas only a subset shows mutations in the Ctnnb1 gene, coding for beta-catenin. Because Apc is a member of the Wnt pathway and the most frequent mutated gene in human colon cancer, we tested whether MDF harbor Apc mutations. F344 rats were treated twice with 150 mg/kg of 1,2-dimethylhydrazine. After 15 or 28 weeks, MDF, aberrant crypt foci (ACF), and tumors were collected. We screened a segment of the Apc gene comprising the region homologous to the mutation cluster region (MCR) of human APC, which frequently shows mutations in experimental colon tumors. Mutations were identified by PCR amplification and sequencing in 6:24 MDF (25%), 7:23 tumors (30%), 0:24 ACF (0%). Most of the mutations (92%) in MDF and tumors were localized in a region upstream from the MCR. All mutations were single-base substitutions and mainly formed by G:C-->A:T and C:G-->T:A transitions. The pattern of nucleotide changes was similar in MDF and tumors, and, interestingly, the same mutation in codon 1047 was found in two MDF and in three tumors. Four out of the six mutations found in MDF were nonsense mutations, and two were missense. All mutations in tumors determined a protein truncation. These results show that Apc mutations are present in MDF with a frequency similar to that of tumors, strengthening the evidence that they are precancerous lesions in colon carcinogenesis.

  3. APC, K-ras, and p53 gene mutations in colorectal cancer patients: correlation to clinicopathologic features and postoperative surveillance.

    PubMed

    Hsieh, Jan-Sing; Lin, Shiu-Ru; Chang, Mei-Yin; Chen, Fang-Ming; Lu, Chien-Yu; Huang, Tsung-Jen; Huang, Yu-Sheng; Huang, Che-Jen; Wang, Jaw-Yuan

    2005-04-01

    Current researches have proposed a genetic model for colorectal cancer (CRC), in which the sequential accumulation of mutations in specific cancer-related genes, including adenomatous polyposis coli (APC), K-ras, and p53, drives the transition from normal epithelium through increasing adenomatous dysplasia to colorectal cancer. To identify patients with an increased risk of tumor recurrence or metastasis and evaluate the prognostic values of APC, K-ras, and p53 gene mutations, we investigated the frequency of these three mutated genes in tumors and sera of CRC patients. APC, K-ras, and p53 gene mutations in primary tumor tissues and their paired preoperative serum samples of 118 CRC patients were detected by using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis, followed by direct DNA sequencing of the PCR-amplified genomic DNA. Subsequently, serum molecular markers were analyzed for their correlation with patients' clinicopathologic features and presence of postoperative recurrence/metastasis. We did not observe any significant difference in the association of APC or K-ras or p53 gene mutations in primary tumors with patients' demographic data (all were P > 0.05). In contrast, both serum APC and p53 molecular markers were closely correlated with lymph node metastasis and TNM stage (both P < 0.05). Moreover, the serum overall molecular markers (at least one of the three markers) were prominently associated with depth of tumor invasion (P = 0.033), lymph node metastasis (P < 0.001), and TNM stage (P < 0.001). In addition, a significantly higher postoperative metastasis/recurrence rate in patients positive for overall molecular markers compared to those negative for these molecular markers were also demonstrated (P < 0.001). APC and K-ras molecular markers were more frequently observed in patients with locoregional metastasis (both P < 0.05), while p53 molecular marker was usually detected in the cases of peritoneal metastasis (P

  4. APC gene methylation is inversely correlated with features of the CpG island methylator phenotype in colorectal cancer.

    PubMed

    Iacopetta, Barry; Grieu, Fabienne; Li, Wei; Ruszkiewicz, Andrew; Caruso, Maria; Moore, James; Watanabe, Goh; Kawakami, Kazuyuki

    2006-11-15

    The notion of a CpG island methylator phenotype (CIMP) was proposed to describe a subset of colorectal cancers (CRC) displaying frequent and concordant methylation of CpG islands located within gene promoter regions. Some workers have failed to observe associations between CIMP and specific clinicopathological features of CRC, possibly because of the choice of genes used to define this phenotype. The aim of the current study was to determine whether the aberrant methylation of 6 genes implicated in CRC development was associated with the same phenotypic features of this tumour type. The MethyLight assay was used to provide quantitative estimates of MLH1, P16, TIMP3, P14, DAPK and APC methylation levels in 199 unselected colorectal tumours. The methylation of MLH1, P16, TIMP3 and P14 was highly concordant (p < 0.0001 for each pair) but that of DAPK and APC was not. An inverse association was observed between the methylation of APC and TIMP3 (p = 0.004). Methylation of the MLH1, P16, TIMP3 and P14 genes was associated with tumour infiltrating lymphocytes (p < 0.05), microsatellite instability (p < 0.001), BRAF mutation (p < 0.0001) and elevated concentrations of the methyl group carriers tetrahydrofolate (THF) and 5,10-methylene THF (p < 0.05). In contrast, APC methylation was associated with wildtype BRAF (p = 0.003) and with lower concentrations of methyl group carriers (p < 0.05). These findings highlight the importance of gene selection in studies that aim to characterize the biological features and clinical behaviour of CIMP+ tumours.

  5. Presence of a TA haplotype in the APC gene containing the common 1822 polymorphism and colorectal adenoma.

    PubMed

    Egan, Jan B; Jacobs, Elizabeth T; Martínez, María Elena; Gerner, Eugene W; Jurutka, Peter W; Thompson, Patricia A

    2008-07-15

    Acquired or inherited mutations in the adenomatous polyposis coli (APC) tumor suppressor gene are causally linked to colorectal cancer. Given the significance of APC in colorectal cancer, we investigated the association between common single-nucleotide polymorphisms (SNP) in the APC gene and the odds of developing metachronous colorectal adenomas as a surrogate measure of colorectal cancer risk. Coding SNPs at codons 486, 1678, 1822, 1960, and 2502 were analyzed in a total of 1,399 subjects who participated in two randomized clinical trials for the prevention of colorectal adenomas. No association was found for any single SNP and the odds of metachronous adenoma. In contrast, a TA haplotype (codons 486 and 1822) was associated with a statistically significant 27% and 26% reduction in the odds of any and nonadvanced metachronous adenoma after adjustment for baseline adenoma characteristics [odds ratio (OR), 0.73; 95% confidence interval (95% CI), 0.59-0.91 and OR, 0.74; 95% CI, 0.57-0.94], respectively. No significant reduction in odds was observed for advanced metachronous lesions. Diplotype analysis revealed a strong gene dose effect with carriers of two alleles containing TT-AA (codons 486 and 1822, respectively) having an 89% lower odds for advanced metachronous adenomas (OR, 0.11; 95% CI, 0.01-0.80) when compared with the common CC-AA diplotype (codons 486 and 1822, respectively). Our findings support an important role for germ-line allele sequence in the APC gene and individual risk of metachronous adenomatous polyps.

  6. Caenorhabditis elegans lin-35/Rb, efl-1/E2F and other synthetic multivulva genes negatively regulate the anaphase-promoting complex gene mat-3/APC8.

    PubMed

    Garbe, David; Doto, Jeffrey B; Sundaram, Meera V

    2004-06-01

    Retinoblastoma (Rb)/E2F complexes repress expression of many genes important for G(1)-to-S transition, but also appear to regulate gene expression at other stages of the cell cycle. In C. elegans, lin-35/Rb and other synthetic Multivulva (SynMuv) group B genes function redundantly with other sets of genes to regulate G(1)/S progression, vulval and pharyngeal differentiation, and other unknown processes required for viability. Here we show that lin-35/Rb, efl-1/E2F, and other SynMuv B genes negatively regulate a component of the anaphase-promoting complex or cyclosome (APC/C). The APC/C is a multisubunit complex that promotes metaphase-to-anaphase progression and G(1) arrest by targeting different substrates for ubiquitination and proteasome-mediated destruction. The C. elegans APC/C gene mat-3/APC8 has been defined by temperature-sensitive embryonic lethal alleles that strongly affect germline meiosis and mitosis but only weakly affect somatic development. We describe severe nonconditional mat-3 alleles and a hypomorphic viable allele (ku233), all of which affect postembryonic cell divisions including those of the vulval lineage. The ku233 lesion is located outside of the mat-3 coding region and reduces mat-3 mRNA expression. Loss-of-function alleles of lin-35/Rb and other SynMuv B genes suppress mat-3(ku233) defects by restoring mat-3 mRNA to wild-type levels. Therefore, Rb/E2F complexes appear to repress mat-3 expression.

  7. Expression of Indian hedgehog is negatively correlated with APC gene mutation in colorectal tumors

    PubMed Central

    Fu, Xiangsheng; Shi, Lei; Zhang, Wei; Zhang, Xiaoyan; Peng, Yan; Chen, Xia; Tang, Chuankang; Li, Xiaoyun; Zhou, Xian

    2014-01-01

    The regulatory mechanism of Indian hedgehog (IHH) in colorectal carcinogenesis has not been elucidated. In the current study, the expression of IHH were investigated in 7 digestive tract cancer cell lines, and in 10 normal colorectal mucosas (NCs), 30 hyperplastic polyps (HPs), 35 colorectal adenomas (ADs), and 40 colorectal adenocarcinomas (CAs) by semi-quantitative RT-PCR and immunohistochemical staining. Moreover, the mutational status of adenomatous polyposis coli (APC) and β-catenin in these tumors were analyzed by direct sequencing. IHH mRNA was lost in the 4 colon cancer cell lines harboring APC mutation. IHH mRNA was significantly decreased in CAs (0.17 ± 0.22), compared with that in ADs (0.38 ± 0.35) and HPs (0.56 ± 0.38, P < 0.05). IHH protein was expressed at a very low level or absent in both ADs (7.51 ± 11.92) and CAs (5.15 ± 9.21) in comparison to that in HPs (19.47 ± 17.91) and NCs (42.40 ± 13.67, P < 0.05). Moreover, APC mutations were negatively correlated with IHH mRNA expression (Spearman’s R = -0.636, P < 0.01) and IHH protein expression (Spearman’s R = -0.426, P < 0.01). In conclusion, down-regulation of IHH expression might be an early event during the carcinogenesis of colorectal cancer. The activation of Wnt signaling by APC mutation might contribute to the down-regulation or loss of IHH expression in colorectal tumors. PMID:25232400

  8. Expression of Indian hedgehog is negatively correlated with APC gene mutation in colorectal tumors.

    PubMed

    Fu, Xiangsheng; Shi, Lei; Zhang, Wei; Zhang, Xiaoyan; Peng, Yan; Chen, Xia; Tang, Chuankang; Li, Xiaoyun; Zhou, Xian

    2014-01-01

    The regulatory mechanism of Indian hedgehog (IHH) in colorectal carcinogenesis has not been elucidated. In the current study, the expression of IHH were investigated in 7 digestive tract cancer cell lines, and in 10 normal colorectal mucosas (NCs), 30 hyperplastic polyps (HPs), 35 colorectal adenomas (ADs), and 40 colorectal adenocarcinomas (CAs) by semi-quantitative RT-PCR and immunohistochemical staining. Moreover, the mutational status of adenomatous polyposis coli (APC) and β-catenin in these tumors were analyzed by direct sequencing. IHH mRNA was lost in the 4 colon cancer cell lines harboring APC mutation. IHH mRNA was significantly decreased in CAs (0.17 ± 0.22), compared with that in ADs (0.38 ± 0.35) and HPs (0.56 ± 0.38, P < 0.05). IHH protein was expressed at a very low level or absent in both ADs (7.51 ± 11.92) and CAs (5.15 ± 9.21) in comparison to that in HPs (19.47 ± 17.91) and NCs (42.40 ± 13.67, P < 0.05). Moreover, APC mutations were negatively correlated with IHH mRNA expression (Spearman's R = -0.636, P < 0.01) and IHH protein expression (Spearman's R = -0.426, P < 0.01). In conclusion, down-regulation of IHH expression might be an early event during the carcinogenesis of colorectal cancer. The activation of Wnt signaling by APC mutation might contribute to the down-regulation or loss of IHH expression in colorectal tumors.

  9. Exclusion of APC and VHL gene deletions by array-based comparative hybridization in two patients with microscopically visible chromosomal aberrations.

    PubMed

    Wallerstein, Robert J; Brooks, Susan Sklower; Streck, Deanna L; Kurvathi, Rohini; Toruner, Gokce A

    2007-10-15

    Karyotyping is a major component of the genetic work-up of patients with dysmorphism. Cytogenetic aberrations close to a known tumor suppressor gene raise important clinical issues because deletion of that tumor suppressor gene can cause genetic predisposition to cancer. We present two cancer-free dysmorphic patients with karyotypes of 46,XX,del(5)(q15q22.3) and 46,XX,del(3)(p25.2~pter). These deletions are close to the APC and VHL genes that confer susceptibility to familial Adenomatous polyposis (OMIM #17510) and von-Hippel-Lindau syndrome (OMIM #193300), respectively. The array-based comparative genomic hybridization (array-CGH) analysis using a custom Agilent 44K oligonucleotide array demonstrated an interstitial 20.7-megabase (Mb) deletion on 5q (chr5: 89,725,638-110,491,345) and a terminal 9.45-Mb deletion on 3p (chr3:pter-9,450,984). According to the March 2006 human reference sequence, the APC gene is located at chr5: 112,101,483-112,209,835 and the VHL gene is located at chr3: 10,158,319-10,168,746. These results indicate that the APC gene is 2,300 kilobases (kb) and the VHL gene is 700 kb away from deleted regions. Southern blot analysis for APC and VHL genes were negative, consistent with array-CGH findings. These results demonstrate the power of array-CCH to assess potential tumor suppressor gene involvement and cancer risk in patients with microscopically visible deletions in areas near tumor suppressors.

  10. Identification of novel SNPs by next-generation sequencing of the genomic region containing the APC gene in colorectal cancer patients in China.

    PubMed

    Cheng, Yin; Wang, Jun; Shao, Jiaofang; Chen, Qiyun; Mo, Fan; Ma, Liang; Han, Xu; Zhang, Jing; Chen, Chen; Zhang, Cixiong; Lin, Shuyong; Yu, Jiekai; Zheng, Shu; Lin, Sheng-Cai; Lin, Biaoyang

    2010-06-01

    We described an approach of identifying single nucleotide polymorphisms (SNPs) in complete genomic regions of key genes including promoters, exons, introns, and downstream sequences by combining long-range polymerase chain reaction (PCR) or NimbleGen sequence capture with next-generation sequencing. Using the adenomatous polyposis coli (APC) gene as an example, we identified 210 highly reliable SNPs by next-generation sequencing analysis program MAQ and Samtools, of which 69 were novel ones, in the 123-kb APC genomic region in 27 pair of colorectal cancers and normal adjacent tissues. We confirmed all of the eight randomly selected high-quality SNPs by allele-specific PCR, suggesting that our false discovery rate is negligible. We identified 11 SNPs in the exonic region, including one novel SNP that was not previously reported. Although 10 of them are synonymous, they were predicted to affect splicing by creating or removing exonic splicing enhancers or exonic splicing silencers. We also identified seven SNPs in the upstream region of the APC gene, three of which were only identified in the cancer tissues. Six of these upstream SNPs were predicted to affect transcription factor binding. We also observed that long-range PCR was better in capturing GC-rich regions than the NimbleGen sequence capture technique.

  11. Graft-versus-leukemia effect of HLA-haploidentical central-memory T-cells expanded with leukemic APCs and modified with a suicide gene.

    PubMed

    Casucci, Monica; Perna, Serena Kimi; Falcone, Laura; Camisa, Barbara; Magnani, Zulma; Bernardi, Massimo; Crotta, Alessandro; Tresoldi, Cristina; Fleischhauer, Katharina; Ponzoni, Maurilio; Gregori, Silvia; Caligaris Cappio, Federico; Ciceri, Fabio; Bordignon, Claudio; Cignetti, Alessandro; Bondanza, Attilio; Bonini, Chiara

    2013-02-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) from a human leukocyte antigen (HLA)-haploidentical family donor (haplo-HSCT) is a readily available and potentially curative option for high-risk leukemia. In haplo-HSCT, alloreactivity plays a major role in the graft-versus-leukemia (GVL) effect, which, however, is frequently followed by relapse due to emerging leukemic cell variants that have lost the unshared HLA haplotype as a mechanism of immune escape. We report that stimulation of HLA-haploidentical donor T lymphocytes with leukemic antigen-presenting cells (L-APCs) expands a population of leukemia-reactive T cells, which, besides alloreactivity to unshared HLAs, contain leukemia-associated specificities restricted by shared HLAs. According to a preferential central-memory (T(CM)) phenotype and to high interleukin (IL)-7Rα expression, these T cells persist in vivo and sustain a major GVL effect in a clinically relevant xenograft model. Moreover, we demonstrate that modifying L-APC-expanded T cells to express the herpes simplex virus thymidine kinase (HSV-tk) suicide gene enables their elimination with the prodrug ganciclovir (GCV), therefore providing a safety switch in case of graft-versus-host disease (GVHD). These results warrant the clinical investigation of L-APC-expanded T cells modified with a suicide gene in the setting of haplo-HSCT.

  12. Downregulation of anti-oncomirs miR-143/145 cluster occurs before APC gene aberration in the development of colorectal tumors.

    PubMed

    Kamatani, Akemi; Nakagawa, Yoshihito; Akao, Yukihiro; Maruyama, Naoko; Nagasaka, Mitsuo; Shibata, Tomoyuki; Tahara, Tomomitsu; Hirata, Ichiro

    2013-09-01

    Accumulating data indicate that some microRNAs (miRNAs or miRs) can function as tumor suppressors or oncogenes and as such are important in cancer development. We previously reported that miR-143 and -145 are frequently downregulated in colon adenomas and cancers, acting as tumor suppressors. In this present study, we investigated the relationship between the downregulation of the miR-143/145 cluster and genetic aberrations of adenomatous polyposis coli (APC), which are early genetic events in the development of colorectal tumors. The expression levels of both miRs were determined by performing real-time PCR on tissue samples of familial adenomatous polyposis (FAP), colorectal adenoma, colorectal cancer, and paired non-tumorous tissues. Also, the expression of C- or N-terminus of the APC protein and that of the p53 protein in these tissues were examined immunohistochemically. Our data clearly indicated that the decreased expression of miR-143 and -145 frequently occurred before APC gene aberrations. The downregulation of miR-143 and -145 is thus an important genetic event for the initiation step in colorectal tumor development.

  13. APC — EDRN Public Portal

    Cancer.gov

    The APC gene encodes a tumor suppressor protein that acts as an antagonist of the Wnt signaling pathway. It is also involved in other processes including cell migration and adhesion, transcriptional activation, and apoptosis. Defects in this gene cause familial adenomatous polyposis (FAP), an autosomal dominant pre-malignant disease that usually progresses to malignancy. Disease-associated mutations tend to be clustered in a small region designated the mutation cluster region (MCR) and result in a truncated protein product. Promoter hypermethylation is an alternative pathway for gene silencing in neoplastic cells and a promising cancer detection marker. Methylation levels of GSTP1, APC, and RASSF1A are associated with advanced grade and stage in prostate tumors. Quantitative methylation-specific PCR (QMSP) might augment the pathologic indicators currently used to predict prostate tumor aggressiveness.

  14. Apoptosis and APC in colorectal tumorigenesis.

    PubMed Central

    Morin, P J; Vogelstein, B; Kinzler, K W

    1996-01-01

    Tumors result from disruptions in the homeostatic mechanisms that regulate cell birth and cell death. In colon cancer, one of the earliest manifestation of this imbalance is the formation of polyps, caused by somatic and inherited mutations of the adenomatous polyposis coli (APC) tumor suppressor gene in both humans and mice. While the importance of APC in tumorigenesis is well documented, how it functions to prevent tumors remains a mystery. Using a novel inducible expression system, we show that expression of APC in human colorectal cancer cells containing endogenous inactive APC alleles results in a substantial diminution of cell growth. Further evaluation demonstrated that this was due to the induction of cell death through apoptosis. These results suggest that apoptosis plays a role not only in advanced tumors but also at the very earliest stages of neoplasia. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8755583

  15. Specific immunotherapy by genetically engineered APCs: the "guided missile" strategy.

    PubMed

    Wu, B; Wu, J M; Miagkov, A; Adams, R N; Levitsky, H I; Drachman, D B

    2001-04-01

    We tested the hypothesis that APCs genetically engineered to present an Ag and to express Fas ligand (FasL) simultaneously can target and eliminate Ag-specific T cells. Transgenic T cells specific for influenza hemagglutinin (HA) were used as targets. We prepared recombinant vaccinia virus vectors (VVV) to transfer the gene constructs individually or simultaneously into APCs. We prevented unwanted viral replication by attenuating the VVVs with psoralen-UV light treatment. For presentation of the HA Ag, APCs were transduced with cDNA for HA flanked by sequences of the lysosome-associated membrane protein that direct efficient processing and presentation of the Ag by APCs. As a "warhead" for the APCs, we transduced them with the gene for FasL, which induces apoptosis of Fas-expressing activated T cells. To protect the transduced APCs from self-destruction by FasL, we transferred cDNA for a truncated form of Fas-associated death domain, which inhibits Fas-mediated cell death. Our results show that the engineered APCs effectively expressed the genes of interest. APCs transduced with VVV carrying all three gene constructs specifically killed HA-transgenic T cells in culture. Coculture with T cells specific for an unrelated Ag (OVA) had no significant effect. Our in vitro findings show that APCs can be genetically engineered to target and kill Ag-specific T cells and represent a promising novel strategy for the specific treatment of autoimmune diseases.

  16. Gene Expression Profile of Colon Mucosa after Cytotoxic Insult in wt and Apc-Mutated Pirc Rats: Possible Relation to Resistance to Apoptosis during Carcinogenesis

    PubMed Central

    Luceri, Cristina; Lodovici, Maura; Crucitta, Stefania; Caderni, Giovanna

    2016-01-01

    Apc-mutated Pirc rats, spontaneously developing intestinal tumours, are resistant to 1,2-dimethylhydrazine- (DMH-) induced colon apoptosis. To understand this phenomenon, we analyzed the expression of genotoxic stress-related genes Mgmt, Gsta1, and Gstp1 in the colon of wt and Pirc rats in basal conditions and 24 h after DMH; plasmatic oxidant/antioxidant status was also evaluated. After DMH, Mgmt expression was increased in both genotypes but significantly only in wt rats; Gsta1 expression was significantly increased in both genotypes. Gstp1 expression did not vary after DMH but was lower in Pirc rats. Moreover, for each genotype, we studied by microarray technique whole gene expression profile after DMH. By unsupervised cluster analysis, 28 genes were differentially modulated between the two genotypes. Among them were interferon-induced genes Irf7, Oas1a, Oasl2, and Isg15 and the transcription factor Taf6l, overexpressed in DMH-treated wt rats and unchanged in Pirc rats. RT-PCR confirmed their overexpression in DMH-treated wt rats and showed a slighter variation in DMH-treated Pirc rats. Taken together, despite a blunted induction of Irf7, Oas1a, and Mgmt, defective apoptosis in Pirc rats 24 h after DMH is not mirrored by major differences in gene expression compared with wt rats. PMID:27840820

  17. Gene Expression Profile of Colon Mucosa after Cytotoxic Insult in wt and Apc-Mutated Pirc Rats: Possible Relation to Resistance to Apoptosis during Carcinogenesis.

    PubMed

    Femia, Angelo Pietro; Luceri, Cristina; Lodovici, Maura; Crucitta, Stefania; Caderni, Giovanna

    2016-01-01

    Apc-mutated Pirc rats, spontaneously developing intestinal tumours, are resistant to 1,2-dimethylhydrazine- (DMH-) induced colon apoptosis. To understand this phenomenon, we analyzed the expression of genotoxic stress-related genes Mgmt, Gsta1, and Gstp1 in the colon of wt and Pirc rats in basal conditions and 24 h after DMH; plasmatic oxidant/antioxidant status was also evaluated. After DMH, Mgmt expression was increased in both genotypes but significantly only in wt rats; Gsta1 expression was significantly increased in both genotypes. Gstp1 expression did not vary after DMH but was lower in Pirc rats. Moreover, for each genotype, we studied by microarray technique whole gene expression profile after DMH. By unsupervised cluster analysis, 28 genes were differentially modulated between the two genotypes. Among them were interferon-induced genes Irf7, Oas1a, Oasl2, and Isg15 and the transcription factor Taf6l, overexpressed in DMH-treated wt rats and unchanged in Pirc rats. RT-PCR confirmed their overexpression in DMH-treated wt rats and showed a slighter variation in DMH-treated Pirc rats. Taken together, despite a blunted induction of Irf7, Oas1a, and Mgmt, defective apoptosis in Pirc rats 24 h after DMH is not mirrored by major differences in gene expression compared with wt rats.

  18. Selective targeting of mutant adenomatous polyposis coli (APC) in colorectal cancer.

    PubMed

    Zhang, Lu; Theodoropoulos, Panayotis C; Eskiocak, Ugur; Wang, Wentian; Moon, Young-Ah; Posner, Bruce; Williams, Noelle S; Wright, Woodring E; Kim, Sang Bum; Nijhawan, Deepak; De Brabander, Jef K; Shay, Jerry W

    2016-10-19

    Mutations in the adenomatous polyposis coli (APC) gene are common in colorectal cancer (CRC), and more than 90% of those mutations generate stable truncated gene products. We describe a chemical screen using normal human colonic epithelial cells (HCECs) and a series of oncogenically progressed HCECs containing a truncated APC protein. With this screen, we identified a small molecule, TASIN-1 (truncated APC selective inhibitor-1), that specifically kills cells with APC truncations but spares normal and cancer cells with wild-type APC. TASIN-1 exerts its cytotoxic effects through inhibition of cholesterol biosynthesis. In vivo administration of TASIN-1 inhibits tumor growth of CRC cells with truncated APC but not APC wild-type CRC cells in xenograft models and in a genetically engineered CRC mouse model with minimal toxicity. TASIN-1 represents a potential therapeutic strategy for prevention and intervention in CRC with mutant APC.

  19. A new conditional Apc-mutant mouse model for colorectal cancer.

    PubMed

    Robanus-Maandag, Els C; Koelink, Pim J; Breukel, Cor; Salvatori, Daniela C F; Jagmohan-Changur, Shantie C; Bosch, Cathy A J; Verspaget, Hein W; Devilee, Peter; Fodde, Riccardo; Smits, Ron

    2010-05-01

    Mutations of the adenomatous polyposis coli (APC) gene predispose individuals to familial adenomatous polyposis (FAP), characterized by multiple tumours in the large intestine. Most mouse models heterozygous for truncating mutant Apc alleles mimic FAP, however, the intestinal tumours occur mainly in the small intestine. To model large intestinal tumours, we generated a new conditional Apc-mutant allele, Apc(15lox), with exon 15 flanked by loxP sites. Similar survival of Apc(1638N/15lox) and Apc(1638N/+) mice indicated that the normal function of Apc was not impaired by the loxP sites. Deletion of exon 15, encoding nearly all functional Apc domains and containing the polyadenylation signal, resulted in a mutant allele expressing low levels of a 74 kDa truncated Apc protein. Germ line Cre-mediated deletion of exon 15 resulted in Apc(Delta15/+) mice, showing a severe Apc(Min/+)-like phenotype characterized by multiple tumours in the small intestine and early lethality. In contrast, conditional Cre-mediated deletion of exon 15 specifically directed to the epithelia of distal small and large intestine of FabplCre;Apc(15lox/+) mice led to longer survival and to tumours that developed predominantly in the large intestine, mimicking human FAP-associated colorectal cancer and sporadic colorectal cancer. We conclude that the FabplCre;Apc(15lox/+) mouse should be an attractive model for studies on prevention and treatment of colorectal cancer.

  20. Genetic Mechanisms in Apc-Mediated Mammary Tumorigenesis

    PubMed Central

    Kuraguchi, Mari; Ohene-Baah, Nana Yaw; Sonkin, Dmitriy; Bronson, Roderick Terry; Kucherlapati, Raju

    2009-01-01

    Many components of Wnt/β-catenin signaling pathway also play critical roles in mammary tumor development, yet the role of the tumor suppressor gene APC (adenomatous polyposis coli) in breast oncongenesis is unclear. To better understand the role of Apc in mammary tumorigenesis, we introduced conditional Apc mutations specifically into two different mammary epithelial populations using K14-cre and WAP-cre transgenic mice that express Cre-recombinase in mammary progenitor cells and lactating luminal cells, respectively. Only the K14-cre–mediated Apc heterozygosity developed mammary adenocarcinomas demonstrating histological heterogeneity, suggesting the multilineage progenitor cell origin of these tumors. These tumors harbored truncation mutation in a defined region in the remaining wild-type allele of Apc that would retain some down-regulating activity of β-catenin signaling. Activating mutations at codons 12 and 61 of either H-Ras or K-Ras were also found in a subset of these tumors. Expression profiles of acinar-type mammary tumors from K14-cre; ApcCKO/+ mice showed luminal epithelial gene expression pattern, and clustering analysis demonstrated more correlation to MMTV-neu model than to MMTV-Wnt1. In contrast, neither WAP-cre–induced Apc heterozygous nor homozygous mutations resulted in predisposition to mammary tumorigenesis, although WAP-cre–mediated Apc deficiency resulted in severe squamous metaplasia of mammary glands. Collectively, our results suggest that not only the epithelial origin but also a certain Apc mutations are selected to achieve a specific level of β-catenin signaling optimal for mammary tumor development and explain partially the colon- but not mammary-specific tumor development in patients that carry germline mutations in APC. PMID:19197353

  1. A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC

    PubMed Central

    Schell, Michael J.; Yang, Mingli; Teer, Jamie K.; Lo, Fang Yin; Madan, Anup; Coppola, Domenico; Monteiro, Alvaro N. A.; Nebozhyn, Michael V.; Yue, Binglin; Loboda, Andrey; Bien-Willner, Gabriel A.; Greenawalt, Danielle M.; Yeatman, Timothy J.

    2016-01-01

    Colorectal cancer (CRC) is a highly heterogeneous disease, for which prognosis has been relegated to clinicopathologic staging for decades. There is a need to stratify subpopulations of CRC on a molecular basis to better predict outcome and assign therapies. Here we report targeted exome-sequencing of 1,321 cancer-related genes on 468 tumour specimens, which identified a subset of 17 genes that best classify CRC, with APC playing a central role in predicting overall survival. APC may assume 0, 1 or 2 truncating mutations, each with a striking differential impact on survival. Tumours lacking any APC mutation carry a worse prognosis than single APC mutation tumours; however, two APC mutation tumours with mutant KRAS and TP53 confer the poorest survival among all the subgroups examined. Our study demonstrates a prognostic role for APC and suggests that sequencing of APC may have clinical utility in the routine staging and potential therapeutic assignment for CRC. PMID:27302369

  2. Wild-type APC predicts poor prognosis in microsatellite-stable proximal colon cancer

    PubMed Central

    Jorissen, Robert N; Christie, Michael; Mouradov, Dmitri; Sakthianandeswaren, Anuratha; Li, Shan; Love, Christopher; Xu, Zheng-Zhou; Molloy, Peter L; Jones, Ian T; McLaughlin, Stephen; Ward, Robyn L; Hawkins, Nicholas J; Ruszkiewicz, Andrew R; Moore, James; Burgess, Antony W; Busam, Dana; Zhao, Qi; Strausberg, Robert L; Lipton, Lara; Desai, Jayesh; Gibbs, Peter; Sieber, Oliver M

    2015-01-01

    Background: APC mutations (APC-mt) occur in ∼70% of colorectal cancers (CRCs), but their relationship to prognosis is unclear. Methods: APC prognostic value was evaluated in 746 stage I–IV CRC patients, stratifying for tumour location and microsatellite instability (MSI). Microarrays were used to identify a gene signature that could classify APC mutation status, and classifier ability to predict prognosis was examined in an independent cohort. Results: Wild-type APC microsatellite stable (APC-wt/MSS) tumours from the proximal colon showed poorer overall and recurrence-free survival (OS, RFS) than APC-mt/MSS proximal, APC-wt/MSS distal and APC-mt/MSS distal tumours (OS HR⩾1.79, P⩽0.015; RFS HR⩾1.88, P⩽0.026). APC was a stronger prognostic indicator than BRAF, KRAS, PIK3CA, TP53, CpG island methylator phenotype or chromosomal instability status (P⩽0.036). Microarray analysis similarly revealed poorer survival in MSS proximal cancers with an APC-wt-like signature (P=0.019). APC status did not affect outcomes in MSI tumours. In a validation on 206 patients with proximal colon cancer, APC-wt-like signature MSS cases showed poorer survival than APC-mt-like signature MSS or MSI cases (OS HR⩾2.50, P⩽0.010; RFS HR⩾2.14, P⩽0.025). Poor prognosis APC-wt/MSS proximal tumours exhibited features of the sessile serrated neoplasia pathway (P⩽0.016). Conclusions: APC-wt status is a marker of poor prognosis in MSS proximal colon cancer. PMID:26305864

  3. Differential RNA-seq analysis comparing APC-defective and APC-restored SW480 colorectal cancer cells.

    PubMed

    King, Lauren E; Love, Christopher G; Sieber, Oliver M; Faux, Maree C; Burgess, Antony W

    2016-03-01

    The adenomatous polyposis coli (APC) tumour suppressor gene is mutated in about 80% of colorectal cancers (CRC) Brannon et al. (2014) [1]. APC is a large multifunctional protein that regulates many biological functions including Wnt signalling (through the regulation of beta-catenin stability) Reya and Clevers (2005) [2], cell migration Kroboth et al. (2007), Sansom et al. (2004) [3], [4], mitosis Kaplan et al. (2001) [5], cell adhesion Faux et al. (2004), Carothers et al. (2001) [6], [7] and differentiation Sansom et al. (2004) [4]. Although the role of APC in CRC is often described as the deregulation of Wnt signalling, its other biological functions suggest that there are other factors at play that contribute to the onset of adenomas and the progression of CRC upon the truncation of APC. To identify genes and pathways that are dysregulated as a consequence of loss of function of APC, we compared the gene expression profiles of the APC mutated human CRC cell line SW480 following reintroduction of wild-type APC (SW480 + APC) or empty control vector (SW480 + vector control) Faux et al. (2004) . Here we describe the RNA-seq data derived for three biological replicates of parental SW480, SW480 + vector control and SW480 + APC cells, and present the bioinformatics pipeline used to test for differential gene expression and pathway enrichment analysis. A total of 1735 genes showed significant differential expression when APC was restored and were enriched for genes associated with cell polarity, Wnt signalling and the epithelial to mesenchymal transition. There was additional enrichment for genes involved in cell-cell adhesion, cell-matrix junctions, angiogenesis, axon morphogenesis and cell movement. The raw and analysed RNA-seq data have been deposited in the Gene Expression Omnibus (GEO) database under accession number GSE76307. This dataset is useful for further investigations of the impact of APC mutation on the properties of colorectal cancer cells.

  4. Differential RNA-seq analysis comparing APC-defective and APC-restored SW480 colorectal cancer cells

    PubMed Central

    King, Lauren E.; Love, Christopher G.; Sieber, Oliver M.; Faux, Maree C.; Burgess, Antony W.

    2016-01-01

    The adenomatous polyposis coli (APC) tumour suppressor gene is mutated in about 80% of colorectal cancers (CRC) Brannon et al. (2014) [1]. APC is a large multifunctional protein that regulates many biological functions including Wnt signalling (through the regulation of beta-catenin stability) Reya and Clevers (2005) [2], cell migration Kroboth et al. (2007), Sansom et al. (2004) [3], [4], mitosis Kaplan et al. (2001) [5], cell adhesion Faux et al. (2004), Carothers et al. (2001) [6], [7] and differentiation Sansom et al. (2004) [4]. Although the role of APC in CRC is often described as the deregulation of Wnt signalling, its other biological functions suggest that there are other factors at play that contribute to the onset of adenomas and the progression of CRC upon the truncation of APC. To identify genes and pathways that are dysregulated as a consequence of loss of function of APC, we compared the gene expression profiles of the APC mutated human CRC cell line SW480 following reintroduction of wild-type APC (SW480 + APC) or empty control vector (SW480 + vector control) Faux et al. (2004) . Here we describe the RNA-seq data derived for three biological replicates of parental SW480, SW480 + vector control and SW480 + APC cells, and present the bioinformatics pipeline used to test for differential gene expression and pathway enrichment analysis. A total of 1735 genes showed significant differential expression when APC was restored and were enriched for genes associated with cell polarity, Wnt signalling and the epithelial to mesenchymal transition. There was additional enrichment for genes involved in cell–cell adhesion, cell–matrix junctions, angiogenesis, axon morphogenesis and cell movement. The raw and analysed RNA-seq data have been deposited in the Gene Expression Omnibus (GEO) database under accession number GSE76307. This dataset is useful for further investigations of the impact of APC mutation on the properties of colorectal cancer cells

  5. Intestinal flora of FAP patients containing APC-like sequences.

    PubMed

    Hainova, K; Adamcikova, Z; Ciernikova, S; Stevurkova, V; Tyciakova, S; Zajac, V

    2014-01-01

    Colorectal cancer mortality is one of the most common cause of cancer-related mortality. A multiple risk factors are associated with colorectal cancer, including hereditary, enviromental and inflammatory syndromes affecting the gastrointestinal tract. Familial adenomatous polyposis (FAP) is characterized by the emergence of hundreds to thousands of colorectal adenomatous polyps and FAP syndrome is caused by mutations within the adenomatous polyposis coli (APC) tumor suppressor gene. We analyzed 21 rectal bacterial subclones isolated from FAP patient 41-1 with confirmed 5bp ACAAA deletion within codons 1060-1063 for the presence of APC-like sequences in longest exon 15. The studied section was defined by primers 15Efor-15Erev, what correlates with mutation cluster region (MCR) in which the 75% of all APC germline mutations were detected. More than 90% homology was showed by sequencing and subsequent software comparison. The expression of APC-like sequences was demostrated by Western blot analysis using monoclonal and polyclonal antibodies against APC protein. To study missing link between the DNA analysis (PCR, DNA sequencing) and protein expresion experiments (Western blotting) we analyzed bacterial transcripts containing the 15Efor-15Erev sequence of APC gene by reverse transcription-PCR, what indicated that an APC gene derived fragment may be produced. We observed 97-100 % homology after computer comparison of cDNA PCR products. Our results suggest that presence of APC-like sequences in intestinal/rectal bacteria is enrichment of bacterial genetic information in which horizontal gene transfer between humans and microflora play an important role.

  6. The Anaphase-Promoting Complex (APC) ubiquitin ligase affects chemosensory behavior in C. elegans

    PubMed Central

    Wang, Julia; Jennings, Alexandra K.

    2016-01-01

    The regulation of fundamental aspects of neurobiological function has been linked to the ubiquitin signaling system (USS), which regulates the degradation and activity of proteins and is catalyzed by E1, E2, and E3 enzymes. The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that controls diverse developmental and signaling processes in post-mitotic neurons; however, potential roles for the APC in sensory function have yet to be explored. In this study, we examined the effect of the APC ubiquitin ligase on chemosensation in Caenorhabditis elegans by testing chemotaxis to the volatile odorants, diacetyl, pyrazine, and isoamyl alcohol, to which wild-type worms are attracted. Animals with loss of function mutations in either of two alleles (g48 and ye143) of the gene encoding the APC subunit EMB-27 APC6 showed increased chemotaxis towards diacetyl and pyrazine, odorants sensed by AWA neurons, but exhibited normal chemotaxis to isoamyl alcohol, which is sensed by AWC neurons. The statistically significant increase in chemotaxis in the emb-27 APC6 mutants suggests that the APC inhibits AWA-mediated chemosensation in C. elegans. Increased chemotaxis to pyrazine was also seen with mutants lacking another essential APC subunit, MAT-2 APC1; however, mat-2 APC1 mutants exhibited wild type responses to diacetyl. The difference in responsiveness of these two APC subunit mutants may be due to differential strength of these hypomorphic alleles or may indicate the presence of functional sub-complexes of the APC at work in this process. These findings are the first evidence for APC-mediated regulation of chemosensation and lay the groundwork for further studies aimed at identifying the expression levels, function, and targets of the APC in specific sensory neurons. Because of the similarity between human and C. elegans nervous systems, the role of the APC in sensory neurons may also advance our understanding of human sensory function and disease. PMID

  7. Dietary folate and APC mutations in sporadic colorectal cancer.

    PubMed

    de Vogel, Stefan; van Engeland, Manon; Lüchtenborg, Margreet; de Bruïne, Adriaan P; Roemen, Guido M J M; Lentjes, Marjolein H F M; Goldbohm, R Alexandra; van den Brandt, Piet A; de Goeij, Anton F P M; Weijenberg, Matty P

    2006-12-01

    Folate deficiency has been associated with colorectal cancer risk and may be involved in colorectal carcinogenesis through increased chromosome instability, gene mutations, and aberrant DNA methylation. Within the Netherlands Cohort Study on diet and cancer, we investigated the associations between dietary folate intake and colorectal cancer risk with (APC(+)) and without (APC(-)) truncating APC mutations, accounting for hMLH1 expression and K-ras mutations. In total, 528 cases and 4200 subcohort members were available for data analyses of the study cohort (n = 120,852) from a follow-up period between 2.3 and 7.3 y after baseline. Adjusted gender-specific incidence rate ratios (RR) over tertiles of folate intake were calculated in case-cohort analyses for colon and rectal cancer. Although relatively high folate intake was not associated with overall colorectal cancer risk, it reduced the risk of APC(-)colon tumors in men (RR 0.58, 95% CI 0.32-1.05, P(trend) = 0.06 for the highest vs. lowest tertile of folate intake). In contrast, it was positively associated with APC(+) colon tumors in men (highest vs. lowest tertile: RR 2.77, 95% CI 1.29-5.95, P(trend) = 0.008) and was even stronger when the lack of hMLH1 expression and K-ras mutations were excluded (RR 3.99, 95% CI 1.43-11.14, P(trend) = 0.007). Such positive associations were not observed among women; nor was folate intake associated with rectal cancer when APC mutation status was taken into account. Relatively high folate consumption reduced the risk of APC(-) colon tumors, but folate intake was positively associated with APC(+) colon tumors among men. These opposite results may indicate that folate enhances colorectal carcinogenesis through a distinct APC mutated pathway.

  8. A knock-in mouse model reveals roles for nuclear Apc in cell proliferation, Wnt signal inhibition and tumor suppression.

    PubMed

    Zeineldin, M; Cunningham, J; McGuinness, W; Alltizer, P; Cowley, B; Blanchat, B; Xu, W; Pinson, D; Neufeld, K L

    2012-05-10

    Mutation of the tumor suppressor adenomatous polyposis coli (APC) is considered an initiating step in the genesis of the vast majority of colorectal cancers. APC inhibits the Wnt-signaling pathway by targeting the proto-oncogene β-catenin for destruction by cytoplasmic proteasomes. In the presence of a Wnt signal, or in the absence of functional APC, β-catenin can serve as a transcription cofactor for genes required for cell proliferation such as cyclin-D1 and c-Myc. In cultured cells, APC shuttles between the nucleus and the cytoplasm, with nuclear APC implicated in the inhibition of Wnt target gene expression. Adopting a genetic approach to evaluate the functions of nuclear APC in the context of a whole organism, we generated a mouse model with mutations that inactivate the nuclear localization signals (NLSs) of Apc (Apc(mNLS)). Apc(mNLS/mNLS) mice are viable and fractionation of mouse embryonic fibroblasts (MEFs) isolated from these mice revealed a significant reduction in nuclear Apc as compared with Apc(+/+) MEFs. The levels of Apc and β-catenin protein were not significantly altered in small intestinal epithelia from Apc(mNLS/mNLS) mice. Compared with Apc(+/+) mice, Apc(mNLS/mNLS) mice showed increased proliferation in epithelial cells from the jejunum, ileum and colon. These same tissues from Apc(mNLS/mNLS) mice showed more mRNA from three genes upregulated in response to canonical Wnt signal, c-Myc, axin-2 and cyclin-D1, and less mRNA from Hath-1, which is downregulated in response to Wnt. These observations suggest a role for nuclear Apc in the inhibition of canonical Wnt signaling and the control of epithelial proliferation in intestinal tissue. Furthermore, we found Apc(Min/+) mice, which harbor a mutation that truncates Apc, to have an increased polyp size and multiplicity if they also carry the Apc(mNLS) allele. Taken together, this analysis of the novel Apc(mNLS) mouse model supports a role for nuclear Apc in the control of Wnt target genes

  9. APCS — EDRN Public Portal

    Cancer.gov

    APCS, a secreted glycoprotein found in serum and urine, interacts with DNA and histones and may scavenge nuclear material released from damaged circulating cells. It is thought to control the degradation of chromatin and has been demonstrated to bind to apoptotic cells at an early stage, which raises the possibility that it is involved in dealing with apoptotic cells in vivo. APCS may also function as a calcium-dependent lectin. APCS is a member of the pentaxin family of proteins, which characteristically bind two calcium ions per subunit and have a a discoid arrangement of 5 non-covalently bound subunits.

  10. Fission Yeast Apc15 Stabilizes MCC-Cdc20-APC/C Complexes, Ensuring Efficient Cdc20 Ubiquitination and Checkpoint Arrest.

    PubMed

    May, Karen M; Paldi, Flora; Hardwick, Kevin G

    2017-03-28

    During mitosis, cells must segregate the replicated copies of their genome to their daughter cells with extremely high fidelity. Segregation errors lead to an abnormal chromosome number (aneuploidy), which typically results in disease or cell death [1]. Chromosome segregation and anaphase onset are initiated through the action of the multi-subunit E3 ubiquitin ligase known as the anaphase-promoting complex or cyclosome (APC/C [2]). The APC/C is inhibited by the spindle checkpoint in the presence of kinetochore attachment defects [3, 4]. Here we demonstrate that two non-essential APC/C subunits (Apc14 and Apc15) regulate association of spindle checkpoint proteins, in the form of the mitotic checkpoint complex (MCC), with the APC/C. apc14Δ mutants display increased MCC association with the APC/C and are unable to silence the checkpoint efficiently. Conversely, apc15Δ mutants display reduced association between the MCC and APC/C, are defective in poly-ubiquitination of Cdc20, and are checkpoint defective. In vitro reconstitution studies have shown that human MCC-APC/C can contain two molecules of Cdc20 [5-7]. Using a yeast strain expressing two Cdc20 genes with different epitope tags, we show by co-immunoprecipitation that this is true in vivo. MCC binding to the second molecule of Cdc20 is mediated via the C-terminal KEN box in Mad3. Somewhat surprisingly, complexes containing both molecules of Cdc20 accumulate in apc15Δ cells, and the implications of this observation are discussed.

  11. OGA heterozygosity suppresses intestinal tumorigenesis in Apc(min/+) mice.

    PubMed

    Yang, Y R; Jang, H-J; Yoon, S; Lee, Y H; Nam, D; Kim, I S; Lee, H; Kim, H; Choi, J H; Kang, B H; Ryu, S H; Suh, P-G

    2014-07-07

    Emerging evidence suggests that aberrant O-GlcNAcylation is associated with tumorigenesis. Many oncogenic factors are O-GlcNAcylated, which modulates their functions. However, it remains unclear how O-GlcNAcylation and O-GlcNAc cycling enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), affect the development of cancer in animal models. In this study, we show that reduced level of OGA attenuates colorectal tumorigenesis induced by Adenomatous polyposis coli (Apc) mutation. The levels of O-GlcNAcylation and O-GlcNAc cycling enzymes were simultaneously upregulated in intestinal adenomas from mice, and in human patients. In two independent microarray data sets, the expression of OGA and OGT was significantly associated with poor cancer-specific survival of colorectal cancer (CRC) patients. In addition, OGA heterozygosity, which results in increased levels of O-GlcNAcylation, attenuated intestinal tumor formation in the Apc(min/+) background. Apc(min/+) OGA(+/-) mice exhibited a significantly increased survival rate compared with Apc(min/+) mice. Consistent with this, Apc(min/+) OGA(+/-) mice expressed lower levels of Wnt target genes than Apc(min/+). However, the knockout of OGA did not affect Wnt/β-catenin signaling. Overall, these findings suggest that OGA is crucial for tumor growth in CRC independently of Wnt/β-catenin signaling.

  12. Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal cancer: determination of frequency and distribution pattern

    PubMed Central

    Al-Shamsi, Humaid O.; Jones, Jeremy; Fahmawi, Yazan; Dahbour, Ibrahim; Tabash, Aziz; Abdel-Wahab, Reham; Abousamra, Ahmed O. S.; Shaw, Kenna R.; Xiao, Lianchun; Hassan, Manal M.; Kipp, Benjamin R.; Kopetz, Scott; Soliman, Amr S.; McWilliams, Robert R.; Wolff, Robert A.

    2016-01-01

    Background The frequency rates of mutations such as KRAS, NRAS, BRAF, and PIK3CA in colorectal cancer (CRC) differ among populations. The aim of this study was to assess mutation frequencies in the Arab population and determine their correlations with certain clinicopathological features. Methods Arab patients from the Arab Gulf region and a population of age- and sex-matched Western patients with CRC whose tumors were evaluated with next-generation sequencing (NGS) were identified and retrospectively reviewed. The mutation rates of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC were recorded, along with clinicopathological features. Other somatic mutation and their rates were also identified. Fisher’s exact test was used to determine the association between mutation status and clinical features. Results A total of 198 cases were identified; 99 Arab patients and 99 Western patients. Fifty-two point seven percent of Arab patients had stage IV disease at initial presentation, 74.2% had left-sided tumors. Eighty-nine point two percent had tubular adenocarcinoma and 10.8% had mucinous adenocarcinoma. The prevalence rates of KRAS, NRAS, BRAF, PIK3CA, TP53, APC, SMAD, FBXW7 mutations in Arab population were 44.4%, 4%, 4%, 13.1%, 52.5%, 27.3%, 2% and 3% respectively. Compared to 48.4%, 4%, 4%, 12.1%, 47.5%, 24.2%, 11.1% and 0% respectively in matched Western population. Associations between these mutations and patient clinicopathological features were not statistically significant. Conclusions This is the first study to report comprehensive hotspot mutations using NGS in Arab patients with CRC. The frequency of KRAS, NRAS, BRAF, TP53, APC and PIK3CA mutations were similar to reported frequencies in Western population except SMAD4 that had a lower frequency and higher frequency of FBXW7 mutation. PMID:28078112

  13. Reduced expression of APC-1B but not APC-1A by the deletion of promoter 1B is responsible for familial adenomatous polyposis

    PubMed Central

    Yamaguchi, Kiyoshi; Nagayama, Satoshi; Shimizu, Eigo; Komura, Mitsuhiro; Yamaguchi, Rui; Shibuya, Tetsuo; Arai, Masami; Hatakeyama, Seira; Ikenoue, Tsuneo; Ueno, Masashi; Miyano, Satoru; Imoto, Seiya; Furukawa, Yoichi

    2016-01-01

    Germline mutations in the tumor suppressor gene APC are associated with familial adenomatous polyposis (FAP). Here we applied whole-genome sequencing (WGS) to the DNA of a sporadic FAP patient in which we did not find any pathological APC mutations by direct sequencing. WGS identified a promoter deletion of approximately 10 kb encompassing promoter 1B and exon1B of APC. Additional allele-specific expression analysis by deep cDNA sequencing revealed that the deletion reduced the expression of the mutated APC allele to as low as 11.2% in the total APC transcripts, suggesting that the residual mutant transcripts were driven by other promoter(s). Furthermore, cap analysis of gene expression (CAGE) demonstrated that the deleted promoter 1B region is responsible for the great majority of APC transcription in many tissues except the brain. The deletion decreased the transcripts of APC-1B to 39–45% in the patient compared to the healthy controls, but it did not decrease those of APC-1A. Different deletions including promoter 1B have been reported in FAP patients. Taken together, our results strengthen the evidence that analysis of structural variations in promoter 1B should be considered for the FAP patients whose pathological mutations are not identified by conventional direct sequencing. PMID:27217144

  14. APC Yin-Yang haplotype associated with colorectal cancer risk.

    PubMed

    Garre, P; DE LA Hoya, M; Iniesta, P; Romera, A; Llovet, P; Gonzalez, S; Perez-Segura, P; Capella, G; Diaz-Rubio, E; Caldes, T

    2010-09-01

    The Yin-Yang haplotype is defined as two mismatched haplotypes (Yin and Yang) representing the majority of the existing haplotypes in a particular genomic region. The human adenomatous polyposis coli (APC) gene shows a Yin-Yang haplotype pattern accounting for 84% of all of the haplotypes existing in the Spanish population. Several association studies have been published regarding APC gene variants (SNPs and haplotypes) and colorectal cancer (CRC) risk. However, no studies concerning diplotype structure and CRC risk have been conducted. The aim of the present study was to investigate whether the APC Yin-Yang homozygote diplotype is over-represented in patients with sporadic CRC when compared to its distribution in controls, and its association with CRC risk. TaqMan(®) assays were used to genotype three tagSNPs selected across the APC Yin-Yang region. Frequencies of the APC Yin-Yang tagSNP alleles, haplotype and diplotype of 378 CRC cases and 642 controls were compared. Two Spanish CRC group samples were included [Hospital Clínico San Carlos in Madrid (HCSC) and Instituto Catalán de Oncología in Barcelona (ICO)]. Analysis of 157 consecutive CRC patients and 405 control subjects from HCSC showed a significative effect for the risk of CRC (OR=1.93; 95% CI 1.32-2.81; P=0.001). However, this effect was not confirmed in 221 CRC patients and 237 control subjects from ICO (OR=0.89; 95% CI 0.61-1.28; P=0.521). We found a significant association between the APC homozygote Yin-Yang diplotype and the risk of colorectal cancer in the HCSC samples. However, we did not observe this association in the ICO samples. These observations suggest that a study with a larger Spanish cohort is necessary to confirm the effects of the APC Yin-Yang diplotype on the risk of CRC.

  15. PTT analysis of polyps from FAP patients reveals a great majority of APC truncating mutations

    SciTech Connect

    Luijt, R.B. van der; Khan, P.M.; Tops, C.M.J.

    1994-09-01

    The adenomatous polyposis coli (APC) gene plays an important role in colorectal carcinogenesis. Germline APC mutations are associated with familial adenomatous polyposis (FAP), an autosomal dominantly inherited predisposition to colorectal cancer, characterized by the development of numerous adenomatous polyps in the large intestine. In order to investigate whether somatic inactivation of the remaining APC allele is necessary for adenoma formation, we collected multiple adenomatous polyps from individual FAP patients and investigated the presence of somatic mutations in the APC gene. The analysis of somatic APC mutations in these tumor samples was performed using a rapid and sensitive assay, called the protein truncation test (PTT). Chain-terminating somatic APC mutations were detected in the great majority of the tumor samples investigated. As expected, these mutations were mainly located in the mutation cluster region (MCR) in exon 15. Our results confirm that somatic mutation of the second APC allele is required for adenoma formation in FAP. Interestingly, in the polyps investigated in our study, the second APC allele is somatically inactivated through point mutation leading to a stop codon rather than by loss of heterozygosity. The observation that somatic second hits in APC are required for tumor development in FAP is in apparent accordance with the Knudson hypothesis for classical tumor suppressor genes. However, it is yet unknown whether chain-terminating APC mutations lead to a truncated protein exerting a dominant-negative effect or whether these mutations result in a null allele. Further investigation of this important issue will hopefully provide a better understanding of the mechanism of action of the mutated APC alleles in colorectal carcinogenesis.

  16. lemmingA encodes the Apc11 subunit of the APC/C in Drosophila melanogaster that forms a ternary complex with the E2-C type ubiquitin conjugating enzyme, Vihar and Morula/Apc2

    PubMed Central

    2012-01-01

    Background Ubiquitin-dependent protein degradation is a critical step in key cell cycle events, such as metaphase-anaphase transition and mitotic exit. The anaphase promoting complex/cyclosome (APC/C) plays a pivotal role in these transitions by recognizing and marking regulatory proteins for proteasomal degradation. Its overall structure and function has been elucidated mostly in yeasts and mammalian cell lines. The APC/C is, however, a multisubunit assembly with at least 13 subunits and their function and interaction within the complex is still relatively uncharacterized, particularly in metazoan systems. Here, lemming (lmg) mutants were used to study the APC/C subunit, Apc11, and its interaction partners in Drosophila melanogaster. Results The lmg gene was initially identified through a pharate adult lethal P element insertion mutation expressing developmental abnormalities and widespread apoptosis in larval imaginal discs and pupal abdominal histoblasts. Larval neuroblasts were observed to arrest mitosis in a metaphase-like state with highly condensed, scattered chromosomes and frequent polyploidy. These neuroblasts contain high levels of both cyclin A and cyclin B. The lmg gene was cloned by virtue of the lmg03424 P element insertion which is located in the 5' untranslated region. The lemming locus is transcribed to give a 2.0 kb mRNA that contains two ORFs, lmgA and lmgB. The lmgA ORF codes for a putative protein with more than 80% sequence homology to the APC11 subunit of the human APC/C. The 85 amino acid protein also contains a RING-finger motif characteristic of known APC11 subunits. The lmgA ORF alone was sufficient to rescue the lethal and mitotic phenotypes of the lmg138 null allele and to complement the temperature sensitive lethal phenotype of the APC11-myc9 budding yeast mutant. The LmgA protein interacts with Mr/Apc2, and they together form a binding site for Vihar, the E2-C type ubiquitin conjugating enzyme. Despite being conserved among

  17. APC-like congenital hypertrophy of the retinal pigment epithelium (CHRPE) in non-APC patients: Evidence for autosomal dominant transmission in one family

    SciTech Connect

    Thonney, E.; Munier, F.L. Pescia, G.

    1994-09-01

    The presence of congenital hypertrophy of the retinal pigment epithelium (CHRPE) is known to be the earliest phenotypic marker in carriers of a mutant allele of the adenomatous polyposis coli gene (APC). The specificity of CHRPE is known to be over 97%, provided that the lesions are bilateral and their total number higher than 4. In the present study, we describe 3 patients from 2 unrelated families with bilateral multiple asymptomatic CHRPE (8-17), normal visual function and no family history of APC. Clinical examination failed to detect other extracolonic signs of APC nor did a search for adenomatous polyps by colonscopy. In one family, the ocular phenotype was transmitted from a father to his only son. Mutation hot spots at codons 302, 622, 625, 1061 and 1309 of the APC gene (about 25% of germline mutations) were all tested normal. We postulate that these APC-free ocular findings reflect the allelic involvement of a mutant APC allele that remains to be characterized. However, involvement of another yet unrecognized autosomal dominant gene cannot be ruled out and additional families with this unique trait should be studied.

  18. Prevalence of mutations in APC, CTNNB1, and BRAF in Tunisian patients with sporadic colorectal cancer.

    PubMed

    Bougatef, Karim; Ouerhani, Slah; Moussa, Amel; Kourda, Nadia; Coulet, Florence; Colas, Chrystelle; Lahely, Yannick Blondeau; Najjar, Tawfik; Ben Jilani, Sarra; Benammar-Elgaaied, Amel; Soubrier, Florent; Marrakchi, Raja

    2008-11-01

    Sporadic colorectal tumorigenesis is caused by alterations in the Wnt (APC, CTNNB1) and Ras pathways. Our objective was to analyze the occurrence of these genetic alterations in relation to tumor and patient characteristics. The prevalence of somatic alteration in the hot-spot regions of the APC, BRAF, and CTNNB1 genes was investigated in 48 unselected and unrelated Tunisian patients with sporadic colorectal cancer, and the association between the molecular features at these genes in relation to tumor and patient characteristics (age at diagnosis, sex, tumor localization, stage, and differentiation) was analyzed. Loss of heterozygosity was observed at the APC locus in 52% of the analyzed tumors. 6 novel mutations were detected by polymerase chain reaction sequencing in the mutation cluster region of the APC gene. No mutations were observed in the CTNNB1 gene in any tumor, but 8% of tumors harbored mutation in the BRAF gene. Clinicopathological analyses showed an association between APC point mutations and the earliest occurrence of sporadic colorectal cancer. The findings confirm the heterogeneity of APC gene alteration and also reveal a particular profile of this pathology among Tunisian patients that confirms the epidemiological data for this country.

  19. E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton

    PubMed Central

    1994-01-01

    beta-Catenin is involved in the formation of adherens junctions of mammalian epithelia. It interacts with the cell adhesion molecule E- cadherin and also with the tumor suppressor gene product APC, and the Drosophila homologue of beta-catenin, armadillo, mediates morphogenetic signals. We demonstrate here that E-cadherin and APC directly compete for binding to the internal, armadillo-like repeats of beta-catenin; the NH2-terminal domain of beta-catenin mediates the interaction of the alternative E-cadherin and APC complexes to the cytoskeleton by binding to alpha-catenin. Plakoglobin (gamma-catenin), which is structurally related to beta-catenin, mediates identical interactions. We thus show that the APC tumor suppressor gene product forms strikingly similar associations as found in cell junctions and suggest that beta-catenin and plakoglobin are central regulators of cell adhesion, cytoskeletal interaction, and tumor suppression. PMID:7806582

  20. A knock-in mouse model reveals roles for nuclear Apc in cell proliferation, Wnt signal inhibition and tumor suppression

    PubMed Central

    Zeineldin, Maged; Cunningham, Jamie; McGuinness, William; Alltizer, Preston; Cowley, Brett; Blanchat, Bryan; Xu, Wenhao; Pinson, David; Neufeld, Kristi L.

    2011-01-01

    Mutation of the tumor suppressor adenomatous polyposis coli (APC) is considered an initiating step in the genesis of the vast majority of colorectal cancers. APC inhibits the Wnt signaling pathway by targeting proto-oncogene β-catenin for destruction by cytoplasmic proteasomes. In the presence of a Wnt signal, or in the absence of functional APC, β-catenin can serve as a transcription co-factor for genes required for cell proliferation such as cyclin D1 and c-Myc. In cultured cells, APC shuttles between the nucleus and cytoplasm, with nuclear APC implicated in inhibition of Wnt target gene expression. Taking a genetic approach to evaluate the functions of nuclear APC in the context of a whole organism, we generated a mouse model with mutations that inactivate the nuclear localization signals of Apc (ApcmNLS). ApcmNLS/mNLS mice are viable and fractionation of embryonic fibroblasts (MEFs) isolated from these mice revealed a significant reduction in nuclear Apc compared to Apc+/+ MEFs. The levels of Apc and β-catenin protein were not significantly altered in small intestinal epithelia from ApcmNLS/mNLS mice. Compared to Apc+/+ mice, ApcmNLS/mNLS mice displayed increased proliferation in epithelial cells from the jejunum, ileum, and colon. These same tissues from ApcmNLS/mNLS mice displayed more mRNA from three genes up-regulated in response to canonical Wnt signal, c-Myc, Axin2, and Cyclin D1, and less mRNA from Hath 1 which is down-regulated in response to Wnt. These observations suggest a role for nuclear Apc in inhibition of canonical Wnt signaling and control of epithelial proliferation in intestinal tissue. Furthermore, we found ApcMin/+ mice, which harbor a mutation that truncates Apc, have increased polyp size and multiplicity if they also carry the ApcmNLS allele. Taken together, this analysis of the novel ApcmNLS mouse model supports a role for nuclear Apc in control of Wnt target genes, intestinal epithelial cell proliferation and polyp formation. PMID

  1. Targeting the DNA replication checkpoint by pharmacologic inhibition of Chk1 kinase: a strategy to sensitize APC mutant colon cancer cells to 5-fluorouracil chemotherapy.

    PubMed

    Martino-Echarri, Estefania; Henderson, Beric R; Brocardo, Mariana G

    2014-10-30

    5-fluorouracil (5-FU) is the first line component used in colorectal cancer (CRC) therapy however even in combination with other chemotherapeutic drugs recurrence is common. Mutations of the adenomatous polyposis coli (APC) gene are considered as the initiating step of transformation in familial and sporadic CRCs. We have previously shown that APC regulates the cellular response to DNA replication stress and recently hypothesized that APC mutations might therefore influence 5-FU resistance. To test this, we compared CRC cell lines and show that those expressing truncated APC exhibit a limited response to 5-FU and arrest in G1/S-phase without undergoing lethal damage, unlike cells expressing wild-type APC. In SW480 APC-mutant CRC cells, 5-FU-dependent apoptosis was restored after transient expression of full length APC, indicating a direct link between APC and drug response. Furthermore, we could increase sensitivity of APC truncated cells to 5-FU by inactivating the Chk1 kinase using drug treatment or siRNA-mediated knockdown. Our findings identify mutant APC as a potential tumor biomarker of resistance to 5-FU, and importantly we show that APC-mutant CRC cells can be made more sensitive to 5-FU by use of Chk1 inhibitors.

  2. Somatic APC inactivation mechanisms in sporadic colorectal cancer cases in Hungary.

    PubMed

    Kámory, Eniko; Olasz, Judit; Csuka, Orsolya

    2008-03-01

    The role of germline inactivation of the adenomatosis polyposis coli (APC) gene in hereditary colorectal cancer is well known, being the most important cause of familial adenomatosus polyposis (FAP) syndrome. Hereditary cases with germline mutations, however, account only for 5-10% of colorectal cancers. The somatic inactivation of this gene has also been observed in sporadic cases. In order to examine the inactivation mechanisms of the APC gene we screened 70 sporadic colorectal cancer cases (27 rectal, 43 intestinal) of different stages for promoter hypermethylation, allelic imbalance (AI) and somatic mutations. The presence of promoter hypermethylation was observed in 21 cases (30%). Fifteen of the examined tumors (21%) showed AI, and also 15 tumors (21%) carried at least one somatic mutation. Thirteen of the detected alterations were novel variations: seven frameshifts, four missense mutations and two polymorphisms. Biallelic inactivation was found in 15 patients (21%). These results suggest that the inactivation of the APC gene is very common in sporadic colorectal cancer, and the main inactivation mechanism of the APC gene is promoter hypermethylation. Allelic imbalance has the same frequency as mutations, and mutations in the APC gene are more common in the early stages and in tumors located in the rectum.

  3. APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer.

    PubMed

    Tanaka, Noritaka; Mashima, Tetsuo; Mizutani, Anna; Sato, Ayana; Aoyama, Aki; Gong, Bo; Yoshida, Haruka; Muramatsu, Yukiko; Nakata, Kento; Matsuura, Masaaki; Katayama, Ryohei; Nagayama, Satoshi; Fujita, Naoya; Sugimoto, Yoshikazu; Seimiya, Hiroyuki

    2017-02-08

    In most colorectal cancers (CRCs), Wnt/β-catenin signaling is activated by loss-of-function mutations in the adenomatous polyposis coli (APC) gene and plays a critical role in tumorigenesis. Tankyrases poly(ADP-ribosyl)ate and destabilize Axins, a negative regulator of β-catenin, and upregulate β-catenin signaling. Tankyrase inhibitors downregulate β-catenin and are expected to be promising therapeutics for CRC. However, CRC cells are not always sensitive to tankyrase inhibitors, and predictive biomarkers for the drug sensitivity remain elusive. Here we demonstrate that the short-form APC mutations predict the sensitivity of CRC cells to tankyrase inhibitors. By using well-established CRC cell lines, we found that tankyrase inhibitors downregulated β-catenin in the drug-sensitive but not resistant CRC cells. The drug-sensitive cells showed higher Tcf/LEF transcriptional activity than the resistant cells and possessed 'short' truncated APCs lacking all seven β-catenin-binding 20-amino-acid repeats (20-AARs). By contrast, the drug-resistant cells possessed 'long' APC retaining two or more 20-AARs. Knockdown of the long APCs with two 20-AARs increased β-catenin, Tcf/LEF transcriptional activity and its target gene AXIN2 expression. Under these conditions, tankyrase inhibitors were able to downregulate β-catenin in the resistant cells. These results indicate that the long APCs are hypomorphic mutants whereas they exert a dominant-negative effect on Axin-dependent β-catenin degradation caused by tankyrase inhibitors. Finally, we established 16 patient-derived CRC cells and confirmed that the tankyrase inhibitor-responsive cells harbor the short-form APC mutations. These observations exemplify the predictive importance of APC mutations, the most common genetic alteration in CRCs, for molecular targeted therapeutics.

  4. Degradation of Ndd1 by APC/C(Cdh1) generates a feed forward loop that times mitotic protein accumulation.

    PubMed

    Sajman, Julia; Zenvirth, Drora; Nitzan, Mor; Margalit, Hanah; Simpson-Lavy, Kobi J; Reiss, Yuval; Cohen, Itamar; Ravid, Tommer; Brandeis, Michael

    2015-05-11

    Ndd1 activates the Mcm1-Fkh2 transcription factor to transcribe mitotic regulators. The anaphase-promoting complex/cyclosome activated by Cdh1 (APC/C(Cdh1)) mediates the degradation of proteins throughout G1. Here we show that the APC/C(Cdh1) ubiquitinates Ndd1 and mediates its degradation, and that APC/C(Cdh1) activity suppresses accumulation of Ndd1 targets. We confirm putative Ndd1 targets and identify novel ones, many of them APC/C(Cdh1) substrates. The APC/C(Cdh1) thus regulates these proteins in a dual manner—both pretranscriptionally and post-translationally, forming a multi-layered feedforward loop (FFL). We predict by mathematical modelling and verify experimentally that this FFL introduces a lag between APC/C(Cdh1) inactivation at the end of G1 and accumulation of genes transcribed by Ndd1 in G2. This regulation generates two classes of APC/C(Cdh1) substrates, early ones that accumulate in S and late ones that accumulate in G2. Our results show how the dual state APC/C(Cdh1) activity is converted into multiple outputs by interactions between its substrates.

  5. Data sharing system for lithography APC

    NASA Astrophysics Data System (ADS)

    Kawamura, Eiichi; Teranishi, Yoshiharu; Shimabara, Masanori

    2007-03-01

    We have developed a simple and cost-effective data sharing system between fabs for lithography advanced process control (APC). Lithography APC requires process flow, inter-layer information, history information, mask information and so on. So, inter-APC data sharing system has become necessary when lots are to be processed in multiple fabs (usually two fabs). The development cost and maintenance cost also have to be taken into account. The system handles minimum information necessary to make trend prediction for the lots. Three types of data have to be shared for precise trend prediction. First one is device information of the lots, e.g., process flow of the device and inter-layer information. Second one is mask information from mask suppliers, e.g., pattern characteristics and pattern widths. Last one is history data of the lots. Device information is electronic file and easy to handle. The electronic file is common between APCs and uploaded into the database. As for mask information sharing, mask information described in common format is obtained via Wide Area Network (WAN) from mask-vender will be stored in the mask-information data server. This information is periodically transferred to one specific lithography-APC server and compiled into the database. This lithography-APC server periodically delivers the mask-information to every other lithography-APC server. Process-history data sharing system mainly consists of function of delivering process-history data. In shipping production lots to another fab, the product-related process-history data is delivered by the lithography-APC server from the shipping site. We have confirmed the function and effectiveness of data sharing systems.

  6. Meta-analysis of the association between APC promoter methylation and colorectal cancer

    PubMed Central

    Ding, Zhenyu; Jiang, Tong; Piao, Ying; Han, Tao; Han, Yaling; Xie, Xiaodong

    2015-01-01

    Previous studies investigating the association between adenomatous polyposis coli (APC) gene promoter methylation and colorectal cancer (CRC) have yielded conflicting results. The aim of this study was to comprehensively evaluate the potential application of the detection of APC promoter methylation to the prevention and treatment of CRC. PubMed, Embase, and MEDLINE (results updated to October 2014) were searched for relevant studies. The effect size was defined as the weighted odds ratio (OR), which was calculated using either the fixed-effects or random-effects model. Prespecified subgroup and sensitivity analyses were conducted to evaluate potential heterogeneity among the included studies. Nineteen studies comprising 2,426 participants were selected for our meta-analysis. The pooled results of nine studies comprising a total of 740 subjects indicated that APC promoter methylation was significantly associated with CRC risk (pooled OR 5.53; 95% confidence interval [CI] 3.50–8.76; P<0.01). Eleven studies with a total of 1,219 patients evaluated the association between APC promoter methylation and the presence of CRC metastasis, and the pooled OR was 0.80 (95% CI 0.44–1.46; P=0.47). A meta-analysis conducted with four studies with a total of 467 patients found no significant correlation between APC promoter methylation and the presence of colorectal adenoma (pooled OR 1.85; 95% CI 0.67–5.10; P=0.23). No significant correlation between APC promoter methylation and patients’ Dukes’ stage, TNM stage, differentiation grade, age, or sex was identified. In conclusion, APC promoter methylation was found to be significantly associated with a higher risk of developing CRC. The findings indicate that APC promoter methylation may be a potential biomarker for the carcinogenesis of CRC. PMID:25632237

  7. Meta-analysis of the association between APC promoter methylation and colorectal cancer.

    PubMed

    Ding, Zhenyu; Jiang, Tong; Piao, Ying; Han, Tao; Han, Yaling; Xie, Xiaodong

    2015-01-01

    Previous studies investigating the association between adenomatous polyposis coli (APC) gene promoter methylation and colorectal cancer (CRC) have yielded conflicting results. The aim of this study was to comprehensively evaluate the potential application of the detection of APC promoter methylation to the prevention and treatment of CRC. PubMed, Embase, and MEDLINE (results updated to October 2014) were searched for relevant studies. The effect size was defined as the weighted odds ratio (OR), which was calculated using either the fixed-effects or random-effects model. Prespecified subgroup and sensitivity analyses were conducted to evaluate potential heterogeneity among the included studies. Nineteen studies comprising 2,426 participants were selected for our meta-analysis. The pooled results of nine studies comprising a total of 740 subjects indicated that APC promoter methylation was significantly associated with CRC risk (pooled OR 5.53; 95% confidence interval [CI] 3.50-8.76; P<0.01). Eleven studies with a total of 1,219 patients evaluated the association between APC promoter methylation and the presence of CRC metastasis, and the pooled OR was 0.80 (95% CI 0.44-1.46; P=0.47). A meta-analysis conducted with four studies with a total of 467 patients found no significant correlation between APC promoter methylation and the presence of colorectal adenoma (pooled OR 1.85; 95% CI 0.67-5.10; P=0.23). No significant correlation between APC promoter methylation and patients' Dukes' stage, TNM stage, differentiation grade, age, or sex was identified. In conclusion, APC promoter methylation was found to be significantly associated with a higher risk of developing CRC. The findings indicate that APC promoter methylation may be a potential biomarker for the carcinogenesis of CRC.

  8. Black raspberries suppress colonic adenoma development in ApcMin/+ mice: relation to metabolite profiles.

    PubMed

    Pan, Pan; Skaer, Chad W; Wang, Hsin-Tzu; Stirdivant, Steven M; Young, Matthew R; Oshima, Kiyoko; Stoner, Gary D; Lechner, John F; Huang, Yi-Wen; Wang, Li-Shu

    2015-10-01

    Freeze-dried black raspberries (BRBs) have demonstrated chemopreventive effects in a dietary intervention trial with human colorectal cancer patients. The aim of this study was to investigate BRB-caused metabolite changes using the Apc(Min/+) mouse as a model of human colorectal cancer. Wild-type (WT) mice were fed control diet, and Apc(Min/+) mice were fed either control diet or control diet supplemented with 5% BRBs for 8 weeks. Colonic and intestinal polyp size and number were measured. A non-targeted metabolomic analysis was conducted on colonic mucosa, liver and fecal specimens. Eight weeks of BRB treatment significantly decreased intestinal and colonic polyp number and size in Apc(Min/+) mice. The apc gene mutation significantly changed 52 metabolites in colonic mucosa associated with increased amino acid and decreased lipid metabolites, as well as 39 liver and 8 fecal metabolites. BRBs significantly reversed 23 apc-regulated metabolites, including 13 colonic mucosa, 8 liver and 2 fecal metabolites that were involved in amino acid, glutathione, lipid and nucleotide metabolism. Of these, changes in eight metabolites were linearly correlated with decreased colonic polyp number and size in BRB-treated Apc(Min/+) mice. Elevated levels of putrescine and linolenate in Apc(Min/+) mice were significantly decreased by BRBs. Ornithine decarboxylase expression, the key enzyme in putrescine generation, was fully suppressed by BRBs. These results suggest that BRBs produced beneficial effects against colonic adenoma development in Apc(Min/+) mice and modulated multiple metabolic pathways. The metabolite changes produced by BRBs might potentially reflect the BRB-mediated chemopreventive effects in colorectal cancer patients.

  9. Mechanism of APC/CCDC20 activation by mitotic phosphorylation

    PubMed Central

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G.; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A.; Brunner, Michael R.; Davidson, Iain F.; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A.; Peters, Jan-Michael

    2016-01-01

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/CCDC20 activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/CCDC20 activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/CCDC20 activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis. PMID:27114510

  10. Structure of an APC3–APC16 Complex: Insights into Assembly of the Anaphase-Promoting Complex/Cyclosome

    DOE PAGES

    Yamaguchi, Masaya; Yu, Shanshan; Qiao, Renping; ...

    2014-12-06

    The anaphase-promoting complex/cyclosome (APC/C) is a massive E3 ligase that controls mitosis by catalyzing ubiquitination of key cell cycle regulatory proteins. The APC/C assembly contains two subcomplexes: the “Platform” centers around a cullin-RING-like E3 ligase catalytic core; the “Arc Lamp” is a hub that mediates transient association with regulators and ubiquitination substrates. The Arc Lamp contains the small subunits APC16, CDC26, and APC13, and tetratricopeptide repeat (TPR) proteins (APC7, APC3, APC6, and APC8) that homodimerize and stack with quasi-2-fold symmetry. Within the APC/C complex, APC3 serves as center for regulation. APC3's TPR motifs recruit substrate-binding coactivators, CDC20 and CDH1, viamore » their C-terminal conserved Ile-Arg (IR) tail sequences. Human APC3 also binds APC16 and APC7 and contains a > 200-residue loop that is heavily phosphorylated during mitosis, although the basis for APC3 interactions and whether loop phosphorylation is required for ubiquitination are unclear. Here, we map the basis for human APC3 assembly with APC16 and APC7, report crystal structures of APC3Δloop alone and in complex with the C-terminal domain of APC16, and test roles of APC3's loop and IR tail binding surfaces in APC/C-catalyzed ubiquitination. The structures show how one APC16 binds asymmetrically to the symmetric APC3 dimer and, together with biochemistry and prior data, explain how APC16 recruits APC7 to APC3, show how APC3's C-terminal domain is rearranged in the full APC/C assembly, and visualize residues in the IR tail binding cleft important for coactivator-dependent ubiquitination. Overall, the results provide insights into assembly, regulation, and interactions of TPR proteins and the APC/C.« less

  11. Structure of an APC3–APC16 Complex: Insights into Assembly of the Anaphase-Promoting Complex/Cyclosome

    SciTech Connect

    Yamaguchi, Masaya; Yu, Shanshan; Qiao, Renping; Weissmann, Florian; Miller, Darcie J.; VanderLinden, Ryan; Brown, Nicholas G.; Frye, Jeremiah J.; Peters, Jan-Michael; Schulman, Brenda A.

    2014-12-06

    The anaphase-promoting complex/cyclosome (APC/C) is a massive E3 ligase that controls mitosis by catalyzing ubiquitination of key cell cycle regulatory proteins. The APC/C assembly contains two subcomplexes: the “Platform” centers around a cullin-RING-like E3 ligase catalytic core; the “Arc Lamp” is a hub that mediates transient association with regulators and ubiquitination substrates. The Arc Lamp contains the small subunits APC16, CDC26, and APC13, and tetratricopeptide repeat (TPR) proteins (APC7, APC3, APC6, and APC8) that homodimerize and stack with quasi-2-fold symmetry. Within the APC/C complex, APC3 serves as center for regulation. APC3's TPR motifs recruit substrate-binding coactivators, CDC20 and CDH1, via their C-terminal conserved Ile-Arg (IR) tail sequences. Human APC3 also binds APC16 and APC7 and contains a > 200-residue loop that is heavily phosphorylated during mitosis, although the basis for APC3 interactions and whether loop phosphorylation is required for ubiquitination are unclear. Here, we map the basis for human APC3 assembly with APC16 and APC7, report crystal structures of APC3Δloop alone and in complex with the C-terminal domain of APC16, and test roles of APC3's loop and IR tail binding surfaces in APC/C-catalyzed ubiquitination. The structures show how one APC16 binds asymmetrically to the symmetric APC3 dimer and, together with biochemistry and prior data, explain how APC16 recruits APC7 to APC3, show how APC3's C-terminal domain is rearranged in the full APC/C assembly, and visualize residues in the IR tail binding cleft important for coactivator-dependent ubiquitination. Overall, the results provide insights into assembly, regulation, and interactions of TPR proteins and the APC/C.

  12. Structure of an APC3–APC16 Complex: Insights into Assembly of the Anaphase-Promoting Complex/Cyclosome

    SciTech Connect

    Yamaguchi, Masaya; Yu, Shanshan; Qiao, Renping; Weissmann, Florian; Miller, Darcie J.; VanderLinden, Ryan; Brown, Nicholas G.; Frye, Jeremiah J.; Peters, Jan-Michael; Schulman, Brenda A.

    2015-08-21

    The anaphase-promoting complex/cyclosome (APC/C) is a massive E3 ligase that controls mitosis by catalyzing ubiquitination of key cell cycle regulatory proteins. The APC/C assembly contains two subcomplexes: the “Platform” centers around a cullin-RING-like E3 ligase catalytic core; the “Arc Lamp” is a hub that mediates transient association with regulators and ubiquitination substrates. The Arc Lamp contains the small subunits APC16, CDC26, and APC13, and tetratricopeptide repeat (TPR) proteins (APC7, APC3, APC6, and APC8) that homodimerize and stack with quasi-2-fold symmetry. Within the APC/C complex, APC3 serves as center for regulation. APC3's TPR motifs recruit substrate-binding coactivators, CDC20 and CDH1, via their C-terminal conserved Ile-Arg (IR) tail sequences. Human APC3 also binds APC16 and APC7 and contains a > 200-residue loop that is heavily phosphorylated during mitosis, although the basis for APC3 interactions and whether loop phosphorylation is required for ubiquitination are unclear. Here, we map the basis for human APC3 assembly with APC16 and APC7, report crystal structures of APC3Δloop alone and in complex with the C-terminal domain of APC16, and test roles of APC3's loop and IR tail binding surfaces in APC/C-catalyzed ubiquitination. The structures show how one APC16 binds asymmetrically to the symmetric APC3 dimer and, together with biochemistry and prior data, explain how APC16 recruits APC7 to APC3, show how APC3's C-terminal domain is rearranged in the full APC/C assembly, and visualize residues in the IR tail binding cleft important for coactivator-dependent ubiquitination. Overall, the results provide insights into assembly, regulation, and interactions of TPR proteins and the APC/C.

  13. The CDK-APC/C Oscillator Predominantly Entrains Periodic Cell-Cycle Transcription

    PubMed Central

    Rahi, Sahand Jamal; Pecani, Kresti; Ondracka, Andrej; Oikonomou, Catherine; Cross, Frederick R.

    2016-01-01

    Throughout cell cycle progression, the expression of multiple transcripts oscillate, and whether these are under the centralized control of the CDK-APC/C proteins or can be driven by a de-centralized transcription factor (TF) cascade is a fundamental question for understanding cell cycle regulation. In budding yeast, we find that the transcription of nearly all genes, as assessed by RNA-seq or fluorescence microscopy in single cells, is dictated by CDK-APC/C. Three exceptional genes are transcribed in a pulsatile pattern in a variety of CDK-APC/C arrests. Pursuing one of these transcripts, the SIC1 inhibitor of B-type cyclins, we use a combination of mathematical modeling and experimentation to provide evidence that, counter-intuitively, Sic1 provides a failsafe mechanism promoting nuclear division when levels of mitotic cyclins are low. PMID:27058667

  14. Chemoprevention of colorectal cancer by targeting APC-deficient cells for apoptosis.

    PubMed

    Zhang, Ling; Ren, Xiaoyang; Alt, Eckhard; Bai, Xiaowen; Huang, Shaoyi; Xu, Zhengming; Lynch, Patrick M; Moyer, Mary P; Wen, Xian-Feng; Wu, Xiangwei

    2010-04-15

    Cancer chemoprevention uses natural, synthetic, or biological substances to reverse, suppress, or prevent either the initial phase of carcinogenesis or the progression of neoplastic cells to cancer. It holds promise for overcoming problems associated with the treatment of late-stage cancers. However, the broad application of chemoprevention is compromised at present by limited effectiveness and potential toxicity. To overcome these challenges, here we developed a new chemoprevention approach that specifically targets premalignant tumour cells for apoptosis. We show that a deficiency in the adenomatous polyposis coli (APC) gene and subsequent activation of beta-catenin lead to the repression of cellular caspase-8 inhibitor c-FLIP (also known as CFLAR) expression through activation of c-Myc, and that all-trans-retinyl acetate (RAc) independently upregulates tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptors and suppresses decoy receptors. Thus, the combination of TRAIL and RAc induces apoptosis in APC-deficient premalignant cells without affecting normal cells in vitro. In addition, we show that short-term and non-continuous TRAIL and RAc treatment induce apoptosis specifically in intestinal polyps, strongly inhibit tumour growth, and prolong survival in multiple intestinal neoplasms C57BL/6J-Apc(Min)/J (Apc(Min)) mice. With our approach, we further demonstrate that TRAIL and RAc induce significant cell death in human colon polyps, providing a potentially selective approach for colorectal cancer chemoprevention by targeting APC-deficient cells for apoptosis.

  15. Multiple jejunal cancers resulting from combination of germline APC and MLH1 mutations.

    PubMed

    Lindor, Noralane M; Smyrk, Tom C; Buehler, Sheila; Gunawardena, Shanaka R; Thomas, Brittany C; Limburg, Paul; Kirmani, Salman; Thibodeau, Stephen N

    2012-12-01

    Double heterozygotes for mutations in APC and a DNA mismatch repair gene are extremely rare. We report on an individual who had truncating mutations in APC and MLH1 whose clinical presentation initially resembled Familial Adenomatous Polyposis but then emerged as a novel phenotype with multiple jejunal carcinomas. We have reviewed the relevant literature on double heterozygotes and based on what has been reported to date, this phenotype was not anticipated. It may be useful for clinicians to be aware of this observation as clinical screening guidelines are proposed for such individuals.

  16. Attenuated familial adenomatous polyposis with desmoids caused by an APC mutation

    PubMed Central

    Ikenoue, Tsuneo; Yamaguchi, Kiyoshi; Komura, Mitsuhiro; Imoto, Seiya; Yamaguchi, Rui; Shimizu, Eigo; Kasuya, Shinichi; Shibuya, Tetsuo; Hatakeyama, Seira; Miyano, Satoru; Furukawa, Yoichi

    2015-01-01

    We present here a case of attenuated familial adenomatous polyposis (AFAP) with a family history of desmoids and thyroid tumors. This patient had no colonic polyps but did have multiple desmoids. Genetic analysis identified a 4-bp deletion in codon 2644 (c.7932_7935delTTAT: p.Tyr2645LysfsX14) of the adenomatous polyposis coli (APC) gene. In cases with limited numbers of colonic polyps and desmoids, AFAP may be caused by a mutation in the 3′ region of APC. PMID:27081525

  17. Structural analysis sheds light on APC/C-mediated ubiquitylation.

    PubMed

    Kimata, Yuu; Yamano, Hiroyuki

    2006-01-01

    In the December 22nd issue of Molecular Cell, two groups report refined cryo-electron microscopic structures of the APC/C at approximately 20 A resolution. They also reveal important new features including multiple copies of subunits, dimerization and structural flexibility of the APC/C, which give a hint to solve the mechanisms of the APC/C-dependent ubiquitylation.

  18. Apc deficiency alters pulmonary epithelial cell fate and inhibits Nkx2.1 via triggering TGF-beta signaling.

    PubMed

    Li, Changgong; Li, Aimin; Xing, Yiming; Li, Min; Chan, Belinda; Ouyang, Ruoyun; Taketo, Makoto Mark; Kucherlapati, Raju; Borok, Zea; Minoo, Parviz

    2013-06-01

    Wnt signaling is critical for cell fate specification and cell differentiation in many organs, but its function in pulmonary neuroendocrine cell (PNEC) differentiation has not been fully addressed. In this study, we examined the role of canonical Wnt signaling by targeting the gene for Adenomatous Polyposis Coli (Apc), which controls Wnt signaling activity via mediating phosphorylation of beta-catenin (Ctnnb). Targeting the Apc gene in lung epithelial progenitors by Nkx2.1-cre stabilized Ctnnb and activated canonical Wnt signaling. Apc deficiency altered lung epithelial cell fate by inhibiting Clara and ciliated cell differentiation and activating Uchl1, a marker of neuroendocrine cells. Similar to PNEC in normal lung, Uchl1(positive) cells were innervated. In mice with targeted inactivation of Ctnnb by Nkx2.1-cre, PNEC differentiation was not interrupted. These indicate that, after lung primordium formation, Wnt signaling is not essential for PNEC differentiation; however, its over-activation promotes PNEC features. Interestingly, Nkx2.1 was extinguished in Apc deficient epithelial progenitors before activation of Uchl1. Examination of Nkx2.1 null lungs suggested that early deletion of Nkx2.1 inhibits PNEC differentiation, while late repression does not. Nkx2.1 was specifically inhibited in Apc deficient lungs but not in Ctnnb gain-of-function lungs indicating a functional difference between Apc deletion and Ctnnb stabilization, both of which activate Wnt signaling. Further analysis revealed that Apc deficiency led to increased TGF-beta signaling, which inhibited Nkx2.1 in cultured lung endodermal explants. In contrast, TGF-beta activity was not increased in Ctnnb gain-of-function lungs. Therefore, our studies revealed an important mechanism involving Apc and TGF-beta signaling in regulating the key transcriptional factor, Nkx2.1, for lung epithelial progenitor cell fate determination.

  19. Regulation of APC/C activators in mitosis and meiosis.

    PubMed

    Pesin, Jillian A; Orr-Weaver, Terry L

    2008-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit E3 ubiquitin ligase that triggers the degradation of multiple substrates during mitosis. Cdc20/Fizzy and Cdh1/Fizzy-related activate the APC/C and confer substrate specificity through complex interactions with both the core APC/C and substrate proteins. The regulation of Cdc20 and Cdh1 is critical for proper APC/C activity and occurs in multiple ways: targeted protein degradation, phosphorylation, and direct binding of inhibitory proteins. During the specialized divisions of meiosis, the activity of the APC/C must be modified to achieve proper chromosome segregation. Recent studies show that one way in which APC/C activity is modified is through the use of meiosis-specific APC/C activators. Furthermore, regulation of the APC/C during meiosis is carried out by both mitotic regulators of the APC/C as well as meiosis-specific regulators. Here, we review the regulation of APC/C activators during mitosis and the role and regulation of the APC/C during female meiosis.

  20. A kinetic model to study the regulation of [Formula: see text]-catenin, APC, and Axin in the human colonic crypt.

    PubMed

    Emerick, Brooks; Schleiniger, Gilberto; Boman, Bruce M

    2017-03-07

    The Wnt/[Formula: see text]-catenin pathway plays a crucial role in stem cell renewal and differentiation in the normal human colonic crypt. The balance between [Formula: see text]-catenin and APC along the crypt axis determines its normal functionality. The mechanism that deregulates this balance may give insight into the initiation of colorectal cancer. This is significant because the spatial dysregulation of [Formula: see text]-catenin by the mutated tumor suppressor gene/protein APC in human colonic crypts is responsible for the initiation and growth of colorectal cancer. We consider a regulatory function that promotes APC synthesis within the cell and its effect on the accumulation of the Wnt target protein, [Formula: see text]-catenin. It is evident that an APC gradient exists along the crypt axis; however, the mechanism by which APC expression is regulated within the cell is not well known. We investigate the dynamics of an APC regulatory mechanism with an increased level of Axin at the subcellular level. Model output shows an increase of APC for a diminished Wnt signal, which explains the APC gradient along the crypt. We find that the dynamic interplay between [Formula: see text]-catenin, APC, and Axin produces oscillatory behavior, which is controlled by the Wnt stimulus. In the presence of reduced functional APC, the oscillations are amplified, which suggests that the cell remains in a more proliferative state for longer periods of time. Increased Axin levels (typical of mammalian cells) reduce oscillatory behavior and minimize the levels of [Formula: see text]-catenin within the cell while raising the levels of APC.

  1. NUP98 fusion oncoproteins interact with the APC/C(Cdc20) as a pseudosubstrate and prevent mitotic checkpoint complex binding.

    PubMed

    Salsi, Valentina; Fantini, Sebastian; Zappavigna, Vincenzo

    2016-09-01

    NUP98 is a recurrent partner gene in translocations causing acute myeloid leukemias and myelodisplastic syndrome. The expression of NUP98 fusion oncoproteins has been shown to induce mitotic spindle defects and chromosome missegregation, which correlate with the capability of NUP98 fusions to cause mitotic checkpoint attenuation. We show that NUP98 oncoproteins physically interact with the APC/C(Cdc20) in the absence of the NUP98 partner protein RAE1, and prevent the binding of the mitotic checkpoint complex to the APC/C(Cdc20). NUP98 oncoproteins require the GLEBS-like domain present in their NUP98 moiety to bind the APC/C(Cdc20). We found that NUP98 wild-type is a substrate of APC/C(Cdc20) prior to mitotic entry, and that its binding to APC/C(Cdc20) is controlled via phosphorylation of a PEST sequence located within its C-terminal portion. We identify S606, within the PEST sequence, as a key target site, whose phosphorylation modulates the capability of NUP98 to interact with APC/C(Cdc20). We finally provide evidence for an involvement of the peptidyl-prolyl isomerase PIN1 in modulating the possible conformational changes within NUP98 that lead to its dissociation from the APC/C(Cdc20) during mitosis. Our results provide novel insight into the mechanisms underlying the aberrant capability of NUP98 oncoproteins to interact with APC/C(Cdc20) and to interfere with its function.

  2. Association of APC I1307K and E1317Q polymorphisms with colorectal cancer among Egyptian subjects.

    PubMed

    Abdel-Malak, Camelia; Darwish, Hossam; Elsaid, Afaf; El-Tarapely, Fatma; Elshazli, Rami

    2016-01-01

    Colorectal cancer is a multifactorial disease that involves both environmental and genetic factors. The gene encoding adenomatous polyposis coli (APC) has been reported to be associated with colorectal cancer (CRC) risk in several ethnic populations. The aim of this work is to assess the association of the APC I1307K and E1317Q polymorphisms with CRC risk among Egyptian subjects. This study included 120 unrelated CRC Egyptian patients who were compared to 100 healthy controls from the same locality. For all subjects, DNA was genotyped for APC I1307K and E1317Q polymorphisms using the PCR-ARMS technique. The frequency of APC I1307K carrier (TA+AA genotypes) was noted to be significantly higher among cases with CRC compared to controls (18.3 vs. 9.0 %, OR 2.58, 95 % CI 1.09-6.09, p = 0.03). Also the frequency of the APC I1307K A allele was significantly higher among cases compared to controls (10.4 vs. 4.5 %, OR 2.47; 95 % CI 1.12-5.42, p = 0.03). On the contrast, the frequencies of APC E1317Q GC genotype and C allele showed no significant difference among CRC patients compared to controls (3.3 vs. 2.0 %, OR 1.69; 95 % CI 0.30-9.42, p = 0.69 and 2.1 vs. 1.0 %, OR 2.11; 95 % CI 0.40-10.97, p = 0.46, respectively). Cases of the APC I1307K and E1317Q carriers (TA+AA and GC) showed no significant difference compared to those with I1307K and E1317Q non-carriers (TT and GG) regarding their clinical and laboratory markers. APC I1307K variant was associated with an increased risk of CRC among Egyptian subjects.

  3. Chlorinated Water Modulates the Development of Colorectal Tumors with Chromosomal Instability and Gut Microbiota in Apc-Deficient Mice.

    PubMed

    Sasada, Tatsunari; Hinoi, Takao; Saito, Yasufumi; Adachi, Tomohiro; Takakura, Yuji; Kawaguchi, Yasuo; Sotomaru, Yusuke; Sentani, Kazuhiro; Oue, Naohide; Yasui, Wataru; Ohdan, Hideki

    2015-01-01

    The gastrointestinal tract is continuously exposed to a variety of chemicals and commensal bacteria. Recent studies have shown that changes in gut microbial populations caused by chlorine or other chemicals in the drinking water influence the development of human colorectal cancer, although the mechanism of tumorigenesis in the gut epithelium is obfuscated by the diversity of microflora and complexity of the tumor microenvironment. In this regard, mouse models that recapitulate human colorectal cancer are an invaluable tool. In this study, we used two conditional adenomatous polyposis coli (Apc) knockout mouse models to investigate the effect of chlorinated water on tumorigenesis in the digestive tract. Mice with colon-specific carcinoma--caused by either chromosomal (CDX2P 9.5-NLS Cre;Apc(+/flox), abbreviated to CPC;Apc) or microsatellite (CDX2P9.5-G19Cre;Apc(flox/flox) and CDX2P9.5-G22Cre;Apc(flox/flox)) instability, respectively--were administered chlorinated (10.0 mg/L chlorine) or tap (0.7 mg/L chlorine) water and evaluated for colon polyp formation. In CPC;Apc mice given chlorinated drinking water, tumors tended to develop in the colon, whereas in those that drank tap water, tumors were mostly observed in the small intestine. There was no difference in the rate of tumor formation of CDX2P9.5-G19Cre;Apc(flox/flox) and CDX2P9.5-G22Cre;Apc(flox/flox) mice consuming chlorinated as compared to tap water, suggesting that microsatellite instability in the Apc gene does not significantly affect tumorigenesis. Chlorinated water altered the enteric environment by reducing the fecal populations of the obligatory anaerobes Clostridium perfringens and C. difficile, as well as species belonging to the Atopobium cluster, including Enterobacteriaceae and Staphylococcus sp., which was associated with colon tumorigenesis in CPC;Apc mice. These results suggest that differences in tumorigenesis among CPC;Apc mice consuming chlorinated versus tap water may be due to differences

  4. Alterations in K-ras, APC and p53-multiple genetic pathway in colorectal cancer among Indians.

    PubMed

    Malhotra, Pooja; Anwar, Mumtaz; Nanda, Neha; Kochhar, Rakesh; Wig, Jai Dev; Vaiphei, Kim; Mahmood, Safrun

    2013-06-01

    The incidence of colorectal cancer (CRC) is increasing rapidly in Asian countries during the past few decades, but no comprehensive analysis has been done to find out the exact cause of this disease. In this study, we investigated the frequencies of mutations and expression pattern of K-ras, APC (adenomatosis polyposis coli) and p53 in tumor, adjoining and distant normal mucosa and to correlate these alterations with patients clinicopathological parameters as well as with the survival. Polymerase chain reaction (PCR)-restriction digestion was used to detect mutations in K-ras and PCR-SSCP (Single Strand Conformation Polymorphism) followed by DNA sequencing was used to detect mutations in APC and p53 genes. Immunohistochemistry was used to detect the expression pattern of K-ras, APC and p53 proteins. The frequencies of mutations of K-ras, APC and p53 in 30 tumor tissues samples were 26.7 %, 46.7 % and 20 %, respectively. Only 3.3 % of tumors contained mutations in all the three genes. The most common combination of mutation was APC and p53 whereas mutation in both p53 and K-ras were extremely rare. There was no association between the mutations and expression pattern of K-ras, APC and p53 (p>0.05). In Indians, the frequency of alterations of K-ras and APC is similar as in Westerns, whereas the frequency of p53 mutation is slightly lower. The lack of multiple mutations in tumor specimens suggests that these genetic alterations might have independent influences on CRC development and there could be multiple alternative genetic pathways to CRC in our present study cohort.

  5. PIK3CA and APC Mutations are Synergistic in the Development of Intestinal Cancers

    PubMed Central

    Deming, Dustin A.; Leystra, Alyssa A.; Nettekoven, Laura; Sievers, Chelsea; Miller, Devon; Middlebrooks, Malisa; Clipson, Linda; Albrecht, Dawn; Bacher, Jeff; Washington, Mary Kay; Weichert, Jamey; Halberg, Richard B.

    2013-01-01

    Human colorectal cancers are known to possess multiple mutations, though how these mutations interact in tumor development and progression has not been fully investigated. We have previously described the FCPIK3ca* murine colon cancer model which expresses a constitutively activated phosphoinositide-3 kinase (PI3K) in the intestinal epithelium. The expression of this dominantly active form of PI3K results in hyperplasia and invasive mucinous adenocarcinomas. These cancers form via a non-canonical mechanism of tumor initiation that is mediated through activation of PI3K and not through aberrations in WNT signaling. Since the Adenomatous Polyposis Coli (APC) gene is mutated in the vast majority of human colon cancers and often occurs simultaneously with PIK3CA mutations, we sought to better understand the interaction between APC and PIK3CA mutations in the mammalian intestine. In this study, we have generated mice in which the expression of a constitutively active PI3K and the loss of APC occur simultaneously in the distal small intestine and colon. Here we demonstrate that expression of a dominant active PI3K synergizes with loss of APC activity resulting in a dramatic changes in tumor multiplicity, size, morphology, and invasiveness. Activation of the PI3K pathway is not able to directly activate WNT signaling through the nuclear localization of CTNNB1 (β-catenin) in the absence of aberrant WNT signaling. Alterations at the transcriptional level, including increased CCND1, may be the etiology of synergy between these activated pathways. PMID:23708654

  6. Methylation status of the APC and RASSF1A promoter in cell-free circulating DNA and its prognostic role in patients with colorectal cancer.

    PubMed

    Matthaios, Dimitrios; Balgkouranidou, Ioanna; Karayiannakis, Anastasios; Bolanaki, Helen; Xenidis, Nikolaos; Amarantidis, Kyriakos; Chelis, Leonidas; Romanidis, Konstantinos; Chatzaki, Aikaterini; Lianidou, Evi; Trypsianis, Grigorios; Kakolyris, Stylianos

    2016-07-01

    DNA methylation is the most frequent epigenetic alteration. Using methylation-specific polymerase chain reaction (MSP), the methylation status of the adenomatous polyposis coli (APC) and Ras association domain family 1 isoform A (RASSF1A) genes was examined in cell-free circulating DNA from 155 plasma samples obtained from patients with early and advanced colorectal cancer (CRC). APC and RASSF1A hypermethylation was frequently observed in both early and advanced disease, and was significantly associated with a poorer disease outcome. The methylation status of the APC and RASSF1A promoters was investigated in cell-free DNA of patients with CRC. Using MSP, the promoter methylation status of APC and RASSF1A was examined in 155 blood samples obtained from patients with CRC, 88 of whom had operable CRC (oCRC) and 67 had metastatic CRC (mCRC). The frequency of APC methylation in patients with oCRC was 33%. Methylated APC promoter was significantly associated with older age (P=0.012), higher stage (P=0.014) and methylated RASSF1A status (P=0.050). The frequency of APC methylation in patients with mCRC was 53.7%. In these patients, APC methylation was significantly associated with methylated RASSF1A status (P=0.016). The frequency of RASSF1A methylation in patients with oCRC was 25%. Methylated RASSF1A in oCRC was significantly associated with higher stage (P=0.021). The frequency of RASSF1A methylation in mCRC was 44.8%. Methylated RASSF1A in mCRC was associated with moderate differentiation (P=0.012), high levels of carcinoembryonic antigen (P=0.023) and methylated APC status (P=0.016). Patients with an unmethylated APC gene had better survival in both early (81±5 vs. 27±4 months, P<0.001) and advanced disease (37±7 vs. 15±3 months, P<0.001), compared with patients with methylated APC. Patients with an unmethylated RASSF1A gene had better survival in both early (71±6 vs. 46±8 months, P<0.001) and advanced disease (28±4 vs. 16±3 months, P<0.001) than patients with

  7. WD40 domain of Apc1 is critical for the coactivator-induced allosteric transition that stimulates APC/C catalytic activity

    PubMed Central

    Li, Qiuhong; Chang, Leifu; Aibara, Shintaro; Yang, Jing; Zhang, Ziguo; Barford, David

    2016-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is a large multimeric cullin–RING E3 ubiquitin ligase that orchestrates cell-cycle progression by targeting cell-cycle regulatory proteins for destruction via the ubiquitin proteasome system. The APC/C assembly comprises two scaffolding subcomplexes: the platform and the TPR lobe that together coordinate the juxtaposition of the catalytic and substrate-recognition modules. The platform comprises APC/C subunits Apc1, Apc4, Apc5, and Apc15. Although the role of Apc1 as an APC/C scaffolding subunit has been characterized, its specific functions in contributing toward APC/C catalytic activity are not fully understood. Here, we report the crystal structure of the N-terminal domain of human Apc1 (Apc1N) determined at 2.2-Å resolution and provide an atomic-resolution description of the architecture of its WD40 (WD40 repeat) domain (Apc1WD40). To understand how Apc1WD40 contributes to APC/C activity, a mutant form of the APC/C with Apc1WD40 deleted was generated and evaluated biochemically and structurally. We found that the deletion of Apc1WD40 abolished the UbcH10-dependent ubiquitination of APC/C substrates without impairing the Ube2S-dependent ubiquitin chain elongation activity. A cryo-EM structure of an APC/C–Cdh1 complex with Apc1WD40 deleted showed that the mutant APC/C is locked into an inactive conformation in which the UbcH10-binding site of the catalytic module is inaccessible. Additionally, an EM density for Apc15 is not visible. Our data show that Apc1WD40 is required to mediate the coactivator-induced conformational change of the APC/C that is responsible for stimulating APC/C catalytic activity by promoting UbcH10 binding. In contrast, Ube2S activity toward APC/C substrates is not dependent on the initiation-competent conformation of the APC/C. PMID:27601667

  8. Dietary, lifestyle and clinicopathological factors associated with APC mutations and promoter methylation in colorectal cancers from the EPIC-Norfolk study.

    PubMed

    Gay, Laura J; Mitrou, Panagiota N; Keen, Jennifer; Bowman, Richard; Naguib, Adam; Cooke, James; Kuhnle, Gunter G; Burns, Philip A; Luben, Robert; Lentjes, Marleen; Khaw, Kay-Tee; Ball, Richard Y; Ibrahim, Ashraf Ek; Arends, Mark J

    2012-11-01

    The tumour suppressor APC is the most commonly altered gene in colorectal cancer (CRC). Genetic and epigenetic alterations of APC may therefore be associated with dietary and lifestyle risk factors for CRC. Analysis of APC mutations in the extended mutation cluster region (codons 1276-1556) and APC promoter 1A methylation was performed on 185 archival CRC samples collected from participants of the European Prospective Investigation into Cancer (EPIC)-Norfolk study, with the aim of relating these to high-quality seven-day dietary and lifestyle data collected prospectively. Truncating APC mutations (APC(+) ) and promoter 1A methylation (PM(+) ) were identified in 43% and 23% of CRCs analysed, respectively. Distal CRCs were more likely than proximal CRCs to be APC(+) or PM(+) (p = 0.04). APC(+) CRCs were more likely to be moderately/well differentiated and microsatellite stable than APC(-) CRCs (p = 0.05 and 0.03). APC(+) CRC cases consumed more alcohol than their counterparts (p = 0.01) and PM(+) CRC cases consumed lower levels of folate and fibre (p = 0.01 and 0.004). APC(+) or PM(+) CRC cases consumed higher levels of processed meat and iron from red meat and red meat products (p = 0.007 and 0.006). Specifically, CRC cases harbouring GC-to-AT transition mutations consumed higher levels of processed meat (35 versus 24 g/day, p = 0.04) and iron from red meat and red meat products (0.8 versus 0.6 mg/day, p = 0.05). In a logistic regression model adjusted for age, sex and cigarette-smoking status, each 19 g/day (1SD) increment increase in processed meat consumption was associated with cases with GC-to-AT mutations (OR 1.68, 95% CI 1.03-2.75). In conclusion, APC(+) and PM(+) CRCs may be influenced by diet and GC-to-AT mutations in APC are associated with processed meat consumption, suggesting a mechanistic link with dietary alkylating agents, such as N-nitroso compounds.

  9. EphB6 overexpression and Apc mutation together promote colorectal cancer.

    PubMed

    Xu, Dan; Yuan, Liang; Liu, Xin; Li, Mingqi; Zhang, Fubin; Gu, Xin Yue; Zhang, Dongwei; Yang, Youlin; Cui, Binbin; Tong, Jinxue; Zhou, Jin; Yu, Zhiwei

    2016-05-24

    The erythropoietin-producing hepatocyte (Eph) family tyrosine kinases play important roles in tumorigenesis and cancer aggression. In this study, we investigated the role of EphB6 in oncogenic transformation of colorectal epithelial cells in vitro and in vivo. EphB6 is upregulated in human colorectal cancer (CRC) tissues as compared to normal tissues, and its overexpression promotes proliferation, migration and invasion by IMCE colorectal adenoma cells, in which one Apc allele is mutated. EphB6 overexpression together with Apc mutation leads to the development of colorectal tumors in vivo. Expression microarrays using mRNAs and lncRNAs isolated from EphB6-overexpresssing IMCE and control cells revealed a large number of dysregulated genes involved in cancer-related functions and pathways. The present study is the first to demonstrate that EphB6 overexpression together with Apc gene mutations may enhance proliferation, invasion and metastasis by colorectal epithelial cells. Microarray data and pathway analysis of differentially expressed genes provided insight into possible EphB6-regulated mechanisms promoting tumorigenesis and cancer progression. EphB6 overexpression may represent a novel, effective biomarker predictive of cell proliferation, invasion and metastasis patterns in CRC tumors.

  10. APC+/− alters colonic fibroblast proteome in FAP

    PubMed Central

    Dixon, Maketa P.; Blagoi, Elena L.; Nicolas, Emmanuelle; Seeholzer, Steven H.; Cheng, David; He, Yin A.; Coudry, Renata A.; Howard, Sharon D.; Riddle, Dawn M.; Cooper, Harry S.; Boman, Bruce M.; Conrad, Peggy; Crowell, James A.; Bellacosa, Alfonso; Knudson, Alfred; Yeung, Anthony T.; Kopelovich, Levy

    2011-01-01

    Here we compared the proteomes of primary fibroblast cultures derived from morphologically normal colonic mucosa of familial adenomatous polyposis (FAP) patients with those obtained from unaffected controls. The expression signature of about 19% of total fibroblast proteins separates FAP mutation carriers from unaffected controls (P < 0.01). More than 4,000 protein spots were quantified by 2D PAGE analysis, identifying 368 non-redundant proteins and 400 of their isoforms. Specifically, all three classes of cytoskeletal filaments and their regulatory proteins were altered as were oxidative stress response proteins. Given that FAP fibroblasts showed heightened sensitivity to transformation by KiMSV and SV40 including elevated levels of the p53 protein, events controlled in large measure by the Ras suppressor protein-1 (RSU-1) and oncogenic DJ-1, here we show decreased RSU1 and augmented DJ-1 expression in both fibroblasts and crypt-derived epithelial cells from morphologically normal colonic mucosa of FAP gene-carriers. The results indicate that heterozygosity for a mutant APC tumor suppressor gene alters the proteomes of both colon-derived normal fibroblasts in a gene-specific manner, consistent with a “one-hit” effect. PMID:21411865

  11. Congenital hypertrophy of the retinal pigment epithelium (CHRPE) in APC-patients with 5 base pair deletion at codon 1309: Evidence for intrafamilial but not interfamilial genotype/phenotype correlation

    SciTech Connect

    Munier, E.L.; Thonney, F.; Pescia, G.

    1994-09-01

    Mutations at the adenomatous polyposis coli (APC) gene locus cause pleiotropic expression with colonic and extracolonic manifestations. The spectrum of colonic involvement ranges from an attenuated form of APC with few polyps, to a profuse phenotype with thousands of polyps. In 70% of the cases, APC mutations also produce multiple patches of CHRPE. The molecular basis for variable colonic and ocular expression of mutant APC alleles has been recently reported. Deletion of 5 base pair at codon 1309 ({sup 3921}{triangle} AAAAG), the most common APC mutation, was associated with earlier development of polyps and earlier malignant transformation together with strong intra- and interfamilial genotype/phenotype correlation. This prompted us to investigate whether a similar correlation could be found for CHRPE in two unrelated APC pedigrees with this mutation. Fundus eye examination by indirect opthalmoscopy under maximal dilation was performed in affected patients. Assuming a Poisson distribution, the mean number of lesions significantly differed (p<<0.001) between family A (10/eye) and family B (2.5/eye). Comparing eyes or patients within each pedigree did not reveal any statistical difference with respect to the total number of lesions per eye. Interfamilial variability of CHRPE suggests that factors other than the APC gene defect itself are involved in the expression of this ocular trait. These results also indicate that CHRPE may be the only extracolonic APC sign displaying good intrafamilial genotype/phenotype correlation, unlike osteomas, epidermal cysts and desmoid tumors.

  12. Colorectal cancer risk variants at 8q23.3 and 11q23.1 are associated with disease phenotype in APC mutation carriers.

    PubMed

    Ghorbanoghli, Z; Nieuwenhuis, M H; Houwing-Duistermaat, J J; Jagmohan-Changur, S; Hes, F J; Tops, C M; Wagner, A; Aalfs, C M; Verhoef, S; Gómez García, E B; Sijmons, R H; Menko, F H; Letteboer, T G; Hoogerbrugge, N; van Wezel, T; Vasen, H F A; Wijnen, J T

    2016-10-01

    Familial adenomatous polyposis (FAP) is a dominantly inherited syndrome caused by germline mutations in the APC gene and characterized by the development of multiple colorectal adenomas and a high risk of developing colorectal cancer (CRC). The severity of polyposis is correlated with the site of the APC mutation. However, there is also phenotypic variability within families with the same underlying APC mutation, suggesting that additional factors influence the severity of polyposis. Genome-wide association studies identified several single nucleotide polymorphisms (SNPs) that are associated with CRC. We assessed whether these SNPs are associated with polyp multiplicity in proven APC mutation carriers. Sixteen CRC-associated SNPs were analysed in a cohort of 419 APC germline mutation carriers from 182 families. Clinical data were retrieved from the Dutch Polyposis Registry. Allele frequencies of the SNPs were compared for patients with <100 colorectal adenomas versus patients with ≥100 adenomas, using generalized estimating equations with the APC genotype as a covariate. We found a trend of association of two of the tested SNPs with the ≥100 adenoma phenotype: the C alleles of rs16892766 at 8q23.3 (OR 1.71, 95 % CI 1.05-2.76, p = 0.03, dominant model) and rs3802842 at 11q23.1 (OR 1.51, 95 % CI 1.03-2.22, p = 0.04, dominant model). We identified two risk variants that are associated with a more severe phenotype in APC mutation carriers. These risk variants may partly explain the phenotypic variability in families with the same APC gene defect. Further studies with a larger sample size are recommended to evaluate and confirm the phenotypic effect of these SNPs in FAP.

  13. Proteomic profiling of a mouse model of acute intestinal Apc deletion leads to identification of potential novel biomarkers of human colorectal cancer (CRC).

    PubMed

    Hammoudi, Abeer; Song, Fei; Reed, Karen R; Jenkins, Rosalind E; Meniel, Valerie S; Watson, Alastair J M; Pritchard, D Mark; Clarke, Alan R; Jenkins, John R

    2013-10-25

    Colorectal cancer (CRC) is the fourth most common cause of cancer-related death worldwide. Accurate non-invasive screening for CRC would greatly enhance a population's health. Adenomatous polyposis coli (Apc) gene mutations commonly occur in human colorectal adenomas and carcinomas, leading to Wnt signalling pathway activation. Acute conditional transgenic deletion of Apc in murine intestinal epithelium (AhCre(+)Apc(fl)(/)(fl)) causes phenotypic changes similar to those found during colorectal tumourigenesis. This study comprised a proteomic analysis of murine small intestinal epithelial cells following acute Apc deletion to identify proteins that show altered expression during human colorectal carcinogenesis, thus identifying proteins that may prove clinically useful as blood/serum biomarkers of colorectal neoplasia. Eighty-one proteins showed significantly increased expression following iTRAQ analysis, and validation of nine of these by Ingenuity Pathaway Analysis showed they could be detected in blood or serum. Expression was assessed in AhCre(+)Apc(fl)(/)(fl) small intestinal epithelium by immunohistochemistry, western blot and quantitative real-time PCR; increased nucelolin concentrations were also detected in the serum of AhCre(+)Apc(fl)(/)(fl) and Apc(Min)(/)(+) mice by ELISA. Six proteins; heat shock 60kDa protein 1, Nucleolin, Prohibitin, Cytokeratin 18, Ribosomal protein L6 and DEAD (Asp-Glu-Ala-Asp) box polypeptide 5,were selected for further investigation. Increased expression of 4 of these was confirmed in human CRC by qPCR. In conclusion, several novel candidate biomarkers have been identified from analysis of transgenic mice in which the Apc gene was deleted in the intestinal epithelium that also showed increased expression in human CRC. Some of these warrant further investigation as potential serum-based biomarkers of human CRC.

  14. Specific immunotherapy of experimental myasthenia by genetically engineered APCs: the "guided missile" strategy.

    PubMed

    Drachman, D B; Wu, J-M; Miagkov, A; Williams, M A; Adams, R N; Wu, B

    2003-09-01

    Although treatment of MG with general immunosuppressive agents is often effective, it has important drawbacks, including suppression of the immune system as a whole, with the risks of infection and neoplasia, and numerous other adverse side effects. Ideally, treatment of MG should eliminate the specific pathogenic autoimmune response to AChR, without otherwise suppressing the immune system or producing other adverse side effects. Although antibodies to AChR are directly responsible for the loss of AChRs at neuromuscular junctions in MG, the AChR antibody response is T cell-dependent, and immunotherapy directed at T cells can abrogate the autoantibody response, with resulting benefit. As in other autoimmune diseases, the T cell response in MG is highly heterogeneous. The design of specific immunotherapy must take this heterogeneity into account and target the entire repertoire of AChR-specific T cells. We describe our investigation of a novel strategy for specific immunotherapy of MG, involving gene transfer to convert antigen-presenting cells (APCs) to "guided missiles" that target AChR-specific T cells, and that induce apoptosis and elimination of those T cells. This strategy uses the ability of APCs from a given individual to present the entire spectrum of AChR epitopes unique for that individual, and thereby to target the entire repertoire of antigen-specific T cells of the same individual. Using viral vectors, we have genetically engineered the APCs to process and present the most important domain of the AChR molecule, and to express a "warhead" of Fas ligand (FasL) to eliminate the activated AChR-specific T cells with which they interact. Our results show that the APCs express the appropriate gene products, and effectively and specifically eliminate AChR-specific T cells by the Fas/FasL pathway, while sparing T cells of other specificities.

  15. Different APC genotypes in proximal and distal sporadic colorectal cancers suggest distinct WNT/β-catenin signalling thresholds for tumourigenesis.

    PubMed

    Christie, M; Jorissen, R N; Mouradov, D; Sakthianandeswaren, A; Li, S; Day, F; Tsui, C; Lipton, L; Desai, J; Jones, I T; McLaughlin, S; Ward, R L; Hawkins, N J; Ruszkiewicz, A R; Moore, J; Burgess, A W; Busam, D; Zhao, Q; Strausberg, R L; Simpson, A J; Tomlinson, I P M; Gibbs, P; Sieber, O M

    2013-09-26

    Biallelic protein-truncating mutations in the adenomatous polyposis coli (APC) gene are prevalent in sporadic colorectal cancer (CRC). Mutations may not be fully inactivating, instead producing WNT/β-catenin signalling levels 'just-right' for tumourigenesis. However, the spectrum of optimal APC genotypes accounting for both hits, and the influence of clinicopathological features on genotype selection remain undefined. We analysed 630 sporadic CRCs for APC mutations and loss of heterozygosity (LOH) using sequencing and single-nucleotide polymorphism microarrays, respectively. Truncating APC mutations and/or LOH were detected in 75% of CRCs. Most truncating mutations occurred within a mutation cluster region (MCR; codons 1282-1581) leaving 1-3 intact 20 amino-acid repeats (20AARs) and abolishing all Ser-Ala-Met-Pro (SAMP) repeats. Cancers commonly had one MCR mutation plus either LOH or another mutation 5' to the MCR. LOH was associated with mutations leaving 1 intact 20AAR. MCR mutations leaving 1 vs 2-3 intact 20AARs were associated with 5' mutations disrupting or leaving intact the armadillo-repeat domain, respectively. Cancers with three hits had an over-representation of mutations upstream of codon 184, in the alternatively spliced region of exon 9, and 3' to the MCR. Microsatellite unstable cancers showed hyper-mutation at MCR mono- and di-nucleotide repeats, leaving 2-3 intact 20AARs. Proximal and distal cancers exhibited different preferred APC genotypes, leaving a total of 2 or 3 and 0 to 2 intact 20AARs, respectively. In conclusion, APC genotypes in sporadic CRCs demonstrate 'fine-tuned' interdependence of hits by type and location, consistent with selection for particular residual levels of WNT/β-catenin signalling, with different 'optimal' thresholds for proximal and distal cancers.

  16. SNW1 enables sister chromatid cohesion by mediating the splicing of sororin and APC2 pre-mRNAs.

    PubMed

    van der Lelij, Petra; Stocsits, Roman R; Ladurner, Rene; Petzold, Georg; Kreidl, Emanuel; Koch, Birgit; Schmitz, Julia; Neumann, Beate; Ellenberg, Jan; Peters, Jan-Michael

    2014-11-18

    Although splicing is essential for the expression of most eukaryotic genes, inactivation of splicing factors causes specific defects in mitosis. The molecular cause of this defect is unknown. Here, we show that the spliceosome subunits SNW1 and PRPF8 are essential for sister chromatid cohesion in human cells. A transcriptome-wide analysis revealed that SNW1 or PRPF8 depletion affects the splicing of specific introns in a subset of pre-mRNAs, including pre-mRNAs encoding the cohesion protein sororin and the APC/C subunit APC2. SNW1 depletion causes cohesion defects predominantly by reducing sororin levels, which causes destabilisation of cohesin on DNA. SNW1 depletion also reduces APC/C activity and contributes to cohesion defects indirectly by delaying mitosis and causing "cohesion fatigue". Simultaneous expression of sororin and APC2 from intron-less cDNAs restores cohesion in SNW1-depleted cells. These results indicate that the spliceosome is required for mitosis because it enables expression of genes essential for cohesion. Our transcriptome-wide identification of retained introns in SNW1- and PRPF8-depleted cells may help to understand the aetiology of diseases associated with splicing defects, such as retinosa pigmentosum and cancer.

  17. The utility of Apc-mutant rats in modeling human colon cancer

    PubMed Central

    Irving, Amy A.; Yoshimi, Kazuto; Hart, Marcia L.; Parker, Taybor; Clipson, Linda; Ford, Madeline R.; Kuramoto, Takashi; Dove, William F.; Amos-Landgraf, James M.

    2014-01-01

    Prior to the advent of genetic engineering in the mouse, the rat was the model of choice for investigating the etiology of cancer. Now, recent advances in the manipulation of the rat genome, combined with a growing recognition of the physiological differences between mice and rats, have reignited interest in the rat as a model of human cancer. Two recently developed rat models, the polyposis in the rat colon (Pirc) and Kyoto Apc Delta (KAD) strains, each carry mutations in the intestinal-cancer-associated adenomatous polyposis coli (Apc) gene. In contrast to mouse models carrying Apc mutations, in which cancers develop mainly in the small intestine rather than in the colon and there is no gender bias, these rat models exhibit colonic predisposition and gender-specific susceptibility, as seen in human colon cancer. The rat also provides other experimental resources as a model organism that are not provided by the mouse: the structure of its chromosomes facilitates the analysis of genomic events, the size of its colon permits longitudinal analysis of tumor growth, and the size of biological samples from the animal facilitates multiplexed molecular analyses of the tumor and its host. Thus, the underlying biology and experimental resources of these rat models provide important avenues for investigation. We anticipate that advances in disease modeling in the rat will synergize with resources that are being developed in the mouse to provide a deeper understanding of human colon cancer. PMID:25288683

  18. RIP140 increases APC expression and controls intestinal homeostasis and tumorigenesis

    PubMed Central

    Lapierre, Marion; Bonnet, Sandrine; Bascoul-Mollevi, Caroline; Ait-Arsa, Imade; Jalaguier, Stéphan; Del Rio, Maguy; Plateroti, Michela; Roepman, Paul; Ychou, Marc; Pannequin, Julie; Hollande, Frédéric; Parker, Malcolm; Cavailles, Vincent

    2014-01-01

    Deregulation of the Wnt/APC/β-catenin signaling pathway is an important consequence of tumor suppressor APC dysfunction. Genetic and molecular data have established that disruption of this pathway contributes to the development of colorectal cancer. Here, we demonstrate that the transcriptional coregulator RIP140 regulates intestinal homeostasis and tumorigenesis. Using Rip140-null mice and mice overexpressing human RIP140, we found that RIP140 inhibited intestinal epithelial cell proliferation and apoptosis. Interestingly, following whole-body irradiation, mice lacking RIP140 exhibited improved regenerative capacity in the intestine, while mice overexpressing RIP140 displayed reduced recovery. Enhanced RIP140 expression strongly repressed human colon cancer cell proliferation in vitro and after grafting onto nude mice. Moreover, in murine tissues and human cancer cells, RIP140 stimulated APC transcription and inhibited β-catenin activation and target gene expression. Finally, RIP140 mRNA and RIP140 protein levels were decreased in human colon cancers compared with those in normal mucosal tissue, and low levels of RIP140 expression in adenocarcinomas from patients correlated with poor prognosis. Together, these results support a tumor suppressor role for RIP140 in colon cancer. PMID:24667635

  19. Pseudoexons provide a mechanism for allele-specific expression of APC in familial adenomatous polyposis.

    PubMed

    Nieminen, Taina T; Pavicic, Walter; Porkka, Noora; Kankainen, Matti; Järvinen, Heikki J; Lepistö, Anna; Peltomäki, Päivi

    2016-10-25

    Allele-specific expression (ASE) of the Adenomatous Polyposis Coli (APC) gene occurs in up to one-third of families with adenomatous polyposis (FAP) that have screened mutation-negative by conventional techniques. To advance our understanding of the genomic basis of this phenomenon, 54 APC mutation-negative families (21 with classical FAP and 33 with attenuated FAP, AFAP) were investigated. We focused on four families with validated ASE and scrutinized these families by sequencing of the blood transcriptomes (RNA-seq) and genomes (WGS). Three families, two with classical FAP and one with AFAP, revealed deep intronic mutations associated with pseudoexons. In all three families, intronic mutations (c.646-1806T>G in intron 6, c.1408+729A>G in intron 11, and c.1408+731C>T in intron 11) created new splice donor sites resulting in the insertion of intronic sequences (of 127 bp, 83 bp, and 83 bp, respectively) in the APC transcript. The respective intronic mutations were absent in the remaining polyposis families and the general population. Premature stop of translation as the predicted consequence as well as co-segregation with polyposis supported the pathogenicity of the pseudoexons. We conclude that next generation sequencing on RNA and genomic DNA is an effective strategy to reveal and validate pseudoexons that are regularly missed by traditional screening methods and is worth considering in apparent mutation-negative polyposis families.

  20. The utility of Apc-mutant rats in modeling human colon cancer.

    PubMed

    Irving, Amy A; Yoshimi, Kazuto; Hart, Marcia L; Parker, Taybor; Clipson, Linda; Ford, Madeline R; Kuramoto, Takashi; Dove, William F; Amos-Landgraf, James M

    2014-11-01

    Prior to the advent of genetic engineering in the mouse, the rat was the model of choice for investigating the etiology of cancer. Now, recent advances in the manipulation of the rat genome, combined with a growing recognition of the physiological differences between mice and rats, have reignited interest in the rat as a model of human cancer. Two recently developed rat models, the polyposis in the rat colon (Pirc) and Kyoto Apc Delta (KAD) strains, each carry mutations in the intestinal-cancer-associated adenomatous polyposis coli (Apc) gene. In contrast to mouse models carrying Apc mutations, in which cancers develop mainly in the small intestine rather than in the colon and there is no gender bias, these rat models exhibit colonic predisposition and gender-specific susceptibility, as seen in human colon cancer. The rat also provides other experimental resources as a model organism that are not provided by the mouse: the structure of its chromosomes facilitates the analysis of genomic events, the size of its colon permits longitudinal analysis of tumor growth, and the size of biological samples from the animal facilitates multiplexed molecular analyses of the tumor and its host. Thus, the underlying biology and experimental resources of these rat models provide important avenues for investigation. We anticipate that advances in disease modeling in the rat will synergize with resources that are being developed in the mouse to provide a deeper understanding of human colon cancer.

  1. Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands

    PubMed Central

    Kawajiri, Kaname; Kobayashi, Yasuhito; Ohtake, Fumiaki; Ikuta, Togo; Matsushima, Yoshibumi; Mimura, Junsei; Pettersson, Sven; Pollenz, Richard S.; Sakaki, Toshiyuki; Hirokawa, Takatsugu; Akiyama, Tetsu; Kurosumi, Masafumi; Poellinger, Lorenz; Kato, Shigeaki; Fujii-Kuriyama, Yoshiaki

    2009-01-01

    Intestinal cancer is one of the most common human cancers. Aberrant activation of the canonical Wnt signaling cascade, for example, caused by adenomatous polyposis coli (APC) gene mutations, leads to increased stabilization and accumulation of β-catenin, resulting in initiation of intestinal carcinogenesis. The aryl hydrocarbon receptor (AhR) has dual roles in regulating intracellular protein levels both as a ligand-activated transcription factor and as a ligand-dependent E3 ubiquitin ligase. Here, we show that the AhR E3 ubiquitin ligase has a role in suppression of intestinal carcinogenesis by a previously undescribed ligand-dependent β-catenin degradation pathway that is independent of and parallel to the APC system. This function of AhR is activated by both xenobiotics and natural AhR ligands, such as indole derivatives that are converted from dietary tryptophan and glucosinolates by intestinal microbes, and suppresses intestinal tumor development in ApcMin/+ mice. These findings suggest that chemoprevention with naturally-occurring and chemically-designed AhR ligands can be used to successfully prevent intestinal cancers. PMID:19651607

  2. The APC/C in female mammalian meiosis I.

    PubMed

    Homer, Hayden

    2013-08-01

    The anaphase-promoting complex or cyclosome (APC/C) orchestrates a meticulously controlled sequence of proteolytic events critical for proper cell cycle progression, the details of which have been most extensively elucidated during mitosis. It has become apparent, however, that the APC/C, particularly when acting in concert with its Cdh1 co-activator (APC/C(Cdh1)), executes a staggeringly diverse repertoire of functions that extend its remit well outside the bounds of mitosis. Findings over the past decade have not only earmarked mammalian oocyte maturation as one such case in point but have also begun to reveal a complex pattern of APC/C regulation that underpins many of the oocyte's unique developmental attributes. This review will encompass the latest findings pertinent to the APC/C, especially APC/C(Cdh1), in mammalian oocytes and how its activity and substrates shape the stop-start tempo of female mammalian first meiotic division and the challenging requirement for assembling spindles in the absence of centrosomes.

  3. APC germline mutations in families with familial adenomatous polyposis.

    PubMed

    De Queiroz Rossanese, Lillian Barbosa; De Lima Marson, Fernando Augusto; Ribeiro, José Dirceu; Coy, Claudio Saddy Rodrigues; Bertuzzo, Carmen Silvia

    2013-11-01

    Adenomatous polyposis coli (APC) germline mutations are responsible for the occurrence of familial adenomatous polyposis (FAP). Somatic mutations lead to malignant transformation of adenomas. In this context, considering the significance of APC germline mutations in FAP, we aimed to identify APC germline mutations. In the present study, 20 FAP patients were enrolled. The determination of APC germline mutations was performed using sequencing, and the mutations were compared with clinical markers (gender, age at diagnosis, smoking habits, TNM stage, Astler‑Coller stage, degree of differentiation of adenocarcinoma). The data were compared using the SPSS program, with the Fisher's exact test and χ2 test, considering α=0.05. According to the main results in our sample, 16 alleles with deleterious mutations (80% of the patients) were identified while 7 (35%) patients had no deleterious mutations. There was a predominance of nonsense (45% of the patients) and frameshift (20% of the patients) mutations. There was no statistical significance between the APC germline mutations identified and the clinical variables considered in our study. Only TNM stage was associated with the presence of deleterious mutations. Patients with deleterious mutations had an OR, 0.086 (IC=0.001-0.984); TNM stage I+II in comparison with III+IV, when compared with the patients with no deleterious mutations identified. In this context, as a conclusion, we demonstrated the molecular heterogeneity of APC germline mutations in FAP and the difficulty to perform molecular diagnostics in a Brazilian population, considering the admixed population analyzed.

  4. The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators

    PubMed Central

    Hagting, Anja; Izawa, Daisuke; Mansfeld, Jörg; Gibson, Toby J.; Pines, Jonathon

    2016-01-01

    The APC/C is the ubiquitin ligase that regulates mitosis by targeting specific proteins for degradation at specific times under the control of the Spindle Assembly Checkpoint (SAC). How the APC/C recognises its different substrates is a key problem in the control of cell division. Here, we have identified the ABBA motif in Cyclin A, BUBR1, BUB1 and Acm1, and show that it binds to the APC/C co-activator CDC20. The ABBA motif in Cyclin A is required for its proper degradation in prometaphase through competing with BUBR1 for the same site on CDC20. Moreover, the ABBA motifs in BUBR1 and BUB1 are necessary for the SAC to work at full strength and to recruit CDC20 to kinetochores. Thus, we have identified a conserved motif integral to the proper control of mitosis that connects APC/C substrate recognition with the SAC. PMID:25669885

  5. 75 FR 78246 - Medicare Program; Re-Chartering of the Advisory Panel on Ambulatory Payment Classification (APC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... deal with the following issues: Addressing whether procedures within an APC group are similar both... new technology APCs to clinical APCs). Evaluating APC group weights. Reviewing packaging the cost of... methodology for packaging and the impact of packaging on APC group structure and payment. Removing...

  6. Tumor suppressor gene adenomatous polyposis coli downregulates intestinal transport.

    PubMed

    Rexhepaj, Rexhep; Rotte, Anand; Gu, Shuchen; Michael, Diana; Pasham, Venkanna; Wang, Kan; Kempe, Daniela S; Ackermann, Teresa F; Brücher, Björn; Fend, Falko; Föller, Michael; Lang, Florian

    2011-05-01

    Loss of function mutations of the tumor suppressor gene adenomatous polyposis coli (APC) underly the familial adenomatous polyposis. Mice carrying an inactivating mutation in the apc gene (apc (Min/+)) similarly develop intestinal polyposis. APC is effective at least in part by degrading β-catenin and lack of APC leads to markedly enhanced cellular β-catenin levels. β-Catenin has most recently been shown to upregulate the Na+/K+ ATPase. The present study, thus, explored the possibility that APC could influence intestinal transport. The abundance and localization of β-catenin were determined utilizing Western blotting and confocal microscopy, the activity of the electrogenic glucose carrier (SGLT1) was estimated from the glucose-induced current in jejunal segments utilizing Ussing chamber experiments and the Na+/H+ exchanger (NHE3) activity from Na+ -dependent re-alkalinization of cytosolic pH (ΔpH(i)) following an ammonium pulse employing BCECF fluorescence. As a result, β-catenin abundance in intestinal tissue was significantly higher in apc (Min/+) mice than in wild-type mice (apc (+/+)). The β-catenin protein was localized in the basolateral membrane. Both, the glucose-induced current and ΔpH(i) were significantly higher in apc (Min/+) mice than in apc (+/+) mice. In conclusion, intestinal electrogenic transport of glucose and intestinal Na+/H+ exchanger activity are both significantly enhanced in apc (Min/+) mice, pointing to a role of APC in the regulation of epithelial transport.

  7. Dietary heme iron and the risk of colorectal cancer with specific mutations in KRAS and APC.

    PubMed

    Gilsing, Anne M J; Fransen, Fiona; de Kok, Theo M; Goldbohm, Alexandra R; Schouten, Leo J; de Bruïne, Adriaan P; van Engeland, Manon; van den Brandt, Piet A; de Goeij, Anton F P M; Weijenberg, Matty P

    2013-12-01

    Red meat intake has been linked to increased colorectal cancer (CRC) risk. Although the underlying mechanisms remain unclear, experimental studies suggest a role for dietary heme iron. Because heme iron was shown to promote specific mutations, it would be insightful to link heme iron data to CRC with mutations in key genes in an observational, population-based study. We investigated the association between dietary heme iron intake and risk of CRC with mutations in APC (adenomatous polyposis coli) and KRAS (Kirsten ras) and P53 overexpression in the Netherlands Cohort Study. After 7.3 years of follow-up, excluding the first 2.3 years due to incomplete coverage of the pathology registry and to avoid preclinical disease, adjusted hazard ratios (including adjustment for total meat) and 95% confidence intervals were calculated, using 4026 subcohort members (aged 55-69 years at baseline), 435 colon and 140 rectal cancer patients. When comparing the highest with the lowest tertile of intake, heme iron intake was associated with an increased risk of CRC harboring activating mutations in KRAS (hazard ratio = 1.71, 95% confidence interval: 1.15-2.57; P for trend = 0.03) and CRC without truncating mutations in APC (hazard ratio = 1.79, 95% confidence interval: 1.23-2.60; P for trend = 0.003). We observed a positive association between heme iron intake and the risk of CRC with activating G>A mutations in KRAS (P for trend = 0.01) and overall G>A mutations in APC (P for trend = 0.005). No associations were found with CRC harboring G>T mutations in KRAS/APC. Heme iron intake was positively associated with the risk of P53 overexpressed tumors but not with tumors without P53 overexpression (Pheterogeneity = 0.12). Heme iron intake was associated with an increased risk of colorectal tumors harboring G>A transitions in KRAS and APC and overexpression of P53. These novel findings suggest that alkylating rather than oxidative DNA-damaging mechanisms are involved in heme

  8. Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta 716) knockout mice.

    PubMed

    Sonoshita, M; Takaku, K; Sasaki, N; Sugimoto, Y; Ushikubi, F; Narumiya, S; Oshima, M; Taketo, M M

    2001-09-01

    Arachidonic acid is metabolized to prostaglandin H(2) (PGH(2)) by cyclooxygenase (COX). COX-2, the inducible COX isozyme, has a key role in intestinal polyposis. Among the metabolites of PGH(2), PGE(2) is implicated in tumorigenesis because its level is markedly elevated in tissues of intestinal adenoma and colon cancer. Here we show that homozygous deletion of the gene encoding a cell-surface receptor of PGE(2), EP2, causes decreases in number and size of intestinal polyps in Apc(Delta 716) mice (a mouse model for human familial adenomatous polyposis). This effect is similar to that of COX-2 gene disruption. We also show that COX-2 expression is boosted by PGE(2) through the EP2 receptor via a positive feedback loop. Homozygous gene knockout for other PGE(2) receptors, EP1 or EP3, did not affect intestinal polyp formation in Apc(Delta 716) mice. We conclude that EP2 is the major receptor mediating the PGE2 signal generated by COX-2 upregulation in intestinal polyposis, and that increased cellular cAMP stimulates expression of more COX-2 and vascular endothelial growth factor in the polyp stroma.

  9. Phosphorylation and dephosphorylation regulate APC/CCdh1 substrate degradation

    PubMed Central

    Simpson-Lavy, Kobi J; Zenvirth, Drora; Brandeis, Michael

    2015-01-01

    The Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase activated by its G1 specific adaptor protein Cdh1 is a major regulator of the cell cycle. The APC/CCdh1 mediates degradation of dozens of proteins, however, the kinetics and requirements for their degradation are largely unknown. We demonstrate that overexpression of the constitutive active CDH1m11 mutant that is not inhibited by phosphorylation results in mitotic exit in the absence of the FEAR and MEN pathways, and DNA re-replication in the absence of Cdc7 activity. This mode of mitotic exit also reveals additional requirements for APC/CCdh1 substrate degradation, which for some substrates such as Pds1 or Clb5 is dephosphorylation, but for others such as Cdc5 is phosphorylation. PMID:26252546

  10. Functional redundancy between Apc and Apc2 regulates tissue homeostasis and prevents tumourigenesis in murine mammary epithelium

    PubMed Central

    Daly, Carl S.; Shaw, Paul; Ordonez, Liliana D.; Williams, Geraint T.; Quist, Jelmar; Grigoriadis, Anita; Van Es, Johan H.; Clevers, Hans; Clarke, Alan R.; Reed, Karen R.

    2016-01-01

    Aberrant Wnt signaling within breast cancer is associated with poor prognosis, but regulation of this pathway in breast tissue remains poorly understood and the consequences of immediate or long-term dysregulation remain elusive. The exact contribution of the Wnt-regulating proteins APC and APC2 in the pathogenesis of human breast cancer are ill-defined, but our analysis of publically available array datasets indicates that tumors with concomitant low expression of both proteins occurs more frequently in the ‘triple negative’ phenotype, which is a subtype of breast cancer with particularly poor prognosis. We have used mouse transgenics to delete Apc and/or Apc2 from mouse mammary epithelium to elucidate the significance of these proteins in mammary homeostasis and delineate their influences on Wnt signaling and tumourigenesis. Loss of either protein alone failed to affect Wnt signaling levels or tissue homeostasis. Strikingly, concomitant loss led to local disruption of β-catenin status, disruption in epithelial integrity, cohesion and polarity, increased cell division and a distinctive form of ductal hyperplasia with ‘squamoid’ ghost cell nodules in young animals. Upon aging, the development of Wnt activated mammary carcinomas with squamous differentiation was accompanied by a significantly reduced survival. This novel Wnt driven mammary tumour model highlights the importance of functional redundancies existing between the Apc proteins both in normal homeostasis and in tumorigenesis. PMID:27694902

  11. High performance APCS conceptual design and evaluation scoping study

    SciTech Connect

    Soelberg, N.; Liekhus, K.; Chambers, A.; Anderson, G.

    1998-02-01

    This Air Pollution Control System (APCS) Conceptual Design and Evaluation study was conducted to evaluate a high-performance (APC) system for minimizing air emissions from mixed waste thermal treatment systems. Seven variations of high-performance APCS designs were conceptualized using several design objectives. One of the system designs was selected for detailed process simulation using ASPEN PLUS to determine material and energy balances and evaluate performance. Installed system capital costs were also estimated. Sensitivity studies were conducted to evaluate the incremental cost and benefit of added carbon adsorber beds for mercury control, specific catalytic reduction for NO{sub x} control, and offgas retention tanks for holding the offgas until sample analysis is conducted to verify that the offgas meets emission limits. Results show that the high-performance dry-wet APCS can easily meet all expected emission limits except for possibly mercury. The capability to achieve high levels of mercury control (potentially necessary for thermally treating some DOE mixed streams) could not be validated using current performance data for mercury control technologies. The engineering approach and ASPEN PLUS modeling tool developed and used in this study identified APC equipment and system performance, size, cost, and other issues that are not yet resolved. These issues need to be addressed in feasibility studies and conceptual designs for new facilities or for determining how to modify existing facilities to meet expected emission limits. The ASPEN PLUS process simulation with current and refined input assumptions and calculations can be used to provide system performance information for decision-making, identifying best options, estimating costs, reducing the potential for emission violations, providing information needed for waste flow analysis, incorporating new APCS technologies in existing designs, or performing facility design and permitting activities.

  12. Dual PI3K/mTOR Inhibition in Colorectal Cancers with APC and PIK3CA Mutations.

    PubMed

    Foley, Tyler M; Payne, Susan N; Pasch, Cheri A; Yueh, Alex E; Van De Hey, Dana R; Korkos, Demetra P; Clipson, Linda; Maher, Molly E; Matkowskyj, Kristina A; Newton, Michael A; Deming, Dustin A

    2017-02-09

    Therapeutic targeting of the PI3K pathway is an active area of research in multiple cancer types, including breast and endometrial cancers. This pathway is commonly altered in cancer and plays an integral role in numerous vital cellular functions. Mutations in the PIK3CA gene, resulting in a constitutively active form of PI3K, often occur in colorectal cancer, though the population of patients who would benefit from targeting this pathway has yet to be identified. In human colorectal cancers, PIK3CA mutations most commonly occur concomitantly with loss of adenomatous polyposis coli (APC). Here, treatment strategies are investigated that target the PI3K pathway in colon cancers with mutations in APC and PIK3CA Colorectal cancer spheroids with Apc and Pik3ca mutations were generated and characterized confirming that these cultures represent the tumors from which they were derived. Pan and alpha isomer-specific PI3K inhibitors did not induce a significant treatment response, whereas the dual PI3K/mTOR inhibitors BEZ235 and LY3023414 induced a dramatic treatment response through decreased cellular proliferation and increased differentiation. The significant treatment responses were confirmed in mice with Apc and Pik3ca-mutant colon cancers as measured using endoscopy with a reduction in median lumen occlusion of 53% with BEZ235 and a 24% reduction with LY3023414 compared with an increase of 53% in controls (P < 0.001 and P = 0.03, respectively). This response was also confirmed with (18)F-FDG microPET/CT imaging.Implications: Spheroid models and transgenic mice suggest that dual PI3K/mTOR inhibition is a potential treatment strategy for APC and PIK3CA-mutant colorectal cancers. Thus, further clinical studies of dual PI3K/mTOR inhibitors are warranted in colorectal cancers with these mutations. Mol Cancer Res; 15(3); 1-11. ©2016 AACR.

  13. The E3 ligase APC/C(Cdh1) promotes ubiquitylation-mediated proteolysis of PAX3 to suppress melanocyte proliferation and melanoma growth.

    PubMed

    Cao, Juxiang; Dai, Xiangpeng; Wan, Lixin; Wang, Hongshen; Zhang, Jinfang; Goff, Philip S; Sviderskaya, Elena V; Xuan, Zhenyu; Xu, Zhixiang; Xu, Xiaowei; Hinds, Philip; Flaherty, Keith T; Faller, Douglas V; Goding, Colin R; Wang, Yongjun; Wei, Wenyi; Cui, Rutao

    2015-09-01

    The anaphase-promoting complex or cyclosome with the subunit Cdh1 (APC/C(Cdh1)) is an E3 ubiquitin ligase involved in the control of the cell cycle. Here, we identified sporadic mutations occurring in the genes encoding APC components, including Cdh1, in human melanoma samples and found that loss of APC/C(Cdh1) may promote melanoma development and progression, but not by affecting cell cycle regulatory targets of APC/C. Most of the mutations we found in CDH1 were those associated with ultraviolet light (UV)-induced melanomagenesis. Compared with normal human skin tissue and human or mouse melanocytes, the abundance of Cdh1 was decreased and that of the transcription factor PAX3 was increased in human melanoma tissue and human or mouse melanoma cell lines, respectively; Cdh1 abundance was further decreased with advanced stages of human melanoma. PAX3 was a substrate of APC/C(Cdh1) in melanocytes, and APC/C(Cdh1)-mediated ubiquitylation marked PAX3 for proteolytic degradation in a manner dependent on the D-box motif in PAX3. Either mutating the D-box in PAX3 or knocking down Cdh1 prevented the ubiquitylation and degradation of PAX3 and increased proliferation and melanin production in melanocytes. Knocking down Cdh1 in melanoma cells in culture or before implantation in mice promoted doxorubicin resistance, whereas reexpressing wild-type Cdh1, but not E3 ligase-deficient Cdh1 or a mutant that could not interact with PAX3, restored doxorubicin sensitivity in melanoma cells both in culture and in xenografts. Thus, our findings suggest a tumor suppressor role for APC/C(Cdh1) in melanocytes and that targeting PAX3 may be a strategy for treating melanoma.

  14. Original CIN: reviewing roles for APC in chromosome instability.

    PubMed

    Rusan, Nasser M; Peifer, Mark

    2008-06-02

    You may have seen the bumper sticker "Eve was framed." Thousands of years of being blamed for original sin and still many wonder, where's the evidence? Today, the tumor suppressor adenomatous polyposis coli (APC) may have the same complaint about accusations of a different type of CIN, chromosome instability. A series of recent papers, including three in this journal, propose that loss of APC function plays an important role in the CIN seen in many colon cancer cells. However, a closer look reveals a complex story that raises more questions than answers.

  15. Timing of APC/C substrate degradation is determined by fzy/fzr specificity of destruction boxes

    PubMed Central

    Zur, Amit; Brandeis, Michael

    2002-01-01

    The anaphase promoting complex/cyclosome (APC/C), activated by fzy and fzr, degrades cell cycle proteins that carry RXXL or KEN destruction boxes (d-boxes). APC/C substrates regulate sequential events and must be degraded in the correct order during mitosis and G1. We studied how d-boxes determine APC/Cfzy/APC/Cfzr specificity and degradation timing. Cyclin B1 has an RXXL box and is degraded by both APC/Cfzy and APC/Cfzr; fzy has a KEN box and is degraded by APC/Cfzr only. We characterized the degradation of substrates with swapped d-boxes. Cyclin B1 with KEN was degraded by APC/Cfzr only. Fzy with RXXL could be degraded by APC/Cfzy and APC/Cfzr. Interestingly, APC/Cfzy- but not APC/Cfzr-specific degradation is highly dependent on the location of RXXL. We studied degradation of tagged substrates in real time and observed that APC/Cfzr is activated in early G1. These observations demonstrate how d-box specificities of APC/Cfzy and APC/Cfzr, and the successive activation of APC/C by fzy and fzr, establish the temporal degradation pattern. Our observations can explain further why some endogenous RXXL substrates are degraded by APC/Cfzy, while others are restricted to APC/Cfzr. PMID:12198152

  16. Exploration of the APC/beta-catenin (WNT) pathway and a histologic classification system for pulmonary artery intimal sarcoma. A study of 18 cases.

    PubMed

    Gaumann, A; Bode-Lesniewska, B; Zimmermann, D R; Fanburg-Smith, J C; Kirkpatrick, C J; Hofstädter, F; Woenckhaus, M; Stoehr, R; Obermann, E C; Dietmaier, W; Hartmann, A

    2008-11-01

    APC, a tumor suppressor gene in the Wnt pathway, stabilizes beta-catenin and controls cell growth. Mutation of APC or beta-catenin leads to nuclear accumulation of beta-catenin and transcription of cyclin D1/cyclin A. Pulmonary artery sarcoma (PAS) were studied by morphologic, immunohistochemical, and molecular genetic methods of the Wnt pathway. Eighteen cases were included: mean age 52 years, primary intraluminal location with typical clinical presentation. PAS were classified as epithelioid (n = 4) or malignant fibrous histiocytoma (MFH; spindled/pleomorphic, n = 4), myxofibrosarcoma (n = 8), and one each hemangiopericytoma-like or malignant inflammatory myofibroblastic tumor-like. The tumor cells demonstrated vimentin, focal actins, and rare focal desmin positivity. All but one were grade 2 or 3 by FNCLCC grading. Alteration in chromosome 5q21 (APC) was found in 4/14 PAS by LOH, mostly epithelioid-type; an MFH-type case demonstrated microsatellite instability (MSI) and nuclear beta-catenin. Cyclin D1 was expressed in seven tumors, all myxofibrosarcoma-type. No mutations were detected in APC or beta-catenin. In summary, PAS are predominantly intermediate grade myxofibrosarcoma in middle-aged males, and fatal in two-thirds of patients. Despite myofibroblastic phenotype, APC/beta-catenin pathway changes are rare. Cyclin D1, only expressed in the myxofibrosarcoma-type, is likely transcribed via factors other than beta-catenin.

  17. Dietary acrylamide intake and the risk of colorectal cancer with specific mutations in KRAS and APC.

    PubMed

    Hogervorst, Janneke G F; de Bruijn-Geraets, Daisy; Schouten, Leo J; van Engeland, Manon; de Kok, Theo M C M; Goldbohm, R Alexandra; van den Brandt, Piet A; Weijenberg, Matty P

    2014-05-01

    Acrylamide, a probable human carcinogen, is present in heat-treated carbohydrate-rich foods. Epidemiological studies have not shown a clear association between acrylamide intake and colorectal cancer (CRC) risk. This may be due to the molecular heterogeneity in colorectal tumors, which was not taken into consideration before. Since the acrylamide metabolite glycidamide induces specific DNA mutations in rodents, we investigated whether acrylamide is associated with CRC risk characterized by mutations in Kirsten-ras (KRAS) and adenomatous polyposis coli (APC); key genes in colorectal carcinogenesis. This case-cohort analysis, within the Netherlands Cohort Study on diet and cancer, was based on 7.3 years of follow-up. Acrylamide intake was assessed with a food frequency questionnaire. Mutation analysis of codons 1286-1520 in exon 15 in APC and codons 12 and 13 in exon 1 in KRAS was performed on tumor tissue of 733 cases. Hazard ratios (HR) were calculated using Cox proportional hazards analysis. Among men, acrylamide intake was statistically significantly associated with an increased risk of particularly tumors with an activating KRAS mutation {HR fourth versus first quartile: 2.12 [95% confidence interval (CI): 1.16-3.87], P trend: 0.01}. Among women, acrylamide intake was statistically significantly associated with a decreased risk of particularly tumors with a truncating APC mutation (fourth versus first quartile: 0.47 (95% CI: 0.23-0.94), P trend: 0.02), but only in the highest quartile of intake. This is the first study to show that acrylamide might be associated with CRC with specific somatic mutations, differentially in men and women. More research is needed to corroborate or refute these findings.

  18. Metabolomics of Apc Min/+ mice genetically susceptible to intestinal cancer

    PubMed Central

    2014-01-01

    Background To determine how diets high in saturated fat could increase polyp formation in the mouse model of intestinal neoplasia, Apc Min/+ , we conducted large-scale metabolome analysis and association study of colon and small intestine polyp formation from plasma and liver samples of Apc Min/+ vs. wild-type littermates, kept on low vs. high-fat diet. Label-free mass spectrometry was used to quantify untargeted plasma and acyl-CoA liver compounds, respectively. Differences in contrasts of interest were analyzed statistically by unsupervised and supervised modeling approaches, namely Principal Component Analysis and Linear Model of analysis of variance. Correlation between plasma metabolite concentrations and polyp numbers was analyzed with a zero-inflated Generalized Linear Model. Results Plasma metabolome in parallel to promotion of tumor development comprises a clearly distinct profile in Apc Min/+ mice vs. wild type littermates, which is further altered by high-fat diet. Further, functional metabolomics pathway and network analyses in Apc Min/+ mice on high-fat diet revealed associations between polyp formation and plasma metabolic compounds including those involved in amino-acids metabolism as well as nicotinamide and hippuric acid metabolic pathways. Finally, we also show changes in liver acyl-CoA profiles, which may result from a combination of Apc Min/+ -mediated tumor progression and high fat diet. The biological significance of these findings is discussed in the context of intestinal cancer progression. Conclusions These studies show that high-throughput metabolomics combined with appropriate statistical modeling and large scale functional approaches can be used to monitor and infer changes and interactions in the metabolome and genome of the host under controlled experimental conditions. Further these studies demonstrate the impact of diet on metabolic pathways and its relation to intestinal cancer progression. Based on our results, metabolic signatures

  19. Single-molecule spectroscopy and femtosecond transient absorption studies on the excitation energy transfer process in ApcE(1-240) dimers.

    PubMed

    Long, Saran; Zhou, Meng; Tang, Kun; Zeng, Xiao-Li; Niu, Yingli; Guo, Qianjin; Zhao, Kai-Hong; Xia, Andong

    2015-05-28

    ApcE(1-240) dimers with one intrinsic phycocyanobilin (PCB) chromophore in each monomer that is truncated from the core-membrane linker (ApcE) of phycobilisomes (PBS) in Nostoc sp. PCC 7120 show a sharp and significantly red-shifted absorption. Two explanations either conformation-dependent Förster resonance energy transfer (FRET) or the strong exciton coupling limit have been proposed for red-shifted absorption. This is a classic example of the special pair in the photosynthetic light harvesting proteins, but the mechanism of this interaction is still a matter of intense debate. We report the studies using single-molecule and transient absorption spectra on the interaction in the special pair of ApcE dimers. Our results demonstrate the presence of conformation-dependent FRET between the two PCB chromophores in ApcE dimers. The broad distributions of fluorescence intensities, lifetimes and polarization difference from single-molecule measurements reveal the heterogeneity of local protein-pigment environments in ApcE dimers, where the same molecular structures but different protein environments are the main reason for the two PCB chromophores with different spectral properties. The excitation energy transfer rate between the donor and the acceptor about (110 ps)(-1) is determined from transient absorption measurements. The red-shifted absorption in ApcE dimers could result from more extending conformation, which shows another type of absorption redshift that does not depend on strong exciton coupling. The results here stress the importance of conformation-controlled spectral properties of the chemically identical chromophores, which could be a general feature to control energy/electron transfer, widely existing in the light harvesting complexes.

  20. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice.

    PubMed

    Poulogiannis, George; McIntyre, Rebecca E; Dimitriadi, Maria; Apps, John R; Wilson, Catherine H; Ichimura, Koichi; Luo, Feijun; Cantley, Lewis C; Wyllie, Andrew H; Adams, David J; Arends, Mark J

    2010-08-24

    In 100 primary colorectal carcinomas, we demonstrate by array comparative genomic hybridization (aCGH) that 33% show DNA copy number (DCN) loss involving PARK2, the gene encoding PARKIN, the E3 ubiquitin ligase whose deficiency is responsible for a form of autosomal recessive juvenile parkinsonism. PARK2 is located on chromosome 6 (at 6q25-27), a chromosome with one of the lowest overall frequencies of DNA copy number alterations recorded in colorectal cancers. The PARK2 deletions are mostly focal (31% approximately 0.5 Mb on average), heterozygous, and show maximum incidence in exons 3 and 4. As PARK2 lies within FRA6E, a large common fragile site, it has been argued that the observed DCN losses in PARK2 in cancer may represent merely the result of enforced replication of locally vulnerable DNA. However, we show that deficiency in expression of PARK2 is significantly associated with adenomatous polyposis coli (APC) deficiency in human colorectal cancer. Evidence of some PARK2 mutations and promoter hypermethylation is described. PARK2 overexpression inhibits cell proliferation in vitro. Moreover, interbreeding of Park2 heterozygous knockout mice with Apc(Min) mice resulted in a dramatic acceleration of intestinal adenoma development and increased polyp multiplicity. We conclude that PARK2 is a tumor suppressor gene whose haploinsufficiency cooperates with mutant APC in colorectal carcinogenesis.

  1. A distinct mutation on the alternative splice site of APC exon 9 results in attenuated familial adenomatous polyposis phenotype.

    PubMed

    Fostira, Florentia; Yannoukakos, Drakoulis

    2010-09-01

    A subset of APC mutation carriers shows a milder familial adenomatous polyposis phenotype (attenuated FAP) developing smaller number of polyps and colorectal cancer at an older age. It seems that a different mechanism to carcinogenesis is initiated according to the initial site of the germline mutation. The APC gene of a female patient with AFAP phenotypic features was analysed. A novel mutation located on the alternatively splice site of exon 9 was identified. This is the first reported mutation in the specific site. Transcripts characterization revealed disruption of splicing occurring within exon 9, resulting in the expression of a shorter mRNA transcript, which surprisingly does not affect the ratio between the two wild type transcripts, as well as the production of wild type short isoform by the mutant allele. The short wild type isoform, produced by the mutant allele, needs to be inactivated, on top of the wild type allele, for colorectal cancer to develop. These observations enhance the 'three hit hypothesis' and indicate that a distinct mechanism for the adenoma to carcinoma sequence should be followed, for truncated mutations taking place on the borderline of the alternatively spliced exon 9 of the APC gene, as well.

  2. Fission yeast APC/C activators Slp1 and Fzr1 sequentially trigger two consecutive nuclear divisions during meiosis.

    PubMed

    Chikashige, Yuji; Yamane, Miho; Okamasa, Kasumi; Osakada, Hiroko; Tsutsumi, Chihiro; Nagahama, Yuki; Fukuta, Noriko; Haraguchi, Tokuko; Hiraoka, Yasushi

    2017-02-28

    In meiosis, two rounds of nuclear division occur consecutively without DNA replication between the divisions. We isolated a fission yeast mutant in which the nucleus divides only once to generate two spores, as opposed to four, in meiosis. In this mutant, we found that the initiation codon of the slp1(+) gene is converted to ATA, producing a reduced amount of Slp1. As a member of the Fizzy family of APC/C activators, Slp1 is essential for vegetative growth; however, the mutant allele shows a phenotype only in meiosis. Slp1 insufficiency delays degradation of maturation-promoting factor (MPF) at the first meiotic division, and another APC/C activator, Fzr1, which acts late in meiosis, terminates meiosis immediately after the delayed first division to produce two viable spores. This article is protected by copyright. All rights reserved.

  3. Genomic profiling of stage II and III colon cancers reveals APC mutations to be associated with survival in stage III colon cancer patients

    PubMed Central

    van den Broek, Evert; Krijgsman, Oscar; Sie, Daoud; Tijssen, Marianne; Mongera, Sandra; van de Wiel, Mark A.; Th. Belt, Eric J.; den Uil, Sjoerd H.; Bril, Herman; Stockmann, Hein B.A.C.; Ylstra, Bauke; Carvalho, Beatriz; Meijer, Gerrit A.; Fijneman, Remond J.A.

    2016-01-01

    Tumor profiling of DNA alterations, i.e. gene point mutations, somatic copy number aberrations (CNAs) and structural variants (SVs), improves insight into the molecular pathology of cancer and clinical outcome. Here, associations between genomic aberrations and disease recurrence in stage II and III colon cancers were investigated. A series of 114 stage II and III microsatellite stable colon cancer samples were analyzed by high-resolution array-comparative genomic hybridization (array-CGH) to detect CNAs and CNA-associated chromosomal breakpoints (SVs). For 60 of these samples mutation status of APC, TP53, KRAS, PIK3CA, FBXW7, SMAD4, BRAF and NRAS was determined using targeted massive parallel sequencing. Loss of chromosome 18q12.1-18q12.2 occurred more frequently in tumors that relapsed than in relapse-free tumors (p < 0.001; FDR = 0.13). In total, 267 genes were recurrently affected by SVs (FDR < 0.1). CNAs and SVs were not associated with disease-free survival (DFS). Mutations in APC and TP53 were associated with increased CNAs. APC mutations were associated with poor prognosis in (5-fluorouracil treated) stage III colon cancers (p = 0.005; HR = 4.1), an effect that was further enhanced by mutations in MAPK pathway (KRAS, NRAS, BRAF) genes. We conclude that among multiple genomic alterations in CRC, strongest associations with clinical outcome were observed for common mutations in APC. PMID:27729614

  4. APC polymorphisms and the risk of colorectal neoplasia: a HuGE review and meta-analysis.

    PubMed

    Liang, Jing; Lin, Chunqing; Hu, Fulan; Wang, Fan; Zhu, Lin; Yao, Xiaoping; Wang, Yibaina; Zhao, Yashuang

    2013-06-01

    Adenomatous polyposis coli gene (APC) polymorphisms may influence the risk for colorectal neoplasia. However, results thus far have been inconclusive. We performed a systematic literature search of the Medline, Embase, Cochrane Collaboration, and HuGE databases and reviewed the references of pertinent articles through May 2012. Odds ratios with 95% confidence intervals were used to estimate the association between 3 APC polymorphisms (D1822V, E1317Q, and I1307K) and colorectal neoplasia. In total, 40 studies from 1997 to 2010 were included in this meta-analysis, and individuals with the D1822V variant homozygote VV genotype had a slight decrease in the risk for colorectal neoplasia compared with the wild-type homozygote DD genotype (pooled odds ratio = 0.87, 95% confidence interval: 0.77, 0.99). There was a small association between the APC E1317Q polymorphism and a risk for colorectal neoplasia (variant vs. wild-type: pooled odds ratio = 1.41, 95% confidence interval: 1.14, 1.76), particularly for colorectal adenomas (variant vs. wild-type: odds ratio = 2.89, 95% confidence interval: 1.83, 4.56). Compared with those who carried the wild-type I1307K, Ashkenazi Jews who carried the I1307K variant were at a significantly increased risk for colorectal neoplasia, with a pooled odds ratio of 2.17 (95% confidence interval: 1.64, 2.86). Our study suggests that APC is a candidate gene for colorectal neoplasia susceptibility.

  5. Mutated K-ras(Asp12) promotes tumourigenesis in Apc(Min) mice more in the large than the small intestines, with synergistic effects between K-ras and Wnt pathways.

    PubMed

    Luo, Feijun; Brooks, David G; Ye, Hongtao; Hamoudi, Rifat; Poulogiannis, George; Patek, Charles E; Winton, Douglas J; Arends, Mark J

    2009-10-01

    Summary K-ras mutations are found in 40-50% of human colorectal adenomas and carcinomas, but their functional contribution remains incompletely understood. Here, we show that a conditional mutant K-ras mouse model (K-ras(Asp12)/Cre), with transient intestinal Cre activation by beta-Naphthoflavone (beta-NF) treatment, displayed transgene recombination and K-ras(Asp12) expression in the murine intestines, but developed few intestinal adenomas over 2 years. However, when crossed with Apc(Min/+) mice, the K-ras(Asp12)/Cre/Apc(Min/+) offspring showed acceleration of intestinal tumourigenesis with significantly changed average lifespan (P < 0.05) decreased to 18.4 +/- 5.4 weeks from 20.9 +/- 4.7 weeks (control Apc(Min/+) mice). The numbers of adenomas in the small intestine and large intestine were significantly (P < 0.01) increased by 1.5-fold and 5.7-fold, respectively, in K-ras(Asp12)/Cre/Apc(Min/+) mice compared with Apc(Min/+) mice, with the more marked increase in adenoma prevalence in the large intestine. To explore possible mechanisms for K-ras(Asp12) and Apc(Min) co-operation, the Mitogen-activated protein kinase (Mapk), Akt and Wnt signalling pathways, including selected target gene expression levels, were evaluated in normal large intestine and large intestinal tumours. K-ras(Asp12) increased activation of Mapk and Akt signalling pathway targets phospho-extracellular signal-regulated kinase (pErk) and pAkt, and increased relative expression levels of Wnt pathway targets vascular endothelial growth factor (VEGF), gastrin, cyclo-oxygenase 2 (Cox2) and T-cell lymphoma invasion and metastasis 1 (Tiam1) in K-ras(Asp12)/Cre/Apc(Min/+) adenomas compared with that of Apc(Min/+) adenomas, although other Wnt signalling pathway target genes such as Peroxisome proliferator-activated receptor delta (PPARd), matrix metalloproteinase 7 (MMP7), protein phosphatase 1 alpha (PP1A) and c-myc remained unchanged. In conclusion, intestinal expression of K-ras(Asp12) promotes mutant

  6. Clinicopathologic characteristics of anterior prostate cancer (APC), including correlation with previous biopsy pathology.

    PubMed

    Magers, Martin J; Zhan, Tianyu; Udager, Aaron M; Wei, John T; Tomlins, Scott A; Wu, Angela J; Kunju, Lakshmi P; Lew, Madelyn; Feng, Felix Y; Hamstra, Daniel A; Siddiqui, Javed; Chinnaiyan, Arul M; Montgomery, Jeffrey S; Weizer, Alon Z; Morgan, Todd M; Hollenbeck, Brent K; Miller, David C; Palapattu, Ganesh S; Jiang, Hui; Mehra, Rohit

    2015-11-01

    Anterior-predominant prostate cancer (APC) is an incompletely understood entity which can be difficult to sample via transrectal biopsy. Seemingly favorable biopsy results may belie the potential aggressiveness of these tumors. Here, we attempt to characterize APC by retrospectively examining the clinicopathologic features of APC at radical prostatectomy and comparing our findings with prior biopsy information. We found that 17.4 % of patients in our study had APC. APC demonstrated a significantly lower (P value < 0.05) Gleason score (GS) and pathologic stage than non-APC tumors, including the absence of seminal vesicle invasion by APC. A subset (5.6 %) of APC consisted of high-grade tumors (GS ≥ 8), and these tumors were more often detected on transperineal saturation biopsy than non-transperineal saturation (i.e., transrectal ultrasound guided) biopsy strategies. Four patients (7 %) without transperineal saturation biopsy exhibited a significantly worse GS at RP than biopsy, compared to five patients (36 %) with transperineal saturation biopsy. Our findings corroborate the difficulty in detecting APC and suggest that APC is not a uniform disease with a wholly indolent phenotype. Dedicated long-term outcome data are needed in these patients. Additionally, alternative pathologic staging parameters may be necessary.

  7. Molecular basis of APC/C regulation by the spindle assembly checkpoint

    PubMed Central

    Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David

    2016-01-01

    In the dividing eukaryotic cell the spindle assembly checkpoint (SAC) ensures each daughter cell inherits an identical set of chromosomes. The SAC coordinates the correct attachment of sister chromatid kinetochores to the mitotic spindle with activation of the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase that initiates chromosome separation. In response to unattached kinetochores, the SAC generates the mitotic checkpoint complex (MCC), a multimeric assembly that inhibits the APC/C, delaying chromosome segregation. Here, using cryo-electron microscopy we determined the near-atomic resolution structure of an APC/C-MCC complex (APC/CMCC). We reveal how degron-like sequences of the MCC subunit BubR1 block degron recognition sites on Cdc20, the APC/C coactivator subunit (Cdc20APC/C) responsible for substrate interactions. BubR1 also obstructs binding of UbcH10 (APC/C’s initiating E2) to repress APC/C ubiquitination activity. Conformational variability of the complex allows for UbcH10 association, and we show from a structure of APC/CMCC in complex with UbcH10 how the Cdc20 subunit intrinsic to the MCC (Cdc20MCC) is ubiquitinated, a process that results in APC/C reactivation when the SAC is silenced. PMID:27509861

  8. The tissue effect of argon-plasma coagulation with prior submucosal injection (Hybrid-APC) versus standard APC: A randomized ex-vivo study

    PubMed Central

    Neugebauer, Alexander; Scharpf, Marcus; Braun, Kirsten; May, Andrea; Ell, Christian; Fend, Falko; Enderle, Markus D

    2014-01-01

    Background Thermal ablation for Barrett’s oesophagus has widely been established in gastrointestinal endoscopy during the last decade. The mainly used methods of radiofrequency ablation (RFA) and argon-plasma coagulation (APC) carry a relevant risk of stricture formation of up to 5–15%. Newer ablation techniques that are able to overcome this disadvantage would therefore be desirable. The aim of the present study was to compare the depth of tissue injury of the new method of Hybrid-APC versus standard APC within a randomized study in a porcine oesophagus model. Methods Using a total of eight explanted pig oesophagi, 48 oesophageal areas were ablated either by standard or Hybrid-APC (APC with prior submucosal fluid injection) using power settings of 50 and 70 W. The depth of tissue injury to the oesophageal wall was analysed macroscopically and histopathologically. Results Using 50 W, mean coagulation depth was 937 ± 469 µm during standard APC, and 477 ± 271 µm during Hybrid-APC (p = 0.064). Using 70 W, coagulation depth was 1096 ± 320 µm (standard APC) and 468 ± 136 µm (Hybrid-APC; p = 0.003). During all settings, damage to the muscularis mucosae was observed. Using standard APC, damage to the submucosal layer was observed in 4/6 (50 W) and 6/6 cases (70 W). During Hybrid-APC, coagulation of the submucosal layer occurred in 2/6 (50 W) and 1/6 cases (70 W). The proper muscle layer was only damaged during conventional APC (50 W: 1/6; 70 W: 3/6). Limitations Ex-vivo animal study with limited number of cases. Conclusions Hybrid-APC reduces coagulation depth by half in comparison with standard APC, with no thermal injury to the proper muscle layer. It may therefore lead to a lower rate of stricture formation during clinical application. PMID:25360316

  9. Methylated APC and RASSF1A in multiple specimens contribute to the differential diagnosis of patients with undetermined solitary pulmonary nodules

    PubMed Central

    Gao, Li; Xie, Erfu; Yu, Tongfu; Chen, Dan; Zhang, Lixia; Zhang, Bingfeng; Wang, Fang; Xu, Jian; Huang, Peijun; Liu, Xisheng; Fang, Bingliang

    2015-01-01

    Background Inactivation of tumor-suppressor gene (TSG) by promoter hypermethylation has been reported in many tumor types, including lung cancer. This study was designed to determine the methylated APC and RASSF1A genes in tumor tissue, serum and plasma of patients with early stage lung cancer. Methods Eighty-nine patients with undetermined solitary pulmonary nodules detected upon CT-scan were recruited in this study. DNA samples were extracted from biopsy tissues, serum and plasma and QMSP of APC and RASSF1A was carried out after bisulfite conversion. The 89 patients consist of 58 stage I lung cancer patients and 31 benign lung disease according to pathological report. Twenty-six cancer patients had matched biopsy tumor tissue, serum and plasma samples. Results The methylation rates of APC and RASSF1A were 59.0% and 66.1% in biopsy tissues, 42.5% and 52.5% in serum, and 24.1% and 43.1% in plasma of cancer patients. For RASSF1A, different samples all showed a significant difference between cancer group and benign group (P<0.05). However, APC gene only explored the P value less than 0.05 in plasma result. Towards the 26 lung cancer patients with three matched samples, methylation rate in each sample type was more than 50.0% and displayed no difference. Conclusions Evaluation of APC and RASSF1A promoter methylation by using QMSP appears to be very useful for the differential diagnosis of patients with undetermined solitary pulmonary nodules. Our results also suggested that plasma might be the best sample for clinical detection of early stage lung. PMID:25922721

  10. APC/CCDC20 and APC/C play pivotal roles in the process of embryonic development in Artemia sinica

    PubMed Central

    Zhang, Mengchen; Yao, Feng; Luan, Hong; Zhao, Wei; Jing, Ting; Zhang, Shuang; Hou, Lin; Zou, Xiangyang

    2016-01-01

    Anaphase Promoting Complex or Cyclosome (APC/C) is a representative E3 ubiquitin ligase, triggering the transition of metaphase to anaphase by regulating degradation and ensures the exit from mitosis. Cell division cycle 20 (CDC20) and Cell division cycle 20 related protein 1 (CDH1), as co-activators of APC/C, play significant roles in the spindle assembly checkpoint, guiding ubiquitin-mediated degradation, together with CDC23. During the embryonic development of the brine shrimp, Artemia sinica, CDC20, CDH1 and CDC23 participate in cell cycle regulation, but the specific mechanisms of their activities remain unknown. Herein, the full-length cDNAs of cdc20 and cdc23 from A. sinica were cloned. Real-time PCR analyzed the expression levels of As-cdc20 and As-cdc23. The locations of CDH1, CDC20 and CDC23 showed no tissue or organ specificity. Furthermore, western blotting showed that the levels of As-CDC20, securin, cyclin B, CDK1, CDH1, CDC14B, CDC23 and geminin proteins conformed to their complicated degradation relationships during different embryo stages. Our research revealed that As-CDC20, As-CDH1 and APC mediate the mitotic progression, downstream proteins degradation and cellular differentiation in the process of embryonic development in A. sinica. PMID:27991546

  11. The tumour suppressor APC promotes HIV-1 assembly via interaction with Gag precursor protein.

    PubMed

    Miyakawa, Kei; Nishi, Mayuko; Matsunaga, Satoko; Okayama, Akiko; Anraku, Masaki; Kudoh, Ayumi; Hirano, Hisashi; Kimura, Hirokazu; Morikawa, Yuko; Yamamoto, Naoki; Ono, Akira; Ryo, Akihide

    2017-01-30

    Diverse cellular proteins and RNAs are tightly regulated in their subcellular localization to exert their local function. Here we report that the tumour suppressor adenomatous polyposis coli protein (APC) directs the localization and assembly of human immunodeficiency virus (HIV)-1 Gag polyprotein at distinct membrane components to enable the efficient production and spread of infectious viral particles. A proteomic analysis and subsequent biomolecular interaction assay reveals that the carboxyl terminus of APC interacts with the matrix region of Gag. Ectopic expression of APC, but not its familial adenomatous polyposis-related truncation mutant, prominently enhances HIV-1 production. Conversely, the depletion of APC leads to a significant decrease in membrane targeting of viral components, resulting in the severe loss of production of infectious virions. Furthermore, APC promotes the directional assembly of viral components at virological synapses, thereby facilitating cell-to-cell viral transmission. These findings reveal an unexpected role of APC in the directional spread of HIV-1.

  12. The tumour suppressor APC promotes HIV-1 assembly via interaction with Gag precursor protein

    PubMed Central

    Miyakawa, Kei; Nishi, Mayuko; Matsunaga, Satoko; Okayama, Akiko; Anraku, Masaki; Kudoh, Ayumi; Hirano, Hisashi; Kimura, Hirokazu; Morikawa, Yuko; Yamamoto, Naoki; Ono, Akira; Ryo, Akihide

    2017-01-01

    Diverse cellular proteins and RNAs are tightly regulated in their subcellular localization to exert their local function. Here we report that the tumour suppressor adenomatous polyposis coli protein (APC) directs the localization and assembly of human immunodeficiency virus (HIV)-1 Gag polyprotein at distinct membrane components to enable the efficient production and spread of infectious viral particles. A proteomic analysis and subsequent biomolecular interaction assay reveals that the carboxyl terminus of APC interacts with the matrix region of Gag. Ectopic expression of APC, but not its familial adenomatous polyposis-related truncation mutant, prominently enhances HIV-1 production. Conversely, the depletion of APC leads to a significant decrease in membrane targeting of viral components, resulting in the severe loss of production of infectious virions. Furthermore, APC promotes the directional assembly of viral components at virological synapses, thereby facilitating cell-to-cell viral transmission. These findings reveal an unexpected role of APC in the directional spread of HIV-1. PMID:28134256

  13. [Argon plasma coagulation (APC): a new mode in gastrointestinal endoscopy--first experience].

    PubMed

    Dajcman, D; Skalicky, M; Pernat, C; Pocajt, M

    2001-01-01

    Argon plasma coagulation (APC) is a new method of non-contact electrocoagulation in which current is applied to tissues by means of ionised argon gas (argon plasma). The development of special applicators has made this method applicable for gastrointestinal endoscopy. The primary indication for APC is the treatment of hemorrhage in the gastrointestinal tract. APC has been proven to be highly effective and easily used, with clear advantages over previously used methods. This article describes the introduction of APC in Slovenia and the first experiences with this method in the clinical department of internal medicine in Maribor.

  14. Control of cell growth by the SCF and APC/C ubiquitin ligases

    PubMed Central

    Skaar, Jeffrey R.; Pagano, Michele

    2009-01-01

    The ubiquitin-proteasome system plays key roles in the control of cell growth. The cell cycle in particular is highly regulated by the functions of the SCF and APC/C ubiquitin ligases, and perturbation of their function can result in tumorigenesis. Although the SCF and APC/C complexes are well-established in growth control pathways, many aspects of their function remain unknown. Recent studies have shed light on the mechanism of SCF-mediated ubiquitination and new functions for the SCF complex and APC/C. Our expanding understanding of the roles of the SCF and APC/C complexes highlight the potential for targeted molecular therapies. PMID:19775879

  15. Apc bridges Wnt/{beta}-catenin and BMP signaling during osteoblast differentiation of KS483 cells

    SciTech Connect

    Miclea, Razvan L.; Horst, Geertje van der; Robanus-Maandag, Els C.; Loewik, Clemens W.G.M.; Oostdijk, Wilma; Wit, Jan M.; Karperien, Marcel

    2011-06-10

    The canonical Wnt signaling pathway influences the differentiation of mesenchymal cell lineages in a quantitative and qualitative fashion depending on the dose of {beta}-catenin signaling. Adenomatous polyposis coli (Apc) is the critical intracellular regulator of {beta}-catenin turnover. To better understand the molecular mechanisms underlying the role of Apc in regulating the differentiation capacity of skeletal progenitor cells, we have knocked down Apc in the murine mesenchymal stem cell-like KS483 cells by stable expression of Apc-specific small interfering RNA. In routine culture, KSFrt-Apc{sub si} cells displayed a mesenchymal-like spindle shape morphology, exhibited markedly decreased proliferation and increased apoptosis. Apc knockdown resulted in upregulation of the Wnt/{beta}-catenin and the BMP/Smad signaling pathways, but osteogenic differentiation was completely inhibited. This effect could be rescued by adding high concentrations of BMP-7 to the differentiation medium. Furthermore, KSFrt-Apc{sub si} cells showed no potential to differentiate into chondrocytes or adipocytes. These results demonstrate that Apc is essential for the proliferation, survival and differentiation of KS483 cells. Apc knockdown blocks the osteogenic differentiation of skeletal progenitor cells, a process that can be overruled by high BMP signaling.

  16. Controlling the response to DNA damage by the APC/C-Cdh1.

    PubMed

    de Boer, H Rudolf; Guerrero Llobet, S; van Vugt, Marcel A T M

    2016-03-01

    Proper cell cycle progression is safeguarded by the oscillating activities of cyclin/cyclin-dependent kinase complexes. An important player in the regulation of mitotic cyclins is the anaphase-promoting complex/cyclosome (APC/C), a multi-subunit E3 ubiquitin ligase. Prior to entry into mitosis, the APC/C remains inactive, which allows the accumulation of mitotic regulators. APC/C activation requires binding to either the Cdc20 or Cdh1 adaptor protein, which sequentially bind the APC/C and facilitate targeting of multiple mitotic regulators for proteasomal destruction, including Securin and Cyclin B, to ensure proper chromosome segregation and mitotic exit. Emerging data have indicated that the APC/C, particularly in association with Cdh1, also functions prior to mitotic entry. Specifically, the APC/C-Cdh1 is activated in response to DNA damage in G2 phase cells. These observations are in line with in vitro and in vivo genetic studies, in which cells lacking Cdh1 expression display various defects, including impaired DNA repair and aberrant cell cycle checkpoints. In this review, we summarize the current literature on APC/C regulation in response to DNA damage, the functions of APC/C-Cdh1 activation upon DNA damage, and speculate how APC/C-Cdh1 can control cell fate in the context of persistent DNA damage.

  17. Sequential E2s drive polyubiquitin chain assembly on APC targets.

    PubMed

    Rodrigo-Brenni, Monica C; Morgan, David O

    2007-07-13

    The anaphase-promoting complex (APC), or cyclosome, is an E3 ubiquitin-protein ligase that collaborates with E2 ubiquitin-conjugating enzymes to assemble polyubiquitin chains on proteins important for cell-cycle progression. It remains unclear how the APC - or many other E3s - promotes the multiple distinct reactions necessary for chain assembly. We addressed this problem by analyzing APC interactions with different E2s. We screened all budding yeast E2s as APC coenzymes in vitro and found that two, Ubc4 and Ubc1, are the key E2 partners for the APC. These proteins display strikingly different but complementary enzymatic behaviors: Ubc4 supports the rapid monoubiquitination of multiple lysines on APC targets, while Ubc1 catalyzes K48-linked polyubiquitin chain assembly on preattached ubiquitins. Mitotic APC function is lost in yeast strains lacking both Ubc1 and Ubc4. E2-25K, a human homolog of Ubc1, also promotes APC-dependent chain extension on preattached ubiquitins. We propose that sequential E2 proteins catalyze K48-linked polyubiquitination and thus proteasomal destruction of APC targets.

  18. Comparative characterization of the virulence gene clusters (lipooligosaccharide [LOS] and capsular polysaccharide [CPS]) for Campylobacter coli, Campylobacter jejuni subsp. jejuni and related Campylobacter species.

    PubMed

    Richards, Vincent P; Lefébure, Tristan; Pavinski Bitar, Paulina D; Stanhope, Michael J

    2013-03-01

    Campylobacter jejuni subsp. jejuni and Campylobacter coli are leading causes of gastroenteritis, with virulence linked to cell surface carbohydrate diversity. Although the associated gene clusters are well studied for C. jejuni subsp. jejuni, C. coli has been largely neglected. Here we provide comparative analysis of the lipooligosaccharide (LOS) and capsular polysaccharide (CPS) gene clusters, using genome and cluster sequence data for 36 C. coli strains, 67 C. jejuni subsp. jejuni strains and ten additional Campylobacter species. Similar to C. jejuni subsp. jejuni, C. coli showed high LOS/CPS gene diversity, with each cluster delineated into eight gene content classes. This diversity was predominantly due to extensive gene gain/loss, with the lateral transfer of genes likely occurring both within and between species and also between the LOS and CPS. Additional mechanisms responsible for LOS/CPS diversity included phase-variable homopolymeric repeats, gene duplication/inactivation, and possibly host environment selection pressure. Analyses also showed that (i) strains of C. coli and Campylobacter upsaliensis possessed genes homologous to the sialic acid genes implicated in the neurological disorder Guillain-Barré syndrome (GBS), and (ii) C. coli LOS classes were differentiated between bovine and poultry hosts, potentially aiding post infection source tracking.

  19. APC: A New Code for Atmospheric Polarization Computations

    NASA Technical Reports Server (NTRS)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2014-01-01

    A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface.

  20. A trellis-searched APC (adaptive predictive coding) speech coder

    SciTech Connect

    Malone, K.T. ); Fischer, T.R. . Dept. of Electrical and Computer Engineering)

    1990-01-01

    In this paper we formulate a speech coding system that incorporates trellis coded vector quantization (TCVQ) and adaptive predictive coding (APC). A method for optimizing'' the TCVQ codebooks is presented and experimental results concerning survivor path mergings are reported. Simulation results are given for encoding rates of 16 and 9.6 kbps for a variety of coder parameters. The quality of the encoded speech is deemed excellent at an encoding rate of 16 kbps and very good at 9.6 kbps. 13 refs., 2 figs., 4 tabs.

  1. Sequestration of CDH1 by MAD2L2 prevents premature APC/C activation prior to anaphase onset.

    PubMed

    Listovsky, Tamar; Sale, Julian E

    2013-10-14

    The switch from activation of the anaphase-promoting complex/cyclosome (APC/C) by CDC20 to CDH1 during anaphase is crucial for accurate mitosis. APC/C(CDC20) ubiquitinates a limited set of substrates for subsequent degradation, including Cyclin B1 and Securin, whereas APC/C(CDH1) has a broader specificity. This switch depends on dephosphorylation of CDH1 and the APC/C, and on the degradation of CDC20. Here we show, in human cells, that the APC/C inhibitor MAD2L2 also contributes to ensuring the sequential activation of the APC/C by CDC20 and CDH1. In prometaphase, MAD2L2 sequestered free CDH1 away from the APC/C. At the onset of anaphase, MAD2L2 was rapidly degraded by APC/C(CDC20), releasing CDH1 to activate the dephosphorylated APC/C. Loss of MAD2L2 led to premature association of CDH1 with the APC/C, early destruction of APC/C(CDH1) substrates, and accelerated mitosis with frequent mitotic aberrations. Thus, MAD2L2 helps to ensure a robustly bistable switch between APC/C(CDC20) and APC/C(CDH1) during the metaphase-to-anaphase transition, thereby contributing to mitotic fidelity.

  2. Epithelial-mesenchymal transition and nuclear β-catenin induced by conditional intestinal disruption of Cdh1 with Apc is E-cadherin EC1 domain dependent.

    PubMed

    Matheson, Julia; Bühnemann, Claudia; Carter, Emma J; Barnes, David; Hoppe, Hans-Jürgen; Hughes, Jennifer; Cobbold, Stephen; Harper, James; Morreau, Hans; Surakhy, Mirvat; Hassan, A Bassim

    2016-10-25

    Two important protein-protein interactions establish E-cadherin (Cdh1) in the adhesion complex; homophilic binding via the extra-cellular (EC1) domain and cytoplasmic tail binding to β-catenin. Here, we evaluate whether E-cadherin binding can inhibit β-catenin when there is loss of Adenomatous polyposis coli (APC) from the β-catenin destruction complex. Combined conditional loss of Cdh1 and Apc were generated in the intestine, intestinal adenoma and adenoma organoids. Combined intestinal disruption (Cdh1fl/flApcfl/flVil-CreERT2) resulted in lethality, breakdown of the intestinal barrier, increased Wnt target gene expression and increased nuclear β-catenin localization, suggesting that E-cadherin inhibits β-catenin. Combination with an intestinal stem cell Cre (Lgr5CreERT2) resulted in ApcΔ/Δ recombination and adenoma, but intact Cdh1fl/fl alleles. Cultured ApcΔ/ΔCdh1fl/fl adenoma cells infected with adenovirus-Cre induced Cdh1fl/fl recombination (Cdh1Δ/Δ), disruption of organoid morphology, nuclear β-catenin localization, and cells with an epithelial-mesenchymal phenotype. Complementation with adenovirus expressing wild-type Cdh1 (Cdh1-WT) rescued adhesion and β-catenin membrane localization, yet an EC1 specific double mutant defective in homophilic adhesion (Cdh1-MutW2A, S78W) did not. These data suggest that E-cadherin inhibits β-catenin in the context of disruption of the APC-destruction complex, and that this function is also EC1 domain dependent. Both binding functions of E-cadherin may be required for its tumour suppressor activity.

  3. Sipuleucel-T: APC 8015, APC-8015, prostate cancer vaccine--Dendreon.

    PubMed

    2006-01-01

    Sipuleucel-T [APC 8015, Provenge] is an autologous, dendritic cell-based vaccine under development with Dendreon Corporation for the treatment of androgen-independent and androgen-dependent prostate cancer. It was generated using the company's active immunotherapy platform to stimulate a patient's own immune system to specifically target and destroy cancer cells, while leaving healthy cells unharmed. This approach could provide patients with a meaningful survival benefit and an improved tolerability profile over existing anticancer therapies. Sipuleucel-T selectively targets the prostate-specific antigen (PSA) known as prostatic acid phosphatase (PAP) that is expressed in approximately 95% of prostate cancers. It is produced by ex vivo exposure of dendritic cell precursors to PA 2024, a recombinant fusion protein composed of the PAP target fused to granulocyte-macrophage colony-stimulating factor (GM-CSF) and incorporated into Dendreon's proprietary Antigen Delivery Cassette. Patients are typically administered three intravenous (IV)-infusions of the vaccine over a 1-month period as a complete course of therapy. It is undergoing late-stage clinical evaluation among patients with early and advanced prostate cancer. In November 2003, Kirin Brewery returned to Dendreon the full rights to Sipuleucel-T for Asia. In exchange, Dendreon licensed patent rights relating to the use of certain HLA-DR antibodies to Kirin for $US20 million. This amended agreement enables Dendreon to complete ongoing discussions for a worldwide marketing and sales partnership for Sipuleucel-T. Similarly, Kirin is able to develop its HLA-DR monoclonal antibodies free of potential infringement claims arising from Dendreon's patent rights to HLA-DR. The licensing agreement relates to patent rights owned by Dendreon relating to monoclonal antibodies against the HLA-DR antigen. In addition, Dendreon retains rights to develop and commercialise its two existing HLA-DR monoclonal antibodies, DN 1921 and

  4. 42 CFR 419.31 - Ambulatory payment classification (APC) system and payment weights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the Federal Food, Drug and Cosmetic Act. (3) The payment rate determined for an APC group in... groups. (1) CMS classifies outpatient services and procedures that are comparable clinically and in terms of resource use into APC groups. Except as specified in paragraph (a)(2) of this section, items...

  5. REMOVAL OF ARSENIC IN DRINKING WATER: ARS CFU-50 APC ELECTROFLOCCULATION AND FILTRATION WATER TREATMENT SYSTEM

    EPA Science Inventory

    ETV testing of the ARS CFU-50 APC Electroflocculation and Filtration Water Treatment System (ARS CFU-50 APC) for arsenic removal was conducted at the Town of Bernalillo Well #3 site from April 18 through May 2, 2006. The source water was chlorinated groundwater from two supply w...

  6. Modeling the Effect of APC Truncation on Destruction Complex Function in Colorectal Cancer Cells

    DOE PAGES

    Barua, Dipak; Hlavacek, William S.

    2013-09-26

    In colorectal cancer cells, APC, a tumor suppressor protein, is commonly expressed in truncated form. Truncation of APC is believed to disrupt degradation of β—catenin, which is regulated by a multiprotein complex called the destruction complex. The destruction complex comprises APC, Axin, β—catenin, serine/threonine kinases, and other proteins. The kinases CK1α and GSK–3β, which are recruited by Axin, mediate phosphorylation of β—catenin, which initiates its ubiquitination and proteosomal degradation. The mechanism of regulation of β—catenin degradation by the destruction complex and the role of truncation of APC in colorectal cancer are not entirely understood. Through formulation and analysis of amore » rule-based computational model, we investigated the regulation of β—catenin phosphorylation and degradation by APC and the effect of APC truncation on function of the destruction complex. The model integrates available mechanistic knowledge about site-specific interactions and phosphorylation of destruction complex components and is consistent with an array of published data. In this paper, we find that the phosphorylated truncated form of APC can outcompete Axin for binding to β—catenin, provided that Axin is limiting, and thereby sequester β—catenin away from Axin and the Axin-recruited kinases CK1α and GSK–3β. Full-length APC also competes with Axin for binding to β—catenin; however, full-length APC is able, through its SAMP repeats, which bind Axin and which are missing in truncated oncogenic forms of APC, to bring β—catenin into indirect association with Axin and Axin-recruited kinases. Because our model indicates that the positive effects of truncated APC on β—catenin levels depend on phosphorylation of APC, at the first 20-amino acid repeat, and because phosphorylation of this site is mediated by CK1ϵ, we suggest that CK1ϵ is a potential target for therapeutic intervention in colorectal cancer. Finally, specific

  7. Modeling the effect of APC truncation on destruction complex function in colorectal cancer cells.

    PubMed

    Barua, Dipak; Hlavacek, William S

    2013-01-01

    In colorectal cancer cells, APC, a tumor suppressor protein, is commonly expressed in truncated form. Truncation of APC is believed to disrupt degradation of β-catenin, which is regulated by a multiprotein complex called the destruction complex. The destruction complex comprises APC, Axin, β-catenin, serine/threonine kinases, and other proteins. The kinases CK1α and GSK -3β, which are recruited by Axin, mediate phosphorylation of β-catenin, which initiates its ubiquitination and proteosomal degradation. The mechanism of regulation of β-catenin degradation by the destruction complex and the role of truncation of APC in colorectal cancer are not entirely understood. Through formulation and analysis of a rule-based computational model, we investigated the regulation of β-catenin phosphorylation and degradation by APC and the effect of APC truncation on function of the destruction complex. The model integrates available mechanistic knowledge about site-specific interactions and phosphorylation of destruction complex components and is consistent with an array of published data. We find that the phosphorylated truncated form of APC can outcompete Axin for binding to β-catenin, provided that Axin is limiting, and thereby sequester β-catenin away from Axin and the Axin-recruited kinases CK1α and GSK -3β. Full-length APC also competes with Axin for binding to β-catenin; however, full-length APC is able, through its SAMP repeats, which bind Axin and which are missing in truncated oncogenic forms of APC, to bring β-catenin into indirect association with Axin and Axin-recruited kinases. Because our model indicates that the positive effects of truncated APC on β-catenin levels depend on phosphorylation of APC, at the first 20-amino acid repeat, and because phosphorylation of this site is mediated by CK1ε, we suggest that CK1ε is a potential target for therapeutic intervention in colorectal cancer. Specific inhibition of CK1ε is predicted to limit binding of

  8. Modeling the Effect of APC Truncation on Destruction Complex Function in Colorectal Cancer Cells

    SciTech Connect

    Barua, Dipak; Hlavacek, William S.

    2013-09-26

    In colorectal cancer cells, APC, a tumor suppressor protein, is commonly expressed in truncated form. Truncation of APC is believed to disrupt degradation of β—catenin, which is regulated by a multiprotein complex called the destruction complex. The destruction complex comprises APC, Axin, β—catenin, serine/threonine kinases, and other proteins. The kinases CK1α and GSK–3β, which are recruited by Axin, mediate phosphorylation of β—catenin, which initiates its ubiquitination and proteosomal degradation. The mechanism of regulation of β—catenin degradation by the destruction complex and the role of truncation of APC in colorectal cancer are not entirely understood. Through formulation and analysis of a rule-based computational model, we investigated the regulation of β—catenin phosphorylation and degradation by APC and the effect of APC truncation on function of the destruction complex. The model integrates available mechanistic knowledge about site-specific interactions and phosphorylation of destruction complex components and is consistent with an array of published data. In this paper, we find that the phosphorylated truncated form of APC can outcompete Axin for binding to β—catenin, provided that Axin is limiting, and thereby sequester β—catenin away from Axin and the Axin-recruited kinases CK1α and GSK–3β. Full-length APC also competes with Axin for binding to β—catenin; however, full-length APC is able, through its SAMP repeats, which bind Axin and which are missing in truncated oncogenic forms of APC, to bring β—catenin into indirect association with Axin and Axin-recruited kinases. Because our model indicates that the positive effects of truncated APC on β—catenin levels depend on phosphorylation of APC, at the first 20-amino acid repeat, and because phosphorylation of this site is mediated by CK1ϵ, we suggest that CK1ϵ is a potential target for therapeutic intervention in colorectal cancer. Finally, specific inhibition

  9. Modeling the Effect of APC Truncation on Destruction Complex Function in Colorectal Cancer Cells

    PubMed Central

    Barua, Dipak; Hlavacek, William S.

    2013-01-01

    In colorectal cancer cells, APC, a tumor suppressor protein, is commonly expressed in truncated form. Truncation of APC is believed to disrupt degradation of β—catenin, which is regulated by a multiprotein complex called the destruction complex. The destruction complex comprises APC, Axin, β—catenin, serine/threonine kinases, and other proteins. The kinases and , which are recruited by Axin, mediate phosphorylation of β—catenin, which initiates its ubiquitination and proteosomal degradation. The mechanism of regulation of β—catenin degradation by the destruction complex and the role of truncation of APC in colorectal cancer are not entirely understood. Through formulation and analysis of a rule-based computational model, we investigated the regulation of β—catenin phosphorylation and degradation by APC and the effect of APC truncation on function of the destruction complex. The model integrates available mechanistic knowledge about site-specific interactions and phosphorylation of destruction complex components and is consistent with an array of published data. We find that the phosphorylated truncated form of APC can outcompete Axin for binding to β—catenin, provided that Axin is limiting, and thereby sequester β—catenin away from Axin and the Axin-recruited kinases and . Full-length APC also competes with Axin for binding to β—catenin; however, full-length APC is able, through its SAMP repeats, which bind Axin and which are missing in truncated oncogenic forms of APC, to bring β—catenin into indirect association with Axin and Axin-recruited kinases. Because our model indicates that the positive effects of truncated APC on β—catenin levels depend on phosphorylation of APC, at the first 20-amino acid repeat, and because phosphorylation of this site is mediated by , we suggest that is a potential target for therapeutic intervention in colorectal cancer. Specific inhibition of is predicted to limit binding of β—catenin to truncated

  10. Apc Restoration Promotes Cellular Differentiation and Reestablishes Crypt Homeostasis in Colorectal Cancer.

    PubMed

    Dow, Lukas E; O'Rourke, Kevin P; Simon, Janelle; Tschaharganeh, Darjus F; van Es, Johan H; Clevers, Hans; Lowe, Scott W

    2015-06-18

    The adenomatous polyposis coli (APC) tumor suppressor is mutated in the vast majority of human colorectal cancers (CRC) and leads to deregulated Wnt signaling. To determine whether Apc disruption is required for tumor maintenance, we developed a mouse model of CRC whereby Apc can be conditionally suppressed using a doxycycline-regulated shRNA. Apc suppression produces adenomas in both the small intestine and colon that, in the presence of Kras and p53 mutations, can progress to invasive carcinoma. In established tumors, Apc restoration drives rapid and widespread tumor-cell differentiation and sustained regression without relapse. Tumor regression is accompanied by the re-establishment of normal crypt-villus homeostasis, such that once aberrantly proliferating cells reacquire self-renewal and multi-lineage differentiation capability. Our study reveals that CRC cells can revert to functioning normal cells given appropriate signals and provide compelling in vivo validation of the Wnt pathway as a therapeutic target for treatment of CRC.

  11. Sipuleucel-T (APC8015) for prostate cancer.

    PubMed

    So-Rosillo, Rosendo; Small, Eric J

    2006-09-01

    Sipuleucel-T (Provenge; APC8015; Dendreon Corp, WA, USA) is a novel immunotherapeutic cellular product, which includes autologous dendritic cells pulsed ex vivo with a recombinant fusion protein (PA2024) consisting of granulocyte macrophage colony-stimulating factor and prostatic acid phosphatase. Two Phase II trials in men with androgen-dependent biochemically relapsed prostate cancer have demonstrated a decrease in prostate-specific antigen and prolongation in prostate-specific antigen doubling time. In men with hormone-refractory prostate cancer, clinical trials have demonstrated both biological activity and clinical response to sipuleucel-T. Data from two Phase III trials in men with asymptomatic, metastatic hormone-refractory prostate cancer demonstrated an improved median overall survival in men who received sipuleucel-T compared with placebo. Clinical trials are ongoing or are being developed to evaluate sipuleucel-T in various prostate cancer disease states and in combination with other treatment modalities.

  12. Evaluating the organizational effectiveness of APC implementation efforts.

    PubMed

    Patel, Rajan

    2002-06-01

    To optimize revenue under the Medicare outpatient prospective payment system's new coding-based ambulatory payment classifications (APCs), healthcare providers need to ensure several key steps are taken at the organizational level. Individuals who manage coding need to identify areas of overlap and adjust billing systems to reflect changes under the system. Billing managers should develop practices and protocols that provide detailed reviews of claims, implement a formal denial management program, track reasons for denials, and communicate denial information with their staffs. Proper evaluation of financial practices also is important. Financial managers need to develop formal ways to monitor financial performance consistently and on an ongoing basis and ensure the hospital is generating sufficient volume and keeping service costs in line with payments.

  13. The interrelationship between APC/C and Plk1 activities in centriole disengagement.

    PubMed

    Hatano, Toshiyuki; Sluder, Greenfield

    2012-11-15

    Mother-daughter centriole disengagement, the necessary first step in centriole duplication, involves Plk1 activity in early mitosis and separase activity after APC/C activity mediates securin degradation. Plk1 activity is thought to be essential and sufficient for centriole disengagement with separase activity playing a supporting but non-essential role. In separase null cells, however, centriole disengagement is substantially delayed. The ability of APC/C activity alone to mediate centriole disengagement has not been directly tested. We investigate the interrelationship between Plk1 and APC/C activities in disengaging centrioles in S or G2 HeLa and RPE1 cells, cell types that do not reduplicate centrioles when arrested in S phase. Knockdown of the interphase APC/C inhibitor Emi1 leads to centriole disengagement and reduplication of the mother centrioles, though this is slow. Strong inhibition of Plk1 activity, if any, during S does not block centriole disengagement and mother centriole reduplication in Emi1 depleted cells. Centriole disengagement depends on APC/C-Cdh1 activity, not APC/C-Cdc20 activity. Also, Plk1 and APC/C-Cdh1 activities can independently promote centriole disengagement in G2 arrested cells. Thus, Plk1 and APC/C-Cdh1 activities are independent but slow pathways for centriole disengagement. By having two slow mechanisms for disengagement working together, the cell ensures that centrioles will not prematurely separate in late G2 or early mitosis, thereby risking multipolar spindle assembly, but rather disengage in a timely fashion only late in mitosis.

  14. Prevalence and coexistence of KRAS, BRAF, PIK3CA, NRAS, TP53, and APC mutations in Indian colorectal cancer patients: Next-generation sequencing-based cohort study.

    PubMed

    Jauhri, Mayank; Bhatnagar, Akanksha; Gupta, Satish; Bp, Manasa; Minhas, Sachin; Shokeen, Yogender; Aggarwal, Shyam

    2017-02-01

    Colorectal cancer incidences are on a rise in India. In this study, we have analyzed the mutation frequencies of six potential biomarkers, their coexistence, association with clinicopathological characteristics, and tumor location in Indian colorectal cancer patients. Next-generation sequencing was performed to identify mutations in the six potential biomarker genes using formalin-fixed paraffin-embedded tissue blocks of 112 colorectal cancer patients. The mutation frequency observed in KRAS, BRAF, PIK3CA, NRAS, TP53, and APC was 35.7%, 7.1%, 16.1%, 6.3%, 39.3%, and 29.5%, respectively. The significant associations of mutations were KRAS with age less than 60 years (p = 0.041), PIK3CA with males (p = 0.032), tumor stage I-II (p = 0.013), lack of metastasis in lymph nodes (p = 0.040), NRAS with rectum (p = 0.002), and APC with T2 stage of tumor growth (p = 0.013). No single patient harbored mutations in these six genes or any five genes simultaneously. Significance was noted in coexistence of KRAS with APC (p = 0.024) and mutual exclusion of KRAS with BRAF (p = 0.029). PIK3CA exon 9 was observed to be more frequently associated with KRAS mutations than PIK3CA exon 20 (p = 0.072). NRAS mutations were mutually exclusive with BRAF and PIK3CA mutations. As per our knowledge, this is the first next-generation sequencing-based biomarker study in Indian colorectal cancer patients. Frequent coexistence of gene mutations in pairs and triplets suggests that synergistic effect of overlapping mutations might further trigger the disease. In addition, infrequent coexistence of multiple gene mutations hints toward different signaling pathways for colorectal cancer tumorigenesis.

  15. Point Mutations in Exon 1B of APC Reveal Gastric Adenocarcinoma and Proximal Polyposis of the Stomach as a Familial Adenomatous Polyposis Variant.

    PubMed

    Li, Jun; Woods, Susan L; Healey, Sue; Beesley, Jonathan; Chen, Xiaoqing; Lee, Jason S; Sivakumaran, Haran; Wayte, Nicci; Nones, Katia; Waterfall, Joshua J; Pearson, John; Patch, Anne-Marie; Senz, Janine; Ferreira, Manuel A; Kaurah, Pardeep; Mackenzie, Robertson; Heravi-Moussavi, Alireza; Hansford, Samantha; Lannagan, Tamsin R M; Spurdle, Amanda B; Simpson, Peter T; da Silva, Leonard; Lakhani, Sunil R; Clouston, Andrew D; Bettington, Mark; Grimpen, Florian; Busuttil, Rita A; Di Costanzo, Natasha; Boussioutas, Alex; Jeanjean, Marie; Chong, George; Fabre, Aurélie; Olschwang, Sylviane; Faulkner, Geoffrey J; Bellos, Evangelos; Coin, Lachlan; Rioux, Kevin; Bathe, Oliver F; Wen, Xiaogang; Martin, Hilary C; Neklason, Deborah W; Davis, Sean R; Walker, Robert L; Calzone, Kathleen A; Avital, Itzhak; Heller, Theo; Koh, Christopher; Pineda, Marbin; Rudloff, Udo; Quezado, Martha; Pichurin, Pavel N; Hulick, Peter J; Weissman, Scott M; Newlin, Anna; Rubinstein, Wendy S; Sampson, Jone E; Hamman, Kelly; Goldgar, David; Poplawski, Nicola; Phillips, Kerry; Schofield, Lyn; Armstrong, Jacqueline; Kiraly-Borri, Cathy; Suthers, Graeme K; Huntsman, David G; Foulkes, William D; Carneiro, Fatima; Lindor, Noralane M; Edwards, Stacey L; French, Juliet D; Waddell, Nicola; Meltzer, Paul S; Worthley, Daniel L; Schrader, Kasmintan A; Chenevix-Trench, Georgia

    2016-05-05

    Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is an autosomal-dominant cancer-predisposition syndrome with a significant risk of gastric, but not colorectal, adenocarcinoma. We mapped the gene to 5q22 and found loss of the wild-type allele on 5q in fundic gland polyps from affected individuals. Whole-exome and -genome sequencing failed to find causal mutations but, through Sanger sequencing, we identified point mutations in APC promoter 1B that co-segregated with disease in all six families. The mutations reduced binding of the YY1 transcription factor and impaired activity of the APC promoter 1B in luciferase assays. Analysis of blood and saliva from carriers showed allelic imbalance of APC, suggesting that these mutations lead to decreased allele-specific expression in vivo. Similar mutations in APC promoter 1B occur in rare families with familial adenomatous polyposis (FAP). Promoter 1A is methylated in GAPPS and sporadic FGPs and in normal stomach, which suggests that 1B transcripts are more important than 1A in gastric mucosa. This might explain why all known GAPPS-affected families carry promoter 1B point mutations but only rare FAP-affected families carry similar mutations, the colonic cells usually being protected by the expression of the 1A isoform. Gastric polyposis and cancer have been previously described in some FAP-affected individuals with large deletions around promoter 1B. Our finding that GAPPS is caused by point mutations in the same promoter suggests that families with mutations affecting the promoter 1B are at risk of gastric adenocarcinoma, regardless of whether or not colorectal polyps are present.

  16. Point Mutations in Exon 1B of APC Reveal Gastric Adenocarcinoma and Proximal Polyposis of the Stomach as a Familial Adenomatous Polyposis Variant

    PubMed Central

    Li, Jun; Woods, Susan L.; Healey, Sue; Beesley, Jonathan; Chen, Xiaoqing; Lee, Jason S.; Sivakumaran, Haran; Wayte, Nicci; Nones, Katia; Waterfall, Joshua J.; Pearson, John; Patch, Anne-Marie; Senz, Janine; Ferreira, Manuel A.; Kaurah, Pardeep; Mackenzie, Robertson; Heravi-Moussavi, Alireza; Hansford, Samantha; Lannagan, Tamsin R.M.; Spurdle, Amanda B.; Simpson, Peter T.; da Silva, Leonard; Lakhani, Sunil R.; Clouston, Andrew D.; Bettington, Mark; Grimpen, Florian; Busuttil, Rita A.; Di Costanzo, Natasha; Boussioutas, Alex; Jeanjean, Marie; Chong, George; Fabre, Aurélie; Olschwang, Sylviane; Faulkner, Geoffrey J.; Bellos, Evangelos; Coin, Lachlan; Rioux, Kevin; Bathe, Oliver F.; Wen, Xiaogang; Martin, Hilary C.; Neklason, Deborah W.; Davis, Sean R.; Walker, Robert L.; Calzone, Kathleen A.; Avital, Itzhak; Heller, Theo; Koh, Christopher; Pineda, Marbin; Rudloff, Udo; Quezado, Martha; Pichurin, Pavel N.; Hulick, Peter J.; Weissman, Scott M.; Newlin, Anna; Rubinstein, Wendy S.; Sampson, Jone E.; Hamman, Kelly; Goldgar, David; Poplawski, Nicola; Phillips, Kerry; Schofield, Lyn; Armstrong, Jacqueline; Kiraly-Borri, Cathy; Suthers, Graeme K.; Huntsman, David G.; Foulkes, William D.; Carneiro, Fatima; Lindor, Noralane M.; Edwards, Stacey L.; French, Juliet D.; Waddell, Nicola; Meltzer, Paul S.; Worthley, Daniel L.; Schrader, Kasmintan A.; Chenevix-Trench, Georgia

    2016-01-01

    Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is an autosomal-dominant cancer-predisposition syndrome with a significant risk of gastric, but not colorectal, adenocarcinoma. We mapped the gene to 5q22 and found loss of the wild-type allele on 5q in fundic gland polyps from affected individuals. Whole-exome and -genome sequencing failed to find causal mutations but, through Sanger sequencing, we identified point mutations in APC promoter 1B that co-segregated with disease in all six families. The mutations reduced binding of the YY1 transcription factor and impaired activity of the APC promoter 1B in luciferase assays. Analysis of blood and saliva from carriers showed allelic imbalance of APC, suggesting that these mutations lead to decreased allele-specific expression in vivo. Similar mutations in APC promoter 1B occur in rare families with familial adenomatous polyposis (FAP). Promoter 1A is methylated in GAPPS and sporadic FGPs and in normal stomach, which suggests that 1B transcripts are more important than 1A in gastric mucosa. This might explain why all known GAPPS-affected families carry promoter 1B point mutations but only rare FAP-affected families carry similar mutations, the colonic cells usually being protected by the expression of the 1A isoform. Gastric polyposis and cancer have been previously described in some FAP-affected individuals with large deletions around promoter 1B. Our finding that GAPPS is caused by point mutations in the same promoter suggests that families with mutations affecting the promoter 1B are at risk of gastric adenocarcinoma, regardless of whether or not colorectal polyps are present. PMID:27087319

  17. APC binds the Miro/Milton motor complex to stimulate transport of mitochondria to the plasma membrane.

    PubMed

    Mills, Kate M; Brocardo, Mariana G; Henderson, Beric R

    2016-02-01

    Mutations in adenomatous polyposis coli (APC) disrupt regulation of Wnt signaling, mitosis, and the cytoskeleton. We describe a new role for APC in the transport of mitochondria. Silencing of wild-type APC by small interfering RNA caused mitochondria to redistribute from the cell periphery to the perinuclear region. We identified novel APC interactions with the mitochondrial kinesin-motor complex Miro/Milton that were mediated by the APC C-terminus. Truncating mutations in APC abolished its ability to bind Miro/Milton and reduced formation of the Miro/Milton complex, correlating with disrupted mitochondrial distribution in colorectal cancer cells that could be recovered by reconstitution of wild-type APC. Using proximity ligation assays, we identified endogenous APC-Miro/Milton complexes at mitochondria, and live-cell imaging showed that loss of APC slowed the frequency of anterograde mitochondrial transport to the membrane. We propose that APC helps drive mitochondria to the membrane to supply energy for cellular processes such as directed cell migration, a process disrupted by cancer mutations.

  18. The APC/C activator Cdh1 regulates the G2/M transition during differentiation of placental trophoblast stem cells.

    PubMed

    Naoe, Hideaki; Chiyoda, Tatsuyuki; Ishizawa, Jo; Masuda, Kenta; Saya, Hideyuki; Kuninaka, Shinji

    2013-01-11

    Differentiation of placental trophoblast stem (TS) cells to trophoblast giant (TG) cells is accompanied by transition from a mitotic cell cycle to an endocycle. Here, we report that Cdh1, a regulator of the anaphase-promoting complex/cyclosome (APC/C), negatively regulates mitotic entry upon the mitotic/endocycle transition. TS cells derived from homozygous Cdh1 gene-trapped (Cdh1(GT/GT)) murine embryos accumulated mitotic cyclins and precociously entered mitosis after induction of TS cell differentiation, indicating that Cdh1 is required for the switch from mitosis to the endocycle. Furthermore, the Cdh1(GT/GT) TS cells and placenta showed aberrant expression of placental differentiation markers. These data highlight an important role of Cdh1 in the G2/M transition during placental differentiation.

  19. APC promoter is frequently methylated in pancreatic juice of patients with pancreatic carcinomas or periampullary tumors

    PubMed Central

    Ginesta, Mireia M.; Diaz-Riascos, Zamira Vanessa; Busquets, Juli; Pelaez, Núria; Serrano, Teresa; Peinado, Miquel Àngel; Jorba, Rosa; García-Borobia, Francisco Javier; Capella, Gabriel; Fabregat, Joan

    2016-01-01

    Early detection of pancreatic and periampullary neoplasms is critical to improve their clinical outcome. The present authors previously demonstrated that DNA hypermethylation of adenomatous polyposis coli (APC), histamine receptor H2 (HRH2), cadherin 13 (CDH13), secreted protein acidic and cysteine rich (SPARC) and engrailed-1 (EN-1) promoters is frequently detected in pancreatic tumor cells. The aim of the present study was to assess their prevalence in pancreatic juice of carcinomas of the pancreas and periampullary area. A total of 135 pancreatic juices obtained from 85 pancreatic cancer (PC), 26 ampullary carcinoma (AC), 10 intraductal papillary mucinous neoplasm (IPMN) and 14 chronic pancreatitis (CP) patients were analyzed. The methylation status of the APC, HRH2, CDH13, SPARC and EN-1 promoters was analyzed using methylation specific-melting curve analysis (MS-MCA). Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations were also tested with allele-specific quantitative polymerase chain reaction amplification. Out of the 5 promoters analyzed, APC (71%) and HRH2 (65%) were the most frequently methylated in PC juice. APC methylation was also detected at a high frequency in AC (76%) and IPMN (80%), but only occasionally observed in CP (7%). APC methylation had a high sensitivity (71–80%) for all types of cancer analyzed. The panel (where a sample scored as positive when ≥2 markers were methylated) did not outperform APC as a single marker. Finally, KRAS detection in pancreatic juice offered a lower sensitivity (50%) and specificity (71%) for detection of any cancer. APC hypermethylation in pancreatic juice, as assessed by MS-MCA, is a frequent event of potential clinical usefulness in the diagnosis of pancreatic and periampullary neoplasms. PMID:27602165

  20. Paternal B Vitamin Intake Is a Determinant of Growth, Hepatic Lipid Metabolism and Intestinal Tumor Volume in Female Apc1638N Mouse Offspring

    PubMed Central

    Sabet, Julia A.; Park, Lara K.; Iyer, Lakshmanan K.; Tai, Albert K.; Koh, Gar Yee; Pfalzer, Anna C.; Parnell, Laurence D.; Mason, Joel B.; Liu, Zhenhua; Byun, Alexander J.; Crott, Jimmy W.

    2016-01-01

    Background The importance of maternal nutrition to offspring health and risk of disease is well established. Emerging evidence suggests paternal diet may affect offspring health as well. Objective In the current study we sought to determine whether modulating pre-conception paternal B vitamin intake alters intestinal tumor formation in offspring. Additionally, we sought to identify potential mechanisms for the observed weight differential among offspring by profiling hepatic gene expression and lipid content. Methods Male Apc1638N mice (prone to intestinal tumor formation) were fed diets containing replete (control, CTRL), mildly deficient (DEF), or supplemental (SUPP) quantities of vitamins B2, B6, B12, and folate for 8 weeks before mating with control-fed wild type females. Wild type offspring were euthanized at weaning and hepatic gene expression profiled. Apc1638N offspring were fed a replete diet and euthanized at 28 weeks of age to assess tumor burden. Results No differences in intestinal tumor incidence or burden were found between male Apc1638N offspring of different paternal diet groups. Although in female Apc1638N offspring there were no differences in tumor incidence or multiplicity, a stepwise increase in tumor volume with increasing paternal B vitamin intake was observed. Interestingly, female offspring of SUPP and DEF fathers had a significantly lower body weight than those of CTRL fed fathers. Moreover, hepatic trigylcerides and cholesterol were elevated 3-fold in adult female offspring of SUPP fathers. Weanling offspring of the same fathers displayed altered expression of several key lipid-metabolism genes. Hundreds of differentially methylated regions were identified in the paternal sperm in response to DEF and SUPP diets. Aside from a few genes including Igf2, there was a striking lack of overlap between these genes differentially methylated in sperm and differentially expressed in offspring. Conclusions In this animal model, modulation of

  1. Berries as chemopreventive dietary constituents--a mechanistic approach with the ApcMin/+ mouse.

    PubMed

    Mutanen, Marja; Pajari, Anne-Maria; Paivarinta, Essi; Misikangas, Marjo; Rajakangas, Johanna; Marttinen, Maija; Oikarinen, Seija

    2008-01-01

    Berries contain a number of compounds that are proposed to have anticarcinogenic properties. We wanted to see if pure ellagic acid, natural ellagitannins and three wild berries have any effect on the adenoma formation in Apc- mutated Min/+ mice. Min/+ mice were fed high-fat AIN93-G diets containing 10% (w/w) freeze-dried bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), cloudberry (Rubus chamaemorus), cloudberry seeds or cloudberry pulp or pure ellagic acid at 1564 mg/kg for 10 weeks. beta-Catenin and cyclin D1 protein levels in the adenomas and in the normal-appearing mucosa were determined by Western blotting and immunohistochemistry. Early changes in gene expression in the normal-appearing mucosa were analyzed by Affymetrix microarrays. Three wild berries significantly reduced tumour number (15-30%, p < 0.05), and cloudberry and lingonberry also reduced tumour size by over 60% (p < 0.01). Cloudberry resulted in decreased levels of nuclear beta-catenin and cyclin D1 and lingonberry in the level of cyclin D1 in the large adenomas (p < 0.05). Affymetrix microarrays revealed changes in genes implicated in colon carcinogenesis, including the decreased expression of the adenosine deaminase, ecto-5f-nucleotidase and PGE2 receptor subtype EP4. Ellagic acid had no effect on the number or size of adenomas in the distal or total small intestine but it increased adenoma size in the duodenum when compared with the control diet (p < 0.05). Neither cloudberry seed nor pulp had any effect on the adenoma formation. Berries seem to have great potential as a source of chemopreventive components.

  2. LATS1 and LATS2 Phosphorylate CDC26 to Modulate Assembly of the Tetratricopeptide Repeat Subcomplex of APC/C

    PubMed Central

    Masuda, Kenta; Chiyoda, Tatsuyuki; Sugiyama, Naoyuki; Segura-Cabrera, Aldo; Kabe, Yasuaki; Ueki, Arisa; Banno, Koji; Suematsu, Makoto; Aoki, Daisuke; Ishihama, Yasushi; Saya, Hideyuki; Kuninaka, Shinji

    2015-01-01

    In budding yeast, the Mitotic Exit Network (MEN) regulates anaphase promoting complex/cyclosome (APC/C) via the Dbf2-Cdc14 signaling cascade. Dbf2 kinase phosphorylates and activates Cdc14 phosphatase, which removes the inhibitory phosphorylation of the APC/C cofactor Cdh1. Although each component of the MEN was highly conserved during evolution, there is presently no evidence supporting direct phosphorylation of CDC14 by large tumor suppressor kinase 1 (LATS1), the human counterpart of Dbf2; hence, it is unclear how LATS1 regulates APC/C. Here, we demonstrate that LATS1 phosphorylates the Thr7 (T7) residue of the APC/C component CDC26 directly. Nocodazole-induced phosphorylation of T7 was reduced by knockdown of LATS1 and LATS2 in HeLa cells, indicating that both of these kinases contribute to the phosphorylation of CDC26 in vivo. The T7 residue of CDC26 is critical for its interaction with APC6, a tetratricopeptide repeat-containing subunit of APC/C, and mutation of this residue to Asp (T7D) reduced the interaction of CDC26 with APC6. Replacement of endogenous CDC26 in HeLa cells with exogenous phosphor-mimic T7D-mutated CDC26 increased the elution size of APC/C subunits in a gel filtration assay, implying a change in the APC/C assembly upon phosphorylation of CDC26. Furthermore, T7D-mutated CDC26 promoted the ubiquitination of polo-like kinase 1, a well-known substrate of APC/C. Overall, these results suggest that LATS1/2 are novel kinases involved in APC/C phosphorylation and indicate a direct regulatory link between LATS1/2 and APC/C. PMID:25723520

  3. Adenomatous polyposis coli (APC) regulates miR17-92 cluster through β-catenin pathway in colorectal cancer.

    PubMed

    Li, Y; Lauriola, M; Kim, D; Francesconi, M; D'Uva, G; Shibata, D; Malafa, M P; Yeatman, T J; Coppola, D; Solmi, R; Cheng, J Q

    2016-09-01

    Adenomatous polyposis coli (APC) mutation is the most common genetic change in sporadic colorectal cancer (CRC). Although deregulations of miRNAs have been frequently reported in this malignancy, APC-regulated miRNAs have not been extensively documented. Here, by using an APC-inducible cell line and array analysis, we identified a total of 26 deregulated miRNAs. Among them, members of miR-17-92 cluster were dramatically inhibited by APC and induced by enforced expression of β-catenin. Furthermore, we demonstrate that activated β-catenin resulted from APC loss binds to and activates the miR-17-92 promoter. Notably, enforced expression of miR-19a overrides APC tumor suppressor activity, and knockdown of miR-19a in cancer cells with compromised APC function reduced their aggressive features in vitro. Finally, we observed that expression of miR-19a significantly correlates with β-catenin levels in colorectal cancer specimens, and it is associated to the aggressive stage of tumor progression. Thus, our study reveals that miR-17-92 cluster is directly regulated by APC/β-catenin pathway and could be a potential therapeutic target in colon cancers with aberrant APC/β-catenin signaling.

  4. Adenomatous Polyposis Coli (APC) regulates miR17-92 cluster through β-catenin pathway in colorectal cancer

    PubMed Central

    Francesconi, Mirko; D'Uva, Gabriele; Shibata, Dave; Malafa, Mokenge P.; Yeatman, Timothy J.

    2016-01-01

    APC mutation is the most common genetic changes in sporadic colorectal cancer (CRC). Despite deregulations of miRNAs have been frequently reported in this malignancy, APC regulated miRNAs have not been extensively documented. Here, by employing an APC inducible cell line and array analysis, we identified a total of 26 deregulated miRNAs. Among them members of miR-17-92 cluster were dramatically inhibited by APC and induced by enforced expression of β-catenin. Furthermore, we demonstrate that activated β-catenin resulted from APC loss binds to and activates the miR-17-92 promoter. Notably, enforced expression of miR-19a overrides APC tumour suppressor activity and knockdown of miR-19a in cancer cells with compromised APC function reduced their aggressive features in vitro. Finally, we observed that expression of miR-19a significantly correlates with β-catenin levels in colorectal cancer specimens, and it is associated to the aggressive stage of tumour progression. Thus our study reveals that miR-17-92 cluster is directly regulated by APC/β-catenin pathway and could be a potential therapeutic target in colon cancers with aberrant APC/β-catenin signaling. PMID:26804172

  5. Geopolymers prepared from DC plasma treated air pollution control (APC) residues glass: properties and characterisation of the binder phase.

    PubMed

    Kourti, Ioanna; Devaraj, Amutha Rani; Bustos, Ana Guerrero; Deegan, David; Boccaccini, Aldo R; Cheeseman, Christopher R

    2011-11-30

    Air pollution control (APC) residues have been blended with glass-forming additives and treated using DC plasma technology to produce a high calcium aluminosilicate glass (APC glass). This has been used to form geopolymer-glass composites that exhibit high strength and density, low porosity, low water absorption, low leaching and high acid resistance. The composites have a microstructure consisting of un-reacted residual APC glass particles imbedded in a complex geopolymer and C-S-H gel binder phase, and behave as particle reinforced composites. The work demonstrates that materials prepared from DC plasma treated APC residues have potential to be used to form high quality pre-cast products.

  6. Herpesvirus saimiri-mediated delivery of the adenomatous polyposis coli tumour suppressor gene reduces proliferation of colorectal cancer cells.

    PubMed

    Macnab, Stuart A; Turrell, Susan J; Carr, Ian M; Markham, Alex F; Coletta, P Louise; Whitehouse, Adrian

    2011-11-01

    Colorectal cancer (CRC) is a major cause of cancer-related mortality. A contributing factor to the progression of this disease is sporadic or hereditary mutation of the adenomatous polyposis coli (APC) gene, a negative regulator of the Wnt signalling pathway. Inherited mutations in APC cause the disorder familial adenomatous polyposis (FAP), which leads to CRC development in early adulthood. However, the gene is also disrupted in some 60% of sporadic cancers. Restoration of functional APC may slow the growth of CRC by negatively regulating proliferation-associated genes such as c-myc. Therefore, we have cloned the cDNA of the APC tumour suppressor gene into a replication competent Herpesvirus saimiri (HVS)-based vector to assess APC gene delivery in SW480 and SW620 CRC cell lines. Our results demonstrate that full length APC protein was efficiently expressed from the HVS vector and that transgene expression inhibited proliferation of both the SW480 and the metastatic SW620 cancer cell lines. Moreover, a sustained effect could be observed for at least 8 weeks after initial infection in SW480 cells. In addition, monolayer wounding assays showed a marked reduction in proliferation and migration in HVS-GFP-APC infected cells. We believe that this is the first instance of infectious delivery and APC cDNA expression from a virus-based vector.

  7. Ubiquitination site preferences in anaphase promoting complex/cyclosome (APC/C) substrates

    PubMed Central

    Min, Mingwei; Mayor, Ugo; Lindon, Catherine

    2013-01-01

    Ordered progression of mitosis requires precise control in abundance of mitotic regulators. The anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase plays a key role by directing ubiquitin-mediated destruction of targets in a temporally and spatially defined manner. Specificity in APC/C targeting is conferred through recognition of substrate D-box and KEN degrons, while the specificity of ubiquitination sites, as another possible regulated dimension, has not yet been explored. Here, we present the first analysis of ubiquitination sites in the APC/C substrate ubiquitome. We show that KEN is a preferred ubiquitin acceptor in APC/C substrates and that acceptor sites are enriched in predicted disordered regions and flanked by serine residues. Our experimental data confirm a role for the KEN lysine as an ubiquitin acceptor contributing to substrate destruction during mitotic progression. Using Aurora A and Nek2 kinases as examples, we show that phosphorylation on the flanking serine residue could directly regulate ubiquitination and subsequent degradation of substrates. We propose a novel layer of regulation in substrate ubiquitination, via phosphorylation adjacent to the KEN motif, in APC/C-mediated targeting. PMID:24004664

  8. Mad2 phosphorylation regulates its association with Mad1 and the APC/C

    PubMed Central

    Wassmann, Katja; Liberal, Vasco; Benezra, Robert

    2003-01-01

    Improper attachment of the mitotic spindle to the kinetochores of paired sister chromatids in mitosis is monitored by a checkpoint that leads to an arrest in early metaphase. This arrest requires the inhibitory association of Mad2 with the anaphase promoting complex/cyclosome (APC/C). It is not known how the association of Mad2 with the kinetochore and the APC/C is regulated in mitosis. Here, we demonstrate that human Mad2 is modified through phosphorylation on multiple serine residues in vivo in a cell cycle dependent manner and that only unphosphorylated Mad2 interacts with Mad1 or the APC/C in vivo. A Mad2 mutant containing serine to aspartic acid mutations mimicking the C-terminal phosphorylation events fails to interact with Mad1 or the APC/C and acts as a dominant-negative antagonist of wild-type Mad2. These data suggest that the phosphorylation state of Mad2 regulates its checkpoint activity by modulating its association with Mad1 and the APC/C. PMID:12574116

  9. Co-regulation proteomics reveals substrates and mechanisms of APC/C-dependent degradation

    PubMed Central

    Singh, Sasha A; Winter, Dominic; Kirchner, Marc; Chauhan, Ruchi; Ahmed, Saima; Ozlu, Nurhan; Tzur, Amit; Steen, Judith A; Steen, Hanno

    2014-01-01

    Using multiplexed quantitative proteomics, we analyzed cell cycle-dependent changes of the human proteome. We identified >4,400 proteins, each with a six-point abundance profile across the cell cycle. Hypothesizing that proteins with similar abundance profiles are co-regulated, we clustered the proteins with abundance profiles most similar to known Anaphase-Promoting Complex/Cyclosome (APC/C) substrates to identify additional putative APC/C substrates. This protein profile similarity screening (PPSS) analysis resulted in a shortlist enriched in kinases and kinesins. Biochemical studies on the kinesins confirmed KIFC1, KIF18A, KIF2C, and KIF4A as APC/C substrates. Furthermore, we showed that the APC/CCDH1-dependent degradation of KIFC1 regulates the bipolar spindle formation and proper cell division. A targeted quantitative proteomics experiment showed that KIFC1 degradation is modulated by a stabilizing CDK1-dependent phosphorylation site within the degradation motif of KIFC1. The regulation of KIFC1 (de-)phosphorylation and degradation provides insights into the fidelity and proper ordering of substrate degradation by the APC/C during mitosis. PMID:24510915

  10. APC-PC Combined Scheme in Gilbert Two State Model: Proposal and Study

    NASA Astrophysics Data System (ADS)

    Bulo, Yaka; Saring, Yang; Bhunia, Chandan Tilak

    2016-08-01

    In an automatic repeat request (ARQ) scheme, a packet is retransmitted if it gets corrupted due to transmission errors caused by the channel. However, an erroneous packet may contain both erroneous bits and correct bits and hence it may still contain useful information. The receiver may be able to combine this information from multiple erroneous copies to recover the correct packet. Packet combining (PC) is a simple and elegant scheme of error correction in transmitted packet, in which two received copies are XORed to obtain the bit location of erroneous bits. Thereafter, the packet is corrected by bit inversion of bit located as erroneous. Aggressive packet combining (APC) is a logic extension of PC primarily designed for wireless communication with objective of correcting error with low latency. PC offers higher throughput than APC, but PC does not correct double bit errors if occur in same bit location of erroneous copies of the packet. A hybrid technique is proposed to utilize the advantages of both APC and PC while attempting to remove the limitation of both. In the proposed technique, applications of APC-PC on Gilbert two state model has been studied. The simulation results show that the proposed technique offers better throughput than the conventional APC and lesser packet error rate than PC scheme.

  11. Defective sister chromatid cohesion is synthetically lethal with impaired APC/C function.

    PubMed

    de Lange, Job; Faramarz, Atiq; Oostra, Anneke B; de Menezes, Renee X; van der Meulen, Ida H; Rooimans, Martin A; Rockx, Davy A; Brakenhoff, Ruud H; van Beusechem, Victor W; King, Randall W; de Winter, Johan P; Wolthuis, Rob M F

    2015-10-01

    Warsaw breakage syndrome (WABS) is caused by defective DDX11, a DNA helicase that is essential for chromatid cohesion. Here, a paired genome-wide siRNA screen in patient-derived cell lines reveals that WABS cells do not tolerate partial depletion of individual APC/C subunits or the spindle checkpoint inhibitor p31(comet). A combination of reduced cohesion and impaired APC/C function also leads to fatal mitotic arrest in diploid RPE1 cells. Moreover, WABS cell lines, and several cancer cell lines with cohesion defects, display a highly increased response to a new cell-permeable APC/C inhibitor, apcin, but not to the spindle poison paclitaxel. Synthetic lethality of APC/C inhibition and cohesion defects strictly depends on a functional mitotic spindle checkpoint as well as on intact microtubule pulling forces. This indicates that the underlying mechanism involves cohesion fatigue in response to mitotic delay, leading to spindle checkpoint re-activation and lethal mitotic arrest. Our results point to APC/C inhibitors as promising therapeutic agents targeting cohesion-defective cancers.

  12. Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues.

    PubMed

    Kourti, Ioanna; Rani, D Amutha; Deegan, D; Boccaccini, A R; Cheeseman, C R

    2010-04-15

    Air pollution control (APC) residues are the hazardous waste produced from cleaning gaseous emissions at energy-from-waste (EfW) facilities processing municipal solid waste (MSW). APC residues have been blended with glass-forming additives and treated using DC plasma technology to produce a high calcium alumino-silicate glass. This research has investigated the optimisation and properties of geopolymers prepared from this glass. Work has shown that high strength geopolymers can be formed and that the NaOH concentration of the activating solution significantly affects the properties. The broad particle size distribution of the APC residue glass used in these experiments results in a microstructure that contains unreacted glass particles included within a geopolymer binder phase. The high calcium content of APC residues may cause the formation of some amorphous calcium silicate hydrate (C-S-H) gel. A mix prepared with S/L=3.4, Si/Al=2.6 and [NaOH]=6M in the activating solution, produced high strength geopolymers with compressive strengths of approximately 130 MPa. This material had high density (2070 kg/m(3)) and low porosity. The research demonstrates for the first time that glass derived from DC plasma treatment of APC residues can be used to form high strength geopolymer-glass composites that have potential for use in a range of applications.

  13. AGILE integration into APC for high mix logic fab

    NASA Astrophysics Data System (ADS)

    Gatefait, M.; Lam, A.; Le Gratiet, B.; Mikolajczak, M.; Morin, V.; Chojnowski, N.; Kocsis, Z.; Smith, I.; Decaunes, J.; Ostrovsky, A.; Monget, C.

    2015-09-01

    mix logic Fab) in term of product and technology portfolio AGILE corrects for up to 120nm of product topography error on process layer with less than 50nm depth of focus Based on tool functionalities delivered by ASML and on high volume manufacturing requirement, AGILE integration is a real challenge. Regarding ST requirements "Automatic AGILE" functionality developed by ASML was not a turnkey solution and a dedicated functionality was needed. A "ST homemade AGILE integration" has been fully developed and implemented within ASML and ST constraints. This paper describes this integration in our Advanced Process Control platform (APC).

  14. The Anaphase-Promoting Complex (APC) ubiquitin ligase regulates GABA transmission at the C. elegans neuromuscular junction

    PubMed Central

    Kowalski, Jennifer R.; Dube, Hitesh; Touroutine, Denis; Rush, Kristen M.; Goodwin, Patricia R.; Carozza, Marc; Didier, Zachary; Francis, Michael M.; Juo, Peter

    2014-01-01

    Regulation of both excitatory and inhibitory synaptic transmission is critical for proper nervous system function. Aberrant synaptic signaling, including altered excitatory to inhibitory balance, is observed innumerous neurological diseases. The ubiquitin enzyme system controls the abundance of many synaptic proteins and thus plays a key role in regulating synaptic transmission. The Anaphase-Promoting Complex (APC) is a multi-subunit ubiquitin ligase that was originally discovered as a key regulator of protein turnover during the cell cycle. More recently, the APC has been shown to function in postmitotic neurons, where it regulates diverse processes such as synapse development and synaptic transmission at glutamatergic synapses. Here we report that the APC regulates synaptic GABA signaling by acting in motor neurons to control the balance of excitatory (acetylcholine) to inhibitory (GABA) transmission at the Caenorhabditis elegans neuromuscular junction (NMJ). Loss-of-function mutants in multiple APC subunits have increased muscle excitation at the NMJ; this phenotype is rescued by expression of the missing subunit in GABA neurons. Quantitative imaging and electrophysiological analyses indicate that APC mutants have decreased GABA release but normal cholinergic transmission. Consistent with this, APC mutants exhibit convulsions in a seizure assay sensitive to reductions in GABA signaling. Previous studies in other systems showed that the APC can negatively regulate the levels of the active zone protein SYD-2 Liprin-α. Similarly, we found that SYD-2 accumulates in APC mutants at GABAergic presynaptic sites. Finally, we found that the APC subunit EMB-27 CDC16 can localize to presynapses in GABA neurons. Together, our data suggest a model in which the APC acts at GABAergic presynapses to promote GABA release and inhibit muscle excitation. These findings are the first evidence that the APC regulates transmission at inhibitory synapses and have implications for

  15. Bovine Papillomavirus Replicative Helicase E1 Is a Target of the Ubiquitin Ligase APC

    PubMed Central

    Mechali, Francisca; Hsu, Chiung-Yueh; Castro, Anna; Lorca, Thierry; Bonne-Andrea, Catherine

    2004-01-01

    The papillomavirus E1 replicative helicase is essential for replication and maintenance of extrachromosomal viral genomes in infected cells. We previously found that the bovine papillomavirus E1 protein is a substrate of the ubiquitin-dependent proteolytic pathway. Here we show that E1 is targeted for degradation by the anaphase-promoting complex (APC). Inhibition of APC activity by the specific inhibitor Emi1 or point mutations in the D-box and KEN-box motifs of E1 stabilize the protein and increase viral DNA replication in both a cell-free system and in living cells. These findings involve APC as the ubiquitin ligase that controls E1 levels to maintain a constant low copy number of the viral genome during latent infection. PMID:14963168

  16. Phosphorylation and dephosphorylation regulate APC/C(Cdh1) substrate degradation.

    PubMed

    Simpson-Lavy, Kobi J; Zenvirth, Drora; Brandeis, Michael

    2015-01-01

    The Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase activated by its G1 specific adaptor protein Cdh1 is a major regulator of the cell cycle. The APC/C(Cdh1) mediates degradation of dozens of proteins, however, the kinetics and requirements for their degradation are largely unknown. We demonstrate that overexpression of the constitutive active CDH1(m11) mutant that is not inhibited by phosphorylation results in mitotic exit in the absence of the FEAR and MEN pathways, and DNA re-replication in the absence of Cdc7 activity. This mode of mitotic exit also reveals additional requirements for APC/C(Cdh1) substrate degradation, which for some substrates such as Pds1 or Clb5 is dephosphorylation, but for others such as Cdc5 is phosphorylation.

  17. Multiple mucin depleted foci, high proliferation and low apoptotic response in the onset of colon carcinogenesis of the PIRC rat, mutated in Apc.

    PubMed

    Femia, Angelo Pietro; Luceri, Cristina; Soares, Paulo Victoria; Lodovici, Maura; Caderni, Giovanna

    2015-03-15

    PIRC rats (F344/NTac-Apc (am1137) ) mutated in the Apc gene spontaneously develop colon tumors thus mimicking familial adenomatous polyposis (FAP) and sporadic colorectal cancer (CRC) more closely than Apc-based rodent models developing tumors mostly in the small intestine. To understand whether microscopic dysplastic lesions precede the development of macroscopic tumors, PIRC rat colon was examined for the presence of mucin depleted foci (MDF), microadenomas of the rodent and human colon. Few MDF (about 4/animal) were already present in 1-month-old rats and their number rapidly increases to about 250 in 8-month-old rats. These lesions showed Wnt signaling activation (nuclear β-catenin accumulation) and were dramatically decreased by sulindac (320 ppm), a drug with chemopreventive activity (MDF/rat at 4 months: 156 ± 8 and 38 ± 6 in controls and sulindac-treated rats, respectively, means ± SE, p < 0.001). Since altered proliferation and apoptosis could underlie the early phases of carcinogenesis, we studied these processes in the apparently normal colon mucosa (NM) of 1-month-old PIRC and wt rats. Colon proliferation (PCNA expression) was significantly higher in PIRC rats. Notably, PIRC rat NM showed resistance to apoptosis since it sustained proliferation and had lower apoptosis after a cytotoxic insult with 1,2 dimethylhydrazine. Gene expression of Myc, p21, Birc5, Ogg1, Apex1 and Sod2 were significantly up-regulated in the NM of PIRC rat. The overall results put forward PIRC rat as useful model of colon carcinogenesis, either to study the process itself or to test in vivo chemopreventive agents in both short- and long-term studies.

  18. Gasdermin C Is Upregulated by Inactivation of Transforming Growth Factor β Receptor Type II in the Presence of Mutated Apc, Promoting Colorectal Cancer Proliferation.

    PubMed

    Miguchi, Masashi; Hinoi, Takao; Shimomura, Manabu; Adachi, Tomohiro; Saito, Yasufumi; Niitsu, Hiroaki; Kochi, Masatoshi; Sada, Haruki; Sotomaru, Yusuke; Ikenoue, Tsuneo; Shigeyasu, Kunitoshi; Tanakaya, Kohji; Kitadai, Yasuhiko; Sentani, Kazuhiro; Oue, Naohide; Yasui, Wataru; Ohdan, Hideki

    2016-01-01

    Mutations in TGFBR2, a component of the transforming growth factor (TGF)-β signaling pathway, occur in high-frequency microsatellite instability (MSI-H) colorectal cancer (CRC). In mouse models, Tgfbr2 inactivation in the intestinal epithelium accelerates the development of malignant intestinal tumors in combination with disruption of the Wnt-β-catenin pathway. However, no studies have further identified the genes influenced by TGFBR2 inactivation following disruption of the Wnt-β-catenin pathway. We previously described CDX2P-G19Cre;Apcflox/flox mice, which is stochastically null for Apc in the colon epithelium. In this study, we generated CDX2P-G19Cre;Apcflox/flox;Tgfbr2flox/flox mice, with simultaneous loss of Apc and Tgfbr2. These mice developed tumors, including adenocarcinoma in the proximal colon. We compared gene expression profiles between tumors of the two types of mice using microarray analysis. Our results showed that the expression of the murine homolog of GSDMC was significantly upregulated by 9.25-fold in tumors of CDX2P-G19Cre;Apcflox/flox;Tgfbr2flox/flox mice compared with those of CDX2P-G19Cre;Apcflox/flox mice. We then investigated the role of GSDMC in regulating CRC tumorigenesis. The silencing of GSDMC led to a significant reduction in the proliferation and tumorigenesis of CRC cell lines, whereas the overexpression of GSDMC enhanced cell proliferation. These results suggested that GSDMC functioned as an oncogene, promoting cell proliferation in colorectal carcinogenesis. In conclusion, combined inactivation of both Apc and Tgfbr2 in the colon epithelium of a CRC mouse model promoted development of adenocarcinoma in the proximal colon. Moreover, GSDMC was upregulated by TGFBR2 mutation in CRC and promoted tumor cell proliferation in CRC carcinogenesis, suggesting that GSDMC may be a promising therapeutic target.

  19. Gasdermin C Is Upregulated by Inactivation of Transforming Growth Factor β Receptor Type II in the Presence of Mutated Apc, Promoting Colorectal Cancer Proliferation

    PubMed Central

    Miguchi, Masashi; Hinoi, Takao; Shimomura, Manabu; Adachi, Tomohiro; Saito, Yasufumi; Niitsu, Hiroaki; Kochi, Masatoshi; Sada, Haruki; Sotomaru, Yusuke; Ikenoue, Tsuneo; Shigeyasu, Kunitoshi; Tanakaya, Kohji; Kitadai, Yasuhiko; Sentani, Kazuhiro; Oue, Naohide; Yasui, Wataru; Ohdan, Hideki

    2016-01-01

    Mutations in TGFBR2, a component of the transforming growth factor (TGF)-β signaling pathway, occur in high-frequency microsatellite instability (MSI-H) colorectal cancer (CRC). In mouse models, Tgfbr2 inactivation in the intestinal epithelium accelerates the development of malignant intestinal tumors in combination with disruption of the Wnt-β-catenin pathway. However, no studies have further identified the genes influenced by TGFBR2 inactivation following disruption of the Wnt-β-catenin pathway. We previously described CDX2P-G19Cre;Apcflox/flox mice, which is stochastically null for Apc in the colon epithelium. In this study, we generated CDX2P-G19Cre;Apcflox/flox;Tgfbr2flox/flox mice, with simultaneous loss of Apc and Tgfbr2. These mice developed tumors, including adenocarcinoma in the proximal colon. We compared gene expression profiles between tumors of the two types of mice using microarray analysis. Our results showed that the expression of the murine homolog of GSDMC was significantly upregulated by 9.25-fold in tumors of CDX2P-G19Cre;Apcflox/flox;Tgfbr2flox/flox mice compared with those of CDX2P-G19Cre;Apcflox/flox mice. We then investigated the role of GSDMC in regulating CRC tumorigenesis. The silencing of GSDMC led to a significant reduction in the proliferation and tumorigenesis of CRC cell lines, whereas the overexpression of GSDMC enhanced cell proliferation. These results suggested that GSDMC functioned as an oncogene, promoting cell proliferation in colorectal carcinogenesis. In conclusion, combined inactivation of both Apc and Tgfbr2 in the colon epithelium of a CRC mouse model promoted development of adenocarcinoma in the proximal colon. Moreover, GSDMC was upregulated by TGFBR2 mutation in CRC and promoted tumor cell proliferation in CRC carcinogenesis, suggesting that GSDMC may be a promising therapeutic target. PMID:27835699

  20. Formicin - a novel broad-spectrum two-component lantibiotic produced by Bacillus paralicheniformis APC 1576.

    PubMed

    Collins, Fergus W J; O'Connor, Paula M; O'Sullivan, Orla; Rea, Mary C; Hill, Colin; Ross, R Paul

    2016-09-01

    Bacteriocins represent a rather underutilized class of antimicrobials despite often displaying activity against many drug-resistant pathogens. Lantibiotics are a post-translationally modified class of bacteriocins, characterized by the presence of lanthionine and methyllanthionine bridges. In this study, a novel two-peptide lantibiotic was isolated and characterized. Formicin was isolated from Bacillus paralicheniformis APC 1576, an antimicrobial-producing strain originally isolated from the intestine of a mackerel. Genome sequencing allowed for the detection of the formicin operon and, from this, the formicin structural genes were identified, along with those involved in lantibiotic modification, transport and immunity. The identified bacteriocin was subsequently purified from the bacterial supernatant. Despite the degree of conservation seen amongst the entire class of two-peptide lantibiotics, the formicin peptides are unique in many respects. The formicin α peptide is far less hydrophobic than any of the equivalent lantibiotics, and with a charge of plus two, it is one of the most positively charged α peptides. The β peptide is unique in that it is the only such peptide with a negative charge due to the presence of an aspartic acid residue in the C-terminus, possibly indicating a slight variation to the mode of action of the bacteriocin. Formicin also displays a broad spectrum of inhibition against Gram-positive strains, inhibiting many clinically relevant pathogens such as Staphylococcus aureus, Clostridium difficile and Listeria monocytogenes. The range of inhibition displayed against many important pathogens indicates a potential therapeutic use against such strains where antibiotic resistance is such a growing concern.

  1. Characterization of elastic-plastic properties of AS4/APC-2 thermoplastic composite

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Yoon, K. J.

    1988-01-01

    Elastic and inelastic properties of AS4/APC-2 composites were characterized with respect to temperature variation by using a one-parameter orthotropic plasticity model and a one parameter failure criterion. Simple uniaxial off-axis tension tests were performed on coupon specimens of unidirectional AS4/APC-2 thermoplastic composite at various temperatures. To avoid the complication caused by the extension-shear coupling effect in off-axis testing, new tabs were designed and used on the test specimens. The experimental results showed that the nonlinear behavior of constitutive relations and the failure strengths can be characterized quite well using the one parameter plasticity model and the failure criterion, respectively.

  2. Orthotropic elasto-plastic behavior of AS4/APC-2 thermoplastic composite in compression

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Rui, Y.

    1989-01-01

    Uniaxial compression tests were performed on off-axis coupon specimens of unidirectional AS4/APC-2 thermoplastic composite at various temperatures. The elasto-plastic and strength properties of AS4/APC-2 composite were characterized with respect to temperature variation by using a one-parameter orthotropic plasticity model and a one-parameter failure criterion. Experimental results show that the orthotropic plastic behavior can be characterized quite well using the plasticity model, and the matrix-dominant compressive strengths can be predicted very accurately by the one-parameter failure criterion.

  3. An APC/C-Cdh1 Biosensor Reveals the Dynamics of Cdh1 Inactivation at the G1/S Transition

    PubMed Central

    Ondracka, Andrej; Robbins, Jonathan A.; Cross, Frederick R.

    2016-01-01

    B-type cyclin-dependent kinase activity must be turned off for mitotic exit and G1 stabilization. B-type cyclin degradation is mediated by the anaphase-promoting complex/cyclosome (APC/C); during and after mitotic exit, APC/C is dependent on Cdh1. Cdh1 is in turn phosphorylated and inactivated by cyclin-CDK at the Start transition of the new cell cycle. We developed a biosensor to assess the cell cycle dynamics of APC/C-Cdh1. Nuclear exit of the G1 transcriptional repressor Whi5 is a known marker of Start; APC/C-Cdh1 is inactivated 12 min after Whi5 nuclear exit with little measurable cell-to-cell timing variability. Multiple phosphorylation sites on Cdh1 act in a redundant manner to repress its activity. Reducing the number of phosphorylation sites on Cdh1 can to some extent be tolerated for cell viability, but it increases variability in timing of APC/C-Cdh1 inactivation. Mutants with minimal subsets of phosphorylation sites required for viability exhibit striking stochasticity in multiple responses including budding, nuclear division, and APC/C-Cdh1 activity itself. Multiple cyclin-CDK complexes, as well as the stoichiometric inhibitor Acm1, contribute to APC/C-Cdh1 inactivation; this redundant control is likely to promote rapid and reliable APC/C-Cdh1 inactivation immediately following the Start transition. PMID:27410035

  4. Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1

    PubMed Central

    Höckner, Sebastian; Neumann-Arnold, Lea; Seufert, Wolfgang

    2016-01-01

    The antagonism between cyclin-dependent kinases (Cdks) and the ubiquitin ligase APC/C-Cdh1 is central to eukaryotic cell cycle control. APC/C-Cdh1 targets cyclin B and other regulatory proteins for degradation, whereas Cdks disable APC/C-Cdh1 through phosphorylation of the Cdh1 activator protein at multiple sites. Budding yeast Cdh1 carries nine Cdk phosphorylation sites in its N-terminal regulatory domain, most or all of which contribute to inhibition. However, the precise role of individual sites has remained unclear. Here, we report that the Cdk phosphorylation sites of yeast Cdh1 are organized into autonomous subgroups and act through separate mechanisms. Cdk sites 1–3 had no direct effect on the APC/C binding of Cdh1 but inactivated a bipartite nuclear localization sequence (NLS) and thereby controlled the partitioning of Cdh1 between cytoplasm and nucleus. In contrast, Cdk sites 4–9 did not influence the cell cycle–regulated localization of Cdh1 but prevented its binding to the APC/C. Cdk sites 4–9 reside near two recently identified APC/C interaction motifs in a pattern conserved with the human Cdh1 orthologue. Thus a Cdk-inhibited NLS goes along with Cdk-inhibited APC/C binding sites in yeast Cdh1 to relay the negative control by Cdk1 phosphorylation of the ubiquitin ligase APC/C-Cdh1. PMID:27226481

  5. Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1.

    PubMed

    Höckner, Sebastian; Neumann-Arnold, Lea; Seufert, Wolfgang

    2016-07-15

    The antagonism between cyclin-dependent kinases (Cdks) and the ubiquitin ligase APC/C-Cdh1 is central to eukaryotic cell cycle control. APC/C-Cdh1 targets cyclin B and other regulatory proteins for degradation, whereas Cdks disable APC/C-Cdh1 through phosphorylation of the Cdh1 activator protein at multiple sites. Budding yeast Cdh1 carries nine Cdk phosphorylation sites in its N-terminal regulatory domain, most or all of which contribute to inhibition. However, the precise role of individual sites has remained unclear. Here, we report that the Cdk phosphorylation sites of yeast Cdh1 are organized into autonomous subgroups and act through separate mechanisms. Cdk sites 1-3 had no direct effect on the APC/C binding of Cdh1 but inactivated a bipartite nuclear localization sequence (NLS) and thereby controlled the partitioning of Cdh1 between cytoplasm and nucleus. In contrast, Cdk sites 4-9 did not influence the cell cycle-regulated localization of Cdh1 but prevented its binding to the APC/C. Cdk sites 4-9 reside near two recently identified APC/C interaction motifs in a pattern conserved with the human Cdh1 orthologue. Thus a Cdk-inhibited NLS goes along with Cdk-inhibited APC/C binding sites in yeast Cdh1 to relay the negative control by Cdk1 phosphorylation of the ubiquitin ligase APC/C-Cdh1.

  6. An APC/C-Cdh1 Biosensor Reveals the Dynamics of Cdh1 Inactivation at the G1/S Transition.

    PubMed

    Ondracka, Andrej; Robbins, Jonathan A; Cross, Frederick R

    2016-01-01

    B-type cyclin-dependent kinase activity must be turned off for mitotic exit and G1 stabilization. B-type cyclin degradation is mediated by the anaphase-promoting complex/cyclosome (APC/C); during and after mitotic exit, APC/C is dependent on Cdh1. Cdh1 is in turn phosphorylated and inactivated by cyclin-CDK at the Start transition of the new cell cycle. We developed a biosensor to assess the cell cycle dynamics of APC/C-Cdh1. Nuclear exit of the G1 transcriptional repressor Whi5 is a known marker of Start; APC/C-Cdh1 is inactivated 12 min after Whi5 nuclear exit with little measurable cell-to-cell timing variability. Multiple phosphorylation sites on Cdh1 act in a redundant manner to repress its activity. Reducing the number of phosphorylation sites on Cdh1 can to some extent be tolerated for cell viability, but it increases variability in timing of APC/C-Cdh1 inactivation. Mutants with minimal subsets of phosphorylation sites required for viability exhibit striking stochasticity in multiple responses including budding, nuclear division, and APC/C-Cdh1 activity itself. Multiple cyclin-CDK complexes, as well as the stoichiometric inhibitor Acm1, contribute to APC/C-Cdh1 inactivation; this redundant control is likely to promote rapid and reliable APC/C-Cdh1 inactivation immediately following the Start transition.

  7. APC/C-Cdh1 coordinates neurogenesis and cortical size during development

    NASA Astrophysics Data System (ADS)

    Delgado-Esteban, Maria; García-Higuera, Irene; Maestre, Carolina; Moreno, Sergio; Almeida, Angeles

    2013-12-01

    The morphology of the adult brain is the result of a delicate balance between neural progenitor proliferation and the initiation of neurogenesis in the embryonic period. Here we assessed whether the anaphase-promoting complex/cyclosome (APC/C) cofactor, Cdh1—which regulates mitosis exit and G1-phase length in dividing cells—regulates neurogenesis in vivo. We use an embryo-restricted Cdh1 knockout mouse model and show that functional APC/C-Cdh1 ubiquitin ligase activity is required for both terminal differentiation of cortical neurons in vitro and neurogenesis in vivo. Further, genetic ablation of Cdh1 impairs the ability of APC/C to promote neurogenesis by delaying the exit of the progenitor cells from the cell cycle. This causes replicative stress and p53-mediated apoptotic death resulting in decreased number of cortical neurons and cortex size. These results demonstrate that APC/C-Cdh1 coordinates cortical neurogenesis and size, thus posing Cdh1 in the molecular pathogenesis of congenital neurodevelopmental disorders, such as microcephaly.

  8. APC/C-Cdh1 coordinates neurogenesis and cortical size during development.

    PubMed

    Delgado-Esteban, Maria; García-Higuera, Irene; Maestre, Carolina; Moreno, Sergio; Almeida, Angeles

    2013-01-01

    The morphology of the adult brain is the result of a delicate balance between neural progenitor proliferation and the initiation of neurogenesis in the embryonic period. Here we assessed whether the anaphase-promoting complex/cyclosome (APC/C) cofactor, Cdh1--which regulates mitosis exit and G1-phase length in dividing cells--regulates neurogenesis in vivo. We use an embryo-restricted Cdh1 knockout mouse model and show that functional APC/C-Cdh1 ubiquitin ligase activity is required for both terminal differentiation of cortical neurons in vitro and neurogenesis in vivo. Further, genetic ablation of Cdh1 impairs the ability of APC/C to promote neurogenesis by delaying the exit of the progenitor cells from the cell cycle. This causes replicative stress and p53-mediated apoptotic death resulting in decreased number of cortical neurons and cortex size. These results demonstrate that APC/C-Cdh1 coordinates cortical neurogenesis and size, thus posing Cdh1 in the molecular pathogenesis of congenital neurodevelopmental disorders, such as microcephaly.

  9. OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM.

    PubMed

    Cromer, Laurence; Heyman, Jefri; Touati, Sandra; Harashima, Hirofumi; Araou, Emilie; Girard, Chloe; Horlow, Christine; Wassmann, Katja; Schnittger, Arp; De Veylder, Lieven; Mercier, Raphael

    2012-01-01

    Cell cycle control is modified at meiosis compared to mitosis, because two divisions follow a single DNA replication event. Cyclin-dependent kinases (CDKs) promote progression through both meiosis and mitosis, and a central regulator of their activity is the APC/C (Anaphase Promoting Complex/Cyclosome) that is especially required for exit from mitosis. We have shown previously that OSD1 is involved in entry into both meiosis I and meiosis II in Arabidopsis thaliana; however, the molecular mechanism by which OSD1 controls these transitions has remained unclear. Here we show that OSD1 promotes meiotic progression through APC/C inhibition. Next, we explored the functional relationships between OSD1 and the genes known to control meiotic cell cycle transitions in Arabidopsis. Like osd1, cyca1;2/tam mutation leads to a premature exit from meiosis after the first division, while tdm mutants perform an aberrant third meiotic division after normal meiosis I and II. Remarkably, while tdm is epistatic to tam, osd1 is epistatic to tdm. We further show that the expression of a non-destructible CYCA1;2/TAM provokes, like tdm, the entry into a third meiotic division. Finally, we show that CYCA1;2/TAM forms an active complex with CDKA;1 that can phosphorylate OSD1 in vitro. We thus propose that a functional network composed of OSD1, CYCA1;2/TAM, and TDM controls three key steps of meiotic progression, in which OSD1 is a meiotic APC/C inhibitor.

  10. Triterpenoid herbal saponins enhance beneficial bacteria, decrease sulfate-reducing bacteria, modulate inflammatory intestinal microenvironment and exert cancer preventive effects in ApcMin/+ mice

    PubMed Central

    Chen, Lei; Brar, Manreetpal S.; Leung, Frederick C. C.; Hsiao, W. L. Wendy

    2016-01-01

    Saponins derived from medicinal plants have raised considerable interest for their preventive roles in various diseases. Here, we investigated the impacts of triterpenoid saponins isolated from Gynostemma pentaphyllum (GpS) on gut microbiome, mucosal environment, and the preventive effect on tumor growth. Six-week old ApcMin/+ mice and their wild-type littermates were fed either with vehicle or GpS daily for the duration of 8 weeks. The fecal microbiome was analyzed by enterobacterial repetitive intergenic consensus (ERIC)-PCR and 16S rRNA gene pyrosequencing. Study showed that GpS treatment significantly reduced the number of intestinal polyps in a preventive mode. More importantly, GpS feeding strikingly reduced the sulfate-reducing bacteria lineage, which are known to produce hydrogen sulfide and contribute to damage the intestinal epithelium or even promote cancer progression. Meanwhile, GpS also boosted the beneficial microbes. In the gut barrier of the ApcMin/+ mice, GpS treatment increased Paneth and goblet cells, up-regulated E-cadherin and down-regulated N-cadherin. In addition, GpS decreased the pro-oncogenic β-catenin, p-Src and the p-STAT3. Furthermore, GpS might also improve the inflamed gut epithelium of the ApcMin/+ mice by upregulating the anti-inflammatory cytokine IL-4, while downregulating pro-inflammatory cytokines TNF-β, IL-1β and IL-18. Intriguingly, GpS markedly stimulated M2 and suppressed M1 macrophage markers, indicating that GpS altered mucosal cytokine profile in favor of the M1 to M2 macrophages switching, facilitating intestinal tissue repair. In conclusion, GpS might reverse the host's inflammatory phenotype by increasing beneficial bacteria, decreasing sulfate-reducing bacteria, and alleviating intestinal inflammatory gut environment, which might contribute to its cancer preventive effects. PMID:27121311

  11. Apc, but not obesity, synergizes with PTEN to drive intestinal stem cell tumors.

    PubMed

    Tabrizian, Tahmineh; Wang, Donghai; Guan, Fangxia; Hu, Zunju; Beck, Amanda; Delahaye, Fabien; Huffman, Derek M

    2017-03-28

    Obesity is a major risk factor for colorectal cancer and can accelerate Lgr5+ intestinal stem cell (ISC)-derived tumorigenesis following inactivation of Apc. However, whether non-canonical pathways involving PI3K-Akt signaling in ISCs can lead to tumor formation, and if this can be further exacerbated by obesity is unknown. Despite the synergy between Pten and Apc inactivation in epithelial cells on intestinal tumor formation, their combined role in Lgr5+-ISCs, which are the most rapidly dividing ISC population in the intestine, is unknown. Lgr5+-GFP mice were provided low-fat diet (LFD) or high-fat diet (HFD) for 8 mo and the transcriptome was evaluated in Lgr5+-ISCs. For tumor studies, Lgr5+-GFP and Lgr5+-GFP Ptenflox/flox mice were tamoxifen treated to inactivate Pten in ISCs and provided LFD or HFD until 14-15 mo of age. Finally, various combinations of Lgr5+-ISC specific, Apc and Pten-deleted mice were generated, and evaluated for histopathology and survival. HFD did not overtly alter Akt signaling in ISCs, but did increase other metabolic pathways. Pten deficiency, but not HFD, increased BrdU positive cells in the small intestine (P<0.05). However, combining Pten and Apc deficiency synergistically increased proliferative markers, tumor pathology and mortality, in a dose-dependent fashion (P<0.05). In summary, we show that HFD alone fails to drive Akt signaling in ISCs and that Pten deficiency, is dispensable as a tumor suppressor in Lgr5+-ISCs. However, combining Pten and Apc deficiency in ISCs synergistically increases proliferation, tumor formation, and mortality. Thus, aberrant Wnt/β-catenin, rather than PI3K-Akt signaling, is requisite for obesity to drive Lgr5+ISC-derived tumorigenesis.

  12. Targeting of Fzr/Cdh1 for timely activation of the APC/C at the centrosome during mitotic exit

    PubMed Central

    Meghini, Francesco; Martins, Torcato; Tait, Xavier; Fujimitsu, Kazuyuki; Yamano, Hiroyuki; Glover, David M.; Kimata, Yuu

    2016-01-01

    A multi-subunit ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), regulates critical cellular processes including the cell cycle. To accomplish its diverse functions, APC/C activity must be precisely regulated in time and space. The interphase APC/C activator Fizzy-related (Fzr or Cdh1) is localized at centrosomes in animal cells. However, neither the mechanism of its localization nor its importance is clear. Here we identify the centrosome component Spd2 as a major partner of Fzr in Drosophila. The localization of Fzr to the centriole during interphase depends on direct interaction with Spd2. By generating Spd2 mutants unable to bind Fzr, we show that centrosomal localization of Fzr is essential for optimal APC/C activation towards its centrosomal substrate Aurora A. Finally, we show that Spd2 is also a novel APC/CFzr substrate. Our study is the first to demonstrate the critical importance of distinct subcellular pools of APC/C activators in the spatiotemporal control of APC/C activity. PMID:27558644

  13. A mutual inhibition between APC/C and its substrate Mes1 required for meiotic progression in fission yeast.

    PubMed

    Kimata, Yuu; Trickey, Michelle; Izawa, Daisuke; Gannon, Julian; Yamamoto, Masayuki; Yamano, Hiroyuki

    2008-03-01

    The anaphase-promoting complex/cyclosome (APC/C) is a cell-cycle-regulated essential E3 ubiquitin ligase; however, very little is known about its meiotic regulation. Here we show that fission yeast Mes1 is a substrate of the APC/C as well as an inhibitor, allowing autoregulation of the APC/C in meiosis. Both traits require a functional destruction box (D box) and KEN box. We show that Mes1 directly binds the WD40 domain of the Fizzy family of APC/C activators. Intriguingly, expression of nonubiquitylatable Mes1 blocks cells in metaphase I with high levels of APC/C substrates, suggesting that ubiquitylation of Mes1 is required for partial degradation of cyclin B in meiosis I by alleviating Mes1 inhibitory function. Consistently, a ternary complex, APC/C-Fizzy/Cdc20-Mes1, is stabilized by inhibiting Mes1 ubiquitylation. These results demonstrate that the fine-tuning of the APC/C activity, by a substrate that is also an inhibitor, is required for the precise coordination and transition through meiosis.

  14. Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein.

    PubMed Central

    Munemitsu, S; Albert, I; Souza, B; Rubinfeld, B; Polakis, P

    1995-01-01

    The APC tumor-suppressor protein associates with beta-catenin, a cell adhesion protein that is upregulated by the WNT1 oncogene. We examined the effects of exogenous APC expression on the distribution and amount of beta-catenin in a colorectal cancer cell containing only mutant APC. Expression of wild-type APC caused a pronounced reduction in total beta-catenin levels by eliminating an excessive supply of cytoplasmic beta-catenin indigenous to the SW480 colorectal cancer cell line. This reduction was due to an enhanced rate of beta-catenin protein degradation. Truncated mutant APC proteins, characteristic of those associated with cancer, lacked this activity. Mutational analysis revealed that the central region of the APC protein, which is typically deleted or severely truncated in tumors, was responsible for the down-regulation of beta-catenin. These results suggest that the tumor-suppressor activity of mutant APC may be compromised due to a defect in its ability to regulate beta-catenin. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7708772

  15. Dietary fat overcomes the protective activity of thrombospondin-1 signaling in the ApcMin/+ model of colon cancer

    PubMed Central

    Soto-Pantoja, D R; Sipes, J M; Martin-Manso, G; Westwood, B; Morris, N L; Ghosh, A; Emenaker, N J; Roberts, D D

    2016-01-01

    Thrombospondin 1 is a glycoprotein that regulates cellular phenotype through interactions with its cellular receptors and extracellular matrix-binding partners. Thrombospondin 1 locally regulates angiogenesis and inflammatory responses that contribute to colorectal carcinogenesis in ApcMin/+ mice. The ability of thrombospondin 1 to regulate responses of cells and tissues to a variety of stresses suggested that loss of thrombospondin 1 may also have broader systemic effects on metabolism to modulate carcinogenesis. ApcMin/+:Thbs1−/− mice exhibited decreased survival and higher tumor multiplicities in the small and large intestine relative to ApcMin/+ mice when fed a low (5%) fat western diet. However, the protective effect of endogenous thrombospondin 1 was lost when the mice were fed a western diet containing 21% fat. Biochemical profiles of liver tissue identified systemic metabolic changes accompanying the effects of thrombospondin 1 and dietary lipid intake on tumorigenesis. A high-fat western diet differentially regulated elements of amino acid, energy and lipid metabolism in ApcMin/+:Thbs1−/− mice relative to ApcMin/+:Thbs1+/+mice. Metabolic changes in ketone body and tricarboxylic acid cycle intermediates indicate functional interactions between Apc and thrombospondin 1 signaling that control mitochondrial function. The cumulative diet-dependent differential changes observed in ApcMin/+:Thbs1−/− versus ApcMin/+ mice include altered amino acid and lipid metabolism, mitochondrial dysfunction, eicosanoids and ketone body formation. This metabolic profile suggests that the protective role of thrombospondin 1 to decrease adenoma formation in ApcMin/+ mice results in part from improved mitochondrial function. PMID:27239962

  16. Self-pMHCII complexes are variably expressed in the thymus and periphery independent of mRNA expression but dependent on the activation state of the APCs

    PubMed Central

    Rodriguez, Stephanie N.; Jiang, Meizi; Bujo, Hideaki; Allen, Paul M.

    2014-01-01

    Self-peptide MHCII ligands are critical for selection of CD4+ T cells in the thymus, and maintenance in the periphery. To date, no investigation as to the exact thymic and peripheral expression of a naturally occurring positive selecting self-peptide MHCII (self-pMHCII) complex has taken place. We have generated a sensitive T cell hybridoma to functionally detect the endogenous presentation of a confirmed positive selecting self-pMHCII complex for a CD4+ transgenic T cell. Using this tool to survey and quantify the expression selecting self-pMHCII, we have shown unequivocal proof that a known CD4+ selecting ligand can be presented on both positive and negative selecting thymic APCs. We also show that peripheral presentation of this same selecting ligand is affected by activation state of the APCs. Furthermore, discrepancies between the gene expression and self-pMHCII complex presentation of this bona fide selecting ligand suggest that functional detection self-ligand complexes will be required to establish a complete view of the naturally presented endogenous self-pMHC landscape. PMID:25451972

  17. NRAS germline variant G138R and multiple rare somatic mutations on APC in colorectal cancer patients in Taiwan by next generation sequencing.

    PubMed

    Chang, Pi-Yueh; Chen, Jinn-Shiun; Chang, Nai-Chung; Chang, Shih-Cheng; Wang, Mei-Chia; Tsai, Shu-Hui; Wen, Ying-Hao; Tsai, Wen-Sy; Chan, Err-Cheng; Lu, Jang-Jih

    2016-06-21

    Colorectal cancer (CRC) arises from mutations in a subset of genes. We investigated the germline and somatic mutation spectrum of patients with CRC in Taiwan by using the AmpliSeq Cancer Hotspot Panel V2. Fifty paired freshly frozen stage 0-IV CRC tumors and adjacent normal tissue were collected. Blood DNA from 20 healthy donors were used for comparison of germline mutations. Variants were identified using an ion-torrent personal genomic machine and subsequently confirmed by Sanger sequencing or pyrosequencing. Five nonsynonymous germline variants on 4 cancer susceptible genes, CDH1, APC, MLH1, and NRAS, were observed in 6 patients with CRC (12%). Among them, oncogene NRAS G138R variant was identified as having a predicted damaging effect on protein function, which has never been reported by other laboratories. CDH1 T340A variants were presented in 3 patients. The germline variants in the cancer patients differed completely from those found in asymptomatic controls. Furthermore, a total of 56 COSMIC and 21 novel somatic variants distributed in 20 genes were detected in 44 (88%) of the CRC samples. High inter- and intra-tumor heterogeneity levels were observed. Nine rare variants located in the β-catenin binding region of the APC gene were discovered, 7 of which could cause amino acid frameshift and might have a pathogenic effect. In conclusion, panel-based mutation detection by using a high-throughput sequencing platform can elucidate race-dependent cancer genomes. This approach facilitates identifying individuals at high risk and aiding the recognition of novel mutations as targets for drug development.

  18. Auditing protein therapeutics management by professional APCs: toward prevention of immune responses against therapeutic proteins.

    PubMed

    Dasgupta, Suryasarathi; Bayry, Jagadeesh; André, Sebastien; Dimitrov, Jordan D; Kaveri, Srinivas V; Lacroix-Desmazes, Sebastien

    2008-08-01

    Alloimmunization is a crippling concern in the management of patients undergoing administration of protein therapeutics as evidenced in replacement therapy and other treatment procedures. Several issues in the genesis and modulation of such deleterious immune responses have been studied. While authors have focused on the downstream events of the specific immune response and suggested modification of protein therapeutics to eliminate epitopes that interact with B cell receptors, T cell receptors, or MHCII molecules, the mechanisms underlying Ag interaction with APCs, a step upstream of immune effectors, have been grossly neglected. We wish to emphasize that the recent knowledge in understanding the capacities of an APC to handle an Ag and the importance of the surrounding microenvironment in this process are crucial for designing novel protein therapeutics with reduced immunogenicity.

  19. Realtime Implementation of the APC/SQ and LPC-10 Speech Coding Algorithms.

    DTIC Science & Technology

    1982-06-01

    KEY WORDS (Continue on reverse side if necessary ad Identify by block number) Speech coding, APC/SQ, LPC-IO, 9.6 kb/s speech transmission, 2.4 kb/s...coding, digital voice terminal, real-time speech coder, \\ array processor 0. ABSTRACT (Continue on reverse side If neceeemy end Identify by block... machine , the CSPU. The control strategy for allowing each module as much flexibility as possible results in a structure that executes a module only if

  20. APC/C(Cdh1)-Rock2 pathway controls dendritic integrity and memory.

    PubMed

    Bobo-Jiménez, Verónica; Delgado-Esteban, María; Angibaud, Julie; Sánchez-Morán, Irene; de la Fuente, Antonio; Yajeya, Javier; Nägerl, U Valentin; Castillo, José; Bolaños, Juan P; Almeida, Angeles

    2017-04-10

    Disruption of neuronal morphology contributes to the pathology of neurodegenerative disorders such as Alzheimer's disease (AD). However, the underlying molecular mechanisms are unknown. Here, we show that postnatal deletion of Cdh1, a cofactor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase in neurons [Cdh1 conditional knockout (cKO)], disrupts dendrite arborization and causes dendritic spine and synapse loss in the cortex and hippocampus, concomitant with memory impairment and neurodegeneration, in adult mice. We found that the dendrite destabilizer Rho protein kinase 2 (Rock2), which accumulates in the brain of AD patients, is an APC/C(Cdh1) substrate in vivo and that Rock2 protein and activity increased in the cortex and hippocampus of Cdh1 cKO mice. In these animals, inhibition of Rock activity, using the clinically approved drug fasudil, prevented dendritic network disorganization, memory loss, and neurodegeneration. Thus, APC/C(Cdh1)-mediated degradation of Rock2 maintains the dendritic network, memory formation, and neuronal survival, suggesting that pharmacological inhibition of aberrantly accumulated Rock2 may be a suitable therapeutic strategy against neurodegeneration.

  1. Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations.

    PubMed

    Osada, Takuya; Chen, Minyong; Yang, Xiao Yi; Spasojevic, Ivan; Vandeusen, Jeffrey B; Hsu, David; Clary, Bryan M; Clay, Timothy M; Chen, Wei; Morse, Michael A; Lyerly, H Kim

    2011-06-15

    Wnt/β-catenin pathway activation caused by adenomatous polyposis coli (APC) mutations occurs in approximately 80% of sporadic colorectal cancers (CRC). The antihelminth compound niclosamide downregulates components of the Wnt pathway, specifically Dishevelled-2 (Dvl2) expression, resulting in diminished downstream β-catenin signaling. In this study, we determined whether niclosamide could inhibit the Wnt/β-catenin pathway in human CRCs and whether its inhibition might elicit antitumor effects in the presence of APC mutations. We found that niclosamide inhibited Wnt/β-catenin pathway activation, downregulated Dvl2, decreased downstream β-catenin signaling, and exerted antiproliferative effects in human colon cancer cell lines and CRC cells isolated by surgical resection of metastatic disease, regardless of mutations in APC. In contrast, inhibition of NF-κB or mTOR did not exert similar antiproliferative effects in these CRC model systems. In mice implanted with human CRC xenografts, orally administered niclosamide was well tolerated, achieved plasma and tumor levels associated with biologic activity, and led to tumor control. Our findings support clinical explorations to reposition niclosamide for the treatment of CRC.

  2. Cdh1-APC/C, cyclin B-Cdc2, and Alzheimer's disease pathology

    SciTech Connect

    Aulia, Selina; Tang, Bor Luen . E-mail: bchtbl@nus.edu.sg

    2006-01-06

    The anaphase-promoting complex/cyclosome (APC/C) is a key E3 ubiquitin ligase complex that functions in regulating cell cycle transitions in proliferating cells and has, as revealed recently, novel roles in postmitotic neurons. Regulated by its activator Cdh1 (or Hct1), whose level is high in postmitotic neurons, APC/C seems to have multiple functions at different cellular locations, modulating diverse processes such as synaptic development and axonal growth. These processes do not, however, appear to be directly connected to cell cycle regulation. It is now shown that Cdh1-APC/C activity may also have a basic role in suppressing cyclin B levels, thus preventing terminally differentiated neurons from aberrantly re-entering the cell cycle. The result of an aberrant cyclin B-induced S-phase entry, at least for some of these neurons, would be death via apoptosis. Cdh1 thus play an active role in maintaining the terminally differentiated, non-cycling state of postmitotic neurons-a function that could become impaired in Alzheimer's and other neurodegenerative diseases.

  3. Dietary olive oil induces cannabinoid CB2 receptor expression in adipose tissue of ApcMin/+ transgenic mice

    PubMed Central

    Notarnicola, Maria; Tutino, Valeria; Tafaro, Angela; Bianco, Giusy; Guglielmi, Emilia; Caruso, Maria Gabriella

    2016-01-01

    BACKGROUND: Cannabinoid- 2 (CB2) receptor is known for its anti-obesity effects silencing the activated immune cells that are key drivers of metabolic syndrome and inflammation. Nutritional interventions in experimental models of carcinogenesis have been demonstrated to modulate tissue inflammation state and proliferation. OBJECTIVE: Aim of this study was to test, in ApcMin/+ mice, whether a diet enriched with olive oil, omega- 3 and omega-6- PUFAs affects the adipose tissue inflammation status. METHODS: Four groups of animal were studied: ST group, receiving a standard diet; OO group, receiving the standard diet in which soybean oil (source of fats) was replaced with olive oil; OM-3 group, receiving the standard diet in which soybean oil was replaced with salmon oil; OM-6 group, receiving the standard diet in which soybean oil was replaced with oenothera oil. Gene and protein expression, in adipose tissue, were evaluated by RT-PCR and Western Blotting, respectively. Enzymatic activities were assayed by fluorescent and radiometric method, where appropriated. RESULTS: The diet enriched with olive oil significantly induced CB2 receptor expression and it was able to control inflammatory and proliferative activity of mice adipose tissue. CONCLUSIONS: The present findings open opportunities for developing novel nutritional strategies considering olive oil a key ingredient of a healthy dietary pattern. PMID:28035344

  4. Maintenance of adenomatous polyposis coli (APC)-mutant colorectal cancer is dependent on Wnt/beta-catenin signaling.

    PubMed

    Scholer-Dahirel, Alix; Schlabach, Michael R; Loo, Alice; Bagdasarian, Linda; Meyer, Ronald; Guo, Ribo; Woolfenden, Steve; Yu, Kristine K; Markovits, Judit; Killary, Karen; Sonkin, Dmitry; Yao, Yung-Mae; Warmuth, Markus; Sellers, William R; Schlegel, Robert; Stegmeier, Frank; Mosher, Rebecca E; McLaughlin, Margaret E

    2011-10-11

    Persistent expression of certain oncogenes is required for tumor maintenance. This phenotype is referred to as oncogene addiction and has been clinically validated by anticancer therapies that specifically inhibit oncoproteins such as BCR-ABL, c-Kit, HER2, PDGFR, and EGFR. Identifying additional genes that are required for tumor maintenance may lead to new targets for anticancer drugs. Although the role of aberrant Wnt pathway activation in the initiation of colorectal cancer has been clearly established, it remains unclear whether sustained Wnt pathway activation is required for colorectal tumor maintenance. To address this question, we used inducible β-catenin shRNAs to temporally control Wnt pathway activation in vivo. Here, we show that active Wnt/β-catenin signaling is required for maintenance of colorectal tumor xenografts harboring APC mutations. Reduced tumor growth upon β-catenin inhibition was due to cell cycle arrest and differentiation. Upon reactivation of the Wnt/β-catenin pathway colorectal cancer cells resumed proliferation and reacquired a crypt progenitor phenotype. In human colonic adenocarcinomas, high levels of nuclear β-catenin correlated with crypt progenitor but not differentiation markers, suggesting that the Wnt/β-catenin pathway may also control colorectal tumor cell fate during the maintenance phase of tumors in patients. These results support efforts to treat human colorectal cancer by pharmacological inhibition of the Wnt/β-catenin pathway.

  5. Association between aberrant APC promoter methylation and breast cancer pathogenesis: a meta-analysis of 35 observational studies

    PubMed Central

    Zhou, Dan; Tang, Weiwei; Wang, Wenyi; Pan, Xiaoyan

    2016-01-01

    Background. Adenomatous polyposis coli (APC) is widely known as an antagonist of the Wnt signaling pathway via the inactivation of β-catenin. An increasing number of studies have reported that APC methylation contributes to the predisposition to breast cancer (BC). However, recent studies have yielded conflicting results. Methods. Herein, we systematically carried out a meta-analysis to assess the correlation between APC methylation and BC risk. Based on searches of the Cochrane Library, PubMed, Web of Science and Embase databases, the odds ratio (OR) with 95% confidence interval (CI) values were pooled and summarized. Results. A total of 31 articles involving 35 observational studies with 2,483 cases and 1,218 controls met the inclusion criteria. The results demonstrated that the frequency of APC methylation was significantly higher in BC cases than controls under a random effect model (OR = 8.92, 95% CI [5.12–15.52]). Subgroup analysis further confirmed the reliable results, regardless of the sample types detected, methylation detection methods applied and different regions included. Interestingly, our results also showed that the frequency of APC methylation was significantly lower in early-stage BC patients than late-stage ones (OR = 0.62, 95% CI [0.42–0.93]). Conclusion. APC methylation might play an indispensable role in the pathogenesis of BC and could be regarded as a potential biomarker for the diagnosis of BC. PMID:27478702

  6. A novel approach to assess the spontaneous gastrointestinal bleeding risk of antithrombotic agents using Apc(min/+) mice.

    PubMed

    Wei, Huijun; Shang, Jin; Keohane, CarolAnn; Wang, Min; Li, Qiu; Ni, Weihua; O'Neill, Kim; Chintala, Madhu

    2014-06-01

    Assessment of the bleeding risk of antithrombotic agents is usually performed in healthy animals with some form of vascular injury to peripheral organs to induce bleeding. However, bleeding observed in patients with currently marketed antithrombotic drugs is typically spontaneous in nature such as intracranial haemorrhage (ICH) and gastrointestinal (GI) bleeding, which happens most frequently on top of preexisting pathologies such as GI ulcerations and polyps. Apc(min/+) mice are reported to develop multiple adenomas through the entire intestinal tract and display progressive anaemia.In this study, we evaluated the potential utility of Apc(min/+) mice as a model for assessing spontaneous GI bleeding with antithrombotic agents. Apc(min/+) mice exhibited progressive blood loss starting at the age of nine weeks. Despite the increase in bleeding, Apc(min/+) mice were in a hypercoagulable state and displayed an age-dependent increase in thrombin generation and circulating fibrinogen as well as a significant decrease in clotting times. We evaluated the effect of warfarin, dabigatran etexilate, apixaban and clopidogrel in this model by administering them in diet or in the drinking water to mice for 1-4 weeks. All of these marketed drugs significantly increased GI bleeding in Apc(min/+) mice, but not in wild-type mice. Although different exposure profiles of these antithrombotic agents make it challenging to compare the bleeding risk of compounds, our results indicate that the Apc(min/+) mouse may be a sensitive preclinical model for assessing the spontaneous GI bleeding risk of novel antithrombotic agents.

  7. A relay mechanism between EB1 and APC facilitate STIM1 puncta assembly at endoplasmic reticulum-plasma membrane junctions.

    PubMed

    Asanov, Alexander; Sherry, Ryan; Sampieri, Alicia; Vaca, Luis

    2013-09-01

    The assembly of STIM1 protein puncta near endoplasmic reticulum-plasma membrane (ER-PM) junctions is required for optimal activation of store-operated channels (SOC). The mechanisms controlling the translocation of STIM1 puncta to ER-PM junctions remain largely unknown. In the present study, we have explored the role of the microtubule binding protein adenomatous polyposis coli (APC), on STIM1 puncta and store-operated calcium entry (SOCE). APC-depleted cells showed reduced STIM1 puncta near ER-PM junctions, instead puncta is found at the ER surrounding the cell nucleus. Reduced STIM1 puncta near ER-PM junctions in APC-depleted cells correlates with a strong inhibition of SOCE and diminished Orai whole-cell currents. Immunoprecipitation and confocal microscopy co-localization studies indicate that, upon depletion of the ER, STIM1 dissociates from EB1 and associates to APC. Deletion analysis identified an APC-binding domain in the carboxyl terminus of STIM1 (STIM1 650-685). These results together position APC as an important element in facilitating the translocation of STIM1 puncta near ER-PM junctions, which in turn is required for efficient SOCE and Orai activation upon depletion of the ER.

  8. Drosophila Homologues of Adenomatous Polyposis Coli (APC) and the Formin Diaphanous Collaborate by a Conserved Mechanism to Stimulate Actin Filament Assembly*

    PubMed Central

    Jaiswal, Richa; Stepanik, Vince; Rankova, Aneliya; Molinar, Olivia; Goode, Bruce L.; McCartney, Brooke M.

    2013-01-01

    Adenomatous polyposis coli (APC) is a large multidomain protein that regulates the cytoskeleton. Recently, it was shown that vertebrate APC through its Basic domain directly collaborates with the formin mDia1 to stimulate actin filament assembly in the presence of nucleation barriers. However, it has been unclear whether these activities extend to homologues of APC and Dia in other organisms. Drosophila APC and Dia are each required to promote actin furrow formation in the syncytial embryo, suggesting a potential collaboration in actin assembly, but low sequence homology between the Basic domains of Drosophila and vertebrate APC has left their functional and mechanistic parallels uncertain. To address this question, we purified Drosophila APC1 and Dia and determined their individual and combined effects on actin assembly using both bulk fluorescence assays and total internal reflection fluorescence microscopy. Our data show that APC1, similar to its vertebrate homologue, bound to actin monomers and nucleated and bundled filaments. Further, Drosophila Dia nucleated actin assembly and protected growing filament barbed ends from capping protein. Drosophila APC1 and Dia directly interacted and collaborated to promote actin assembly in the combined presence of profilin and capping protein. Thus, despite limited sequence homology, Drosophila and vertebrate APCs exhibit highly related activities and mechanisms and directly collaborate with formins. These results suggest that APC-Dia interactions in actin assembly are conserved and may underlie important in vivo functions in a broad range of animal phyla. PMID:23558679

  9. Correlation study between contamination and signal degradation in single-mode APC connectors

    NASA Astrophysics Data System (ADS)

    Lytle, Steve; Brown, Matt; Berdinskikh, Tatiana; Wilson, Douglas H.; Fisher, David; Huang, Sun-Yuan; Hughes, Mike; Mitcheltree, Tom; Roche, Brian J.

    2009-06-01

    This paper summarizes the correlation study between contamination and scratches on singlemode APC connectors and signal degradation; leading to an Acceptance Criteria Matrix. The study is a continuation of International Electronics Manufacturing Initiative (iNEMI) research on development of cleanliness specification for singlemode angled physical contact (SM-APC) connectors. Twenty-five APC SC connectors on one-meter patch cords were used for this study. The Design of the Experiment (DoE) was a multi-step process that involved: (1) inspecting, cleaning and inspecting connectors being tested (devices under test, or DUTs) and launch connectors; (2) making multiple matings and dematings of each DUT, in a pristine state, with a reference connector, and recording Return Loss (RL) data after each cycle; (3) manually applying dust to the cleaned end-faces of the DUTs; then (4) mating contaminated DUTs with clean reference connectors at least five times, taking RL measurements after each mating and saving fiber end-face images for both connectors. It was shown that connectors with the contamination at the core (9um diameter) demonstrated a dramatic decrease in average RL of 14.2 dB. In comparison, the samples with contamination on the cladding and clear core demonstrated a negligible change in RL of 0.15 dB. For highly contaminated samples in the cladding layer, we found the changes of RL to be about 5-6 dB. Further investigation established that particle migration during successive matings also occurs on the ferrule within the contact zone (approximately <250 μm in diameter). Polishing scratches had no impact on RL of APC connectors. Based on the experimental data described in this paper, an inspection criteria matrix is proposed for SM-APC connectors including the zone definitions and number of allowable defects (contamination and scratches) for each zone. The recommendations on pass/fail criteria have been provided to the IEC (International Electrotechnical Committee

  10. The APC I1307K allele conveys a significant increased risk for cancer.

    PubMed

    Leshno, Ari; Shapira, Shiran; Liberman, Eliezer; Kraus, Sarah; Sror, Miri; Harlap-Gat, Amira; Avivi, Doran; Galazan, Lior; David, Maayan; Maharshak, Nitsan; Moanis, Serhan; Arber, Nadir; Moshkowitz, Menachem

    2016-03-15

    This study is the first attempt to evaluate the association between the APC I1307K variant and overall cancer risk. It is unique in both its large sample size and in the reliability of data in the control group. The findings described in this article have major implications in terms of identifying asymptomatic individuals who are at increased risk to harbor cancer and therefore targeted to be enrolled in specific early detection and prevention programs. The prevalence of the APC I1307K missense mutation among Ashkenazi Jews is ∼ 6%. Carriers are at an increased risk for colorectal neoplasia. In this study, we examined the association of this variant with non-colorectal cancers. Consecutive 13,013 healthy subjects who underwent screening at the Integrated Cancer Prevention Center between 2006 and 2014 were enrolled. This population was supplemented with 1,611 cancer patients from the same institution. Demographics, medical history, and pathological data were recorded. Mortality data were obtained from the Ministry of Health's registry. The prevalence of APC I1307K in cancer patients and healthy subjects was compared. The APC I1307K variant was detected in 189 (11.8%) cancer patients compared to 614 (4.7%) healthy subjects, reflecting an adjusted age and sex odds ratio (OR) of 2.53 (p < 0.0001). History of two or more cancer types was associated with a positive carrier prevalence (OR = 4.38 p < 0.0001). Males had significantly increased carrier prevalence in lung, urologic, pancreatic, and skin cancers. The carrier prevalence among females was significantly higher only in breast and skin cancers. Female carriers developed cancer at a significantly older age compared to non-carriers (average 62.7 years vs. 57.8, respectively, p = 0.027), had better survival rates (HR = 0.58, p = 0.022) and overall increased longevity (average age of death 78.8 vs. 70.4 years, respectively, p = 0.003). In conclusion, the APC I1307K variant is a reliable marker for overall cancer risk

  11. Chromosome 19q13 disruption alters expressions of CYP2A7, MIA and MIA-RAB4B lncRNA and contributes to FAP-like phenotype in APC mutation-negative familial colorectal cancer patients.

    PubMed

    Thean, Lai Fun; Wong, Yu Hui; Lo, Michelle; Loi, Carol; Chew, Min Hoe; Tang, Choong Leong; Cheah, Peh Yean

    2017-01-01

    Familial adenomatous polyposis (FAP) is an autosomal-dominantly inherited form of colorectal cancer (CRC) caused by mutation in the adenomatous polyposis coli (APC) gene. Our ability to exhaustively screen for APC mutations identify microsatellite-stable and APC-mutation negative familial CRC patients, enabling us to search for novel genes. We performed genome-wide scan on two affected siblings of one family and 88 ethnicity- and gender-matched healthy controls to identify deletions shared by the siblings. Combined loss of heterozygosity, copy number and allelic-specific copy number analysis uncovered 5 shared deletions. Long-range polymerase chain reaction (PCR) confirmed chromosome 19q13 deletion, which was subsequently found in one other family. The 32 kb deleted region harbors the CYP2A7 gene and was enriched with enhancer, repressor and insulator sites. The wildtype allele was lost in the polyps of the proband. Further, real-time RT-PCR assays showed that expressions of MIA and MIA-RAB4B located 35 kb upstream of the deletion, were up-regulated in the polyps compared to the matched mucosa of the proband. MIA-RAB4B, the read-through long non-coding RNA (lncRNA), RAB4B, PIM2 and TAOK1 share common binding site of a microRNA, miR-24, in their 3'UTRs. PIM2 and TAOK1, two target oncogenes of miR-24, were co-ordinately up-regulated with MIA-RAB4B in the polyps, suggesting that MIA-RAB4B could function as competitive endogenous RNA to titrate miR-24 away from its other targets. The data suggest that the 19.13 deletion disrupted chromatin boundary, leading to altered expression of several genes and lncRNA, could contribute to colorectal cancer via novel genetic and epigenetic mechanisms.

  12. Chromosome 19q13 disruption alters expressions of CYP2A7, MIA and MIA-RAB4B lncRNA and contributes to FAP-like phenotype in APC mutation-negative familial colorectal cancer patients

    PubMed Central

    Thean, Lai Fun; Wong, Yu Hui; Lo, Michelle; Loi, Carol; Chew, Min Hoe; Tang, Choong Leong; Cheah, Peh Yean

    2017-01-01

    Familial adenomatous polyposis (FAP) is an autosomal-dominantly inherited form of colorectal cancer (CRC) caused by mutation in the adenomatous polyposis coli (APC) gene. Our ability to exhaustively screen for APC mutations identify microsatellite-stable and APC-mutation negative familial CRC patients, enabling us to search for novel genes. We performed genome-wide scan on two affected siblings of one family and 88 ethnicity- and gender-matched healthy controls to identify deletions shared by the siblings. Combined loss of heterozygosity, copy number and allelic-specific copy number analysis uncovered 5 shared deletions. Long-range polymerase chain reaction (PCR) confirmed chromosome 19q13 deletion, which was subsequently found in one other family. The 32 kb deleted region harbors the CYP2A7 gene and was enriched with enhancer, repressor and insulator sites. The wildtype allele was lost in the polyps of the proband. Further, real-time RT-PCR assays showed that expressions of MIA and MIA-RAB4B located 35 kb upstream of the deletion, were up-regulated in the polyps compared to the matched mucosa of the proband. MIA-RAB4B, the read-through long non-coding RNA (lncRNA), RAB4B, PIM2 and TAOK1 share common binding site of a microRNA, miR-24, in their 3’UTRs. PIM2 and TAOK1, two target oncogenes of miR-24, were co-ordinately up-regulated with MIA-RAB4B in the polyps, suggesting that MIA-RAB4B could function as competitive endogenous RNA to titrate miR-24 away from its other targets. The data suggest that the 19.13 deletion disrupted chromatin boundary, leading to altered expression of several genes and lncRNA, could contribute to colorectal cancer via novel genetic and epigenetic mechanisms. PMID:28306719

  13. Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells.

    PubMed

    van Lidth de Jeude, J F; Meijer, B J; Wielenga, M C B; Spaan, C N; Baan, B; Rosekrans, S L; Meisner, S; Shen, Y H; Lee, A S; Paton, J C; Paton, A W; Muncan, V; van den Brink, G R; Heijmans, J

    2016-11-07

    Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc, which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both Apc and ER stress repressor chaperone Grp78 can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of Apc alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of Grp78. In these Apc-Grp78 double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that Apc-Grp78 double mutant stem cells had lost self-renewal capacity. Although in Apc-Grp78 double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of Apc mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.Oncogene advance online publication, 7 November 2016; doi:10.1038/onc.2016.326.

  14. Dietary ω-3 Polyunsaturated Fatty Acids Inhibit Tumor Growth in Transgenic Apc(Min/+) Mice, Correlating with CB1 Receptor Up-Regulation.

    PubMed

    Notarnicola, Maria; Tutino, Valeria; De Nunzio, Valentina; Dituri, Francesco; Caruso, Maria Gabriella; Giannelli, Gianluigi

    2017-02-24

    Mediterranean diet components, such as olive oil and ω-3 polyunsaturated fatty acids (ω-3 PUFAs), can arrest cell growth and promote cell apoptosis. Recently, olive oil has been demonstrated to modulate type-1 cannabinoid (CB1) receptor gene expression in both human colon cancer cells and rat colon. The aim of this study was to investigate a possible link between olive oil and ω-3 PUFAs effects and CB1 receptor expression in both intestinal and adipose tissue of Apc(Min/+) mice. To confirm the role for the CB1 receptor as a negative modulator of cell proliferation in human colon cancer, CB1 receptor gene expression was also detected in tumor tissue and in surrounding normal mucosa of patients with colorectal cancer (CRC). Dietary ω-3 PUFAs significantly inhibited intestinal polyp growth in mice, correlating with CB1 receptor gene and protein expression induction. CB1 receptor gene up-regulation was also detected in adipose tissue, suggesting a close communication between cancer cells and the surrounding environment. Tissue CB1 receptor induction was associated with a concurrent inactivation of the Wnt/β-catenin pathway. Moreover, there was a significant reduction in CB1 receptor gene expression levels in cancer tissue compared to normal surrounding mucosa of patients with CRC, confirming that in cancer the "protective" action of the CB1 receptor is lost.

  15. Dietary ω-3 Polyunsaturated Fatty Acids Inhibit Tumor Growth in Transgenic ApcMin/+ Mice, Correlating with CB1 Receptor Up-Regulation

    PubMed Central

    Notarnicola, Maria; Tutino, Valeria; De Nunzio, Valentina; Dituri, Francesco; Caruso, Maria Gabriella; Giannelli, Gianluigi

    2017-01-01

    Mediterranean diet components, such as olive oil and ω-3 polyunsaturated fatty acids (ω-3 PUFAs), can arrest cell growth and promote cell apoptosis. Recently, olive oil has been demonstrated to modulate type-1 cannabinoid (CB1) receptor gene expression in both human colon cancer cells and rat colon. The aim of this study was to investigate a possible link between olive oil and ω-3 PUFAs effects and CB1 receptor expression in both intestinal and adipose tissue of ApcMin/+ mice. To confirm the role for the CB1 receptor as a negative modulator of cell proliferation in human colon cancer, CB1 receptor gene expression was also detected in tumor tissue and in surrounding normal mucosa of patients with colorectal cancer (CRC). Dietary ω-3 PUFAs significantly inhibited intestinal polyp growth in mice, correlating with CB1 receptor gene and protein expression induction. CB1 receptor gene up-regulation was also detected in adipose tissue, suggesting a close communication between cancer cells and the surrounding environment. Tissue CB1 receptor induction was associated with a concurrent inactivation of the Wnt/β-catenin pathway. Moreover, there was a significant reduction in CB1 receptor gene expression levels in cancer tissue compared to normal surrounding mucosa of patients with CRC, confirming that in cancer the “protective” action of the CB1 receptor is lost. PMID:28245562

  16. Cloning and sequencing of the allophycocyanin genes from Spirulina maxima (Cyanophyta)

    NASA Astrophysics Data System (ADS)

    Qin, Song; Hiroyuki, Kojima; Yoshikazu, Kawata; Shin-Ichi, Yano; Zeng, Cheng-Kui

    1998-03-01

    The genes coding for the α-and β-subunit of allophycocyanin ( apcA and apcB) from the cyanophyte Spirulina maxima were cloned and sequenced. The results revealed 44.4% of nucleotide sequence similarity and 30.4% of similarity of deduced amino acid sequence between them. The amino acid sequence identities between S. maxima and S. platensis are 99.4% for α subunit and 100% for β subunit.

  17. Targeting mitotic exit with hyperthermia or APC/C inhibition to increase paclitaxel efficacy.

    PubMed

    Giovinazzi, Serena; Bellapu, Dhruv; Morozov, Viacheslav M; Ishov, Alexander M

    2013-08-15

    Microtubule-poisoning drugs, such as Paclitaxel (or Taxol, PTX), are powerful and commonly used anti-neoplastic agents for the treatment of several malignancies. PTX triggers cell death, mainly through a mitotic arrest following the activation of the spindle assembly checkpoint (SAC). Cells treated with PTX slowly slip from this mitotic block and die by mitotic catastrophe. However, cancer cells can acquire or are intrinsically resistant to this drug, posing one of the main obstacles for PTX clinical effectiveness. In order to override PTX resistance and increase its efficacy, we investigated both the enhancement of mitotic slippage and the block of mitotic exit. To test these opposing strategies, we used physiological hyperthermia (HT) to force exit from PTX-induced mitotic block and the anaphase-promoting complex/cyclosome (APC/C) inhibitor, proTAME, to block mitotic exit. We observed that application of HT on PTX-treated cells forced mitotic slippage, as shown by the rapid decline of cyclin B levels and by microscopy analysis. Similarly, HT induced mitotic exit in cells blocked in mitosis by other antimitotic drugs, such as Nocodazole and the Aurora A inhibitor MLN8054, indicating a common effect of HT on mitotic cells. On the other hand, proTAME prevented mitotic exit of PTX and MLN8054 arrested cells, prolonged mitosis, and induced apoptosis. In addition, we showed that proTAME prevented HT-mediated mitotic exit, indicating that stress-induced APC/C activation is necessary for HT-induced mitotic slippage. Finally, HT significantly increased PTX cytotoxicity, regardless of cancer cells' sensitivity to PTX, and this activity was superior to the combination of PTX with pro-TAME. Our data suggested that forced mitotic exit of cells arrested in mitosis by anti-mitotic drugs, such as PTX, can be a more successful anticancer strategy than blocking mitotic exit by inactivation of the APC/C.

  18. Substrate Recognition by the Cdh1 Destruction Box Receptor Is a General Requirement for APC/CCdh1-mediated Proteolysis.

    PubMed

    Qin, Liang; Guimarães, Dimitrius Santiago P S F; Melesse, Michael; Hall, Mark C

    2016-07-22

    The anaphase-promoting complex, or cyclosome (APC/C), is a ubiquitin ligase that selectively targets proteins for degradation in mitosis and the G1 phase and is an important component of the eukaryotic cell cycle control system. How the APC/C specifically recognizes its substrates is not fully understood. Although well characterized degron motifs such as the destruction box (D-box) and KEN-box are commonly found in APC/C substrates, many substrates apparently lack these motifs. A variety of alternative APC/C degrons have been reported, suggesting either that multiple modes of substrate recognition are possible or that our definitions of degron structure are incomplete. We used an in vivo yeast assay to compare the G1 degradation rate of 15 known substrates of the APC/C co-activator Cdh1 under normal conditions and conditions that impair binding of D-box, KEN-box, and the recently identified ABBA motif degrons to Cdh1. The D-box receptor was required for efficient proteolysis of all Cdh1 substrates, despite the absence of canonical D-boxes in many. In contrast, the KEN-box receptor was only required for normal proteolysis of a subset of substrates and the ABBA motif receptor for a single substrate in our system. Our results suggest that binding to the D-box receptor may be a shared requirement for recognition and processing of all Cdh1 substrates.

  19. Insights into Degron Recognition by APC/C Coactivators from the Structure of an Acm1-Cdh1 Complex

    PubMed Central

    He, Jun; Chao, William C.H.; Zhang, Ziguo; Yang, Jing; Cronin, Nora; Barford, David

    2013-01-01

    Summary The anaphase-promoting complex/cyclosome (APC/C) regulates sister chromatid segregation and the exit from mitosis. Selection of most APC/C substrates is controlled by coactivator subunits (either Cdc20 or Cdh1) that interact with substrate destruction motifs—predominantly the destruction (D) box and KEN box degrons. How coactivators recognize D box degrons and how this is inhibited by APC/C regulatory proteins is not defined at the atomic level. Here, from the crystal structure of S. cerevisiae Cdh1 in complex with its specific inhibitor Acm1, which incorporates D and KEN box pseudosubstrate motifs, we describe the molecular basis for D box recognition. Additional interactions between Acm1 and Cdh1 identify a third protein-binding site on Cdh1 that is likely to confer coactivator-specific protein functions including substrate association. We provide a structural rationalization for D box and KEN box recognition by coactivators and demonstrate that many noncanonical APC/C degrons bind APC/C coactivators at the D box coreceptor. PMID:23707760

  20. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material

    SciTech Connect

    Valle-Zermeño, R. del; Formosa, J.; Chimenos, J.M.; Martínez, M.; Fernández, A.I.

    2013-03-15

    Highlights: ► A concrete formulation was optimized using Bottom Ash and APC ash. ► 10% of APC ash achieves good compromise between economic and performance aspects. ► The crushed concrete was evaluated as secondary building granular material. ► The environmental behavior allows its use as secondary material. ► The abrasion resistance is not good enough for its use as a road sub-base material. - Abstract: The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured.

  1. APC/C and retinoblastoma interaction: cross-talk of retinoblastoma protein with the ubiquitin proteasome pathway

    PubMed Central

    Ramanujan, Ajeena; Tiwari, Swati

    2016-01-01

    The ubiquitin (Ub) ligase anaphase promoting complex/cyclosome (APC/C) and the tumour suppressor retinoblastoma protein (pRB) play key roles in cell cycle regulation. APC/C is a critical regulator of mitosis and G1-phase of the cell cycle whereas pRB keeps a check on proliferation by inhibiting transition to the S-phase. APC/C and pRB interact with each other via the co-activator of APC/C, FZR1, providing an alternative pathway of regulation of G1 to S transition by pRB using a post-translational mechanism. Both pRB and FZR1 have complex roles and are implicated not only in regulation of cell proliferation but also in differentiation, quiescence, apoptosis, maintenance of chromosomal integrity and metabolism. Both are also targeted by transforming viruses. We discuss recent advances in our understanding of the involvement of APC/C and pRB in cell cycle based decisions and how these insights will be useful for development of anti-cancer and anti-viral drugs. PMID:27402801

  2. Irreversible APC(Cdh1) Inactivation Underlies the Point of No Return for Cell-Cycle Entry.

    PubMed

    Cappell, Steven D; Chung, Mingyu; Jaimovich, Ariel; Spencer, Sabrina L; Meyer, Tobias

    2016-06-30

    Proliferating cells must cross a point of no return before they replicate their DNA and divide. This commitment decision plays a fundamental role in cancer and degenerative diseases and has been proposed to be mediated by phosphorylation of retinoblastoma (Rb) protein. Here, we show that inactivation of the anaphase-promoting complex/cyclosome (APC(Cdh1)) has the necessary characteristics to be the point of no return for cell-cycle entry. Our study shows that APC(Cdh1) inactivation is a rapid, bistable switch initiated shortly before the start of DNA replication by cyclin E/Cdk2 and made irreversible by Emi1. Exposure to stress between Rb phosphorylation and APC(Cdh1) inactivation, but not after APC(Cdh1) inactivation, reverted cells to a mitogen-sensitive quiescent state, from which they can later re-enter the cell cycle. Thus, APC(Cdh1) inactivation is the commitment point when cells lose the ability to return to quiescence and decide to progress through the cell cycle.

  3. Liver inflammation and metabolic signaling in ApcMin/+ mice: the role of cachexia progression.

    PubMed

    Narsale, Aditi A; Enos, Reilly T; Puppa, Melissa J; Chatterjee, Saurabh; Murphy, E Angela; Fayad, Raja; Pena, Majorette O'; Durstine, J Larry; Carson, James A

    2015-01-01

    The ApcMin/+ mouse exhibits an intestinal tumor associated loss of muscle and fat that is accompanied by chronic inflammation, insulin resistance and hyperlipidemia. Since the liver governs systemic energy demands through regulation of glucose and lipid metabolism, it is likely that the liver is a pathological target of cachexia progression in the ApcMin/+ mouse. The purpose of this study was to determine if cancer and the progression of cachexia affected liver endoplasmic reticulum (ER)-stress, inflammation, metabolism, and protein synthesis signaling. The effect of cancer (without cachexia) was examined in wild-type and weight-stable ApcMin/+ mice. Cachexia progression was examined in weight-stable, pre-cachectic, and severely-cachectic ApcMin/+ mice. Livers were analyzed for morphology, glycogen content, ER-stress, inflammation, and metabolic changes. Cancer induced hepatic expression of ER-stress markers BiP (binding immunoglobulin protein), IRE-1α (endoplasmic reticulum to nucleus signaling 1), and inflammatory intermediate STAT-3 (signal transducer and activator of transcription 3). While gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression was suppressed by cancer, glycogen content or protein synthesis signaling remained unaffected. Cachexia progression depleted liver glycogen content and increased mRNA expression of glycolytic enzyme PFK (phosphofrucktokinase) and gluconeogenic enzyme PEPCK. Cachexia progression further increased pSTAT-3 but suppressed p-65 and JNK (c-Jun NH2-terminal kinase) activation. Interestingly, progression of cachexia suppressed upstream ER-stress markers BiP and IRE-1α, while inducing its downstream target CHOP (DNA-damage inducible transcript 3). Cachectic mice exhibited a dysregulation of protein synthesis signaling, with an induction of p-mTOR (mechanistic target of rapamycin), despite a suppression of Akt (thymoma viral proto-oncogene 1) and S6 (ribosomal protein S6) phosphorylation. Thus, cancer

  4. Proteomics Suggests a Role for APC-Survivin in Response to Somatostatin Analog Treatment of Neuroendocrine Tumors

    PubMed Central

    Kjellin, Hanna; Hashemi, Jamileh; Barriuso, Jorge; Juhlin, C. Christofer; Lu, Ming; Höög, Anders; Pastrián, Laura G.; Lamarca, Angela; Soto, Victoria Heredia; Zedenius, Jan; Mendiola, Marta; Lehtiö, Janne; Kjellman, Magnus

    2016-01-01

    Context: Somatostatin analogs are established in the treatment of neuroendocrine tumors (NETs) including small intestinal NET; however, the molecular mechanisms are not well known. Here, we examined the direct effects of lanreotide in NET cell line models. Setting and Design: The cell lines HC45 and H727 were treated with 10nM lanreotide for different time periods and alterations of the proteome were analyzed by in-depth high-resolution isoelectric focusing tandem liquid chromatography-mass spectrometry. We next investigated whether the observed suppression of survivin was mediated by adenomatous polyposis coli (APC) and possible effects on tumor proliferation in vitro. Expression of survivin was assessed by immunohistochemistry in 112 NET cases and compared with patient outcome. Results: We quantified 6451 and 7801 proteins in HC45 and H727, respectively. After short time lanreotide treatment APC was increased and survivin reduced. Overexpression of APC in H727 cells decreased, and APC knock-down elevated the survivin level. The lanreotide regulation of APC-survivin could be suppressed by small interfering RNA against somatostatin receptor 2. Although lanreotide only gave slight inhibition of proliferation, targeting of survivin with the small molecule YM155 dramatically reduced proliferation. Moderate or high as compared with low or absent total survivin expression was associated with shorter progression-free survival, independent of tumor stage, grade, and localization. Conclusions: We report a proteome-wide analysis of changes in response to lanreotide in NET cell lines. This analysis suggests a connection between somatostatin analog, APC, and survivin levels. Survivin is a possible prognostic factor and a new potential therapeutic target in NETs. PMID:27459532

  5. Increased variability in ApcMin/+ intestinal tissue can be measured with microultrasound

    NASA Astrophysics Data System (ADS)

    Fatehullah, A.; Sharma, S.; Newton, I. P.; Langlands, A. J.; Lay, H.; Nelson, S. A.; McMahon, R. K.; McIlvenny, N.; Appleton, P. L.; Cochran, S.; Näthke, I. S.

    2016-07-01

    Altered tissue structure is a feature of many disease states and is usually measured by microscopic methods, limiting analysis to small areas. Means to rapidly and quantitatively measure the structure and organisation of large tissue areas would represent a major advance not just for research but also in the clinic. Here, changes in tissue organisation that result from heterozygosity in Apc, a precancerous situation, are comprehensively measured using microultrasound and three-dimensional high-resolution microscopy. Despite its normal appearance in conventionally examined cross-sections, both approaches revealed a significant increase in the variability of tissue organisation in Apc heterozygous tissue. These changes preceded the formation of aberrant crypt foci or adenoma. Measuring these premalignant changes using microultrasound provides a potential means to detect microscopically abnormal regions in large tissue samples, independent of visual examination or biopsies. Not only does this provide a powerful tool for studying tissue structure in experimental settings, the ability to detect and monitor tissue changes by microultrasound could be developed into a powerful adjunct to screening endoscopy in the clinic.

  6. Novel APC-like properties of human NK cells directly regulate T cell activation

    PubMed Central

    Hanna, Jacob; Gonen-Gross, Tsufit; Fitchett, Jonathan; Rowe, Tony; Daniels, Mark; Arnon, Tal I.; Gazit, Roi; Joseph, Aviva; Schjetne, Karoline W.; Steinle, Alexander; Porgador, Angel; Mevorach, Dror; Goldman-Wohl, Debra; Yagel, Simcha; LaBarre, Michael J.; Buckner, Jane H.; Mandelboim, Ofer

    2004-01-01

    Initiation of the adaptive immune response is dependent on the priming of naive T cells by APCs. Proteomic analysis of unactivated and activated human NK cell membrane–enriched fractions demonstrated that activated NK cells can efficiently stimulate T cells, since they upregulate MHC class II molecules and multiple ligands for TCR costimulatory molecules. Furthermore, by manipulating antigen administration, we show that NK cells possess multiple independent unique pathways for antigen uptake. These results highlight NK cell–mediated cytotoxicity and specific ligand recognition by cell surface–activating receptors on NK cells as unique mechanisms for antigen capturing and presentation. In addition, we analyzed the T cell–activating potential of human NK cells derived from different clinical conditions, such as inflamed tonsils and noninfected and CMV-infected uterine decidual samples, and from transporter-associated processing antigen 2–deficient patients. This in vivo analysis revealed that proinflammatory, but not immune-suppressive, microenvironmental requirements can selectively dictate upregulation of T cell–activating molecules on NK cells. Taken together, these observations offer new and unexpected insights into the direct interactions between NK and T cells and suggest novel APC-like activating functions for human NK cells. PMID:15578093

  7. Berberine Inhibits Intestinal Polyps Growth in Apc (min/+) Mice via Regulation of Macrophage Polarization

    PubMed Central

    Piao, Meiyu; Cao, Hailong; He, NaNa; Yang, Boli; Dong, Wenxiao; Xu, Mengque; Yan, Fang; Zhou, Bing

    2016-01-01

    Antitumor effect of berberine has been reported in a wide spectrum of cancer, however, the mechanisms of which are not fully understood. The aim of this study was to investigate the hypothesis that berberine suppresses tumorigenesis in the familial adenomatous polyposis (FAP) by regulating the macrophage polarization in Apc (min/+) mouse model. Berberine was given to Apc (min/+) mice for 12 weeks. Primary macrophages were isolated; after berberine treatment, the change in signaling cascade was determined. The total number and size of polyps were reduced remarkably in berberine group, compared with control group. A significant decrease in protein levels of F4/80, mannose receptor (MR), and COX-2 in stroma of intestinal polyps and an increase in the level of iNOS were observed after berberine treatment. The mRNA level of MR and Arg-1 in berberine group was significantly lower than those in IL-10 or IL-4 group, while no significant difference in mRNA levels of iNOS and CXCL10 was observed. The migration and invasiveness assays in vitro showed that berberine could reduce the capability of migration and invasiveness. These findings suggest that berberine attenuates intestinal tumorigenesis by inhibiting the migration and invasion of colorectal tumor cells via regulation of macrophage polarization. PMID:27493671

  8. Peptide-MHC-I from Endogenous Antigen Outnumber Those from Exogenous Antigen, Irrespective of APC Phenotype or Activation

    PubMed Central

    Sei, Janet J.; Haskett, Scott; Kaminsky, Lauren W.; Lin, Eugene; Truckenmiller, Mary E.; Bellone, Clifford J.; Buller, R. Mark; Norbury, Christopher C.

    2015-01-01

    Naïve anti-viral CD8+ T cells (TCD8+) are activated by the presence of peptide-MHC Class I complexes (pMHC-I) on the surface of professional antigen presenting cells (pAPC). Increasing the number of pMHC-I in vivo can increase the number of responding TCD8+. Antigen can be presented directly or indirectly (cross presentation) from virus-infected and uninfected cells, respectively. Here we determined the relative importance of these two antigen presenting pathways in mousepox, a natural disease of the mouse caused by the poxvirus, ectromelia (ECTV). We demonstrated that ECTV infected several pAPC types (macrophages, B cells, and dendritic cells (DC), including DC subsets), which directly presented pMHC-I to naïve TCD8+ with similar efficiencies in vitro. We also provided evidence that these same cell-types presented antigen in vivo, as they form contacts with antigen-specific TCD8+. Importantly, the number of pMHC-I on infected pAPC (direct presentation) vastly outnumbered those on uninfected cells (cross presentation), where presentation only occurred in a specialized subset of DC. In addition, prior maturation of DC failed to enhance antigen presentation, but markedly inhibited ECTV infection of DC. These results suggest that direct antigen presentation is the dominant pathway in mice during mousepox. In a broader context, these findings indicate that if a virus infects a pAPC then the presentation by that cell is likely to dominate over cross presentation as the most effective mode of generating large quantities of pMHC-I is on the surface of pAPC that endogenously express antigens. Recent trends in vaccine design have focused upon the introduction of exogenous antigens into the MHC Class I processing pathway (cross presentation) in specific pAPC populations. However, use of a pantropic viral vector that targets pAPC to express antigen endogenously likely represents a more effective vaccine strategy than the targeting of exogenous antigen to a limiting pAPC

  9. A role for cyclin-dependent kinase(s) in the modulation of fast anterograde axonal transport: effects defined by olomoucine and the APC tumor suppressor protein

    NASA Technical Reports Server (NTRS)

    Ratner, N.; Bloom, G. S.; Brady, S. T.

    1998-01-01

    Proteins that interact with both cytoskeletal and membrane components are candidates to modulate membrane trafficking. The tumor suppressor proteins neurofibromin (NF1) and adenomatous polyposis coli (APC) both bind to microtubules and interact with membrane-associated proteins. The effects of recombinant NF1 and APC fragments on vesicle motility were evaluated by measuring fast axonal transport along microtubules in axoplasm from squid giant axons. APC4 (amino acids 1034-2844) reduced only anterograde movements, whereas APC2 (aa 1034-2130) or APC3 (aa 2130-2844) reduced both anterograde and retrograde transport. NF1 had no effect on organelle movement in either direction. Because APC contains multiple cyclin-dependent kinase (CDK) consensus phosphorylation motifs, the kinase inhibitor olomoucine was examined. At concentrations in which olomoucine is specific for cyclin-dependent kinases (5 microM), it reduced only anterograde transport, whereas anterograde and retrograde movement were both affected at concentrations at which other kinases are inhibited as well (50 microM). Both anterograde and retrograde transport also were inhibited by histone H1 and KSPXK peptides, substrates for proline-directed kinases, including CDKs. Our data suggest that CDK-like axonal kinases modulate fast anterograde transport and that other axonal kinases may be involved in modulating retrograde transport. The specific effect of APC4 on anterograde transport suggests a model in which the binding of APC to microtubules may limit the activity of axonal CDK kinase or kinases in restricted domains, thereby affecting organelle transport.

  10. Mutations of C-reactive protein (CRP) -286 SNP, APC and p53 in colorectal cancer: implication for a CRP-Wnt crosstalk.

    PubMed

    Su, Hai-Xiang; Zhou, Hai-Hong; Wang, Ming-Yu; Cheng, Jin; Zhang, Shi-Chao; Hui, Feng; Chen, Xue-Zhong; Liu, Shan-Hui; Liu, Qin-Jiang; Zhu, Zi-Jiang; Hu, Qing-Rong; Wu, Yi; Ji, Shang-Rong

    2014-01-01

    C-reactive protein (CRP) is an established marker of inflammation with pattern-recognition receptor-like activities. Despite the close association of the serum level of CRP with the risk and prognosis of several types of cancer, it remains elusive whether CRP contributes directly to tumorigenesis or just represents a bystander marker. We have recently identified recurrent mutations at the SNP position -286 (rs3091244) in the promoter of CRP gene in several tumor types, instead suggesting that locally produced CRP is a potential driver of tumorigenesis. However, it is unknown whether the -286 site is the sole SNP position of CRP gene targeted for mutation and whether there is any association between CRP SNP mutations and other frequently mutated genes in tumors. Herein, we have examined the genotypes of three common CRP non-coding SNPs (rs7553007, rs1205, rs3093077) in tumor/normal sample pairs of 5 cancer types (n = 141). No recurrent somatic mutations are found at these SNP positions, indicating that the -286 SNP mutations are preferentially selected during the development of cancer. Further analysis reveals that the -286 SNP mutations of CRP tend to co-occur with mutated APC particularly in rectal cancer (p = 0.04; n = 67). By contrast, mutations of CRP and p53 or K-ras appear to be unrelated. There results thus underscore the functional importance of the -286 mutation of CRP in tumorigenesis and imply an interaction between CRP and Wnt signaling pathway.

  11. Salmon-derived thrombin inhibits development of chronic pain through an endothelial barrier protective mechanism dependent on APC

    PubMed Central

    Smith, Jenell R; Galie, Peter A; Slochower, David R; Weisshaar, Christine L.; Janmey, Paul A; Winkelstein, Beth A

    2015-01-01

    Many neurological disorders are initiated by blood-brain barrier breakdown, which potentiates spinal neuroinflammation and neurodegeneration. Peripheral neuropathic injuries are known to disrupt the blood-spinal cord barrier (BSCB) and to potentiate inflammation. But, it is not known whether BSCB breakdown facilitates pain development. In this study, a neural compression model in the rat was used to evaluate relationships among BSCB permeability, inflammation and pain-related behaviors. BSCB permeability increases transiently only after injury that induces mechanical hyperalgesia, which correlates with serum concentrations of pro-inflammatory cytokines, IL-7, IL-12, IL-1α and TNF-α. Mammalian thrombin dually regulates vascular permeability through PAR1 and activated protein C (APC). Since thrombin protects vascular integrity through APC, directing its affinity towards protein C, while still promoting coagulation, might be an ideal treatment for BSCB-disrupting disorders. Salmon thrombin, which prevents the development of mechanical allodynia, also prevents BSCB breakdown after neural injury and actively inhibits TNF-α-induced endothelial permeability in vitro, which is not evident the case for human thrombin. Salmon thrombin’s production of APC faster than human thrombin is confirmed using a fluorogenic assay and APC is shown to inhibit BSCB breakdown and pain-related behaviors similar to salmon thrombin. Together, these studies highlight the impact of BSCB on pain and establish salmon thrombin as an effective blocker of BSCB, and resulting nociception, through its preferential affinity for protein C. PMID:26708087

  12. 77 FR 34455 - In the Matter of Aegis Assessments, Inc., APC Group, Inc., Aurelio Resource Corp., BioAuthorize...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION In the Matter of Aegis Assessments, Inc., APC Group, Inc., Aurelio Resource Corp., BioAuthorize... securities of BioAuthorize Holdings, Inc. because it has not filed any periodic reports since the...

  13. Casein Kinase 1δ Is an APC/CCdh1 Substrate that Regulates Cerebellar Granule Cell Neurogenesis

    PubMed Central

    Penas, Clara; Govek, Eve-Ellen; Fang, Yin; Ramachandran, Vimal; Daniel, Mark; Wang, Weiping; Maloof, Marie E.; Rahaim, Ronald J.; Bibian, Mathieu; Kawauchi, Daisuke; Finkelstein, David; Han, Jeng-Liang; Long, Jun; Li, Bin; Robbins, David J.; Malumbres, Marcos; Roussel, Martine F.; Roush, William R.; Hatten, Mary E.; Ayad, Nagi G.

    2015-01-01

    SUMMARY Although casein kinase 1δ (CK1δ) is at the center of multiple signaling pathways, its role in the expansion of central nervous system progenitor cells is unknown. Using mouse cerebellar granule cell progenitors (GCPs) as a model for brain neurogenesis, we demonstrate that the loss of CK1δ or treatment of GCPs with a highly selective small molecule inhibits GCP expansion. In contrast, CK1δ overexpression increases GCP proliferation. Thus, CK1δ appears to regulate GCP neurogenesis. CK1δ is targeted for proteolysis via the anaphase-promoting complex/cyclosome (APC/CCdh1) ubiquitin ligase, and conditional deletion of the APC/CCdh1 activator Cdh1 in cerebellar GCPs results in higher levels of CK1δ. APC/CCdh1 also downregulates CK1δ during cell cycle exit. Therefore, we conclude that APC/CCdh1 controls CK1δ levels to balance proliferation and cell cycle exit in the developing central nervous system. Similar studies in medulloblastoma cells showed that CK1δ holds promise as a new therapeutic target. PMID:25843713

  14. Creation of an engineered APC system to explore and optimize the presentation of immunodominant peptides of major allergens

    PubMed Central

    Rosskopf, Sandra; Jutz, Sabrina; Neunkirchner, Alina; Candia, Martín R.; Jahn-Schmid, Beatrice; Bohle, Barbara; Pickl, Winfried F.; Steinberger, Peter

    2016-01-01

    We have generated engineered APC to present immunodominant peptides derived from the major aero-allergens of birch and mugwort pollen, Bet v 1142–153 and Art v 125–36, respectively. Jurkat-based T cell reporter lines expressing the cognate allergen-specific T cell receptors were used to read out the presentation of allergenic peptides on the engineered APC. Different modalities of peptide loading and presentation on MHC class II molecules were compared. Upon exogenous loading with allergenic peptides, the engineered APC elicited a dose-dependent response in the reporter T cells and the presence of chemical loading enhancers strongly increased reporter activation. Invariant chain-based MHC class II targeting strategies of endogenously expressed peptides resulted in stronger activation of the reporters than exogenous loading. Moreover, we used Bet v 1 as model allergen to study the ability of K562 cells to present antigenic peptides derived from whole proteins either taken up or endogenously expressed as LAMP-1 fusion protein. In both cases the ability of these cells to process and present peptides derived from whole proteins critically depended on the expression of HLA-DM. We have identified strategies to achieve efficient presentation of allergenic peptides on engineered APC and demonstrate their use to stimulate T cells from allergic individuals. PMID:27539532

  15. Efficient APC/C substrate degradation in cells undergoing mitotic exit depends on K11 ubiquitin linkages

    PubMed Central

    Min, Mingwei; Mevissen, Tycho E. T.; De Luca, Maria; Komander, David; Lindon, Catherine

    2015-01-01

    The ubiquitin proteasome system (UPS) directs programmed destruction of key cellular regulators via posttranslational modification of its targets with polyubiquitin chains. These commonly contain Lys-48 (K48)–directed ubiquitin linkages, but chains containing atypical Lys-11 (K11) linkages also target substrates to the proteasome—for example, to regulate cell cycle progression. The ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C) controls mitotic exit. In higher eukaryotes, the APC/C works with the E2 enzyme UBE2S to assemble K11 linkages in cells released from mitotic arrest, and these are proposed to constitute an improved proteolytic signal during exit from mitosis. We tested this idea by correlating quantitative measures of in vivo K11-specific ubiquitination of individual substrates, including Aurora kinases, with their degradation kinetics tracked at the single-cell level. All anaphase substrates tested by this methodology are stabilized by depletion of K11 linkages via UBE2S knockdown, even if the same substrates are significantly modified with K48-linked polyubiquitin. Specific examination of substrates depending on the APC/C coactivator Cdh1 for their degradation revealed Cdh1-dependent enrichment of K11 chains on these substrates, whereas other ubiquitin linkages on the same substrates added during mitotic exit were Cdh1-independent. Therefore we show that K11 linkages provide the APC/C with a means to regulate the rate of substrate degradation in a coactivator-specified manner. PMID:26446837

  16. Constitutive TLR4 signalling in intestinal epithelium reduces tumor load by increasing apoptosis in APC(Min/+) mice.

    PubMed

    Li, Y; Teo, W L; Low, M J; Meijer, L; Sanderson, I; Pettersson, S; Greicius, G

    2014-01-16

    The microbial pattern-recognizing Toll-like receptors (TLRs) are major signal transducers known to shape and influence the postnatal maturation of host intestinal epithelium. Perturbations in this intricate host-microbe cross-talk have been reported to be associated with uncontrolled epithelial cell growth and thus potential cancer development by mechanisms which are largely unknown. We therefore generated transgenic mice carrying a constitutively active TLR4 (CD4-TLR4) linked to an intestinal epithelial cell-specific promoter. Ex vivo analysis of transgenic crypt-villus organoid cultures revealed an increased proliferative capacity and a lowered cyclooxygenase 2 (Cox-2) expression in these organoids compared with wild-type control cultures. Introducing the CD4-TLR4 transgene into APC(Min/+) mice (CD4-TLR4-APC(Min/+)), a model of colorectal carcinoma, resulted in a dramatic drop in tumor load as compared with control APC(Min/+) mice. Intestinal tumors from CD4-TLR4-APC(Min/+) mice displayed reduced Cox-2 protein, elevated interferon β expression and increased caspase-3 activity, which correlated with increased apoptosis in vivo. Thus, our data reveal that host microbiota-mediated signal transduction via TLR4 in intestinal epithelial cells is far more complex than what is previously reported.

  17. Casein kinase 1δ is an APC/C(Cdh1) substrate that regulates cerebellar granule cell neurogenesis.

    PubMed

    Penas, Clara; Govek, Eve-Ellen; Fang, Yin; Ramachandran, Vimal; Daniel, Mark; Wang, Weiping; Maloof, Marie E; Rahaim, Ronald J; Bibian, Mathieu; Kawauchi, Daisuke; Finkelstein, David; Han, Jeng-Liang; Long, Jun; Li, Bin; Robbins, David J; Malumbres, Marcos; Roussel, Martine F; Roush, William R; Hatten, Mary E; Ayad, Nagi G

    2015-04-14

    Although casein kinase 1δ (CK1δ) is at the center of multiple signaling pathways, its role in the expansion of CNS progenitor cells is unknown. Using mouse cerebellar granule cell progenitors (GCPs) as a model for brain neurogenesis, we demonstrate that the loss of CK1δ or treatment of GCPs with a highly selective small molecule inhibits GCP expansion. In contrast, CK1δ overexpression increases GCP proliferation. Thus, CK1δ appears to regulate GCP neurogenesis. CK1δ is targeted for proteolysis via the anaphase-promoting complex/cyclosome (APC/C(Cdh1)) ubiquitin ligase, and conditional deletion of the APC/C(Cdh1) activator Cdh1 in cerebellar GCPs results in higher levels of CK1δ. APC/C(Cdh1) also downregulates CK1δ during cell-cycle exit. Therefore, we conclude that APC/C(Cdh1) controls CK1δ levels to balance proliferation and cell-cycle exit in the developing CNS. Similar studies in medulloblastoma cells showed that CK1δ holds promise as a therapeutic target.

  18. APC/C(Cdh1) controls CtIP stability during the cell cycle and in response to DNA damage.

    PubMed

    Lafranchi, Lorenzo; de Boer, Harmen R; de Vries, Elisabeth G E; Ong, Shao-En; Sartori, Alessandro A; van Vugt, Marcel A T M

    2014-12-01

    Human cells have evolved elaborate mechanisms for responding to DNA damage to maintain genome stability and prevent carcinogenesis. For instance, the cell cycle can be arrested at different stages to allow time for DNA repair. The APC/C(C) (dh1) ubiquitin ligase mainly regulates mitotic exit but is also implicated in the DNA damage-induced G2 arrest. However, it is currently unknown whether APC/C(C) (dh1) also contributes to DNA repair. Here, we show that Cdh1 depletion causes increased levels of genomic instability and enhanced sensitivity to DNA-damaging agents. Using an integrated proteomics and bioinformatics approach, we identify CtIP, a DNA-end resection factor, as a novel APC/C(C) (dh1) target. CtIP interacts with Cdh1 through a conserved KEN box, mutation of which impedes ubiquitylation and downregulation of CtIP both during G1 and after DNA damage in G2. Finally, we find that abrogating the CtIP-Cdh1 interaction results in delayed CtIP clearance from DNA damage foci, increased DNA-end resection, and reduced homologous recombination efficiency. Combined, our results highlight the impact of APC/C(C) (dh1) on the maintenance of genome integrity and show that this is, at least partially, achieved by controlling CtIP stability in a cell cycle- and DNA damage-dependent manner.

  19. Synthesis of specifically deuterated ceramide [AP]-C18 and its biophysical characterization using neutron diffraction.

    PubMed

    Sonnenberger, Stefan; Eichner, Adina; Hauß, Thomas; Schroeter, Annett; Neubert, Reinhard H H; Dobner, Bodo

    2017-02-12

    The very heterogeneous group of ceramides is known to be mandatory for proper barrier functions of the outermost layer of mammalian skin, referred to as stratum corneum (SC). The synthesis of a specifically deuterated ceramide [AP]-C18 variant is described. The synthesized ceramide contains the racemic forms of the α hydroxy fatty acid. For the biophysical implementation, the received diastereomeric ceramide was applied in a neutron diffraction experiment. Therefore, a SC lipid model membrane was prepared containing the described ceramide (CER), cholesterol (CHOL), stearic acid (SA), and cholesterol sulfate (ChS) in a ratio of 55/25/15/5wt%. Thus, we were able to localize the deuterated molecule part within the bilayers. In the process, a short-periodicity phase (SPP) was observed with a unit cell scale of about 44Å. For the first time, we were able to confirm former ideas concerning the arrangement of the CER within this quaternary lipid model membrane.

  20. Generation and analysis of mouse intestinal tumors and organoids harboring APC and K-Ras mutations.

    PubMed

    van Es, Johan H; Clevers, Hans

    2015-01-01

    Genetically engineered mouse models of intestinal cancer are experimental systems in which mice are genetically manipulated to develop malignancies in the gastrointestinal tract. These models enable researchers to study the mechanisms of onset, progression, and metastasis of the disease. They also provide a valuable biological system which is suitable for testing (novel) drugs in vivo. Recently, an in vitro culture model has been established in which intestinal epithelial stem cells can grow into three-dimensional, ever-expanding epithelial organoids that retain their original organ identity and genetic stability. This culture system has been applied to diseased epithelia, such as adenoma, adenocarcinoma, and Barrett's epithelium. These organoids can be particularly useful for studying the mechanisms of intestinal tumors and to test (novel) drugs in vitro. Here, we describe our current laboratory protocols to generate and analyze intestinal tumors and organoids harboring APC and K-Ras double mutations.

  1. The E3 ubiquitin ligase APC/C-Cdh1 coordinates neurogenesis and cortical size during development.

    PubMed

    Delgado-Esteban, Maria; Garcia-Higuera, Irene; Moreno, Sergio; Almeida, Angeles

    2014-10-01

    The morphology of the adult brain is the result of a delicate balance between the symmetric divisions to maintain the progenitor cell pool, and the asymmetric divisions to generate a newly differentiated neuron. Neurogenesis is a complex process that relies on an as yet unknown molecular switch that tightly coordinates the cell cycle exit with the start of the differentiation process. The cell cycle length is a key factor that determines the balance between the maintenance of progenitor cells and neuronal differentiation. In fact, neurogenesis in the cerebral cortex is stimulated by lengthening the G1 phase and delayed by shortening it. The anaphase-promoting complex/cyclosome (APC/C) cofactor, Cdh1, regulates mitosis exit and G1-phase length in proliferating cells. Here we assessed whether APC/C-Cdh1 activity would be responsible for the switch from progenitor cells cycling to neurogenesis in the cerebral cortex. We use an embryo-restricted Cdh1 knockout mouse model and show that functional APC/C-Cdh1 ubiquitin ligase activity is required for both terminal differentiation of cortical neurons in vitro and neurogenesis in vivo. Further, genetic ablation of Cdh1 impairs the ability of APC/C to promote neurogenesis by delaying the exit of the progenitor cells from the cell cycle. This causes replicative stress and p53-mediated apoptotic death resulting in decreased number of cortical neurons and cortex size. These results demonstrate that APC/C-Cdh1 coordinates cortical neurogenesis and size, thus posing Cdh1 in the molecular pathogenesis of congenital neurodevelopmental disorders, such as microcephaly.

  2. 1H, 13C, and 15N backbone, side-chain, and heme chemical shift assignments for oxidized and reduced forms of the monoheme c-type cytochrome ApcA isolated from the acidophilic metal-reducing bacterium Acidiphilium cryptum.

    SciTech Connect

    Cort, John R.; Swenson, Michael; Magnuson, Timothy S.

    2011-03-04

    We report the 1H, 13C, and 15N chemical shift assignments of both oxidized and reduced forms of an abundant periplasmic c-type cytochrome, designated ApcA, from the acidophilic gram-negative facultatively anaerobic metal-reducing alpha-proteobacterium Acidiphilium cryptum. These resonance assignments prove that ApcA is a monoheme cytochrome c2 and the product of the Acry_2099 gene. An absence of resonance peaks in the NMR spectra for the 21 N-terminal residues suggests that a predicted N-terminal signal sequence is cleaved. We also describe the preparation and purification of the protein in labeled form from laboratory cultures of A. cryptum growing on 13C- and 15N- labeled substrates.

  3. Regulation of nuclear envelope dynamics via APC/C is necessary for the progression of semi-open mitosis in Schizosaccharomyces japonicus.

    PubMed

    Aoki, Keita; Shiwa, Yuh; Takada, Hiraku; Yoshikawa, Hirofumi; Niki, Hironori

    2013-09-01

    Three types of mitosis, which are open, closed or semi-open mitosis, function in eukaryotic cells, respectively. The open mitosis involves breakage of the nuclear envelope before nuclear division, whereas the closed mitosis proceeds with an intact nuclear envelope. To understand the mechanism and significance of three types of mitotic division in eukaryotes, we investigated the process of semi-open mitosis, in which the nuclear envelope is only partially broken, in the fission yeast Schizosaccharomyces japonicus. In anaphase-promoting complex/cyclosome (APC/C) mutants of Sz. japonicus, the nuclear envelope remained relatively intact during anaphase, resulting in impaired semi-open mitosis. As a suppressor of apc2 mutant, a mutation of Oar2, which was a 3-oxoacyl-[acyl carrier protein] reductase, was obtained. The level of the Oar2, which had two destruction-box motifs recognized by APC/C, was increased in APC/C mutants. Furthermore, the defective semi-open mitosis observed in an apc2 mutant was restored by mutated oar2+. Based on these findings, we propose that APC/C regulates the dynamics of the nuclear envelope through degradation of Oar2 dependent on APC/C during the metaphase-to-anaphase transition of semi-open mitosis in Sz. japonicus.

  4. Insights into the cellular mechanism of the yeast ubiquitin ligase APC/C-Cdh1 from the analysis of in vivo degrons.

    PubMed

    Arnold, Lea; Höckner, Sebastian; Seufert, Wolfgang

    2015-03-01

    The anaphase-promoting complex/cyclosome (APC/C) controls a variety of cellular processes through its ability to target numerous protein substrates for timely degradation. Substrate selection by this ubiquitin ligase depends on related activator proteins, Cdc20 and Cdh1, which bind and activate the APC/C at distinct cell cycle stages. Biochemical and structural studies revealed that Cdc20 and Cdh1 carry conserved receptor domains to recognize specific sequence motifs in substrates, such as D and KEN boxes. The mechanisms for ordered degradation of APC/C substrates, however, remain incompletely understood. Here we describe minimal degradation sequences (degrons) sufficient for rapid APC/C-Cdh1-specific in vivo degradation. The polo kinase Cdc5-derived degron contained an essential KEN motif, whereas a single RxxL-type D box was the relevant signal in the Cdc20-derived degradation domain, indicating that either motif may support specific recognition by Cdh1. In both degrons, the APC/C recognition motif was flanked by a nuclear localization sequence. Forced localization of the degron constructs revealed that proteolysis mediated by APC/C-Cdh1 is restricted to the nucleus and maximally active in the nucleoplasm. Levels of Iqg1, a cytoplasmic Cdh1 substrate, decreased detectably later than the nucleus-localized Cdh1 substrate Ase1, indicating that confinement to the nucleus may allow for temporal control of APC/C-Cdh1-mediated proteolysis.

  5. Evaluation of GSTP1 and APC methylation as indicators for repeat biopsy in a high-risk cohort of men with negative initial prostate biopsies

    PubMed Central

    Trock, Bruce J.; Brotzman, Michelle J.; Mangold, Leslie A.; Bigley, Joseph W.; Epstein, Jonathan I.; McLeod, David; Klein, Eric A.; Jones, J. Stephen; Wang, Songbai; McAskill, Theresa; Mehrotra, Jyoti; Raghavan, Bhargavi; Partin, Alan W.

    2011-01-01

    OBJECTIVE To evaluate the performance of DNA methylation biomarkers in the setting of repeat biopsy in men with an initially negative prostate biopsy but a high index of suspicion for missed prostate cancer. PATIENTS AND METHODS We prospectively evaluated 86 men with an initial histologically negative prostate biopsy and high-risk features. All men underwent repeat 12-core ultrasonography-guided biopsy. DNA methylation of glutathione-S-transferase P1 (GSTP1) and adenomatous polyposis coli (APC) was determined using tissue from the initially negative biopsy and compared with histology of the repeat biopsy. The primary outcome was the relative negative predictive value (NPV) of APC compared with GSTP1, and its 95% confidence interval (CI). RESULTS On repeat biopsy, 21/86 (24%) men had prostate cancer. APC and GSTP1 methylation ratios below the threshold (predicting no cancer) produced a NPV of 0.96 and 0.80, respectively. The relative NPV was 1.2 (95% CI: 1.06–1.36), indicating APC has significantly higher NPV. Methylation ratios above the threshold yielded a sensitivity of 0.95 for APC and 0.43 for GSTP1. Combining both methylation markers produced a performance similar to that of APC alone. APC methylation patterns were consistent with a possible field effect or occurrence early in carcinogenesis. CONCLUSION APC methylation provided a very high NPV with a low percentage of false-negatives, in the first prospective study to evaluate performance of DNA methylation markers in a clinical cohort of men undergoing repeat biopsy. The potential of APC methylation to reduce unnecessary repeat biopsies warrants validation in a larger prospective cohort. PMID:22077694

  6. An automated Pearson's correlation change classification (APC3) approach for GC/MS metabonomic data using total ion chromatograms (TICs).

    PubMed

    Prakash, Bhaskaran David; Esuvaranathan, Kesavan; Ho, Paul C; Pasikanti, Kishore Kumar; Chan, Eric Chun Yong; Yap, Chun Wei

    2013-05-21

    A fully automated and computationally efficient Pearson's correlation change classification (APC3) approach is proposed and shown to have overall comparable performance with both an average accuracy and an average AUC of 0.89 ± 0.08 but is 3.9 to 7 times faster, easier to use and have low outlier susceptibility in contrast to other dimensional reduction and classification combinations using only the total ion chromatogram (TIC) intensities of GC/MS data. The use of only the TIC permits the possible application of APC3 to other metabonomic data such as LC/MS TICs or NMR spectra. A RapidMiner implementation is available for download at http://padel.nus.edu.sg/software/padelapc3.

  7. The APC/C cofactor Cdh1 prevents replicative stress and p53-dependent cell death in neural progenitors.

    PubMed

    Eguren, Manuel; Porlan, Eva; Manchado, Eusebio; García-Higuera, Irene; Cañamero, Marta; Fariñas, Isabel; Malumbres, Marcos

    2013-01-01

    The E3-ubiquitin ligase APC/C-Cdh1 is essential for endoreduplication but its relevance in the mammalian mitotic cell cycle is still unclear. Here we show that genetic ablation of Cdh1 in the developing nervous system results in hypoplastic brain and hydrocephalus. These defects correlate with enhanced levels of Cdh1 substrates and increased entry into the S phase in neural progenitors. However, cell division is prevented in the absence of Cdh1 due to hyperactivation of cyclin-dependent kinases, replicative stress, induction of p53, G2 arrest and apoptotic death of these progenitor cells. Concomitant ablation of p53 rescues apoptosis but not replicative stress, resulting in the presence of damaged neurons throughout the adult brain. These data indicate that the inactivation of Cdh1 in vivo results in replicative stress, cell cycle arrest and cell death, supporting recent therapeutic proposals aimed to inhibit the APC/C in tumours.

  8. The E3 Ligase APC/C-Cdh1 Is Required for Associative Fear Memory and Long-Term Potentiation in the Amygdala of Adult Mice

    ERIC Educational Resources Information Center

    Pick, Joseph E.; Malumbres, Marcos; Klann, Eric

    2013-01-01

    The anaphase promoting complex/cyclosome (APC/C) is an E3 ligase regulated by Cdh1. Beyond its role in controlling cell cycle progression, APC/C-Cdh1 has been detected in neurons and plays a role in long-lasting synaptic plasticity and long-term memory. Herein, we further examined the role of Cdh1 in synaptic plasticity and memory by generating…

  9. Programmed ribosomal frameshifting in the expression of the regulator of intestinal stem cell proliferation, adenomatous polyposis coli (APC)

    PubMed Central

    Barriscale, Kathy A; Firth, Andrew E; Jud, Molly C; Letsou, Anthea; Manning, Gerard

    2011-01-01

    A programmed ribosomal frameshift (PRF) in the decoding of APC (adenomatous polyposis coli) mRNA has been identified and characterized in caenorhabditis worms, Drosophila and mosquitoes. The frameshift product lacks the C-terminal approximately one-third of the product of standard decoding and instead has a short sequence encoded by the -1 frame which is just 13 residues in C. elegans, but is 125 in D. melanogaster. The frameshift site is A AAA AAC in Caenorhabditids, fruit flies and the mosquitoes studied while a variant A AAA AAA is found in some other nematodes. The predicted secondary RNA structure of the downstream stimulators varies considerably in the species studied. In the twelve sequenced Drosophila genomes, it is a long stem with a four-way junction in its loop. In the five sequenced Caenorhabditis species, it is a short RNA pseudoknot with an additional stem in loop 1. The efficiency of frameshifting varies significantly, depending on the particular stimulator within the frameshift cassette, when tested with reporter constructs in rabbit reticulocyte lysates. Phylogenetic analysis of the distribution of APC programmed ribosomal frameshifting cassettes suggests it has an ancient origin and raises questions about the possibility of synthesis of alternative protein products during expression of APC in other organisms such as humans. The origin of APC as a PRF candidate emerged from a prior study of evolutionary signatures derived from comparative analysis of the 12 fly genomes. Three other proposed PRF candidates (Xbp1, CG32736, CG14047) with switches in conservation of reading frames are likely explained by mechanisms other than PRF. PMID:21593603

  10. Killer Artificial Antigen Presenting Cells (KaAPC) for Efficient In Vitro Depletion of Human Antigen-specific T Cells

    PubMed Central

    Schütz, Christian; Fleck, Martin; Schneck, Jonathan P.; Oelke, Mathias

    2014-01-01

    Current treatment of T cell mediated autoimmune diseases relies mostly on strategies of global immunosuppression, which, in the long term, is accompanied by adverse side effects such as a reduced ability to control infections or malignancies. Therefore, new approaches need to be developed that target only the disease mediating cells and leave the remaining immune system intact. Over the past decade a variety of cell based immunotherapy strategies to modulate T cell mediated immune responses have been developed. Most of these approaches rely on tolerance-inducing antigen presenting cells (APC). However, in addition to being technically difficult and cumbersome, such cell-based approaches are highly sensitive to cytotoxic T cell responses, which limits their therapeutic capacity. Here we present a protocol for the generation of non-cellular killer artificial antigen presenting cells (KaAPC), which allows for the depletion of pathologic T cells while leaving the remaining immune system untouched and functional. KaAPC is an alternative solution to cellular immunotherapy which has potential for treating autoimmune diseases and allograft rejections by regulating undesirable T cell responses in an antigen specific fashion. PMID:25145915

  11. Daikenchuto (TU-100) Suppresses Tumor Development in the Azoxymethane and APC(min/+) Mouse Models of Experimental Colon Cancer.

    PubMed

    Hasebe, Takumu; Matsukawa, Jun; Ringus, Daina; Miyoshi, Jun; Hart, John; Kaneko, Atsushi; Yamamoto, Masahiro; Kono, Toru; Fujiya, Mikihiro; Kohgo, Yutaka; Wang, Chong-Zi; Yuan, Chun-Su; Bissonnette, Marc; Musch, Mark W; Chang, Eugene B

    2017-01-01

    Chemopreventative properties of traditional medicines and underlying mechanisms of action are incompletely investigated. This study demonstrates that dietary daikenchuto (TU-100), comprised of ginger, ginseng, and Japanese pepper effectively suppresses intestinal tumor development and progression in the azoxymethane (AOM) and APC(min/+) mouse models. For the AOM model, TU-100 was provided after the first of six biweekly AOM injections. Mice were sacrificed at 30 weeks. APC(min/+) mice were fed diet without or with TU-100 starting at 6 weeks, and sacrificed at 24 weeks. In both models, dietary TU-100 decreased tumor size. In APC (min/+) mice, the number of small intestinal tumors was significantly decreased. In the AOM model, both TU-100 and Japanese ginseng decreased colon tumor numbers. Decreased Ki-67 and β-catenin immunostaining and activation of numerous transduction pathways involved in tumor initiation and progression were observed. EGF receptor expression and stimulation/phosphorylation in vitro were investigated in C2BBe1 cells. TU-100, ginger, and 6-gingerol suppressed EGF receptor induced Akt activation. TU-100 and ginseng and to a lesser extent ginger or 6-gingerol inhibited EGF ERK1/2 activation. TU-100 and some of its components and metabolites of these components inhibit tumor progression in two mouse models of colon cancer by blocking downstream pathways of EGF receptor activation. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Phosphorylation-triggered CUEDC2 degradation promotes UV-induced G1 arrest through APC/C(Cdh1) regulation.

    PubMed

    Zhang, Wei-Na; Zhou, Jie; Zhou, Tao; Li, Ai-Ling; Wang, Na; Xu, Jin-Jing; Chang, Yan; Man, Jiang-Hong; Pan, Xin; Li, Tao; Li, Wei-Hua; Mu, Rui; Liang, Bing; Chen, Liang; Jin, Bao-Feng; Xia, Qing; Gong, Wei-Li; Zhang, Xue-Min; Wang, Li; Li, Hui-Yan

    2013-07-02

    DNA damage triggers cell cycle arrest to provide a time window for DNA repair. Failure of arrest could lead to genomic instability and tumorigenesis. DNA damage-induced G1 arrest is generally achieved by the accumulation of Cyclin-dependent kinase inhibitor 1 (p21). However, p21 is degraded and does not play a role in UV-induced G1 arrest. The mechanism of UV-induced G1 arrest thus remains elusive. Here, we have identified a critical role for CUE domain-containing protein 2 (CUEDC2) in this process. CUEDC2 binds to and inhibits anaphase-promoting complex/cyclosome-Cdh1 (APC/C(Cdh1)), a critical ubiquitin ligase in G1 phase, thereby stabilizing Cyclin A and promoting G1-S transition. In response to UV irradiation, CUEDC2 undergoes ERK1/2-dependent phosphorylation and ubiquitin-dependent degradation, leading to APC/C(Cdh1)-mediated Cyclin A destruction, Cyclin-dependent kinase 2 inactivation, and G1 arrest. A nonphosphorylatable CUEDC2 mutant is resistant to UV-induced degradation. Expression of this stable mutant effectively overrides UV-induced G1-S block. These results establish CUEDC2 as an APC/C(Cdh1) inhibitor and indicate that regulated CUEDC2 degradation is critical for UV-induced G1 arrest.

  13. Targeting antigen to diverse APCs inactivates memory CD8+ T cells without eliciting tissue-destructive effector function.

    PubMed

    Kenna, Tony J; Waldie, Tanya; McNally, Alice; Thomson, Meagan; Yagita, Hideo; Thomas, Ranjeny; Steptoe, Raymond J

    2010-01-15

    Memory T cells develop early during the preclinical stages of autoimmune diseases and have traditionally been considered resistant to tolerance induction. As such, they may represent a potent barrier to the successful immunotherapy of established autoimmune diseases. It was recently shown that memory CD8+ T cell responses are terminated when Ag is genetically targeted to steady-state dendritic cells. However, under these conditions, inactivation of memory CD8+ T cells is slow, allowing transiently expanded memory CD8+ T cells to exert tissue-destructive effector function. In this study, we compared different Ag-targeting strategies and show, using an MHC class II promoter to drive Ag expression in a diverse range of APCs, that CD8+ memory T cells can be rapidly inactivated by MHC class II+ hematopoietic APCs through a mechanism that involves a rapid and sustained downregulation of TCR, in which the effector response of CD8+ memory cells is rapidly truncated and Ag-expressing target tissue destruction is prevented. Our data provide the first demonstration that genetically targeting Ag to a broad range of MHC class II+ APC types is a highly efficient way to terminate memory CD8+ T cell responses to prevent tissue-destructive effector function and potentially established autoimmune diseases.

  14. E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation

    PubMed Central

    Almeida, Angeles; Bolaños, Juan P.; Moncada, Salvador

    2009-01-01

    Cell proliferation is known to be accompanied by activation of glycolysis. We have recently discovered that the glycolysis-promoting enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, isoform 3 (PFKFB3), is degraded by the E3 ubiquitin ligase APC/C-Cdh1, which also degrades cell-cycle proteins. We now show in two different cell types (neoplastic and nonneoplastic) that both proliferation and aerobic glycolysis are prevented by overexpression of Cdh1 and enhanced by its silencing. Furthermore, we have coexpressed Cdh1 with PFKFB3—either wild-type or a mutant form resistant to ubiquitylation by APC/C-Cdh1—or with the glycolytic enzyme 6-phosphofructo-1-kinase and demonstrated that whereas glycolysis is essential for cell proliferation, its initiation in the presence of active Cdh1 does not result in proliferation. Our experiments indicate that the proliferative response, regardless of whether it occurs in normal or neoplastic cells, is dependent on a decrease in the activity of APC/C-Cdh1, which activates both proliferation and glycolysis. These observations have implications for cell proliferation, neoplastic transformation, and the prevention and treatment of cancer. PMID:20080744

  15. Uncovering the role of APC-Cdh1 in generating the dynamics of S-phase onset.

    PubMed

    Yuan, Xi; Srividhya, Jeyaraman; De Luca, Thomas; Lee, Ju-Hyong E; Pomerening, Joseph R

    2014-02-01

    Cdh1, a coactivator of the anaphase-promoting complex (APC), is a potential tumor suppressor. Cdh1 ablation promotes precocious S-phase entry, but it was unclear how this affects DNA replication dynamics while contributing to genomic instability and tumorigenesis. We find that Cdh1 depletion causes early S-phase onset in conjunction with increase in Rb/E2F1-mediated cyclin E1 expression, but reduced levels of cyclin E1 protein promote this transition. We hypothesize that this is due to a weakened cyclin-dependent kinase inhibitor (CKI)-cyclin-dependent kinase 2 positive-feedback loop, normally generated by APC-Cdh1-mediated proteolysis of Skp2. Indeed, Cdh1 depletion increases Skp2 abundance while diminishing levels of the CKI p27. This lowers the level of cyclin E1 needed for S-phase entry and delays cyclin E1 proteolysis during S-phase progression while corresponding to slowed replication fork movement and reduced frequency of termination events. In summary, using both experimental and computational approaches, we show that APC-Cdh1 establishes a stimulus-response relationship that promotes S phase by ensuring that proper levels of p27 accumulate during G1 phase, and defects in its activation accelerate the timing of S-phase onset while prolonging its progression.

  16. Inhibition of WNT signaling in the bone marrow niche prevents the development of MDS in the Apc(del/+) MDS mouse model.

    PubMed

    Stoddart, Angela; Wang, Jianghong; Hu, Chunmei; Fernald, Anthony A; Davis, Elizabeth M; Cheng, Jason X; Le Beau, Michelle M

    2017-03-27

    There is accumulating evidence that functional alteration(s) of the bone marrow (BM) microenvironment contributes to the development of some myeloid disorders, such as myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). In addition to a cell intrinsic role of WNT activation in leukemia stem cells, WNT activation in the BM niche is also thought to contribute to the pathogenesis of MDS and AML. We previously showed that Apc haploinsufficient mice (Apc(del/+) ) model MDS induced by an aberrant BM microenvironment. We sought to determine whether Apc, a multifunctional protein and key negative regulator of the canonical β-catenin (Ctnnb1)/WNT signaling pathway, mediates this disease through modulating WNT signaling, and whether inhibition of WNT signaling prevents the development of MDS in Apc(del/+) mice. Here, we demonstrate that loss of one copy of Ctnnb1 is sufficient to prevent the development of MDS in Apc(del/+) mice and that altered canonical WNT signaling in the microenvironment is responsible for the disease. Furthermore, the FDA-approved drug, pyrvinium, delays and/or inhibits disease in Apc(del/+) mice, even when it is administered after the presentation of anemia. Other groups have observed increased nuclear CTNNB1 in stromal cells from a high frequency of MDS/AML patients, a finding that together with our results highlights a potential new strategy for treating some myeloid disorders.

  17. The APC/C E3 Ligase Complex Activator FZR1 Restricts BRAF Oncogenic Function.

    PubMed

    Wan, Lixin; Chen, Ming; Cao, Juxiang; Dai, Xiangpeng; Yin, Qing; Zhang, Jinfang; Song, Su-Jung; Lu, Ying; Liu, Jing; Inuzuka, Hiroyuki; Katon, Jesse M; Berry, Kelsey; Fung, Jacqueline; Ng, Christopher; Liu, Pengda; Song, Min Sup; Xue, Lian; Bronson, Roderick T; Kirschner, Marc W; Cui, Rutao; Pandolfi, Pier Paolo; Wei, Wenyi

    2017-02-07

    BRAF drives tumorigenesis by coordinating the activation of RAS/RAF/MEK/ERK oncogenic signaling cascade. However, upstream pathway(s) governing BRAF kinase activity and protein stability remains undefined. Here, we report that in primary cells with active APCFZR1, APCFZR1 earmarks BRAF for ubiquitination-mediated proteolysis, while in cancer cells with APC-free FZR1, FZR1 suppresses BRAF through disrupting BRAF dimerization. Moreover, we identified FZR1 as a direct target of ERK and CYCLIN D1/CDK4 kinases. Phosphorylation of FZR1 inhibits APCFZR1, leading to elevation of a cohort of oncogenic APCFZR1 substrates to facilitate melanomagenesis. Importantly, CDK4 and/or BRAF/MEK inhibitors restore APCFZR1 E3 ligase activity, which might be critical for their clinical effects. Furthermore, FZR1 depletion co-operates with AKT hyper-activation to transform primary melanocytes, while genetic ablation of Fzr1 synergizes with Pten loss, leading to aberrant co-activation of BRAF/ERK and AKT signaling in mice. Our findings therefore reveal a reciprocal suppression mechanism between FZR1 and BRAF in controlling tumorigenesis.

  18. Task-based imaging of colon cancer in the ApcMin/+ mouse model

    NASA Astrophysics Data System (ADS)

    McNally, James B.; Kirkpatrick, Nathaniel D.; Hariri, Lida P.; Tumlinson, Alexandre R.; Besselsen, David G.; Gerner, Eugene W.; Utzinger, Urs; Barton, Jennifer K.

    2006-05-01

    Optical coherence tomography (OCT), laser-induced fluorescence (LIF), and laser-scanning confocal microscopy (LSCM) were used for the task of multimodal study of healthy and adenomatous mouse colon. The results from each modality were compared with histology, which served as the gold standard. The ApcMin/+ genetic mouse model of colon cancer was compared with wild-type mice. In addition, a special diet was used for the task of studying the origins of a 680 nm autofluorescent signal that was previously observed in colon. The study found close agreement among each of the modalities and with histology. All four modalities were capable of identifying diseased tissue accurately. The OCT and LSCM images provided complementary structural information about the tissue, while the autofluorescence signal measured by LIF and LSCM provided biochemical information. OCT and LIF were performed in vivo and nondestructively, while the LSCM and histology required extraction of the tissue. The magnitude of the 680 nm signal correlates with chlorophyll content in the mouse diet, suggesting that the autofluorescent compound is a dietary metabolite.

  19. Bub1 and aurora B cooperate to maintain BubR1-mediated inhibition of APC/CCdc20.

    PubMed

    Morrow, Christopher J; Tighe, Anthony; Johnson, Victoria L; Scott, Maria I F; Ditchfield, Claire; Taylor, Stephen S

    2005-08-15

    The spindle checkpoint maintains genome stability by inhibiting Cdc20-mediated activation of the anaphase promoting complex/cyclosome (APC/C) until all the chromosomes correctly align on the microtubule spindle apparatus via their kinetochores. BubR1, an essential component of this checkpoint, localises to kinetochores and its kinase activity is regulated by the kinesin-related motor protein Cenp-E. BubR1 also inhibits APC/C(Cdc20) in vitro, thus providing a molecular link between kinetochore-microtubule interactions and the proteolytic machinery that regulates mitotic progression. Several other protein kinases, including Bub1 and members of the Ipl1/aurora family, also regulate anaphase onset. However, in human somatic cells Bub1 and aurora B kinase activity do not appear to be essential for spindle checkpoint function. Specifically, when Bub1 is inhibited by RNA interference, or aurora kinase activity is inhibited with the small molecule ZM447439, cells arrest transiently in mitosis following exposure to spindle toxins that prevent microtubule polymerisation. Here, we show that mitotic arrest of Bub1-deficient cells is dependent on aurora kinase activity, and vice versa. We suggest therefore that the checkpoint is composed of two arms, one dependent on Bub1, the other on aurora B. Analysis of BubR1 complexes suggests that both of these arms converge on the mitotic checkpoint complex (MCC), which includes BubR1, Bub3, Mad2 and Cdc20. Although it is known that MCC components can bind and inhibit the APC/C, we show here for the first time that the binding of the MCC to the APC/C is dependent on an active checkpoint signal. Furthermore, we show that both Bub1 and aurora kinase activity are required to promote binding of the MCC to the APC/C. These observations provide a simple explanation of why BubR1 and Mad2 are essential for checkpoint function following spindle destruction, yet Bub1 and aurora B kinase activity are not. Taken together with other observations, we

  20. Genes

    MedlinePlus

    ... Search Search MedlinePlus GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Genes URL of this page: //medlineplus.gov/ency/article/ ...

  1. A gene-centric analysis of activated partial thromboplastin time and activated protein C resistance using the HumanCVD focused genotyping array.

    PubMed

    Gaunt, Tom R; Lowe, Gordon D O; Lawlor, Debbie A; Casas, Juan-Pablo; Day, Ian N M

    2013-07-01

    Activated partial thromboplastin time (aPTT) is an important routine measure of intrinsic blood coagulation. Addition of activated protein C (APC) to the aPTT test to produce a ratio, provides one measure of APC resistance. The associations of some genetic mutations (eg, factor V Leiden) with these measures are established, but associations of other genetic variations remain to be established. The objective of this work was to test for association between genetic variants and blood coagulation using a high-density genotyping array. Genetic association with aPTT and APC resistance was analysed using a focused genotyping array that tests approximately 50 000 single-nucleotide polymorphisms (SNPs) in nearly 2000 cardiovascular candidate genes, including coagulation pathway genes. Analyses were conducted on 2544 European origin women from the British Women's Heart and Health Study. We confirm associations with aPTT at the coagulation factor XII (F12)/G protein-coupled receptor kinase 6 (GRK6) and kininogen 1 (KNG1)/histidine-rich glycoprotein (HRG) loci, and identify novel SNPs at the ABO locus and novel locus kallikrein B (KLKB1)/F11. In addition, we confirm association between APC resistance and factor V Leiden mutation, and identify novel SNP associations with APC resistance in the HRG and F5/solute carrier family 19 member 2 (SLC19A2) regions. In conclusion, variation at several genetic loci influences intrinsic blood coagulation as measured by both aPTT and APC resistance.

  2. Comet fluorescence in situ hybridization analysis for oxidative stress-induced DNA damage in colon cancer relevant genes.

    PubMed

    Glei, Michael; Schaeferhenrich, Anja; Claussen, Uwe; Kuechler, Alma; Liehr, Thomas; Weise, Anja; Marian, Brigitte; Sendt, Wolfgang; Pool-Zobel, Beatrice L

    2007-04-01

    Our objective was to study whether products of oxidative stress, such as hydrogen peroxide (H(2)O(2)), trans-2-hexenal, and 4-hydroxy-2-nonenal (HNE), cause DNA damage in genes, relevant for human colon cancer. For this, total DNA damage was measured in primary human colon cells and colon adenoma cells (LT97) using the single-cell gel electrophoresis assay, known as "Comet Assay." APC, KRAS, and TP53 were marked in the comet images using fluorescence in situ hybridization (Comet FISH). The migration of APC, KRAS, or TP53 signals into the comet tails was quantified and compared to total DNA damage. All three substances were clearly genotoxic for APC, KRAS, and TP53 genes and total DNA in both types of cells. In primary colon cells, TP53 gene was more sensitive toward H(2)O(2), trans-2-hexenal, and HNE than total DNA was. In LT97 cells, the TP53 gene was more sensitive only toward trans-2-hexenal and HNE. APC and KRAS genes were more susceptible than total DNA to both lipid peroxidation products but only in primary colon cells. This suggests genotoxic effects of lipid peroxidation products in APC, KRAS, and TP53 genes. In LT97 cells, TP53 was more susceptible than APC and KRAS toward HNE. Based on the reported gatekeeper properties of TP53, which in colon adenoma is frequently altered to yield carcinoma, this implies that HNE is likely to contribute to cancer progression. This new experimental approach facilitates studies on effects of nutrition-related carcinogens in relevant target genes.

  3. Asymmetric 1-Alkyl-2-acyl Phosphatidylcholine: a Helper Lipid for Enhanced Non-viral Gene Delivery

    PubMed Central

    Huang, Zhaohua; Li, Weijun; Szoka, Francis C.

    2011-01-01

    Rationally designed asymmetrical alkylacyl phosphatidylcholines (APC) have been synthesized and evaluated as helper lipids for non-viral gene delivery. A long aliphatic chain (C22~C24) was introduced at the 1-position of glycerol backbone, a branched lipid chain (C18) at the 2-position, and a phosphocholine head group at the 3-position. The fusogenicity of APC depends on the length and degree of saturation of the alkyl chain. Cationic lipids were formulated with APC as either lipoplexes or nanolipoparticles, and evaluated for their stability, transfection efficiency, and cytotoxicity. APC mediated high in vitro transfection efficiency, and had low cytotoxicity. Small nanolipoparticles (less than 100 nm) can be obtained with APC by applying as low as 0.1% PEG-lipid. Our study extends the type of helper lipids that are suitable for gene transfer and points the way to improve non-viral nucleic acid delivery system other than the traditional cationic lipids optimization. This work is supported by NIH grant EB003008. PMID:21718766

  4. Chemoprevention of benzo(a)pyrene-induced colon polyps in ApcMin mice by resveratrol

    PubMed Central

    Huderson, Ashley C.; Myers, Jeremy N.; Niaz, Mohammad S.; Washington, Mary K.; Ramesh, Aramandla

    2012-01-01

    Human dietary exposure to benzo(a)pyrene [BaP] has generated interest with regard to the association of BaP with gastrointestinal carcinogenesis. Since colon cancer ranks third among cancer-related mortalities, it is necessary to evaluate the effect of phytochemicals on colon cancer initiation and progression. In this study we investigated the preventive effects of resveratrol (RVT) on BaP-induced colon carcinogenesis in ApcMin mouse model. For the first group of mice, 100 μg BaP/kg bw was administered to mice in peanut oil via oral gavage over a 60 day period. For the second group, RVT was co-administered with BaP at a dose of 45 μg/kg. For the third group, RVT was administered for 1 week prior to BaP exposure for 60 days. Jejunum, colon and liver, were collected at 60 days post-BaP & RVT exposure; adenomas in jejunum and colon were counted and subjected to histopathology. Resveratrol reduced the number of colon adenomas in BaP + RVT-treated mice significantly compared to mice that received BaP alone. While dysplasia of varying degrees was noted in colon of BaP-treated mice, the dysplasias were of limited occurrence in RVT-treated mice. To ascertain whether the tumor inhibition is a result of altered BaP-induced toxicity of tumor cells, growth, apoptosis and proliferation of adenocarcinoma cells were assessed post treatment with RVT and BaP. Co-treatment with RVT increased apoptosis and decreased cell proliferation to a greater extent than with BaP alone. Overall, our observations reveal that RVT inhibits colon tumorigenesis when given together with BaP and holds promise as a therapeutic agent. PMID:22889612

  5. Drosophila-Cdh1 (Rap/Fzr) a regulatory subunit of APC/C is required for synaptic morphology, synaptic transmission and locomotion.

    PubMed

    Wise, Alexandria; Schatoff, Emma; Flores, Julian; Hua, Shao-Ying; Ueda, Atsushi; Wu, Chun-Fang; Venkatesh, Tadmiri

    2013-11-01

    The assembly of functional synapses requires the orchestration of the synthesis and degradation of a multitude of proteins. Protein degradation and modification by the conserved ubiquitination pathway has emerged as a key cellular regulatory mechanism during nervous system development and function (Kwabe and Brose, 2011). The anaphase promoting complex/cyclosome (APC/C) is a multi-subunit ubiquitin ligase complex primarily characterized for its role in the regulation of mitosis (Peters, 2002). In recent years, a role for APC/C in nervous system development and function has been rapidly emerging (Stegmuller and Bonni, 2005; Li et al., 2008). In the mammalian central nervous system the activator subunit, APC/C-Cdh1, has been shown to be a regulator of axon growth and dendrite morphogenesis (Konishi et al., 2004). In the Drosophila peripheral nervous system (PNS), APC2, a ligase subunit of the APC/C complex has been shown to regulate synaptic bouton size and activity (van Roessel et al., 2004). To investigate the role of APC/C-Cdh1 at the synapse we examined loss-of-function mutants of Rap/Fzr (Retina aberrant in pattern/Fizzy related), a Drosophila homolog of the mammalian Cdh1 during the development of the larval neuromuscular junction in Drosophila. Our cell biological, ultrastructural, electrophysiological, and behavioral data showed that rap/fzr loss-of-function mutations lead to changes in synaptic structure and function as well as locomotion defects. Data presented here show changes in size and morphology of synaptic boutons, and, muscle tissue organization. Electrophysiological experiments show that loss-of-function mutants exhibit increased frequency of spontaneous miniature synaptic potentials, indicating a higher rate of spontaneous synaptic vesicle fusion events. In addition, larval locomotion and peristaltic movement were also impaired. These findings suggest a role for Drosophila APC/C-Cdh1 mediated ubiquitination in regulating synaptic morphology

  6. Leaching of APC residues from secondary Pb metallurgy using single extraction tests: the mineralogical and the geochemical approach.

    PubMed

    Ettler, Vojtech; Mihaljevic, Martin; Sebek, Ondrej; Strnad, Ladislav

    2005-05-20

    Two air-pollution-control (APC) residues--one from flue gas cooling with alkaline water and one from deionized water cooling--from secondary lead metallurgy were submitted to two different standardized short-term leaching protocols: US EPA toxicity characteristic leaching procedure (TCLP) and static leaching according to Czech/European norm EN 12457-2. The experimental procedure was coupled with detailed mineralogical investigation of the solid material (SEM, XRPD) and speciation-solubility calculations using the PHREEQC-2 geochemical code. Both types of residues were considered as hazardous materials exhibiting substantial leaching of Pb (up to 7130 mg/l) and other inorganic contaminants. However, the APC residue produced by flue gas cooling with alkaline water (sample B) exhibits more favourable leaching and environmental characteristics than that produced by simple deionised water cooling (sample A). At pH < 5, primary caracolite (Na3Pb2(SO4)3Cl) and potassium lead chloride (KCl.2PbCl2) are completely or partially dissolved and transformed to residual anglesite (PbSO4), cotunnite (PbCl2) and laurionite (Pb(OH)Cl). At pH 5-6, anglesite is still the principal residual product, whereas at pH > 6, phosgenite (PbCl2.PbCO3) became the dominant secondary phase. The results are consistent with the mineralogical and geochemical studies focused on acidic forest soils highly polluted by smelter emissions, where anglesite, as a unique Pb-bearing phase, has been detected. From the technological point of view, the mixing of APC residue with alkaline water, followed by an increase in the suspension pH and equilibration with atmospheric CO2, may be used to ensure the precipitation of less soluble Pb carbonates, which are more easily recycled in the Pb recovery process in the metallurgical plant.

  7. Short-term pyrrolidine dithiocarbamate administration attenuates cachexia-induced alterations to muscle and liver in ApcMin/+ mice

    PubMed Central

    VanderVeen, Brandon N.; Enos, Reilly T.; Murphy, E. Angela; Carson, James A.

    2016-01-01

    Cancer cachexia is a complex wasting condition characterized by chronic inflammation, disrupted energy metabolism, and severe muscle wasting. While evidence in pre-clinical cancer cachexia models have determined that different systemic inflammatory inhibitors can attenuate several characteristics of cachexia, there is a limited understanding of their effects after cachexia has developed, and whether short-term administration is sufficient to reverse cachexia-induced signaling in distinctive target tissues. Pyrrolidine dithiocarbamate (PDTC) is a thiol compound having anti-inflammatory and antioxidant properties which can inhibit STAT3 and nuclear factor κB (NF-κB) signaling in mice. This study examined the effect of short-term PDTC administration to ApcMin/+ mice on cachexia-induced disruption of skeletal muscle protein turnover and liver metabolic function. At 16 weeks of age ApcMin/+ mice initiating cachexia (7% BW loss) were administered PDTC (10mg/kg bw/d) for 2 weeks. Control ApcMin/+ mice continued to lose body weight during the treatment period, while mice receiving PDTC had no further body weight decrease. PDTC had no effect on either intestinal tumor burden or circulating IL-6. In muscle, PDTC rescued signaling disrupting protein turnover regulation. PDTC suppressed the cachexia induction of STAT3, increased mTORC1 signaling and protein synthesis, and suppressed the induction of Atrogin-1 protein expression. Related to cachectic liver metabolic function, PDTC treatment attenuated glycogen and lipid content depletion independent to the activation of STAT3 and mTORC1 signaling. Overall, these results demonstrate short-term PDTC treatment to cachectic mice attenuated cancer-induced disruptions to muscle and liver signaling, and these changes were independent to altered tumor burden and circulating IL-6. PMID:27449092

  8. Sex-dependent Differences in Intestinal Tumorigenesis Induced in Apc1638N/+ Mice by Exposure to {gamma} Rays

    SciTech Connect

    Trani, Daniela; Moon, Bo-Hyun; Kallakury, Bhaskar; Hartmann, Dan P.; Datta, Kamal; Fornace, Albert J.

    2013-01-01

    Purpose: The purpose of the present study was to assess the effect of 1 and 5 Gy radiation doses and to investigate the interplay of gender and radiation with regard to intestinal tumorigenesis in an adenomatous polyposis coli (APC) mutant mouse model. Methods and Materials: Apc1638N/+ female and male mice were exposed whole body to either 1 Gy or 5 Gy of {gamma} rays and euthanized when most of the treated mice became moribund. Small and large intestines were processed to determine tumor burden, distribution, and grade. Expression of proliferation marker Ki-67 and estrogen receptor (ER)-{alpha} were also assessed by immunohistochemistry. Results: We observed that, with both 1 Gy and 5 Gy of {gamma} rays, females displayed reduced susceptibility to radiation-induced intestinal tumorigenesis compared with males. As for radiation effect on small intestinal tumor progression, although no substantial differences were found in the relative frequency and degree of dysplasia of adenomas in irradiated animals compared with controls, invasive carcinomas were found in 1-Gy- and 5-Gy-irradiated animals. Radiation exposure was also shown to induce an increase in protein levels of proliferation marker Ki-67 and sex-hormone receptor ER-{alpha} in both non tumor mucosa and intestinal tumors from irradiated male mice. Conclusions: We observed important sex-dependent differences in susceptibility to radiation-induced intestinal tumorigenesis in Apc1638N/+ mutants. Furthermore, our data provide evidence that exposure to radiation doses as low as 1 Gy can induce a significant increase in intestinal tumor multiplicity as well as enhance tumor progression in vivo.

  9. APC2 and CYP1B1 methylation changes in the bone marrow of acute myeloid leukemia patients during chemotherapy

    PubMed Central

    Xia, Yongming; Hong, Qingxiao; Chen, Xiaoying; Ye, Huadan; Fang, Lili; Zhou, Annan; Gao, Yuting; Jiang, Danjie; Duan, Shiwei

    2016-01-01

    Aberrant promoter DNA methylation is a major mechanism of leukemogenesis in hematologic malignancies, including acute myeloid leukemia (AML). However, the association between promoter methylation with chemotherapeutic outcomes remains unknown. In the present study, bone marrow samples were collected prior to and following chemotherapy in 30 AML patients. Methylation-specific polymerase chain reaction technology was used to examine the promoter methylation status of adenomatous polyposis col 2 (APC2) and cytochrome P450 family 1 subfamily B polypeptide 1 (CYP1B1). The results revealed no change in the methylation status of the APC2 promoter in patients following various chemotherapy regimens. However, the methylation status of the CYP1B1 promoter changed in response to 6 different chemotherapy regimens. AML patients of the M3 subtype displayed an induction of the CYP1B1 promoter methylation levels more frequently (57.1%) than patients affected by the other subtypes (M1: 33.3%; M2: 12.5%; M4: 16.7%; M5: 0% and M6: 0%). In addition, a higher frequency of male patients (4/13) exhibited modulation of the CYP1B1 promoter methylation status compared with female patients (3/17). Furthermore, of five AML patients with a poor prognosis, two exhibited changes leading to CYP1B1 hypomethylation and two leading to CYP1B1 hypermethylation. By contrast, three other patients exhibited hypermethylation changes along with remission. This may be explained by the different chemotherapy regimens used to treat these patients or by other unknown factors. The present study revealed that CYP1B1 promoter methylation was induced during chemotherapy, whereas the APC2 promoter remained hemimethylated. Furthermore, the changes in CYP1B1 methylation were dependent on the AML subtypes and the gender of the patients. PMID:27882114

  10. APC2 and CYP1B1 methylation changes in the bone marrow of acute myeloid leukemia patients during chemotherapy.

    PubMed

    Xia, Yongming; Hong, Qingxiao; Chen, Xiaoying; Ye, Huadan; Fang, Lili; Zhou, Annan; Gao, Yuting; Jiang, Danjie; Duan, Shiwei

    2016-11-01

    Aberrant promoter DNA methylation is a major mechanism of leukemogenesis in hematologic malignancies, including acute myeloid leukemia (AML). However, the association between promoter methylation with chemotherapeutic outcomes remains unknown. In the present study, bone marrow samples were collected prior to and following chemotherapy in 30 AML patients. Methylation-specific polymerase chain reaction technology was used to examine the promoter methylation status of adenomatous polyposis col 2 (APC2) and cytochrome P450 family 1 subfamily B polypeptide 1 (CYP1B1). The results revealed no change in the methylation status of the APC2 promoter in patients following various chemotherapy regimens. However, the methylation status of the CYP1B1 promoter changed in response to 6 different chemotherapy regimens. AML patients of the M3 subtype displayed an induction of the CYP1B1 promoter methylation levels more frequently (57.1%) than patients affected by the other subtypes (M1: 33.3%; M2: 12.5%; M4: 16.7%; M5: 0% and M6: 0%). In addition, a higher frequency of male patients (4/13) exhibited modulation of the CYP1B1 promoter methylation status compared with female patients (3/17). Furthermore, of five AML patients with a poor prognosis, two exhibited changes leading to CYP1B1 hypomethylation and two leading to CYP1B1 hypermethylation. By contrast, three other patients exhibited hypermethylation changes along with remission. This may be explained by the different chemotherapy regimens used to treat these patients or by other unknown factors. The present study revealed that CYP1B1 promoter methylation was induced during chemotherapy, whereas the APC2 promoter remained hemimethylated. Furthermore, the changes in CYP1B1 methylation were dependent on the AML subtypes and the gender of the patients.

  11. The spindle and kinetochore–associated (Ska) complex enhances binding of the anaphase-promoting complex/cyclosome (APC/C) to chromosomes and promotes mitotic exit

    PubMed Central

    Sivakumar, Sushama; Daum, John R.; Tipton, Aaron R.; Rankin, Susannah; Gorbsky, Gary J.

    2014-01-01

    The spindle and kinetochore–associated (Ska) protein complex is a heterotrimeric complex required for timely anaphase onset. The major phenotypes seen after small interfering RNA–mediated depletion of Ska are transient alignment defects followed by metaphase arrest that ultimately results in cohesion fatigue. We find that cells depleted of Ska3 arrest at metaphase with only partial degradation of cyclin B1 and securin. In cells arrested with microtubule drugs, Ska3-depleted cells exhibit slower mitotic exit when the spindle checkpoint is silenced by inhibition of the checkpoint kinase, Mps1, or when cells are forced to exit mitosis downstream of checkpoint silencing by inactivation of Cdk1. These results suggest that in addition to a role in fostering kinetochore–microtubule attachment and chromosome alignment, the Ska complex has functions in promoting anaphase onset. We find that both Ska3 and microtubules promote chromosome association of the anaphase-promoting complex/cyclosome (APC/C). Chromosome-bound APC/C shows significantly stronger ubiquitylation activity than cytoplasmic APC/C. Forced localization of Ska complex to kinetochores, independent of microtubules, results in enhanced accumulation of APC/C on chromosomes and accelerated cyclin B1 degradation during induced mitotic exit. We propose that a Ska-microtubule-kinetochore association promotes APC/C localization to chromosomes, thereby enhancing anaphase onset and mitotic exit. PMID:24403607

  12. The anticoagulant activated protein C (aPC) promotes metaplasticity in the hippocampus through an EPCR-PAR1-S1P1 receptors dependent mechanism.

    PubMed

    Maggio, Nicola; Itsekson, Zeev; Ikenberg, Benno; Strehl, Andreas; Vlachos, Andreas; Blatt, Ilan; Tanne, David; Chapman, Joab

    2014-08-01

    Thrombin and other clotting factors regulate long-term potentiation (LTP) in the hippocampus through the activation of the protease activated receptor 1 (PAR1) and consequent potentiation of N-methyl-d-aspartate receptor (NMDAR) functions. We have recently shown that the activation of PAR1 either by thrombin or the anticoagulant factor activated protein C (aPC) has differential effects on LTP. While thrombin activation of PAR1 induces an NMDAR-mediated slow onset LTP, which saturates the ability to induce further LTP in the exposed network, aPC stimulation of PAR1 enhances tetanus induced LTP through a voltage-gated calcium channels mediated mechanism. In this study, we addressed the mechanisms by which aPC enhances LTP in hippocampal slices. Using extracellular recordings, we show that a short tetanic stimulation, which does not induce LTP, is able to enhance plasticity in the presence of aPC through a mechanism that requires the activation of sphingosine-1 phosphate receptor 1 and intracellular Ca(2+) stores. These data identify aPC as a "metaplastic molecule", capable of shifting the threshold of LTP towards further potentiation. Our findings propose novel strategies to enhance plasticity in neurological diseases associated with the breakdown of the blood brain barrier and alterations in synaptic plasticity.

  13. A Cdh1-APC/FMRP Ubiquitin Signaling Link Drives mGluR-Dependent Synaptic Plasticity in the Mammalian Brain.

    PubMed

    Huang, Ju; Ikeuchi, Yoshiho; Malumbres, Marcos; Bonni, Azad

    2015-05-06

    Deregulation of synaptic plasticity may contribute to the pathogenesis of developmental cognitive disorders. In particular, exaggerated mGluR-dependent LTD is featured in fragile X syndrome, but the mechanisms that regulate mGluR-LTD remain incompletely understood. We report that conditional knockout of Cdh1, the key regulatory subunit of the ubiquitin ligase Cdh1-anaphase-promoting complex (Cdh1-APC), profoundly impairs mGluR-LTD in the hippocampus. Mechanistically, we find that Cdh1-APC operates in the cytoplasm to drive mGluR-LTD. We also identify the fragile X syndrome protein FMRP as a substrate of Cdh1-APC. Endogenous Cdh1-APC forms a complex with endogenous FMRP, and knockout of Cdh1 impairs mGluR-induced ubiquitination and degradation of FMRP in the hippocampus. Knockout of FMRP suppresses, and expression of an FMRP mutant protein that fails to interact with Cdh1 phenocopies, the Cdh1 knockout phenotype of impaired mGluR-LTD. These findings define Cdh1-APC and FMRP as components of a novel ubiquitin signaling pathway that regulates mGluR-LTD in the brain.

  14. High order overlay modeling and APC simulation with Zernike-Legendre polynomials

    NASA Astrophysics Data System (ADS)

    Ju, JawWuk; Kim, MinGyu; Lee, JuHan; Sherwin, Stuart; Hoo, George; Choi, DongSub; Lee, Dohwa; Jeon, Sanghuck; Lee, Kangsan; Tien, David; Pierson, Bill; Robinson, John C.; Levy, Ady; Smith, Mark D.

    2015-03-01

    Feedback control of overlay errors to the scanner is a well-established technique in semiconductor manufacturing [1]. Typically, overlay errors are measured, and then modeled by least-squares fitting to an overlay model. Overlay models are typically Cartesian polynomial functions of position within the wafer (Xw, Yw), and of position within the field (Xf, Yf). The coefficients from the data fit can then be fed back to the scanner to reduce overlay errors in future wafer exposures, usually via a historically weighted moving average. In this study, rather than using the standard Cartesian formulation, we examine overlay models using Zernike polynomials to represent the wafer-level terms, and Legendre polynomials to represent the field-level terms. Zernike and Legendre polynomials can be selected to have the same fitting capability as standard polynomials (e.g., second order in X and Y, or third order in X and Y). However, Zernike polynomials have the additional property of being orthogonal over the unit disk, which makes them appropriate for the wafer-level model, and Legendre polynomials are orthogonal over the unit square, which makes them appropriate for the field-level model. We show several benefits of Zernike/Legendre-based models in this investigation in an Advanced Process Control (APC) simulation using highly-sampled fab data. First, the orthogonality property leads to less interaction between the terms, which makes the lot-to-lot variation in the fitted coefficients smaller than when standard polynomials are used. Second, the fitting process itself is less coupled - fitting to a lower-order model, and then fitting the residuals to a higher order model gives very similar results as fitting all of the terms at once. This property makes fitting techniques such as dual pass or cascading [2] unnecessary, and greatly simplifies the options available for the model recipe. The Zernike/Legendre basis gives overlay performance (mean plus 3 sigma of the residuals

  15. Aberrant DNA methylation of some tumor suppressor genes in lung cancers from workers with chromate exposure.

    PubMed

    Ali, Abdellah H K; Kondo, Kazuya; Namura, Toshiaki; Senba, Yoshitaka; Takizawa, Hiromitsu; Nakagawa, Yasushi; Toba, Hiroaki; Kenzaki, Koichiro; Sakiyama, Shoji; Tangoku, Akira

    2011-02-01

    Our previous studies revealed a variety of genetic changes in lung cancers from chromate-exposed workers (chromate lung cancer). In the present study, we examined epigenetic changes in chromate lung cancers. Nested-methylation-specific PCR was employed in studying the methylation of CpG islands in the APC, MGMT, hMLH1 genes in 36 chromate lung cancers and 25 nonchromate lung cancers. Methylation in chromate lung cancers was detected at 86% for APC, 20% for MGMT, and 28% for hMLH1. Whereas, it occurred at lower frequencies in nonchromate lung cancers, particularly in APC (44%) and hMLH1 (0%) genes. Our previous study showed that methylation of p16 gene in chromate lung cancer and nonchromate lung cancer was 33% and 26%, respectively. The mean methylation index (MI), a reflection of the overall methylation status, was significantly higher in chromate lung cancers than nonchromate lung cancers (0.41 vs. 0.21, P=0.001). Methylation of multiple genes (particularly hMLH1, p16, and APC genes) had experienced more than 15 yr of chromate exposure in chromate lung cancer (MI: <15 yr; 0.19, ≥ 15 yr, 0.42). There is a significant correlation of p16 and hMLH1 methylation with the expressional decrease or loss of the corresponding gene products (P=0.037 and 0.024) respectively, and an inverse correlation between APC and MGMT methylation (P = 0.014). This study provides a novel evidence for the chromium carcinogenesis that chromate lung cancer is linked to the progressive methylation of some tumor suppressor genes, which may be related to genomic instability.

  16. Antitumor activity of the MEK inhibitor trametinib on intestinal polyp formation in ApcΔ716 mice involves stromal COX-2

    PubMed Central

    Fujishita, Teruaki; Kajino-Sakamoto, Rie; Kojima, Yasushi; Taketo, Makoto Mark; Aoki, Masahiro

    2015-01-01

    Extracellular signal-regulated kinase is an MAPK that is most closely associated with cell proliferation, and the MEK/ERK signaling pathway is implicated in various human cancers. Although epidermal growth factor receptor, KRAS, and BRAF are considered major targets for colon cancer treatment, the precise roles of the MEK/ERK pathway, one of their major downstream effectors, during colon cancer development remain to be determined. Using ApcΔ716 mice, a mouse model of familial adenomatous polyposis and early-stage sporadic colon cancer formation, we show that MEK/ERK signaling is activated not only in adenoma epithelial cells, but also in tumor stromal cells including fibroblasts and vascular endothelial cells. Eight-week treatment of ApcΔ716 mice with trametinib, a small-molecule MEK inhibitor, significantly reduced the number of polyps in the large size class, accompanied by reduced angiogenesis and tumor cell proliferation. Trametinib treatment reduced the COX-2 level in ApcΔ716 tumors in vivo and in primary culture of intestinal fibroblasts in vitro. Antibody array analysis revealed that trametinib and the COX-2 inhibitor rofecoxib both reduced the level of CCL2, a chemokine known to be essential for the growth of Apc mutant polyps, in intestinal fibroblasts in vitro. Consistently, trametinib treatment reduced the Ccl2 mRNA level in ApcΔ716 tumors in vivo. These results suggest that MEK/ERK signaling plays key roles in intestinal adenoma formation in ApcΔ716 mice, at least in part, through COX-2 induction in tumor stromal cells. PMID:25855137

  17. ACKR4 on Stromal Cells Scavenges CCL19 To Enable CCR7-Dependent Trafficking of APCs from Inflamed Skin to Lymph Nodes.

    PubMed

    Bryce, Steven A; Wilson, Ruairi A M; Tiplady, Eleanor M; Asquith, Darren L; Bromley, Shannon K; Luster, Andrew D; Graham, Gerard J; Nibbs, Robert J B

    2016-04-15

    Dermal dendritic cells and epidermal Langerhans cells are APCs that migrate from skin to draining lymph nodes (LN) to drive peripheral tolerance and adaptive immunity. Their migration requires the chemokine receptor CCR7, which directs egress from the skin via dermal lymphatic vessels and extravasation into the LN parenchyma from lymph in the subcapsular sinus. CCR7 is activated by two chemokines: CCL19 and CCL21. CCL21 alone is sufficient for the migration of APCs from skin to LN. CCL19 and CCL21 also bind atypical chemokine receptor (ACKR) 4. ACKR4-mediated CCL21 scavenging by lymphatic endothelial cells lining the subcapsular sinus ceiling stabilizes interfollicular CCL21 gradients that direct lymph-borne CCR7(+)APCs into the parenchyma of mouse LN. In this study, we show that ACKR4 also aids APC egress from mouse skin under steady-state and inflammatory conditions. ACKR4 plays a particularly prominent role during cutaneous inflammation when it facilitates Langerhans cell egress from skin and enables the accumulation of dermal dendritic cells in skin-draining LN. Stromal cells in mouse skin, predominantly keratinocytes and a subset of dermal lymphatic endothelial cells, express ACKR4 and are capable of ACKR4-dependent chemokine scavenging in situ. ACKR4-mediated scavenging of dermal-derived CCL19, rather than CCL21, is critical during inflammation, because the aberrant trafficking of skin-derived APCs inAckr4-deficient mice is completely rescued by genetic deletion ofCcl19 Thus, ACKR4 on stromal cells aids the egress of APCs from mouse skin, and, during inflammation, facilitates CCR7-dependent cell trafficking by scavenging CCL19.

  18. MASTL(Greatwall) regulates DNA damage responses by coordinating mitotic entry after checkpoint recovery and APC/C activation

    PubMed Central

    Wong, Po Yee; Ma, Hoi Tang; Lee, Hyun-jung; Poon, Randy Y. C.

    2016-01-01

    The G2 DNA damage checkpoint is one of the most important mechanisms controlling G2–mitosis transition. The kinase Greatwall (MASTL in human) promotes normal G2–mitosis transition by inhibiting PP2A via ARPP19 and ENSA. In this study, we demonstrate that MASTL is critical for maintaining genome integrity after DNA damage. Although MASTL did not affect the activation of DNA damage responses and subsequent repair, it determined the timing of entry into mitosis and the subsequent fate of the recovering cells. Constitutively active MASTL promoted dephosphorylation of CDK1Tyr15 and accelerated mitotic entry after DNA damage. Conversely, downregulation of MASTL or ARPP19/ENSA delayed mitotic entry. Remarkably, APC/C was activated precociously, resulting in the damaged cells progressing from G2 directly to G1 and skipping mitosis all together. Collectively, these results established that precise control of MASTL is essential to couple DNA damage to mitosis through the rate of mitotic entry and APC/C activation. PMID:26923777

  19. Phosphorylation by Akt1 Promotes Skp2 Cytoplasmic Localization and Impairs APC/Cdh1-mediated Skp2 Destruction

    PubMed Central

    Gao, Daming; Inuzuka, Hiroyuki; Tseng, Alan; Chin, Rebecca Y.; Toker, Alex; Wei, Wenyi

    2010-01-01

    Deregulated Skp2 function promotes cell transformation, and this is consistent with observations of Skp2 over-expression in many human cancers. However, the mechanisms underlying elevated Skp2 expression remain elusive. Here we report that the serine/threonine protein kinase Akt1, but not Akt2, directly controls Skp2 stability by a mechanism that involves degradation by the APC/Cdh1 ubiquitin ligase complex. We further show that Akt1 phosphorylates Skp2 at Ser72, which is required to disrupt the interaction between Cdh1 and Skp2. In addition, we show that Ser72 is localized within a putative Nuclear Localization Sequence (NLS) and that phosphorylation of Ser72 by Akt leads to Skp2 cytoplasmic translocation. This finding expands our knowledge of how specific signaling kinase cascades influence proteolysis governed by APC/Cdh1 complexes, and provides evidence that elevated Akt activity and cytoplasmic Skp2 expression may be causative for cancer progression. PMID:19270695

  20. Role of RIS/APC for manufacturing RFG/LSD. [Refinery Information Systems/Advanced Process Control, ReFormulated Gasoline/Low Sulfur Diesels

    SciTech Connect

    Latour, P.R. )

    1994-01-01

    Revolutionary changes in quality specifications (number, complexity, uncertainty, economic sensitivity) for reformulated gasolines (RFG) and low-sulfur diesels (LSD) are being addressed by powerful, new, computer-integrated manufacturing technology for Refinery Information Systems and Advanced Process Control (RIS/APC). This paper shows how the five active RIS/APC functions: performance measurement, optimization, scheduling, control and integration are used to manufacture new, clean fuels competitively. With current industry spending for this field averaging 2 to 3 cents/bbl crude, many refineries can capture 50 to 100 cents/bbl if the technology is properly employed and sustained throughout refining operations, organizations, and businesses.

  1. Fibersol-2 induces apoptosis of Apc-deficient colorectal Cancer (SW480) cells and decreases polyp formation in Apc MIN mice.

    PubMed

    Sancho, Sara Cuesta; Olson, Susan Losee; Young So, Eui; Shimomura, Kazuhiro; Ouchi, Toru; Preuss, Fabian

    2016-06-02

    The consumption of dietary fibers has been implicated with a lowered risk of human colorectal cancer. Proposed mechanisms involve alterations in the stool consistency, transit time, and formation of short-chain fatty acid by dietary fiber fermentation, and the reorganization of gut microbiota. Here we show that Fibersol-2, a digest-resistant maltodextrin, not only inhibits proliferation of colorectal SW480 cancer cell lines by increasing reactive oxygen species (ROS), but decreases the numbers of the adenoma count in Multiple Intestinal Neoplasia (MIN) mice carrying a mutation in the Adenomatous Polyposis Coli gene by 84 d of age. These observations provide direct evidence that Fibersol-2 intrinsically contains anti-cancer activity, independent of the intestinal metabolism and any potential interactions with the microbiota.

  2. Estimation of sediment friction coefficient from heating upon APC penetration during the IODP NanTroSEIZE

    NASA Astrophysics Data System (ADS)

    Kinoshita, M.; Kawamura, K.; Lin, W.

    2015-12-01

    During the Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE) of the Integrated Ocean Drilling Program (IODP), the advanced piston corer temperature (APC-T) tool was used to determine in situ formation temperatures while piston coring down to ~200 m below sea floor. When the corer is fired into the formation, temperature around the shoe abruptly increases due to the frictional heating. The temperature rise due to the frictional heat at the time of penetration is 10 K or larger. We found that the frictional temperature rise (=maximum temperature) increases with increasing depth, and that its intersection at the seafloor seems non-zero. Frictional heat energy is proportional to the maximum temperature rise, which is confirmed by a FEM numerical simulation of 2D cylindrical system. Here we use the result of numerical simulation to convert the observed temperature rise into the frictional heat energy. The frictional heat energy is represented as the product of the shooting length D and the shear stress (τ) between the pipe and the sediment. Assuming a coulomb slip regime, the shear stress is shows as: τ= τ0 + μ*(Sv-Pp), where τ0 is the cohesive stress, μ the dynamic frictional coefficient between the pipe and the sediment, Sv the normal stress at the pipe, and Pp the pore pressure. This can explain the non-zero intersection as well as depth-dependent increase for the frictional heating observed in the APC-T data. Assuming a hydrostatic state and by using the downhole bulk density data, we estimated the friction coefficient for each APC-T measurement. For comparison, we used the vane-shear strength measured on core samples to estimate the friction coefficients. The frictional coefficients μ were estimated as ranging 0.01 - 0.06, anomalously lower than expected for shallow marine sediments. They were lower than those estimated from vane-shear data, which range 0.05 to 0.2. Still, both estimates exhibit a significant increase in the friction coefficient at

  3. Loss of heterozygosity of the Mutated in Colorectal Cancer gene is not associated with promoter methylation in non-small cell lung cancer.

    PubMed

    Poursoltan, Pirooz; Currey, Nicola; Pangon, Laurent; van Kralingen, Christa; Selinger, Christina I; Mahar, Annabelle; Cooper, Wendy A; Kennedy, Catherine W; McCaughan, Brian C; Trent, Ronald; Kohonen-Corish, Maija R J

    2012-08-01

    'Mutated in Colorectal Cancer' (MCC) is emerging as a multifunctional protein that affects several cellular processes and pathways. Although the MCC gene is rarely mutated in colorectal cancer, it is frequently silenced through promoter methylation. Previous studies have reported loss of heterozygosity (LOH) of the closely linked MCC and APC loci in both colorectal and lung cancers. APC promoter methylation is a marker of poor survival in non-small cell lung cancer (NSCLC). However, MCC methylation has not been previously studied in lung cancer. Therefore, we wanted to determine if MCC is silenced through promoter methylation in lung cancer and whether this methylation is associated with LOH of the MCC locus or methylation of the APC gene. Three polymorphic markers for the APC/MCC locus were analysed for LOH in 64 NSCLC specimens and matching normal tissues. Promoter methylation of both genes was determined using methylation specific PCR in primary tumours. LOH of the three markers was found in 41-49% of the specimens. LOH within the MCC locus was less common in adenocarcinoma (ADC) (29%) than in squamous cell carcinoma (SCC) (72%; P=0.006) or large cell carcinoma (LCC) (75%; P=0.014). However, this LOH was not accompanied by MCC promoter methylation, which was found in only two cancers (3%). In contrast, 39% of the specimens showed APC methylation, which was more common in ADC (58%) than in SCC (13%). Western blotting revealed that MCC was expressed in a subset of lung tissue specimens but there was marked variation between patients rather than between cancer and matching non-cancer tissue specimens. In conclusion, we have shown that promoter methylation of the APC gene does not extend to the neighbouring MCC gene in lung cancer, but LOH is found at both loci. The variable levels of MCC expression were not associated with promoter methylation and may be regulated through other cellular mechanisms.

  4. Brain energy metabolism in glutamate-receptor activation and excitotoxicity: role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway.

    PubMed

    Rodriguez-Rodriguez, Patricia; Almeida, Angeles; Bolaños, Juan P

    2013-04-01

    Recent advances in the field of brain energy metabolism strongly suggest that glutamate receptor-mediated neurotransmission is coupled with molecular signals that switch-on glucose utilization pathways to meet the high energetic requirements of neurons. Failure to adequately coordinate energy supply for neurotransmission ultimately results in a positive amplifying loop of receptor over-activation leading to neuronal death, a process known as excitotoxicity. In this review, we revisited current concepts in excitotoxic mechanisms, their involvement in energy substrate utilization, and the signaling pathways that coordinate both processes. In particular, we have focused on the novel role played by the E3 ubiquitin ligase, anaphase-promoting complex/cyclosome (APC/C)-Cdh1, in cell metabolism. Our laboratory identified 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) -a key glycolytic-promoting enzyme- as an APC/C-Cdh1 substrate. Interestingly, APC/C-Cdh1 activity is inhibited by over-activation of glutamate receptors through a Ca(2+)-mediated mechanism. Furthermore, by inhibiting APC/C-Cdh1 activity, glutamate-receptors activation promotes PFKFB3 stabilization, leading to increased glycolysis and decreased pentose-phosphate pathway activity. This causes a loss in neuronal ability to regenerate glutathione, triggering oxidative stress and delayed excitotoxicity. Further investigation is critical to identify novel molecules responsible for the coupling of energy metabolism with glutamatergic neurotransmission and excitotoxicity, as well as to help developing new therapeutic strategies against neurodegeneration.

  5. Aβ Induces Excitotoxicity Mediated by APC/C-Cdh1 Depletion That Can Be Prevented by Glutaminase Inhibition Promoting Neuronal Survival

    PubMed Central

    Fuchsberger, T.; Martínez-Bellver, S.; Giraldo, E.; Teruel-Martí, V.; Lloret, A.; Viña, J.

    2016-01-01

    The E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is activated by the fizzy-related protein homolog/CDC20-like protein 1 (cdh1) in post-mitotic neurons. Growing evidence suggests that dysregulation of APC/C-Cdh1 is involved in neurodegenerative diseases. Here we show in neurons that oligomers of amyloid beta (Aβ), a peptide related to Alzheimer’s disease, cause proteasome-dependent degradation of cdh1. This leads to a subsequent increase in glutaminase (a degradation target of APC/C-Cdh1), which causes an elevation of glutamate levels and further intraneuronal Ca2+ dysregulation, resulting in neuronal apoptosis. Glutaminase inhibition prevents glutamate excitotoxicity and apoptosis in Aβ treated neurons. Furthermore, glutamate also decreases cdh1 and leads to accumulation of glutaminase, suggesting that there may be a positive feedback loop of cdh1 inactivation. We confirmed the main findings in vivo using microinjection of either Aβ or glutamate in the CA1 region of the rat hippocampus. We show here for the first time in vivo that both Aβ and glutamate cause nuclear exclusion of cdh1 and an increase in glutaminase. These results show that maintaining normal APC/C-Cdh1 activity may be a useful target in Alzheimer’s disease treatment. PMID:27514492

  6. The SnRK2-APC/C(TE) regulatory module mediates the antagonistic action of gibberellic acid and abscisic acid pathways.

    PubMed

    Lin, Qibing; Wu, Fuqing; Sheng, Peike; Zhang, Zhe; Zhang, Xin; Guo, Xiuping; Wang, Jiulin; Cheng, Zhijun; Wang, Jie; Wang, Haiyang; Wan, Jianmin

    2015-08-14

    Abscisic acid (ABA) and gibberellic acid (GA) antagonistically regulate many developmental processes and responses to biotic or abiotic stresses in higher plants. However, the molecular mechanism underlying this antagonism is still poorly understood. Here, we show that loss-of-function mutation in rice Tiller Enhancer (TE), an activator of the APC/C(TE) complex, causes hypersensitivity and hyposensitivity to ABA and GA, respectively. We find that TE physically interacts with ABA receptor OsPYL/RCARs and promotes their degradation by the proteasome. Genetic analysis also shows OsPYL/RCARs act downstream of TE in mediating ABA responses. Conversely, ABA inhibits APC/C(TE) activity by phosphorylating TE through activating the SNF1-related protein kinases (SnRK2s), which may interrupt the interaction between TE and OsPYL/RCARs and subsequently stabilize OsPYL/RCARs. In contrast, GA can reduce the level of SnRK2s and may promote APC/C(TE)-mediated degradation of OsPYL/RCARs. Thus, we propose that the SnRK2-APC/C(TE) regulatory module represents a regulatory hub underlying the antagonistic action of GA and ABA in plants.

  7. The polyglutamine-expanded androgen receptor responsible for spinal and bulbar muscular atrophy inhibits the APC/CCdh1 ubiquitin ligase complex

    PubMed Central

    Bott, Laura C.; Salomons, Florian A.; Maric, Dragan; Liu, Yuhong; Merry, Diane; Fischbeck, Kenneth H.; Dantuma, Nico P.

    2016-01-01

    Polyglutamine expansion in the androgen receptor (AR) causes spinal and bulbar muscular atrophy (SBMA), an X-linked neuromuscular disease that is fully manifest only in males. It has been suggested that proteins with expanded polyglutamine tracts impair ubiquitin-dependent proteolysis due to their propensity to aggregate, but recent studies indicate that the overall activity of the ubiquitin-proteasome system is preserved in SBMA models. Here we report that AR selectively interferes with the function of the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), which, together with its substrate adaptor Cdh1, is critical for cell cycle arrest and neuronal architecture. We show that both wild-type and mutant AR physically interact with the APC/CCdh1 complex in a ligand-dependent fashion without being targeted for proteasomal degradation. Inhibition of APC/CCdh1 by mutant but not wild-type AR in PC12 cells results in enhanced neurite outgrowth which is typically followed by rapid neurite retraction and mitotic entry. Our data indicate a role of AR in neuronal differentiation through regulation of APC/CCdh1 and suggest abnormal cell cycle reactivation as a pathogenic mechanism in SBMA. PMID:27312068

  8. Aβ Induces Excitotoxicity Mediated by APC/C-Cdh1 Depletion That Can Be Prevented by Glutaminase Inhibition Promoting Neuronal Survival.

    PubMed

    Fuchsberger, T; Martínez-Bellver, S; Giraldo, E; Teruel-Martí, V; Lloret, A; Viña, J

    2016-08-12

    The E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is activated by the fizzy-related protein homolog/CDC20-like protein 1 (cdh1) in post-mitotic neurons. Growing evidence suggests that dysregulation of APC/C-Cdh1 is involved in neurodegenerative diseases. Here we show in neurons that oligomers of amyloid beta (Aβ), a peptide related to Alzheimer's disease, cause proteasome-dependent degradation of cdh1. This leads to a subsequent increase in glutaminase (a degradation target of APC/C-Cdh1), which causes an elevation of glutamate levels and further intraneuronal Ca(2+) dysregulation, resulting in neuronal apoptosis. Glutaminase inhibition prevents glutamate excitotoxicity and apoptosis in Aβ treated neurons. Furthermore, glutamate also decreases cdh1 and leads to accumulation of glutaminase, suggesting that there may be a positive feedback loop of cdh1 inactivation. We confirmed the main findings in vivo using microinjection of either Aβ or glutamate in the CA1 region of the rat hippocampus. We show here for the first time in vivo that both Aβ and glutamate cause nuclear exclusion of cdh1 and an increase in glutaminase. These results show that maintaining normal APC/C-Cdh1 activity may be a useful target in Alzheimer's disease treatment.

  9. Regulation of APC(Cdh1) E3 ligase activity by the Fbw7/cyclin E signaling axis contributes to the tumor suppressor function of Fbw7.

    PubMed

    Lau, Alan W; Inuzuka, Hiroyuki; Fukushima, Hidefumi; Wan, Lixin; Liu, Pengda; Gao, Daming; Sun, Yi; Wei, Wenyi

    2013-07-01

    Fbw7 and Cdh1 are substrate-recognition subunits of the SCF- and APC-type E3 ubiquitin ligases, respectively. There is emerging evidence suggesting that both Fbw7 and Cdh1 function as tumor suppressors by targeting oncoproteins for destruction. Loss of Fbw7, but not Cdh1, is frequently observed in various human tumors. However, it remains largely unknown how Fbw7 mechanistically functions as a tumor suppressor and whether there is a signaling crosstalk between Fbw7 and Cdh1. Here, we report that Fbw7-deficient cells not only display elevated expression levels of SCF(Fbw7) substrates, including cyclin E, but also have increased expression of various APC(Cdh1) substrates. We further defined cyclin E as the critical signaling link by which Fbw7 governs APC(Cdh1) activity, as depletion of cyclin E in Fbw7-deficient cells results in decreased expression of APC(Cdh1) substrates to levels comparable to those in wild-type (WT) cells. Conversely, ectopic expression of cyclin E recapitulates the aberrant APC(Cdh1) substrate expression observed in Fbw7-deficient cells. More importantly, 4A-Cdh1 that is resistant to Cdk2/cyclin E-mediated phosphorylation, but not WT-Cdh1, reversed the elevated expression of various APC(Cdh1) substrates in Fbw7-deficient cells. Overexpression of 4A-Cdh1 also resulted in retarded cell growth and decreased anchorage-independent colony formation. Altogether, we have identified a novel regulatory mechanism by which Fbw7 governs Cdh1 activity in a cyclin E-dependent manner. As a result, loss of Fbw7 can lead to aberrant increase in the expression of both SCF(Fbw7) and APC(Cdh1) substrates. Our study provides a better understanding of the tumor suppressor function of Fbw7, and suggests that Cdk2/cyclin E inhibitors could serve as effective therapeutic agents for treating Fbw7-deficient tumors.

  10. Metals accumulations during thermal processing of sewage sludge - characterization of bottom ash and air pollution control (APC) residues

    NASA Astrophysics Data System (ADS)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2016-04-01

    Due to increasing mass of sewage sludge, problems in its management have appeared. Over years sewage sludge was landfilled, however due to EU directives concerning environmental issues this option is no longer possible. This type of material is considered hazardous due to highly concentrated metals and harmful elements, toxic organic substances and biological components (e.g. parasites, microbes). Currently in Europe, incineration is considered to be the most reasonable method for sewage sludge treatment. As a result of sludge incineration significant amount of energy is recovered due to high calorific value of sewage sludge but bottom ash and APC residues are being produced. In this study we show the preliminary results of chemical and mineral analyses of both bottom ash and APC residues produced in fluidized bed boiler in sewage sludge incineration plant in Poland, with a special emphasis on metals which, as a part of incombustible fraction can accumulate in the residual materials after thermal processing. The bottom ash was a SiO2-P2O5-Fe2O3-CaO-Al2O3 dominated material. Main mineral phases identified in X-ray diffraction patterns were: quartz, feldspar, hematite, and phosphates (apatite and scholzite). The bottom ash was characterized by high content of Zn - 4472 mg kg-1, Cu - 665.5 mg kg-1, Pb - 138 mg kg-1, Ni - 119.5 mg kg-1, and interestingly high content of Au - 0.858 mg kg-1 The APC residues composition was dominated by soluble phases which represent more than 90% of the material. The XRD patterns indicated thenardite, halite, anhydrite, calcite and apatite as main mineral phases. The removal of soluble phases by dissolution in deionised water caused a significant mass reduction (ca. 3% of material remained on the filters). Calcite, apatite and quartz were main identified phases. The content of metals in insoluble material is relatively high: Zn - 6326 mg kg-1, Pb - 514.3 mg kg-1, Cu - 476.6 mg kg-1, Ni - 43.3 mg kg-1. The content of Cd, As, Se and Hg was

  11. Tart cherry anthocyanins inhibit tumor development in Apc(Min) mice and reduce proliferation of human colon cancer cells.

    PubMed

    Kang, Soo-Young; Seeram, Navindra P; Nair, Muraleedharan G; Bourquin, Leslie D

    2003-05-08

    Anthocyanins, which are bioactive phytochemicals, are widely distributed in plants and especially enriched in tart cherries. Based on previous observations that tart cherry anthocyanins and their respective aglycone, cyanidin, can inhibit cyclooxygenase enzymes, we conducted experiments to test the potential of anthocyanins to inhibit intestinal tumor development in Apc(Min) mice and growth of human colon cancer cell lines. Mice consuming the cherry diet, anthocyanins, or cyanidin had significantly fewer and smaller cecal adenomas than mice consuming the control diet or sulindac. Colonic tumor numbers and volume were not significantly influenced by treatment. Anthocyanins and cyanidin also reduced cell growth of human colon cancer cell lines HT 29 and HCT 116. The IC(50) of anthocyanins and cyanidin was 780 and 63 microM for HT 29 cells, respectively and 285 and 85 microM for HCT 116 cells, respectively. These results suggest that tart cherry anthocyanins and cyanidin may reduce the risk of colon cancer.

  12. Palmatine from Mahonia bealei attenuates gut tumorigenesis in ApcMin/+ mice via inhibition of inflammatory cytokines

    PubMed Central

    MA, WEI-KUN; LI, HUI; DONG, CUI-LAN; HE, XIN; GUO, CHANG-RUN; ZHANG, CHUN-FENG; YU, CHUN-HAO; WANG, CHONG-ZHI; YUAN, CHUN-SU

    2016-01-01

    Mahonia bealei is a Chinese folk medicine used to treat various ailments, in particular gastrointestinal inflammation-related illnesses, and palmatine is one of its active constituents. In this study, ApcMin/+ mice, a genetically engineered model, were used to investigate the effects of palmatine on the initiation and progression of gut inflammation and tumorigenesis enhanced by a high-fat diet. The in vitro antiproliferation and anti-inflammation effects of palmatine were evaluated on HT-29 and SW-480 human colorectal cancer cell lines. The concentration-related antiproliferative effects of palmatine on both cell lines (P<0.01) were observed. Palmatine significantly inhibited lipopolysaccharide-induced increase in cytokine interleukin (IL)-8 levels in the HT-29 cells (P<0.01). In the in vivo studies with ApcMin/+ mice, after 10 or 20 mg/kg/day oral palmatine treatment, tumor numbers were significantly reduced in the small intestine and colon in a dose-dependent manner (P<0.01 compared with the model group). The results were supported by tumor distribution data, body weight changes and organ index. The effect on survival was also dose-dependent. Both the low- and high-dose palmatine treatments significantly increased the life span of the mice (P<0.01). The gut histology from the model group showed a prominent adenomatous change along with inflammatory lesions. With palmatine treatment, however, the dysplastic changes were greatly reduced in the small intestine and colon tissue. Reverse transcription-quantitative polymerase chain reaction analysis of interleukin (IL)-1α, IL1-β, IL-8, granulocyte-colony stimulating factor and granulocyte macrophage colony-stimulating factor in the gut tissue showed that these inflammatory cytokines were reduced significantly following treatment (all P<0.01); serum cytokine levels were also decreased. Data suggests that palmatine has a clinical value in colorectal cancer therapeutics, and this action is likely linked to the

  13. Role of microRNAs in resveratrol-mediated mitigation of colitis-associated tumorigenesis in Apc(Min/+) mice.

    PubMed

    Altamemi, Ibrahim; Murphy, E Angela; Catroppo, James F; Zumbrun, Elizabeth E; Zhang, Jiajia; McClellan, Jamie L; Singh, Udai P; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2014-07-01

    The pleiotropic effects of resveratrol include anti-inflammatory, antioxidant, and anticancer activities, and thus unique possibilities exist to explore mechanistic pathways of chemoprevention. The aim of this study was to investigate the role of microRNA (miRNA) alterations induced by resveratrol in the context of chemopreventive mechanisms against dextran sodium sulfate (DSS)-induced colitis-associated tumorigenesis in the Apc(Min/+) mouse. To that end, Apc(Min/+) mice were exposed to 2% DSS to enhance intestinal inflammation and polyp development. Concurrently, mice received either vehicle or resveratrol treatment via oral gavage for 5 weeks. Interestingly, treatment of DSS-exposed mice with resveratrol resulted in decreased number and size of polyps, fewer histologic signs of cell damage, and decreased proliferating epithelial cells in intestinal mucosa compared with vehicle. Resveratrol treatment dramatically reversed the effects of DSS on the numbers of specific inflammatory CD4(+) T cells, CD8(+) T cells, B cells, natural killer T cells, and myeloid-derived suppressor cells in mesenteric lymph nodes. Resveratrol treatment also decreased interleukin-6 (IL-6) and tumor necrosis factor-α protein levels and reduced IL-6 and cyclooxygenase-2 mRNA expression. Microarray analysis revealed 104 miRNAs exhibiting >1.5-fold differences in expression in the intestinal tissue of resveratrol-treated mice. Among them, two miRNAs with anti-inflammatory properties, miRNA-101b and miRNA-455, were validated to be upregulated with resveratrol treatment by reverse-transcription polymerase chain reaction. Pathway analysis revealed that numerous differentially regulated miRNAs targeted mRNAs associated with inflammatory processes with known roles in intestinal tumorigenesis. These results suggest that resveratrol mediates anti-inflammatory properties and suppresses intestinal tumorigenesis through miRNA modulation.

  14. A GMCSF-neuroantigen fusion protein is a potent tolerogen in experimental autoimmune encephalomyelitis (EAE) that is associated with efficient targeting of neuroantigen to APC

    PubMed Central

    Blanchfield, J. Lori; Mannie, Mark D.

    2010-01-01

    Cytokine-NAg fusion proteins represent an emerging platform for specific targeting of self-antigen to particular APC subsets as a means to achieve antigen-specific immunological tolerance. This study focused on cytokine-NAg fusion proteins that targeted NAg to myeloid APC. Fusion proteins contained GM-CSF or the soluble extracellular domain of M-CSF as the N-terminal domain and the encephalitogenic 69–87 peptide of MBP as the C-terminal domain. GMCSF-NAg and MCSF-NAg fusion proteins were ∼1000-fold and 32-fold more potent than NAg in stimulating antigenic proliferation of MBP-specific T cells, respectively. The potentiated antigenic responses required cytokine-NAg covalent linkage and receptor-mediated uptake. That is, the respective cytokines did not potentiate antigenic responses when cytokine and NAg were added as separate molecules, and the potentiated responses were inhibited specifically by the respective free cytokine. Cytokine-dependent targeting of NAg was specific for particular subsets of APC. GMCSF-NAg and MCSF-NAg targeted NAg to DC and macrophages; conversely, IL4-NAg and IL2-NAg fusion proteins, respectively, induced an ∼1000-fold enhancement in NAg reactivity in the presence of B cell and T cell APC. GMCSF-NAg significantly attenuated severity of EAE when treatment was completed before encephalitogenic challenge or alternatively, when treatment was initiated after onset of EAE. MCSF-NAg also had significant tolerogenic activity, but GMCSF-NAg was substantially more efficacious as a tolerogen. Covalent GMCSF-NAg linkage was required for prevention and treatment of EAE. In conclusion, GMCSF-NAg was highly effective for targeting NAg to myeloid APC and was a potent, antigen-specific tolerogen in EAE. PMID:20007248

  15. Chemoprevention of intestinal polyps in ApcMin/+ mice fed with western or balanced diets by drinking annurca apple polyphenol extract.

    PubMed

    Fini, Lucia; Piazzi, Giulia; Daoud, Yahya; Selgrad, Michael; Maegawa, Shinji; Garcia, Melissa; Fogliano, Vincenzo; Romano, Marco; Graziani, Giulia; Vitaglione, Paola; Carmack, Susanne W; Gasbarrini, Antonio; Genta, Robert M; Issa, Jean-Pierre; Boland, C Richard; Ricciardiello, Luigi

    2011-06-01

    The Western diet (WD) is associated with a higher incidence of colorectal cancer (CRC) than the Mediterranean diet. Polyphenols extracted from Annurca apple showed chemopreventive properties in CRC cells. A multifactorial, four-arm study by using wild-type (wt) and Apc(Min/+) mice was carried out to evaluate the effect on polyp number and growth of APE treatment (60 μmol/L) ad libitum in drinking water combined with a WD or a balanced diet (BD) for 12 weeks. Compared with APE treatment, we found a significant drop in body weight (P < 0.0001), severe rectal bleeding (P = 0.0076), presence of extraintestinal tumors, and poorer activity status (P = 0.0034) in water-drinking Apc(Min/+) mice, more remarkably in the WD arm. In the BD and WD groups, APE reduced polyp number (35% and 42%, respectively, P < 0.001) and growth (60% and 52%, respectively, P < 0.0001) in both colon and small intestine. Increased antioxidant activity was found in wt animals fed both diets and in Apc(Min/+) mice fed WD and drinking APE. Reduced lipid peroxidation was found in Apc(Min/+) mice drinking APE fed both diets and in wt mice fed WD. In normal mucosa, mice drinking water had lower global levels of DNA methylation than mice drinking APE. APE treatment is highly effective in reducing polyps in Apc(Min/+) mice and supports the concept that a mixture of phytochemicals, as they are naturally present in foods, represent a plausible chemopreventive agent for CRC, particularly in populations at high risk for colorectal neoplasia.

  16. Validity of APCS score as a risk prediction score for advanced colorectal neoplasia in Chinese asymptomatic subjects: A prospective colonoscopy study.

    PubMed

    Li, Wenbin; Zhang, Lili; Hao, Jianyu; Wu, Yongdong; Lu, Di; Zhao, Haiying; Wang, Zhenjie; Xu, Tianming; Yang, Hong; Qian, Jiaming; Li, Jingnan

    2016-10-01

    The Asia-Pacific Colorectal Screening (APCS) score is a risk-stratification tool that helps predict the risk for advanced colorectal neoplasia (ACN) in asymptomatic Asian populations, but has not yet been assessed for its validity of use in Mainland China.The aim of the study was to assess the validity of APCS score in asymptomatic Chinese population, and to identify other risk factors associated with ACN.Asymptomatic subjects (N = 1010) who underwent colonoscopy screening between 2012 and 2014 in Beijing were enrolled. APCS scores based on questionnaires were used to stratify subjects into high, moderate, and average-risk tiers. Cochran-Armitage test for trend was used to assess the association between ACN and risk tiers. Univariate and multivariate logistic regression was performed with ACN as the outcome, adjusting for APCS score, body mass index, alcohol consumption, self-reported diabetes, and use of nonsteroidal anti-inflammatory drugs as independent variables.The average age was 53.5 (standard deviation 8.4) years. The prevalence of ACN was 4.1% overall, and in the high, moderate, and average-risk tiers, the prevalence was 8.8%, 2.83%, and 1.55%, respectively (P < 0.001). High-risk tier had 3.3 and 6.1-fold increased risk of ACN as compared with those in the moderate and average-risk tiers, respectively. In univariate analysis, high-risk tier, obesity, diabetes, and alcohol consumption were associated with ACN. In multivariate analysis, only high-risk tier was an independent predictor of ACN.The APCS score can effectively identify a subset of asymptomatic Chinese population at high risk for ACN. Further studies are required to identify other risk factors, and the acceptability of the score to the general population will need to be further examined.

  17. Methylation of multiple genes in hepatitis C virus associated hepatocellular carcinoma

    PubMed Central

    Zekri, Abdel-Rahman N.; Bahnasy, Abeer A.; Shoeab, Fatma elzahraa M.; Mohamed, Waleed S.; El-Dahshan, Dina H.; Ali, Fahmey T.; Sabry, Gilane M.; Dasgupta, Nairajana; Daoud, Sayed S.

    2013-01-01

    We studied promoter methylation (PM) of 11 genes in Peripheral Blood Lymphocytes (PBLs) and tissues of hepatitis C virus (HCV) associated hepatocellular carcinoma (HCC) and chronic hepatitis (CH) Egyptian patients. The present study included 31 HCC with their ANT, 38 CH and 13 normal hepatic tissue (NHT) samples. In all groups, PM of APC, FHIT, p15, p73, p14, p16, DAPK1, CDH1, RARβ, RASSF1A, O6MGMT was assessed by methylation-specific PCR (MSP). APC and O6-MGMT protein expression was assessed by immunohistochemistry (IHC) in the studied HCC and CH (20 samples each) as well as in a different HCC and CH set for confirmation of MSP results. PM was associated with progression from CH to HCC. Most genes showed high methylation frequency (MF) and the methylation index (MI) increased with disease progression. MF of p14, p73, RASSF1A, CDH1 and O6MGMT was significantly higher in HCC and their ANT. MF of APC was higher in CH. We reported high concordance between MF in HCC and their ANT, MF in PBL and CH tissues as well as between PM and protein expression of APC and O6MGMT. A panel of 4 genes (APC, p73, p14, O6MGMT) classifies the cases independently into HCC and CH with high accuracy (89.9%), sensitivity (83.9%) and specificity (94.7%). HCV infection may contribute to hepatocarcinogenesis through enhancing PM of multiple genes. PM of APC occurs early in the cascade while PM of p14, p73, RASSF1A, RARB, CDH1 and O6MGMT are late changes. A panel of APC, p73, p14, O6-MGMT could be used in monitoring CH patients for early detection of HCC. Also, we found that, the methylation status is not significantly affected by whether the tissue was from the liver or PBL, indicating the possibility of use PBL as indicator to genetic profile instead of liver tissue regardless the stage of disease. PMID:25685469

  18. Surface-assembled poly(I:C) on PEGylated PLGA microspheres as vaccine adjuvant: APC activation and bystander cell stimulation.

    PubMed

    Hafner, Annina M; Corthésy, Blaise; Textor, Marcus; Merkle, Hans P

    2016-11-30

    Biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres are potential vehicles to deliver antigens for vaccination. Because they lack the full capacity to activate professional antigen presenting cells (APCs), combination with an immunostimulatory adjuvant may be considered. A candidate is the synthetic TLR3 ligand polyriboinosinic acid-polyribocytidylic acid, poly(I:C), which drives cell-mediated immunity. However, poly(I:C) has also been linked to the pathogenesis of autoimmunity, as affected by widespread stimulation of non-hematopoietic bystander cells. To address this aspect, we propose to minimize the poly(I:C) dose as well as to control the stimulation of non-immune bystander cells by poly(I:C). To facilitate the maturation of APCs with minimal poly(I:C) doses, we surface-assembled poly(I:C) onto PLGA microspheres. The microspheres' surface was further modified by poly(ethylene glycol) (PEG) coronas with varying PEG-densities. PLGA microspheres loaded with tetanus toxoid (tt) as model antigen were manufactured by microextrusion-based solvent extraction. The negatively charged PLGA(tt) microspheres were coated with polycationic poly(l-lysine) (PLL) polymers, either PLL itself or PEG-grafted PLL (PLL-g-PEG) with varying grafting ratios (g=2.2 and g=10.1). Stable surface assembly of poly(I:C) was achieved by subsequent incubation of polymer-coated PLGA microspheres with aqueous poly(I:C) solutions. We evaluated the immunostimulatory potential of such PLGA(tt) microsphere formulations on monocyte-derived dendritic cells (MoDCs) as well as human foreskin fibroblasts (HFFs) as model for non-hematopoietic bystander cells. Formulations with surface-assembled poly(I:C) readily activated MoDCs with respect to the expression of maturation-related surface markers, proinflammatory cytokine secretion and directed migration. When surface-assembled, poly(I:C) enhanced its immunostimulatory activity by more than one order of magnitude as compared to free poly

  19. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida.

    PubMed

    Haji Gholizadeh, Mohammad; Melesse, Assefa M; Reddi, Lakshmi

    2016-10-01

    In this study, principal component analysis (PCA), factor analysis (FA), and the absolute principal component score-multiple linear regression (APCS-MLR) receptor modeling technique were used to assess the water quality and identify and quantify the potential pollution sources affecting the water quality of three major rivers of South Florida. For this purpose, 15years (2000-2014) dataset of 12 water quality variables covering 16 monitoring stations, and approximately 35,000 observations was used. The PCA/FA method identified five and four potential pollution sources in wet and dry seasons, respectively, and the effective mechanisms, rules and causes were explained. The APCS-MLR apportioned their contributions to each water quality variable. Results showed that the point source pollution discharges from anthropogenic factors due to the discharge of agriculture waste and domestic and industrial wastewater were the major sources of river water contamination. Also, the studied variables were categorized into three groups of nutrients (total kjeldahl nitrogen, total phosphorus, total phosphate, and ammonia-N), water murkiness conducive parameters (total suspended solids, turbidity, and chlorophyll-a), and salt ions (magnesium, chloride, and sodium), and average contributions of different potential pollution sources to these categories were considered separately. The data matrix was also subjected to PMF receptor model using the EPA PMF-5.0 program and the two-way model described was performed for the PMF analyses. Comparison of the obtained results of PMF and APCS-MLR models showed that there were some significant differences in estimated contribution for each potential pollution source, especially in the wet season. Eventually, it was concluded that the APCS-MLR receptor modeling approach appears to be more physically plausible for the current study. It is believed that the results of apportionment could be very useful to the local authorities for the control and

  20. Elevation of n-3/n-6 PUFAs ratio suppresses mTORC1 and prevents colorectal carcinogenesis associated with APC mutation

    PubMed Central

    Zhang, Baiyu; He, Minhong; Dong, Xiaoying; Lin, Xiaojun; Jia, Chunhong; Bai, Xiaochun; Dai, Yifan; Su, Yongchun; Zou, Zhipeng; Zheng, Hang

    2016-01-01

    Although epidemiological and preclinical studies have shown the preventative effect of n-3 polyunsaturated fatty acids (PUFAs) on colorectal cancer (CRC), the underlying molecular mechanisms are not clear. In this study, we revealed that elevation of n−3/n-6 PUFAs ratio suppress the mechanistic target of rapamycin complex 1 (mTORC1) and prevent colorectal tumorigenesis. The transgenic expression of fat-1, a desaturase that catalyzes the conversion of n-6 to n-3 PUFAs and produces n-3 PUFAs endogenously, repressed colorectal tumor cell growth and remarkably reduced tumor burden, and alleviated anemia as well as hyperlipidemia in APCMin/+ (adenomatous polyposis coli) mice, a classic CRC model that best simulates most clinical cases. In contrast to arachidonic acid (AA, C20:4 n−6), either Docosahexaenoic acid (DHA, C22:6 n−3), eicosapentaenoic acid (EPA, C20:5 n−3), or a combination of DHA and AA, efficiently inhibited the proliferation of CRC cell lines and promoted apoptosis in these cells. The ectopic expression of fat-1 had similar effects in colon epithelial cells with APC depletion. Mechanistically, elevation of n−3/n−6 ratio suppressed mTORC1 activity in tumors of APCMin/+ mice, CRC cell lines with APC mutation, and in normal colon epithelial cells with APC depletion. In addition, elevation of n−3/n−6 ratio repressed mTORC1 activity and inhibited adipogenic differentiation in preadipocytes with APC knockdown, as well as alleviated hyperlipidemia in APCMin/+ mice. Taken together, our findings have provided novel insights into the potential mechanism by which increase in n−3/n−6 PUFAs ratio represses CRC development, and also a new rationale for utilizing n-3 PUFAs in CRC prevention and treatment. PMID:27769066

  1. MPO-type single-mode multi-fiber connector: Low-loss and high-return-loss intermateability of APC-MPO connectors

    NASA Astrophysics Data System (ADS)

    Satake, Toshiaki; Nagasawa, Shinji; Hughes, Mike; Lutz, Sharon

    2011-01-01

    The electrical communication laboratory of NTT started the research of MT (Mechanically Transferable) connector in early 1980s. The initial goal was to realize a multi-fiber connector which can repeat low loss, stable, reliable and low-cost connections of subscriber optical fiber cable networks for more than 20 years period in the field. We review the multi-fiber alignment design with two guide pins, and following several technical improvements toward the final MT connector used in the commercial telecommunication networks. And then, we review development histories to reach to the low-loss, high-return-loss and reliable APC-MPO (Angled Physical Contact Multi-fiber Push On) connectors introduced in NTT COs and in Verizon's FTTH (Fiber To The Home) networks. In the latter half, we propose the low-loss intermateability design for connectors made by different suppliers in order to enable mass introductions into large scale systems. In addition we also describe an accurate connector loss presumption method for different lots' ferrules based on the MT ferrule dimension data before assembling the connectors. We believe with a wide intermateability of APC-MPO connector will increase its use in the fields. The APC-MPO connector manufactured based on the proposed design had low insertion losses of less than 0.25 dB at the same level of simplex connectors and the higher level of return losses higher than 65 dB.

  2. Akt finds its new path to regulate cell cycle through modulating Skp2 activity and its destruction by APC/Cdh1

    PubMed Central

    Gao, Daming; Inuzuka, Hiroyuki; Tseng, Alan; Wei, Wenyi

    2009-01-01

    Skp2 over-expression has been observed in many human cancers. However, the mechanisms underlying elevated Skp2 expression have remained elusive. We recently reported that Akt1, but not Akt2, directly controls Skp2 stability by interfering with its association with APC/Cdh1. As a result, Skp2 degradation is protected in cancer cells with elevated Akt activity. This finding expands our knowledge of how specific kinase cascades influence proteolysis governed by APC/Cdh1 complexes. However, it awaits further investigation to elucidate whether the PI3K/Akt circuit affects other APC/Cdh1 substrates. Our results further strengthen the argument that different Akt isoforms might have distinct, even opposing functions in the regulation of cell growth or migration. In addition, we noticed that Ser72 is localized in a putative Nuclear Localization Sequence (NLS), and that phosphorylation of Ser72 disrupts the NLS and thus promotes Skp2 cytoplasmic translocation. This finding links elevated Akt activity with the observed cytoplasmic Skp2 staining in aggressive breast and prostate cancer patients. Furthermore, it provides the rationale for the development of specific Akt1 inhibitors as efficient anti-cancer therapeutic agents. PMID:19549334

  3. The APC/C subunit Cdc16/Cut9 is a contiguous tetratricopeptide repeat superhelix with a homo-dimer interface similar to Cdc27

    PubMed Central

    Zhang, Ziguo; Kulkarni, Kiran; Hanrahan, Sarah J; Thompson, Andrew J; Barford, David

    2010-01-01

    The anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase responsible for controlling cell cycle transitions, is a multisubunit complex assembled from 13 different proteins. Numerous APC/C subunits incorporate multiple copies of the tetratricopeptide repeat (TPR). Here, we report the crystal structure of Schizosaccharomyces pombe Cut9 (Cdc16/Apc6) in complex with Hcn1 (Cdc26), showing that Cdc16/Cut9 is a contiguous TPR superhelix of 14 TPR units. A C-terminal block of TPR motifs interacts with Hcn1, whereas an N-terminal TPR block mediates Cdc16/Cut9 self-association through a homotypic interface. This dimer interface is structurally related to the N-terminal dimerization domain of Cdc27, demonstrating that both Cdc16/Cut9 and Cdc27 form homo-dimers through a conserved mechanism. The acetylated N-terminal Met residue of Hcn1 is enclosed within a chamber created from the Cut9 TPR superhelix. Thus, in complex with Cdc16/Cut9, the N-acetyl-Met residue of Hcn1, a putative degron for the Doa10 E3 ubiquitin ligase, is inaccessible for Doa10 recognition, protecting Hcn1/Cdc26 from ubiquitin-dependent degradation. This finding may provide a structural explanation for a mechanism to control the stoichiometry of proteins participating in multisubunit complexes. PMID:20924356

  4. DNA-PKcs Negatively Regulates Cyclin B1 Protein Stability through Facilitating Its Ubiquitination Mediated by Cdh1-APC/C Pathway.

    PubMed

    Shang, Zeng-Fu; Tan, Wei; Liu, Xiao-Dan; Yu, Lan; Li, Bing; Li, Ming; Song, Man; Wang, Yu; Xiao, Bei-Bei; Zhong, Cai-Gao; Guan, Hua; Zhou, Ping-Kun

    2015-01-01

    The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical component of the non-homologous end-joining pathway of DNA double-stranded break repair. DNA-PKcs has also been shown recently functioning in mitotic regulation. Here, we report that DNA-PKcs negatively regulates the stability of Cyclin B1 protein through facilitating its ubiquitination mediated by Cdh1 / E 3 ubiquitin ligase APC/C pathway. Loss of DNA-PKcs causes abnormal accumulation of Cyclin B1 protein. Cyclin B1 degradation is delayed in DNA-PKcs-deficient cells as result of attenuated ubiquitination. The impact of DNA-PKcs on Cyclin B1 stability relies on its kinase activity. Our study further reveals that DNA-PKcs interacts with APC/C core component APC2 and its co-activator Cdh1. The destruction of Cdh1 is accelerated in the absence of DNA-PKcs. Moreover, overexpression of exogenous Cdh1 can reverse the increase of Cyclin B1 protein in DNA-PKcs-deficient cells. Thus, DNA-PKcs, in addition to its direct role in DNA damage repair, functions in mitotic progression at least partially through regulating the stability of Cyclin B1 protein.

  5. A role for the Fizzy/Cdc20 family of proteins in activation of the APC/C distinct from substrate recruitment.

    PubMed

    Kimata, Yuu; Baxter, Joanne E; Fry, Andrew M; Yamano, Hiroyuki

    2008-11-21

    The Fizzy/Cdc20 family of proteins are essential activators of the anaphase-promoting complex/cyclosome (APC/C), a multisubunit E3 ubiquitin ligase. However, apart from the well-established role of the C-terminal WD40 domain in substrate recognition, the precise roles of the activators remain elusive. Here we show that Nek2A, which directly binds the APC/C, can be ubiquitylated and destroyed in Fizzy/Cdc20-depleted Xenopus egg extracts when only the N-terminal domain of Fizzy/Cdc20 (N-Cdc20) is added. This activity is dependent upon the C box and is conserved in the alternative activator, Fizzy-related/Cdh1. In contrast, canonical substrates such as cyclin B and securin require both the N-terminal and WD40 domains, unless N-Cdc20 is fused to substrates when the WD40 domain becomes dispensable. Furthermore, in Cdc20-depleted cells, N-Cdc20 can facilitate Nek2A destruction in a C box-dependent manner. Our results reveal a role for the N-terminal domain of the Fizzy/Cdc20 family of activators in triggering substrate ubiquitylation by the APC/C.

  6. Pilot-scale road subbase made with granular material formulated with MSWI bottom ash and stabilized APC fly ash: environmental impact assessment.

    PubMed

    del Valle-Zermeño, R; Formosa, J; Prieto, M; Nadal, R; Niubó, M; Chimenos, J M

    2014-02-15

    A granular material (GM) to be used as road sub-base was formulated using 80% of weathered bottom ash (WBA) and 20% of mortar. The mortar was prepared separately and consisted in 50% APC and 50% of Portland cement. A pilot-scale study was carried on by constructing three roads in order to environmentally evaluate the performance of GM in a real scenario. By comparing the field results with those of the column experiments, the overestimations observed at laboratory scale can be explained by the potential mechanisms in which water enters into the road body and the pH of the media. An exception was observed in the case of Cu, whose concentration release at the test road was higher. The long-time of exposure at atmospheric conditions might have favoured oxidation of organic matter and therefore the leaching of this element. The results obtained showed that immobilization of all heavy metals and metalloids from APC is achieved by the pozzolanic effect of the cement mortar. This is, to the knowledge of the authors, the only pilot scale study that is considering reutilization of APC as a safe way to disposal.

  7. DNA-PKcs Negatively Regulates Cyclin B1 Protein Stability through Facilitating Its Ubiquitination Mediated by Cdh1-APC/C Pathway

    PubMed Central

    Shang, Zeng-Fu; Tan, Wei; Liu, Xiao-Dan; Yu, Lan; Li, Bing; Li, Ming; Song, Man; Wang, Yu; Xiao, Bei-Bei; Zhong, Cai-Gao; Guan, Hua; Zhou, Ping-Kun

    2015-01-01

    The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical component of the non-homologous end-joining pathway of DNA double-stranded break repair. DNA-PKcs has also been shown recently functioning in mitotic regulation. Here, we report that DNA-PKcs negatively regulates the stability of Cyclin B1 protein through facilitating its ubiquitination mediated by Cdh1 / E 3 ubiquitin ligase APC/C pathway. Loss of DNA-PKcs causes abnormal accumulation of Cyclin B1 protein. Cyclin B1 degradation is delayed in DNA-PKcs-deficient cells as result of attenuated ubiquitination. The impact of DNA-PKcs on Cyclin B1 stability relies on its kinase activity. Our study further reveals that DNA-PKcs interacts with APC/C core component APC2 and its co-activator Cdh1. The destruction of Cdh1 is accelerated in the absence of DNA-PKcs. Moreover, overexpression of exogenous Cdh1 can reverse the increase of Cyclin B1 protein in DNA-PKcs-deficient cells. Thus, DNA-PKcs, in addition to its direct role in DNA damage repair, functions in mitotic progression at least partially through regulating the stability of Cyclin B1 protein. PMID:26221070

  8. The E3 ligase APC/C-Cdh1 is required for associative fear memory and long-term potentiation in the amygdala of adult mice.

    PubMed

    Pick, Joseph E; Malumbres, Marcos; Klann, Eric

    2012-12-14

    The anaphase promoting complex/cyclosome (APC/C) is an E3 ligase regulated by Cdh1. Beyond its role in controlling cell cycle progression, APC/C-Cdh1 has been detected in neurons and plays a role in long-lasting synaptic plasticity and long-term memory. Herein, we further examined the role of Cdh1 in synaptic plasticity and memory by generating knockout mice where Cdh1 was conditionally eliminated from the forebrain post-developmentally. Although spatial learning and memory in the Morris water maze (MWM) was normal, the Cdh1 conditional knockout (cKO) mice displayed enhanced reversal learning in the MWM and in a water-based Y maze. In addition, we found that the Cdh1 cKO mice had impaired associative fear memory and exhibited impaired long-term potentiation (LTP) in amygdala slices. Finally, we observed increased expression of Shank1 and NR2A expression in amygdalar slices from the Cdh1 cKO mice following the induction of LTP, suggesting a possible molecular mechanism underlying the behavioral and synaptic plasticity impairments displayed in these mice. Our findings are consistent with a role for the APC/C-Cdh1 in fear memory and synaptic plasticity in the amygdala.

  9. Cdk5-mediated inhibition of APC/C-Cdh1 switches on the cyclin D1-Cdk4-pRb pathway causing aberrant S-phase entry of postmitotic neurons.

    PubMed

    Veas-Pérez de Tudela, Miguel; Maestre, Carolina; Delgado-Esteban, María; Bolaños, Juan P; Almeida, Angeles

    2015-12-10

    The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that regulates cell cycle progression in proliferating cells. To enter the S-phase, APC/C must be inactivated by phosphorylation of its cofactor, Cdh1. In post-mitotic cells such as neurons APC/C-Cdh1 complex is highly active and responsible for the continuous degradation of mitotic cyclins. However, the specific molecular pathway that determines neuronal cell cycle blockade in post-mitotic neurons is unknown. Here, we show that activation of glutamatergic receptors in rat cortical primary neurons endogenously triggers cyclin-dependent kinase-5 (Cdk5)-mediated phosphorylation of Cdh1 leading to its cytoplasmic accumulation and disassembly from the APC3 core protein, causing APC/C inactivation. Conversely, pharmacological or genetic inhibition of Cdk5 promotes Cdh1 ubiquitination and proteasomal degradation. Furthermore, we show that Cdk5-mediated phosphorylation and inactivation of Cdh1 leads to p27 depletion, which switches on the cyclin D1-cyclin-dependent kinase-4 (Cdk4)-retinoblastoma protein (pRb) pathway to allow the S-phase entry of neurons. However, neurons do not proceed through the cell cycle and die by apoptosis. These results indicate that APC/C-Cdh1 actively suppresses an aberrant cell cycle entry and death of neurons, highlighting its critical function in neuroprotection.

  10. HCV RNA Activates APCs via TLR7/TLR8 While Virus Selectively Stimulates Macrophages Without Inducing Antiviral Responses.

    PubMed

    Zhang, Yuwei; El-Far, Mohamed; Dupuy, Franck P; Abdel-Hakeem, Mohamed S; He, Zhong; Procopio, Francesco Andrea; Shi, Yu; Haddad, Elias K; Ancuta, Petronela; Sekaly, Rafick-Pierre; Said, Elias A

    2016-07-07

    The innate and adaptive immune systems fail to control HCV infection in the majority of infected individuals. HCV is an ssRNA virus, which suggests a role for Toll-like receptors (TLRs) 7 and 8 in initiating the anti-viral response. Here we demonstrate that HCV genomic RNA harbours specific sequences that initiate an anti-HCV immune response through TLR7 and TLR8 in various antigen presenting cells. Conversely, HCV particles are detected by macrophages, but not by monocytes and DCs, through a TLR7/8 dependent mechanism; this leads to chloroquine sensitive production of pro-inflammatory cytokines including IL-1β, while the antiviral type I Interferon response is not triggered in these cells. Antibodies to DC-SIGN, a c-type lectin selectively expressed by macrophages but not pDCs or mDCs, block the production of cytokines. Novel anti-HCV vaccination strategies should target the induction of TLR7/8 stimulation in APCs in order to establish potent immune responses against HCV.

  11. HCV RNA Activates APCs via TLR7/TLR8 While Virus Selectively Stimulates Macrophages Without Inducing Antiviral Responses

    PubMed Central

    Zhang, Yuwei; El-Far, Mohamed; Dupuy, Franck P.; Abdel-Hakeem, Mohamed S.; He, Zhong; Procopio, Francesco Andrea; Shi, Yu; Haddad, Elias K.; Ancuta, Petronela; Sekaly, Rafick-Pierre; Said, Elias A.

    2016-01-01

    The innate and adaptive immune systems fail to control HCV infection in the majority of infected individuals. HCV is an ssRNA virus, which suggests a role for Toll-like receptors (TLRs) 7 and 8 in initiating the anti-viral response. Here we demonstrate that HCV genomic RNA harbours specific sequences that initiate an anti-HCV immune response through TLR7 and TLR8 in various antigen presenting cells. Conversely, HCV particles are detected by macrophages, but not by monocytes and DCs, through a TLR7/8 dependent mechanism; this leads to chloroquine sensitive production of pro-inflammatory cytokines including IL-1β, while the antiviral type I Interferon response is not triggered in these cells. Antibodies to DC-SIGN, a c-type lectin selectively expressed by macrophages but not pDCs or mDCs, block the production of cytokines. Novel anti-HCV vaccination strategies should target the induction of TLR7/8 stimulation in APCs in order to establish potent immune responses against HCV. PMID:27385120

  12. Profiling of volatile compounds in APC(Min/+) mice blood by dynamic headspace extraction and gas chromatography/mass spectrometry.

    PubMed

    Kakuta, Shoji; Nishiumi, Shin; Yoshida, Masaru; Fukusaki, Eiichiro; Bamba, Takeshi

    2015-10-15

    Various volatile compounds as well as hydrophilic compounds exist in the blood. For example, 2-alkenals, 4-hydroxy-2-alkenals, and ketoaldehydes have been reported as oxidized lipid-derived volatiles in blood. These specific volatiles have been associated with diseases; however, multi-volatile analyses have not been performed. In this study, volatile profiling of APC(Min/+) mouse plasma by dynamic headspace extraction was performed for multi-volatile analysis. In total, 19 volatiles were detected in the plasma of mice, based on information regarding oxidized lipid-derived volatile compounds, and eight of these compounds differed significantly between normal and diseased mice. 2-Methyl-2-butanol and benzyl alcohol were previously unreported in blood samples. Furthermore, 3,5,5-trimethyl-2(5H)-furanone was only detected in normal mice. 5-Methyl-3-hexanone and benzaldehyde have been detected in subjects with gastrointestinal diseases and lung cancer, respectively. Therefore, volatile profiling can be used to detect differences between samples and to identify compounds associated with diseases.

  13. Cell-cycle-dependent PC-PLC regulation by APC/C(Cdc20)-mediated ubiquitin-proteasome pathway.

    PubMed

    Fu, Da; Ma, Yushui; Wu, Wei; Zhu, Xuchao; Jia, Chengyou; Zhao, Qianlei; Zhang, Chunyi; Wu, Xing Zhong

    2009-07-01

    Phosphatidylcholine-specific phospholipase C (PC-PLC) is involved in the cell signal transduction, cell proliferation, and apoptosis. The mechanism of its action, however, has not been fully understood, particularly, the role of PC-PLC in the cell cycle. In the present study, we found that cell division cycle 20 homolog (Cdc20) and PC-PLC were co-immunoprecipitated reciprocally by either antibody in rat hepatoma cells CBRH-7919 as well as in rat liver tissue. Using confocal microscopy, we found that PC-PLC and Cdc20 were co-localized in the perinuclear endoplasmic reticulum region (the "juxtanuclear quality control" compartment, JUNQ). The expression level and activities of PC-PLC changed in a cell-cycle-dependent manner and were inversely correlated with the expression of Cdc20. Intriguingly, Cdc20 overexpression altered the subcellular localization and distribution of PC-PLC, and caused PC-PLC degradation by the ubiquitin proteasome pathway (UPP). Taken together, our data indicate that PC-PLC regulation in cell cycles is controlled by APC/C(Cdc20)-mediated UPP.

  14. MYH biallelic mutation can inactivate the two genetic pathways of colorectal cancer by APC or MLH1 transversions.

    PubMed

    Lefevre, Jérémie H; Colas, Chrystelle; Coulet, Florence; Bonilla, Carolina; Mourra, Najat; Flejou, Jean-Francois; Tiret, Emmanuel; Bodmer, Walter; Soubrier, Florent; Parc, Yann

    2010-12-01

    MYH associated polyposis is a hereditary syndrome responsible for early colorectal cancer with a distinct genetic pathway from the Familial Adenomatous Polyposis or the Hereditary Non Polyposis Colorectal Cancer syndrome. We have studied a family with three members bearing a biallelic mutation in MYH at c.1185_1186dup. One patient who developed colon cancer had loss of expression of MLH1 on tumoral tissue and microsatellite instability (MSI) phenotype. Analysis of MLH1 based on his blood sample revealed no germline mutation or large genomic deletion. No methylation of the promoter was identified in tumoral DNA. No transversion mutations were identified in APC or KRAS in tumor DNA of this patient. Loss of expression of MLH1 was due to a transversion in intron 7 at position +5 (c.588 + 5G > T) leading to a complete deletion of exon 7 at the RNA level. This observation demonstrates that MLH1 can be a target of MYH transversions leading to MSI phenotype.

  15. Regulation of Rad17 Protein Turnover Unveils an Impact of Rad17-APC Cascade in Breast Carcinogenesis and Treatment*

    PubMed Central

    Zhou, Zhuan; Jing, Chao; Zhang, Liyong; Takeo, Fujita; Kim, Hyun; Huang, Yi; Liu, Zhihua; Wan, Yong

    2013-01-01

    Aberrant regulation of DNA damage checkpoint function leads to genome instability that in turn can predispose cellular tissues to become cancerous. Previous works from us and others demonstrated the role of Rad17 in either activation or termination of DNA damage checkpoint function. In the current study, we have revealed the unexpected accumulation of Rad17 in various types of breast cancer cell lines as well as human breast cancer tissues. We observed that Rad17 protein turnover rate in breast epithelial cells is much faster than in breast cancer cells, where the turnover of Rad17 is regulated by the Cdh1/APC pathway. We further observed that Rad17-mediated checkpoint function is modulated by proteolysis. Stabilization of Rad17 disrupts cellular response to chemotherapeutic drug-induced DNA damage and enhances cellular transformation. In addition, manipulation of Rad17 by RNA interference or stabilization of Rad17 significantly sensitize breast cancer cell to various chemotherapeutic drugs. Our present results indicate the manipulation of Rad17 proteolysis could be a valuable approach to sensitize breast cancer cell to the chemotherapeutic treatment despite of the critical role in governing DNA damage response and cellular recovery from genotoxic stress. PMID:23637229

  16. Gene promoter methylation in colorectal cancer and healthy adjacent mucosa specimens

    PubMed Central

    Coppedè, Fabio; Migheli, Francesca; Lopomo, Angela; Failli, Alessandra; Legitimo, Annalisa; Consolini, Rita; Fontanini, Gabriella; Sensi, Elisa; Servadio, Adele; Seccia, Massimo; Zocco, Giuseppe; Chiarugi, Massimo; Spisni, Roberto; Migliore, Lucia

    2014-01-01

    We evaluated the promoter methylation levels of the APC, MGMT, hMLH1, RASSF1A and CDKN2A genes in 107 colorectal cancer (CRC) samples and 80 healthy adjacent tissues. We searched for correlation with both physical and pathological features, polymorphisms of folate metabolism pathway genes (MTHFR, MTRR, MTR, RFC1, TYMS, and DNMT3B), and data on circulating folate, vitamin B12 and homocysteine, which were available in a subgroup of the CRC patients. An increased number of methylated samples were found in CRC respect to adjacent healthy tissues, with the exception of APC, which was also frequently methylated in healthy colonic mucosa. Statistically significant associations were found between RASSF1A promoter methylation and tumor stage, and between hMLH1 promoter methylation and tumor location. Increasing age positively correlated with both hMLH1 and MGMT methylation levels in CRC tissues, and with APC methylation levels in the adjacent healthy mucosa. Concerning gender, females showed higher hMLH1 promoter methylation levels with respect to males. In CRC samples, the MTR 2756AG genotype correlated with higher methylation levels of RASSF1A, and the TYMS 1494 6bp ins/del polymorphism correlated with the methylation levels of both APC and hMLH1. In adjacent healthy tissues, MTR 2756AG and TYMS 1494 6bp del/del genotypes correlated with APC and MGMT promoter methylation, respectively. Low folate levels were associated with hMLH1 hypermethylation. Present results support the hypothesis that DNA methylation in CRC depends from both physiological and environmental factors, with one-carbon metabolism largely involved in this process. PMID:24500500

  17. Irsogladine maleate, a gastric mucosal protectant, suppresses intestinal polyp development in Apc-mutant mice

    PubMed Central

    Onuma, Wakana; Tomono, Susumu; Miyamoto, Shinngo; Fujii, Gen; Hamoya, Takahiro; Fujimoto, Kyoko; Miyoshi, Noriyuki; Fukai, Fumio; Wakabayashi, Keiji; Mutoh, Michihiro

    2016-01-01

    This study aimed to identify gastric mucosal protectants that suppress intestinal tumorigenesis in a mouse model. We chose six gastric mucosal protectants (ecabet sodium hydrate, irsogladine maleate, rebamipide, sofalcone, teprenone and troxipide) and examined their effects on the activity of oxidative stress-related transcriptional factors, including AP-1, NF-jB, NRF2, p53 and STAT3, in Caco-2 cells using a luciferase reporter gene assay. Among the six protectants, irsogladine maleate clearly inhibited NF-jB and AP-1 transcriptional activity. Furthermore, the chemopreventive property of irsogladine maleate was examined in a Min mouse model of familial adenomatous polyposis. Treatment with irsogladine maleate at doses of 5 and 50 ppm significantly reduced the number of intestinal polyps to 69% and 66% of the untreated control value, respectively. In these polyps, mRNA levels of the downstream targets of NF-jB, such as IL-1β and IL-6, were decreased by irsogladine maleate treatment. Moreover, the levels of oxidative stress-related markers, reactive carbonyl species, in the livers of Min mice were clearly decreased following the administration of irsogladine maleate. This study demonstrated that irsogladine maleate suppresses intestinal polyp formation in Min mice partly through the NF-jB signaling pathway, thus reducing oxidative stress. PMID:26840084

  18. Hybrid biosynthetic gene therapy vector development and dual engineering capacity.

    PubMed

    Jones, Charles H; Ravikrishnan, Anitha; Chen, Mingfu; Reddinger, Ryan; Kamal Ahmadi, Mahmoud; Rane, Snehal; Hakansson, Anders P; Pfeifer, Blaine A

    2014-08-26

    Genetic vaccines offer a treatment opportunity based upon successful gene delivery to specific immune cell modulators. Driving the process is the vector chosen for gene cargo packaging and subsequent delivery to antigen-presenting cells (APCs) capable of triggering an immune cascade. As such, the delivery process must successfully navigate a series of requirements and obstacles associated with the chosen vector and target cell. In this work, we present the development and assessment of a hybrid gene delivery vector containing biological and biomaterial components. Each component was chosen to design and engineer gene delivery separately in a complimentary and fundamentally distinct fashion. A bacterial (Escherichia coli) inner core and a biomaterial [poly(beta-amino ester)]-coated outer surface allowed the simultaneous application of molecular biology and polymer chemistry to address barriers associated with APC gene delivery, which include cellular uptake and internalization, phagosomal escape, and intracellular cargo concentration. The approach combined and synergized normally disparate vector properties and tools, resulting in increased in vitro gene delivery beyond individual vector components or commercially available transfection agents. Furthermore, the hybrid device demonstrated a strong, efficient, and safe in vivo humoral immune response compared with traditional forms of antigen delivery. In summary, the flexibility, diversity, and potential of the hybrid design were developed and featured in this work as a platform for multivariate engineering at the vector and cellular scales for new applications in gene delivery immunotherapy.

  19. The Notch-2 Gene Is Regulated by Wnt Signaling in Cultured Colorectal Cancer Cells

    PubMed Central

    Ungerbäck, Jonas; Elander, Nils; Grünberg, John; Sigvardsson, Mikael; Söderkvist, Peter

    2011-01-01

    Background Notch and Wnt pathways are key regulators of intestinal homeostasis and alterations in these pathways may lead to the development of colorectal cancer (CRC). In CRC the Apc/β-catenin genes in the Wnt signaling pathway are frequently mutated and active Notch signaling contributes to tumorigenesis by keeping the epithelial cells in a proliferative state. These pathways are simultaneously active in proliferative adenoma cells and a crosstalk between them has previously been suggested in normal development as well as in cancer. Principal Findings In this study, in silico analysis of putative promoters involved in transcriptional regulation of genes coding for proteins in the Notch signaling pathway revealed several putative LEF-1/TCF sites as potential targets for β-catenin and canonical Wnt signaling. Further results from competitive electrophoretic mobility-shift assay (EMSA) studies suggest binding of several putative sites in Notch pathway gene promoters to in vitro translated β-catenin/Lef-1. Wild type (wt)-Apc negatively regulates β-catenin. By induction of wt-Apc or β-catenin silencing in HT29 cells, we observed that several genes in the Notch pathway, including Notch-2, were downregulated. Finally, active Notch signaling was verified in the ApcMin/+ mouse model where Hes-1 mRNA levels were found significantly upregulated in intestinal tumors compared to normal intestinal mucosa. Luciferase assays showed an increased activity for the core and proximal Notch-2 promoter upon co-transfection of HCT116 cells with high expression recombinant Tcf-4, Lef-1 or β-catenin. Conclusions In this paper, we identified Notch-2 as a novel target for β-catenin-dependent Wnt signaling. Furthermore our data supports the notion that additional genes in the Notch pathway might be transcriptionally regulated by Wnt signaling in colorectal cancer. PMID:21437251

  20. Diet- and Genetically-Induced Obesity Differentially Affect the Fecal Microbiome and Metabolome in Apc1638N Mice

    PubMed Central

    Parnell, Laurence D.; Iyer, Lakshmanan K.; Liu, Zhenhua; Kane, Anne V.; Chen, C-Y. Oliver; Tai, Albert K.; Bowman, Thomas A.; Obin, Martin S.; Mason, Joel B.; Greenberg, Andrew S.; Choi, Sang-Woon; Selhub, Jacob; Paul, Ligi; Crott, Jimmy W.

    2015-01-01

    Obesity is a risk factor for colorectal cancer (CRC), and alterations in the colonic microbiome and metabolome may be mechanistically involved in this relationship. The relative contribution of diet and obesity per se are unclear. We compared the effect of diet- and genetically-induced obesity on the intestinal microbiome and metabolome in a mouse model of CRC. Apc1638N mice were made obese by either high fat (HF) feeding or the presence of the Leprdb/db (DbDb) mutation. Intestinal tumors were quantified and stool microbiome and metabolome were profiled. Genetic obesity, and to a lesser extent HF feeding, promoted intestinal tumorigenesis. Each induced distinct microbial patterns: taxa enriched in HF were mostly Firmicutes (6 of 8) while those enriched in DbDb were split between Firmicutes (7 of 12) and Proteobacteria (5 of 12). Parabecteroides distasonis was lower in tumor-bearing mice and its abundance was inversely associated with colonic Il1b production (p<0.05). HF and genetic obesity altered the abundance of 49 and 40 fecal metabolites respectively, with 5 in common. Of these 5, adenosine was also lower in obese and in tumor-bearing mice (p<0.05) and its concentration was inversely associated with colonic Il1b and Tnf production (p<0.05). HF and genetic obesity differentially alter the intestinal microbiome and metabolome. A depletion of adenosine and P.distasonis in tumor-bearing mice could play a mechanistic role in tumor formation. Adenosine and P. distasonis have previously been shown to be anti-inflammatory in the colon and we postulate their reduction could promote tumorigenesis by de-repressing inflammation. PMID:26284788

  1. Streptococcus thermophilus APC151 Strain Is Suitable for the Manufacture of Naturally GABA-Enriched Bioactive Yogurt.

    PubMed

    Linares, Daniel M; O'Callaghan, Tom F; O'Connor, Paula M; Ross, R P; Stanton, Catherine

    2016-01-01

    Consumer interest in health-promoting food products is a major driving force for the increasing global demand of functional (probiotic) dairy foods. Yogurt is considered the ideal medium for delivery of beneficial functional ingredients. Gamma-amino-butyric acid has potential as a bioactive ingredient in functional foods due to its health-promoting properties as an anti-stress, anti-hypertensive, and anti-diabetic agent. Here, we report the use of a novel Streptococcus thermophilus strain, isolated from the digestive tract of fish, for production of yogurt naturally enriched with 2 mg/ml of gamma-amino-butyric acid (200 mg in a standard yogurt volume of 100 ml), a dose in the same range as that provided by some commercially available gamma-amino-butyric acid supplements. The biotechnological suitability of this strain for industrial production of yogurt was demonstrated by comparison with the reference yogurt inoculated with the commercial CH1 starter (Chr. Hansen) widely used in the dairy industry. Both yogurts showed comparable pH curves [ΔpH/Δt = 0.31-0.33 h(-1)], viscosity [0.49 Pa-s], water holding capacity [72-73%], and chemical composition [moisture (87-88%), protein (5.05-5.65%), fat (0.12-0.15%), sugar (4.8-5.8%), and ash (0.74-1.2%)]. Gamma-amino-butyric acid was not detected in the control yogurt. In conclusion, the S. thermophilus APC151 strain reported here provides a natural means for fortification of yogurt with gamma-amino-butyric acid.

  2. Streptococcus thermophilus APC151 Strain Is Suitable for the Manufacture of Naturally GABA-Enriched Bioactive Yogurt

    PubMed Central

    Linares, Daniel M.; O’Callaghan, Tom F.; O’Connor, Paula M.; Ross, R. P.; Stanton, Catherine

    2016-01-01

    Consumer interest in health-promoting food products is a major driving force for the increasing global demand of functional (probiotic) dairy foods. Yogurt is considered the ideal medium for delivery of beneficial functional ingredients. Gamma-amino-butyric acid has potential as a bioactive ingredient in functional foods due to its health-promoting properties as an anti-stress, anti-hypertensive, and anti-diabetic agent. Here, we report the use of a novel Streptococcus thermophilus strain, isolated from the digestive tract of fish, for production of yogurt naturally enriched with 2 mg/ml of gamma-amino-butyric acid (200 mg in a standard yogurt volume of 100 ml), a dose in the same range as that provided by some commercially available gamma-amino-butyric acid supplements. The biotechnological suitability of this strain for industrial production of yogurt was demonstrated by comparison with the reference yogurt inoculated with the commercial CH1 starter (Chr. Hansen) widely used in the dairy industry. Both yogurts showed comparable pH curves [ΔpH/Δt = 0.31-0.33 h-1], viscosity [0.49 Pa-s], water holding capacity [72–73%], and chemical composition [moisture (87–88%), protein (5.05–5.65%), fat (0.12–0.15%), sugar (4.8–5.8%), and ash (0.74–1.2%)]. Gamma-amino-butyric acid was not detected in the control yogurt. In conclusion, the S. thermophilus APC151 strain reported here provides a natural means for fortification of yogurt with gamma-amino-butyric acid. PMID:27920772

  3. Identification of Aging-Associated Gene Expression Signatures That Precede Intestinal Tumorigenesis

    PubMed Central

    Okuchi, Yoshihisa; Imajo, Masamichi; Mizuno, Rei; Kamioka, Yuji; Miyoshi, Hiroyuki; Taketo, Makoto Mark; Nagayama, Satoshi; Sakai, Yoshiharu; Matsuda, Michiyuki

    2016-01-01

    Aging-associated alterations of cellular functions have been implicated in various disorders including cancers. Due to difficulties in identifying aging cells in living tissues, most studies have focused on aging-associated changes in whole tissues or certain cell pools. Thus, it remains unclear what kinds of alterations accumulate in each cell during aging. While analyzing several mouse lines expressing fluorescent proteins (FPs), we found that expression of FPs is gradually silenced in the intestinal epithelium during aging in units of single crypt composed of clonal stem cell progeny. The cells with low FP expression retained the wild-type Apc allele and the tissues composed of them did not exhibit any histological abnormality. Notably, the silencing of FPs was also observed in intestinal adenomas and the surrounding normal mucosae of Apc-mutant mice, and mediated by DNA methylation of the upstream promoter. Our genome-wide analysis then showed that the silencing of FPs reflects specific gene expression alterations during aging, and that these alterations occur in not only mouse adenomas but also human sporadic and hereditary (familial adenomatous polyposis) adenomas. Importantly, pharmacological inhibition of DNA methylation, which suppresses adenoma development in Apc-mutant mice, reverted the aging-associated silencing of FPs and gene expression alterations. These results identify aging-associated gene expression signatures that are heterogeneously induced by DNA methylation and precede intestinal tumorigenesis triggered by Apc inactivation, and suggest that pharmacological inhibition of the signature genes could be a novel strategy for the prevention and treatment of intestinal tumors. PMID:27589228

  4. Integration and automation of DoseMapper in a logic fab APC system: application for 45/40/28nm node

    NASA Astrophysics Data System (ADS)

    Le Gratiet, Bertrand; Salagnon, Christophe; de Caunes, Jean; Mikolajczak, Marc; Morin, Vincent; Chojnowski, Nicolas; Sundermann, Frank; Massin, Jean; Pelletier, Alice; Metz, Joel; Blancquaert, Yoann; Bouyssou, Regis; Pelissier, Arthur; Belmont, Olivier; Strapazzon, Anne; Phillips, Anna; Devoivre, Thierry; Bernard, Emilie; Batail, Estelle; Thevenon, Lionel; Bry, Benedicte; Bernard-Granger, Fabrice; Oumina, Ahmed; Baron, Marie-Pierre; Gueze, Didier

    2012-03-01

    The main difficulty related to DoseMapper correction is to generate an appropriate CD datacollection to feed DoseMapper and to generate DoseRecipe in a user friendly way, especially with a complex process mix. We could heavily measure the silicon and create, in feedback mode, the corresponding DoseRecipe. However, such approach in a logic fab becomes a heavy duty due to the number of different masks / product / processes. We have observed that process CD variability is significantly depending on systematic intrawafer and intrafield CD footprints that can be measured and applied has generic pre-correction for any new product/mask process in-line. The applied CD correction is based on a CD (intrafield: Mask + Straylight & intrawafer: Etch Bias) variability "model" handled by the FAB APC (Advanced Process Control). - Individual CD profile correction component are generated "off-line" (1) for Intrafield Mask via automatic CD extraction from a Reticle CD database (2) for Intrafield Straylight via a CD "model" (3) for Intrawafer Etch Bias via engineering input based on process monitoring. - These CD files are handled via the FAB APC/automation system which is remotely taking control of DoseMapper server via WEB services, so that CD profiles are generated "off-line" (before the lot is being processed) and stored in a profile database while DoseRecipes are created "real-time" on demand via the automation when the lot comes to the scanner to be processed. DoseRecipe and CD correction profiles management is done via the APC system. The automated DoseRecipe creation is now running since the beginning of 2011 contributing to bring both intrafield and intrawafer GATE CDu below 1nm 3sigma, for 45/40 & 28nm nodes.

  5. Source apportionment of ambient non-methane hydrocarbons in Hong Kong: application of a principal component analysis/absolute principal component scores (PCA/APCS) receptor model.

    PubMed

    Guo, H; Wang, T; Louie, P K K

    2004-06-01

    Receptor-oriented source apportionment models are often used to identify sources of ambient air pollutants and to estimate source contributions to air pollutant concentrations. In this study, a PCA/APCS model was applied to the data on non-methane hydrocarbons (NMHCs) measured from January to December 2001 at two sampling sites: Tsuen Wan (TW) and Central & Western (CW) Toxic Air Pollutants Monitoring Stations in Hong Kong. This multivariate method enables the identification of major air pollution sources along with the quantitative apportionment of each source to pollutant species. The PCA analysis identified four major pollution sources at TW site and five major sources at CW site. The extracted pollution sources included vehicular internal engine combustion with unburned fuel emissions, use of solvent particularly paints, liquefied petroleum gas (LPG) or natural gas leakage, and industrial, commercial and domestic sources such as solvents, decoration, fuel combustion, chemical factories and power plants. The results of APCS receptor model indicated that 39% and 48% of the total NMHCs mass concentrations measured at CW and TW were originated from vehicle emissions, respectively. 32% and 36.4% of the total NMHCs were emitted from the use of solvent and 11% and 19.4% were apportioned to the LPG or natural gas leakage, respectively. 5.2% and 9% of the total NMHCs mass concentrations were attributed to other industrial, commercial and domestic sources, respectively. It was also found that vehicle emissions and LPG or natural gas leakage were the main sources of C(3)-C(5) alkanes and C(3)-C(5) alkenes while aromatics were predominantly released from paints. Comparison of source contributions to ambient NMHCs at the two sites indicated that the contribution of LPG or natural gas at CW site was almost twice that at TW site. High correlation coefficients (R(2) > 0.8) between the measured and predicted values suggested that the PCA/APCS model was applicable for estimation

  6. Rafting MHC-II domains in the APC (presynaptic) plasma membrane and the thresholds for T-cell activation and immunological synapse formation.

    PubMed

    Gombos, Imre; Detre, Cynthia; Vámosi, György; Matkó, János

    2004-03-29

    Glycosphingolipid- and cholesterol-rich membrane microdomains (rafts) in T-cells are important in triggering and regulation of T(H)-cell activation in immunological synapses (IS), which in turn may control the T-cell repertoire in lymph nodes and at the periphery. It is less known, however, how the "presynaptic side" controls formation and function of IS. We investigated here activation signals and synapse formation frequency of murine IP12-7 T(H) hybridoma cell specific to influenza virus HA-peptide upon stimulation with two B-lymphoma cells, A20 and 2PK3, pulsed with peptide antigen. Confocal microscopic colocalization and FRET data consonantly revealed clustered distribution and constitutive raft-association of a major fraction of MHC-II molecules in both APCs. Costimulatory molecules (CD80 and CD86), not associated constitutively with rafts, were expressed at much lower level in A20 cells. T-cells responded to 2PK3 APC with much higher signal strength than to A20 cells, in good correlation with the frequency of IS formation, as assessed by microscopic conjugation assay. Disruption of rafts by cholesterol depletion in 2PK3 cells largely decreased the magnitude of T(H) cell activation signals, especially at low peptide antigen doses, similarly to masking CD4 with mAb on T-cells. The frequency of IS formation was reduced by blocking LFA-1 on T-cells and CD80 on APCs, by lowering the temperature below the phase transition of the membrane or by disrupting actin cytoskeleton. These data together suggest that the surface density and affinity/stability of peptide-MHC-II complexes and the costimulatory level are primary determinants for an efficient TCR recognition and the strength of the subsequent T-cell signals, as well as of the IS formation, which additionally requires a cytoskeleton-dependent remodeling of APC surface after the initial TCR signal. The threshold of T-cell activation can be further set by rafting MHC-II domains via concentrating high affinity

  7. Development of an ultrasound-responsive and mannose-modified gene carrier for DNA vaccine therapy.

    PubMed

    Un, Keita; Kawakami, Shigeru; Suzuki, Ryo; Maruyama, Kazuo; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2010-10-01

    Development of a gene delivery system to transfer the gene of interest selectively and efficiently into targeted cells is essential for achievement of sufficient therapeutic effects by gene therapy. Here, we succeeded in developing the gene transfection method using ultrasound (US)-responsive and mannose-modified gene carriers, named Man-PEG(2000) bubble lipoplexes. Compared with the conventional lipofection method using mannose-modified carriers, this transfection method using Man-PEG(2000) bubble lipoplexes and US exposure enabled approximately 500-800-fold higher gene expressions in the antigen presenting cells (APCs) selectively in vivo. This enhanced gene expression was contributed by the improvement of delivering efficiency of nucleic acids to the targeted organs, and by the increase of introducing efficiency of nucleic acids into the cytoplasm followed by US exposure. Moreover, high anti-tumor effects were demonstrated by applying this method to DNA vaccine therapy using ovalbumin (OVA)-expressing plasmid DNA (pDNA). This US-responsive and cell-specific gene delivery system can be widely applied to medical treatments such as vaccine therapy and anti-inflammation therapy, which its targeted cells are APCs, and our findings may help in establishing innovative methods for in-vivo gene delivery to overcome the poor introducing efficiency of carriers into cytoplasm which the major obstacle associated with gene delivery by non-viral carriers.

  8. Efficient generation of antigen-specific CTLs by the BAFF-activated human B Lymphocytes as APCs: a novel approach for immunotherapy

    PubMed Central

    Yingshi, Chen; Lishi, Su; Baohong, Luo; Chao, Liu; Linghua, Li; Ting, Pan; Hui, Zhang

    2016-01-01

    Efficient antigen presentation is indispensable for cytotoxic T lymphocyte (CTL)-mediated immunotherapy. B-lymphocytes propagated with CD40L have been developed as antigen-presenting cells (APCs), but this capacity needs further optimization. Here, we aimed to expand human B-lymphocytes on a large scale while maintaining their antigen-presenting ability by using both CD40L and B-cell activating factor (BAFF). The addition of BAFF enhanced the expansion efficiency and prolonged the culture time without causing apoptosis of the expanded B-cells. This method thus provided an almost unlimited source of cellular adjuvant to achieve sufficient expansion of CTLs in cases where several rounds of stimulation are required. We also showed that the addition of BAFF significantly enhanced the expression of major costimulatory molecules, CD80 and CD86. Subsequently, the antigen-presenting ability of the B-lymphocytes also increased. Consequently, these B-lymphocytes showed robust CTL responses to inhibit tumor growth after tumor-specific peptide pulses. A similar method induced potent antigen-specific CTL responses, which effectively eradicated human immunodeficiency virus type 1 (HIV-1) latency in CD4 T-lymphocytes isolated from patients receiving suppressive anti-retroviral therapy (ART). Together, our findings indicate that potent antigen-specific CTLs can be generated using BAFF-activated B-lymphocytes as APCs ex vivo. This approach can be applied for CTL-mediated immunotherapy in patients with cancers or chronic viral infections. PMID:27780916

  9. Killing of myeloid APCs via HLA class I, CD2 and CD226 defines a novel mechanism of suppression by human Tr1 cells

    PubMed Central

    Magnani, Chiara F; Alberigo, Giada; Bacchetta, Rosa; Serafini, Giorgia; Andreani, Marco; Roncarolo, Maria Grazia; Gregori, Silvia

    2011-01-01

    IL-10-producing CD4+ type 1 regulatory T (Tr1) cells, defined based on their ability to produce high levels of IL-10 in the absence of IL-4, are major players in the induction and maintenance of peripheral tolerance. Tr1 cells inhibit T-cell responses mainly via cytokine-dependent mechanisms. The cellular and molecular mechanisms underlying the suppression of APC by Tr1 cells are still not completely elucidated. Here, we defined that Tr1 cells specifically lyse myeloid APC through a granzyme B (GZB)- and perforin (PRF)-dependent mechanism that requires HLA class I recognition, CD54/lymphocyte function-associated antigen (LFA)-1 adhesion, and activation via killer cell Ig-like receptors (KIRs) and CD2. Notably, interaction between CD226 on Tr1 cells and their ligands on myeloid cells, leading to Tr1-cell activation, is necessary for defining Tr1-cell target specificity. We also showed that high frequency of GZB-expressing CD4+ T cells is detected in tolerant patients and correlates with elevated occurrence of IL-10-producing CD4+ T cells. In conclusion, the modulatory activities of Tr1 cells are not only due to suppressive cytokines but also to specific cell-to-cell interactions that lead to selective killing of myeloid cells and possibly bystander suppression. PMID:21469116

  10. The efficacy of recombinant human activated protein C (rhAPC) vs antithrombin III (at III) vs heparin, in the healing process of partial-thickness burns: a comparative study

    PubMed Central

    Kritikos, O.; Tsagarakis, M.; Tsoutsos, D.; Kittas, C.; Gorgoulis, V.; Papalois, A.; Giannopoulos, A.; Kakiopoulos, G.; Papadopoulos, O.

    2012-01-01

    Summary This is an experimental study regarding the positive effect of recombinant human activated protein C (rhAPC) in the healing process of partial-thickness burns, in comparison to antithrombin III and heparin. On a porcine model we induced superficial partial-thickness and deep partial-thickness burns and performed intravenous administration of the elements of study during the first 48 h. The progress of the condition of the injured tissues was evaluated by histopathological examination at specific time intervals. The results showed an improved healing response of the specimens treated with rhAPC compared to those treated with antithrombin III, heparin, and placebo. PMID:23233823

  11. Mutation analysis of 13 driver genes of colorectal cancer-related pathways in Taiwanese patients

    PubMed Central

    Chang, Yuli Christine; Chang, Jan-Gowth; Liu, Ta-Chih; Lin, Chien-Yu; Yang, Shu-Fen; Ho, Cheng-Mao; Chen, William Tzu-Liang; Chang, Ya-Sian

    2016-01-01

    AIM: To investigate the driver gene mutations associated with colorectal cancer (CRC) in the Taiwanese population. METHODS: In this study, 103 patients with CRC were evaluated. The samples consisted of 66 men and 37 women with a median age of 59 years and an age range of 26-86 years. We used high-resolution melting analysis (HRM) and direct DNA sequencing to characterize the mutations in 13 driver genes of CRC-related pathways. The HRM assays were conducted using the LightCycler® 480 Instrument provided with the software LightCycler® 480 Gene Scanning Software Version 1.5. We also compared the clinicopathological data of CRC patients with the driver gene mutation status. RESULTS: Of the 103 patients evaluated, 73.79% had mutations in one of the 13 driver genes. We discovered 18 novel mutations in APC, MLH1, MSH2, PMS2, SMAD4 and TP53 that have not been previously reported. Additionally, we found 16 de novo mutations in APC, BMPR1A, MLH1, MSH2, MSH6, MUTYH and PMS2 in cancerous tissues previously reported in the dbSNP database; however, these mutations could not be detected in peripheral blood cells. The APC mutation correlates with lymph node metastasis (34.69% vs 12.96%, P = 0.009) and cancer stage (34.78% vs 14.04%, P = 0.013). No association was observed between other driver gene mutations and clinicopathological features. Furthermore, having two or more driver gene mutations correlates with the degree of lymph node metastasis (42.86% vs 24.07%, P = 0.043). CONCLUSION: Our findings confirm the importance of 13 CRC-related pathway driver genes in the development of CRC in Taiwanese patients. PMID:26900293

  12. CFTR is a tumor suppressor gene in murine and human intestinal cancer

    PubMed Central

    Than, BLN; Linnekamp, JF; Starr, TK; Largaespada, DA; Rod, A; Zhang, Y; Bruner, V; Abrahante, J; Schumann, A; Luczak, T; Niemczyk, A; O’Sullivan, MG; Medema, JP; Fijneman, RJA; Meijer, GA; Van den Broek, E; Hodges, CA; Scott, PM; Vermeulen, L; Cormier, RT

    2016-01-01

    CFTR, the cystic fibrosis (CF) gene, encodes for the CFTR protein that plays an essential role in anion regulation and tissue homeostasis of various epithelia. In the gastrointestinal (GI) tract CFTR promotes chloride and bicarbonate secretion, playing an essential role in ion and acid–base homeostasis. Cftr has been identified as a candidate driver gene for colorectal cancer (CRC) in several Sleeping Beauty DNA transposon-based forward genetic screens in mice. Further, recent epidemiological and clinical studies indicate that CF patients are at high risk for developing tumors in the colon. To investigate the effects of CFTR dysregulation on GI cancer, we generated ApcMin mice that carried an intestinal-specific knockout of Cftr. Our results indicate that Cftr is a tumor suppressor gene in the intestinal tract as Cftr mutant mice developed significantly more tumors in the colon and the entire small intestine. In Apc+/+ mice aged to ~ 1 year, Cftr deficiency alone caused the development of intestinal tumors in >60% of mice. Colon organoid formation was significantly increased in organoids created from Cftr mutant mice compared with wild-type controls, suggesting a potential role of Cftr in regulating the intestinal stem cell compartment. Microarray data from the Cftr-deficient colon and the small intestine identified dysregulated genes that belong to groups of immune response, ion channel, intestinal stem cell and other growth signaling regulators. These associated clusters of genes were confirmed by pathway analysis using Ingenuity Pathway Analysis and gene set enrichment analysis (GSEA). We also conducted RNA Seq analysis of tumors from Apc+/+ Cftr knockout mice and identified sets of genes dysregulated in tumors including altered Wnt β-catenin target genes. Finally we analyzed expression of CFTR in early stage human CRC patients stratified by risk of recurrence and found that loss of expression of CFTR was significantly associated with poor disease

  13. CFTR is a tumor suppressor gene in murine and human intestinal cancer.

    PubMed

    Than, B L N; Linnekamp, J F; Starr, T K; Largaespada, D A; Rod, A; Zhang, Y; Bruner, V; Abrahante, J; Schumann, A; Luczak, T; Niemczyk, A; O'Sullivan, M G; Medema, J P; Fijneman, R J A; Meijer, G A; Van den Broek, E; Hodges, C A; Scott, P M; Vermeulen, L; Cormier, R T

    2016-08-11

    CFTR, the cystic fibrosis (CF) gene, encodes for the CFTR protein that plays an essential role in anion regulation and tissue homeostasis of various epithelia. In the gastrointestinal (GI) tract CFTR promotes chloride and bicarbonate secretion, playing an essential role in ion and acid-base homeostasis. Cftr has been identified as a candidate driver gene for colorectal cancer (CRC) in several Sleeping Beauty DNA transposon-based forward genetic screens in mice. Further, recent epidemiological and clinical studies indicate that CF patients are at high risk for developing tumors in the colon. To investigate the effects of CFTR dysregulation on GI cancer, we generated Apc(Min) mice that carried an intestinal-specific knockout of Cftr. Our results indicate that Cftr is a tumor suppressor gene in the intestinal tract as Cftr mutant mice developed significantly more tumors in the colon and the entire small intestine. In Apc(+/+) mice aged to ~1 year, Cftr deficiency alone caused the development of intestinal tumors in >60% of mice. Colon organoid formation was significantly increased in organoids created from Cftr mutant mice compared with wild-type controls, suggesting a potential role of Cftr in regulating the intestinal stem cell compartment. Microarray data from the Cftr-deficient colon and the small intestine identified dysregulated genes that belong to groups of immune response, ion channel, intestinal stem cell and other growth signaling regulators. These associated clusters of genes were confirmed by pathway analysis using Ingenuity Pathway Analysis and gene set enrichment analysis (GSEA). We also conducted RNA Seq analysis of tumors from Apc(+/+) Cftr knockout mice and identified sets of genes dysregulated in tumors including altered Wnt β-catenin target genes. Finally we analyzed expression of CFTR in early stage human CRC patients stratified by risk of recurrence and found that loss of expression of CFTR was significantly associated with poor disease

  14. Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity

    PubMed Central

    Baker, Darren J.; Jin, Fang; Jeganathan, Karthik B.; van Deursen, Jan M.

    2010-01-01

    Summary Genetic alterations that promote chromosome missegregation have been proposed to drive tumorigenesis through loss of whole chromosomes containing key tumor suppressor genes. To test this unproven idea, we bred Bub1 mutant mice that inaccurately segregate their chromosomes onto p53+/−, ApcMin/+, Rb+/− or Pten+/− backgrounds. Bub1 insufficiency predisposed p53+/− mice to thymic lymphomas and ApcMin/+ mice to colonic tumors. These tumors consistently lacked the non-mutated tumor suppressor allele, but had gained a copy of the mutant allele. In contrast, Bub1 insufficiency had no impact on tumorigenesis in Rb+/− mice and inhibited prostatic intraepithelial neoplasia formation in Pten+/− mice. Thus, Bub1 insufficiency can drive tumor formation through tumor suppressor gene loss of heterozygosity, but only in restricted genetic and cellular contexts. PMID:19962666

  15. Los Alamos National Laboratory.

    ERIC Educational Resources Information Center

    Hammel, Edward F., Jr.

    1982-01-01

    Current and post World War II scientific research at the Los Alamos National Laboratory (New Mexico) is discussed. The operation of the laboratory, the Los Alamos consultant program, and continuation education, and continuing education activities at the laboratory are also discussed. (JN)

  16. Dendrite development regulated by the schizophrenia-associated gene FEZ1 involves the ubiquitin proteasome system.

    PubMed

    Watanabe, Yasuhito; Khodosevich, Konstantin; Monyer, Hannah

    2014-04-24

    Downregulation of the schizophrenia-associated gene DISC1 and its interacting protein FEZ1 positively regulates dendrite growth in young neurons. However, little is known about the mechanism that controls these molecules during neuronal development. Here, we identify several components of the ubiquitin proteasome system and the cell-cycle machinery that act upstream of FEZ1. We demonstrate that the ubiquitin ligase cell division cycle 20/anaphase-promoting complex (Cdc20/APC) controls dendrite growth by regulating the degradation of FEZ1. Furthermore, dendrite growth is modulated by BubR1, whose known function so far has been restricted to control Cdc20/APC activity during the cell cycle. The modulatory function of BubR1 is dependent on its acetylation status. We show that BubR1 is deacetylated by Hdac11, thereby disinhibiting the Cdc20/APC complex. Because dendrite growth is affected both in hippocampal dentate granule cells and olfactory bulb neurons upon modifying expression of these genes, we conclude that the proposed mechanism governs neuronal development in a general fashion.

  17. COGENT (COlorectal cancer GENeTics) revisited

    PubMed Central

    Houlston, Richard S.

    2012-01-01

    Many colorectal cancers (CRCs) develop in genetically susceptible individuals most of whom are not carriers of germ line mismatch repair or APC gene mutations and much of the heritable risk of CRC appears to be attributable to the co-inheritance of multiple low-risk variants. The accumulated experience to date in identifying this class of susceptibility allele has highlighted the need to conduct statistically and methodologically rigorous studies and the need for the multi-centre collaboration. This has been the motivation for establishing the COGENT (COlorectal cancer GENeTics) consortium which now includes over 20 research groups in Europe, Australia, the Americas, China and Japan actively working on CRC genetics. Here, we review the rationale for identifying low-penetrance variants for CRC and the current and future challenges for COGENT. PMID:22294761

  18. Gene promoter methylation in colorectal cancer and healthy adjacent mucosa specimens: correlation with physiological and pathological characteristics, and with biomarkers of one-carbon metabolism.

    PubMed

    Coppedè, Fabio; Migheli, Francesca; Lopomo, Angela; Failli, Alessandra; Legitimo, Annalisa; Consolini, Rita; Fontanini, Gabriella; Sensi, Elisa; Servadio, Adele; Seccia, Massimo; Zocco, Giuseppe; Chiarugi, Massimo; Spisni, Roberto; Migliore, Lucia

    2014-04-01

    We evaluated the promoter methylation levels of the APC, MGMT, hMLH1, RASSF1A and CDKN2A genes in 107 colorectal cancer (CRC) samples and 80 healthy adjacent tissues. We searched for correlation with both physical and pathological features, polymorphisms of folate metabolism pathway genes (MTHFR, MTRR, MTR, RFC1, TYMS, and DNMT3B), and data on circulating folate, vitamin B12 and homocysteine, which were available in a subgroup of the CRC patients. An increased number of methylated samples were found in CRC respect to adjacent healthy tissues, with the exception of APC, which was also frequently methylated in healthy colonic mucosa. Statistically significant associations were found between RASSF1A promoter methylation and tumor stage, and between hMLH1 promoter methylation and tumor location. Increasing age positively correlated with both hMLH1 and MGMT methylation levels in CRC tissues, and with APC methylation levels in the adjacent healthy mucosa. Concerning gender, females showed higher hMLH1 promoter methylation levels with respect to males. In CRC samples, the MTR 2756AG genotype correlated with higher methylation levels of RASSF1A, and the TYMS 1494 6bp ins/del polymorphism correlated with the methylation levels of both APC and hMLH1. In adjacent healthy tissues, MTR 2756AG and TYMS 1494 6bp del/del genotypes correlated with APC and MGMT promoter methylation, respectively. Low folate levels were associated with hMLH1 hypermethylation. Present results support the hypothesis that DNA methylation in CRC depends from both physiological and environmental factors, with one-carbon metabolism largely involved in this process.

  19. Plecanatide-mediated activation of guanylate cyclase-C suppresses inflammation-induced colorectal carcinogenesis in Apc+/Min-FCCC mice

    PubMed Central

    Chang, Wen-Chi L; Masih, Shet; Thadi, Anusha; Patwa, Viren; Joshi, Apoorva; Cooper, Harry S; Palejwala, Vaseem A; Clapper, Margie L; Shailubhai, Kunwar

    2017-01-01

    AIM To evaluate the effect of orally administered plecanatide on colorectal dysplasia in Apc+/Min-FCCC mice with dextran sodium sulfate (DSS)-induced inflammation. METHODS Inflammation driven colorectal carcinogenesis was induced in Apc+/Min-FCCC mice by administering DSS in their drinking water. Mice were fed a diet supplemented with plecanatide (0-20 ppm) and its effect on the multiplicity of histopathologically confirmed polypoid, flat and indeterminate dysplasia was evaluated. Plecanatide-mediated activation of guanylate cyclase-C (GC-C) signaling was assessed in colon tissues by measuring cyclic guanosine monophosphate (cGMP) by ELISA, protein kinase G-II and vasodilator stimulated phosphoprotein by immunoblotting. Ki-67, c-myc and cyclin D1 were used as markers of proliferation. Cellular levels and localization of β-catenin in colon tissues were assessed by immunoblotting and immunohistochemistry, respectively. Uroguanylin (UG) and GC-C transcript levels were measured by quantitative reverse transcription polymerase chain reaction (RT-PCR). A mouse cytokine array panel was used to detect cytokines in the supernatant of colon explant cultures. RESULTS Oral treatment of Apc+/MinFCCC mice with plecanatide produced a statistically significant reduction in the formation of inflammation-driven polypoid, flat and indeterminate dysplasias. This anti-carcinogenic activity of plecanatide was accompanied by activation of cGMP/GC-C signaling mediated inhibition of Wnt/β-catenin signaling and reduced proliferation. Plecanatide also decreased secretion of pro-inflammatory cytokines (IL-6, IL1 TNF), chemokines (MIP-1, IP-10) and growth factors (GCSF and GMCSF) from colon explants derived from mice with acute DSS-induced inflammation. The effect of plecanatide-mediated inhibition of inflammation/dysplasia on endogenous expression of UG and GC-C transcripts was measured in intestinal tissues. Although GC-C expression was not altered appreciably, a statistically significant

  20. Stockpile Stewardship: Los Alamos

    ScienceCinema

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2016-07-12

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  1. Evaluation and Analysis of SEASAT-A Scanning Multichannel Microwave Radiometer (SSMR) Antenna Pattern Correction (APC) Algorithm. Sub-task 4: Interim Mode T Sub B Versus Cross and Nominal Mode T Sub B

    NASA Technical Reports Server (NTRS)

    Kitzis, J. L.; Kitzis, S. N.

    1979-01-01

    The brightness temperature data produced by the SMMR Antenna Pattern Correction algorithm are evaluated. The evaluation consists of: (1) a direct comparison of the outputs of the interim, cross, and nominal APC modes; (2) a refinement of the previously determined cos beta estimates; and (3) a comparison of the world brightness temperature (T sub B) map with actual SMMR measurements.

  2. The zinc-binding region (ZBR) fragment of Emi2 can inhibit APC/C by targeting its association with the coactivator Cdc20 and UBE2C-mediated ubiquitylation

    PubMed Central

    Shoji, Shisako; Muto, Yutaka; Ikeda, Mariko; He, Fahu; Tsuda, Kengo; Ohsawa, Noboru; Akasaka, Ryogo; Terada, Takaho; Wakiyama, Motoaki; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2014-01-01

    Anaphase-promoting complex or cyclosome (APC/C) is a multisubunit ubiquitin ligase E3 that targets cell-cycle regulators. Cdc20 is required for full activation of APC/C in M phase, and mediates substrate recognition. In vertebrates, Emi2/Erp1/FBXO43 inhibits APC/C-Cdc20, and functions as a cytostatic factor that causes long-term M phase arrest of mature oocytes. In this study, we found that a fragment corresponding to the zinc-binding region (ZBR) domain of Emi2 inhibits cell-cycle progression, and impairs the association of Cdc20 with the APC/C core complex in HEK293T cells. Furthermore, we revealed that the ZBR fragment of Emi2 inhibits in vitro ubiquitin chain elongation catalyzed by the APC/C cullin-RING ligase module, the ANAPC2–ANAPC11 subcomplex, in combination with the ubiquitin chain-initiating E2, E2C/UBE2C/UbcH10. Structural analyses revealed that the Emi2 ZBR domain uses different faces for the two mechanisms. Thus, the double-faced ZBR domain of Emi2 antagonizes the APC/C function by inhibiting both the binding with the coactivator Cdc20 and ubiquitylation mediated by the cullin-RING ligase module and E2C. In addition, the tail region between the ZBR domain and the C-terminal RL residues [the post-ZBR (PZ) region] interacts with the cullin subunit, ANAPC2. In the case of the ZBR fragment of the somatic paralogue of Emi2, Emi1/FBXO5, these inhibitory activities against cell division and ubiquitylation were not observed. Finally, we identified two sets of key residues in the Emi2 ZBR domain that selectively exert each of the dual Emi2-specific modes of APC/C inhibition, by their mutation in the Emi2 ZBR domain and their transplantation into the Emi1 ZBR domain. PMID:25161877

  3. Estimation of the potential antitumor activity of microencapsulated Lactobacillus acidophilus yogurt formulation in the attenuation of tumorigenesis in Apc(Min/+) mice.

    PubMed

    Urbanska, Aleksandra Malgorzata; Bhathena, Jasmine; Martoni, Christopher; Prakash, Satya

    2009-02-01

    There is a strong correlation between orally administered probiotics and suppression of the low-grade inflammation that can lead to restoration of normal local immune functions. We studied the potential immunomodulatory and antitumorigenic properties of microencapsulated probiotic bacterial cells in a yogurt formulation in Min mice carrying a germline APC mutation. Daily oral administration of microencapsulated Lactobacillus acidophilus bacterial cells in the yogurt formulation mice resulted in significant suppression of colon tumor incidence, tumor multiplicity, and reduced tumor size. Results show that oral administration of microencapsulated L. acidophilus contributed to the stabilization of animal body weight and decreased the release of bile acids. Histopathological analyses revealed fewer adenomas in treated versus untreated animals. Furthermore, treated animals exhibited fewer gastrointestinal intra-epithelial neoplasias with a lower grade of dysplasia in detected tumors. Results suggest that oral administration of microencapsulated probiotic L. acidophilus exerts anti-tumorous activity, which consequently leads to reduced tumor outcome.

  4. Neuronal expression of the ubiquitin E3 ligase APC/C-Cdh1 during development is required for long-term potentiation, behavioral flexibility, and extinction.

    PubMed

    Pick, Joseph E; Wang, Li; Mayfield, Joshua E; Klann, Eric

    2013-02-01

    Cdh1 is a regulatory subunit of the Anaphase Promoting Complex/Cyclosome (APC/C), a ubiquitin E3 ligase known to be involved in regulating cell cycle progression. Recent studies have demonstrated a role for Cdh1 in neurons during developmental and adult synaptic plasticity, as well as memory. In order to better characterize the contribution of Cdh1 in synaptic plasticity and memory, we generated conditional knockout mice using a neuron-specific enolase (Nse) promoter where Cdh1 was eliminated in neurons from the onset of differentiation. Although we detected impaired long-term potentiation (LTP) in hippocampal slices from the Nse-Cdh1 knockout (KO) mice, performance on several hippocampus-dependent memory tasks remained intact. However, the Nse-Cdh1 KO mice exhibited impaired behavioral flexibility and extinction of previously consolidated memories. These findings suggest a role for Cdh1 in regulating the updating of consolidated memories.

  5. A recellularized human colon model identifies cancer driver genes

    PubMed Central

    Chen, Huanhuan Joyce; Wei, Zhubo; Sun, Jian; Bhattacharya, Asmita; Savage, David J; Serda, Rita; Mackeyev, Yuri; Curley, Steven A.; Bu, Pengcheng; Wang, Lihua; Chen, Shuibing; Cohen-Gould, Leona; Huang, Emina; Shen, Xiling; Lipkin, Steven M.; Copeland, Neal G.; Jenkins, Nancy A.; Shuler, Michael L.

    2016-01-01

    Refined cancer models are needed to bridge the gap between cell-line, animal and clinical research. Here we describe the engineering of an organotypic colon cancer model by recellularization of a native human matrix that contains cell-populated mucosa and an intact muscularis mucosa layer. This ex vivo system recapitulates the pathophysiological progression from APC-mutant neoplasia to submucosal invasive tumor. We used it to perform a Sleeping Beauty transposon mutagenesis screen to identify genes that cooperate with mutant APC in driving invasive neoplasia. 38 candidate invasion driver genes were identified, 17 of which have been previously implicated in colorectal cancer progression, including TCF7L2, TWIST2, MSH2, DCC and EPHB1/2. Six invasion driver genes that to our knowledge have not been previously described were validated in vitro using cell proliferation, migration and invasion assays, and ex vivo using recellularized human colon. These results demonstrate the utility of our organoid model for studying cancer biology. PMID:27398792

  6. Gene complementation. Neither Ir-GLphi gene need be present in the proliferative I cell to generate an immune response to Poly(Glu55Lys36Phe9)n

    SciTech Connect

    Longo, D.L.; Schwartz, R.H.

    1980-06-01

    The cellular requirements for immune response (Ir) gene expression in a T cell proliferative response under dual Ir gene control were examined with radiation-induced bone marrow chimeras. The response to poly(Glu55Lys36Phe9)n (GLphi) requires two responder alleles that in the (B10.A x B10.A(18R))F1 map in I-Ab and I-Ek/Cd. Chimeras in which a mixture of the nonresponder B10.A parental cells and the nonresponder B10.A(18R) parental cells were allowed to mature in a responder F1 environment did not respond to GLphi. When T cells from such A + 18R leads to F1 chimeras were primed in the presence of responder antigen-presenting cells (APC), the chimeric T cells responded to GLphi. When bone marrow cells from (B10.A X B10)F1 responder animals were allowed to mature in a low-responder B10 of B10.A parental environment, neither chimera could respond to GLphi. This demonstrated that the presence of high-responder APC, which derive from the donar bone marrow, was not sufficient to generate a GLphi response. Finally, B10.A(4R) T cells, which possess neither Ir-GLphi responder allele, could be educated to mount a GLphi-proliferative response provided that they matured in a responder environment and were primed with APC expressing both responder alleles. Therefore, the gene products of the complementing Ir-GLphi responder alleles appear to function as a single restriction element at the level of the APC.

  7. Id1 Deficiency Protects against Tumor Formation in Apc(Min/+) Mice but Not in a Mouse Model of Colitis-Associated Colon Cancer.

    PubMed

    Zhang, Ning; Subbaramaiah, Kotha; Yantiss, Rhonda K; Zhou, Xi Kathy; Chin, Yvette; Benezra, Robert; Dannenberg, Andrew J

    2015-04-01

    Different mechanisms contribute to the development of sporadic, hereditary and colitis-associated colorectal cancer. Inhibitor of DNA binding/differentiation (Id) proteins act as dominant-negative antagonists of basic helix-loop-helix transcription factors. Id1 is a promising target for cancer therapy, but little is known about its role in the development of colon cancer. We used immunohistochemistry to demonstrate that Id1 is overexpressed in human colorectal adenomas and carcinomas, whether sporadic or syndromic. Furthermore, elevated Id1 levels were found in dysplasia and colon cancer arising in patients with inflammatory bowel disease. Because levels of PGE2 are also elevated in both colitis and colorectal neoplasia, we determined whether PGE2 could induce Id1. PGE2 via EP4 stimulated protein kinase A activity resulting in enhanced pCREB-mediated Id1 transcription in human colonocytes. To determine the role of Id1 in carcinogenesis, two mouse models were used. Consistent with the findings in humans, Id1 was overexpressed in tumors arising in both Apc(Min) (/+) mice, a model of familial adenomatous polyposis, and in experimental colitis-associated colorectal neoplasia. Id1 deficiency led to significant decrease in the number of intestinal tumors in Apc(Min) (/+) mice and prolonged survival. In contrast, Id1 deficiency did not affect the number or size of tumors in the model of colitis-associated colorectal neoplasia, likely due to exacerbation of colitis associated with Id1 loss. Collectively, these results suggest that Id1 plays a role in gastrointestinal carcinogenesis. Our findings also highlight the need for different strategies to reduce the risk of colitis-associated colorectal cancer compared with sporadic or hereditary colorectal cancer.

  8. Genes and Gene Therapy

    MedlinePlus

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  9. Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene

    PubMed Central

    Martínez, María Elena; O'Brien, Thomas G.; Fultz, Kimberly E.; Babbar, Naveen; Yerushalmi, Hagit; Qu, Ning; Guo, Yongjun; Boorman, David; Einspahr, Janine; Alberts, David S.; Gerner, Eugene W.

    2003-01-01

    Most sporadic colon adenomas acquire mutations in the adenomatous polyposis coli gene (APC) and show defects in APC-dependent signaling. APC influences the expression of several genes, including the c-myc oncogene and its antagonist Mad1. Ornithine decarboxylase (ODC), the first enzyme in polyamine synthesis, is a transcriptional target of c-myc and a modifier of APC-dependent tumorigenesis. A single-nucleotide polymorphism exists in intron 1 of the human ODC gene, which lies between two myc-binding domains. This region is known to affect ODC transcription, but no data exist on the relationship of this polymorphism to risk of colorectal neoplasia in humans. We show that individuals homozygous for the minor ODC A-allele who reported using aspirin are ≈0.10 times as likely to have an adenoma recurrence as non-aspirin users homozygous for the major G-allele. Mad1 selectively suppressed the activity of the ODC promoter containing the A-allele, but not the G-allele, in a human colon cancer-derived cell line (HT29). Aspirin (≥10 μM) did not affect ODC allele-specific promoter activity but did activate polyamine catabolism and lower polyamine content in HT29 cells. We propose that the ODC polymorphism and aspirin act independently to reduce the risk of adenoma recurrence by suppressing synthesis and activating catabolism, respectively, of colonic mucosal polyamines. These findings confirm the hypothesis that the ODC polymorphism is a genetic marker for colon cancer risk, and support the use of ODC inhibitors and aspirin, or other nonsteroidal antiinflammatory drugs (NSAIDs), in combination as a strategy for colon cancer prevention. PMID:12810952

  10. Inherited Variants in Wnt Pathway Genes Influence Outcomes of Prostate Cancer Patients Receiving Androgen Deprivation Therapy

    PubMed Central

    Geng, Jiun-Hung; Lin, Victor C.; Yu, Chia-Cheng; Huang, Chao-Yuan; Yin, Hsin-Ling; Chang, Ta-Yuan; Lu, Te-Ling; Huang, Shu-Pin; Bao, Bo-Ying

    2016-01-01

    Aberrant Wnt signaling has been associated with many types of cancer. However, the association of inherited Wnt pathway variants with clinical outcomes in prostate cancer patients receiving androgen deprivation therapy (ADT) has not been determined. Here, we comprehensively studied the contribution of common single nucleotide polymorphisms (SNPs) in Wnt pathway genes to the clinical outcomes of 465 advanced prostate cancer patients treated with ADT. Two SNPs, adenomatous polyposis coli (APC) rs2707765 and rs497844, were significantly (p ≤ 0.009 and q ≤ 0.043) associated with both prostate cancer progression and all-cause mortality, even after multivariate analyses and multiple testing correction. Patients with a greater number of favorable alleles had a longer time to disease progression and better overall survival during ADT (p for trend ≤ 0.003). Additional, cDNA array and in silico analyses of prostate cancer tissue suggested that rs2707765 affects APC expression, which in turn is correlated with tumor aggressiveness and patient prognosis. This study identifies the influence of inherited variants in the Wnt pathway on the efficacy of ADT and highlights a preclinical rationale for using APC as a prognostic marker in advanced prostate cancer. PMID:27898031

  11. Gene Therapy Induces Antigen-Specific Tolerance in Experimental Collagen-Induced Arthritis

    PubMed Central

    Jirholt, Pernilla; Turesson, Olof; Wing, Kajsa; Holmdahl, Rikard; Kihlberg, Jan; Stern, Anna; Mårtensson, Inga-Lill; Henningsson, Louise; Gustafsson, Kenth; Gjertsson, Inger

    2016-01-01

    Here, we investigate induction of immunological tolerance by lentiviral based gene therapy in a mouse model of rheumatoid arthritis, collagen II-induced arthritis (CIA). Targeting the expression of the collagen type II (CII) to antigen presenting cells (APCs) induced antigen-specific tolerance, where only 5% of the mice developed arthritis as compared with 95% of the control mice. In the CII-tolerized mice, the proportion of Tregs as well as mRNA expression of SOCS1 (suppressors of cytokine signaling 1) increased at day 3 after CII immunization. Transfer of B cells or non-B cell APC, as well as T cells, from tolerized to naïve mice all mediated a certain degree of tolerance. Thus, sustainable tolerance is established very early during the course of arthritis and is mediated by both B and non-B cells as APCs. This novel approach for inducing tolerance to disease specific antigens can be used for studying tolerance mechanisms, not only in CIA but also in other autoimmune diseases. PMID:27159398

  12. Detection of a Tumor Suppressor Gene Variant Predisposing to Colorectal Cancer in an 18th Century Hungarian Mummy.

    PubMed

    Feldman, Michal; Hershkovitz, Israel; Sklan, Ella H; Kahila Bar-Gal, Gila; Pap, Ildikó; Szikossy, Ildikó; Rosin-Arbesfeld, Rina

    2016-01-01

    Mutations of the Adenomatous polyposis coli (APC) gene are common and strongly associated with the development of colorectal adenomas and carcinomas. While extensively studied in modern populations, reports on visceral tumors in ancient populations are scarce. To the best of our knowledge, genetic characterization of mutations associated with colorectal cancer in ancient specimens has not yet been described. In this study we have sequenced hotspots for mutations in the APC gene isolated from 18th century naturally preserved human Hungarian mummies. While wild type APC sequences were found in two mummies, we discovered the E1317Q missense mutation, known to be a colorectal cancer predisposing mutation, in a large intestine tissue of an 18th century mummy. Our data suggests that this genetic predisposition to cancer already existed in the pre-industrialization era. This study calls for similar investigations of ancient specimens from different periods and geographical locations to be conducted and shared for the purpose of obtaining a larger scale analysis that will shed light on past cancer epidemiology and on cancer evolution.

  13. Detection of a Tumor Suppressor Gene Variant Predisposing to Colorectal Cancer in an 18th Century Hungarian Mummy

    PubMed Central

    Feldman, Michal; Hershkovitz, Israel; Sklan, Ella H.; Kahila Bar-Gal, Gila; Pap, Ildikó; Szikossy, Ildikó; Rosin-Arbesfeld, Rina

    2016-01-01

    Mutations of the Adenomatous polyposis coli (APC) gene are common and strongly associated with the development of colorectal adenomas and carcinomas. While extensively studied in modern populations, reports on visceral tumors in ancient populations are scarce. To the best of our knowledge, genetic characterization of mutations associated with colorectal cancer in ancient specimens has not yet been described. In this study we have sequenced hotspots for mutations in the APC gene isolated from 18th century naturally preserved human Hungarian mummies. While wild type APC sequences were found in two mummies, we discovered the E1317Q missense mutation, known to be a colorectal cancer predisposing mutation, in a large intestine tissue of an 18th century mummy. Our data suggests that this genetic predisposition to cancer already existed in the pre-industrialization era. This study calls for similar investigations of ancient specimens from different periods and geographical locations to be conducted and shared for the purpose of obtaining a larger scale analysis that will shed light on past cancer epidemiology and on cancer evolution. PMID:26863316

  14. Los Alamos offers Fellowships

    NASA Astrophysics Data System (ADS)

    Los Alamos National Laboratory in New Mexico is calling for applications for postdoctoral appointments and research fellowships. The positions are available in geoscience as well as other scientific disciplines.The laboratory, which is operated by the University of California for the Department of Energy, awards J. Robert Oppenheimer Research Fellowships to scientists that either have or will soon complete doctoral degrees. The appointments are for two years, are renewable for a third year, and carry a stipend of $51,865 per year. Potential applicants should send a resume or employment application and a statement of research goals to Carol M. Rich, Div. 89, Human Resources Development Division, MS P290, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 by mid-November.

  15. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization.

    PubMed

    Denning, Timothy L; Norris, Brian A; Medina-Contreras, Oscar; Manicassamy, Santhakumar; Geem, Duke; Madan, Rajat; Karp, Christopher L; Pulendran, Bali

    2011-07-15

    Although several subsets of intestinal APCs have been described, there has been no systematic evaluation of their phenotypes, functions, and regional localization to date. In this article, we used 10-color flow cytometry to define the major APC subsets in the small and large intestine lamina propria. Lamina propria APCs could be subdivided into CD11c(+)CD11b(-), CD11c(+)CD11b(+), and CD11c(dull)CD11b(+) subsets. CD11c(+)CD11b(-) cells were largely CD103(+)F4/80(-) dendritic cells (DCs), whereas the CD11c(+)CD11b(+) subset comprised CD11c(+)CD11b(+)CD103(+)F4/80(-) DCs and CD11c(+)CD11b(+)CD103(-)F4/80(+) macrophage-like cells. The majority of CD11c(dull)CD11b(+) cells were CD103(-)F4/80(+) macrophages. Although macrophages were more efficient at inducing Foxp3(+) regulatory T (T(reg)) cells than DCs, at higher T cell/APC ratios, all of the DC subsets efficiently induced Foxp3(+) T(reg) cells. In contrast, only CD11c(+)CD11b(+)CD103(+) DCs efficiently induced Th17 cells. Consistent with this, the regional distribution of CD11c(+)CD11b(+)CD103(+) DCs correlated with that of Th17 cells, with duodenum > jejunum > ileum > colon. Conversely, CD11c(+)CD11b(-)CD103(+) DCs, macrophages, and Foxp3(+) T(reg) cells were most abundant in the colon and scarce in the duodenum. Importantly, however, the ability of DC and macrophage subsets to induce Foxp3(+) T(reg) cells versus Th17 cells was strikingly dependent on the source of the mouse strain. Thus, DCs from C57BL/6 mice from Charles River Laboratories (that have segmented filamentous bacteria, which induce robust levels of Th17 cells in situ) were more efficient at inducing Th17 cells and less efficient at inducing Foxp3(+) T(reg) cells than DCs from B6 mice from The Jackson Laboratory. Thus, the functional specializations of APC subsets in the intestine are dependent on the T cell/APC ratio, regional localization, and source of the mouse strain.

  16. Taxquake in Los Angeles

    ERIC Educational Resources Information Center

    Koltai, Leslie

    1978-01-01

    Outlines educational, personnel, legal, and political considerations facing the Los Angeles Community College District contingency planning committee in their efforts to develop plans to meet budgetary limitations foreseen in the passage of the Jarvis-Gann property tax limitation initiative. (TP)

  17. The Los Alamos primer

    SciTech Connect

    Serber, R.

    1992-01-01

    This book contains the 1943 lecture notes of Robert Serber. Serber was a protege of J. Robert Oppenheimer and member of the team that built the first atomic bomb - reveal what the Los Alamos scientists knew, and did not know, about the terrifying weapon they were building.

  18. HLA-DQ2.5 genes associated with celiac disease risk are preferentially expressed with respect to non-predisposing HLA genes: Implication for anti-gluten T cell response.

    PubMed

    Pisapia, Laura; Camarca, Alessandra; Picascia, Stefania; Bassi, Virginia; Barba, Pasquale; Del Pozzo, Giovanna; Gianfrani, Carmen

    2016-06-01

    HLA genes represent the main risk factor in autoimmune disorders. In celiac disease (CD), the great majority of patients carry the HLA DQA1*05 and DQB1*02 alleles, both of which encode the DQ2.5 molecule. The formation of complexes between DQ2.5 and gluten peptides on antigen-presenting cells (APCs) is necessary to activate pathogenic CD4(+) T lymphocytes. It is widely accepted that the DQ2.5 genes establish the different intensities of anti-gluten immunity, depending whether they are in a homozygous or a heterozygous configuration. Here, we demonstrated that HLA DQA1*05 and DQB1*02 gene expression is much higher than expression of non-CD-associated genes. This influences the protein levels and causes a comparable cell surface exposure of DQ2.5 heterodimers between DQ2.5 homozygous and heterozygous celiac patients. As a consequence, the magnitude of the anti-gluten CD4(+) T cell response is strictly dependent on the antigen dose and not on the DQ2.5 gene configuration of APCs. Furthermore, our findings support the concept that the expression of DQ2.5 genes is an important risk factor in celiac disease. The preferential expression of DQ2.5 alleles provides a new functional explanation of why these genes are so frequently associated with celiac disease and with other autoimmune disorders.

  19. The HECT type ubiquitin ligase NEDL2 is degraded by anaphase-promoting complex/cyclosome (APC/C)-Cdh1, and its tight regulation maintains the metaphase to anaphase transition.

    PubMed

    Lu, Li; Hu, Shaohua; Wei, Rongfei; Qiu, Xiao; Lu, Kefeng; Fu, Yesheng; Li, Hongchang; Xing, Guichun; Li, Dong; Peng, Ruiyun; He, Fuchu; Zhang, Lingqiang

    2013-12-13

    NEDD4-like ubiquitin ligase 2 (NEDL2) is a HECT type ubiquitin ligase. NEDL2 enhances p73 transcriptional activity and degrades ATR kinase in lamin misexpressed cells. Compared with the important functions of other HECT type ubiquitin ligase, there is less study concerning the function and regulation of NEDL2. Using primary antibody immunoprecipitation and mass spectrometry, we identify a list of potential proteins that are putative NEDL2-interacting proteins. The candidate list contains many of mitotic proteins, especially including several subunits of anaphase-promoting complex/cyclosome (APC/C) and Cdh1, an activator of APC/C. Cdh1 can interact with NEDL2 in vivo and in vitro. Cdh1 recognizes one of the NEDL2 destruction boxes (R(740)GSL(743)) and targets it for degradation in an APC/C-dependent manner during mitotic exit. Overexpression of Cdh1 reduces the protein level of NEDL2, whereas knockdown of Cdh1 increases the protein level of NEDL2 but has no effect on the NEDL2 mRNA level. NEDL2 associates with mitotic spindles, and its protein level reaches a maximum in mitosis. The function of NEDL2 during mitosis is essential because NEDL2 depletion prolongs metaphase, and overexpression of NEDL2 induces chromosomal lagging. Elevated expression of NEDL2 protein and mRNA are both found in colon cancer and cervix cancer. We conclude that NEDL2 is a novel substrate of APC/C-Cdh1 as cells exit mitosis and functions as a regulator of the metaphase to anaphase transition. Its overexpression may contribute to tumorigenesis.

  20. Evaluation and analysis of Seasat-A Scanning multichannel Microwave radiometer (SMMR) Antenna Pattern Correction (APC) algorithm. Sub-task 2: T sub B measured vs. T sub B calculated comparison results

    NASA Technical Reports Server (NTRS)

    Kitzis, J. L.; Kitzis, S. N.

    1979-01-01

    Interim Antenna Pattern Correction (APC) brightness temperature measurements for all ten SMMR channels are compared with calculated values generated from surface truth data. Plots and associated statistics are presented for the available points of coincidence between SMMR and surface truth measurements acquired for the Gulf of Alaska SEASAT Experiment. The most important conclusions of the study deal with the apparent existence of different instrument biases for each SMMR channel, and their variation across the scan.

  1. TCR engagement induces proline-rich tyrosine kinase-2 (Pyk2) translocation to the T cell-APC interface independently of Pyk2 activity and in an immunoreceptor tyrosine-based activation motif-mediated fashion.

    PubMed

    Sancho, David; Montoya, María C; Monjas, Alicia; Gordón-Alonso, Mónica; Katagiri, Takuya; Gil, Diana; Tejedor, Reyes; Alarcón, Balbino; Sánchez-Madrid, Francisco

    2002-07-01

    The relocation of kinases in T lymphocytes during their cognate interaction with APCs is essential for lymphocyte activation. We found that the proline-rich tyrosine kinase-2 (Pyk2) is rapidly translocated to the T cell-APC contact area upon T cell-specific recognition of superantigen-pulsed APCs. Stimulation with anti-CD3-coated latex microspheres was sufficient for Pyk2 reorientation, and the coengagement of CD28 boosted Pyk2 redistribution. Nevertheless, Pyk2 translocation did not result in its recruitment to lipid rafts. Two results support that Pyk2 translocation was independent of its kinase activity. First, Lck activity was required for TCR-induced Pyk2 translocation, but not for TCR-induced Pyk2 activation. Second, a kinase-dead Pyk2 mutant was equally translocated upon TCR triggering. In addition, Lck activity alone was insufficient to induce Pyk2 reorientation and activation, requiring the presence of at least one intact immunoreceptor tyrosine-based activation motif (ITAM). Despite the dependence on functional Lck and on phosphorylated ITAM for Pyk2 translocation, the ITAM-binding tyrosine kinase zeta-associated protein 70 (ZAP-70) was not essential. All these data suggest that, by translocating to the vicinity of the immune synapse, Pyk2 could play an essential role in T cell activation and polarized secretion of cytokines.

  2. Malignancy of Cancers and Synthetic Lethal Interactions Associated With Mutations of Cancer Driver Genes.

    PubMed

    Wang, Xiaosheng; Zhang, Yue; Han, Ze-Guang; He, Kun-Yan

    2016-02-01

    The mutation status of cancer driver genes may correlate with different degrees of malignancy of cancers. The doubling time and multidrug resistance are 2 phenotypes that reflect the degree of malignancy of cancer cells. Because most of cancer driver genes are hard to target, identification of their synthetic lethal partners might be a viable approach to treatment of the cancers with the relevant mutations.The genome-wide screening for synthetic lethal partners is costly and labor intensive. Thus, a computational approach facilitating identification of candidate genes for a focus synthetic lethal RNAi screening will accelerate novel anticancer drug discovery.We used several publicly available cancer cell lines and tumor tissue genomic data in this study.We compared the doubling time and multidrug resistance between the NCI-60 cell lines with mutations in some cancer driver genes and those without the mutations. We identified some candidate synthetic lethal genes to the cancer driver genes APC, KRAS, BRAF, PIK3CA, and TP53 by comparison of their gene phenotype values in cancer cell lines with the relevant mutations and wild-type background. Further, we experimentally validated some of the synthetic lethal relationships we predicted.We reported that mutations in some cancer driver genes mutations in some cancer driver genes such as APC, KRAS, or PIK3CA might correlate with cancer proliferation or drug resistance. We identified 40, 21, 5, 43, and 18 potential synthetic lethal genes to APC, KRAS, BRAF, PIK3CA, and TP53, respectively. We found that some of the potential synthetic lethal genes show significantly higher expression in the cancers with mutations of their synthetic lethal partners and the wild-type counterparts. Further, our experiments confirmed several synthetic lethal relationships that are novel findings by our methods.We experimentally validated a part of the synthetic lethal relationships we predicted. We plan to perform further experiments to validate

  3. Los Alamos Programming Models

    SciTech Connect

    Bergen, Benjamin Karl

    2016-07-07

    This is the PDF of a powerpoint presentation from a teleconference on Los Alamos programming models. It starts by listing their assumptions for the programming models and then details a hierarchical programming model at the System Level and Node Level. Then it details how to map this to their internal nomenclature. Finally, a list is given of what they are currently doing in this regard.

  4. Two ubiquitin ligases, APC/C-Cdh1 and SKP1-CUL1-F (SCF)-β-TrCP, sequentially regulate glycolysis during the cell cycle

    PubMed Central

    Tudzarova, Slavica; Colombo, Sergio L.; Stoeber, Kai; Carcamo, Saul; Williams, Gareth H.; Moncada, Salvador

    2011-01-01

    During cell proliferation, the abundance of the glycolysis-promoting enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, isoform 3 (PFKFB3), is controlled by the ubiquitin ligase APC/C-Cdh1 via a KEN box. We now demonstrate in synchronized HeLa cells that PFKFB3, which appears in mid-to-late G1, is essential for cell division because its silencing prevents progression into S phase. In cells arrested by glucose deprivation, progression into S phase after replacement of glucose occurs only when PFKFB3 is present or is substituted by the downstream glycolytic enzyme 6-phosphofructo-1-kinase. PFKFB3 ceases to be detectable during late G1/S despite the absence of Cdh1; this disappearance is prevented by proteasomal inhibition. PFKFB3 contains a DSG box and is therefore a potential substrate for SCF-β-TrCP, a ubiquitin ligase active during S phase. In synchronized HeLa cells transfected with PFKFB3 mutated in the KEN box, the DSG box, or both, we established the breakdown routes of the enzyme at different stages of the cell cycle and the point at which glycolysis is enhanced. Thus, the presence of PFKFB3 is tightly controlled to ensure the up-regulation of glycolysis at a specific point in G1. We suggest that this up-regulation of glycolysis and its associated events represent the nutrient-sensitive restriction point in mammalian cells. PMID:21402913

  5. CD24 knockout prevents colorectal cancer in chemically induced colon carcinogenesis and in APC(Min)/CD24 double knockout transgenic mice.

    PubMed

    Naumov, Inna; Zilberberg, Alona; Shapira, Shiran; Avivi, Doran; Kazanov, Dina; Rosin-Arbesfeld, Rina; Arber, Nadir; Kraus, Sarah

    2014-09-01

    Increased expression of CD24 is seen in a large variety of solid tumors, including up to 90% of gastrointestinal (GI) tumors. Stable derivatives of SW480 colorectal cancer (CRC) cells that overexpress CD24 proliferate faster, and increase cell motility, saturation density, plating efficiency, and growth in soft agar. They also produce larger tumors in nude mice as compared to the parental SW480 cells. Most significantly, even depletion of one copy of the CD24 allele in the APC(Min/+) mice of a transgenic mouse model led to a dramatic reduction in tumor burden in all sections of the small intestine. Homozygous deletion of both CD24 alleles resulted in complete abolishment of tumor formation. Moreover, CD24 knockout mice exhibited resistance to chemically induced inflammation-associated CRC. Finally, a new signal transduction pathway is suggested: namely, CD24 expression downstream to COX2 and PGE2 synthesis, which is directly regulated by β-catenin. CD24 is shown in vitro and in vivo as being an important oncogene in the gut, and one that plays a critical role in the initiation and progression of carcinogenesis.

  6. Diverse HLA-I Peptide Repertoires of the APC Lines MUTZ3-Derived Immature and Mature Dendritic Cells and THP1-Derived Macrophages.

    PubMed

    Nyambura, Lydon Wainaina; Jarmalavicius, Saulius; Baleeiro, Renato Brito; Walden, Peter

    2016-09-15

    Dendritic cells (DCs) and macrophages are specialized APCs that process and present self-Ags for induction of tolerance and foreign Ags to initiate T cell-mediated immunity. Related to differentiation states they have specific phenotypes and functions. However, the impact of these differentiations on Ag processing and presentation remains poorly defined. To gain insight into this, we analyzed and compared the HLA-I peptidomes of MUTZ3-derived human immature and mature DC lines and THP1-derived macrophages by liquid chromatography tandem mass spectrometry. We found that the HLA-I peptidomes were heterogeneous and individualized and were dominated by nonapeptides with similar HLA-I binding affinities and anchor residues. MUTZ3-derived DCs and THP1-derived macrophages were able to sample peptides from source proteins of almost all subcellular locations and were involved in various cellular functions in similar proportion, with preference to proteins involved in cell communication, signal transduction, protein metabolism, and transcription factor/regulator activity.

  7. Conformational rearrangements to the intracellular open states of the LeuT and ApcT transporters are modulated by common mechanisms.

    PubMed

    Shi, Lei; Weinstein, Harel

    2010-12-15

    Recent crystallographic studies revealed that five transporter families without much sequence similarities among them have similar structure folds to LeuT, a bacterial neurotransmitter:sodium symporter homolog. The LeuT fold is characterized by an internal twofold structural pseudosymmetry. The transport cycle of some members of each of these families is dependent on a sodium gradient across the membrane, whereas in some others the role of sodium is mimicked by proton. We report on the identification of common structure-dynamics elements of the transporters with LeuT fold, which are recognizable in the conformational transitions related to function. The findings from comparative computational modeling and simulation studies of LeuT, and ApcT from the amino acid-polyamine-organocation transporter family define the intramolecular mechanisms by which Na+ binding couples to the transport process, and single out the lead/active role of TM1a in the transition to inward-open conformation. These mechanistic insights are derived in the context of collaborative investigations of LeuT dynamics with both single-molecule fluorescence and simulations that have produced excellent agreement of the dynamic details, and are found to be generalizable across the transporter families and to transcend sequence and motif similarities.

  8. Construction and Characterization of Human Mammary Epithelial Cell Lines Containing Mutations in the p53 or BRCAl Genes

    DTIC Science & Technology

    1997-10-01

    We originally proposed the Differential Display method (Liang and Pardee 1992) to identify genes that are modulated by p53 and BRCA1 deficiency. As...retroviral delivery of tetracycline-inducible genes in a single autoregulatory cassette. Proc Natl Acad Sci U S A 93:5185-5190 (1996). Liang P, Pardee A...Shoemaker A, Dove W. ApcMin: a mouse model for intestinal and mammary tumorigenesis. Eur J Cancer 3 1A: 1061-4 (1995). Moser A, Mattes E, Dove W, Lindstrom M

  9. Altered expression of Butyrophilin (BTN) and BTN‐like (BTNL) genes in intestinal inflammation and colon cancer

    PubMed Central

    Lebrero‐Fernández, Cristina; Wenzel, Ulf Alexander; Akeus, Paulina; Wang, Ying; Strid, Hans; Simrén, Magnus; Gustavsson, Bengt; Börjesson, Lars G.; Cardell, Susanna L.; Öhman, Lena; Quiding‐Järbrink, Marianne

    2016-01-01

    Abstract Several Butyrophilin (BTN) and Btn‐like (BTNL) molecules control T lymphocyte responses, and are genetically associated with inflammatory disorders and cancer. In this study, we present a comprehensive expression analysis of human and murine BTN and BTNL genes in conditions associated with intestinal inflammation and cancer. Using real‐time PCR, expression of human BTN and BTNL genes was analyzed in samples from patients with ulcerative colitis, irritable bowel syndrome, and colon tumors. Expression of murine Btn and Btnl genes was examined in mouse models of spontaneous colitis (Muc2 −/−) and intestinal tumorigenesis (Apc Min/+). Our analysis indicates a strong association of several of the human genes with ulcerative colitis and colon cancer; while especially BTN1A1, BTN2A2, BTN3A3, and BTNL8 were significantly altered in inflammation, colonic tumors exhibited significantly decreased levels of BTNL2, BTNL3, BTNL8, and BTNL9 as compared to unaffected tissue. Colonic inflammation in Muc2 −/− mice significantly down‐regulated the expression of particularly Btnl1, Btnl4, and Btnl6 mRNA, and intestinal polyps derived from Apc Min/+ mice displayed altered levels of Btn1a1, Btn2a2, and Btnl1 transcripts. Thus, our data present an association of BTN and BTNL genes with intestinal inflammation and cancer and represent a valuable resource for further studies of this gene family. PMID:27957327

  10. Mouse models for the discovery of colorectal cancer driver genes

    PubMed Central

    Clark, Christopher R; Starr, Timothy K

    2016-01-01

    Colorectal cancer (CRC) constitutes a major public health problem as the third most commonly diagnosed and third most lethal malignancy worldwide. The prevalence and the physical accessibility to colorectal tumors have made CRC an ideal model for the study of tumor genetics. Early research efforts using patient derived CRC samples led to the discovery of several highly penetrant mutations (e.g., APC, KRAS, MMR genes) in both hereditary and sporadic CRC tumors. This knowledge has enabled researchers to develop genetically engineered and chemically induced tumor models of CRC, both of which have had a substantial impact on our understanding of the molecular basis of CRC. Despite these advances, the morbidity and mortality of CRC remains a cause for concern and highlight the need to uncover novel genetic drivers of CRC. This review focuses on mouse models of CRC with particular emphasis on a newly developed cancer gene discovery tool, the Sleeping Beauty transposon-based mutagenesis model of CRC. PMID:26811627

  11. Mouse models for the discovery of colorectal cancer driver genes.

    PubMed

    Clark, Christopher R; Starr, Timothy K

    2016-01-14

    Colorectal cancer (CRC) constitutes a major public health problem as the third most commonly diagnosed and third most lethal malignancy worldwide. The prevalence and the physical accessibility to colorectal tumors have made CRC an ideal model for the study of tumor genetics. Early research efforts using patient derived CRC samples led to the discovery of several highly penetrant mutations (e.g., APC, KRAS, MMR genes) in both hereditary and sporadic CRC tumors. This knowledge has enabled researchers to develop genetically engineered and chemically induced tumor models of CRC, both of which have had a substantial impact on our understanding of the molecular basis of CRC. Despite these advances, the morbidity and mortality of CRC remains a cause for concern and highlight the need to uncover novel genetic drivers of CRC. This review focuses on mouse models of CRC with particular emphasis on a newly developed cancer gene discovery tool, the Sleeping Beauty transposon-based mutagenesis model of CRC.

  12. Heavy ion radiation exposure triggered higher intestinal tumor frequency and greater β-catenin activation than γ radiation in APC(Min/+) mice.

    PubMed

    Datta, Kamal; Suman, Shubhankar; Kallakury, Bhaskar V S; Fornace, Albert J

    2013-01-01

    Risk of colorectal cancer (CRC) after exposure to low linear energy transfer (low-LET) radiation such as γ-ray is highlighted by the studies in atom bomb survivors. On the contrary, CRC risk prediction after exposure to high-LET cosmic heavy ion radiation exposure is hindered due to scarcity of in vivo data. Therefore, intestinal tumor frequency, size, cluster, and grade were studied in APC(Min/+) mice (n = 20 per group; 6 to 8 wks old; female) 100 to 110 days after exposure to 1.6 or 4 Gy of heavy ion (56)Fe radiation (energy: 1000 MeV/nucleon) and results were compared to γ radiation doses of 2 or 5 Gy, which are equitoxic to 1.6 and 4 Gy (56)Fe respectively. Due to relevance of lower doses to radiotherapy treatment fractions and space exploration, we followed 2 Gy γ and equitoxic 1.6 Gy (56)Fe for comparative analysis of intestinal epithelial cell (IEC) proliferation, differentiation, and β-catenin signaling pathway alterations between the two radiation types using immunoblot, and immunohistochemistry. Relative to controls and γ-ray, intestinal tumor frequency and grade was significantly higher after (56)Fe radiation. Additionally, tumor incidence per unit of radiation (per cGy) was also higher after (56)Fe radiation relative to γ radiation. Staining for phospho-histone H3, indicative of IEC proliferation, was more and alcian blue staining, indicative of IEC differentiation, was less in (56)Fe than γ irradiated samples. Activation of β-catenin was more in (56)Fe-irradiated tumor-free and tumor-bearing areas of the intestinal tissues. When considered along with higher levels of cyclin D1, we infer that relative to γ radiation exposure to (56)Fe radiation induced markedly reduced differentiation, and increased proliferative index in IEC resulting in increased intestinal tumors of larger size and grade due to preferentially greater activation of β-catenin and its downstream effectors.

  13. Suppressive effects of the NADPH oxidase inhibitor apocynin on intestinal tumorigenesis in obese KK-A(y) and Apc mutant Min mice.

    PubMed

    Komiya, Masami; Fujii, Gen; Miyamoto, Shingo; Takahashi, Mami; Ishigamori, Rikako; Onuma, Wakana; Ishino, Kousuke; Totsuka, Yukari; Fujimoto, Kyoko; Mutoh, Michihiro

    2015-11-01

    Obesity is a risk factor for colorectal cancer. The accumulation of abdominal fat tissue causes abundant reactive oxygen species production through the activation of NADPH oxidase due to excessive insulin stimulation. The enzyme NADPH oxidase catalyzes the production of reactive oxygen species and evokes the initiation and progression of tumorigenesis. Apocynin is an NADPH oxidase inhibitor that blocks the formation of the NADPH oxidase complex (active form). In this study, we investigated the effects of apocynin on the development of azoxymethane-induced colonic aberrant crypt foci in obese KK-A(y) mice and on the development of intestinal polyps in Apc mutant Min mice. Six-week-old KK-A(y) mice were injected with azoxymethane (200 μg/mouse once per week for 3 weeks) and given 250 mg/L apocynin or 500 mg/L apocynin in their drinking water for 7 weeks. Six-week-old Min mice were also treated with 500 mg/L apocynin for 6 weeks. Treatment with apocynin reduced the number of colorectal aberrant crypt foci in KK-A(y) mice by 21% and the number of intestinal polyps in Min mice by 40% compared with untreated mice. Both groups of mice tended to show improved oxidation of serum low-density lipoprotein and 8-oxo-2'-deoxyguanosine adducts in their adipose tissues. In addition, the inducible nitric oxide synthase mRNA levels in polyp tissues decreased. Moreover, apocynin was shown to suppress nuclear factor-κB transcriptional activity in vitro. These results suggest that apocynin and other NADPH oxidase inhibitors may be effective colorectal cancer chemopreventive agents.

  14. UV exposure inhibits intestinal tumor growth and progression to malignancy in intestine-specific Apc mutant mice kept on low vitamin D diet.

    PubMed

    Rebel, Heggert; der Spek, Celia Dingemanse-van; Salvatori, Daniela; van Leeuwen, Johannes P T M; Robanus-Maandag, Els C; de Gruijl, Frank R

    2015-01-15

    Mortality from colorectal cancer increases with latitude and decreases with ambient UV radiation. We investigated whether moderate UV dosages could inhibit intestinal tumor development and whether this corresponded with UV-induced vitamin D. FabplCre;Apc(15lox/+) mice, which develop intestinal tumors, and their parents were put on a vitamin D-deficient diet. Next to a control group, one group was vitamin D supplemented and another one group was daily UV irradiated from 6 weeks of age. Vitamin D statuses after 6 weeks of treatment were markedly increased: mean ± SD from 7.7 ± 1.9 in controls to 75 ± 15 nmol/l with vitamin D supplementation (no gender difference), and to 31 ± 13 nmol/l in males and 85 ± 17 nmol/l in females upon UV irradiation. The tumor load (area covered by tumors) at 7.5 months of age was significantly reduced in both the vitamin D-supplemented group (130 ± 25 mm(2), p = 0.018) and the UV-exposed group (88 ± 9 mm(2), p < 0.0005; no gender differences) compared to the control group (202 ± 23 mm(2)). No reductions in tumor numbers were found. Only UV exposure appeared to reduce progression to malignancy (p = 0.014). Our experiments clearly demonstrate for the first time an inhibitory effect of moderate UV exposure on outgrowth and malignant progression of primary intestinal tumors, which at least in part can be attributed to vitamin D.

  15. Design and validation of an orally administrated active L. fermentum-L. acidophilus probiotic formulation using colorectal cancer Apc (Min/+) mouse model.

    PubMed

    Kahouli, Imen; Malhotra, Meenakshi; Westfall, Susan; Alaoui-Jamali, Moulay A; Prakash, Satya

    2017-03-01

    Probiotics have been shown to have beneficial properties in attenuating the risk of colorectal cancer (CRC) development. However, functional evidence to support such effects for some probiotic bacteria are relatively unknown. Here, we document a significant antioxidant, anti-proliferative and pro-apoptotic activities of Lactobacillus acidophilus ATCC 314 and Lactobacillus fermentum NCIMB 5221 on CRC cells, particularly when used in combination (La-Lf). Furthermore, a superior synergistic activity on the inhibition of tumor growth and modulation of cell proliferation and epithelial markers in the Apc (Min/+) CRC mouse model was explored, based on the expression levels of Ki-67, E-cadherin, β-catenin, and cleaved caspase-3 (CC3) proteins. The anti-cancer activity of La-Lf co-culture was significantly enhanced in vitro with significant reduced proliferation (38.8 ± 6.9 %, P = 0.009) and increased apoptosis (413 RUL, P < 0.001) towards cancer cells, as well as significant protection of normal colon cell growth from toxic treatment (18.6 ± 9.8 %, P = 0.001). La-Lf formulation (10(10)cfu/animal/day) altered aspects of intestinal tumorigenesis by significantly reducing intestinal tumor multiplicity (1.7-fold, P = 0.016) and downregulating cellular proliferation markers, including β-catenin (P = 0.041) and Ki-67 (P = 0.008). In conclusion, La-Lf showed greater protection against intestinal tumorigenesis supporting a potential use as a biotherapeutic for the prevention of CRC.

  16. TGF-β activates APC through Cdh1 binding for Cks1 and Skp2 proteasomal destruction stabilizing p27kip1 for normal endometrial growth.

    PubMed

    Pavlides, Savvas C; Lecanda, Jon; Daubriac, Julien; Pandya, Unnati M; Gama, Patricia; Blank, Stephanie; Mittal, Khushbakhat; Shukla, Pratibha; Gold, Leslie I

    2016-01-01

    We previously reported that aberrant TGF-β/Smad2/3 signaling in endometrial cancer (ECA) leads to continuous ubiquitylation of p27(kip1)(p27) by the E3 ligase SCF-Skp2/Cks1 causing its degradation, as a putative mechanism involved in the pathogenesis of this cancer. In contrast, normal intact TGF-β signaling prevents degradation of nuclear p27 by SCF-Skp2/Cks1 thereby accumulating p27 to block Cdk2 for growth arrest. Here we show that in ECA cell lines and normal primary endometrial epithelial cells, TGF-β increases Cdh1 and its binding to APC/C to form the E3 ligase complex that ubiquitylates Cks1 and Skp2 prompting their proteasomal degradation and thus, leaving p27 intact. Knocking-down Cdh1 in ECA cell lines increased Skp2/Cks1 E3 ligase activity, completely diminished nuclear and cytoplasmic p27, and obviated TGF-β-mediated inhibition of proliferation. Protein synthesis was not required for TGF-β-induced increase in nuclear p27 and decrease in Cks1 and Skp2. Moreover, half-lives of Cks1 and Skp2 were extended in the Cdh1-depleted cells. These results suggest that the levels of p27, Skp2 and Cks1 are strongly or solely regulated by proteasomal degradation. Finally, an inverse relationship of low p27 and high Cks1 in the nucleus was shown in patients in normal proliferative endometrium and grade I-III ECAs whereas differentiated secretory endometrium showed the reverse. These studies implicate Cdh1 as the master regulator of TGF-β-induced preservation of p27 tumor suppressor activity. Thus, Cdh1 is a potential therapeutic target for ECA and other human cancers showing an inverse relationship between Cks1/Skp2 and p27 and/or dysregulated TGF-β signaling.

  17. Los Alamos National Laboratory

    SciTech Connect

    Dogliani, Harold O

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  18. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer.

    PubMed

    Galamb, Orsolya; Kalmár, Alexandra; Péterfia, Bálint; Csabai, István; Bodor, András; Ribli, Dezső; Krenács, Tibor; Patai, Árpád V; Wichmann, Barnabás; Barták, Barbara Kinga; Tóth, Kinga; Valcz, Gábor; Spisák, Sándor; Tulassay, Zsolt; Molnár, Béla

    2016-08-02

    The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.

  19. Tumor suppressor genes in familial adenomatous polyposis

    PubMed Central

    Eshghifar, Nahal; Farrokhi, Naser; Naji, Tahereh; Zali, Mohammadreza

    2017-01-01

    Colorectal cancer (CRC) is mostly due to a series of genetic alterations that are being greatly under the influence of the environmental factors. These changes, mutational or epigenetic modifications at transcriptional forefront and/or post-transcriptional effects via miRNAs, include inactivation and the conversion of proto-oncogene to oncogenes, and/or inactivation of tumor suppressor genes (TSG). Here, a thorough review was carried out on the role of TSGs with the focus on the APC as the master regulator, mutated genes and mal-/dysfunctional pathways that lead to one type of hereditary form of the CRC; namely familial adenomatous polyposis (FAP). This review provides a venue towards defining candidate genes that can be used as new PCR-based markers for early diagnosis of FAP. In addition to diagnosis, defining the modes of genetic alterations will open door towards genome editing to either suppress the disease or reduce its progression during the course of action. PMID:28331559

  20. Promoter methylation status of tumor suppressor genes and inhibition of expression of DNA methyltransferase 1 in non-small cell lung cancer

    PubMed Central

    Liu, Bangqing; Song, Jianfei; Luan, Jiaqiang; Sun, Xiaolin; Bai, Jian; Wang, Haiyong; Li, Angui; Zhang, Lifei; Feng, Xiaoyan

    2016-01-01

    DNA methylation is an epigenetic DNA modification catalyzed by DNA methyltransferase 1 (DNMT1). The purpose of this study was to investigate DNMT1 gene and protein expression and the effects of methylation status on tumor suppressor genes in human non-small cell lung cancer (NSCLC) cell lines grown in vitro and in vivo. Human lung adenocarcinoma cell lines, A549 and H838, were grown in vitro and inoculated subcutaneously into nude mice to form tumors and were then treated with the DNA methylation inhibitor, 5-aza-2′-deoxycytidine, with and without treatment with the benzamide histone deacetylase inhibitor, entinostat (MS-275). DNMT1 protein expression was quantified by Western blot. Promoter methylation status of tumor suppressor genes (RASSF1A, ASC, APC, MGMT, CDH13, DAPK, ECAD, P16, and GATA4) was evaluated by methylation-specific polymerase chain reaction. Methylation status of the tumor suppressor genes was regulated by the DNMT1 gene, with the decrease of DNMT1 expression following DNA methylation treatment. Demethylation of tumor suppressor genes (APC, ASC, and RASSF1A) restored tumor growth in nude mice. The results of this study support a role for methylation of DNA as a potential epigenetic clinical biomarker of prognosis or response to therapy and for DNMT1 as a potential therapeutic target in NSCLC. PMID:27190263

  1. Cancer Susceptibility Gene Mutations in Individuals With Colorectal Cancer.

    PubMed

    Yurgelun, Matthew B; Kulke, Matthew H; Fuchs, Charles S; Allen, Brian A; Uno, Hajime; Hornick, Jason L; Ukaegbu, Chinedu I; Brais, Lauren K; McNamara, Philip G; Mayer, Robert J; Schrag, Deborah; Meyerhardt, Jeffrey A; Ng, Kimmie; Kidd, John; Singh, Nanda; Hartman, Anne-Renee; Wenstrup, Richard J; Syngal, Sapna

    2017-04-01

    Purpose Hereditary factors play an important role in colorectal cancer (CRC) risk, yet the prevalence of germline cancer susceptibility gene mutations in patients with CRC unselected for high-risk features (eg, early age at diagnosis, personal/family history of cancer or polyps, tumor microsatellite instability [MSI], mismatch repair [MMR] deficiency) is unknown. Patients and Methods We recruited 1,058 participants who received CRC care in a clinic-based setting without preselection for age at diagnosis, personal/family history, or MSI/MMR results. All participants underwent germline testing for mutations in 25 genes associated with inherited cancer risk. Each gene was categorized as high penetrance or moderate penetrance on the basis of published estimates of the lifetime cancer risks conferred by pathogenic germline mutations in that gene. Results One hundred five (9.9%; 95% CI, 8.2% to 11.9%) of 1,058 participants carried one or more pathogenic mutations, including 33 (3.1%) with Lynch syndrome (LS). Twenty-eight (96.6%) of 29 available LS CRCs demonstrated abnormal MSI/MMR results. Seventy-four (7.0%) of 1,058 participants carried non-LS gene mutations, including 23 (2.2%) with mutations in high-penetrance genes (five APC, three biallelic MUTYH, 11 BRCA1/2, two PALB2, one CDKN2A, and one TP53), 15 of whom lacked clinical histories suggestive of their underlying mutation. Thirty-eight (3.6%) participants had moderate-penetrance CRC risk gene mutations (19 monoallelic MUTYH, 17 APC*I1307K, two CHEK2). Neither proband age at CRC diagnosis, family history of CRC, nor personal history of other cancers significantly predicted the presence of pathogenic mutations in non-LS genes. Conclusion Germline cancer susceptibility gene mutations are carried by 9.9% of patients with CRC. MSI/MMR testing reliably identifies LS probands, although 7.0% of patients with CRC carry non-LS mutations, including 1.0% with BRCA1/2 mutations.

  2. Los biocombustibles y el futuro

    NASA Video Gallery

    ¿Cómo podremos utilizar los biocombustibles en el futuro? La ingeniera aeroespacial de la NASA, Diana Centeno Gómez nos explica el futuro de los biocombustibles y cómo un día podrías trabajar con d...

  3. Metabolism of benzo(a)pyrene by subcellular fractions of gastrointestinal (GI) tract and liver in Apc(Min) mouse model of colon cancer.

    PubMed

    Mantey, Jane A; Rekhadevi, Perumalla V; Diggs, Deacqunita L; Ramesh, Aramandla

    2014-05-01

    Given the fact that increased dietary intake of polycyclic aromatic hydrocarbons (PAHs; a family of environmental toxicants) leads to the formation and development of colon tumors, the ability of the gastrointestinal tract to process these compounds is important from the viewpoint of toxicity/carcinogenesis. Benzo(a)pyrene (BaP), a prototypical PAH compound is released into the environment from automobile exhausts, cigarette smoke, and industrial emissions. Additionally, considerable intake of BaP is expected in people who consume barbecued foods and a diet rich in saturated fat. In exposed animals, BaP becomes activated to potent metabolites that interfere with target organ function and as a consequence cause toxicity and cancer. Therefore, knowledge of BaP metabolism in the digestive system will be of importance in the management of cancers of the digestive tract. The objective of our study was to study the metabolism of BaP by subcellular fractions (nuclear, cytosolic, mitochondrial, and microsomal) of the gastrointestinal tract and liver. Subcellular fractions were isolated by differential centrifugation from the stomach, jejunum, colon, and liver tissues of Apc(Min) mice that received a subchronic dose of 25 μg/kg BaP. The fractions were incubated with 1 and 3 μM BaP. Subsequent to incubation, samples were extracted with ethyl acetate and analyzed for BaP metabolites by reverse-phase HPLC equipped with fluorescence detection. Among the different fractions tested, microsomal BaP metabolism was higher than the rest of the fractions in all the samples analyzed. Additionally, a BaP exposure concentration-dependent effect on metabolite levels generated by the subcellular fractions was recorded. The BaP metabolites identified were the following: BaP-9,10-diol; BaP-4,5-diol; BaP-7,8-diol; 9(OH) BaP; 3(OH) BaP; BaP-3,6-dione; and BaP-6,12-dione. While the diol group of metabolites was frequently detected, among diones, the 3,6 and 6,12-dione metabolites were

  4. Studying Genes

    MedlinePlus

    ... Area What are genes? Genes are sections of DNA that contain instructions for making the molecules—many ... material in an organism. This includes genes and DNA elements that control the activity of genes. Does ...

  5. Los Angeles Beach Harbors, Los Angeles County, California.

    DTIC Science & Technology

    1974-10-01

    Outdoor Recreation, USDI, Agricultural Research Service, USDA Pacific Southwest Regional Office Soil Conservation Service, USDA Geological Survey, USDI...of channels through a coastal salt marsh (once the estuary of the Los Angeles River ), filling of adjacent marshland areas, and both dredging and...the harbor area comes from: (a) the Los Angeles River , which drains an 832-square-mile basin, and (b) Dominguez Channel, an 8.5-mile-long structure

  6. A prospective study of tumor suppressor gene methylation as a prognostic biomarker in surgically-resected stage I-IIIA non-small cell lung cancers

    PubMed Central

    Drilon, Alexander; Sugita, Hirofumi; Sima, Camelia S.; Zauderer, Marjorie; Rudin, Charles M.; Kris, Mark G.; Rusch, Valerie W.; Azzoli, Christopher G.

    2014-01-01

    Introduction While retrospective analyses support an association between early tumor recurrence and tumor suppressor gene (TSG) promoter methylation in early-stage non-small cell lung cancers (NSCLCs), few studies have investigated this question prospectively. Methods Primary tumor tissue from patients with resected pathologic stage I-IIIA NSCLCs was collected at the time of surgery and analyzed for promoter methylation via methylation-specific reverse-transcriptase polymerase chain reaction (MethyLight). The primary objective was to determine an association between promoter methylation of 10 individual TSGs (CDKN2A, CDH13, RASSF1, APC, MGMT, GSTP1, DAPK1, WIF1, SOCS3, and ADAMTS8) and recurrence-free survival (RFS), with the secondary objectives of determining association with overall survival (OS), and relation to clinical or pathologic features. Results 107 patients had sufficient tumor tissue for successful promoter methylation analysis. Majority of patients were former/current smokers (88%) with lung adenocarcinoma (78%) and pathologic stage I disease (66%). Median follow-up was 4 years. When controlled for pathologic stage, promoter methylation of the individual genes CDKN2A, CDH13, RASSF1, APC, MGMT, GSTP1, DAPK1, WIF1, and ADAMTS8 was not associated with RFS. Promoter methylation of the same genes was not associated with OS except for DAPK1 which was associated with improved OS (p=0.03). The total number of genes with methylated promoters did not correlate with RFS (p=0.89) or OS (p=0.55). Conclusions Contrary to data established by previous retrospective series, TSG promoter methylation (CDKN2A, CDH13, RASSF1,APC, MGMT, GSTP1, DAPK1, WIF1, and ADAMTS8) was not prognostic for early tumor recurrence in this prospective study of resected NSCLCs. PMID:25122424

  7. Quantitative DNA Methylation Analysis of Candidate Genes in Cervical Cancer

    PubMed Central

    Siegel, Erin M.; Riggs, Bridget M.; Delmas, Amber L.; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D.

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97–1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated. PMID:25826459

  8. La inserción en el mercado laboral de los inmigrantes latinos en España y en los Estados Unidos: Diferencias por país de origen y estatus legal

    PubMed Central

    Connor, Phillip; Massey, Douglas

    2013-01-01

    Resumen Este artículo compara los resultados económicos entre los inmigrantes latinoamericanos en España y Estados Unidos. Detectamos un efecto de selección por el que la mayoría de los inmigrantes latinoamericanos en España proceden de Sudamérica de un entorno de clases medias, mientras la mayoría de los inmigrantes que van a los Estados Unidos son centroamericanos de clase baja. Este efecto de selección explica las diferencias transnacionales en la probabilidad de empleo, logro ocupacional y salarios obtenidos. A pesar de las diferencias en los orígenes y las características de los latinoamericanos en ambos países, los factores demográficos, humanos y de capital social parecen operar de forma similar en ambos países; y cuando los modelos se estiman separadamente por estatus legal, descubrimos que los efectos se acentúan más entre los inmigrantes irregulares cuando se los compara con los regulares, especialmente en Estados Unidos. PMID:24532857

  9. Evolution of viruses by acquisition of cellular RNA or DNA nucleotide sequences and genes: an introduction.

    PubMed

    Becker, Y

    2000-01-01

    The origins of virus evolution may be traced to Archeabacteria since Inouye and Inouye (6) discovered a retroelement with a gene for reverse transcriptase in the bacterial genome and in the satellite, multiple copy single stranded DNA (msDNA) in the soil bacterium Myxococcus xanthus. It was possible (8) to define the evolution of retroelements in eukaryotic cells of plants, insects (gypsy retrovirus) and vertebrates. The replication of RNA viruses in eukaryotic cells allowed for the viral RNA genome to integrate a cellular ubiquitin mRNA, as reported for BVDV (24). Another example is the integration of 28S ribosomal RNA into the hemagglutinin gene of an influenza virus. This change in the hemagglutinin gene led to an increased pathogenicity of the influenza virus (25). In contrast to RNA viruses, DNA viruses had evolved by inserting cDNA molecules derived from mRNA transcripts of cellular genes or foreign viral RNA. It is of interest that the virus acquired cellular genes in the genomes of DNA viruses represent genes that code for proteins that inhibit cellular molecular processes related to HLA class I and II molecules. The other acquired genes are cellular genes that code for cytokines that are capable of inhibiting antigen presentation to T cells by antigen presenting cells (APC) by dendritic Langerhans cells. The acquisition of cellular genes by DNA viruses enhances their pathogenicity by inhibiting the hosts' defense systems.

  10. Genome-wide transcriptional profiling reveals that HIV-1 Vpr differentially regulates interferon-stimulated genes in human monocyte-derived dendritic cells.

    PubMed

    Zahoor, Muhammad Atif; Xue, Guangai; Sato, Hirotaka; Aida, Yoko

    2015-10-02

    Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that directly link the innate and adaptive immune responses. HIV-1 infection of DCs leads to a diverse array of changes in gene expression and play a major role in dissemination of the virus into T-cells. Although HIV-1 Vpr is a pleiotropic protein involved in HIV-1 replication and pathogenesis, its exact role in APCs such as DCs remains elusive. In this study, utilizing a microarray-based systemic biology approach, we found that HIV-1 Vpr differentially regulates (fold change >2.0) more than 200 genes, primarily those involved in the immune response and innate immune response including type I interferon signaling pathway. The differential expression profiles of select genes involved in innate immune responses (interferon-stimulated genes [ISGs]), including MX1, MX2, ISG15, ISG20, IFIT1, IFIT2, IFIT3, IFI27, IFI44L, and TNFSF10, were validated by real-time quantitative PCR; the results were consistent with the microarray data. Taken together, our findings are the first to demonstrate that HIV-1 Vpr induces ISGs and activates the type I IFN signaling pathway in human DCs, and provide insights into the role of Vpr in HIV-1 pathogenesis.

  11. Geomorphological Hazards in Los Angeles

    NASA Astrophysics Data System (ADS)

    Hadley, Richard F.

    This is a topical book that deals with the geomorphological and geological engineering problems associated with hillslope processes and sediment transport in the Los Angeles metropolitan area. There are few large cities in the United States where the problems of urban growth include such a distinctive physical environment, as well as the potential hazards of brush fires, earthquakes, and floods that occur in Los Angeles. The research and data used in the book are restricted to Los Angeles County and cover the period 1914-1978. The author has done a commendable job of synthesizing a large mass of data from diverse sources, including federal, state, and local agency reports, plus data from private groups such as professional technical societies and consultants.

  12. Mayo de Los Capomos, Sinaloa (Mayo of Los Capomos, Sinaloa).

    ERIC Educational Resources Information Center

    Freeze, Ray A.

    This document is one of 17 volumes on indigenous Mexican languages and is the result of a project undertaken by the Archivo de Lenguas Indigenas de Mexico. This volume contains information on Mayo, an indigenous language of Mexico spoken in Los Capomos, in the state of Sinaloa. The objective of collecting such a representative sampling of the…

  13. Asymmetric Collapse of LOS Pipe.

    DTIC Science & Technology

    1980-05-26

    models that were used to simulate a LOS pipe . Still, the jet was eliminated in a Pinex model with a helical ribbon of polyolefin on the inside surface of...Target from the Pinex Model 71 with Poly Spiral in Experiment LS-3 .41 b l [ SECTION 1 *. INTRODUCTION 1.1 BACKGROUND Line-of-sight (LOS) pipes are...distance. 3.5.7 Simulation of Pinex Pipe . As shown in the photo- graphs provided in Figures 37 and 38, the Pinex-Standard Model and Pinex-Polyolefin Spiral

  14. Distribution of the hallucinogens N,N-dimethyltryptamine and 5-methoxy-N,N-dimethyltryptamine in rat brain following intraperitoneal injection: application of a new solid-phase extraction LC-APcI-MS-MS-isotope dilution method.

    PubMed

    Barker, S A; Littlefield-Chabaud, M A; David, C

    2001-02-10

    A method for the solid-phase extraction (SPE) and liquid chromatographic-atmospheric pressure chemical ionization-mass spectrometric-mass spectrometric-isotope dilution (LC-APcI-MS-MS-ID) analysis of the indole hallucinogens N,N-dimethyltryptamine (DMT) and 5-methoxy DMT (or O-methyl bufotenin, OMB) from rat brain tissue is reported. Rats were administered DMT or OMB by the intraperitoneal route at a dose of 5 mg/kg and sacrificed 15 min post treatment. Brains were dissected into discrete areas and analyzed by the methods described as a demonstration of the procedure's applicability. The synthesis and use of two new deuterated internal standards for these purposes are also reported.

  15. Yeast-Derived Particulate β-Glucan Treatment Subverts the Suppression of Myeloid-Derived Suppressor Cells (MDSC) by Inducing Polymorphonuclear MDSC Apoptosis and Monocytic MDSC Differentiation to APC in Cancer.

    PubMed

    Albeituni, Sabrin H; Ding, Chuanlin; Liu, Min; Hu, Xiaoling; Luo, Fengling; Kloecker, Goetz; Bousamra, Michael; Zhang, Huang-ge; Yan, Jun

    2016-03-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells that promote tumor progression. In this study, we demonstrated that activation of a C-type lectin receptor, dectin-1, in MDSC differentially modulates the function of different MDSC subsets. Yeast-derived whole β-glucan particles (WGP; a ligand to engage and activate dectin-1, oral treatment in vivo) significantly decreased tumor weight and splenomegaly in tumor-bearing mice with reduced accumulation of polymorphonuclear MDSC but not monocytic MDSC (M-MDSC), and decreased polymorphonuclear MDSC suppression in vitro through the induction of respiratory burst and apoptosis. On a different axis, WGP-treated M-MDSC differentiated into F4/80(+)CD11c(+) cells in vitro that served as potent APC to induce Ag-specific CD4(+) and CD8(+) T cell responses in a dectin-1-dependent manner. Additionally, Erk1/2 phosphorylation was required for the acquisition of APC properties in M-MDSC. Moreover, WGP-treated M-MDSC differentiated into CD11c(+) cells in vivo with high MHC class II expression and induced decreased tumor burden when inoculated s.c. with Lewis lung carcinoma cells. This effect was dependent on the dectin-1 receptor. Strikingly, patients with non-small cell lung carcinoma that had received WGP treatment for 10-14 d prior to any other treatment had a decreased frequency of CD14(-)HLA-DR(-)CD11b(+)CD33(+) MDSC in the peripheral blood. Overall, these data indicate that WGP may be a potent immune modulator of MDSC suppressive function and differentiation in cancer.

  16. Initial formal toxicity evaluation of APC-2, a novel fluorescent tracer agent for real-time measurement of glomerular filtration rate in preparation for a first-in-man clinical trial

    NASA Astrophysics Data System (ADS)

    Bugaj, Joseph E.; Dorshow, Richard B.

    2014-03-01

    The fluorescent tracer agent 2,5-bis[N-(1-carboxy-2-hydroxy)]carbamoyl-3,6-diaminopyrazine, designated APC-2, has been developed with properties and attributes necessary for use as a direct measure of glomerular filtration rate (GFR). Comparison to known standard exogenous GFR agents in animal models has demonstrated an excellent correlation. A clinical trial to demonstrate this same correlation in humans is in preparation. A battery of formal toxicity tests necessary for regulatory clearance to proceed with a clinical trial has been recently completed on this new fluorescent tracer agent. These include single dose toxicity studies in rats and dogs to determine overall toxicity and toxicokinetics of the compound. Blood compatibility, mutation assay, chromosomal aberration assay, and several other assays were also completed. Toxicity assessments were based on mortality, clinical signs, body weight, food consumption and anatomical pathology. Blood samples were collected to assess pharmacokinetic parameters including half-life, area under the curve, and clearance. Urine samples were collected to assess distribution. Doses of up to 200-300 times the estimated human dose were administered. No test-article related effects were noted on body weight, food consumption, ophthalmic observations and no abnormal pathology was seen in either macroscopic or microscopic evaluations of any organs or tissues. All animals survived to scheduled sacrifice. Transient discoloration of skin and urine was noted at the higher dose levels in both species as expected from a highly fluorescent compound and was not considered pathological. Thus initial toxicology studies of this new fluorescent tracer agent APC-2 have resulted in no demonstrable pathological test article concerns.

  17. Olive oil prevents benzo(a)pyrene [B(a)P]-induced colon carcinogenesis through altered B(a)P metabolism and decreased oxidative damage in ApcMin mouse model

    PubMed Central

    Banks, Leah D.; Amoah, Priscilla; Niaz, Mohammad S.; Washington, Mary K.; Adunyah, Samuel E.; Ramesh, Aramandla

    2015-01-01

    Colon cancer ranks third in cancer related mortalities in the United States. Many studies have investigated factors that contribute to colon cancer in which dietary and environmental factors have been shown to play an integral role in the etiology of this disease. Specifically, human dietary intake of environmental carcinogens such as polycyclic aromatic hydrocarbons (PAHs) has generated interest in looking at how it exerts its effects in gastrointestinal carcinogenesis. Therefore, the objective of this study was to investigate the preventative effects of olive oil on benzo(a)pyrene [B(a)P]-induced colon carcinogenesis in adult ApcMin mice. Mice were assigned to a control (n =8) or treatment group (n =8) consisting of 25, 50 and 100 μg B(a)P/kg body weight (bw) dissolved in tricaprylin [B(a)P-only group] or olive oil daily via oral gavage for sixty days. Our studies showed that ApcMin mice exposed to B(a)P developed a significantly higher number (p< 0.05) of larger dysplastic adenomas compared to those exposed to B(a)P + olive oil. Treatment of mice with B(a)P and olive oil significantly altered (p< 0.05) the expression of drug metabolizing enzymes in both the colon and liver tissues. However, only GST activity was significantly higher (p< 0.05) in the liver of mice treated with 50 and 100 μg B(a)P/kg bw + olive oil. Lastly, olive oil promoted rapid detoxification of B(a)P by decreasing its organic metabolite concentrations and also decreasing the extent of DNA damage to colon and liver tissues (p< 0.05). These results suggest that olive oil has a protective effect against B(a)P-induced colon tumors. PMID:26878781

  18. Olive oil prevents benzo(a)pyrene [B(a)P]-induced colon carcinogenesis through altered B(a)P metabolism and decreased oxidative damage in Apc(Min) mouse model.

    PubMed

    Banks, Leah D; Amoah, Priscilla; Niaz, Mohammad S; Washington, Mary K; Adunyah, Samuel E; Ramesh, Aramandla

    2016-02-01

    Colon cancer ranks third in cancer-related mortalities in the United States. Many studies have investigated factors that contribute to colon cancer in which dietary and environmental factors have been shown to play an integral role in the etiology of this disease. Specifically, human dietary intake of environmental carcinogens such as polycyclic aromatic hydrocarbons has generated interest in looking at how it exerts its effects in gastrointestinal carcinogenesis. Therefore, the objective of this study was to investigate the preventative effects of olive oil on benzo(a)pyrene [B(a)P]-induced colon carcinogenesis in adult Apc(Min) mice. Mice were assigned to a control (n=8) or treatment group (n=8) consisting of 25, 50 and 100-μg B(a)P/kg body weight (bw) dissolved in tricaprylin [B(a)P-only group] or olive oil daily via oral gavage for 60 days. Our studies showed that Apc(Min) mice exposed to B(a)P developed a significantly higher number (P<0.05) of larger dysplastic adenomas compared to those exposed to B(a)P + olive oil. Treatment of mice with B(a)P and olive oil significantly altered (P<0.05) the expression of drug-metabolizing enzymes in both the colon and liver tissues. However, only GST activity was significantly higher (P<0.05) in the liver of mice treated with 50- and 100-μg B(a)P/kg bw + olive oil. Lastly, olive oil promoted rapid detoxification of B(a)P by decreasing its organic metabolite concentrations and also decreasing the extent of DNA damage to colon and liver tissues (P<0.05). These results suggest that olive oil has a protective effect against B(a)P-induced colon tumors.

  19. Gene Therapy

    MedlinePlus

    ... cells in an effort to treat or stop disease. Genes contain your DNA — the code that controls much of your body's form and function, from making you grow taller to regulating your body systems. Genes that don't work properly can cause disease. Gene therapy replaces a faulty gene or adds ...

  20. Palace Revolt in Los Angeles?

    ERIC Educational Resources Information Center

    Fuller, Bruce

    2010-01-01

    Antonio Villaraigosa, the mayor of Los Angeles, comes alive when recalling his start in local politics--as a labor organizer agitating for reform inside decrepit and overcrowded schools. In his quest to turn around the schools, the mayor has united working-class Latino parents, civil rights leaders, and big-money Democrats to challenge union…

  1. Construction and Characterization of Haemophilus ducreyi Lipooligosaccharide (LOS) Mutants Defective in Expression of Heptosyltransferase III and β1,4-Glucosyltransferase: Identification of LOS Glycoforms Containing Lactosamine Repeats

    PubMed Central

    Filiatrault, Melanie J.; Gibson, Bradford W.; Schilling, Birgit; Sun, Shuhua; Munson, Robert S.; Campagnari, Anthony A.

    2000-01-01

    To begin to understand the role of the lipooligosaccharide (LOS) molecule in chancroid infections, we constructed mutants defective in expression of glycosyltransferase genes. Pyocin lysis and immunoscreening was used to identify a LOS mutant of Haemophilus ducreyi 35000. This mutant, HD35000R, produced a LOS molecule that lacked the monoclonal antibody 3F11 epitope and migrated with an increased mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Structural studies indicated that the principal LOS glycoform contains lipid A, Kdo, and two of the three core heptose residues. HD35000R was transformed with a plasmid library of H. ducreyi 35000 DNA, and a clone producing the wild-type LOS was identified. Sequence analysis of the plasmid insert revealed one open reading frame (ORF) that encodes a protein with homology to the WaaQ (heptosyltransferase III) of Escherichia coli. A second ORF had homology to the LgtF (glucosyltransferase) of Neisseria meningitidis. Individual isogenic mutants lacking expression of the putative H. ducreyi heptosyltransferase III, the putative glucosyltransferase, and both glycosyltransferases were constructed and characterized. Each mutant was complemented with the representative wild-type genes in trans to restore expression of parental LOS and confirm the function of each enzyme. Matrix-assisted laser desorption ionization mass spectrometry and SDS-PAGE analysis identified several unique LOS glycoforms containing di-, tri-, and poly-N-acetyllactosamine repeats added to the terminal region of the main LOS branch synthesized by the heptosyltransferase III mutant. These novel H. ducreyi mutants provide important tools for studying the regulation of LOS assembly and biosynthesis. PMID:10816485

  2. Non-H-2-linked genetic regulation of cytotoxic responses to hapten-modified syngeneic cells. I. Non-H-2-linked Ir gene defect expressed on T cells is not predetermined at the stage of bone marrow cells.

    PubMed

    Ogata, M; Shimizu, J; Tsuchida, T; Takai, Y; Fujiwara, H; Hamaoka, T

    1986-02-15

    Spleen cells from C3H/He or BALB.K mice immunized to the newly synthesized amino-reactive hapten 5-sulfo-1-naphthoxy acetic acid N-hydroxysuccinimide ester (AED-NH2) were stimulated in vitro with AED-NH2-modified syngeneic cells. After 5 days of culture, effector cells were assayed for their cytotoxic activity against AED-NH2-modified target blast cells. C3H/He and BALB.K mice exhibited the respective high and low anti-AED-NH2 cytotoxic T lymphocyte (CTL) responses. This contrasted with the observation that both of these H-2k strains generated potent CTL responses against aminoreactive haptens, e.g., trinitrophenyl (TNP). Because C3H.SW and BALB.B strains, which are the H-2b counterpart of the above two strains, also represented the respective high and low responders to AED-NH2 hapten, this hapten model enabled us to investigate cellular mechanisms underlying the above non-H-2-associated genetic regulation of CTL responses (C3H vs BALB non-H-2 backgrounds). The results demonstrated that there was no detectable difference between C3H/He and BALB.K strains in the lysability of target cells and the ability of stimulating cells to activate primed spleen cells. Anti-AED-NH2 CTL responses were only marginal when antigen-presenting cells (APC) were eliminated from the primed spleen cells of high responder C3H/He or (C3H/He X BALB.K)F1 mice. The addition of APC to cultures free of APC regained an appreciable CTL response in C3H/He or (C3H/He X BALB.K)F1 mice, irrespective of whether APC were derived from high (C3H/He) or low (BALB.K) responders. We have also demonstrated that allogeneic radiation bone marrow chimera (BALB.K----C3H/He) exhibited a CTL response comparable to that induced by C3H/He mice, whereas the reverse direction of allogeneic chimera (C3H/He----BALB.K) induced a marginal CTL response. These results indicate that this non-H-2-associated Ir gene defect is expressed on T cells (CTL precursors and/or helper T cells) rather than APC, and that this T cell

  3. Distribución en gran escala de los cúmulos globulares en Fornax

    NASA Astrophysics Data System (ADS)

    Ostrov, P. G.

    Para analizar los cúmulos globulares azules y rojos de NGC 1399 asociados con NGC 1399 en particular, o si los cúmulos azules representaban un sistema asociado con el cúmulo de Fornax en general, se obtuvieron imágenes CCD de gran formato con el telescopio de 4m del CTIO, en las bandas C y T1. Se describe el método empleado y lo encontrado.

  4. Gene Positioning

    PubMed Central

    Ferrai, Carmelo; de Castro, Inês Jesus; Lavitas, Liron; Chotalia, Mita; Pombo, Ana

    2010-01-01

    Eukaryotic gene expression is an intricate multistep process, regulated within the cell nucleus through the activation or repression of RNA synthesis, processing, cytoplasmic export, and translation into protein. The major regulators of gene expression are chromatin remodeling and transcription machineries that are locally recruited to genes. However, enzymatic activities that act on genes are not ubiquitously distributed throughout the nucleoplasm, but limited to specific and spatially defined foci that promote preferred higher-order chromatin arrangements. The positioning of genes within the nuclear landscape relative to specific functional landmarks plays an important role in gene regulation and disease. PMID:20484389

  5. Satellites monitor Los Alamos fires

    NASA Astrophysics Data System (ADS)

    Kalluri, Satya; White, Benjamin

    A man-made fire that was intended to be a “controlled burn” for clearing brush and wilderness at the Bandelier National Monument, New Mexico, became an inferno that devastated significant portions of Los Alamos during the first week of May 2000. Now known as the Cerro Grande fire, it was not confined to Los Alamos alone. The fire spread to 15% of the Santa Clara Indian Reservation and a substantial area of the surrounding national parks and U.S. forests.The National Weather Service estimates that more than 100,000 fires occur in the natural environment each year within the United States alone, of which about 90% are manmade. Remote sensing images from satellites could be used to detect and monitor these active fires and biomass burning. Forest fires have a significant environmental and economic impact, and timely information about their location and magnitude is essential to contain them.

  6. Los Angeles and Its Mistress Machine

    ERIC Educational Resources Information Center

    Marx, Wesley

    1973-01-01

    Los Angeles city has acute air pollution problems because of lack of an adequate mass transit system and the type of local industries. Air pollution in Los Angeles has affected agricultural production, vegetation, and public health in nearby areas. (PS)

  7. Gene doping.

    PubMed

    Azzazy, Hassan M E

    2010-01-01

    Gene doping abuses the legitimate approach of gene therapy. While gene therapy aims to correct genetic disorders by introducing a foreign gene to replace an existing faulty one or by manipulating existing gene(s) to achieve a therapeutic benefit, gene doping employs the same concepts to bestow performance advantages on athletes over their competitors. Recent developments in genetic engineering have contributed significantly to the progress of gene therapy research and currently numerous clinical trials are underway. Some athletes and their staff are probably watching this progress closely. Any gene that plays a role in muscle development, oxygen delivery to tissues, neuromuscular coordination, or even pain control is considered a candidate for gene dopers. Unfortunately, detecting gene doping is technically very difficult because the transgenic proteins expressed by the introduced genes are similar to their endogenous counterparts. Researchers today are racing the clock because assuring the continued integrity of sports competition depends on their ability to develop effective detection strategies in preparation for the 2012 Olympics, which may mark the appearance of genetically modified athletes.

  8. Gene therapy.

    PubMed

    Williamson, B

    1982-07-29

    Gene therapy is not yet possible, but may become feasible soon, particularly for well understood gene defects. Although treatment of a patient raises no ethical problems once it can be done well, changing the genes of an early embryo is more difficult, controversial and unlikely to be required clinically.

  9. Association mining of mutated cancer genes in different clinical stages across 11 cancer types

    PubMed Central

    Wang, Tingzhang; Zheng, Shu

    2016-01-01

    Many studies have demonstrated that some genes (e.g. APC, BRAF, KRAS, PTEN, TP53) are frequently mutated in cancer, however, underlying mechanism that contributes to their high mutation frequency remains unclear. Here we used Apriori algorithm to find the frequent mutational gene sets (FMGSs) from 4,904 tumors across 11 cancer types as part of the TCGA Pan-Cancer effort and then mined the hidden association rules (ARs) within these FMGSs. Intriguingly, we found that well-known cancer driver genes such as BRAF, KRAS, PTEN, and TP53 were often co-occurred with other driver genes and FMGSs size peaked at an itemset size of 3∼4 genes. Besides, the number and constitution of FMGS and ARs differed greatly among different cancers and stages. In addition, FMGS and ARs were rare in endocrine-related cancers such as breast carcinoma, ovarian cystadenocarcinoma, and thyroid carcinoma, but abundant in cancers contact directly with external environments such as skin melanoma and stomach adenocarcinoma. Furthermore, we observed more rules in stage IV than in other stages, indicating that distant metastasis needed more sophisticated gene regulatory network. PMID:27556693

  10. Epigenetic regulation of human DCLK-1 gene during colon-carcinogenesis: clinical and mechanistic implications

    PubMed Central

    O’Connell, Malaney; Shubhashish, Sarkar

    2016-01-01

    Colorectal carcinogenesis is a multi-step process. While ~25% of colorectal cancers (CRCs) arise in patients with a family history (genetic predisposition), ~75% of CRCs are due to age-associated accumulation of epigenetic alterations which can result in the suppression of key tumor suppressor genes leading to mutations and activation of oncogenic pathways. Sporadic colon-carcinogenesis is facilitated by many molecular pathways of genomic instability which include chromosomal instability (CIN), micro-satellite instability (MSI) and CpG island methylator phenotype (CIMP), leading towards loss of homeostasis and onset of neoplastic transformation. The unopposed activation of Wnt/β-catenin pathways, either due to loss of APC function or up-regulation of related stimulatory pathways, results in unopposed hyperproliferation of colonic crypts, considered the single most important risk factor for colon carcinogenesis. Hypermethylation of CpG islands within the promoters of specific genes can potentially inactivate DNA repair genes and/or critical tumor suppressor genes. Recently, CpG methylation of the 5’ promoter of human (h) DCLK1 gene was reported in many human epithelial cancers, including colorectal cancers (CRCs), resulting in the loss of expression of the canonical long isoform of DCLK1 (DCLK1-L) in hCRCs. Instead, a shorter isoform of DCLK1 (DCLK1-S) was discovered to be expressed in hCRCs, from an alternate β promoter of DCLKL1-gene; the clinical and biological implications of these novel findings, in relation to recent publications is discussed. PMID:27777940

  11. Epigenetic regulation of human DCLK-1 gene during colon-carcinogenesis: clinical and mechanistic implications.

    PubMed

    Singh, Pomila; O'Connell, Malaney; Shubhashish, Sarkar

    2016-01-01

    Colorectal carcinogenesis is a multi-step process. While ~25% of colorectal cancers (CRCs) arise in patients with a family history (genetic predisposition), ~75% of CRCs are due to age-associated accumulation of epigenetic alterations which can result in the suppression of key tumor suppressor genes leading to mutations and activation of oncogenic pathways. Sporadic colon-carcinogenesis is facilitated by many molecular pathways of genomic instability which include chromosomal instability (CIN), micro-satellite instability (MSI) and CpG island methylator phenotype (CIMP), leading towards loss of homeostasis and onset of neoplastic transformation. The unopposed activation of Wnt/β-catenin pathways, either due to loss of APC function or up-regulation of related stimulatory pathways, results in unopposed hyperproliferation of colonic crypts, considered the single most important risk factor for colon carcinogenesis. Hypermethylation of CpG islands within the promoters of specific genes can potentially inactivate DNA repair genes and/or critical tumor suppressor genes. Recently, CpG methylation of the 5' promoter of human (h) DCLK1 gene was reported in many human epithelial cancers, including colorectal cancers (CRCs), resulting in the loss of expression of the canonical long isoform of DCLK1 (DCLK1-L) in hCRCs. Instead, a shorter isoform of DCLK1 (DCLK1-S) was discovered to be expressed in hCRCs, from an alternate β promoter of DCLKL1-gene; the clinical and biological implications of these novel findings, in relation to recent publications is discussed.

  12. Association mining of mutated cancer genes in different clinical stages across 11 cancer types.

    PubMed

    Hu, Wangxiong; Li, Xiaofen; Wang, Tingzhang; Zheng, Shu

    2016-10-18

    Many studies have demonstrated that some genes (e.g. APC, BRAF, KRAS, PTEN, TP53) are frequently mutated in cancer, however, underlying mechanism that contributes to their high mutation frequency remains unclear. Here we used Apriori algorithm to find the frequent mutational gene sets (FMGSs) from 4,904 tumors across 11 cancer types as part of the TCGA Pan-Cancer effort and then mined the hidden association rules (ARs) within these FMGSs. Intriguingly, we found that well-known cancer driver genes such as BRAF, KRAS, PTEN, and TP53 were often co-occurred with other driver genes and FMGSs size peaked at an itemset size of 3~4 genes. Besides, the number and constitution of FMGS and ARs differed greatly among different cancers and stages. In addition, FMGS and ARs were rare in endocrine-related cancers such as breast carcinoma, ovarian cystadenocarcinoma, and thyroid carcinoma, but abundant in cancers contact directly with external environments such as skin melanoma and stomach adenocarcinoma. Furthermore, we observed more rules in stage IV than in other stages, indicating that distant metastasis needed more sophisticated gene regulatory network.

  13. Concordant effects of aromatase inhibitors on gene expression in ER+ Rat and human mammary cancers and modulation of the proteins coded by these genes.

    PubMed

    Lu, Yan; You, Ming; Ghazoui, Zara; Liu, Pengyuan; Vedell, Peter T; Wen, Weidong; Bode, Ann M; Grubbs, Clinton J; Lubet, Ronald A

    2013-11-01

    Aromatase inhibitors are effective in therapy/prevention of estrogen receptor-positive (ER⁺) breast cancers. Rats bearing methylnitrosourea (MNU)-induced ER⁺ mammary cancers were treated with the aromatase inhibitor vorozole (1.25 mg/kg BW/day) for five days. RNA expression showed 162 downregulated and 180 upregulated (P < 0.05 and fold change >1.5) genes. Genes modulated by vorozole were compared with published data from four clinical neoadjuvant trials using aromatase inhibitors (anastrozole or letrozole). More than 30 genes and multiple pathways exhibited synchronous changes in animal and human datasets. Cell-cycle genes related to chromosome condensation in prometaphase [anaphase-prometaphase complex (APC) pathway, including Aurora-A kinase, BUBR1B, TOP2, cyclin A, cyclin B CDC2, and TPX-2)] were downregulated in animal and human studies reflecting the strong antiproliferative effects of aromatase inhibitors. Comparisons of rat arrays with a cell culture study where estrogen was removed from MCF-7 cells showed decreased expression of E2F1-modulated genes as a major altered pathway. Alterations of the cell cycle and E2F-related genes were confirmed in a large independent set of human samples (81 pairs baseline and two weeks anastrozole treatment). Decreases in proliferation-related genes were confirmed at the protein level for cyclin A2, BuRB1, cdc2, Pttg, and TPX-2. Interestingly, the proteins downregulated in tumors were similarly downregulated in vorozole-treated normal rat mammary epithelium. Finally, decreased expression of known estrogen-responsive genes (including TFF, 1,3, progesterone receptor, etc.) were decreased in the animal model. These studies demonstrate that gene expression changes (pathways and individual genes) are similar in humans and the rat model.

  14. Los Alamos Science: Number 16

    SciTech Connect

    Cooper, N.G.

    1988-01-01

    It was an unusually stimulating day and a half at Los Alamos when two Nobel Laureates in physiology, a leading paleontologist, and a leading bio-astrophysicist came together to discuss ''Unsolved Problems in the Science of Life,'' the topic of the second in a series of special meetings sponsored by the Fellows of the Laboratory. Just like the first one on ''Creativity in Science,'' this colloquium took us into a broader arena of ideas and viewpoints than is our usual daily fare. To contemplate the evolution and mysteries of intelligent life from the speakers' diverse points of view at one time, in one place was indeed a rare experience.

  15. A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19.

    PubMed

    Singh, Harjeet; Huls, Helen; Kebriaei, Partow; Cooper, Laurence J N

    2014-01-01

    The advent of efficient approaches to the genetic modification of T cells has provided investigators with clinically appealing methods to improve the potency of tumor-specific clinical grade T cells. For example, gene therapy has been successfully used to enforce expression of chimeric antigen receptors (CARs) that provide T cells with ability to directly recognize tumor-associated antigens without the need for presentation by human leukocyte antigen. Gene transfer of CARs can be undertaken using viral-based and non-viral approaches. We have advanced DNA vectors derived from the Sleeping Beauty (SB) system to avoid the expense and manufacturing difficulty associated with transducing T cells with recombinant viral vectors. After electroporation, the transposon/transposase improves the efficiency of integration of plasmids used to express CAR and other transgenes in T cells. The SB system combined with artificial antigen-presenting cells (aAPC) can selectively propagate and thus retrieve CAR(+) T cells suitable for human application. This review describes the translation of the SB system and aAPC for use in clinical trials and highlights how a nimble and cost-effective approach to developing genetically modified T cells can be used to implement clinical trials infusing next-generation T cells with improved therapeutic potential.

  16. Bruce D. Judd, FAIA, Photographer August 1997. DETAIL OF LOS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bruce D. Judd, FAIA, Photographer August 1997. DETAIL OF LOS ANGELES CITY HALL SIXTH FLOOR NORTH OFFICE AREA WINDOW, FACING NORTHWEST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  17. Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL FIFTH FLOOR NORTH OFFICE AREA, FACING NORTH - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  18. Monica Griesbach, Photographer August 1997. DETAIL OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. DETAIL OF LOS ANGELES CITY HALL NINETEENTH FLOOR MAIN OFFICE AREA SHOWING DEMOLITION OF WEST WALL, FACING WEST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  19. Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL NINETEENTH FLOOR MAIN OFFICE AREA, FACING NORTHEAST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  20. Monica Griesbach, Photographer August 1997. DETAIL OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. DETAIL OF LOS ANGELES CITY HALL NINETEENTH FLOOR MAIN OFFICE AREA SHOWING DEMOLITION OF SOUTH WALL, FACING SOUTH - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  1. Bruce D. Judd, FAIA, Photographer August 1997. VIEW OF LOS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bruce D. Judd, FAIA, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL SIXTH FLOOR NORTH OFFICE AREA, FACING NORTH - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  2. Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL FIFTH FLOOR WEST OFFICE AREA THAT WAS ORIGINAL ART COMMISSION ROOMS, FACING NORTHWEST. - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  3. Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL FOURTEENTH FLOOR, SERVICE AREA DOOR NEAR ELEVATOR LOBBY, FACING SOUTH - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  4. Monica Griesbach, Photographer August 1997. DETAIL OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. DETAIL OF LOS ANGELES CITY HALL NINETEENTH FLOOR MAIN OFFICE AREA SHOWING BEAM AND COLUMN CONNECTION NEAR SOUTHEAST CORNER, FACING SOUTHEAST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  5. Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL FIFTH FLOOR WEST OFFICE AREA THAT WAS ORIGINAL ART COMMISSION ROOMS, FACING NORTHEAST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  6. Bruce D. Judd, FAIA, Photographer August 1997. VIEW OF LOS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bruce D. Judd, FAIA, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL ELEVENTH FLOOR KITCHEN OF EXECUTIVE DINING AREA SHOWING ARCHED STRUCTURE, FACING NORTHWEST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  7. Monica Griesbach, Photographer August 1997. DETAIL OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. DETAIL OF LOS ANGELES CITY HALL NINETEENTH FLOOR MAIN OFFICE AREA SHOWING BEAM AND COLUMN CONNECTION NEAR NORTHWEST CORNER, FACING NORTHWEST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  8. John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL FIFTH FLOOR NORTH OFFICE AREA, FACING NORTHEAST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  9. Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL NINETEENTH FLOOR MAIN OFFICE AREA, FACING NORTHWEST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  10. John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL SEVENTH FLOOR SOUTH OFFICE AREA SHOWING STRUCTURAL PIERS AND FLORESCENT LIGHTS, FACING NORTHWEST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  11. John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL SEVENTH FLOOR SOUTH OFFICE AREA SHOWING WOOD AND GLASS PARTITIONS, FACING SOUTHEAST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  12. Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL FIRST FLOOR DOORS TO THE CITY CLERK AND TAX & PERMIT DIVISION OFFICES, FACING NORTH. - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  13. John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL NINTH FLOOR NORTH OFFICE WING SHOWING PARTITIONS, WINDOWS AND RADIATOR, FACING EAST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  14. John Ash, AIA, Photographer August 1997. DETAIL OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, AIA, Photographer August 1997. DETAIL OF LOS ANGELES CITY HALL SEVENTH FLOOR SOUTH OFFICE AREA SHOWING RADIATOR AND WINDOWS, FACING EAST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  15. John Ash, AIA, Photographer August 1997. DETAIL OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, AIA, Photographer August 1997. DETAIL OF LOS ANGELES CITY HALL TENTH FLOOR NORTH OFFICE WING SHOWING RADIATOR AND WINDOW, FACING EAST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  16. John Ash, ALA., Photographer August 1997. VIEW OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, ALA., Photographer August 1997. VIEW OF LOS ANGELES CITY HALL NINTH FLOOR NORTH OFFICE WING SHOWING PARTITIONS, WINDOWS AND RADIATOR, FACING SOUTHWEST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  17. Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL FIFTH FLOOR Y-CORRIDOR NORTH SIDE OF ELEVATOR LOBBY, FACING EAST. - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  18. Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL FIFTH FLOOR Y-CORRIDOR SOUTH SIDE OF ELEVATOR LOBBY, FACING NORTHEAST. - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  19. Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL FOURTEENTH FLOOR Y-CORRIDOR, FACING NORTHWEST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  20. Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL FOURTEENTH FLOOR Y-CORRIDOR NEAR ROOM 1403, FACING SOUTHWEST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  1. Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL FOURTEENTH FLOOR Y-CORRIDOR, FACING SOUTHWEST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  2. Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL FIFTH FLOOR Y-CORRIDOR SOUTH SIDE OF ELEVATOR LOBBY, FACING WEST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  3. John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL TENTH FLOOR SOUTH WING CAFETERIA FOOD LINE, FACING NORTH - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  4. Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL FIFTH FLOOR BREAK ROOM OFF OF ORIGINAL ART COMMISSION ROOMS, FACING NORTHEAST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  5. Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL FIFTH FLOOR BREAK ROOM OFF OF ORIGINAL ART COMMISSION ROOMS, FACING SOUTHEAST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  6. Monica Griesbach, Photographer August 1997. DETAIL OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. DETAIL OF LOS ANGELES CITY HALL WEST ENTRANCE COURTYARD SHOWING BRONZE DOORS, LIGHT FIXTURES AND GRILLS, FACING EAST. - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  7. Monica Griesbach, Photographer August 1997. DETAIL OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. DETAIL OF LOS ANGELES CITY HALL WEST ENTRANCE COURTYARD SHOWING BRONZE DOORS AND HANDRAILS, FACING EAST. - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  8. Monica Griesbach, Photographer August 1997. DETAIL OF LOS ANGELES CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Monica Griesbach, Photographer August 1997. DETAIL OF LOS ANGELES CITY HALL WEST ENTRANCE COURTYARD SHOWING FLOORING, COLUMNS AND BRONZE DOORS, FACING EAST. - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  9. John Ash, AIA, Photographer August 1997. DETAIL OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, AIA, Photographer August 1997. DETAIL OF LOS ANGELES CITY HALL TWENTY-SEVENTH FLOOR WEST EXTERIOR GALLERY SOUTHEAST STAIR TO PYRAMID, FACING SOUTH - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  10. Frequent deletions and mutations of the beta-catenin gene are associated with overexpression of cyclin D1 and fibronectin and poorly differentiated histology in childhood hepatoblastoma.

    PubMed

    Takayasu, H; Horie, H; Hiyama, E; Matsunaga, T; Hayashi, Y; Watanabe, Y; Suita, S; Kaneko, M; Sasaki, F; Hashizume, K; Ozaki, T; Furuuchi, K; Tada, M; Ohnuma, N; Nakagawara, A

    2001-04-01

    Hepatoblastoma (HBL) is the most common malignant liver tumor in young children. Recent reports have shown that the beta-catenin gene was frequently mutated or deleted in HBLS: To elucidate the role of beta-catenin abnormalities in HBLs, we searched for mutations of beta-catenin and APC as well as expression of the target genes, cyclin D1, c-myc, and fibronectin, in 68 primary HBLS: The mutation analysis revealed that 44 (65%) tumors carried missense mutations or deletions of beta-catenin, all of which were somatic and targeted to the exon 3 encoding the amino acid residues involved in its degradation. However, no loss of function mutation of the APC gene was detected by the yeast functional assay. Of interest, beta-catenin mutation was significantly correlated with overexpression of the target genes, cyclin D1 and fibronectin, but not with that of c-myc in HBLs as measured by quantitative real-time reverse transcription-PCR. The immunohistochemical studies in 15 HBLs demonstrated that the nuclear/cytoplasmic accumulation of beta-catenin was positive in 13 tumors, 9 of which had the deletion or mutation of the gene. The significant correlation between the beta-catenin gene abnormality and the positive staining of cyclin D1 was also confirmed. Furthermore, the nuclear accumulation of beta-catenin was strongly associated with the poorly differentiated tumor cell components as well as with the positive staining of cyclin D1 within the tumor. Thus, our present results suggested that the gain of function mutation of beta-catenin played a crucial role in the malignant progression of HBL in vivo.

  11. Human Megakaryocyte Progenitors Derived from Hematopoietic Stem Cells of Normal Individuals are MHC class II-Expressing Professional APC that Enhance Th17 and Th1/Th17 Responses

    PubMed Central

    Finkielsztein, Ariel; Schlinker, Alaina C.; Zhang, Li; Miller, William M.; Datta, Syamal K.

    2014-01-01

    Platelets, like stromal cells, present antigen only via MHC class I, but the immune potential of their progenitors has not been explored in humans. We derived CD34+CD117+CD41+CD151+ megakaryocyte progenitors (MKp) in vitro from mobilized peripheral blood hematopoietic stem and progenitor cells (HSPC) of normal subjects using culture conditions akin to bone marrow niche, or organs that support extramedullary hematopoiesis. The MKp expressed MHC Class II in contrast to platelets and functioned as professional APC before they matured further. Moreover, MKp constitutively expressed mRNA encoding mediators for human Th17 expansion, including IL-1, IL-18, IL-6, TGFβ, IL-23, BAFF, and COX2. MKp also expressed high levels of type I interferon and IRF5 mRNA. In contrast to platelets, MKp augmented the expansion of Th17, Th1, and potent Th17/Th1 double-positive cells in normal PBMC and CD4 line T cells from normal subjects or lupus patients. The Th cell augmentation involved pre-committed memory cells, and was significant although modest, because only non-cognate MKp-T cell interactions could be studied, under non-polarizing conditions. Importantly, the MKp-mediated expansion was observed in the presence or absence of direct MKp-T cell contact. Furthermore, MKp augmented Th17 responses against Candida albicans, a serious opportunistic pathogen. These results indicate an immunologic role of MKp in situations associated with extramedullary hematopoiesis and mobilization of HSPC. PMID:25454068

  12. Stress-induced differences in primary and secondary resistance against bacterial sepsis corresponds with diverse corticotropin releasing hormone receptor expression by pulmonary CD11c+ MHC II+ and CD11c− MHC II+ APCs

    PubMed Central

    Gonzales, Xavier F.; Desmutkh, Aniket; Pulse, Mark; Johnson, Khaisha; Jones, Harlan P.

    2009-01-01

    Stress responses have been associated with altered immunity and depending upon the type of stressor, can have diverse effects on disease outcomes. As the first line of defense against potential pathogens, alterations in cellular immune responses along the respiratory tract can have a significant impact on the manifestation of local and systemic disease. Utilizing a murine model of respiratory pneumonia, the current study investigated the effects of restraint stress on the induction of primary and secondary immunity along the respiratory tract, influencing host susceptibility. Female CD-1 mice were subjected to three hours of restraint stress over a period of four days followed by primary and secondary Streptococcus pneumoniae infection via intranasal route. Stress exposure led to increased retention of bacterial carriage in the lungs, enhanced polymorphonuclear cells and a preferential decrease in pulmonary CD11c+ MHC II+ cells resulting in delayed lethality during primary infection but significant impairment of acquired immune protection after secondary infection. We also provide evidence to support a role for lung-associated corticotrophin releasing hormone regulation through peripheral CRH and diverse CRH receptor expression by MHC II+ antigen presenting cells (APCs). We conclude that repeated restraint stress has distinct influences on immune cell populations that appear to be important in the generation of innate and adaptive immune responses along the respiratory tract with the potential to influence local and systemic protection against disease pathogenesis. PMID:18166336

  13. Gene dispensability.

    PubMed

    Korona, Ryszard

    2011-08-01

    Genome-wide mutagenesis studies indicate that up to about 90% of genes in bacteria and 80% in eukaryotes can be inactivated individually leaving an organism viable, often seemingly unaffected. Several strategies are used to learn what these apparently dispensable genes contribute to fitness. Assays of growth under hundreds of physical and chemical stresses are among the most effective experimental approaches. Comparative studies of genomic DNA sequences continue to be valuable in discriminating between the core bacterial genome and the more variable niche-specific genes. The concept of the core genome appears currently unfeasible for eukaryotes but progress has been made in understanding why they contain numerous gene duplicates.

  14. Targeted ultra-deep sequencing unveils a lack of driver-gene mutations linking non-hereditary gastrointestinal stromal tumors and highly prevalent second primary malignancies: random or nonrandom, that is the question

    PubMed Central

    Kuo, Yung-Chia; Hsu, Hung-Chih; Chen, Jen-Shi; Chen, Tse-Ching; Wu, Ren-Chin; Chiu, Cheng-Tang; Yeh, Chun-Nan; Yeh, Ta-Sen

    2016-01-01

    The association of non-hereditary (sporadic) gastrointestinal stromal tumors (GISTs) and second primary malignancies is known to be nonrandom, although the underlying molecular mechanisms remain unknown. In this study, 136 of 749 (18.1%) patients with sporadic GISTs were found to have additional associated cancers, with gastrointestinal and genitourinary/gynecologic/breast cancers being the most prevalent. Gene mutations in GISTs and their associated colorectal cancers (CRCs) (n=9) were analyzed using a panel of 409 cancer-related genes, while a separate group of 40 sporadic CRCs not associated with GISTs served as controls. All 9 of the GISTs had either KIT (8 of 9) or PDGFRA (1 of 9) mutations that were not present in their associated CRCs. Conversely, all but one of the 9 GIST-associated CRCs exhibited an APC mutation, a TP53 mutation or both, while none of their corresponding GISTs harbored either APC or TP53 mutations. The genetic profile of CRCs with and without associated GISTs did not differ. Although population-based studies and case series worldwide, including ours, have unanimously indicated that the GIST-CRC association is nonrandom, our targeted ultra-deep sequencing unveiled a lack of driver-gene mutations linking sporadic GISTs to highly prevalent second primaries. Further studies are needed to elucidate other genetic alterations that may be responsible for this puzzling contradiction. PMID:27806309

  15. Los Alamos PC estimating system

    SciTech Connect

    Stutz, R.A.; Lemon, G.D.

    1987-01-01

    The Los Alamos Cost Estimating System (QUEST) is being converted to run on IBM personal computers. This very extensive estimating system is capable of supporting cost estimators from many different and varied fields. QUEST does not dictate any fixed method for estimating. QUEST supports many styles and levels of detail estimating. QUEST can be used with or without data bases. This system allows the estimator to provide reports based on levels of detail defined by combining work breakdown structures. QUEST provides a set of tools for doing any type of estimate without forcing the estimator to use any given method. The level of detail in the estimate can be mixed based on the amount of information known about different parts of the project. The system can support many different data bases simultaneously. Estimators can modify any cost in any data base.

  16. Trichoderma genes

    DOEpatents

    Foreman, Pamela [Los Altos, CA; Goedegebuur, Frits [Vlaardingen, NL; Van Solingen, Pieter [Naaldwijk, NL; Ward, Michael [San Francisco, CA

    2012-06-19

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

  17. Gene therapy.

    PubMed

    Drugan, A; Miller, O J; Evans, M I

    1987-01-01

    Severe genetic disorders are potentially correctable by the addition of a normal gene into tissues. Although the technical problems involving integration, stable expression, and insertional damage to the treated cell are not yet fully solved, enough scientific progress has already been made to consider somatic cell gene therapy acceptable from both the ethical and scientific viewpoints. The resolutions to problems evolving from somatic cell gene therapy will help to overcome the technical difficulties encountered presently with germ line gene manipulation. This procedure would then become morally permissible as it will cause, in time, a reduction in the pool of abnormal genes in the population. Enhancement genetic engineering is technically feasible but morally unacceptable. Eugenic genetic engineering is not technically possible or ethically permissible in the foreseeable future.

  18. [Gene and gene sequence patenting].

    PubMed

    Bergel, S D

    1998-01-01

    According to the author, the patenting of elements isolated or copied from the human body boils down to the issue of genes and gene sequences. He describes the current situation from the comparative law standpoint (U.S. and Spanish law mainly) and then esamines the biotechnology industry's position.

  19. Single Gene Prognostic Biomarkers in Ovarian Cancer: A Meta-Analysis

    PubMed Central

    Willis, Scooter; Villalobos, Victor M.; Gevaert, Olivier; Abramovitz, Mark; Williams, Casey; Sikic, Branimir I.; Leyland-Jones, Brian

    2016-01-01

    Purpose To discover novel prognostic biomarkers in ovarian serous carcinomas. Methods A meta-analysis of all single genes probes in the TCGA and HAS ovarian cohorts was performed to identify possible biomarkers using Cox regression as a continuous variable for overall survival. Genes were ranked by p-value using Stouffer’s method and selected for statistical significance with a false discovery rate (FDR) <.05 using the Benjamini-Hochberg method. Results Twelve genes with high mRNA expression were prognostic of poor outcome with an FDR <.05 (AXL, APC, RAB11FIP5, C19orf2, CYBRD1, PINK1, LRRN3, AQP1, DES, XRCC4, BCHE, and ASAP3). Twenty genes with low mRNA expression were prognostic of poor outcome with an FDR <.05 (LRIG1, SLC33A1, NUCB2, POLD3, ESR2, GOLPH3, XBP1, PAXIP1, CYB561, POLA2, CDH1, GMNN, SLC37A4, FAM174B, AGR2, SDR39U1, MAGT1, GJB1, SDF2L1, and C9orf82). Conclusion A meta-analysis of all single genes identified thirty-two candidate biomarkers for their possible role in ovarian serous carcinoma. These genes can provide insight into the drivers or regulators of ovarian cancer and should be evaluated in future studies. Genes with high expression indicating poor outcome are possible therapeutic targets with known antagonists or inhibitors. Additionally, the genes could be combined into a prognostic multi-gene signature and tested in future ovarian cohorts. PMID:26886260

  20. Clustered Genes Encoding the Methyltransferases of Methanogenesis from Monomethylamine

    PubMed Central

    Burke, Stephen A.; Lo, Sam L.; Krzycki, Joseph A.

    1998-01-01

    Coenzyme M (CoM) is methylated during methanogenesis from monomethyamine in a reaction catalyzed by three proteins. Using monomethylamine, a 52-kDa polypeptide termed monomethylamine methyltransferase (MMAMT) methylates the corrinoid cofactor bound to a second polypeptide, monomethylamine corrinoid protein (MMCP). Methylated MMCP then serves as a substrate for MT2-A, which methylates CoM. The genes for these proteins are clustered on 6.8 kb of DNA in Methanosarcina barkeri MS. The gene encoding MMCP (mtmC) is located directly upstream of the gene encoding MMAMT (mtmB). The gene encoding MT2-A (mtbA) was found 1.1 kb upstream of mtmC, but no obvious open reading frame was found in the intergenic region between mtbA and mtmC. A single monocistronic transcript was found for mtbA that initiated 76 bp from the translational start. Separate transcripts of 2.4 and 4.7 kb were detected, both of which carried mtmCB. The larger transcript also encoded mtmP, which is homologous to the APC family of cationic amine permeases and may therefore encode a methylamine permease. A single transcriptional start site was found 447 bp upstream of the translational start of mtmC. MtmC possesses the corrinoid binding motif found in corrinoid proteins involved in dimethylsulfide- and methanol-dependent methanogenesis, as well as in methionine synthase. The open reading frame of mtmB was interrupted by a single in-frame, midframe, UAG codon which was also found in mtmB from M. barkeri NIH. A mechanism that circumvents UAG-directed termination of translation must operate during expression of mtmB in this methanogen. PMID:9642198

  1. Clustered genes encoding the methyltransferases of methanogenesis from monomethylamine.

    PubMed

    Burke, S A; Lo, S L; Krzycki, J A

    1998-07-01

    Coenzyme M (CoM) is methylated during methanogenesis from monomethyamine in a reaction catalyzed by three proteins. Using monomethylamine, a 52-kDa polypeptide termed monomethylamine methyltransferase (MMAMT) methylates the corrinoid cofactor bound to a second polypeptide, monomethylamine corrinoid protein (MMCP). Methylated MMCP then serves as a substrate for MT2-A, which methylates CoM. The genes for these proteins are clustered on 6.8 kb of DNA in Methanosarcina barkeri MS. The gene encoding MMCP (mtmC) is located directly upstream of the gene encoding MMAMT (mtmB). The gene encoding MT2-A (mtbA) was found 1.1 kb upstream of mtmC, but no obvious open reading frame was found in the intergenic region between mtbA and mtmC. A single monocistronic transcript was found for mtbA that initiated 76 bp from the translational start. Separate transcripts of 2.4 and 4.7 kb were detected, both of which carried mtmCB. The larger transcript also encoded mtmP, which is homologous to the APC family of cationic amine permeases and may therefore encode a methylamine permease. A single transcriptional start site was found 447 bp upstream of the translational start of mtmC. MtmC possesses the corrinoid binding motif found in corrinoid proteins involved in dimethylsulfide- and methanol-dependent methanogenesis, as well as in methionine synthase. The open reading frame of mtmB was interrupted by a single in-frame, midframe, UAG codon which was also found in mtmB from M. barkeri NIH. A mechanism that circumvents UAG-directed termination of translation must operate during expression of mtmB in this methanogen.

  2. Trouble Brewing in Los Angeles. Policy Brief

    ERIC Educational Resources Information Center

    Buck, Stuart

    2010-01-01

    The city of Los Angeles will face enormous budgetary pressures from the growing deficits in public pensions, both at a state and local level. In this policy brief, the author estimates that Los Angeles faces a total $152.6 billion liability for pensions that are underfunded--including $49.1 billion for the city pension systems, $2.4 billion for…

  3. Los Alamos Laser Eye Investigation.

    SciTech Connect

    Odom, C. R.

    2005-01-01

    A student working in a laser laboratory at Los Alamos National Laboratory sustained a serious retinal injury to her left eye when she attempted to view suspended particles in a partially evacuated target chamber. The principle investigator was using the white light from the flash lamp of a Class 4 Nd:YAG laser to illuminate the particles. Since the Q-switch was thought to be disabled at the time of the accident, the principal investigator assumed it would be safe to view the particles without wearing laser eye protection. The Laboratory Director appointed a team to investigate the accident and to report back to him the events and conditions leading up to the accident, equipment malfunctions, safety management causal factors, supervisory and management action/inaction, adequacy of institutional processes and procedures, emergency and notification response, effectiveness of corrective actions and lessons learned from previous similar events, and recommendations for human and institutional safety improvements. The team interviewed personnel, reviewed documents, and characterized systems and conditions in the laser laboratory during an intense six week investigation. The team determined that the direct and primary failures leading to this accident were, respectively, the principle investigator's unsafe work practices and the institution's inadequate monitoring of worker performance. This paper describes the details of the investigation, the human and institutional failures, and the recommendations for improving the laser safety program.

  4. Los Alamos Neutron Science Center

    SciTech Connect

    Kippen, Karen Elizabeth

    2016-11-08

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, and provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.

  5. Genes V.

    SciTech Connect

    Lewin, B.

    1994-12-31

    This fifth edition book encompasses a wide range of topics covering 1,272 pages. The book is arranged into nine parts with a total of 36 chapters. These nine parts include Introduction; DNA as a Store of Information; Translation; Constructing Cells; Control of Prokaryotypic Gene Expression; Perpetuation of DNA; Organization of the Eukaryotypic Genome; Eukaryotypic Transcription and RNA Processing; The Dynamic Genome; and Genes in Development.

  6. Insulin-induced gene 2 expression correlates with colorectal cancer metastasis and disease outcome.

    PubMed

    Sun, Shengjie; Zhang, Guoqing; Sun, Qiong; Wu, Zhiyong; Shi, Weiwei; Yang, Bo; Li, Ying

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers worldwide accounting for ∼9% of cancer-related deaths, 90% of which are due to metastasis resulting from resistance to chemotherapeutic agents. Hence, it is imperative to develop novel biomarkers of CRC. Insulin-induced gene 2 (INSIG2) has been previously reported to be a negative regulator of cholesterol synthesis and was recently identified as a putative-positive prognostic biomarker for colon and pancreatic cancer prognosis. Even though it has been suggested as a colon cancer biomarker and as an inhibitor of Bax-mediated apoptosis, the role of INSIG2 in CRC is elusive. We initially validated that INSIG2 is a gene with univariate-negative prognostic capacity to discriminate human colon cancer survivorship and that if present along with adenomatous polyposis coli (APC) gene mutations further decrease overall survival. Gain- and loss-of-function studies of INSIG2 showed that the gene product is responsible for inducing migration and invasion and maintenance of the mesenchymal phenotype in vitro and metastasis in vivo. Interestingly, loss of INSIG2 did not affect tumorigenic potential per se, but affected hepatic invasion in a xenograft assay. Our findings reinforce that INSIG2 is a novel colon cancer biomarker, and suggest, for the first time, an exclusive connection between INSIG2 and metastatic dissemination without any effect on tumorigenesis. © 2015 IUBMB Life, 68(1):65-71, 2016.

  7. Gene expression and pathway analysis of CTNNB1 in cancer and stem cells

    PubMed Central

    Tanabe, Shihori; Kawabata, Takeshi; Aoyagi, Kazuhiko; Yokozaki, Hiroshi; Sasaki, Hiroki

    2016-01-01

    AIM To investigate β-catenin (CTNNB1) signaling in cancer and stem cells, the gene expression and pathway were analyzed using bioinformatics. METHODS The expression of the catenin β 1 (CTNNB1) gene, which codes for β-catenin, was analyzed in mesenchymal stem cells (MSCs) and gastric cancer (GC) cells. Beta-catenin signaling and the mutation of related proteins were also analyzed using the cBioPortal for Cancer Genomics and HOMology modeling of Complex Structure (HOMCOS) databases. RESULTS The expression of the CTNNB1 gene was up-regulated in GC cells compared to MSCs. The expression of EPH receptor A8 (EPHA8), synovial sarcoma translocation chromosome 18 (SS18), interactor of little elongation complex ELL subunit 1 (ICE1), patched 1 (PTCH1), mutS homolog 3 (MSH3) and caspase recruitment domain family member 11 (CARD11) were also shown to be altered in GC cells in the cBioPortal for Cancer Genomics analysis. 3D complex structures were reported for E-cadherin 1 (CDH1), lymphoid enhancer binding factor 1 (LEF1), transcription factor 7 like 2 (TCF7L2) and adenomatous polyposis coli protein (APC) with β-catenin. CONCLUSION The results indicate that the epithelial-mesenchymal transition (EMT)-related gene CTNNB1 plays an important role in the regulation of stem cell pluripotency and cancer signaling. PMID:27928465

  8. Analysis of Candidate Genes in Occurrence and Growth of Colorectal Adenomas

    PubMed Central

    Olschwang, Sylviane; Vernerey, Déwi; Cottet, Vanessa; Pariente, Alexandre; Nalet, Bernard; Lafon, Jacques; Faivre, Jean; Laurent-Puig, Pierre; Bonithon-Kopp, Claire; Bonaiti-Pellié, Catherine

    2009-01-01

    Predisposition to sporadic colorectal tumours is influenced by genes with minor phenotypic effects. A case-control study was set up on 295 patients treated for a large adenoma matched with polyp-free individuals on gender, age, and geographic origin in a 1 : 2 proportion. A second group of 302 patients treated for a small adenoma was also characterized to distinguish effects on adenoma occurrence and growth. We focussed the study on 38 single nucleotide polymorphisms (SNPs) encompassing 14 genes involved in colorectal carcinogenesis. Effect of SNPs was tested using unconditional logistic regression. Comparisons were made for haplotypes within a given gene and for biologically relevant genes combinations using the combination test. The APC p.Glu1317Gly variant appeared to influence the adenoma growth (P = .04, exact test) but not its occurrence. This result needs to be replicated and genome-wide association studies may be necessary to fully identify low-penetrance alleles involved in early stages of colorectal tumorigenesis. PMID:19888426

  9. Quantitative defect in staphylococcal enterotoxin A binding and presentation by HLA-DM-deficient T2.Ak cells corrected by transfection of HLA-DM genes.

    PubMed

    Albert, L J; Denzin, L K; Ghumman, B; Bangia, N; Cresswell, P; Watts, T H

    1998-01-10

    HLA-DM facilitates peptide acquisition by MHC class II proteins within the endosomes of APC by facilitating release of invariant chain peptide intermediates (CLIP) from the class II molecules. T2 cells have a deletion in the MHC II region which deletes HLA-DM and MHC II genes. T2 cells transfected with MHC class II proteins are defective in protein presentation, a defect that is corrected by HLA-DM transfection. Here we show that T2 cells transfected with Ak are also impaired in binding and presentation of the superantistaphylococcal enterotoxin A and that HLA-DM transfection corrects this defect. The poor ability of SEA to bind to Ak on DM-deficient cells is somewhat surprising since Ak has a low affinity for CLIP and is not predominantly occupied with CLIP on T2 cells compared to wide-type APC. These data suggest an influence of HLA-DM on the structure or composition of the Ak/peptide complex beyond its role in the release of invariant chain peptides.

  10. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats

    PubMed Central

    2010-01-01

    Background Azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis in rats shares many phenotypical similarities with human sporadic colon cancer and is a reliable model for identifying chemopreventive agents. Genetic mutations relevant to human colon cancer have been described in this model, but comprehensive gene expression and genomic analysis have not been reported so far. Therefore, we applied genome-wide technologies to study variations in gene expression and genomic alterations in DMH-induced colon cancer in F344 rats. Methods For gene expression analysis, 9 tumours (TUM) and their paired normal mucosa (NM) were hybridized on 4 × 44K Whole rat arrays (Agilent) and selected genes were validated by semi-quantitative RT-PCR. Functional analysis on microarray data was performed by GenMAPP/MappFinder analysis. Array-comparative genomic hybridization (a-CGH) was performed on 10 paired TUM-NM samples hybridized on Rat genome arrays 2 × 105K (Agilent) and the results were analyzed by CGH Analytics (Agilent). Results Microarray gene expression analysis showed that Defcr4, Igfbp5, Mmp7, Nos2, S100A8 and S100A9 were among the most up-regulated genes in tumours (Fold Change (FC) compared with NM: 183, 48, 39, 38, 36 and 32, respectively), while Slc26a3, Mptx, Retlna and Muc2 were strongly down-regulated (FC: -500; -376, -167, -79, respectively). Functional analysis showed that pathways controlling cell cycle, protein synthesis, matrix metalloproteinases, TNFα/NFkB, and inflammatory responses were up-regulated in tumours, while Krebs cycle, the electron transport chain, and fatty acid beta oxidation were down-regulated. a-CGH analysis showed that four TUM out of ten had one or two chromosomal aberrations. Importantly, one sample showed a deletion on chromosome 18 including Apc. Conclusion The results showed complex gene expression alterations in adenocarcinomas encompassing many altered pathways. While a-CGH analysis showed a low degree of

  11. 9. NORTHSIDE OF HYPERION BOULEVARD VIADUCT OVERCROSSING OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. NORTHSIDE OF HYPERION BOULEVARD VIADUCT OVERCROSSING OF LOS ANGELES RIVER. LOOKING EAST/SOUTHEAST. HYPERION BOULEVARD OVERCROSSING OF LOS ANGELES RIVER IS UPPER SECTION OF VIADUCT. GLENDALE BOULEVARD IS LOWER SECTION OF RIVER OVERCROSSING. - Glendale-Hyperion Viaduct, Spanning Golden State Freeway (I-5) & Los Angeles River at Glendale Boulevard, Los Angeles, Los Angeles County, CA

  12. Nutritionally driven differential gene expression leads to heterochronic brain development in honeybee castes.

    PubMed

    Moda, Lívia Maria; Vieira, Joseana; Guimarães Freire, Anna Cláudia; Bonatti, Vanessa; Bomtorin, Ana Durvalina; Barchuk, Angel Roberto; Simões, Zilá Luz Paulino

    2013-01-01

    The differential feeding regimes experienced by the queen and worker larvae of the honeybee Apis mellifera shape a complex endocrine response cascade that ultimately gives rise to differences in brain morphologies. Brain development analyzed at the morphological level from the third (L3) through fifth (L5) larval instars revealed an asynchrony between queens and workers. In the feeding phase of the last larval instar (L5F), two well-formed structures, pedunculi and calyces, are identifiable in the mushroom bodies of queens, both of which are not present in workers until a later phase (spinning phase, L5S). Genome-wide expression analyses and normalized transcript expression experiments monitoring specific genes revealed that this differential brain development starts earlier, during L3. Analyzing brains from L3 through L5S1 larvae, we identified 21 genes with caste-specific transcription patterns (e.g., APC-4, GlcAT-P, fax, kr-h1 and shot), which encode proteins that are potentially involved in the development of brain tissues through controlling the cell proliferation rate (APC4, kr-h1) and fasciculation (GlcAT-P, fax, and shot). Shot, whose expression is known to be required for axon extension and cell proliferation, was found to be transcribed at significantly higher levels in L4 queens compared with worker larvae. Moreover, the protein encoded by this gene was immunolocalized to the cytoplasm of cells near the antennal lobe neuropiles and proximal to the Kenyon cells in the brains of L4 queens. In conclusion, during the larval period, the brains of queens are larger and develop more rapidly than workers' brains, which represents a developmental heterochrony reflecting the effect of the differential feeding regime of the two castes on nervous system development. Furthermore, this differential development is characterized by caste-specific transcriptional profiles of a set of genes, thus pointing to a link between differential nutrition and differential

  13. The biology of novel animal genes: Mouse APEX gene knockout

    SciTech Connect

    MacInnes, M.; Altherr, M.R.; Ludwig, D.; Pedersen, R.; Mold, C.

    1997-07-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The controlled breeding of novel genes into mice, including the gene knockout (KO), or conversely by adding back transgenes provide powerful genetic technologies that together suffice to determine in large part the biological role(s) of novel genes. Inbred mouse remains the best understood and most useful mammalian experimental system available for tackling the biology of novel genes. The major mammalian apurinic/apyrimidinic (AP) endonuclease (APE), is involved in a key step in the repair of spontaneous and induced AP sites in DNA. Efficient repair of these lesions is imperative to prevent the stable incorporation of mutations into the cellular genome which may lead to cell death or transformation. Loss or modulation of base excison repair activity in vivo may elevate the spontaneous mutation rate in cells, and may lead to a substantial increase in the incidence of cancer. Despite extensive biochemical analysis, however, the significance of these individual APE functions in vivo has not been elucidated. Mouse embryonic stem (ES) cells heterozygous for a deletion mutation in APE have been generated and whole animals containing the APE mutation have been derived from these ES cells. Animals homozygous for the APE null mutation die early in gestation, underscoring the biological significance of this DNA repair gene.

  14. Preliminary screening of differentially expressed genes involved in methyl-CpG-binding protein 2 gene-mediated proliferation in human osteosarcoma cells.

    PubMed

    Meng, Gang; Li, Yi; Lv, YangFan; Dai, Huanzi; Zhang, Xi; Guo, Qiao-Nan

    2015-04-01

    Methyl-CpG-binding protein 2 (MeCP2) is essential in human brain development and has been linked to several cancer types and neuro-developmental disorders. This study aims to screen the MeCP2 related differentially expressed genes and discover the therapeutic targets for osteosarcoma. CCK8 assay was used to detect the proliferation and SaOS2 and U2OS cells. Apoptosis of cells was detected by flow cytometry analysis that monitored Annexin V-APC/7-DD binding and 7-ADD uptake simultaneously. Denaturing formaldehyde agarose gel electrophoresis was employed to examine the quality of total RNA 18S and 28S units. Gene chip technique was utilized to discover the differentially expressed genes correlated with MeCP2 gene. Differential gene screening criteria were used to screen the changed genes. The gene up-regulation or down-regulation more than 1.5 times was regarded as significant differential expression genes. The CCK8 results indicated that the cell proliferation of MeCP2 silencing cells (LV-MeCP2-RNAi) was significantly decreased compared to non-silenced cells (LV-MeCP2-RNAi-CN) (P < 0.05). MeCP2 silencing could also induce significant apoptosis compared to non-silenced cells (P < 0.05); 107 expression changed genes were screened from a total of 49,395 transcripts. Among the total 107 transcripts, 34 transcripts were up-regulated and 73 transcripts were down-regulated. There were five significant differentially expressed genes, including IGFBP4, HOXC8, LMO4, MDK, and CTGF, which correlated with the MeCP2 gene. The methylation frequency of CpG in IGFBP4 gene could achieve 55%. In conclusion, the differentially expressed IGFBP4, HOXC8, LMO4, MDK, and CTGF genes may be involved in MeCP2 gene-mediated proliferation and apoptosis in osteosarcoma cells.

  15. Identification of tandem genes involved in lipooligosaccharide expression by Haemophilus ducreyi.

    PubMed Central

    Stevens, M K; Klesney-Tait, J; Lumbley, S; Walters, K A; Joffe, A M; Radolf, J D; Hansen, E J

    1997-01-01

    A transposon insertion mutant of Haemophilus ducreyi 35000 possessing a truncated lipooligosaccharide (LOS) failed to bind the LOS-specific monoclonal antibody 3E6 (M. K. Stevens, L. D. Cope, J. D. Radolf, and E. J. Hansen, Infect. Immun. 63:2976-2982, 1995). This transposon was found to have inserted into the first of two tandem genes and also caused a deletion of chromosomal DNA upstream of this gene. These two genes, designated lbgA and lbgB, encoded predicted proteins with molecular masses of 25,788 and 40,236 Da which showed homology with proteins which function in lipopolysaccharide biosynthetic in other gram-negative bacteria. The tandem arrangement of the lbgA and lbgB genes was found to be conserved among H. ducreyi strains. Isogenic LOS mutants, constructed by the insertion of a cat cartridge into either the lbgA or the lbgB gene, expressed an LOS phenotype indistinguishable from that of the original transposon-derived LOS mutant. The wild-type LOS phenotype could be restored by complementation with the appropriate wild-type allele. These two LOS mutants proved to be as virulent as the wild-type parent strain in an animal model. A double mutant with a deletion of the lbgA and lbgB genes yielded equivocal results when its virulence was tested in an animal model. PMID:9009327

  16. 2. LEE VINING INTAKE, MONO LAKE IN BACKGROUND. Los ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. LEE VINING INTAKE, MONO LAKE IN BACKGROUND. - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  17. 40. PLEASANT VALLEY RESERVOIR DAM LOOKING NORTHWEST Los Angeles ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. PLEASANT VALLEY RESERVOIR DAM LOOKING NORTHWEST - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  18. 47. LINED SECTION OF AQUEDUCT LOOKING NORTHWEST, COTTONWOOD Los ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. LINED SECTION OF AQUEDUCT LOOKING NORTHWEST, COTTONWOOD - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  19. 82. FIRST AND SECOND AQUEDUCTS LOOKING NORTHEAST Los Angeles ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    82. FIRST AND SECOND AQUEDUCTS LOOKING NORTHEAST - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  20. 87. AQUEDUCT IN COVERED CONDUIT LOOKING NORTHWEST Los Angeles ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    87. AQUEDUCT IN COVERED CONDUIT LOOKING NORTHWEST - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  1. 84. LA AQUEDUCT CROSSING CALIFORNIA AQUEDUCT LOOKING NORTH Los ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    84. LA AQUEDUCT CROSSING CALIFORNIA AQUEDUCT LOOKING NORTH - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth L