Sample records for loschmidt time reversal

  1. From Loschmidt daemons to time-reversed waves.

    PubMed

    Fink, Mathias

    2016-06-13

    Time-reversal invariance can be exploited in wave physics to control wave propagation in complex media. Because time and space play a similar role in wave propagation, time-reversed waves can be obtained by manipulating spatial boundaries or by manipulating time boundaries. The two dual approaches will be discussed in this paper. The first approach uses 'time-reversal mirrors' with a wave manipulation along a spatial boundary sampled by a finite number of antennas. Related to this method, the role of the spatio-temporal degrees of freedom of the wavefield will be emphasized. In a second approach, waves are manipulated from a time boundary and we show that 'instantaneous time mirrors', mimicking the Loschmidt point of view, simultaneously acting in the entire space at once can also radiate time-reversed waves. © 2016 The Author(s).

  2. Loschmidt echo as a robust decoherence quantifier for many-body systems

    NASA Astrophysics Data System (ADS)

    Zangara, Pablo R.; Dente, Axel D.; Levstein, Patricia R.; Pastawski, Horacio M.

    2012-07-01

    We employ the Loschmidt echo, i.e., the signal recovered after the reversal of an evolution, to identify and quantify the processes contributing to decoherence. This procedure, which has been extensively used in single-particle physics, is employed here in a spin ladder. The isolated chains have 1/2 spins with XY interaction and their excitations would sustain a one-body-like propagation. One of them constitutes the controlled system S whose reversible dynamics is degraded by the weak coupling with the uncontrolled second chain, i.e., the environment E. The perturbative SE coupling is swept through arbitrary combinations of XY and Ising-like interactions, that contain the standard Heisenberg and dipolar ones. Different time regimes are identified for the Loschmidt echo dynamics in this perturbative configuration. In particular, the exponential decay scales as a Fermi golden rule, where the contributions of the different SE terms are individually evaluated and analyzed. Comparisons with previous analytical and numerical evaluations of decoherence based on the attenuation of specific interferences show that the Loschmidt echo is an advantageous decoherence quantifier at any time, regardless of the S internal dynamics.

  3. Exact infinite-time statistics of the Loschmidt echo for a quantum quench.

    PubMed

    Campos Venuti, Lorenzo; Jacobson, N Tobias; Santra, Siddhartha; Zanardi, Paolo

    2011-07-01

    The equilibration dynamics of a closed quantum system is encoded in the long-time distribution function of generic observables. In this Letter we consider the Loschmidt echo generalized to finite temperature, and show that we can obtain an exact expression for its long-time distribution for a closed system described by a quantum XY chain following a sudden quench. In the thermodynamic limit the logarithm of the Loschmidt echo becomes normally distributed, whereas for small quenches in the opposite, quasicritical regime, the distribution function acquires a universal double-peaked form indicating poor equilibration. These findings, obtained by a central limit theorem-type result, extend to completely general models in the small-quench regime.

  4. Nonlinear Time-Reversal in a Wave Chaotic System

    NASA Astrophysics Data System (ADS)

    Frazier, Matthew; Taddese, Biniyam; Ott, Edward; Antonsen, Thomas; Anlage, Steven

    2012-02-01

    Time reversal mirrors are particularly simple to implement in wave chaotic systems and form the basis for a new class of sensors [1-3]. These sensors work by applying the quantum mechanical concepts of Loschmidt echo and fidelity decay to classical waves. The sensors make explicit use of time-reversal invariance and spatial reciprocity in a wave chaotic system to remotely measure the presence of small perturbations to the system. The underlying ray chaos increases the sensitivity to small perturbations throughout the volume explored by the waves. We extend our time-reversal mirror to include a discrete element with a nonlinear dynamical response. The initially injected pulse interacts with the nonlinear element, generating new frequency components originating at the element. By selectively filtering for and applying the time-reversal mirror to the new frequency components, we focus a pulse only onto the element, without knowledge of its location. Furthermore, we demonstrate transmission of arbitrary patterns of pulses to the element, creating a targeted communication channel to the exclusion of 'eavesdroppers' at other locations in the system. [1] Appl. Phys. Lett. 95, 114103 (2009) [2] J. Appl. Phys. 108, 1 (2010) [3] Acta Physica Polonica A 112, 569 (2007)

  5. Experimental quantification of decoherence via the Loschmidt echo in a many spin system with scaled dipolar Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buljubasich, Lisandro; Dente, Axel D.; Levstein, Patricia R.

    2015-10-28

    We performed Loschmidt echo nuclear magnetic resonance experiments to study decoherence under a scaled dipolar Hamiltonian by means of a symmetrical time-reversal pulse sequence denominated Proportionally Refocused Loschmidt (PRL) echo. The many-spin system represented by the protons in polycrystalline adamantane evolves through two steps of evolution characterized by the secular part of the dipolar Hamiltonian, scaled down with a factor |k| and opposite signs. The scaling factor can be varied continuously from 0 to 1/2, giving access to a range of complexity in the dynamics. The experimental results for the Loschmidt echoes showed a spreading of the decay rates thatmore » correlate directly to the scaling factors |k|, giving evidence that the decoherence is partially governed by the coherent dynamics. The average Hamiltonian theory was applied to give an insight into the spin dynamics during the pulse sequence. The calculations were performed for every single radio frequency block in contrast to the most widely used form. The first order of the average Hamiltonian numerically computed for an 8-spin system showed decay rates that progressively decrease as the secular dipolar Hamiltonian becomes weaker. Notably, the first order Hamiltonian term neglected by conventional calculations yielded an explanation for the ordering of the experimental decoherence rates. However, there is a strong overall decoherence observed in the experiments which is not reflected by the theoretical results. The fact that the non-inverted terms do not account for this effect is a challenging topic. A number of experiments to further explore the relation of the complete Hamiltonian with this dominant decoherence rate are proposed.« less

  6. Bipartite fidelity and Loschmidt echo of the bosonic conformal interface

    NASA Astrophysics Data System (ADS)

    Zhou, Tianci; Lin, Mao

    2017-12-01

    We study the quantum quench problem for a class of bosonic conformal interfaces by computing the Loschmidt echo and the bipartite fidelity. The quench can be viewed as a sudden change of boundary conditions parametrized by θ when connecting two one-dimensional critical systems. They are classified by S (θ ) matrices associated with the current scattering processes on the interface. The resulting Loschmidt echo of the quench has long time algebraic decay t-α, whose exponent also appears in the finite size bipartite fidelity as L-α/2. We perform analytic and numerical calculations of the exponent α , and find that it has a quadratic dependence on the change of θ if the prior and post-quench boundary conditions are of the same type of S , while remaining 1/4 otherwise. Possible physical realizations of these interfaces include, for instance, connecting different quantum wires (Luttinger liquids), quench of the topological phase edge states, etc., and the exponent can be detected in an x-ray edge singularity-type experiment.

  7. Loschmidt echo in many-spin systems: a quest for intrinsic decoherence and emergent irreversibility

    NASA Astrophysics Data System (ADS)

    Zangara, Pablo R.; Pastawski, Horacio M.

    2017-03-01

    If a magnetic polarization excess is locally injected in a crystal of interacting spins in thermal equilibrium, this ‘excitation’ would spread as consequence of spin-spin interactions. Such an apparently irreversible process is known as spin diffusion and it can lead the system back to ‘equilibrium’. Even so, a unitary quantum dynamics would ensure a precise memory of the non-equilibrium initial condition. Then, if at a certain time, say t/2, an experimental protocol reverses the many-body dynamics by changing the sign of the effective Hamiltonian, it would drive the system back to the initial non-equilibrium state at time t. As a matter of fact, the reversal is always perturbed by small experimental imperfections and/or uncontrolled internal or environmental degrees of freedom. This limits the amount of signal M(t) recovered locally at time t. The degradation of M(t) accounts for these perturbations, which can also be seen as the sources of decoherence. This general idea defines the Loschmidt echo (LE), which embodies the various time-reversal procedures implemented in nuclear magnetic resonance. Here, we present an invitation to the study of the LE following the pathway induced by the experiments. With such a purpose, we provide a historical and conceptual overview that briefly revisits selected phenomena that underlie the LE dynamics including chaos, decoherence, localization and equilibration. This guiding thread ultimately leads us to the discussion of decoherence and irreversibility as an emergent phenomenon. In addition, we introduce the LE formalism by means of spin-spin correlation functions in a manner suitable for presentation in a broad scope physics journal. Last, but not least, we present new results that could trigger new experiments and theoretical ideas. In particular, we propose to transform an initially localized excitation into a more complex initial state, enabling a dynamically prepared LE. This induces a global definition of the LE in

  8. Momentum-Space Entanglement and Loschmidt Echo in Luttinger Liquids after a Quantum Quench.

    PubMed

    Dóra, Balázs; Lundgren, Rex; Selover, Mark; Pollmann, Frank

    2016-07-01

    Luttinger liquids (LLs) arise by coupling left- and right-moving particles through interactions in one dimension. This most natural partitioning of LLs is investigated by the momentum-space entanglement after a quantum quench using analytical and numerical methods. We show that the momentum-space entanglement spectrum of a LL possesses many universal features both in equilibrium and after a quantum quench. The largest entanglement eigenvalue is identical to the Loschmidt echo, i.e., the overlap of the disentangled and final wave functions of the system. The second largest eigenvalue is the overlap of the first excited state of the disentangled system with zero total momentum and the final wave function. The entanglement gap is universal both in equilibrium and after a quantum quench. The momentum-space entanglement entropy is always extensive and saturates fast to a time independent value after the quench, in sharp contrast to a spatial bipartitioning.

  9. Extracting Lyapunov exponents from the echo dynamics of Bose-Einstein condensates on a lattice

    NASA Astrophysics Data System (ADS)

    Tarkhov, Andrei E.; Wimberger, Sandro; Fine, Boris V.

    2017-08-01

    We propose theoretically an experimentally realizable method to demonstrate the Lyapunov instability and to extract the value of the largest Lyapunov exponent for a chaotic many-particle interacting system. The proposal focuses specifically on a lattice of coupled Bose-Einstein condensates in the classical regime describable by the discrete Gross-Pitaevskii equation. We suggest to use imperfect time reversal of the system's dynamics known as the Loschmidt echo, which can be realized experimentally by reversing the sign of the Hamiltonian of the system. The routine involves tracking and then subtracting the noise of virtually any observable quantity before and after the time reversal. We support the theoretical analysis by direct numerical simulations demonstrating that the largest Lyapunov exponent can indeed be extracted from the Loschmidt echo routine. We also discuss possible values of experimental parameters required for implementing this proposal.

  10. From the quantum transfer matrix to the quench action: the Loschmidt echo in XXZ Heisenberg spin chains

    NASA Astrophysics Data System (ADS)

    Piroli, Lorenzo; Pozsgay, Balázs; Vernier, Eric

    2017-02-01

    We consider the computation of the Loschmidt echo after quantum quenches in the interacting XXZ Heisenberg spin chain both for real and imaginary times. We study two-site product initial states, focusing in particular on the Néel and tilted Néel states. We apply the quantum transfer matrix (QTM) approach to derive generalized TBA equations, which follow from the fusion hierarchy of the appropriate QTM’s. Our formulas are valid for arbitrary imaginary time and for real times at least up to a time t 0, after which the integral equations have to be modified. In some regimes, t 0 is seen to be either very large or infinite, allowing to explore in detail the post-quench dynamics of the system. As an important part of our work, we show that for the Néel state our imaginary time results can be recovered by means of the quench action approach, unveiling a direct connection with the quantum transfer matrix formalism. In particular, we show that in the zero-time limit, the study of our TBA equations allows for a simple alternative derivation of the recently obtained Bethe ansatz distribution functions for the Néel, tilted Néel and tilted ferromagnet states.

  11. Time reversal acoustics for small targets using decomposition of the time reversal operator

    NASA Astrophysics Data System (ADS)

    Simko, Peter C.

    The method of time reversal acoustics has been the focus of considerable interest over the last twenty years. Time reversal imaging methods have made consistent progress as effective methods for signal processing since the initial demonstration that physical time reversal methods can be used to form convergent wave fields on a localized target, even under conditions of severe multipathing. Computational time reversal methods rely on the properties of the so-called 'time reversal operator' in order to extract information about the target medium. Applications for which time reversal imaging have previously been explored include medical imaging, non-destructive evaluation, and mine detection. Emphasis in this paper will fall on two topics within the general field of computational time reversal imaging. First, we will examine previous work on developing a time reversal imaging algorithm based on the MUltiple SIgnal Classification (MUSIC) algorithm. MUSIC, though computationally very intensive, has demonstrated early promise in simulations using array-based methods applicable to true volumetric (three-dimensional) imaging. We will provide a simple algorithm through which the rank of the time reversal operator subspaces can be properly quantified so that the rank of the associated null subspace can be accurately estimated near the central pulse wavelength in broadband imaging. Second, we will focus on the scattering from small acoustically rigid two dimensional cylindrical targets of elliptical cross section. Analysis of the time reversal operator eigenmodes has been well-studied for symmetric response matrices associated with symmetric systems of scattering targets. We will expand these previous results to include more general scattering systems leading to asymmetric response matrices, for which the analytical complexity increases but the physical interpretation of the time reversal operator remains unchanged. For asymmetric responses, the qualitative properties of the

  12. Ultrasonic Time Reversal Mirrors

    NASA Astrophysics Data System (ADS)

    Fink, Mathias; Montaldo, Gabriel; Tanter, Mickael

    2004-11-01

    For more than ten years, time reversal techniques have been developed in many different fields of applications including detection of defects in solids, underwater acoustics, room acoustics and also ultrasound medical imaging and therapy. The essential property that makes time reversed acoustics possible is that the underlying physical process of wave propagation would be unchanged if time were reversed. In a non dissipative medium, the equations governing the waves guarantee that for every burst of sound that diverges from a source there exists in theory a set of waves that would precisely retrace the path of the sound back to the source. If the source is pointlike, this allows focusing back on the source whatever the medium complexity. For this reason, time reversal represents a very powerful adaptive focusing technique for complex media. The generation of this reconverging wave can be achieved by using Time Reversal Mirrors (TRM). It is made of arrays of ultrasonic reversible piezoelectric transducers that can record the wavefield coming from the sources and send back its time-reversed version in the medium. It relies on the use of fully programmable multi-channel electronics. In this paper we present some applications of iterative time reversal mirrors to target detection in medical applications.

  13. Dynamical phase transitions at finite temperature from fidelity and interferometric Loschmidt echo induced metrics

    NASA Astrophysics Data System (ADS)

    Mera, Bruno; Vlachou, Chrysoula; Paunković, Nikola; Vieira, Vítor R.; Viyuela, Oscar

    2018-03-01

    We study finite-temperature dynamical quantum phase transitions (DQPTs) by means of the fidelity and the interferometric Loschmidt echo (LE) induced metrics. We analyze the associated dynamical susceptibilities (Riemannian metrics), and derive analytic expressions for the case of two-band Hamiltonians. At zero temperature, the two quantities are identical, nevertheless, at finite temperatures they behave very differently. Using the fidelity LE, the zero-temperature DQPTs are gradually washed away with temperature, while the interferometric counterpart exhibits finite-temperature phase transitions. We analyze the physical differences between the two finite-temperature LE generalizations, and argue that, while the interferometric one is more sensitive and can therefore provide more information when applied to genuine quantum (microscopic) systems, when analyzing many-body macroscopic systems, the fidelity-based counterpart is a more suitable quantity to study. Finally, we apply the previous results to two representative models of topological insulators in one and two dimensions.

  14. Three component vibrational time reversal communication

    DOE PAGES

    Anderson, Brian E.; Ulrich, Timothy J.; Ten Cate, James A.

    2015-01-01

    Time reversal provides an optimal prefilter matched signal to apply to a communication signal before signal transmission. Time reversal allows compensation for wave speed dispersion and can function well in reverberant environments. Time reversal can be used to focus elastic energy to each of the three components of motion independently. A pipe encased in concrete was used to demonstrate the ability to conduct communications of information using three component time reversal. Furthermore, the ability of time reversal to compensate for multi-path distortion (overcoming reverberation) will be demonstrated and the rate of signal communication will be presented. [The U.S. Department ofmore » Energy, through the LANL/LDRD Program, is gratefully acknowledged for supporting this work.]« less

  15. Reversible perspective and splitting in time.

    PubMed

    Hart, Helen Schoenhals

    2012-01-01

    The element of time--the experience of it and the defensive use of it--is explored in conjunction with the use of reversible perspective as a psychotic defense. Clinical material from a long analysis illustrates how a psychotic patient used the reversible perspective, with its static splitting, to abolish the experience of time. When he improved and the reversible perspective became less effective for him, he replaced it with a more dynamic splitting mechanism using time gaps. With further improvement, the patient began to experience the passage of time, and along with it the excruciating pain of separation, envy, and loss.

  16. Time-reversed wave mixing in nonlinear optics

    PubMed Central

    Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng

    2013-01-01

    Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing. PMID:24247906

  17. Time reversibility in the quantum frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masot-Conde, Fátima

    2014-12-04

    Classic Mechanics and Electromagnetism, conventionally taken as time-reversible, share the same concept of motion (either of mass or charge) as the basis of the time reversibility in their own fields. This paper focuses on the relationship between mobile geometry and motion reversibility. The goal is to extrapolate the conclusions to the quantum frame, where matter and radiation behave just as elementary mobiles. The possibility that the asymmetry of Time (Time’s arrow) is an effect of a fundamental quantum asymmetry of elementary particles, turns out to be a consequence of the discussion.

  18. Time irreversibility in reversible shell models of turbulence.

    PubMed

    De Pietro, Massimo; Biferale, Luca; Boffetta, Guido; Cencini, Massimo

    2018-04-06

    Turbulent flows governed by the Navier-Stokes equations (NSE) generate an out-of-equilibrium time irreversible energy cascade from large to small scales. In the NSE, the energy transfer is due to the nonlinear terms that are formally symmetric under time reversal. As for the dissipative term: first, it explicitly breaks time reversibility; second, it produces a small-scale sink for the energy transfer that remains effective even in the limit of vanishing viscosity. As a result, it is not clear how to disentangle the time irreversibility originating from the non-equilibrium energy cascade from the explicit time-reversal symmetry breaking due to the viscous term. To this aim, in this paper we investigate the properties of the energy transfer in turbulent shell models by using a reversible viscous mechanism, avoiding any explicit breaking of the [Formula: see text] symmetry. We probe time irreversibility by studying the statistics of Lagrangian power, which is found to be asymmetric under time reversal also in the time-reversible model. This suggests that the turbulent dynamics converges to a strange attractor where time reversibility is spontaneously broken and whose properties are robust for what concerns purely inertial degrees of freedoms, as verified by the anomalous scaling behavior of the velocity structure functions.

  19. Time-reversed, flow-reversed ballistics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zernow, L.; Chapyak, E. J.; Scheffler, D. R.

    2001-01-01

    Two-dimensional simulations of planar sheet jet formation are studied to examine the hydrodynamic issues involved when simulations are carried out in the inverse direction, that is, with reversed time and flow. Both a realistic copper equation of state and a shockless equation of state were used. These studies are an initial step in evaluating this technique as a ballistics design tool.

  20. Time in Science: Reversibility vs. Irreversibility

    NASA Astrophysics Data System (ADS)

    Pomeau, Yves

    To discuss properly the question of irreversibility one needs to make a careful distinction between reversibility of the equations of motion and the choice of the initial conditions. This is also relevant for the rather confuse philosophy of the wave packet reduction in quantum mechanics. The explanation of this reduction requires also to make precise assumptions on what initial data are accessible in our world. Finally I discuss how a given (and long) time record can be shown in an objective way to record an irreversible or reversible process. Or: can a direction of time be derived from its analysis? This leads quite naturally to examine if there is a possible spontaneous breaking of the time reversal symmetry in many body systems, a symmetry breaking that would be put in evidence objectively by looking at certain specific time correlations.

  1. Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media

    NASA Astrophysics Data System (ADS)

    Vezzoli, Stefano; Bruno, Vincenzo; DeVault, Clayton; Roger, Thomas; Shalaev, Vladimir M.; Boltasseva, Alexandra; Ferrera, Marcello; Clerici, Matteo; Dubietis, Audrius; Faccio, Daniele

    2018-01-01

    Materials with a spatially uniform but temporally varying optical response have applications ranging from magnetic field-free optical isolators to fundamental studies of quantum field theories. However, these effects typically become relevant only for time variations oscillating at optical frequencies, thus presenting a significant hurdle that severely limits the realization of such conditions. Here we present a thin-film material with a permittivity that pulsates (uniformly in space) at optical frequencies and realizes a time-reversing medium of the form originally proposed by Pendry [Science 322, 71 (2008), 10.1126/science.1162087]. We use an optically pumped, 500 nm thick film of epsilon-near-zero (ENZ) material based on Al-doped zinc oxide. An incident probe beam is both negatively refracted and time reversed through a reflected phase-conjugated beam. As a result of the high nonlinearity and the refractive index that is close to zero, the ENZ film leads to time reversed beams (simultaneous negative refraction and phase conjugation) with near-unit efficiency and greater-than-unit internal conversion efficiency. The ENZ platform therefore presents the time-reversal features required, e.g., for efficient subwavelength imaging, all-optical isolators and fundamental quantum field theory studies.

  2. Investigation of Finite Sources through Time Reversal

    NASA Astrophysics Data System (ADS)

    Kremers, S.; Brietzke, G.; Igel, H.; Larmat, C.; Fichtner, A.; Johnson, P. A.; Huang, L.

    2008-12-01

    Under certain conditions time reversal is a promising method to determine earthquake source characteristics without any a-priori information (except the earth model and the data). It consists of injecting flipped-in-time records from seismic stations within the model to create an approximate reverse movie of wave propagation from which the location of the source point and other information might be inferred. In this study, the backward propagation is performed numerically using a spectral element code. We investigate the potential of time reversal to recover finite source characteristics (e.g., size of ruptured area, location of asperities, rupture velocity etc.). We use synthetic data from the SPICE kinematic source inversion blind test initiated to investigate the performance of current kinematic source inversion approaches (http://www.spice- rtn.org/library/valid). The synthetic data set attempts to reproduce the 2000 Tottori earthquake with 33 records close to the fault. We discuss the influence of relaxing the ignorance to prior source information (e.g., origin time, hypocenter, fault location, etc.) on the results of the time reversal process.

  3. Time reversal communication system

    DOEpatents

    Candy, James V.; Meyer, Alan W.

    2008-12-02

    A system of transmitting a signal through a channel medium comprises digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. The channel medium may be air, earth, water, tissue, metal, and/or non-metal.

  4. Photonic topological insulator with broken time-reversal symmetry

    PubMed Central

    He, Cheng; Sun, Xiao-Chen; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yulin; Feng, Liang; Chen, Yan-Feng

    2016-01-01

    A topological insulator is a material with an insulating interior but time-reversal symmetry-protected conducting edge states. Since its prediction and discovery almost a decade ago, such a symmetry-protected topological phase has been explored beyond electronic systems in the realm of photonics. Electrons are spin-1/2 particles, whereas photons are spin-1 particles. The distinct spin difference between these two kinds of particles means that their corresponding symmetry is fundamentally different. It is well understood that an electronic topological insulator is protected by the electron’s spin-1/2 (fermionic) time-reversal symmetry Tf2=−1. However, the same protection does not exist under normal circumstances for a photonic topological insulator, due to photon’s spin-1 (bosonic) time-reversal symmetry Tb2=1. In this work, we report a design of photonic topological insulator using the Tellegen magnetoelectric coupling as the photonic pseudospin orbit interaction for left and right circularly polarized helical spin states. The Tellegen magnetoelectric coupling breaks bosonic time-reversal symmetry but instead gives rise to a conserved artificial fermionic-like-pseudo time-reversal symmetry, Tp (Tp2=−1), due to the electromagnetic duality. Surprisingly, we find that, in this system, the helical edge states are, in fact, protected by this fermionic-like pseudo time-reversal symmetry Tp rather than by the bosonic time-reversal symmetry Tb. This remarkable finding is expected to pave a new path to understanding the symmetry protection mechanism for topological phases of other fundamental particles and to searching for novel implementations for topological insulators. PMID:27092005

  5. The principle of acoustic time reversal and holography

    NASA Astrophysics Data System (ADS)

    Zverev, V. A.

    2004-11-01

    On the basis of earlier results (V. A. Zverev, Radiooptics (1975)), the principle of the time reversal of waves (TRW) with the use of a time-reversed signal is considered (M. Fink et al., Time-Reversed Acoustics, Rep. Prog. Phys. 63 (2000)). Both the common mathematical basis and the difference between the TRW and holography are revealed. The following conclusions are drawn: (i) to implement the TRW, it is necessary that the spatial and time coordinates be separated in the initial signal; (ii) two methods of implementing the TRW are possible, namely, the time reversal and the use of an inverse filter; (iii) certain differences exist in the spatial focusing by the TRW and holography; and (iv) on the basis of the theory developed, a numerical modeling of the TRW becomes possible.

  6. Time reversibility of quantum diffusion in small-world networks

    NASA Astrophysics Data System (ADS)

    Han, Sung-Guk; Kim, Beom Jun

    2012-02-01

    We study the time-reversal dynamics of a tight-binding electron in the Watts-Strogatz (WS) small-world networks. The localized initial wave packet at time t = 0 diffuses as time proceeds until the time-reversal operation, together with the momentum perturbation of the strength η, is made at the reversal time T. The time irreversibility is measured by I = |Π( t = 2 T) - Π( t = 0)|, where Π is the participation ratio gauging the extendedness of the wavefunction and for convenience, t is measured forward even after the time reversal. When η = 0, the time evolution after T makes the wavefunction at t = 2 T identical to the one at t = 0, and we find I = 0, implying a null irreversibility or a complete reversibility. On the other hand, as η is increased from zero, the reversibility becomes weaker, and we observe enhancement of the irreversibility. We find that I linearly increases with increasing η in the weakly-perturbed region, and that the irreversibility is much stronger in the WS network than in the local regular network.

  7. Time-reversed waves and super-resolution

    NASA Astrophysics Data System (ADS)

    Fink, Mathias; de Rosny, Julien; Lerosey, Geoffroy; Tourin, Arnaud

    2009-06-01

    Time-reversal mirrors (TRMs) refocus an incident wavefield to the position of the original source regardless of the complexity of the propagation medium. TRMs have now been implemented in a variety of physical scenarios from GHz microwaves to MHz ultrasonics and to hundreds of Hz in ocean acoustics. Common to this broad range of scales is a remarkable robustness exemplified by observations at all scales that the more complex the medium (random or chaotic), the sharper the focus. A TRM acts as an antenna that uses complex environments to appear wider than it is, resulting for a broadband pulse, in a refocusing quality that does not depend on the TRM aperture. Moreover, when the complex environment is located in the near field of the source, time-reversal focusing opens completely new approaches to super-resolution. We will show that, for a broadband source located inside a random metamaterial, a TRM located in the far field radiated a time-reversed wave that interacts with the random medium to regenerate not only the propagating but also the evanescent waves required to refocus below the diffraction limit. This focusing process is very different from that developed with superlenses made of negative index material only valid for narrowband signals. We will emphasize the role of the frequency diversity in time-reversal focusing. To cite this article: M. Fink et al., C. R. Physique 10 (2009).

  8. Reverse time migration by Krylov subspace reduced order modeling

    NASA Astrophysics Data System (ADS)

    Basir, Hadi Mahdavi; Javaherian, Abdolrahim; Shomali, Zaher Hossein; Firouz-Abadi, Roohollah Dehghani; Gholamy, Shaban Ali

    2018-04-01

    Imaging is a key step in seismic data processing. To date, a myriad of advanced pre-stack depth migration approaches have been developed; however, reverse time migration (RTM) is still considered as the high-end imaging algorithm. The main limitations associated with the performance cost of reverse time migration are the intensive computation of the forward and backward simulations, time consumption, and memory allocation related to imaging condition. Based on the reduced order modeling, we proposed an algorithm, which can be adapted to all the aforementioned factors. Our proposed method benefit from Krylov subspaces method to compute certain mode shapes of the velocity model computed by as an orthogonal base of reduced order modeling. Reverse time migration by reduced order modeling is helpful concerning the highly parallel computation and strongly reduces the memory requirement of reverse time migration. The synthetic model results showed that suggested method can decrease the computational costs of reverse time migration by several orders of magnitudes, compared with reverse time migration by finite element method.

  9. Dynamical signature of localization-delocalization transition in a one-dimensional incommensurate lattice

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Wang, Yucheng; Wang, Pei; Gao, Xianlong; Chen, Shu

    2017-05-01

    We investigate the quench dynamics of a one-dimensional incommensurate lattice described by the Aubry-André model by a sudden change of the strength of incommensurate potential Δ and unveil that the dynamical signature of localization-delocalization transition can be characterized by the occurrence of zero points in the Loschmidt echo. For the quench process with quenching taking place between two limits of Δ =0 and Δ =∞ , we give analytical expressions of the Loschmidt echo, which indicate the existence of a series of zero points in the Loschmidt echo. For a general quench process, we calculate the Loschmidt echo numerically and analyze its statistical behavior. Our results show that if both the initial and post-quench Hamiltonian are in extended phase or localized phase, Loschmidt echo will always be greater than a positive number; however if they locate in different phases, Loschmidt echo can reach nearby zero at some time intervals.

  10. Time reversal imaging, Inverse problems and Adjoint Tomography}

    NASA Astrophysics Data System (ADS)

    Montagner, J.; Larmat, C. S.; Capdeville, Y.; Kawakatsu, H.; Fink, M.

    2010-12-01

    With the increasing power of computers and numerical techniques (such as spectral element methods), it is possible to address a new class of seismological problems. The propagation of seismic waves in heterogeneous media is simulated more and more accurately and new applications developed, in particular time reversal methods and adjoint tomography in the three-dimensional Earth. Since the pioneering work of J. Claerbout, theorized by A. Tarantola, many similarities were found between time-reversal methods, cross-correlations techniques, inverse problems and adjoint tomography. By using normal mode theory, we generalize the scalar approach of Draeger and Fink (1999) and Lobkis and Weaver (2001) to the 3D- elastic Earth, for theoretically understanding time-reversal method on global scale. It is shown how to relate time-reversal methods on one hand, with auto-correlations of seismograms for source imaging and on the other hand, with cross-correlations between receivers for structural imaging and retrieving Green function. Time-reversal methods were successfully applied in the past to acoustic waves in many fields such as medical imaging, underwater acoustics, non destructive testing and to seismic waves in seismology for earthquake imaging. In the case of source imaging, time reversal techniques make it possible an automatic location in time and space as well as the retrieval of focal mechanism of earthquakes or unknown environmental sources . We present here some applications at the global scale of these techniques on synthetic tests and on real data, such as Sumatra-Andaman (Dec. 2004), Haiti (Jan. 2010), as well as glacial earthquakes and seismic hum.

  11. Three-dimensional time reversal communications in elastic media

    DOE PAGES

    Anderson, Brian E.; Ulrich, Timothy J.; Le Bas, Pierre-Yves; ...

    2016-02-23

    Our letter presents a series of vibrational communication experiments, using time reversal, conducted on a set of cast iron pipes. Time reversal has been used to provide robust, private, and clean communications in many underwater acoustic applications. Also, the use of time reversal to communicate along sections of pipes and through a wall is demonstrated here in order to overcome the complications of dispersion and multiple scattering. These demonstrations utilize a single source transducer and a single sensor, a triaxial accelerometer, enabling multiple channels of simultaneous communication streams to a single location.

  12. Linear and Nonlinear Time Reverse Acoustics in Geomaterials

    NASA Astrophysics Data System (ADS)

    Sutin, A.; Johnson, P. A.; Tencate, J.

    2004-12-01

    Linear and Nonlinear Time Reverse Acoustics in Geomaterials P. A. Johnson, A.Sutin and J. TenCate Time Reversal Acoustics (TRA) is one of the most interesting topics to have emerged in modern acoustics in the last 40 years. Much of the seminal research in this area has been carried out by the group at the Laboratoire Ondes et Acoustique at the University of Paris 7, who have demonstrated the ability and robustness of TRA (using Time Reversal Mirrors) to provide spatial control and focusing of an ultrasonic beam (e.g. Fink, 1999). The ability to obtain highly focused signals with TRA has numerous applications, including lithotripsy, ultrasonic brain surgery, nondestructive evaluation and underwater acoustic communication. Notably, the study of time reversal in solids and in the earth is still relatively new. The problem is fundamentally different from the purely acoustic one due to the excitation and propagation of both compressional (bulk) and shear waves as well as the scattering and potentially high dissipation of the medium. We conducted series of TRA experiments in different solids using direct-coupled transducers on solids in tandem with a large bandwidth laser vibrometer detector. A typical time reversal experiment was carried out using the following steps (Sutin et al. 2004a). Laboratory experiments were conducted in different geomaterials of different shapes and sizes, including Carrera marble, granite and Berea sandstone. We observed that, in spite of potentially huge numbers of wave conversions (e.g., compressional to shear, shear to compressional, compressional/shear to surface waves, etc.) for each reflection at each free surface, time reversal still provides significant spatial and temporal focusing in these different geophysical materials. The typical size of the focal area is approximately equivalent to the shear wavelength and the focal area, but becomes larger with increasing wave attenuation (Sutin et al. 2004a; Delsanto et al., 2003)). The TR

  13. Phase conjugation and time reversal in acoustics

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    2000-07-01

    This paper compares the different approaches used in acoustics to time reverse or to phase conjugate a wavefield. The basic principle of a time reversal mirror is an extension for broadband pulsed waves to the optical phase conjugated mirror designed for monochromatic waves. However, this equivalence is only valid mathematically and there are some fundamental differences between these two techniques that will be described in this paper.

  14. Remote Whispering Applying Time Reversal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Brian Eric

    The purpose of this project was to explore the use of time reversal technologies as a means for communication to a targeted individual or location. The idea is to have the privacy of whispering in one’s ear, but to do this remotely from loudspeakers not located near the target. Applications of this work include communicating with hostages and survivors in rescue operations, communicating imaging and operational conditions in deep drilling operations, monitoring storage of spent nuclear fuel in storage casks without wires, or clandestine activities requiring signaling between specific points. This technology provides a solution in any application where wiresmore » and radio communications are not possible or not desired. It also may be configured to self calibrate on a regular basis to adjust for changing conditions. These communications allow two people to converse with one another in real time, converse in an inaudible frequency range or medium (i.e. using ultrasonic frequencies and/or sending vibrations through a structure), or send information for a system to interpret (even allowing remote control of a system using sound). The time reversal process allows one to focus energy to a specific location in space and to send a clean transmission of a selected signal only to that location. In order for the time reversal process to work, a calibration signal must be obtained. This signal may be obtained experimentally using an impulsive sound, a known chirp signal, or other known signals. It may also be determined from a numerical model of a known environment in which the focusing is desired or from passive listening over time to ambient noise.« less

  15. Method for distinguishing multiple targets using time-reversal acoustics

    DOEpatents

    Berryman, James G.

    2004-06-29

    A method for distinguishing multiple targets using time-reversal acoustics. Time-reversal acoustics uses an iterative process to determine the optimum signal for locating a strongly reflecting target in a cluttered environment. An acoustic array sends a signal into a medium, and then receives the returned/reflected signal. This returned/reflected signal is then time-reversed and sent back into the medium again, and again, until the signal being sent and received is no longer changing. At that point, the array has isolated the largest eigenvalue/eigenvector combination and has effectively determined the location of a single target in the medium (the one that is most strongly reflecting). After the largest eigenvalue/eigenvector combination has been determined, to determine the location of other targets, instead of sending back the same signals, the method sends back these time reversed signals, but half of them will also be reversed in sign. There are various possibilities for choosing which half to do sign reversal. The most obvious choice is to reverse every other one in a linear array, or as in a checkerboard pattern in 2D. Then, a new send/receive, send-time reversed/receive iteration can proceed. Often, the first iteration in this sequence will be close to the desired signal from a second target. In some cases, orthogonalization procedures must be implemented to assure the returned signals are in fact orthogonal to the first eigenvector found.

  16. Time Reversal Method for Pipe Inspection with Guided Wave

    NASA Astrophysics Data System (ADS)

    Deng, Fei; He, Cunfu; Wu, Bin

    2008-02-01

    The temporal-spatial focusing effect of the time reversal method on the guided wave inspection in pipes is investigated. A steel pipe model with outer diameter of 70 mm and wall thickness of 3.5 mm is numerically built to analyse the reflection coefficient of L(0,2) mode when the time reversal method is applied in the model. According to the calculated results, it is shown that a synthetic time reversal array method is effective to improve the signal-to-noise ratio of a guided wave inspection system. As an intercepting window is widened, more energy can be included in a re-emitted signal, which leads to a large reflection coefficient of L(0,2) mode. It is also shown that when a time reversed signal is reapplied in the pipe model, by analysing the motion of the time reversed wave propagating along the pipe model, a defect can be identified. Therefore, it is demonstrated that the time reversal method can be used to locate the circumferential position of a defect in a pipe. Finally, through an experiment corresponding with the pipe model, the experimental result shows that the above-mentioned method can be valid in the inspection of a pipe.

  17. Time reversal technique for gas leakage detection.

    PubMed

    Maksimov, A O; Polovinka, Yu A

    2015-04-01

    The acoustic remote sensing of subsea gas leakage traditionally uses sonars as active acoustic sensors and hydrophones picking up the sound generated by a leak as passive sensors. When gas leaks occur underwater, bubbles are produced and emit sound at frequencies intimately related to their sizes. The experimental implementation of an acoustic time-reversal mirror (TRM) is now well established in underwater acoustics. In the basic TRM experiment, a probe source emits a pulse that is received on an array of sensors, time reversed, and re-emitted. After time reversal, the resulting field focuses back at the probe position. In this study, a method for enhancing operation of the passive receiving system has been proposed by using it in the regime of TRM. Two factors, the local character of the acoustic emission signal caused by the leakage and a resonant nature of the bubble radiation at their birth, make particularly effective scattering with the conjugate wave (CW). Analytical calculations are performed for the scattering of CW wave on a single bubble when CW is formed by bubble birthing wail received on an array, time reversed, and re-emitted. The quality of leakage detection depends on the spatio-temporal distribution of ambient noise.

  18. Time-Reversal Generation of Rogue Waves

    NASA Astrophysics Data System (ADS)

    Chabchoub, Amin; Fink, Mathias

    2014-03-01

    The formation of extreme localizations in nonlinear dispersive media can be explained and described within the framework of nonlinear evolution equations, such as the nonlinear Schrödinger equation (NLS). Within the class of exact NLS breather solutions on a finite background, which describe the modulational instability of monochromatic wave trains, the hierarchy of rational solutions localized in both time and space is considered to provide appropriate prototypes to model rogue wave dynamics. Here, we use the time-reversal invariance of the NLS to propose and experimentally demonstrate a new approach to constructing strongly nonlinear localized waves focused in both time and space. The potential applications of this time-reversal approach include remote sensing and motivated analogous experimental analysis in other nonlinear dispersive media, such as optics, Bose-Einstein condensates, and plasma, where the wave motion dynamics is governed by the NLS.

  19. Investigation of Finite Sources through Time Reversal

    NASA Astrophysics Data System (ADS)

    Kremers, Simon; Brietzke, Gilbert; Igel, Heiner; Larmat, Carene; Fichtner, Andreas; Johnson, Paul A.; Huang, Lianjie

    2010-05-01

    Under certain conditions time reversal is a promising method to determine earthquake source characteristics without any a-priori information (except the earth model and the data). It consists of injecting flipped-in-time records from seismic stations within the model to create an approximate reverse movie of wave propagation from which the location of the hypocenter and other information might be inferred. In this study, the backward propagation is performed numerically using a parallel cartesian spectral element code. Initial tests using point source moment tensors serve as control for the adaptability of the used wave propagation algorithm. After that we investigated the potential of time reversal to recover finite source characteristics (e.g., size of ruptured area, rupture velocity etc.). We used synthetic data from the SPICE kinematic source inversion blind test initiated to investigate the performance of current kinematic source inversion approaches (http://www.spice-rtn.org/library/valid). The synthetic data set attempts to reproduce the 2000 Tottori earthquake with 33 records close to the fault. We discuss the influence of various assumptions made on the source (e.g., origin time, hypocenter, fault location, etc.), adjoint source weighting (e.g., correct for epicentral distance) and structure (uncertainty in the velocity model) on the results of the time reversal process. We give an overview about the quality of focussing of the different wavefield properties (i.e., displacements, strains, rotations, energies). Additionally, the potential to recover source properties of multiple point sources at the same time is discussed.

  20. Operational formulation of time reversal in quantum theory

    NASA Astrophysics Data System (ADS)

    Oreshkov, Ognyan; Cerf, Nicolas J.

    2015-10-01

    The symmetry of quantum theory under time reversal has long been a subject of controversy because the transition probabilities given by Born’s rule do not apply backward in time. Here, we resolve this problem within a rigorous operational probabilistic framework. We argue that reconciling time reversal with the probabilistic rules of the theory requires a notion of operation that permits realizations through both pre- and post-selection. We develop the generalized formulation of quantum theory that stems from this approach and give a precise definition of time-reversal symmetry, emphasizing a previously overlooked distinction between states and effects. We prove an analogue of Wigner’s theorem, which characterizes all allowed symmetry transformations in this operationally time-symmetric quantum theory. Remarkably, we find larger classes of symmetry transformations than previously assumed, suggesting a possible direction in the search for extensions of known physics.

  1. Ultrafast Reverse Recovery Time Measurement for Wide-Bandgap Diodes

    DOE PAGES

    Mauch, Daniel L.; Zutavern, Fred J.; Delhotal, Jarod J.; ...

    2017-03-01

    A system is presented that is capable of measuring sub-nanosecond reverse recovery times of diodes in wide-bandgap materials over a wide range of forward biases (0 – 1 A) and reverse voltages (0 – 10 kV). The system utilizes the step recovery technique and comprises a cable pulser based on a silicon (Si) Photoconductive Semiconductor Switch (PCSS) triggered with an Ultra Short Pulse Laser (USPL), a pulse charging circuit, a diode biasing circuit, and resistive and capacitive voltage monitors. The PCSS based cable pulser transmits a 130 ps rise time pulse down a transmission line to a capacitively coupled diode,more » which acts as the terminating element of the transmission line. The temporal nature of the pulse reflected by the diode provides the reverse recovery characteristics of the diode, measured with a high bandwidth capacitive probe integrated into the cable pulser. Furthermore, this system was used to measure the reverse recovery times (including the creation and charging of the depletion region) for two Avogy gallium nitride (GaN) diodes; the initial reverse recovery time was found to be 4 ns and varied minimally over reverse biases of 50 – 100 V and forward current of 1 – 100 mA.« less

  2. Ultrafast Reverse Recovery Time Measurement for Wide-Bandgap Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauch, Daniel L.; Zutavern, Fred J.; Delhotal, Jarod J.

    A system is presented that is capable of measuring sub-nanosecond reverse recovery times of diodes in wide-bandgap materials over a wide range of forward biases (0 – 1 A) and reverse voltages (0 – 10 kV). The system utilizes the step recovery technique and comprises a cable pulser based on a silicon (Si) Photoconductive Semiconductor Switch (PCSS) triggered with an Ultra Short Pulse Laser (USPL), a pulse charging circuit, a diode biasing circuit, and resistive and capacitive voltage monitors. The PCSS based cable pulser transmits a 130 ps rise time pulse down a transmission line to a capacitively coupled diode,more » which acts as the terminating element of the transmission line. The temporal nature of the pulse reflected by the diode provides the reverse recovery characteristics of the diode, measured with a high bandwidth capacitive probe integrated into the cable pulser. Furthermore, this system was used to measure the reverse recovery times (including the creation and charging of the depletion region) for two Avogy gallium nitride (GaN) diodes; the initial reverse recovery time was found to be 4 ns and varied minimally over reverse biases of 50 – 100 V and forward current of 1 – 100 mA.« less

  3. Least squares reverse time migration of controlled order multiples

    NASA Astrophysics Data System (ADS)

    Liu, Y.

    2016-12-01

    Imaging using the reverse time migration of multiples generates inherent crosstalk artifacts due to the interference among different order multiples. Traditionally, least-square fitting has been used to address this issue by seeking the best objective function to measure the amplitude differences between the predicted and observed data. We have developed an alternative objective function by decomposing multiples into different orders to minimize the difference between Born modeling predicted multiples and specific-order multiples from observational data in order to attenuate the crosstalk. This method is denoted as the least-squares reverse time migration of controlled order multiples (LSRTM-CM). Our numerical examples demonstrated that the LSRTM-CM can significantly improve image quality compared with reverse time migration of multiples and least-square reverse time migration of multiples. Acknowledgments This research was funded by the National Nature Science Foundation of China (Grant Nos. 41430321 and 41374138).

  4. Reducing current reversal time in electric motor control

    DOEpatents

    Bredemann, Michael V

    2014-11-04

    The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

  5. Adaptive spatial combining for passive time-reversed communications.

    PubMed

    Gomes, João; Silva, António; Jesus, Sérgio

    2008-08-01

    Passive time reversal has aroused considerable interest in underwater communications as a computationally inexpensive means of mitigating the intersymbol interference introduced by the channel using a receiver array. In this paper the basic technique is extended by adaptively weighting sensor contributions to partially compensate for degraded focusing due to mismatch between the assumed and actual medium impulse responses. Two algorithms are proposed, one of which restores constructive interference between sensors, and the other one minimizes the output residual as in widely used equalization schemes. These are compared with plain time reversal and variants that employ postequalization and channel tracking. They are shown to improve the residual error and temporal stability of basic time reversal with very little added complexity. Results are presented for data collected in a passive time-reversal experiment that was conducted during the MREA'04 sea trial. In that experiment a single acoustic projector generated a 24-PSK (phase-shift keyed) stream at 200400 baud, modulated at 3.6 kHz, and received at a range of about 2 km on a sparse vertical array with eight hydrophones. The data were found to exhibit significant Doppler scaling, and a resampling-based preprocessing method is also proposed here to compensate for that scaling.

  6. Time-reversal and Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Debski, Wojciech

    2017-04-01

    Probabilistic inversion technique is superior to the classical optimization-based approach in all but one aspects. It requires quite exhaustive computations which prohibit its use in huge size inverse problems like global seismic tomography or waveform inversion to name a few. The advantages of the approach are, however, so appealing that there is an ongoing continuous afford to make the large inverse task as mentioned above manageable with the probabilistic inverse approach. One of the perspective possibility to achieve this goal relays on exploring the internal symmetry of the seismological modeling problems in hand - a time reversal and reciprocity invariance. This two basic properties of the elastic wave equation when incorporating into the probabilistic inversion schemata open a new horizons for Bayesian inversion. In this presentation we discuss the time reversal symmetry property, its mathematical aspects and propose how to combine it with the probabilistic inverse theory into a compact, fast inversion algorithm. We illustrate the proposed idea with the newly developed location algorithm TRMLOC and discuss its efficiency when applied to mining induced seismic data.

  7. Time reversal invariance for a nonlinear scatterer exhibiting contact acoustic nonlinearity

    NASA Astrophysics Data System (ADS)

    Blanloeuil, Philippe; Rose, L. R. Francis; Veidt, Martin; Wang, Chun H.

    2018-03-01

    The time reversal invariance of an ultrasonic plane wave interacting with a contact interface characterized by a unilateral contact law is investigated analytically and numerically. It is shown analytically that despite the contact nonlinearity, the re-emission of a time reversed version of the reflected and transmitted waves can perfectly recover the original pulse shape, thereby demonstrating time reversal invariance for this type of contact acoustic nonlinearity. With the aid of finite element modelling, the time-reversal analysis is extended to finite-size nonlinear scatterers such as closed cracks. The results show that time reversal invariance holds provided that all the additional frequencies generated during the forward propagation, such as higher harmonics, sub-harmonics and zero-frequency component, are fully included in the retro-propagation. If the scattered waves are frequency filtered during receiving or transmitting, such as through the use of narrowband transducers, the recombination of the time-reversed waves will not exactly recover the original incident wave. This discrepancy due to incomplete time invariance can be exploited as a new method for characterizing damage by defining damage indices that quantify the departure from time reversal invariance. The sensitivity of these damage indices for various crack lengths and contact stress levels is investigated computationally, indicating some advantages of this narrowband approach relative to the more conventional measurement of higher harmonic amplitude, which requires broadband transducers.

  8. Time-reversal-invariant spin-orbit-coupled bilayer Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Maisberger, Matthew; Wang, Lin-Cheng; Sun, Kuei; Xu, Yong; Zhang, Chuanwei

    2018-05-01

    Time-reversal invariance plays a crucial role for many exotic quantum phases, particularly for topologically nontrivial states, in spin-orbit coupled electronic systems. Recently realized spin-orbit coupled cold-atom systems, however, lack the time-reversal symmetry due to the inevitable presence of an effective transverse Zeeman field. We address this issue by analyzing a realistic scheme to preserve time-reversal symmetry in spin-orbit-coupled ultracold atoms, with the use of Hermite-Gaussian-laser-induced Raman transitions that preserve spin-layer time-reversal symmetry. We find that the system's quantum states form Kramers pairs, resulting in symmetry-protected gap closing of the lowest two bands at arbitrarily large Raman coupling. We also show that Bose gases in this setup exhibit interaction-induced layer-stripe and uniform phases as well as intriguing spin-layer symmetry and spin-layer correlation.

  9. Time Reversed Electromagnetics as a Novel Method for Wireless Power Transfer

    NASA Astrophysics Data System (ADS)

    Challa, Anu; Anlage, Steven M.; Tesla Team

    Taking advantage of ray-chaotic enclosures, time reversal has been shown to securely transmit information via short-wavelength waves between two points, yielding noise at all other sites. In this presentation, we propose a method to adapt the signal-focusing technique to electromagnetic signals in order to transmit energy to portable devices. Relying only on the time-reversal invariance properties of waves, the technique is unencumbered by the inversely-proportional-to-distance path loss or precise orientation requirements of its predecessors, making it attractive for power transfer applications. We inject a short microwave pulse into a complex, wave-chaotic chamber and collect the resulting long time-domain signal at a designated transceiver. The signal is then time reversed and emitted from the collection site, collapsing as a time-reversed replica of the initial pulse at the injection site. When amplified, this reconstruction is robust, as measured through metrics of peak-to-peak voltage and energy transfer ratio. We experimentally demonstrate that time reversed collapse can be made on a moving target, and propose a way to selectively target devices through nonlinear time-reversal. University of Maryland Gemstone Team TESLA: Frank Cangialosi, Anu Challa, Tim Furman, Tyler Grover, Patrick Healey, Ben Philip, Brett Potter, Scott Roman, Andrew Simon, Liangcheng Tao, Alex Tabatabai.

  10. Experimental Study of Quantum Graphs With and Without Time-Reversal Invariance

    NASA Astrophysics Data System (ADS)

    Anlage, Steven Mark; Fu, Ziyuan; Koch, Trystan; Antonsen, Thomas; Ott, Edward

    An experimental setup consisting of a microwave network is used to simulate quantum graphs. The random coupling model (RCM) is applied to describe the universal statistical properties of the system with and without time-reversal invariance. The networks which are large compared to the wavelength, are constructed from coaxial cables connected by T junctions, and by making nodes with circulators time-reversal invariance for microwave propagation in the networks can be broken. The results of experimental study of microwave networks with and without time-reversal invariance are presented both in frequency domain and time domain. With the measured S-parameter data of two-port networks, the impedance statistics and the nearest-neighbor spacing statistics are examined. Moreover, the experiments of time reversal mirrors for networks demonstrate that the reconstruction quality can be used to quantify the degree of the time-reversal invariance for wave propagation. Numerical models of networks are also presented to verify the time domain experiments. We acknowledge support under contract AFOSR COE Grant FA9550-15-1-0171 and the ONR Grant N000141512134.

  11. Theta, time reversal and temperature

    DOE PAGES

    Gaiotto, Davide; Kapustin, Anton; Komargodski, Zohar; ...

    2017-05-17

    SU(N) gauge theory is time reversal invariant at θ = 0 and θ = π. We show that at θ = π there is a discrete ’t Hooft anomaly involving time reversal and the center symmetry. This anomaly leads to constraints on the vacua of the theory. It follows that at θ = π the vacuum cannot be a trivial non-degenerate gapped state. (By contrast, the vacuum at θ = 0 is gapped, non-degenerate, and trivial.) Due to the anomaly, the theory admits nontrivial domain walls supporting lower-dimensional theories. Depending on the nature of the vacuum at θ = π,more » several phase diagrams are possible. Assuming area law for space-like loops, one arrives at an inequality involving the temperatures at which CP and the center symmetry are restored. We also analyze alternative scenarios for SU(2) gauge theory. The underlying symmetry at θ = π is the dihedral group of 8 elements. If deconfined loops are allowed, one can have two O(2)-symmetric fixed points. In conclusion, it may also be that the four-dimensional theory around θ = π is gapless, e.g. a Coulomb phase could match the underlying anomalies.« less

  12. Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Chen, Yong

    2018-05-01

    A study of rogue-wave solutions in the reverse-time nonlocal nonlinear Schrödinger (NLS) and nonlocal Davey-Stewartson (DS) equations is presented. By using Darboux transformation (DT) method, several types of rogue-wave solutions are constructed. Dynamics of these rogue-wave solutions are further explored. It is shown that the (1 + 1)-dimensional fundamental rogue-wave solutions in the reverse-time NLS equation can be globally bounded or have finite-time blowing-ups. It is also shown that the (2 + 1)-dimensional line rogue waves in the reverse-time nonlocal DS equations can be bounded for all space and time or develop singularities in critical time. In addition, the multi- and higher-order rogue waves exhibit richer structures, most of which have no counterparts in the corresponding local nonlinear equations.

  13. On the time-reversal symmetry in pseudo-Hermitian systems

    NASA Astrophysics Data System (ADS)

    Choutri, B.; Cherbal, O.; Ighezou, F. Z.; Trifonov, D. A.

    2014-11-01

    In a recent paper [M. Sato, K. Hasebe, K. Esaki, and M. Kohmoto, Prog. Theor. Phys. 127, 937 (2012)] Sato and his collaborators established a generalization of the Kramers degeneracy structure to pseudo-Hermitian Hamiltonian systems, admitting even time-reversal symmetry, T2=1. This extension is achieved using the mathematical structure of split-quaternions instead of quaternions, usually adopted in the case of Hermitian Hamiltonians with odd time-reversal symmetry, T2=-1. Here we find that the metric operator for the pseudo-Hermitian Hamiltonian H that allows the realization of the generalized Kramers degeneracy is necessarily indefinite. We show that such H with real spectrum also possesses odd antilinear symmetry induced from the existing odd time-reversal symmetry of its Hermitian counterpart h, so that the generalized Kramers degeneracy of H is in fact crypto-Hermitian Kramers degeneracy. We study in greater detail a new example of the pseudo-Hermitian split-quaternionic four-level Hamiltonian system, which admits an indefinite metric operator and time-reversal symmetry and, as a consequence, a generalized Kramers degeneracy structure. We provide a complete solution of the eigenvalue problem, construct pseudo-Hermitian ladder operators closing the normal and abnormal pseudo-fermionic algebras, and show that this system fulfills a crypto-Hermitian degeneracy.

  14. Role Played by the Passage of Time in Reversal Learning.

    PubMed

    Goarin, Estelle H F; Lingawi, Nura W; Laurent, Vincent

    2018-01-01

    Reversal learning is thought to involve an extinction-like process that inhibits the expression of the initial learning. However, behavioral evidence for this inhibition remains difficult to interpret as various procedures have been employed to study reversal learning. Here, we used a discrimination task in rats to examine whether the inhibition produced by reversal learning is as sensitive to the passage of time as the inhibition produced by extinction. Experiment 1 showed that when tested immediately after reversal training, rats were able to use the reversed contingencies to solve the discrimination task in an outcome-specific manner. This ability to use outcome-specific information was lost when a delay was inserted between reversal training and test. However, interpretation of these data was made difficult by a potential floor effect. This concern was addressed in Experiment 2 in which it was confirmed that the passage of time impaired the ability of the rats to use the reversed contingencies in an outcome-specific manner to solve the task. Further, it revealed that the delay between initial learning and test was not responsible for this impairment. Additional work demonstrated that solving the discrimination task was unaffected by Pavlovian extinction but that the discriminative stimuli were able to block conditioning to a novel stimulus, suggesting that Pavlovian processes were likely to contribute to solving the discrimination. We therefore concluded that the expression of reversal and extinction learning do share the same sensitivity to the effect of time. However, this sensitivity was most obvious when we assessed outcome-specific information following reversal learning. This suggests that the processes involved in reversal learning are somehow distinct from those underlying extinction learning, as the latter has usually been found to leave outcome-specific information relatively intact. Thus, the present study reveals that a better understanding of the

  15. Role Played by the Passage of Time in Reversal Learning

    PubMed Central

    Goarin, Estelle H. F.; Lingawi, Nura W.; Laurent, Vincent

    2018-01-01

    Reversal learning is thought to involve an extinction-like process that inhibits the expression of the initial learning. However, behavioral evidence for this inhibition remains difficult to interpret as various procedures have been employed to study reversal learning. Here, we used a discrimination task in rats to examine whether the inhibition produced by reversal learning is as sensitive to the passage of time as the inhibition produced by extinction. Experiment 1 showed that when tested immediately after reversal training, rats were able to use the reversed contingencies to solve the discrimination task in an outcome-specific manner. This ability to use outcome-specific information was lost when a delay was inserted between reversal training and test. However, interpretation of these data was made difficult by a potential floor effect. This concern was addressed in Experiment 2 in which it was confirmed that the passage of time impaired the ability of the rats to use the reversed contingencies in an outcome-specific manner to solve the task. Further, it revealed that the delay between initial learning and test was not responsible for this impairment. Additional work demonstrated that solving the discrimination task was unaffected by Pavlovian extinction but that the discriminative stimuli were able to block conditioning to a novel stimulus, suggesting that Pavlovian processes were likely to contribute to solving the discrimination. We therefore concluded that the expression of reversal and extinction learning do share the same sensitivity to the effect of time. However, this sensitivity was most obvious when we assessed outcome-specific information following reversal learning. This suggests that the processes involved in reversal learning are somehow distinct from those underlying extinction learning, as the latter has usually been found to leave outcome-specific information relatively intact. Thus, the present study reveals that a better understanding of the

  16. Propagation of time-reversed Lamb waves in bovine cortical bone in vitro.

    PubMed

    Lee, Kang Il; Yoon, Suk Wang

    2015-01-01

    The present study aims to investigate the propagation of time-reversed Lamb waves in bovine cortical bone in vitro. The time-reversed Lamb waves were successfully launched at 200 kHz in 18 bovine tibiae through a time reversal process of Lamb waves. The group velocities of the time-reversed Lamb waves in the bovine tibiae were measured using the axial transmission technique. They showed a significant correlation with the cortical thickness and tended to follow the theoretical group velocity of the lowest order antisymmetrical Lamb wave fairly well, consistent with the behavior of the slow guided wave in long cortical bones.

  17. Time-reversal MUSIC imaging of extended targets.

    PubMed

    Marengo, Edwin A; Gruber, Fred K; Simonetti, Francesco

    2007-08-01

    This paper develops, within a general framework that is applicable to rather arbitrary electromagnetic and acoustic remote sensing systems, a theory of time-reversal "MUltiple Signal Classification" (MUSIC)-based imaging of extended (nonpoint-like) scatterers (targets). The general analysis applies to arbitrary remote sensing geometry and sheds light onto how the singular system of the scattering matrix relates to the geometrical and propagation characteristics of the entire transmitter-target-receiver system and how to use this effect for imaging. All the developments are derived within exact scattering theory which includes multiple scattering effects. The derived time-reversal MUSIC methods include both interior sampling, as well as exterior sampling (or enclosure) approaches. For presentation simplicity, particular attention is given to the time-harmonic case where the informational wave modes employed for target interrogation are purely spatial, but the corresponding generalization to broadband fields is also given. This paper includes computer simulations illustrating the derived theory and algorithms.

  18. Test of time-reversal invariance at COSY (TRIC)

    NASA Astrophysics Data System (ADS)

    Eversheim, D.; Valdau, Yu.; Lorentz, B.

    2013-03-01

    At the Cooler Synchrotron COSY a novel (P-even, T-odd) null test of time-reversal invariance to an accuracy of 10 - 6 is planned as an internal target transmission experiment. The parity conserving time-reversal violating observable is the total cross-section asymmetry Ay,xz. This quantity is measured using a polarized proton beam with an energy of 135 MeV and an internal tensor polarized deuteron target from the PAX atomic beam source. The reaction rate will be measured by means of an integrating beam current transformer. Thus, in this experiment the cooler synchroton ring serves as ideal forward spectrometer, as a detector, and an accelerator.

  19. Thermalization as an invisibility cloak for fragile quantum superpositions

    NASA Astrophysics Data System (ADS)

    Hahn, Walter; Fine, Boris V.

    2017-07-01

    We propose a method for protecting fragile quantum superpositions in many-particle systems from dephasing by external classical noise. We call superpositions "fragile" if dephasing occurs particularly fast, because the noise couples very differently to the superposed states. The method consists of letting a quantum superposition evolve under the internal thermalization dynamics of the system, followed by a time-reversal manipulation known as Loschmidt echo. The thermalization dynamics makes the superposed states almost indistinguishable during most of the above procedure. We validate the method by applying it to a cluster of spins ½.

  20. Breaking time reversal in a simple smooth chaotic system.

    PubMed

    Tomsovic, Steven; Ullmo, Denis; Nagano, Tatsuro

    2003-06-01

    Within random matrix theory, the statistics of the eigensolutions depend fundamentally on the presence (or absence) of time reversal symmetry. Accepting the Bohigas-Giannoni-Schmit conjecture, this statement extends to quantum systems with chaotic classical analogs. For practical reasons, much of the supporting numerical studies of symmetry breaking have been done with billiards or maps, and little with simple, smooth systems. There are two main difficulties in attempting to break time reversal invariance in a continuous time system with a smooth potential. The first is avoiding false time reversal breaking. The second is locating a parameter regime in which the symmetry breaking is strong enough to transform the fluctuation properties fully to the broken symmetry case, and yet remain weak enough so as not to regularize the dynamics sufficiently that the system is no longer chaotic. We give an example of a system of two coupled quartic oscillators whose energy level statistics closely match with those of the Gaussian unitary ensemble, and which possesses only a minor proportion of regular motion in its phase space.

  1. Time reversal focusing of elastic waves in plates for an educational demonstration.

    PubMed

    Heaton, Christopher; Anderson, Brian E; Young, Sarah M

    2017-02-01

    The purpose of this research is to develop a visual demonstration of time reversal focusing of vibrations in a thin plate. Various plate materials are tested to provide optimal conditions for time reversal focusing. Specifically, the reverberation time in each plate and the vibration coupling efficiency from a shaker to the plate are quantified to illustrate why a given plate provides the best spatially confined focus as well as the highest focal amplitude possible. A single vibration speaker and a scanning laser Doppler vibrometer (SLDV) are used to provide the time reversal focusing. Table salt is sprinkled onto the plate surface to allow visualization of the high amplitude, spatially localized time reversal focus; the salt is thrown upward only at the focal position. Spatial mapping of the vibration focusing on the plate using the SLDV is correlated to the visual salt jumping demonstration. The time reversal focusing is also used to knock over an object when the object is placed at the focal position; some discussion of optimal objects to use for this demonstration are given.

  2. Acoustic imaging with time reversal methods: From medicine to NDT

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    2015-03-01

    This talk will present an overview of the research conducted on ultrasonic time-reversal methods applied to biomedical imaging and to non-destructive testing. We will first describe iterative time-reversal techniques that allow both focusing ultrasonic waves on reflectors in tissues (kidney stones, micro-calcifications, contrast agents) or on flaws in solid materials. We will also show that time-reversal focusing does not need the presence of bright reflectors but it can be achieved only from the speckle noise generated by random distributions of non-resolved scatterers. We will describe the applications of this concept to correct distortions and aberrations in ultrasonic imaging and in NDT. In the second part of the talk we will describe the concept of time-reversal processors to get ultrafast ultrasonic images with typical frame rates of order of 10.000 F/s. It is the field of ultrafast ultrasonic imaging that has plenty medical applications and can be of great interest in NDT. We will describe some applications in the biomedical domain: Quantitative Elasticity imaging of tissues by following shear wave propagation to improve cancer detection and Ultrafast Doppler imaging that allows ultrasonic functional imaging.

  3. Time reversal imaging and cross-correlations techniques by normal mode theory

    NASA Astrophysics Data System (ADS)

    Montagner, J.; Fink, M.; Capdeville, Y.; Phung, H.; Larmat, C.

    2007-12-01

    Time-reversal methods were successfully applied in the past to acoustic waves in many fields such as medical imaging, underwater acoustics, non destructive testing and recently to seismic waves in seismology for earthquake imaging. The increasing power of computers and numerical methods (such as spectral element methods) enables one to simulate more and more accurately the propagation of seismic waves in heterogeneous media and to develop new applications, in particular time reversal in the three-dimensional Earth. Generalizing the scalar approach of Draeger and Fink (1999), the theoretical understanding of time-reversal method can be addressed for the 3D- elastic Earth by using normal mode theory. It is shown how to relate time- reversal methods on one hand, with auto-correlation of seismograms for source imaging and on the other hand, with cross-correlation between receivers for structural imaging and retrieving Green function. The loss of information will be discussed. In the case of source imaging, automatic location in time and space of earthquakes and unknown sources is obtained by time reversal technique. In the case of big earthquakes such as the Sumatra-Andaman earthquake of december 2004, we were able to reconstruct the spatio-temporal history of the rupture. We present here some new applications at the global scale of these techniques on synthetic tests and on real data.

  4. A digital matched filter for reverse time chaos.

    PubMed

    Bailey, J Phillip; Beal, Aubrey N; Dean, Robert N; Hamilton, Michael C

    2016-07-01

    The use of reverse time chaos allows the realization of hardware chaotic systems that can operate at speeds equivalent to existing state of the art while requiring significantly less complex circuitry. Matched filter decoding is possible for the reverse time system since it exhibits a closed form solution formed partially by a linear basis pulse. Coefficients have been calculated and are used to realize the matched filter digitally as a finite impulse response filter. Numerical simulations confirm that this correctly implements a matched filter that can be used for detection of the chaotic signal. In addition, the direct form of the filter has been implemented in hardware description language and demonstrates performance in agreement with numerical results.

  5. A digital matched filter for reverse time chaos

    NASA Astrophysics Data System (ADS)

    Bailey, J. Phillip; Beal, Aubrey N.; Dean, Robert N.; Hamilton, Michael C.

    2016-07-01

    The use of reverse time chaos allows the realization of hardware chaotic systems that can operate at speeds equivalent to existing state of the art while requiring significantly less complex circuitry. Matched filter decoding is possible for the reverse time system since it exhibits a closed form solution formed partially by a linear basis pulse. Coefficients have been calculated and are used to realize the matched filter digitally as a finite impulse response filter. Numerical simulations confirm that this correctly implements a matched filter that can be used for detection of the chaotic signal. In addition, the direct form of the filter has been implemented in hardware description language and demonstrates performance in agreement with numerical results.

  6. Mechanistic slumber vs. statistical insomnia: the early history of Boltzmann's H-theorem (1868-1877)

    NASA Astrophysics Data System (ADS)

    Badino, M.

    2011-11-01

    An intricate, long, and occasionally heated debate surrounds Boltzmann's H-theorem (1872) and his combinatorial interpretation of the second law (1877). After almost a century of devoted and knowledgeable scholarship, there is still no agreement as to whether Boltzmann changed his view of the second law after Loschmidt's 1876 reversibility argument or whether he had already been holding a probabilistic conception for some years at that point. In this paper, I argue that there was no abrupt statistical turn. In the first part, I discuss the development of Boltzmann's research from 1868 to the formulation of the H-theorem. This reconstruction shows that Boltzmann adopted a pluralistic strategy based on the interplay between a kinetic and a combinatorial approach. Moreover, it shows that the extensive use of asymptotic conditions allowed Boltzmann to bracket the problem of exceptions. In the second part I suggest that both Loschmidt's challenge and Boltzmann's response to it did not concern the H-theorem. The close relation between the theorem and the reversibility argument is a consequence of later investigations on the subject.

  7. Multi-channel time-reversal receivers for multi and 1-bit implementations

    DOEpatents

    Candy, James V.; Chambers, David H.; Guidry, Brian L.; Poggio, Andrew J.; Robbins, Christopher L.

    2008-12-09

    A communication system for transmitting a signal through a channel medium comprising digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. In one embodiment a transmitter is adapted to transmit the signal, a multiplicity of receivers are adapted to receive the signal, a digitizer digitizes the signal, and a time-reversal signal processor is adapted to time-reverse the digitized signal. An embodiment of the present invention includes multi bit implementations. Another embodiment of the present invention includes 1-bit implementations. Another embodiment of the present invention includes a multiplicity of receivers used in the step of transmitting the signal through the channel medium.

  8. Reversible and Irreversible Time-Dependent Behavior of GRCop-84

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Arnold, Steven M.; Ellis, David L.

    2017-01-01

    A series of mechanical tests were conducted on a high-conductivity copper alloy, GRCop-84, in order to understand the time dependent response of this material. Tensile, creep, and stress relaxation tests were performed over a wide range of temperatures, strain rates, and stress levels to excite various amounts of time-dependent behavior. At low applied stresses the deformation behavior was found to be fully reversible. Above a certain stress, termed the viscoelastic threshold, irreversible deformation was observed. At these higher stresses the deformation was observed to be viscoplastic. Both reversible and irreversible regions contained time dependent deformation. These experimental data are documented to enable characterization of constitutive models to aid in design of high temperature components.

  9. Parity and Time-Reversal Violation in Atomic Systems

    NASA Astrophysics Data System (ADS)

    Roberts, B. M.; Dzuba, V. A.; Flambaum, V. V.

    2015-10-01

    Studying the violation of parity and time-reversal invariance in atomic systems has proven to be a very effective means of testing the electroweak theory at low energy and searching for physics beyond it. Recent developments in both atomic theory and experimental methods have led to the ability to make extremely precise theoretical calculations and experimental measurements of these effects. Such studies are complementary to direct high-energy searches, and can be performed for only a fraction of the cost. We review the recent progress in the field of parity and time-reversal violation in atoms, molecules, and nuclei, and examine the implications for physics beyond the Standard Model, with an emphasis on possible areas for development in the near future.

  10. Test of Time-Reversal Invariance at COSY (TRIC)

    NASA Astrophysics Data System (ADS)

    Eversheim, D.; Valdau, Yu.; Lorentz, B.

    2016-02-01

    At the Cooler Synchrotron COSY a novel (P-even, T-odd) null test of time-reversal invariance to an accuracy of 10-6 is planned as an internal target transmission experiment. The parity conserving time-reversal violating observable is the total cross-section asymmetry Ay,xz. This quantity is measured using a polarized proton beam with an energy of 135 MeV and an internal tensor polarized deuteron target from the PAX atomic beam source. The reaction rate will be determined by the lifetime of the beam. Consequently, the accuracy of the current measurement of the circulating proton beam is crucial for this experiment. Thus, the cooler synchroton ring serves as an ideal forward spectrometer, as a detector, and an accelerator.

  11. A digital matched filter for reverse time chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, J. Phillip, E-mail: mchamilton@auburn.edu; Beal, Aubrey N.; Dean, Robert N.

    2016-07-15

    The use of reverse time chaos allows the realization of hardware chaotic systems that can operate at speeds equivalent to existing state of the art while requiring significantly less complex circuitry. Matched filter decoding is possible for the reverse time system since it exhibits a closed form solution formed partially by a linear basis pulse. Coefficients have been calculated and are used to realize the matched filter digitally as a finite impulse response filter. Numerical simulations confirm that this correctly implements a matched filter that can be used for detection of the chaotic signal. In addition, the direct form ofmore » the filter has been implemented in hardware description language and demonstrates performance in agreement with numerical results.« less

  12. Performance of an underwater acoustic volume array using time-reversal focusing.

    PubMed

    Root, Joseph A; Rogers, Peter H

    2002-11-01

    Time reversal permits acoustic focusing and beam forming in inhomogeneous and/or high-scattering environments. A volumetric array geometry can suppress back lobes and can fit a large, powerful array of elements into small spaces, like the free-water spaces on submarines. This research investigates applying the time-reversal method to an underwater acoustic volume array. The experiments evaluate the focusing performance of a 27-element volume array when different scattering structures are present within the volume of the array. The array is arranged in a 3x3x3 cubic matrix configuration with 18.75-cm vertical and horizontal element spacing. The system utilizes second-derivative Gaussian pulses to focus on a point 30 cm from the array. Results include a comparison between time-reversal focusing and standard focusing, an evaluation of the volume array's ability to suppress back lobes, and an analysis of how different scattering environments affect focal region size. Potential underwater applications for a volume array using time reversal include acoustic imaging, naval mine hunting, sonar, and underwater communications.

  13. Performance of an underwater acoustic volume array using time-reversal focusing

    NASA Astrophysics Data System (ADS)

    Root, Joseph A.; Rogers, Peter H.

    2002-11-01

    Time reversal permits acoustic focusing and beam forming in inhomogeneous and/or high-scattering environments. A volumetric array geometry can suppress back lobes and can fit a large, powerful array of elements into small spaces, like the free-water spaces on submarines. This research investigates applying the time-reversal method to an underwater acoustic volume array. The experiments evaluate the focusing performance of a 27-element volume array when different scattering structures are present within the volume of the array. The array is arranged in a 3 x3 x3 cubic matrix configuration with 18.75-cm vertical and horizontal element spacing. The system utilizes second-derivative Gaussian pulses to focus on a point 30 cm from the array. Results include a comparison between time-reversal focusing and standard focusing, an evaluation of the volume array's ability to suppress back lobes, and an analysis of how different scattering environments affect focal region size. Potential underwater applications for a volume array using time reversal include acoustic imaging, naval mine hunting, sonar, and underwater communications. copyright 2002 Acoustical Society of America.

  14. The criterion for time symmetry of probabilistic theories and the reversibility of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Holster, A. T.

    2003-10-01

    Physicists routinely claim that the fundamental laws of physics are 'time symmetric' or 'time reversal invariant' or 'reversible'. In particular, it is claimed that the theory of quantum mechanics is time symmetric. But it is shown in this paper that the orthodox analysis suffers from a fatal conceptual error, because the logical criterion for judging the time symmetry of probabilistic theories has been incorrectly formulated. The correct criterion requires symmetry between future-directed laws and past-directed laws. This criterion is formulated and proved in detail. The orthodox claim that quantum mechanics is reversible is re-evaluated. The property demonstrated in the orthodox analysis is shown to be quite distinct from time reversal invariance. The view of Satosi Watanabe that quantum mechanics is time asymmetric is verified, as well as his view that this feature does not merely show a de facto or 'contingent' asymmetry, as commonly supposed, but implies a genuine failure of time reversal invariance of the laws of quantum mechanics. The laws of quantum mechanics would be incompatible with a time-reversed version of our universe.

  15. Time reversibility of intracranial human EEG recordings in mesial temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    van der Heyden, M. J.; Diks, C.; Pijn, J. P. M.; Velis, D. N.

    1996-02-01

    Intracranial electroencephalograms from patients suffering from mesial temporal lobe epilepsy were tested for time reversibility. If the recorded time series is irreversible, the input of the recording system cannot be a realisation of a linear Gaussian random process. We confirmed experimentally that the measurement equipment did not introduce irreversibility in the recorded output when the input was a realisation of a linear Gaussian random process. In general, the non-seizure recordings are reversible, whereas the seizure recordings are irreversible. These results suggest that time reversibility is a useful property for the characterisation of human intracranial EEG recordings in mesial temporal lobe epilepsy.

  16. Reverse time migration: A seismic processing application on the connection machine

    NASA Technical Reports Server (NTRS)

    Fiebrich, Rolf-Dieter

    1987-01-01

    The implementation of a reverse time migration algorithm on the Connection Machine, a massively parallel computer is described. Essential architectural features of this machine as well as programming concepts are presented. The data structures and parallel operations for the implementation of the reverse time migration algorithm are described. The algorithm matches the Connection Machine architecture closely and executes almost at the peak performance of this machine.

  17. Time reversal through a solid-liquid interface and super-resolution

    NASA Astrophysics Data System (ADS)

    Tsogka, Chrysoula; Papanicolaou, George C.

    2002-12-01

    We present numerical computations that reproduce the time-reversal experiments of Draeger et al (Draeger C, Cassereau D and Fink M 1998 Appl. Phys. Lett. 72 1567-9), where ultrasound elastic waves are time-reversed back to their source with a time-reversal mirror in a fluid adjacent to the solid. We also show numerically that multipathing caused by random inhomogeneities improves the focusing of the back-propagated elastic waves beyond the diffraction limit seen previously in acoustic wave propagation (Dowling D R and Jackson D R 1990 J. Acoust. Soc. Am. 89 171-81, Dowling D R and Jackson D R 1992 J. Acoust. Soc. Am. 91 3257-77, Fink M 1999 Sci. Am. 91-7, Kuperman W A, Hodgkiss W S, Song H C, Akal T, Ferla C and Jackson D R 1997 J. Acoust. Soc. Am. 103 25-40, Derode A, Roux P and Fink M 1995 Phys. Rev. Lett. 75 4206-9), which is called super-resolution. A theoretical explanation of the robustness of super-resolution is given, along with several numerical computations that support this explanation (Blomgren P, Papanicolaou G and Zhao H 2002 J. Acoust. Soc. Am. 111 238-48). Time reversal with super-resolution can be used in non-destructive testing and, in a different way, in imaging with active arrays (Borcea L, Papanicolaou G, Tsogka C and Berryman J 2002 Inverse Problems 18 1247-79).

  18. Reversing the irreversible: From limit cycles to emergent time symmetry

    NASA Astrophysics Data System (ADS)

    Cortês, Marina; Smolin, Lee

    2018-01-01

    In 1979 Penrose hypothesized that the arrows of time are explained by the hypothesis that the fundamental laws are time irreversible [R. Penrose, in General Relativity: An Einstein Centenary Survey (1979)]. That is, our reversible laws, such as the standard model and general relativity are effective, and emerge from an underlying fundamental theory which is time irreversible. In [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014), 10.1103/PhysRevD.90.084007; 90, 044035 (2014), 10.1103/PhysRevD.90.044035; 93, 084039 (2016), 10.1103/PhysRevD.93.084039] we put forward a research program aiming at realizing just this. The aim is to find a fundamental description of physics above the Planck scale, based on irreversible laws, from which will emerge the apparently reversible dynamics we observe on intermediate scales. Here we continue that program and note that a class of discrete dynamical systems are known to exhibit this very property: they have an underlying discrete irreversible evolution, but in the long term exhibit the properties of a time reversible system, in the form of limit cycles. We connect this to our original model proposal in [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014), 10.1103/PhysRevD.90.084007], and show that the behaviors obtained there can be explained in terms of the same phenomenon: the attraction of the system to a basin of limit cycles, where the dynamics appears to be time reversible. Further than that, we show that our original models exhibit the very same feature: the emergence of quasiparticle excitations obtained in the earlier work in the space-time description is an expression of the system's convergence to limit cycles when seen in the causal set description.

  19. Theory and Applications of Computational Time-Reversal Imaging

    DTIC Science & Technology

    2007-05-03

    experimental data collected by a research team from Carnegie Mellon University illustrating the use of the algorithms developed in the project. The final...2.1 Early Results from CMU experimental data ..... ................... 4 2.1.1 Basic Time Reversal Imaging ....... ...................... 4 2.1.2 Time... experimental data collected by Carnegie Mellon University illustrating the use of the algorithms developed in the project. 15. SUBJECT TERMS 16. SECURITY

  20. Reconstructed imaging of acoustic cloak using time-lapse reversal method

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Cheng, Ying; Xu, Jian-yi; Li, Bo; Liu, Xiao-jun

    2014-08-01

    We proposed and investigated a solution to the inverse acoustic cloak problem, an anti-stealth technology to make cloaks visible, using the time-lapse reversal (TLR) method. The TLR method reconstructs the image of an unknown acoustic cloak by utilizing scattered acoustic waves. Compared to previous anti-stealth methods, the TLR method can determine not only the existence of a cloak but also its exact geometric information like definite shape, size, and position. Here, we present the process for TLR reconstruction based on time reversal invariance. This technology may have potential applications in detecting various types of cloaks with different geometric parameters.

  1. Time Reversal Mirrors and Cross Correlation Functions in Acoustic Wave Propagation

    NASA Astrophysics Data System (ADS)

    Fishman, Louis; Jonsson, B. Lars G.; de Hoop, Maarten V.

    2009-03-01

    In time reversal acoustics (TRA), a signal is recorded by an array of transducers, time reversed, and then retransmitted into the configuration. The retransmitted signal propagates back through the same medium and retrofocuses on the source that generated the signal. If the transducer array is a single, planar (flat) surface, then this configuration is referred to as a planar, one-sided, time reversal mirror (TRM). In signal processing, for example, in active-source seismic interferometry, the measurement of the wave field at two distinct receivers, generated by a common source, is considered. Cross correlating these two observations and integrating the result over the sources yield the cross correlation function (CCF). Adopting the TRM experiments as the basic starting point and identifying the kinematically correct correspondences, it is established that the associated CCF signal processing constructions follow in a specific, infinite recording time limit. This perspective also provides for a natural rationale for selecting the Green's function components in the TRM and CCF expressions. For a planar, one-sided, TRM experiment and the corresponding CCF signal processing construction, in a three-dimensional homogeneous medium, the exact expressions are explicitly calculated, and the connecting limiting relationship verified. Finally, the TRM and CCF results are understood in terms of the underlying, governing, two-way wave equation, its corresponding time reversal invariance (TRI) symmetry, and the absence of TRI symmetry in the associated one-way wave equations, highlighting the role played by the evanescent modal contributions.

  2. On the Application of Time-Reversed Space-Time Block Code to Aeronautical Telemetry

    DTIC Science & Technology

    2014-06-01

    Keying (SOQPSK), bit error rate (BER), Orthogonal Frequency Division Multiplexing ( OFDM ), Generalized time-reversed space-time block codes (GTR-STBC) 16...Alamouti code [4]) is optimum [2]. Although OFDM is generally applied on a per subcarrier basis in frequency selective fading, it is not a viable...Calderbank, “Finite-length MIMO decision feedback equal- ization for space-time block-coded signals over multipath-fading channels,” IEEE Transac- tions on

  3. Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics.

    PubMed

    Linnemann, D; Strobel, H; Muessel, W; Schulz, J; Lewis-Swan, R J; Kheruntsyan, K V; Oberthaler, M K

    2016-07-01

    We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced measurement we construct an active atom SU(1,1) interferometer, where entangled state preparation and nonlinear readout both consist of parametric amplification. This scheme is capable of exhausting the quantum resource by detecting solely mean atom numbers. Controlled nonlinear transformations widen the spectrum of useful entangled states for applied quantum technologies.

  4. Time-Reversal MUSIC Imaging with Time-Domain Gating Technique

    NASA Astrophysics Data System (ADS)

    Choi, Heedong; Ogawa, Yasutaka; Nishimura, Toshihiko; Ohgane, Takeo

    A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.

  5. Quantum state transfer through time reversal of an optical channel

    NASA Astrophysics Data System (ADS)

    Hush, M. R.; Bentley, C. D. B.; Ahlefeldt, R. L.; James, M. R.; Sellars, M. J.; Ugrinovskii, V.

    2016-12-01

    Rare-earth ions have exceptionally long coherence times, making them an excellent candidate for quantum information processing. A key part of this processing is quantum state transfer. We show that perfect state transfer can be achieved by time reversing the intermediate quantum channel, and suggest using a gradient echo memory (GEM) to perform this time reversal. We propose an experiment with rare-earth ions to verify these predictions, where an emitter and receiver crystal are connected with an optical channel passed through a GEM. We investigate the effect experimental imperfections and collective dynamics have on the state transfer process. We demonstrate that super-radiant effects can enhance coupling into the optical channel and improve the transfer fidelity. We lastly discuss how our results apply to state transfer of entangled states.

  6. Cross-correlation least-squares reverse time migration in the pseudo-time domain

    NASA Astrophysics Data System (ADS)

    Li, Qingyang; Huang, Jianping; Li, Zhenchun

    2017-08-01

    The least-squares reverse time migration (LSRTM) method with higher image resolution and amplitude is becoming increasingly popular. However, the LSRTM is not widely used in field land data processing because of its sensitivity to the initial migration velocity model, large computational cost and mismatch of amplitudes between the synthetic and observed data. To overcome the shortcomings of the conventional LSRTM, we propose a cross-correlation least-squares reverse time migration algorithm in pseudo-time domain (PTCLSRTM). Our algorithm not only reduces the depth/velocity ambiguities, but also reduces the effect of velocity error on the imaging results. It relieves the accuracy requirements on the migration velocity model of least-squares migration (LSM). The pseudo-time domain algorithm eliminates the irregular wavelength sampling in the vertical direction, thus it can reduce the vertical grid points and memory requirements used during computation, which makes our method more computationally efficient than the standard implementation. Besides, for field data applications, matching the recorded amplitudes is a very difficult task because of the viscoelastic nature of the Earth and inaccuracies in the estimation of the source wavelet. To relax the requirement for strong amplitude matching of LSM, we extend the normalized cross-correlation objective function to the pseudo-time domain. Our method is only sensitive to the similarity between the predicted and the observed data. Numerical tests on synthetic and land field data confirm the effectiveness of our method and its adaptability for complex models.

  7. Time-Dependent Reversible-Irreversible Deformation Threshold Determined Explicitly by Experimental Technique

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Arnold, Steven M.

    2000-01-01

    Structural materials for the design of advanced aeropropulsion components are usually subject to loading under elevated temperatures, where a material's viscosity (resistance to flow) is greatly reduced in comparison to its viscosity under low-temperature conditions. As a result, the propensity for the material to exhibit time-dependent deformation is significantly enhanced, even when loading is limited to a quasi-linear stress-strain regime as an effort to avoid permanent (irreversible) nonlinear deformation. An understanding and assessment of such time-dependent effects in the context of combined reversible and irreversible deformation is critical to the development of constitutive models that can accurately predict the general hereditary behavior of material deformation. To this end, researchers at the NASA Glenn Research Center at Lewis Field developed a unique experimental technique that identifies the existence of and explicitly determines a threshold stress k, below which the time-dependent material deformation is wholly reversible, and above which irreversible deformation is incurred. This technique is unique in the sense that it allows, for the first time, an objective, explicit, experimental measurement of k. The underlying concept for the experiment is based on the assumption that the material s time-dependent reversible response is invariable, even in the presence of irreversible deformation.

  8. Sensing a buried resonant object by single-channel time reversal.

    PubMed

    Waters, Zachary J; Dzikowicz, Benjamin R; Holt, R Glynn; Roy, Ronald A

    2009-07-01

    Scaled laboratory experiments are conducted to assess the efficacy of iterative, single-channel time reversal for enhancement of monostatic returns from resonant spheres in the free field and buried in a sediment phantom. Experiments are performed in a water tank using a broad-band piston transducer operating between 0.4 and 1.5 MHz and calibrated using free surface reflections. Solid and hollow metallic spheres, 6.35 mm in diameter, are buried in a consolidation of 128-microm-mean- diameter spherical glass beads. The procedure consists of exciting the target object with a broadband pulse, sampling the return using a finite time window, reversing the signal in time, and using this reversed signal as the source waveform for the next interrogation. Results indicate that the spectrum of the returns rapidly converges to the dominant mode in the backscattering response of the target. Signal-to-noise enhancement of the target echo is demonstrated for a target at several burial depths. Images generated by scanning the transducer over the location of multiple buried targets demonstrate the ability of the technique to distinguish between targets of differing type and to yield an enhancement of different modes within the response of a single target as a function of transducer position and processing bandwidth.

  9. The double slit experiment and the time reversed fire alarm

    NASA Astrophysics Data System (ADS)

    Halabi, Tarek

    2011-03-01

    When both slits of the double slit experiment are open, closing one paradoxically increases the detection rate at some points on the detection screen. Feynman famously warned that temptation to "understand" such a puzzling feature only draws us into blind alleys. Nevertheless, we gain insight into this feature by drawing an analogy between the double slit experiment and a time reversed fire alarm. Much as closing the slit increases probability of a future detection, ruling out fire drill scenarios, having heard the fire alarm, increases probability of a past fire (using Bayesian inference). Classically, Bayesian inference is associated with computing probabilities of past events. We therefore identify this feature of the double slit experiment with a time reversed thermodynamic arrow. We believe that much of the enigma of quantum mechanics is simply due to some variation of time's arrow.

  10. Reversal time of jump-noise magnetization dynamics in nanomagnets via Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Arun; Rakheja, Shaloo

    2018-06-01

    The jump-noise is a nonhomogeneous Poisson process which models thermal effects in magnetization dynamics, with special applications in low temperature escape rate phenomena. In this work, we develop improved numerical methods for Monte Carlo simulation of the jump-noise dynamics and validate the method by comparing the stationary distribution obtained empirically against the Boltzmann distribution. In accordance with the Néel-Brown theory, the jump-noise dynamics display an exponential relaxation toward equilibrium with a characteristic reversal time, which we extract for nanomagnets with uniaxial and cubic anisotropy. We relate the jump-noise dynamics to the equivalent Landau-Lifshitz dynamics up to second order correction for a general energy landscape and obtain the analogous Néel-Brown theory's solution of the reversal time. We find that the reversal time of jump-noise dynamics is characterized by Néel-Brown theory's solution at the energy saddle point for small noise. For large noise, the magnetization reversal due to jump-noise dynamics phenomenologically represents macroscopic tunneling of magnetization.

  11. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain.

    PubMed

    Olbricht, William; Sistla, Manjari; Ghandi, Gaurav; Lewis, George; Sarvazyan, Armen

    2013-08-01

    Time-reversal acoustics is an effective way of focusing ultrasound deep inside heterogeneous media such as biological tissues. Convection-enhanced delivery is a method of delivering drugs into the brain by infusing them directly into the brain interstitium. These two technologies are combined in a focusing system that uses a "smart needle" to simultaneously infuse fluid into the brain and provide the necessary feedback for focusing ultrasound using time-reversal acoustics. The effects of time-reversal acoustics-focused ultrasound on the spatial distribution of infused low- and high-molecular weight tracer molecules are examined in live, anesthetized rats. Results show that exposing the rat brain to focused ultrasound significantly increases the penetration of infused compounds into the brain. The addition of stabilized microbubbles enhances the effect of ultrasound exposure.

  12. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain

    PubMed Central

    Olbricht, William; Sistla, Manjari; Ghandi, Gaurav; Lewis, George; Sarvazyan, Armen

    2013-01-01

    Time-reversal acoustics is an effective way of focusing ultrasound deep inside heterogeneous media such as biological tissues. Convection-enhanced delivery is a method of delivering drugs into the brain by infusing them directly into the brain interstitium. These two technologies are combined in a focusing system that uses a “smart needle” to simultaneously infuse fluid into the brain and provide the necessary feedback for focusing ultrasound using time-reversal acoustics. The effects of time-reversal acoustics-focused ultrasound on the spatial distribution of infused low- and high-molecular weight tracer molecules are examined in live, anesthetized rats. Results show that exposing the rat brain to focused ultrasound significantly increases the penetration of infused compounds into the brain. The addition of stabilized microbubbles enhances the effect of ultrasound exposure. PMID:23927197

  13. Time-reversibility and particle sedimentation

    NASA Technical Reports Server (NTRS)

    Golubitsky, Martin; Krupa, Martin; Lim, Chjan

    1991-01-01

    This paper studies an ODE model, called the Stokeslet model, and describes sedimentation of small clusters of particles in a highly viscous fluid. This model has a trivial solution in which the n particles arrange themselves at the vertices of a regular n-sided polygon. When n = 3, Hocking and Caflisch et al. (1988) proved the existence of periodic motion (in the frame moving with the center of gravity in the cluster) in which the particles form an isosceles triangle. Here, the study of periodic and quasi-periodic solutions of the Stokeslet model is continued, with emphasis on the spatial and time-reversal symmetry of the model. For three particles, the existence of a second family of periodic solutions and a family of quasi-periodic solutions is proved. It is also indicated how the methods generalize to the case of n particles.

  14. Time-reversal imaging for classification of submerged elastic targets via Gibbs sampling and the Relevance Vector Machine.

    PubMed

    Dasgupta, Nilanjan; Carin, Lawrence

    2005-04-01

    Time-reversal imaging (TRI) is analogous to matched-field processing, although TRI is typically very wideband and is appropriate for subsequent target classification (in addition to localization). Time-reversal techniques, as applied to acoustic target classification, are highly sensitive to channel mismatch. Hence, it is crucial to estimate the channel parameters before time-reversal imaging is performed. The channel-parameter statistics are estimated here by applying a geoacoustic inversion technique based on Gibbs sampling. The maximum a posteriori (MAP) estimate of the channel parameters are then used to perform time-reversal imaging. Time-reversal implementation requires a fast forward model, implemented here by a normal-mode framework. In addition to imaging, extraction of features from the time-reversed images is explored, with these applied to subsequent target classification. The classification of time-reversed signatures is performed by the relevance vector machine (RVM). The efficacy of the technique is analyzed on simulated in-channel data generated by a free-field finite element method (FEM) code, in conjunction with a channel propagation model, wherein the final classification performance is demonstrated to be relatively insensitive to the associated channel parameters. The underlying theory of Gibbs sampling and TRI are presented along with the feature extraction and target classification via the RVM.

  15. Classical reconstruction of interference patterns of position-wave-vector-entangled photon pairs by the time-reversal method

    NASA Astrophysics Data System (ADS)

    Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa

    2018-02-01

    The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.

  16. Time reverse modeling of acoustic emissions in a reinforced concrete beam.

    PubMed

    Kocur, Georg Karl; Saenger, Erik H; Grosse, Christian U; Vogel, Thomas

    2016-02-01

    The time reverse modeling (TRM) is applied for signal-based acoustic emission (AE) analysis of reinforced concrete (RC) specimens. TRM uses signals obtained from physical experiments as input. The signals are re-emitted numerically into a structure in a time-reversed manner, where the wavefronts interfere and appear as dominant concentrations of energy at the origin of the AE. The experimental and numerical results presented for selected AE signals confirm that TRM is capable of localizing AE activity in RC caused by concrete cracking. The accuracy of the TRM results is corroborated by three-dimensional crack distributions obtained from X-ray computed tomography images. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Ultrasound breast imaging using frequency domain reverse time migration

    NASA Astrophysics Data System (ADS)

    Roy, O.; Zuberi, M. A. H.; Pratt, R. G.; Duric, N.

    2016-04-01

    Conventional ultrasonography reconstruction techniques, such as B-mode, are based on a simple wave propagation model derived from a high frequency approximation. Therefore, to minimize model mismatch, the central frequency of the input pulse is typically chosen between 3 and 15 megahertz. Despite the increase in theoretical resolution, operating at higher frequencies comes at the cost of lower signal-to-noise ratio. This ultimately degrades the image contrast and overall quality at higher imaging depths. To address this issue, we investigate a reflection imaging technique, known as reverse time migration, which uses a more accurate propagation model for reconstruction. We present preliminary simulation results as well as physical phantom image reconstructions obtained using data acquired with a breast imaging ultrasound tomography prototype. The original reconstructions are filtered to remove low-wavenumber artifacts that arise due to the inclusion of the direct arrivals. We demonstrate the advantage of using an accurate sound speed model in the reverse time migration process. We also explain how the increase in computational complexity can be mitigated using a frequency domain approach and a parallel computing platform.

  18. Time reversal invariance - a test in free neutron decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lising, Laura Jean

    1999-01-01

    Time reversal invariance violation plays only a small role in the Standard Model, and the existence of a T-violating effect above the predicted level would be an indication of new physics. A sensitive probe of this symmetry in the weak interaction is the measurement of the T-violating ''D''-correlation in the decay of free neutrons. The triple-correlation Dσ n∙p e x p v involves three kinematic variables, the neutron spin, electron momentu, and neutrino (or proton) momentum, and changes sign under time reversal. This experiment detects the decay products of a polarized cold neutron beam with an octagonal array of scintillationmore » and solid-state detectors. Data from first run at NIST's Cold Neutron Research Facility give a D-coefficient of -0.1 ± 1.3(stat.) ± 0.7(syst) x 10 -3 This measurement has the greatest bearing on extensions to the Standard model that incorporate leptoquarks, although exotic fermion and lift-right symmetric models also allow a D as large as the present limit.« less

  19. Time-reversibility in seismic sequences: Application to the seismicity of Mexican subduction zone

    NASA Astrophysics Data System (ADS)

    Telesca, L.; Flores-Márquez, E. L.; Ramírez-Rojas, A.

    2018-02-01

    In this paper we investigate the time-reversibility of series associated with the seismicity of five seismic areas of the subduction zone beneath the Southwest Pacific Mexican coast, applying the horizontal visibility graph method to the series of earthquake magnitudes, interevent times, interdistances and magnitude increments. We applied the Kullback-Leibler divergence D that is a metric for quantifying the degree of time-irreversibility in time series. Our findings suggest that among the five seismic areas, Jalisco-Colima is characterized by time-reversibility in all the four seismic series. Our results are consistent with the peculiar seismo-tectonic characteristics of Jalisco-Colima, which is the closest to the Middle American Trench and belongs to the Mexican volcanic arc.

  20. A Baseline-Free Defect Imaging Technique in Plates Using Time Reversal of Lamb Waves

    NASA Astrophysics Data System (ADS)

    Hyunjo, Jeong; Sungjong, Cho; Wei, Wei

    2011-06-01

    We present an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional sidebands that contain the time-of-flight information on the defect location. One of the side-band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free imaging of a defect.

  1. Improving Passive Time Reversal Underwater Acoustic Communications Using Subarray Processing.

    PubMed

    He, Chengbing; Jing, Lianyou; Xi, Rui; Li, Qinyuan; Zhang, Qunfei

    2017-04-24

    Multichannel receivers are usually employed in high-rate underwater acoustic communication to achieve spatial diversity. In the context of multichannel underwater acoustic communications, passive time reversal (TR) combined with a single-channel adaptive decision feedback equalizer (TR-DFE) is a low-complexity solution to achieve both spatial and temporal focusing. In this paper, we present a novel receiver structure to combine passive time reversal with a low-order multichannel adaptive decision feedback equalizer (TR-MC-DFE) to improve the performance of the conventional TR-DFE. First, the proposed method divides the whole received array into several subarrays. Second, we conduct passive time reversal processing in each subarray. Third, the multiple subarray outputs are equalized with a low-order multichannel DFE. We also investigated different channel estimation methods, including least squares (LS), orthogonal matching pursuit (OMP), and improved proportionate normalized least mean squares (IPNLMS). The bit error rate (BER) and output signal-to-noise ratio (SNR) performances of the receiver algorithms are evaluated using simulation and real data collected in a lake experiment. The source-receiver range is 7.4 km, and the data rate with quadrature phase shift keying (QPSK) signal is 8 kbits/s. The uncoded BER of the single input multiple output (SIMO) systems varies between 1 × 10 - 1 and 2 × 10 - 2 for the conventional TR-DFE, and between 1 × 10 - 2 and 1 × 10 - 3 for the proposed TR-MC-DFE when eight hydrophones are utilized. Compared to conventional TR-DFE, the average output SNR of the experimental data is enhanced by 3 dB.

  2. Experimental studies of applications of time-reversal acoustics to noncoherent underwater communications.

    PubMed

    Heinemann, M; Larraza, A; Smith, K B

    2003-06-01

    The most difficult problem in shallow underwater acoustic communications is considered to be the time-varying multipath propagation because it impacts negatively on data rates. At high data rates the intersymbol interference requires adaptive algorithms on the receiver side that lead to computationally intensive and complex signal processing. A novel technique called time-reversal acoustics (TRA) can environmentally adapt the acoustic propagation effects of a complex medium in order to focus energy at a particular target range and depth. Using TRA, the multipath structure is reduced because all the propagation paths add coherently at the intended target location. This property of time-reversal acoustics suggests a potential application in the field of noncoherent acoustic communications. This work presents results of a tank scale experiment using an algorithm for rapid transmission of binary data in a complex underwater environment with the TRA approach. A simple 15-symbol code provides an example of the simplicity and feasibility of the approach. Covert coding due to the inherent scrambling induced by the environment at points other than the intended receiver is also investigated. The experiments described suggest a high potential in data rate for the time-reversal approach in underwater acoustic communications while keeping the computational complexity low.

  3. Probing the interior of a solid volume with time reversal and nonlinear elastic wave spectroscopy.

    PubMed

    Le Bas, P Y; Ulrich, T J; Anderson, B E; Guyer, R A; Johnson, P A

    2011-10-01

    A nonlinear scatterer is simulated in the body of a sample and demonstrates a technique to locate and define the elastic nature of the scatterer. Using the principle of time reversal, elastic wave energy is focused at the interface between blocks of optical grade glass and aluminum. Focusing of energy at the interface creates nonlinear wave scattering that can be detected on the sample perimeter with time-reversal mirror elements. The nonlinearly generated scattered signal is bandpass filtered about the nonlinearly generated components, time reversed and broadcast from the same mirror elements, and the signal is focused at the scattering location on the interface. © 2011 Acoustical Society of America

  4. Mechanisms of midsession reversal accuracy: Memory for preceding events and timing.

    PubMed

    Smith, Aaron P; Beckmann, Joshua S; Zentall, Thomas R

    2017-01-01

    The midsession reversal task involves a simultaneous discrimination between 2 stimuli (S1 and S2) in which, for the first half of each session, choice of S1 is reinforced and, for the last half, choice of S2 is reinforced. On this task, pigeons appear to time the occurrence of the reversal rather than using feedback from previous trials, resulting in increased numbers of errors. In the present experiments, we tested the hypothesis that pigeons make so many errors because they fail to remember the last response made and/or the consequence of making that response both of which are needed ideally as cues to respond on the next trial. To facilitate memory, during the 5-s intertrial interval, we differentially lit a houselight correlated with the prior response to S1 or S2 and maintained the hopper light when that response was correct. A control group received uncorrelated houselights and no maintained hopper light. To test for continued use of temporal information, both groups received probe sessions in which the intertrial interval was either halved or doubled. Providing relevant reminder cues of the stimulus chosen and its consequence resulted in improved reversal accuracy and reduced disruption from probe sessions compared with irrelevant cues. Nevertheless, despite the reminder cues, the pigeons in both groups appeared to continue to time the point in the session at which the reversal occurred. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Slow quenches in two-dimensional time-reversal symmetric Z2 topological insulators

    NASA Astrophysics Data System (ADS)

    Ulčakar, Lara; Mravlje, Jernej; Ramšak, Anton; Rejec, Tomaž

    2018-05-01

    We study the topological properties and transport in the Bernevig-Hughes-Zhang model undergoing a slow quench between different topological regimes. Due to the closing of the band gap during the quench, the system ends up in an excited state. We prove that for quenches that preserve the time-reversal symmetry, the Z2 invariant remains equal to the one evaluated in the initial state. On the other hand, the bulk spin Hall conductivity does change, and its time average approaches that of the ground state of the final Hamiltonian. The deviations from the ground-state spin Hall conductivity as a function of the quench time follow the Kibble-Zurek scaling. We also consider the breaking of the time-reversal symmetry, which restores the correspondence between the bulk invariant and the transport properties after the quench.

  6. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits

    NASA Astrophysics Data System (ADS)

    Sohn, Donggyu B.; Kim, Seunghwi; Bahl, Gaurav

    2018-02-01

    Achieving non-reciprocal light propagation via stimuli that break time-reversal symmetry, without magneto-optics, remains a major challenge for integrated nanophotonic devices. Recently, optomechanical microsystems in which light and vibrational modes are coupled through ponderomotive forces have demonstrated strong non-reciprocal effects through a variety of techniques, but always using optical pumping. None of these approaches has demonstrated bandwidth exceeding that of the mechanical system, and all of them require optical power; these are both fundamental and practical issues. Here, we resolve both challenges by breaking time-reversal symmetry using a two-dimensional acoustic pump that simultaneously provides a non-zero overlap integral for light-sound interaction and also satisfies the necessary phase-matching. We use this technique to produce a non-reciprocal modulator (a frequency shifting isolator) by means of indirect interband scattering. We demonstrate mode conversion asymmetry up to 15 dB and efficiency as high as 17% over a bandwidth exceeding 1 GHz.

  7. The Organization of Behavior Over Time: Insights from Mid-Session Reversal

    PubMed Central

    Rayburn-Reeves, Rebecca M.; Cook, Robert G.

    2016-01-01

    What are the mechanisms by which behavior is organized sequentially over time? The recently developed mid-session reversal (MSR) task offers new insights into this fundamental question. The typical MSR task is arranged to have a single reversed discrimination occurring in a consistent location within each session and across sessions. In this task, we examine the relevance of time, reinforcement, and other factors as the switching cue in the sequential modulation of control in MSR. New analyses also highlight some of the potential mechanisms underlying this serially organized behavior. MSR provides new evidence and we offer some ideas about how cues interact to compete for the control of behavior within and across sessions. We suggest that MSR is an excellent preparation for studying the competition among psychological states and their resolution toward action. PMID:27942272

  8. The Organization of Behavior Over Time: Insights from Mid-Session Reversal.

    PubMed

    Rayburn-Reeves, Rebecca M; Cook, Robert G

    2016-01-01

    What are the mechanisms by which behavior is organized sequentially over time? The recently developed mid-session reversal (MSR) task offers new insights into this fundamental question. The typical MSR task is arranged to have a single reversed discrimination occurring in a consistent location within each session and across sessions. In this task, we examine the relevance of time, reinforcement, and other factors as the switching cue in the sequential modulation of control in MSR. New analyses also highlight some of the potential mechanisms underlying this serially organized behavior. MSR provides new evidence and we offer some ideas about how cues interact to compete for the control of behavior within and across sessions. We suggest that MSR is an excellent preparation for studying the competition among psychological states and their resolution toward action.

  9. Testing the causality of Hawkes processes with time reversal

    NASA Astrophysics Data System (ADS)

    Cordi, Marcus; Challet, Damien; Muni Toke, Ioane

    2018-03-01

    We show that univariate and symmetric multivariate Hawkes processes are only weakly causal: the true log-likelihoods of real and reversed event time vectors are almost equal, thus parameter estimation via maximum likelihood only weakly depends on the direction of the arrow of time. In ideal (synthetic) conditions, tests of goodness of parametric fit unambiguously reject backward event times, which implies that inferring kernels from time-symmetric quantities, such as the autocovariance of the event rate, only rarely produce statistically significant fits. Finally, we find that fitting financial data with many-parameter kernels may yield significant fits for both arrows of time for the same event time vector, sometimes favouring the backward time direction. This goes to show that a significant fit of Hawkes processes to real data with flexible kernels does not imply a definite arrow of time unless one tests it.

  10. Transmission mode acoustic time-reversal imaging for nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Lehman, Sean K.; Devaney, Anthony J.

    2002-11-01

    In previous ASA meetings and JASA papers, the extended and formalized theory of transmission mode time reversal in which the transceivers are noncoincident was presented. When combined with the subspace concepts of a generalized MUltiple SIgnal Classification (MUSIC) algorithm, this theory is used to form super-resolution images of scatterers buried in a medium. These techniques are now applied to ultrasonic nondestructive evaluation (NDE) of parts, and shallow subsurface seismic imaging. Results are presented of NDE experiments on metal and epoxy blocks using data collected from an adaptive ultrasonic array, that is, a ''time-reversal machine,'' at Lawrence Livermore National Laboratory. Also presented are the results of seismo-acoustic subsurface probing of buried hazardous waste pits at the Idaho National Engineering and Environmental Laboratory. [Work performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.] [Work supported in part by CenSSIS, the Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the NSF (award number EEC-9986821) as well as from Air Force Contracts No. F41624-99-D6002 and No. F49620-99-C0013.

  11. Time reversal for ultrasonic transcranial surgery and echographic imaging

    NASA Astrophysics Data System (ADS)

    Tanter, Mickael; Aubry, Jean-Francois; Vignon, Francois; Fink, Mathias

    2005-09-01

    High-intensity focused ultrasound (HIFU) is able to induce non-invasively controlled and selective destruction of tissues by focusing ultrasonic beams within organs, analogous to a magnifying glass that concentrates enough sunlight to burn a hole in paper. The brain is an attractive organ in which to perform ultrasonic tissue ablation, but such an application has been hampered by the strong defocusing effect of the skull bone. Our group has been involved in this topic for several years, providing proofs of concept and proposing technological solutions to this problem. Thanks to a high-power time-reversal mirror, presented here are in vivo thermal lesions induced through the skull of 12 sheep. Thermal lesions were confirmed by T2-weighted magnetic resonance post-treatment images and histological examination. These results provide striking evidence that noninvasive ultrasound brain surgery is feasible. A recent approach for high-resolution brain ultrasonic imaging will also be discussed with a skull aberration correction technique based on twin arrays technology. The correction of transcranial ultrasonic images is implemented on a new generation of time-reversal mirrors relying on a fully programmable transmit and receive beamformer.

  12. Decoding spike timing: the differential reverse correlation method

    PubMed Central

    Tkačik, Gašper; Magnasco, Marcelo O.

    2009-01-01

    It is widely acknowledged that detailed timing of action potentials is used to encode information, for example in auditory pathways; however the computational tools required to analyze encoding through timing are still in their infancy. We present a simple example of encoding, based on a recent model of time-frequency analysis, in which units fire action potentials when a certain condition is met, but the timing of the action potential depends also on other features of the stimulus. We show that, as a result, spike-triggered averages are smoothed so much they do not represent the true features of the encoding. Inspired by this example, we present a simple method, differential reverse correlations, that can separate an analysis of what causes a neuron to spike, and what controls its timing. We analyze with this method the leaky integrate-and-fire neuron and show the method accurately reconstructs the model's kernel. PMID:18597928

  13. Time-reversing light pulses by adiabatic coupling modulation in coupled-resonator optical waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Martini, Rainer; Search, Christopher P.

    2012-12-01

    We introduce a mechanism to time reverse short optical pulses in coupled resonator optical waveguides (CROWs) by direct modulation of the coupling coefficients between microresonators. The coupling modulation is achieved using phase modulation of a Mach-Zehnder interferometer coupler. We demonstrate that by adiabatic modulation of the coupling between resonators we can time reverse or store light pulses with bandwidths up to a few hundred GHz. The large pulse bandwidths, small device footprint, robustness with respect to resonator losses, and easy tuning process of the coupling coefficients make this method more practical than previous proposals.

  14. Improving Passive Time Reversal Underwater Acoustic Communications Using Subarray Processing

    PubMed Central

    He, Chengbing; Jing, Lianyou; Xi, Rui; Li, Qinyuan; Zhang, Qunfei

    2017-01-01

    Multichannel receivers are usually employed in high-rate underwater acoustic communication to achieve spatial diversity. In the context of multichannel underwater acoustic communications, passive time reversal (TR) combined with a single-channel adaptive decision feedback equalizer (TR-DFE) is a low-complexity solution to achieve both spatial and temporal focusing. In this paper, we present a novel receiver structure to combine passive time reversal with a low-order multichannel adaptive decision feedback equalizer (TR-MC-DFE) to improve the performance of the conventional TR-DFE. First, the proposed method divides the whole received array into several subarrays. Second, we conduct passive time reversal processing in each subarray. Third, the multiple subarray outputs are equalized with a low-order multichannel DFE. We also investigated different channel estimation methods, including least squares (LS), orthogonal matching pursuit (OMP), and improved proportionate normalized least mean squares (IPNLMS). The bit error rate (BER) and output signal-to-noise ratio (SNR) performances of the receiver algorithms are evaluated using simulation and real data collected in a lake experiment. The source-receiver range is 7.4 km, and the data rate with quadrature phase shift keying (QPSK) signal is 8 kbits/s. The uncoded BER of the single input multiple output (SIMO) systems varies between 1×10−1 and 2×10−2 for the conventional TR-DFE, and between 1×10−2 and 1×10−3 for the proposed TR-MC-DFE when eight hydrophones are utilized. Compared to conventional TR-DFE, the average output SNR of the experimental data is enhanced by 3 dB. PMID:28441763

  15. Relationships of the group velocity of the time-reversed Lamb wave with bone properties in cortical bone in vitro.

    PubMed

    Lee, Kang Il; Yoon, Suk Wang

    2017-04-11

    The present study aims to investigate the feasibility of using the time-reversed Lamb wave as a new method for noninvasive characterization of long cortical bones. The group velocity of the time-reversed Lamb wave launched by using the modified time reversal method was measured in 15 bovine tibiae, and their correlations with the bone properties of the tibia were examined. The group velocity of the time-reversed Lamb wave showed significant positive correlations with the bone properties (r=0.55-0.81). The best univariate predictor of the group velocity of the time-reversed Lamb wave was the cortical thickness, yielding an adjusted squared correlation coefficient (r 2 ) of 0.64. These results imply that the group velocity of the time-reversed Lamb wave, in addition to the velocities of the first arriving signal and the slow guided wave, could potentially be used as a discriminator for osteoporosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Centripetal Propagation of Vasoconstriction at the Time of Headache Resolution in Patients with Reversible Cerebral Vasoconstriction Syndrome.

    PubMed

    Shimoda, M; Oda, S; Hirayama, A; Imai, M; Komatsu, F; Hoshikawa, K; Shigematsu, H; Nishiyama, J; Osada, T

    2016-09-01

    Reversible cerebral vasoconstriction syndrome is characterized by thunderclap headache and diffuse segmental vasoconstriction that resolves spontaneously within 3 months. Previous reports have proposed that vasoconstriction first involves small distal arteries and then progresses toward major vessels at the time of thunderclap headache remission. The purpose of this study was to confirm centripetal propagation of vasoconstriction on MRA at the time of thunderclap headache remission compared with MRA at the time of reversible cerebral vasoconstriction syndrome onset. Of the 39 patients diagnosed with reversible cerebral vasoconstriction syndrome at our hospital during the study period, participants comprised the 16 patients who underwent MR imaging, including MRA, within 72 hours of reversible cerebral vasoconstriction syndrome onset (initial MRA) and within 48 hours of thunderclap headache remission. In 14 of the 16 patients (87.5%), centripetal propagation of vasoconstriction occurred from the initial MRA to remission of thunderclap headache, with typical segmental vasoconstriction of major vessels. These mainly involved the M1 portion of the MCA (10 cases), P1 portion of the posterior cerebral artery (10 cases), and A1 portion of the anterior cerebral artery (5 cases). This study found evidence of centripetal propagation of vasoconstriction on MRA obtained at the time of thunderclap headache remission, compared with MRA obtained at the time of reversible cerebral vasoconstriction syndrome onset. If clinicians remain unsure of the diagnosis during early-stage reversible cerebral vasoconstriction syndrome, this time point represents the best opportunity to diagnose reversible cerebral vasoconstriction syndrome with confidence. © 2016 by American Journal of Neuroradiology.

  17. Time reversal of optically carried radiofrequency signals in the microsecond range.

    PubMed

    Linget, H; Morvan, L; Le Gouët, J-L; Louchet-Chauvet, A

    2013-03-01

    The time-reversal (TR) protocol we implement in an erbium-doped YSO crystal is based on photon echoes but avoids the storage of the signal to be processed. Unlike other approaches implying digitizing or highly dispersive optical fibers, the proposed scheme reaches the μs range and potentially offers high bandwidth, both required for RADAR applications. In this Letter, we demonstrate faithful reversal of arbitrary pulse sequences with 6 μs duration and 10 MHz bandwidth. To the best of our knowledge, this is the first demonstration of TR via linear filtering in a programmable material.

  18. Computed narrow-band azimuthal time-reversing array retrofocusing in shallow water.

    PubMed

    Dungan, M R; Dowling, D R

    2001-10-01

    The process of acoustic time reversal sends sound waves back to their point of origin in reciprocal acoustic environments even when the acoustic environment is unknown. The properties of the time-reversed field commonly depend on the frequency of the original signal, the characteristics of the acoustic environment, and the configuration of the time-reversing transducer array (TRA). In particular, vertical TRAs are predicted to produce horizontally confined foci in environments containing random volume refraction. This article validates and extends this prediction to shallow water environments via monochromatic Monte Carlo propagation simulations (based on parabolic equation computations using RAM). The computational results determine the azimuthal extent of a TRA's retrofocus in shallow-water sound channels either having random bottom roughness or containing random internal-wave-induced sound speed fluctuations. In both cases, randomness in the environment may reduce the predicted azimuthal angular width of the vertical TRA retrofocus to as little as several degrees (compared to 360 degrees for uniform environments) for source-array ranges from 5 to 20 km at frequencies from 500 Hz to 2 kHz. For both types of randomness, power law scalings are found to collapse the calculated azimuthal retrofocus widths for shallow sources over a variety of acoustic frequencies, source-array ranges, water column depths, and random fluctuation amplitudes and correlation scales. Comparisons are made between retrofocusing on shallow and deep sources, and in strongly and mildly absorbing environments.

  19. Gaussian noise and time-reversal symmetry in nonequilibrium Langevin models.

    PubMed

    Vainstein, M H; Rubí, J M

    2007-03-01

    We show that in driven systems the Gaussian nature of the fluctuating force and time reversibility are equivalent properties. This result together with the potential condition of the external force drastically restricts the form of the probability distribution function, which can be shown to satisfy time-independent relations. We have corroborated this feature by explicitly analyzing a model for the stretching of a polymer and a model for a suspension of noninteracting Brownian particles in steady flow.

  20. Application of Carbonate Reservoir using waveform inversion and reverse-time migration methods

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kim, H.; Min, D.; Keehm, Y.

    2011-12-01

    Recent exploration targets of oil and gas resources are deeper and more complicated subsurface structures, and carbonate reservoirs have become one of the attractive and challenging targets in seismic exploration. To increase the rate of success in oil and gas exploration, it is required to delineate detailed subsurface structures. Accordingly, migration method is more important factor in seismic data processing for the delineation. Seismic migration method has a long history, and there have been developed lots of migration techniques. Among them, reverse-time migration is promising, because it can provide reliable images for the complicated model even in the case of significant velocity contrasts in the model. The reliability of seismic migration images is dependent on the subsurface velocity models, which can be extracted in several ways. These days, geophysicists try to obtain velocity models through seismic full waveform inversion. Since Lailly (1983) and Tarantola (1984) proposed that the adjoint state of wave equations can be used in waveform inversion, the back-propagation techniques used in reverse-time migration have been used in waveform inversion, which accelerated the development of waveform inversion. In this study, we applied acoustic waveform inversion and reverse-time migration methods to carbonate reservoir models with various reservoir thicknesses to examine the feasibility of the methods in delineating carbonate reservoir models. We first extracted subsurface material properties from acoustic waveform inversion, and then applied reverse-time migration using the inverted velocities as a background model. The waveform inversion in this study used back-propagation technique, and conjugate gradient method was used in optimization. The inversion was performed using the frequency-selection strategy. Finally waveform inversion results showed that carbonate reservoir models are clearly inverted by waveform inversion and migration images based on the

  1. Applications of Time-Reversal Processing for Planetary Surface Communications

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2007-01-01

    Due to the power constraints imposed on wireless sensor and communication networks deployed on a planetary surface during exploration, energy efficient transfer of data becomes a critical issue. In situations where groups of nodes within a network are located in relatively close proximity, cooperative communication techniques can be utilized to improve the range, data rate, power efficiency, and lifetime of the network. In particular, if the point-to-point communication channels on the network are well modeled as frequency non-selective, distributed or cooperative beamforming can employed. For frequency-selective channels, beamforming itself is not generally appropriate, but a natural generalization of it, time-reversal communication (TRC), can still be effective. Time-reversal processing has been proposed and studied previously for other applications, including acoustical imaging, electromagnetic imaging, underwater acoustic communication, and wireless communication channels. In this paper, we study both the theoretical advantages and the experimental performance of cooperative TRC for wireless communication on planetary surfaces. We give a brief introduction to TRC and present several scenarios where TRC could be profitably employed during planetary exploration. We also present simulation results illustrating the performance of cooperative TRC employed in a complex multipath environment and discuss the optimality of cooperative TRC for data aggregation in wireless sensor networks

  2. Time change of perceptual reversal of ambiguous figures by rTMS.

    PubMed

    Nojima, K; Ge, S; Katayama, Y; Iramina, K

    2010-01-01

    The aim of this study was to investigate the effect of stimulus frequency and number of pulses during rTMS (repetitive transcranial magnetic stimulation) on the phenomenon of perceptual reversal. Particularly, we focused on the temporal dynamics of perceptual reversal in the right SPL (superior parietal lobule), using the spinning wheel illusion. We measured the IRT (inter-reversal time) of perceptual reversal. To investigate whether stimulus frequency or the number of pulses is critical for the rTMS effect, we applied the following schedules over the right SPL and the right PTL (posterior temporal lobe): 0.25Hz 60 pulses, 0.25Hz 120pulses, 0.5Hz 120 pulses, and 1Hz 120 pulses biphasic rTMS at 90% of the resting motor threshold. As a control, we included a No-TMS condition. The results showed that rTMS with 0.25Hz 60 pulses over the right SPL caused shorter IRT. There were no significant differences between IRTs for rTMS with 0.25Hz 120 pulses, 0.5Hz 120 pulses or 1Hz 120 pulses over the right SPL. Comparing these results with those of a previous study, we found that an rTMS condition with 60 pulses causes shorter IRT; 240 pulses causes longer IRT; and 120 pulses does not change IRT. Therefore, when applying rTMS over the right SPL, the IRT of perceptual reversal is primarily affected by the number of pulses.

  3. A compact time reversal emitter-receiver based on a leaky random cavity

    PubMed Central

    Luong, Trung-Dung; Hies, Thomas; Ohl, Claus-Dieter

    2016-01-01

    Time reversal acoustics (TRA) has gained widespread applications for communication and measurements. In general, a scattering medium in combination with multiple transducers is needed to achieve a sufficiently large acoustical aperture. In this paper, we report an implementation for a cost-effective and compact time reversal emitter-receiver driven by a single piezoelectric element. It is based on a leaky cavity with random 3-dimensional printed surfaces. The random surfaces greatly increase the spatio-temporal focusing quality as compared to flat surfaces and allow the focus of an acoustic beam to be steered over an angle of 41°. We also demonstrate its potential use as a scanner by embedding a receiver to detect an object from its backscatter without moving the TRA emitter. PMID:27811957

  4. Considering the reversibility of passive and reactive transport problems: Are forward-in-time and backward-in-time models ever equivalent?

    NASA Astrophysics Data System (ADS)

    Engdahl, N.

    2017-12-01

    Backward in time (BIT) simulations of passive tracers are often used for capture zone analysis, source area identification, and generation of travel time and age distributions. The BIT approach has the potential to become an immensely powerful tool for direct inverse modeling but the necessary relationships between the processes modeled in the forward and backward models have yet to be formally established. This study explores the time reversibility of passive and reactive transport models in a variety of 2D heterogeneous domains using particle-based random walk methods for the transport and nonlinear reaction steps. Distributed forward models are used to generate synthetic observations that form the initial conditions for the backward in time models and we consider both linear-flood and point injections. The results for passive travel time distributions show that forward and backward models are not exactly equivalent but that the linear-flood BIT models are reasonable approximations. Point based BIT models fall within the travel time range of the forward models, though their distributions can be distinctive in some cases. The BIT approximation is not as robust when nonlinear reactive transport is considered and we find that this reaction system is only exactly reversible under uniform flow conditions. We use a series of simplified, longitudinally symmetric, but heterogeneous, domains to illustrate the causes of these discrepancies between the two model types. Many of the discrepancies arise because diffusion is a "self-adjoint" operator, which causes mass to spread in the forward and backward models. This allows particles to enter low velocity regions in the both models, which has opposite effects in the forward and reverse models. It may be possible to circumvent some of these limitations using an anti-diffusion model to undo mixing when time is reversed, but this is beyond the capabilities of the existing Lagrangian methods.

  5. Rattleback dynamics and its reversal time of rotation

    NASA Astrophysics Data System (ADS)

    Kondo, Yoichiro; Nakanishi, Hiizu

    2017-06-01

    A rattleback is a rigid, semielliptic toy which exhibits unintuitive behavior; when it is spun in one direction, it soon begins pitching and stops spinning, then it starts to spin in the opposite direction, but in the other direction, it seems to spin just steadily. This puzzling behavior results from the slight misalignment between the principal axes for the inertia and those for the curvature; the misalignment couples the spinning with the pitching and the rolling oscillations. It has been shown that under the no-slip condition and without dissipation the spin can reverse in both directions, and Garcia and Hubbard obtained the formula for the time required for the spin reversal tr [Proc. R. Soc. Lond. A 418, 165 (1988), 10.1098/rspa.1988.0078]. In this work, we reformulate the rattleback dynamics in a physically transparent way and reduce it to a three-variable dynamics for spinning, pitching, and rolling. We obtain an expression of the Garcia-Hubbard formula for tr by a simple product of four factors: (1) the misalignment angle, (2) the difference in the inverses of inertia moment for the two oscillations, (3) that in the radii for the two principal curvatures, and (4) the squared frequency of the oscillation. We perform extensive numerical simulations to examine validity and limitation of the formula, and find that (1) the Garcia-Hubbard formula is good for both spinning directions in the small spin and small oscillation regime, but (2) in the fast spin regime especially for the steady direction, the rattleback may not reverse and shows a rich variety of dynamics including steady spinning, spin wobbling, and chaotic behavior reminiscent of chaos in a dissipative system.

  6. Differential geometric invariants for time-reversal symmetric Bloch-bundles: The “Real” case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Nittis, Giuseppe, E-mail: gidenittis@mat.puc.cl; Gomi, Kiyonori, E-mail: kgomi@math.shinshu-u.ac.jp

    2016-05-15

    Topological quantum systems subjected to an even (resp. odd) time-reversal symmetry can be classified by looking at the related “Real” (resp. “Quaternionic”) Bloch-bundles. If from one side the topological classification of these time-reversal vector bundle theories has been completely described in De Nittis and Gomi [J. Geom. Phys. 86, 303–338 (2014)] for the “Real” case and in De Nittis and Gomi [Commun. Math. Phys. 339, 1–55 (2015)] for the “Quaternionic” case, from the other side it seems that a classification in terms of differential geometric invariants is still missing in the literature. With this article and its companion [G. Demore » Nittis and K. Gomi (unpublished)] we want to cover this gap. More precisely, we extend in an equivariant way the theory of connections on principal bundles and vector bundles endowed with a time-reversal symmetry. In the “Real” case we generalize the Chern-Weil theory and we show that the assignment of a “Real” connection, along with the related differential Chern class and its holonomy, suffices for the classification of “Real” vector bundles in low dimensions.« less

  7. Towards random matrix model of breaking the time-reversal invariance of elastic waves in chaotic cavities by feedback

    NASA Astrophysics Data System (ADS)

    Antoniuk, Oleg; Sprik, Rudolf

    2010-03-01

    We developed a random matrix model to describe the statistics of resonances in an acoustic cavity with broken time-reversal invariance. Time-reversal invariance braking is achieved by connecting an amplified feedback loop between two transducers on the surface of the cavity. The model is based on approach [1] that describes time- reversal properties of the cavity without a feedback loop. Statistics of eigenvalues (nearest neighbor resonance spacing distributions and spectral rigidity) has been calculated and compared to the statistics obtained from our experimental data. Experiments have been performed on aluminum block of chaotic shape confining ultrasound waves. [1] Carsten Draeger and Mathias Fink, One-channel time- reversal in chaotic cavities: Theoretical limits, Journal of Acoustical Society of America, vol. 105, Nr. 2, pp. 611-617 (1999)

  8. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    NASA Astrophysics Data System (ADS)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  9. High spatial resolution imaging for structural health monitoring based on virtual time reversal

    NASA Astrophysics Data System (ADS)

    Cai, Jian; Shi, Lihua; Yuan, Shenfang; Shao, Zhixue

    2011-05-01

    Lamb waves are widely used in structural health monitoring (SHM) of plate-like structures. Due to the dispersion effect, Lamb wavepackets will be elongated and the resolution for damage identification will be strongly affected. This effect can be automatically compensated by the time reversal process (TRP). However, the time information of the compensated waves is also removed at the same time. To improve the spatial resolution of Lamb wave detection, virtual time reversal (VTR) is presented in this paper. In VTR, a changing-element excitation and reception mechanism (CERM) rather than the traditional fixed excitation and reception mechanism (FERM) is adopted for time information conservation. Furthermore, the complicated TRP procedure is replaced by simple signal operations which can make savings in the hardware cost for recording and generating the time-reversed Lamb waves. After the effects of VTR for dispersive damage scattered signals are theoretically analyzed, the realization of VTR involving the acquisition of the transfer functions of damage detecting paths under step pulse excitation is discussed. Then, a VTR-based imaging method is developed to improve the spatial resolution of the delay-and-sum imaging with a sparse piezoelectric (PZT) wafer array. Experimental validation indicates that the damage scattered wavepackets of A0 mode in an aluminum plate are partly recompressed and focalized with their time information preserved by VTR. Both the single damage and the dual adjacent damages in the plate can be clearly displayed with high spatial resolution by the proposed VTR-based imaging method.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taddese, Biniyam Tesfaye; Antonsen, Thomas M.; Ott, Edward

    Classical analogs of the quantum mechanical concepts of the Loschmidt Echo and quantum fidelity are developed with the goal of detecting small perturbations in a closed wave chaotic region. Sensing techniques that employ a one-recording-channel time-reversal-mirror, which in turn relies on time reversal invariance and spatial reciprocity of the classical wave equation, are introduced. In analogy with quantum fidelity, we employ scattering fidelity techniques which work by comparing response signals of the scattering region, by means of cross correlation and mutual information of signals. The performance of the sensing techniques is compared for various perturbations induced experimentally in an acousticmore » resonant cavity. The acoustic signals are parametrically processed to mitigate the effect of dissipation and to vary the spatial diversity of the sensing schemes. In addition to static boundary condition perturbations at specified locations, perturbations to the medium of wave propagation are shown to be detectable, opening up various real world sensing applications in which a false negative cannot be tolerated.« less

  11. Reverse Algols

    NASA Technical Reports Server (NTRS)

    Leung, K. C.

    1989-01-01

    Reverse Algols, binary systems with a semidetached configuration in which the more massive component is in contact with the critical equipotential surface, are examined. Observational evidence for reverse Algols is presented and the parameters of seven reverse Algols are listed. The evolution of Algols and reverse Algols is discussed. It is suggested that, because reverse Algols represent the premass-reversal semidetached phase of close binary evolution, the evolutionary time scale between regular and reverse Algols is the ratio of the number of confirmed systems of these two Algol types.

  12. Search for time reversal invariance violation in neutron transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, J. David; Gudkov, Vladimir

    2014-12-29

    Time reversal invariance violating (TRIV) effects in neutron transmission through a nuclear target are discussed. Here, we demonstrate the existence of a class of experiments that are free from false asymmetries. We discuss the enhancement of TRIV effects for neutron energies corresponding to p-wave resonances in the compound nuclear system. Finaly, we analyze a model experiment and show that such tests can have a discovery potential of 10 2-10 4 compared to current limits.

  13. Precise discussion of time-reversal asymmetries in B-meson decays

    DOE PAGES

    Morozumi, Takuya; Okane, Hideaki; Umeeda, Hiroyuki

    2015-02-26

    BaBar collaboration announced that they observed time reversal (T) asymmetry through B meson system. In the experiment, time dependencies of two distinctive processes, B_ →B¯ 0 and B¯ 0 → B_ (– expresses CP value) are compared with each other. In our study, we examine event number difference of these two processes. In contrast to the BaBar asymmetry, the asymmetry of events number includes the overall normalization difference for rates. Time dependence of the asymmetry is more general and it includes terms absent in one used by BaBar collaboration. Both of the BaBar asymmetry and ours are naively thought tomore » be T-odd since two processes compared are related with flipping time direction. We investigate the time reversal transformation property of our asymmetry. Using our notation, one can see that the asymmetry is not precisely a T-odd quantity, taking into account indirect CP and CPT violation of K meson systems. The effect of ϵK is extracted and gives rise to O(10 –3) contribution. The introduced parameters are invariant under rephasing of quarks so that the coefficients of our asymmetry are expressed as phase convention independent quantities. Some combinations of the asymmetry enable us to extract parameters for wrong sign decays of B d meson, CPT violation, etc. As a result, we also study the reason why the T-even terms are allowed to contribute to the asymmetry, and find that several conditions are needed for the asymmetry to be a T-odd quantity.« less

  14. Rattleback dynamics and its reversal time of rotation.

    PubMed

    Kondo, Yoichiro; Nakanishi, Hiizu

    2017-06-01

    A rattleback is a rigid, semielliptic toy which exhibits unintuitive behavior; when it is spun in one direction, it soon begins pitching and stops spinning, then it starts to spin in the opposite direction, but in the other direction, it seems to spin just steadily. This puzzling behavior results from the slight misalignment between the principal axes for the inertia and those for the curvature; the misalignment couples the spinning with the pitching and the rolling oscillations. It has been shown that under the no-slip condition and without dissipation the spin can reverse in both directions, and Garcia and Hubbard obtained the formula for the time required for the spin reversal t_{r} [Proc. R. Soc. Lond. A 418, 165 (1988)1364-502110.1098/rspa.1988.0078]. In this work, we reformulate the rattleback dynamics in a physically transparent way and reduce it to a three-variable dynamics for spinning, pitching, and rolling. We obtain an expression of the Garcia-Hubbard formula for t_{r} by a simple product of four factors: (1) the misalignment angle, (2) the difference in the inverses of inertia moment for the two oscillations, (3) that in the radii for the two principal curvatures, and (4) the squared frequency of the oscillation. We perform extensive numerical simulations to examine validity and limitation of the formula, and find that (1) the Garcia-Hubbard formula is good for both spinning directions in the small spin and small oscillation regime, but (2) in the fast spin regime especially for the steady direction, the rattleback may not reverse and shows a rich variety of dynamics including steady spinning, spin wobbling, and chaotic behavior reminiscent of chaos in a dissipative system.

  15. Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors

    DOE PAGES

    Schemm, E. R.; Levenson-Falk, E. M.; Kapitulnik, A.

    2016-11-30

    The connection between chiral superconductivity and topological order has emerged as an active direction in research as more instances of both have been identified in condensed matter systems. Moreover, with the notable exception of 3He-B, all of the known or suspected chiral – that is to say time-reversal symmetry-breaking (TRSB) – superfluids arise in heavy fermion superconductors, although the vast majority of heavy fermion superconductors preserve time-reversal symmetry. We review recent experimental efforts to identify TRSB states in heavy fermion systems via measurement of polar Kerr effect, which is a direct consequence of TRSB.

  16. Effects of digital phase-conjugate light intensity on time-reversal imaging through animal tissue.

    PubMed

    Toda, Sogo; Kato, Yuji; Kudo, Nobuki; Shimizu, Koichi

    2018-04-01

    For transillumination imaging of animal tissues, we have attempted to suppress the scattering effect in a turbid medium using the time-reversal principle of phase-conjugate light. We constructed a digital phase-conjugate system to enable intensity modulation and phase modulation. Using this system, we clarified the effectiveness of the intensity information for restoration of the original light distribution through a turbid medium. By varying the scattering coefficient of the medium, we clarified the limit of time-reversal ability with intensity information of the phase-conjugate light. Experiment results demonstrated the applicability of the proposed technique to animal tissue.

  17. Nuclear spin dependence of time reversal invariance violating effects in neutron scattering

    NASA Astrophysics Data System (ADS)

    Gudkov, Vladimir; Shimizu, Hirohiko M.

    2018-06-01

    The spin structure of parity violating and time reversal invariance violating effects in neutron scattering is discussed. The explicit relations between these effects are presented in terms of functions nuclear spins and neutron partial widths of p -wave resonances.

  18. Reverse engineering time discrete finite dynamical systems: a feasible undertaking?

    PubMed

    Delgado-Eckert, Edgar

    2009-01-01

    With the advent of high-throughput profiling methods, interest in reverse engineering the structure and dynamics of biochemical networks is high. Recently an algorithm for reverse engineering of biochemical networks was developed by Laubenbacher and Stigler. It is a top-down approach using time discrete dynamical systems. One of its key steps includes the choice of a term order, a technicality imposed by the use of Gröbner-bases calculations. The aim of this paper is to identify minimal requirements on data sets to be used with this algorithm and to characterize optimal data sets. We found minimal requirements on a data set based on how many terms the functions to be reverse engineered display. Furthermore, we identified optimal data sets, which we characterized using a geometric property called "general position". Moreover, we developed a constructive method to generate optimal data sets, provided a codimensional condition is fulfilled. In addition, we present a generalization of their algorithm that does not depend on the choice of a term order. For this method we derived a formula for the probability of finding the correct model, provided the data set used is optimal. We analyzed the asymptotic behavior of the probability formula for a growing number of variables n (i.e. interacting chemicals). Unfortunately, this formula converges to zero as fast as , where and . Therefore, even if an optimal data set is used and the restrictions in using term orders are overcome, the reverse engineering problem remains unfeasible, unless prodigious amounts of data are available. Such large data sets are experimentally impossible to generate with today's technologies.

  19. Extending compile-time reverse mode and exploiting partial separability in ADIFOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bischof, C.H.; El-Khadiri, M.

    1992-10-01

    The numerical methods employed in the solution of many scientific computing problems require the computation of the gradient of a function f: R[sup n] [yields] R. ADIFOR is a source translator that, given a collection of subroutines to compute f, generates Fortran 77 code for computing the derivative of this function. Using the so-called torsion problem from the MINPACK-2 test collection as an example, this paper explores two issues in automatic differentiation: the efficient computation of derivatives for partial separable functions and the use of the compile-time reverse mode for the generation of derivatives. We show that orders of magnitudesmore » of improvement are possible when exploiting partial separability and maximizing use of the reverse mode.« less

  20. Passive optical coherence elastography using a time-reversal approach (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Zorgani, Ali; Fink, Mathias; Catheline, Stefan; Boccara, A. Claude

    2017-02-01

    Background and motivation - Conventional Optical Coherence Elastography (OCE) methods consist in launching controlled shear waves in tissues, and measuring their propagation speed using an ultrafast imaging system. However, the use of external shear sources limits transfer to clinical practice, especially for ophthalmic applications. Here, we propose a totally passive OCE method for ocular tissues based on time-reversal of the natural vibrations. Methods - Experiments were first conducted on a tissue-mimicking phantom containing a stiff inclusion. Pulsatile motions were reproduced by stimulating the phantom surface with two piezoelectric actuators excited asynchronously at low frequencies (50-500 Hz). The resulting random displacements were tracked at 190 frames/sec using spectral-domain optical coherence tomography (SD-OCT), with a 10x5µm² resolution over a 3x2mm² field-of-view (lateral x depth). The shear wavefield was numerically refocused (i.e. time-reversed) at each pixel using noise-correlation algorithms. The focal spot size yields the shear wavelength. Results were validated by comparison with shear wave speed measurements obtained from conventional active OCE. In vivo tests were then conducted on anesthetized rats. Results - The stiff inclusion of the phantom was delineated on the wavelength map with a wavelength ratio between the inclusion and the background (1.6) consistent with the speed ratio (1.7). This validates the wavelength measurements. In vivo, natural shear waves were detected in the eye and wavelength maps of the anterior segment showed a clear elastic contrast between the cornea, the sclera and the iris. Conclusion - We validated the time-reversal approach for passive elastography using SD-OCT imaging at low frame-rate. This method could accelerate the clinical transfer of ocular elastography.

  1. Nuclear spin dependence of time reversal invariance violating effects in neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudkov, Vladimir; Shimizu, Hirohiko M.

    In this study, the spin structure of parity violating and time reversal invariance violating effects in neutron scattering is discussed. The explicit relations between these effects are presented in terms of functions nuclear spins and neutron partial widths of p-wave resonances.

  2. Nuclear spin dependence of time reversal invariance violating effects in neutron scattering

    DOE PAGES

    Gudkov, Vladimir; Shimizu, Hirohiko M.

    2018-06-11

    In this study, the spin structure of parity violating and time reversal invariance violating effects in neutron scattering is discussed. The explicit relations between these effects are presented in terms of functions nuclear spins and neutron partial widths of p-wave resonances.

  3. Influence of Voltage Rise Time for Oxidation Treatment of NO in Simulated Exhausted Gas by Polarity-Reversed Pulse Discharge

    NASA Astrophysics Data System (ADS)

    Shinmoto, Kazuya; Kadowaki, Kazunori; Nishimoto, Sakae; Kitani, Isamu

    This paper describes experimental study on NO removal from a simulated exhausted-gas using repetitive surface discharge on a glass barrier subjected to polarity-reversed voltage pulses. The very fast polarity-reversal with a rise time of 20ns is caused by direct grounding of a charged coaxial cable of 10m in length. Influence of voltage rise time on energy efficiency for NO removal is studied. Results of NO removal using a barrier-type plasma reactor with screw-plane electrode system indicates that the energy efficiency for the very fast polarity reversal caused by direct grounding becomes higher than that for the slower polarity reversal caused by grounding through an inductor at the cable end. The energy efficiency for the direct grounding is about 80g/kWh for 50% NO removal ratio and is about 60g/kWh for 100% NO removal ratio. Very intense discharge light is observed at the initial time of 10ns for the fast polarity reversal, whereas the intensity in the initial discharge light for the slower polarity reversal is relatively small. To confirm the effectiveness of the polarity-reversed pulse application, comparison of the energy efficiency between the polarity-reversed voltage pulse and ac 60Hz voltage will be presented.

  4. Reverse-time migration for subsurface imaging using single- and multi- frequency components

    NASA Astrophysics Data System (ADS)

    Ha, J.; Kim, Y.; Kim, S.; Chung, W.; Shin, S.; Lee, D.

    2017-12-01

    Reverse-time migration is a seismic data processing method for obtaining accurate subsurface structure images from seismic data. This method has been applied to obtain more precise complex geological structure information, including steep dips, by considering wave propagation characteristics based on two-way traveltime. Recently, various studies have reported the characteristics of acquired datasets from different types of media. In particular, because real subsurface media is comprised of various types of structures, seismic data represent various responses. Among them, frequency characteristics can be used as an important indicator for analyzing wave propagation in subsurface structures. All frequency components are utilized in conventional reverse-time migration, but analyzing each component is required because they contain inherent seismic response characteristics. In this study, we propose a reverse-time migration method that utilizes single- and multi- frequency components for analyzing subsurface imaging. We performed a spectral decomposition to utilize the characteristics of non-stationary seismic data. We propose two types of imaging conditions, in which decomposed signals are applied in complex and envelope traces. The SEG/EAGE Overthrust model was used to demonstrate the proposed method, and the 1st derivative Gaussian function with a 10 Hz cutoff was used as the source signature. The results were more accurate and stable when relatively lower frequency components in the effective frequency range were used. By combining the gradient obtained from various frequency components, we confirmed that the results are clearer than the conventional method using all frequency components. Also, further study is required to effectively combine the multi-frequency components.

  5. Imaging of a Defect in Thin Plates Using the Time Reversal of Single Mode Lamb Waves

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunjo; Lee, Jung-Sik; Bae, Sung-Min

    2011-06-01

    This paper presents an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional sidebands that contain the time-of-flight information on the defect location. One of the side band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free detection of a defect, so that experimental studies are needed to verify the proposed method and to be applied to real structure.

  6. Reverse time migration in tilted transversely isotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Linbing; Rector III, James W.; Hoversten, G. Michael

    2004-07-01

    This paper presents a reverse time migration (RTM) method for the migration of shot records in tilted transversely isotropic (TTI) media. It is based on the tilted TI acoustic wave equation that was derived from the dispersion relation. The RTM is a full depth migration allowing for velocity to vary laterally as well as vertically and has no dip limitations. The wave equation is solved by a tenth-order finite difference scheme. Using 2D numerical models, we demonstrate that ignoring the tilt angle will introduce both lateral and vertical shifts in imaging. The shifts can be larger than 0.5 wavelength inmore » the vertical direction and 1.5 wavelength in the lateral direction.« less

  7. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light

    PubMed Central

    Wang, Ying Min; Judkewitz, Benjamin; DiMarzio, Charles A.; Yang, Changhuei

    2012-01-01

    Fluorescence imaging is one of the most important research tools in biomedical sciences. However, scattering of light severely impedes imaging of thick biological samples beyond the ballistic regime. Here we directly show focusing and high-resolution fluorescence imaging deep inside biological tissues by digitally time-reversing ultrasound-tagged light with high optical gain (~5×105). We confirm the presence of a time-reversed optical focus along with a diffuse background—a corollary of partial phase conjugation—and develop an approach for dynamic background cancellation. To illustrate the potential of our method, we image complex fluorescent objects and tumour microtissues at an unprecedented depth of 2.5 mm in biological tissues at a lateral resolution of 36 μm×52 μm and an axial resolution of 657 μm. Our results set the stage for a range of deep-tissue imaging applications in biomedical research and medical diagnostics. PMID:22735456

  8. Newmark-Beta-FDTD method for super-resolution analysis of time reversal waves

    NASA Astrophysics Data System (ADS)

    Shi, Sheng-Bing; Shao, Wei; Ma, Jing; Jin, Congjun; Wang, Xiao-Hua

    2017-09-01

    In this work, a new unconditionally stable finite-difference time-domain (FDTD) method with the split-field perfectly matched layer (PML) is proposed for the analysis of time reversal (TR) waves. The proposed method is very suitable for multiscale problems involving microstructures. The spatial and temporal derivatives in this method are discretized by the central difference technique and Newmark-Beta algorithm, respectively, and the derivation results in the calculation of a banded-sparse matrix equation. Since the coefficient matrix keeps unchanged during the whole simulation process, the lower-upper (LU) decomposition of the matrix needs to be performed only once at the beginning of the calculation. Moreover, the reverse Cuthill-Mckee (RCM) technique, an effective preprocessing technique in bandwidth compression of sparse matrices, is used to improve computational efficiency. The super-resolution focusing of TR wave propagation in two- and three-dimensional spaces is included to validate the accuracy and efficiency of the proposed method.

  9. Time reversal for photoacoustic tomography based on the wave equation of Nachman, Smith, and Waag

    NASA Astrophysics Data System (ADS)

    Kowar, Richard

    2014-02-01

    One goal of photoacoustic tomography (PAT) is to estimate an initial pressure function φ from pressure data measured at a boundary surrounding the object of interest. This paper is concerned with a time reversal method for PAT that is based on the dissipative wave equation of Nachman, Smith, and Waag [J. Acoust. Soc. Am. 88, 1584 (1990), 10.1121/1.400317]. This equation is a correction of the thermoviscous wave equation such that its solution has a finite wave front speed and, in contrast, it can model several relaxation processes. In this sense, it is more accurate than the thermoviscous wave equation. For simplicity, we focus on the case of one relaxation process. We derive an exact formula for the time reversal image I, which depends on the relaxation time τ1 and the compressibility κ1 of the dissipative medium, and show I (τ1,κ1)→φ for κ1→0. This implies that I =φ holds in the dissipation-free case and that I is similar to φ for sufficiently small compressibility κ1. Moreover, we show for tissue similar to water that the small wave number approximation I0 of the time reversal image satisfies I0=η0*xφ with accent="true">η̂0(|k|)≈const. for |k|≪1/c0τ1, where φ denotes the initial pressure function. For such tissue, our theoretical analysis and numerical simulations show that the time reversal image I is very similar to the initial pressure function φ and that a resolution of σ ≈0.036mm is feasible (for exact measurement data).

  10. Prolonged and tunable residence time using reversible covalent kinase inhibitors

    PubMed Central

    Bradshaw, J. Michael; McFarland, Jesse M.; Paavilainen, Ville O.; Bisconte, Angelina; Tam, Danny; Phan, Vernon T.; Romanov, Sergei; Finkle, David; Shu, Jin; Patel, Vaishali; Ton, Tony; Li, Xiaoyan; Loughhead, David G.; Nunn, Philip A.; Karr, Dane E.; Gerritsen, Mary E.; Funk, Jens Oliver; Owens, Timothy D.; Verner, Erik; Brameld, Ken A.; Hill, Ronald J.; Goldstein, David M.; Taunton, Jack

    2015-01-01

    Drugs with prolonged, on-target residence time often show superior efficacy, yet general strategies for optimizing drug-target residence time are lacking. Here, we demonstrate progress toward this elusive goal by targeting a noncatalytic cysteine in Bruton's tyrosine kinase (BTK) with reversible covalent inhibitors. Utilizing an inverted orientation of the cysteine-reactive cyanoacrylamide electrophile, we identified potent and selective BTK inhibitors that demonstrate biochemical residence times spanning from minutes to 7 days. An inverted cyanoacrylamide with prolonged residence time in vivo remained bound to BTK more than 18 hours after clearance from the circulation. The inverted cyanoacrylamide strategy was further utilized to discover fibroblast growth factor receptor (FGFR) kinase inhibitors with residence times of several days, demonstrating generalizability of the approach. Targeting noncatalytic cysteines with inverted cyanoacrylamides may serve as a broadly applicable platform that facilitates “residence time by design”, the ability to modulate and improve the duration of target engagement in vivo. PMID:26006010

  11. Improving the axial resolution in time-reversed ultrasonically encoded (TRUE) optical focusing with dual ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Yang, Qiang; Xu, Xiao; Lai, Puxiang; Sang, Xinzhu; Wang, Lihong V.

    2014-03-01

    Focusing light inside highly scattering media beyond the ballistic regime is a challenging task in biomedical optical imaging, manipulation, and therapy. This challenge can be overcome by time reversing ultrasonically encoded (TRUE) diffuse light to the ultrasonic focus inside a turbid medium. In TRUE optical focusing, a photorefractive crystal or polymer is used as the phase conjugate mirror for optical time reversal. Accordingly, a relatively long ultrasound burst, whose duration matches the response time of the photorefractive material, is used to encode the diffuse light. With this long ultrasound burst, the resolution of the TRUE focus along the acoustic axis is poor. In this work, we used two transducers, emitting two intersecting ultrasound beams at 3.4 MHz and 3.6 MHz respectively, to modulate the diffuse light within their intersection volume at the beat frequency. We show that light encoded at the beat frequency can be time-reversed and converge to the intersection volume. Experimentally, TRUE focusing with an acoustic axial resolution of ~1.1 mm was demonstrated inside turbid media, agreeing with the theoretical estimation.

  12. Breast cancer detection using time reversal

    NASA Astrophysics Data System (ADS)

    Sheikh Sajjadieh, Mohammad Hossein

    Breast cancer is the second leading cause of cancer death after lung cancer among women. Mammography and magnetic resonance imaging (MRI) have certain limitations in detecting breast cancer, especially during its early stage of development. A number of studies have shown that microwave breast cancer detection has potential to become a successful clinical complement to the conventional X-ray mammography. Microwave breast imaging is performed by illuminating the breast tissues with an electromagnetic waveform and recording its reflections (backscatters) emanating from variations in the normal breast tissues and tumour cells, if present, using an antenna array. These backscatters, referred to as the overall (tumour and clutter) response, are processed to estimate the tumour response, which is applied as input to array imaging algorithms used to estimate the location of the tumour. Due to changes in the breast profile over time, the commonly utilized background subtraction procedures used to estimate the target (tumour) response in array processing are impractical for breast cancer detection. The thesis proposes a new tumour estimation algorithm based on a combination of the data adaptive filter with the envelope detection filter (DAF/EDF), which collectively do not require a training step. After establishing the superiority of the DAF/EDF based approach, the thesis shows that the time reversal (TR) array imaging algorithms outperform their conventional conterparts in detecting and localizing tumour cells in breast tissues at SNRs ranging from 15 to 30dB.

  13. Using time reversal to detect entanglement and spreading of quantum information

    NASA Astrophysics Data System (ADS)

    Gaerttner, Martin

    2017-04-01

    Characterizing and understanding the states of interacting quantum systems and their non-equilibrium dynamics is the goal of quantum simulation. For this it is crucial to find experimentally feasible means for quantifying how entanglement and correlation build up and spread. The ability of analog quantum simulators to reverse the unitary dynamics of quantum many-body systems provides new tools in this quest. One such tool is the multiple-quantum coherence (MQC) spectrum previously used in NMR spectroscopy which can now be studied in so far inaccessible parameter regimes near zero temperature in highly controllable environments. I present recent progress in relating the MQC spectrum to established entanglement witnesses such as quantum Fisher information. Recognizing the MQC as out-of-time-order correlation functions, which quantify the spreading, or scrambling, of quantum information, allows us to establish a connection between these quantities and multi-partite entanglement. I will show recent experimental results obtained with a trapped ion quantum simulator and a spinor BEC illustrating the power of time reversal protocols. Supported by: JILA-NSF-PFC-1125844, NSF-PHY-1521080, ARO, AFOSR, AFOSR-MURI, DARPA, NIST.

  14. Modified interferometric imaging condition for reverse-time migration

    NASA Astrophysics Data System (ADS)

    Guo, Xue-Bao; Liu, Hong; Shi, Ying

    2018-01-01

    For reverse-time migration, high-resolution imaging mainly depends on the accuracy of the velocity model and the imaging condition. In practice, however, the small-scale components of the velocity model cannot be estimated by tomographical methods; therefore, the wavefields are not accurately reconstructed from the background velocity, and the imaging process will generate artefacts. Some of the noise is due to cross-correlation of unrelated seismic events. Interferometric imaging condition suppresses imaging noise very effectively, especially the unknown random disturbance of the small-scale part. The conventional interferometric imaging condition is extended in this study to obtain a new imaging condition based on the pseudo-Wigner distribution function (WDF). Numerical examples show that the modified interferometric imaging condition improves imaging precision.

  15. Rapid and reliable diagnostic method to detect Zika virus by real-time fluorescence reverse transcription loop-mediated isothermal amplification.

    PubMed

    Guo, Xu-Guang; Zhou, Yong-Zhuo; Li, Qin; Wang, Wei; Wen, Jin-Zhou; Zheng, Lei; Wang, Qian

    2018-04-18

    To detect Zika virus more rapidly and accurately, we developed a novel method that utilized a real-time fluorescence reverse transcription loop-mediated isothermal amplification (LAMP) technique. The NS5 gene was amplified by a set of six specific primers that recognized six distinct sequences. The amplification process, including 60 min of thermostatic reaction with Bst DNA polymerase following real-time fluorescence reverse transcriptase using genomic Zika virus standard strain (MR766), was conducted through fluorescent signaling. Among the six pairs of primers that we designate here, NS5 was the most efficient with a high sensitivity of up to 3.3 ng/μl and reproducible specificity on eight pathogen samples that were used as negative controls. The real-time fluorescence reverse transcription LAMP detection process can be completed within 35 min. Our study demonstrated that real-time fluorescence reverse transcription LAMP could be highly beneficial and convenient clinical application to detect Zika virus due to its high specificity and stability.

  16. Bounds on Time Reversal Violation From Polarized Neutron Capture With Unpolarized Targets.

    PubMed

    Davis, E D; Gould, C R; Mitchell, G E; Sharapov, E I

    2005-01-01

    We have analyzed constraints on parity-odd time-reversal noninvariant interactions derived from measurements of the energy dependence of parity-violating polarized neutron capture on unpolarized targets. As previous authors found, a perturbation in energy dependence due to a parity (P)-odd time (T)-odd interaction is present. However, the perturbation competes with T-even terms which can obscure the T-odd signature. We estimate the magnitudes of these competing terms and suggest strategies for a practicable experiment.

  17. First passage times for multiple particles with reversible target-binding kinetics

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.

    2017-10-01

    We investigate the first passage problem for multiple particles that diffuse towards a target, partially adsorb there, and then desorb after a finite exponentially distributed residence time. We search for the first time when m particles undergoing such reversible target-binding kinetics are found simultaneously on the target that may trigger an irreversible chemical reaction or a biophysical event. Even if the particles are independent, the finite residence time on the target yields an intricate temporal coupling between particles. We compute analytically the mean first passage time (MFPT) for two independent particles by mapping the original problem to higher-dimensional surface-mediated diffusion and solving the coupled partial differential equations. The respective effects of the adsorption and desorption rates on the MFPT are revealed and discussed.

  18. Application of time-reversal guided waves to field bridge testing for baseline-free damage diagnosis

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Sohn, H.

    2006-03-01

    There is ongoing research at Carnegie Mellon University to develop a "baseline-free" nondestructive evaluation technique. The uniqueness of this baseline-free diagnosis lies in that certain types of damage can be identified without direct comparison of test signals with previously stored baseline signals. By relaxing dependency on the past baseline data, false positive indications of damage, which might take place due to varying operational and environmental conditions of in-service structures, can be minimized. This baseline-free diagnosis technique is developed based on the concept of a time reversal process (TRP). According to the TRP, an input signal at an original excitation location can be reconstructed if a response signal obtained from another point is emitted back to the original point after being reversed in a time domain. Damage diagnosis lies in the premise that the time reversibility breaks down when a certain type of defect such as nonlinear damage exists along the wave propagation path. Then, the defect can be sensed by examining a reconstructed signal after the TRP. In this paper, the feasibility of the proposed NDT technique is investigated using actual test data obtained from the Buffalo Creek Bridge in Pennsylvania.

  19. Absence of time-reversal symmetry breaking in the noncentrosymmetric superconductor Mo3Al2C

    NASA Astrophysics Data System (ADS)

    Bauer, E.; Sekine, C.; Sai, U.; Rogl, P.; Biswas, P. K.; Amato, A.

    2014-08-01

    Zero-field muon spin rotation and relaxation (μSR) studies carried out on the strongly coupled, noncentrosymmetric superconductor Mo3Al2C,Tc=9 K, did not reveal hints of time-reversal symmetry breaking as was found for a number of other noncentrosymmetric systems. Transverse field measurements performed above and below the superconducting transition temperature defined the temperature dependent London penetration depth, which in turn served to derive from a microscopic point of view a simple s-wave superconducting state in Mo3Al2C. The present investigations also provide fairly solid grounds to conclude that time-reversal symmetry breaking is not an immanent feature of noncentrosymmetric superconductors.

  20. Semiclassical matrix model for quantum chaotic transport with time-reversal symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novaes, Marcel, E-mail: marcel.novaes@gmail.com

    2015-10-15

    We show that the semiclassical approach to chaotic quantum transport in the presence of time-reversal symmetry can be described by a matrix model. In other words, we construct a matrix integral whose perturbative expansion satisfies the semiclassical diagrammatic rules for the calculation of transport statistics. One of the virtues of this approach is that it leads very naturally to the semiclassical derivation of universal predictions from random matrix theory.

  1. Deterministic time-reversible thermostats: chaos, ergodicity, and the zeroth law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Patra, Puneet Kumar; Sprott, Julien Clinton; Hoover, William Graham; Griswold Hoover, Carol

    2015-09-01

    The relative stability and ergodicity of deterministic time-reversible thermostats, both singly and in coupled pairs, are assessed through their Lyapunov spectra. Five types of thermostat are coupled to one another through a single Hooke's-law harmonic spring. The resulting dynamics shows that three specific thermostat types, Hoover-Holian, Ju-Bulgac, and Martyna-Klein-Tuckerman, have very similar Lyapunov spectra in their equilibrium four-dimensional phase spaces and when coupled in equilibrium or nonequilibrium pairs. All three of these oscillator-based thermostats are shown to be ergodic, with smooth analytic Gaussian distributions in their extended phase spaces (coordinate, momentum, and two control variables). Evidently these three ergodic and time-reversible thermostat types are particularly useful as statistical-mechanical thermometers and thermostats. Each of them generates Gibbs' universal canonical distribution internally as well as for systems to which they are coupled. Thus they obey the zeroth law of thermodynamics, as a good heat bath should. They also provide dissipative heat flow with relatively small nonlinearity when two or more such temperature baths interact and provide useful deterministic replacements for the stochastic Langevin equation.

  2. Damage imaging in a laminated composite plate using an air-coupled time reversal mirror

    DOE PAGES

    Le Bas, P. -Y.; Remillieux, M. C.; Pieczonka, L.; ...

    2015-11-03

    We demonstrate the possibility of selectively imaging the features of a barely visible impact damage in a laminated composite plate by using an air-coupled time reversal mirror. The mirror consists of a number of piezoelectric transducers affixed to wedges of power law profiles, which act as unconventional matching layers. The transducers are enclosed in a hollow reverberant cavity with an opening to allow progressive emission of the ultrasonic wave field towards the composite plate. The principle of time reversal is used to focus elastic waves at each point of a scanning grid spanning the surface of the plate, thus allowingmore » localized inspection at each of these points. The proposed device and signal processing removes the need to be in direct contact with the plate and reveals the same features as vibrothermography and more features than a C-scan. More importantly, this device can decouple the features of the defect according to their orientation, by selectively focusing vector components of motion into the object, through air. For instance, a delamination can be imaged in one experiment using out-of-plane focusing, whereas a crack can be imaged in a separate experiment using in-plane focusing. As a result, this capability, inherited from the principle of time reversal, cannot be found in conventional air-coupled transducers.« less

  3. Time-reversal symmetry in nonstationary Markov processes with application to some fluctuation theorems

    NASA Astrophysics Data System (ADS)

    Van Vliet, Carolyne M.

    2012-11-01

    Nonequilibrium processes require that the density operator of an interacting system with Hamiltonian H(t)=H0(t)+λV converges and produces entropy. Employing projection operators in the state space, the density operator is developed to all orders of perturbation and then resummed. In contrast to earlier treatments by Van Hove [Physica0031-891410.1016/S0031-8914(54)92646-4 21, 517 (1955)] and others [U. Fano, Rev. Mod. Phys.0034-686110.1103/RevModPhys.29.74 29, 74 (1959); U. Fano, in Lectures on the Many-Body Problem, Vol 2, edited by E. R. Caniello (Academic Press, New York, 1964); R. Zwanzig, in Lectures in Theoretical Physics, Vol. III, edited by W. E. Britten, B. W. Downs, and J. Downs (Wiley Interscience, New York, 1961), pp. 116-141; K. M. Van Vliet, J. Math. Phys.0022-248810.1063/1.523833 19, 1345 (1978); K. M. Van Vliet, Can. J. Phys. 56, 1206 (1978)], closed expressions are obtained. From these we establish the time-reversal symmetry property P(γ,t|γ',t')=P˜(γ',t'|γ,t), where the tilde refers to the time-reversed protocol; also a nonstationary Markovian master equation is derived. Time-reversal symmetry is then applied to thermostatted systems yielding the Crooks-Tasaki fluctuation theorem (FT) and the quantum Jarzynski work-energy theorem, as well as the general entropy FT. The quantum mechanical concepts of work and entropy are discussed in detail. Finally, we present a nonequilibrium extension of Mazo's lemma of linear response theory, obtaining some applications via this alternate route.

  4. Sequential Polarity-Reversing Circuit

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C.

    1994-01-01

    Proposed circuit reverses polarity of electric power supplied to bidirectional dc motor, reversible electro-mechanical actuator, or other device operating in direction depending on polarity. Circuit reverses polarity each time power turned on, without need for additional polarity-reversing or direction signals and circuitry to process them.

  5. Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials.

    PubMed

    Sodemann, Inti; Fu, Liang

    2015-11-20

    It is well known that a nonvanishing Hall conductivity requires broken time-reversal symmetry. However, in this work, we demonstrate that Hall-like currents can occur in second-order response to external electric fields in a wide class of time-reversal invariant and inversion breaking materials, at both zero and twice the driving frequency. This nonlinear Hall effect has a quantum origin arising from the dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when the system is in a current-carrying state. The nonlinear Hall coefficient is a rank-two pseudotensor, whose form is determined by point group symmetry. We discus optimal conditions to observe this effect and propose candidate two- and three-dimensional materials, including topological crystalline insulators, transition metal dichalcogenides, and Weyl semimetals.

  6. A new protocol for functional analysis of adipogenesis using reverse transfection technology and time-lapse video microscopy.

    PubMed

    Grönniger, Elke; Wessel, Sonja; Kühn, Sonja Christin; Söhle, Jörn; Wenck, Horst; Stäb, Franz; Winnefeld, Marc

    2010-07-01

    Since the worldwide increase in obesity represents a growing challenge for healthcare systems, research focusing on fat cell metabolism has become a focal point of interest. Here, we describe a small interfering RNA (siRNA)-technology-based screening method to study fat cell differentiation in human primary preadipocytes that could be further developed towards an automated middle-throughput screening procedure. First, we established optimal conditions for the reverse transfection of human primary preadipocytes demonstrating that an efficient reverse transfection of preadipocytes is technically feasible. Aligning the processes of reverse transfection and fat cell differentiation utilizing peroxisome proliferator-activated receptor gamma (PPAR gamma)-siRNA, we showed that preadipocyte differentiation was suppressed by knock-down of PPAR gamma, the key regulator of fat cell differentiation. The use of fluorescently labelled fatty acids in combination with fluorescence time-lapse microscopy over a longer period of time enabled us to quantify the PPAR gamma phenotype. Additionally, our data demonstrate that reverse transfection of human cultured preadipocytes with TIP60 (HIV-1 Tat-interacting protein 60)-siRNA lead to a TIP60 knock-down and subsequently inhibits fat cell differentiation, suggesting a role of this protein in human adipogenesis. In conclusion, we established a protocol that allows for an efficient functional and time-dependent analysis by quantitative time-lapse microscopy to identify novel adipogenesis-associated genes.

  7. Noncolocated Time-Reversal MUSIC: High-SNR Distribution of Null Spectrum

    NASA Astrophysics Data System (ADS)

    Ciuonzo, Domenico; Rossi, Pierluigi Salvo

    2017-04-01

    We derive the asymptotic distribution of the null spectrum of the well-known Multiple Signal Classification (MUSIC) in its computational Time-Reversal (TR) form. The result pertains to a single-frequency non-colocated multistatic scenario and several TR-MUSIC variants are here investigated. The analysis builds upon the 1st-order perturbation of the singular value decomposition and allows a simple characterization of null-spectrum moments (up to the 2nd order). This enables a comparison in terms of spectrums stability. Finally, a numerical analysis is provided to confirm the theoretical findings.

  8. Object detection and imaging with acoustic time reversal mirrors

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    1993-11-01

    Focusing an acoustic wave on an object of unknown shape through an inhomogeneous medium of any geometrical shape is a challenge in underground detection. Optimal detection and imaging of objects needs the development of such focusing techniques. The use of a time reversal mirror (TRM) represents an original solution to this problem. It realizes in real time a focusing process matched to the object shape, to the geometries of the acoustic interfaces and to the geometries of the mirror. It is a self adaptative technique which compensates for any geometrical distortions of the mirror structure as well as for diffraction and refraction effects through the interfaces. Two real time 64 and 128 channel prototypes have been built in our laboratory and TRM experiments demonstrating the TRM performance through inhomogeneous solid and liquid media are presented. Applications to medical therapy (kidney stone detection and destruction) and to nondestructive testing of metallurgical samples of different geometries are described. Extension of this study to underground detection and imaging will be discussed.

  9. Time-dependent slowly-reversible inhibition of monoamine oxidase A by N-substituted 1,2,3,6-tetrahydropyridines.

    PubMed

    Wichitnithad, Wisut; O'Callaghan, James P; Miller, Diane B; Train, Brian C; Callery, Patrick S

    2011-12-15

    A novel class of N-substituted tetrahydropyridine derivatives was found to have multiple kinetic mechanisms of monoamine oxidase A inhibition. Eleven structurally similar tetrahydropyridine derivatives were synthesized and evaluated as inhibitors of MAO-A and MAO-B. The most potent MAO-A inhibitor in the series, 2,4-dichlorophenoxypropyl analog 12, displayed time-dependent mixed noncompetitive inhibition. The inhibition was reversed by dialysis, indicating reversible enzyme inhibition. Evidence that the slow-binding inhibition of MAO-A with 12 involves a covalent bond was gained from stabilizing a covalent reversible intermediate product by reduction with sodium borohydride. The reduced enzyme complex was not reversible by dialysis. The results are consistent with slowly reversible, mechanism-based inhibition. Two tetrahydropyridine analogs that selectively inhibited MAO-A were characterized by kinetic mechanisms differing from the kinetic mechanism of 12. As reversible inhibitors of MAO-A, tetrahydropyridine analogs are at low risk of having an adverse effect of tyramine-induced hypertension. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Synthetic seismic monitoring using reverse-time migration and Kirchhoff migration for CO2 sequestration in Korea

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kim, Y.; Min, D.; Oh, J.; Huh, C.; Kang, S.

    2012-12-01

    During last two decades, CO2 sequestration in the subsurface has been extensively studied and progressed as a direct tool to reduce CO2 emission. Commercial projects such as Sleipner, In Salah and Weyburn that inject more than one million tons of CO2 per year are operated actively as well as test projects such as Ketzin to study the behavior of CO2 and the monitoring techniques. Korea also began the CCS (CO2 capture and storage) project. One of the prospects for CO2 sequestration in Korea is the southwestern continental margin of Ulleung basin. To monitor the behavior of CO2 underground for the evaluation of stability and safety, several geophysical monitoring techniques should be applied. Among various geophysical monitoring techniques, seismic survey is considered as the most effective tool. To verify CO2 migration in the subsurface more effectively, seismic numerical simulation is an essential process. Furthermore, the efficiency of the seismic migration techniques should be investigated for various cases because numerical seismic simulation and migration test help us accurately interpret CO2 migration. In this study, we apply the reverse-time migration and Kirchhoff migration to synthetic seismic monitoring data generated for the simplified model based on the geological structures of Ulleung basin in Korea. Synthetic seismic monitoring data are generated for various cases of CO2 migration in the subsurface. From the seismic migration images, we can investigate CO2 diffusion patterns indirectly. From seismic monitoring simulation, it is noted that while the reverse-time migration generates clear subsurface images when subsurface structures are steeply dipping, Kirchhoff migration has an advantage in imaging horizontal-layered structures such as depositional sediments appearing in the continental shelf. The reverse-time migration and Kirchhoff migration present reliable subsurface images for the potential site characterized by stratigraphical traps. In case of

  11. Derivation of the Time-Reversal Anomaly for (2 +1 )-Dimensional Topological Phases

    NASA Astrophysics Data System (ADS)

    Tachikawa, Yuji; Yonekura, Kazuya

    2017-09-01

    We prove an explicit formula conjectured recently by Wang and Levin for the anomaly of time-reversal symmetry in (2 +1 )-dimensional fermionic topological quantum field theories. The crucial step is to determine the cross-cap state in terms of the modular S matrix and T2 eigenvalues, generalizing the recent analysis by Barkeshli et al. in the bosonic case.

  12. Expansions for infinite or finite plane circular time-reversal mirrors and acoustic curtains for wave-field-synthesis.

    PubMed

    Mellow, Tim; Kärkkäinen, Leo

    2014-03-01

    An acoustic curtain is an array of microphones used for recording sound which is subsequently reproduced through an array of loudspeakers in which each loudspeaker reproduces the signal from its corresponding microphone. Here the sound originates from a point source on the axis of symmetry of the circular array. The Kirchhoff-Helmholtz integral for a plane circular curtain is solved analytically as fast-converging expansions, assuming an ideal continuous array, to speed up computations and provide insight. By reversing the time sequence of the recording (or reversing the direction of propagation of the incident wave so that the point source becomes an "ideal" point sink), the curtain becomes a time reversal mirror and the analytical solution for this is given simultaneously. In the case of an infinite planar array, it is demonstrated that either a monopole or dipole curtain will reproduce the diverging sound field of the point source on the far side. However, although the real part of the sound field of the infinite time-reversal mirror is reproduced, the imaginary part is an approximation due to the missing singularity. It is shown that the approximation may be improved by using the appropriate combination of monopole and dipole sources in the mirror.

  13. Search for a Permanent Electric Dipole Moment on MERCURY-199 Atoms as a Test of Time Reversal Symmetry

    NASA Astrophysics Data System (ADS)

    Jacobs, James Patrick

    Optically pumped atomic oscillators driven with a modulated light source have been used to measure the Permanent Electric Dipole Moment (PEDM) of the ^{199}Hg atom. A nonzero PEDM on the ground state of ^{199} Hg would be a direct violation of time reversal symmetry. The measurement was obtained by searching for a relative shift in the resonance frequency of the processing nuclear magnetic moments when an externally applied electric field was reversed relative to an externally applied magnetic field. The null result, d(^{199} Hg) = (.3 +/- 5.7 +/- 5.0) times 10 ^{-28} ecdotcm, represents nearly a factor of 15 improvement over previous ^{199}Hg measurements, and a factor of 25 improvement in statistical uncertainty. When combined with theoretical calculations, the result sets stringent limits on possible sources of time reversal symmetry violation in atomic systems.

  14. Experimental detection and focusing in shallow water by decomposition of the time reversal operator.

    PubMed

    Prada, Claire; de Rosny, Julien; Clorennec, Dominique; Minonzio, Jean-Gabriel; Aubry, Alexandre; Fink, Mathias; Berniere, Lothar; Billand, Philippe; Hibral, Sidonie; Folegot, Thomas

    2007-08-01

    A rigid 24-element source-receiver array in the 10-15 kHz frequency band, connected to a programmable electronic system, was deployed in the Bay of Brest during spring 2005. In this 10- to 18-m-deep environment, backscattered data from submerged targets were recorded. Successful detection and focusing experiments in very shallow water using the decomposition of the time reversal operator (DORT method) are shown. The ability of the DORT method to separate the echo of a target from reverberation as well as the echo from two different targets at 250 m is shown. An example of active focusing within the waveguide using the first invariant of the time reversal operator is presented, showing the enhanced focusing capability. Furthermore, the localization of the scatterers in the water column is obtained using a range-dependent acoustic model.

  15. Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking.

    PubMed

    Chen, Wen-Jie; Hang, Zhi Hong; Dong, Jian-Wen; Xiao, Xiao; Wang, He-Zhou; Chan, C T

    2011-07-08

    A strategy is proposed to realize robust transport in a time reversal invariant photonic system. Using numerical simulation and a microwave experiment, we demonstrate that a chiral guided mode in the channel of a three-dimensional dielectric layer-by-layer photonic crystal is immune to the scattering of a square patch of metal or dielectric inserted to block the channel. The chirality based robust transport can be realized in nonmagnetic dielectric materials without any external field.

  16. Sudden transition and sudden change from open spin environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zheng-Da; School of Science, Jiangnan University, Wuxi 214122; Xu, Jing-Bo, E-mail: xujb@zju.edu.cn

    2014-11-15

    We investigate the necessary conditions for the existence of sudden transition or sudden change phenomenon for appropriate initial states under dephasing. As illustrative examples, we study the behaviors of quantum correlation dynamics of two noninteracting qubits in independent and common open spin environments, respectively. For the independent environments case, we find that the quantum correlation dynamics is closely related to the Loschmidt echo and the dynamics exhibits a sudden transition from classical to quantum correlation decay. It is also shown that the sudden change phenomenon may occur for the common environment case and stationary quantum discord is found at themore » high temperature region of the environment. Finally, we investigate the quantum criticality of the open spin environment by exploring the probability distribution of the Loschmidt echo and the scaling transformation behavior of quantum discord, respectively. - Highlights: • Sudden transition or sudden change from open spin baths are studied. • Quantum discord is related to the Loschmidt echo in independent open spin baths. • Steady quantum discord is found in a common open spin bath. • The probability distribution of the Loschmidt echo is analyzed. • The scaling transformation behavior of quantum discord is displayed.« less

  17. The assessment of health policy changes using the time-reversed crossover design.

    PubMed Central

    Sollecito, W A; Gillings, D B

    1986-01-01

    The time-reversed crossover design is a quasi-experimental design which can be applied to evaluate the impact of a change in health policy on a large population. This design makes use of separate sampling and analysis strategies to improve the validity of conclusions drawn from such an evaluation. The properties of the time-reversed crossover design are presented including the use of stratification on outcome in the sampling stage, which is intended to improve external validity. It is demonstrated that, although this feature of the design introduces internal validity threats due to regression toward the mean in extreme-outcome strata, these effects can be measured and eliminated from the test of significance of treatment effects. Methods for within- and across-stratum estimation and hypothesis-testing are presented which are similar to those which have been developed for the traditional two-period crossover design widely used in clinical trials. The procedures are illustrated using data derived from a study conducted by the United Mine Workers of America Health and Retirement Funds to measure the impact of cost-sharing on health care utilization among members of its health plan. PMID:3081465

  18. Time reversibility and nonequilibrium thermodynamics of second-order stochastic processes.

    PubMed

    Ge, Hao

    2014-02-01

    Nonequilibrium thermodynamics of a general second-order stochastic system is investigated. We prove that at steady state, under inversion of velocities, the condition of time reversibility over the phase space is equivalent to the antisymmetry of spatial flux and the symmetry of velocity flux. Then we show that the condition of time reversibility alone cannot always guarantee the Maxwell-Boltzmann distribution. Comparing the two conditions together, we find that the frictional force naturally emerges as the unique odd term of the total force at thermodynamic equilibrium, and is followed by the Einstein relation. The two conditions respectively correspond to two previously reported different entropy production rates. In the case where the external force is only position dependent, the two entropy production rates become one. We prove that such an entropy production rate can be decomposed into two non-negative terms, expressed respectively by the conditional mean and variance of the thermodynamic force associated with the irreversible velocity flux at any given spatial coordinate. In the small inertia limit, the former term becomes the entropy production rate of the corresponding overdamped dynamics, while the anomalous entropy production rate originates from the latter term. Furthermore, regarding the connection between the first law and second law, we find that in the steady state of such a limit, the anomalous entropy production rate is also the leading order of the Boltzmann-factor weighted difference between the spatial heat dissipation densities of the underdamped and overdamped dynamics, while their unweighted difference always tends to vanish.

  19. Unified picture of strong-coupling stochastic thermodynamics and time reversals

    NASA Astrophysics Data System (ADS)

    Aurell, Erik

    2018-04-01

    Strong-coupling statistical thermodynamics is formulated as the Hamiltonian dynamics of an observed system interacting with another unobserved system (a bath). It is shown that the entropy production functional of stochastic thermodynamics, defined as the log ratio of forward and backward system path probabilities, is in a one-to-one relation with the log ratios of the joint initial conditions of the system and the bath. A version of strong-coupling statistical thermodynamics where the system-bath interaction vanishes at the beginning and at the end of a process is, as is also weak-coupling stochastic thermodynamics, related to the bath initially in equilibrium by itself. The heat is then the change of bath energy over the process, and it is discussed when this heat is a functional of the system history alone. The version of strong-coupling statistical thermodynamics introduced by Seifert and Jarzynski is related to the bath initially in conditional equilibrium with respect to the system. This leads to heat as another functional of the system history which needs to be determined by thermodynamic integration. The log ratio of forward and backward system path probabilities in a stochastic process is finally related to log ratios of the initial conditions of a combined system and bath. It is shown that the entropy production formulas of stochastic processes under a general class of time reversals are given by the differences of bath energies in a larger underlying Hamiltonian system. The paper highlights the centrality of time reversal in stochastic thermodynamics, also in the case of strong coupling.

  20. Tunable time-reversal cavity for high-pressure ultrasonic pulses generation: A tradeoff between transmission and time compression

    NASA Astrophysics Data System (ADS)

    Arnal, Bastien; Pernot, Mathieu; Fink, Mathias; Tanter, Mickael

    2012-08-01

    This Letter presents a time reversal cavity that has both a high reverberation time and a good transmission factor. A multiple scattering medium has been embedded inside a fluid-filled reverberating cavity. This allows creating smart ultrasonic sources able to generate very high pressure pulses at the focus outside the cavity with large steering capabilities. Experiments demonstrate a 25 dB gain in pressure at the focus. This concept will enable us to convert conventional ultrasonic imaging probes driven by low power electronics into high power probes for therapeutic applications requiring high pressure focused pulses, such as histotripsy or lithotripsy.

  1. Characterizing Time Irreversibility in Disordered Fermionic Systems by the Effect of Local Perturbations

    NASA Astrophysics Data System (ADS)

    Vardhan, Shreya; De Tomasi, Giuseppe; Heyl, Markus; Heller, Eric J.; Pollmann, Frank

    2017-07-01

    We study the effects of local perturbations on the dynamics of disordered fermionic systems in order to characterize time irreversibility. We focus on three different systems: the noninteracting Anderson and Aubry-André-Harper (AAH) models and the interacting spinless disordered t -V chain. First, we consider the effect on the full many-body wave functions by measuring the Loschmidt echo (LE). We show that in the extended or ergodic phase the LE decays exponentially fast with time, while in the localized phase the decay is algebraic. We demonstrate that the exponent of the decay of the LE in the localized phase diverges proportionally to the single-particle localization length as we approach the metal-insulator transition in the AAH model. Second, we probe different phases of disordered systems by studying the time expectation value of local observables evolved with two Hamiltonians that differ by a spatially local perturbation. Remarkably, we find that many-body localized systems could lose memory of the initial state in the long-time limit, in contrast to the noninteracting localized phase where some memory is always preserved.

  2. Analytical reverse time migration: An innovation in imaging of infrastructures using ultrasonic shear waves.

    PubMed

    Asadollahi, Aziz; Khazanovich, Lev

    2018-04-11

    The emergence of ultrasonic dry point contact (DPC) transducers that emit horizontal shear waves has enabled efficient collection of high-quality data in the context of a nondestructive evaluation of concrete structures. This offers an opportunity to improve the quality of evaluation by adapting advanced imaging techniques. Reverse time migration (RTM) is a simulation-based reconstruction technique that offers advantages over conventional methods, such as the synthetic aperture focusing technique. RTM is capable of imaging boundaries and interfaces with steep slopes and the bottom boundaries of inclusions and defects. However, this imaging technique requires a massive amount of memory and its computation cost is high. In this study, both bottlenecks of the RTM are resolved when shear transducers are used for data acquisition. An analytical approach was developed to obtain the source and receiver wavefields needed for imaging using reverse time migration. It is shown that the proposed analytical approach not only eliminates the high memory demand, but also drastically reduces the computation time from days to minutes. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Zero field reversal probability in thermally assisted magnetization reversal

    NASA Astrophysics Data System (ADS)

    Prasetya, E. B.; Utari; Purnama, B.

    2017-11-01

    This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.

  4. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry

    DOE PAGES

    Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; ...

    2015-05-26

    The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy,more » and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. Finally, this indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.« less

  5. Time-reversal optical tomography: detecting and locating extended targets in a turbid medium

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Xu, M.; Gayen, S. K.

    2012-03-01

    Time Reversal Optical Tomography (TROT) is developed to locate extended target(s) in a highly scattering turbid medium, and estimate their optical strength and size. The approach uses Diffusion Approximation of Radiative Transfer Equation for light propagation along with Time Reversal (TR) Multiple Signal Classification (MUSIC) scheme for signal and noise subspaces for assessment of target location. A MUSIC pseudo spectrum is calculated using the eigenvectors of the TR matrix T, whose poles provide target locations. Based on the pseudo spectrum contours, retrieval of target size is modeled as an optimization problem, using a "local contour" method. The eigenvalues of T are related to optical strengths of targets. The efficacy of TROT to obtain location, size, and optical strength of one absorptive target, one scattering target, and two absorptive targets, all for different noise levels was tested using simulated data. Target locations were always accurately determined. Error in optical strength estimates was small even at 20% noise level. Target size and shape were more sensitive to noise. Results from simulated data demonstrate high potential for application of TROT in practical biomedical imaging applications.

  6. Time-reversal symmetric resolution of unity without background integrals in open quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatano, Naomichi, E-mail: hatano@iis.u-tokyo.ac.jp; Ordonez, Gonzalo, E-mail: gordonez@butler.edu

    2014-12-15

    We present a new complete set of states for a class of open quantum systems, to be used in expansion of the Green’s function and the time-evolution operator. A remarkable feature of the complete set is that it observes time-reversal symmetry in the sense that it contains decaying states (resonant states) and growing states (anti-resonant states) parallelly. We can thereby pinpoint the occurrence of the breaking of time-reversal symmetry at the choice of whether we solve Schrödinger equation as an initial-condition problem or a terminal-condition problem. Another feature of the complete set is that in the subspace of the centralmore » scattering area of the system, it consists of contributions of all states with point spectra but does not contain any background integrals. In computing the time evolution, we can clearly see contribution of which point spectrum produces which time dependence. In the whole infinite state space, the complete set does contain an integral but it is over unperturbed eigenstates of the environmental area of the system and hence can be calculated analytically. We demonstrate the usefulness of the complete set by computing explicitly the survival probability and the escaping probability as well as the dynamics of wave packets. The origin of each term of matrix elements is clear in our formulation, particularly, the exponential decays due to the resonance poles.« less

  7. Time-Reversal Location of the 2004 M6.0 Parkfield Earthquake Using the Vertical Component of Seismic Data.

    NASA Astrophysics Data System (ADS)

    Larmat, C. S.; Johnson, P.; Huang, L.; Randall, G.; Patton, H.; Montagner, J.

    2007-12-01

    In this work we describe Time Reversal experiments applying seismic waves recorded from the 2004 M6.0 Parkfield Earthquake. The reverse seismic wavefield is created by time-reversing recorded seismograms and then injecting them from the seismograph locations into a whole entire Earth velocity model. The concept is identical to acoustic Time-Reversal Mirror laboratory experiments except the seismic data are numerically backpropagated through a velocity model (Fink, 1996; Ulrich et al, 2007). Data are backpropagated using the finite element code SPECFEM3D (Komatitsch et al, 2002), employing the velocity model s20rts (Ritsema et al, 2000). In this paper, we backpropagate only the vertical component of seismic data from about 100 broadband surface stations located worldwide (FDSN), using the period band of 23-120s. We use those only waveforms that are highly correlated with forward-propagated synthetics. The focusing quality depends upon the type of waves back- propagated; for the vertical displacement component the possible types include body waves, Rayleigh waves, or their combination. We show that Rayleigh waves, both real and artifact, dominate the reverse movie in all cases. They are created during rebroadcast of the time reverse signals, including body wave phases, because we use point-like-force sources for injection. The artifact waves, termed "ghosts" manifest as surface waves, do not correspond to real wave phases during the forward propagation. The surface ghost waves can significantly blur the focusing at the source. We find that the ghosts cannot be easily eliminated in the manner described by Tsogka&Papanicolaou (2002). It is necessary to understand how they are created in order to remove them during TRM studies, particularly when using only the body waves. For this moderate magnitude of earthquake we demonstrate the robustness of the TRM as an alternative location method despite the restriction to vertical component phases. One advantage of TRM location

  8. Increasing dwell time of mitomycin C in the upper tract with a reverse thermosensitive polymer.

    PubMed

    Wang, Agnes J; Goldsmith, Zachariah G; Neisius, Andreas; Astroza, Gaston M; Oredein-McCoy, Olugbemisola; Iqbal, Muhammad W; Simmons, W Neal; Madden, John F; Preminger, Glenn M; Inman, Brant A; Lipkin, Michael E; Ferrandino, Michael N

    2013-03-01

    Abstract Background and Purpose: Topical chemotherapy for urothelial cancer is dependent on adequate contact time of the chemotherapeutic agent with the urothelium. To date, there has not been a reliable method of maintaining this contact for renal or ureteral urothelial carcinoma. We evaluated the safety and feasibility of using a reverse thermosensitive polymer to improve dwell times of mitomycin C (MMC) in the upper tract. Using a porcine model, four animals were treated ureteroscopically with both upper urinary tracts receiving MMC mixed with iodinated contrast. One additional animal received MMC percutaneously. The treatment side had ureteral outflow blocked with a reverse thermosensitive polymer plug. MMC dwell time was monitored fluoroscopically and intrarenal pressures measured. Two animals were euthanized immediately, and three animals were euthanized 5 days afterward. In control kidneys, drainage occurred at a mean of 5.3±0.58 minutes. Intrarenal pressures stayed fairly stable: 9.7±14.0 cm H20. In treatment kidneys, dwell time was extended to 60 minutes, when the polymer was washed out. Intrarenal pressures in the treatment kidneys peaked at 75.0±14.7 cm H20 and reached steady state at 60 cm H20. Pressures normalized after washout of the polymer with cool saline. Average washout time was 11.8±9.6 minutes. No histopathologic differences were seen between the control and treatment kidneys, or with immediate compared with delayed euthanasia. A reverse thermosensitive polymer can retain MMC in the upper urinary tract and appears to be safe from our examination of intrarenal pressures and histopathology. This technique may improve the efficacy of topical chemotherapy in the management of upper tract urothelial carcinoma.

  9. Thermoelectric energy converters under a trade-off figure of merit with broken time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Iyyappan, I.; Ponmurugan, M.

    2017-09-01

    We study the performance of a three-terminal thermoelectric device such as heat engine and refrigerator with broken time-reversal symmetry by applying the unified trade-off figure of merit (\\dotΩ criterion) which accounts for both useful energy and losses. For the heat engine, we find that a thermoelectric device working under the maximum \\dotΩ criterion gives a significantly better performance than a device working at maximum power output. Within the framework of linear irreversible thermodynamics such a direct comparison is not possible for refrigerators, however, our study indicates that, for refrigerator, the maximum cooling load gives a better performance than the maximum \\dotΩ criterion for a larger asymmetry. Our results can be useful to choose a suitable optimization criterion for operating a real thermoelectric device with broken time-reversal symmetry.

  10. Reverse dipper and high night-time heart rate in acute stage of cerebral infarction are associated with increased mortality.

    PubMed

    Park, Jae-Hyeong; Lee, Hyun-Seok; Kim, Jun Hyung; Lee, Jae-Hwan; Kim, Jei; Choi, Si Wan

    2014-01-01

    Reverse dipper, blood pressure (BP) rises during night-time, is a risk factor of increased cardiovascular events in hypertensive patients. However, we have little information whether reverse dipper in acute stage of cerebral infarction (CI) affects on the recurrence and mortality. We studied to assess the relationship between reverse dipper and adverse clinical outcomes in the acute stage of CI. We screened and enrolled consecutive patients with acute CI with ambulatory blood pressure monitoring (ABPM) within 2 weeks after admission from August 2001 to July 2005. According to systolic blood pressure (SBP) dropping pattern during night-time compared with daytime, we classified into extreme dipper (≥20%), dipper (≥10%, <20%), nondipper (≥0%, <10%), and reverse dipper (BP rises during night-time). We analyzed 426 patients (72 ± 13 years old, 255 men) and checked recurrence of CI or all-cause mortality for further 7.6 ± 3.1 years for checking of recurrence or all-cause mortality. Of 426 patients, 202 patients were nondippers (47%), 134 were reverse dippers (32%), 80 were dippers (19%), and 10 were extreme dippers (2%). During the follow-up period, 89 patients (21%) had recurrence of CI. After multivariate analysis, daytime SBP (hazard ratio = 1.014, P = .018) was the significant predictor of recurrence. There were 141 deaths (33%) in our study cohort. Multivariate analysis showed that age (hazard ratio = 1.106, P < .001), nocturnal mean heart rate (hazard ratio = 1.023, P = .004), and reverse dipper (hazard ratio = 1. 676, P = .007) were statistically significant. Reverse dipper and high night-time heart rate in the acute stage of CI were associated with total mortality during long-term follow-up. These findings suggest the clinical utility of ABPM in acute stage of CI. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  11. Least-squares reverse time migration in elastic media

    NASA Astrophysics Data System (ADS)

    Ren, Zhiming; Liu, Yang; Sen, Mrinal K.

    2017-02-01

    Elastic reverse time migration (RTM) can yield accurate subsurface information (e.g. PP and PS reflectivity) by imaging the multicomponent seismic data. However, the existing RTM methods are still insufficient to provide satisfactory results because of the finite recording aperture, limited bandwidth and imperfect illumination. Besides, the P- and S-wave separation and the polarity reversal correction are indispensable in conventional elastic RTM. Here, we propose an iterative elastic least-squares RTM (LSRTM) method, in which the imaging accuracy is improved gradually with iteration. We first use the Born approximation to formulate the elastic de-migration operator, and employ the Lagrange multiplier method to derive the adjoint equations and gradients with respect to reflectivity. Then, an efficient inversion workflow (only four forward computations needed in each iteration) is introduced to update the reflectivity. Synthetic and field data examples reveal that the proposed LSRTM method can obtain higher-quality images than the conventional elastic RTM. We also analyse the influence of model parametrizations and misfit functions in elastic LSRTM. We observe that Lamé parameters, velocity and impedance parametrizations have similar and plausible migration results when the structures of different models are correlated. For an uncorrelated subsurface model, velocity and impedance parametrizations produce fewer artefacts caused by parameter crosstalk than the Lamé coefficient parametrization. Correlation- and convolution-type misfit functions are effective when amplitude errors are involved and the source wavelet is unknown, respectively. Finally, we discuss the dependence of elastic LSRTM on migration velocities and its antinoise ability. Imaging results determine that the new elastic LSRTM method performs well as long as the low-frequency components of migration velocities are correct. The quality of images of elastic LSRTM degrades with increasing noise.

  12. Exactly soluble local bosonic cocycle models, statistical transmutation, and simplest time-reversal symmetric topological orders in 3+1 dimensions

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Gang

    2017-05-01

    We propose a generic construction of exactly soluble local bosonic models that realize various topological orders with gappable boundaries. In particular, we construct an exactly soluble bosonic model that realizes a (3+1)-dimensional [(3+1)D] Z2-gauge theory with emergent fermionic Kramers doublet. We show that the emergence of such a fermion will cause the nucleation of certain topological excitations in space-time without pin+ structure. The exactly soluble model also leads to a statistical transmutation in (3+1)D. In addition, we construct exactly soluble bosonic models that realize 2 types of time-reversal symmetry-enriched Z2 topological orders in 2+1 dimensions, and 20 types of simplest time-reversal symmetry-enriched topological (SET) orders which have only one nontrivial pointlike and stringlike topological excitation. Many physical properties of those topological states are calculated using the exactly soluble models. We find that some time-reversal SET orders have pointlike excitations that carry Kramers doublet, a fractionalized time-reversal symmetry. We also find that some Z2 SET orders have stringlike excitations that carry anomalous (nononsite) Z2 symmetry, which can be viewed as a fractionalization of Z2 symmetry on strings. Our construction is based on cochains and cocycles in algebraic topology, which is very versatile. In principle, it can also realize emergent topological field theory beyond the twisted gauge theory.

  13. The invariance of classical electromagnetism under Charge-conjugation, Parity and Time-reversal (CPT) transformations

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    The invariance of classical electromagnetism under charge-conjugation, parity, and time-reversal (CPT) is studied by considering the motion of a charged particle in electric and magnetic fields. Upon applying CPT transformations to various physical quantities and noting that the motion still behaves physically demonstrates invariance.

  14. Broken Time-Reversal Symmetry in Strongly Correlated Ladder Structures

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    2004-03-01

    A decade after the first detailed numerical investigations of strongly correlated ladder models, exotic and interesting phases are still being discovered. Besides charge and spin density wave states with broken translational symmetry, and resonating valence bond (RVB) type superconductivity, a time reversal symmetry borken phase was recently found at half filling [J.B. Marston et al., Phys. Rev. Lett 89, 056404 (2002)]. In this talk I will present our recent results of density matrix renormalization group (DMRG) calculations [Phys. Rev. Lett. 90, 186401 (2003)], where we provide, for the first time, in a doped strongly correlated system (two-leg ladder), a controlled theoretical demonstration of the existence of this state in which long-range ordered orbital currents are arranged in a staggered pattern. This phase, which we found to coexist with a charge density wave, is known in the literature under the names ``staggered flux phase'', ``orbital antiferromagnetism'' or ``d-density wave (DDW)''. This brings us closer to recent proposals that this order might be realized in the enigmatic pseudogap phase of the cuprate high temperature superconductors.

  15. Sensing resonant objects in the presence of noise and clutter using iterative, single-channel acoustic time reversal

    NASA Astrophysics Data System (ADS)

    Waters, Zachary John

    The presence of noise and coherent returns from clutter often confounds efforts to acoustically detect and identify target objects buried in inhomogeneous media. Using iterative time reversal with a single channel transducer, returns from resonant targets are enhanced, yielding convergence to a narrowband waveform characteristic of the dominant mode in a target's elastic scattering response. The procedure consists of exciting the target with a broadband acoustic pulse, sampling the return using a finite time window, reversing the signal in time, and using this reversed signal as the source waveform for the next interrogation. Scaled laboratory experiments (0.4-2 MHz) are performed employing a piston transducer and spherical targets suspended in the free field and buried in a sediment phantom. In conjunction with numerical simulations, these experiments provide an inexpensive and highly controlled means with which to examine the efficacy of the technique. Signal-to-noise enhancement of target echoes is demonstrated. The methodology reported provides a means to extract both time and frequency information for surface waves that propagate on an elastic target. Methods developed in the laboratory are then applied in medium scale (20-200 kHz) pond experiments for the detection of a steel shell buried in sandy sediment.

  16. Constraining the reversing and non-reversing modes of the geodynamo. New insights from magnetostratigraphy.

    NASA Astrophysics Data System (ADS)

    Gallet, Y.; Pavlov, V.; Shatsillo, A.; Hulot, G.

    2015-12-01

    Constraining the evolution in the geomagnetic reversal frequency over hundreds of million years is not a trivial matter. Beyond the fact that there are long periods without reversals, known as superchrons, and periods with many reversals, the way the reversal frequency changes through time during reversing periods is still debated. A smooth evolution or a succession of stationary segments have both been suggested to account for the geomagnetic polarity time scale since the Middle-Late Jurassic. Sudden changes from a reversing mode to a non-reversing mode of the geodynamo may also well have happened, the switch between the two modes having then possibly been controlled by the thermal conditions at the core-mantle boundary. There is, nevertheless, a growing set of magnetostratigraphic data, which could help decipher a proper interpretation of the reversal history, in particular in the early Paleozoic and even during the Precambrian. Although yielding a fragmentary record, these data reveal the occurrence of both additional superchrons and periods characterized by extremely high, not to say extraordinary, magnetic reversal frequencies. In this talk, we will present a synthesis of these data, mainly obtained from Siberia, and discuss their implication for the magnetic reversal behavior over the past billion years.

  17. Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jun; Lee, Kim Fook; Kumar, Prem

    2007-09-15

    By utilizing a fiber-based indistinguishable photon-pair source in the 1.55 {mu}m telecommunications band [J. Chen et al., Opt. Lett. 31, 2798 (2006)], we present the first, to the best of our knowledge, deterministic quantum splitter based on the principle of time-reversed Hong-Ou-Mandel quantum interference. The deterministically separated identical photons' indistinguishability is then verified by using a conventional Hong-Ou-Mandel quantum interference, which exhibits a near-unity dip visibility of 94{+-}1%, making this quantum splitter useful for various quantum information processing applications.

  18. Single-molecule stochastic times in a reversible bimolecular reaction

    NASA Astrophysics Data System (ADS)

    Keller, Peter; Valleriani, Angelo

    2012-08-01

    In this work, we consider the reversible reaction between reactants of species A and B to form the product C. We consider this reaction as a prototype of many pseudobiomolecular reactions in biology, such as for instance molecular motors. We derive the exact probability density for the stochastic waiting time that a molecule of species A needs until the reaction with a molecule of species B takes place. We perform this computation taking fully into account the stochastic fluctuations in the number of molecules of species B. We show that at low numbers of participating molecules, the exact probability density differs from the exponential density derived by assuming the law of mass action. Finally, we discuss the condition of detailed balance in the exact stochastic and in the approximate treatment.

  19. Reversion phenomena of Cu-Cr alloys

    NASA Technical Reports Server (NTRS)

    Nishikawa, S.; Nagata, K.; Kobayashi, S.

    1985-01-01

    Cu-Cr alloys which were given various aging and reversion treatments were investigated in terms of electrical resistivity and hardness. Transmission electron microscopy was one technique employed. Some results obtained are as follows: the increment of electrical resistivity after the reversion at a constant temperature decreases as the aging temperature rises. In a constant aging condition, the increment of electrical resistivity after the reversion increases, and the time required for a maximum reversion becomes shorter as the reversion temperature rises. The reversion phenomena can be repeated, but its amount decreases rapidly by repetition. At first, the amount of reversion increases with aging time and reaches its maximum, and then tends to decrease again. Hardness changes by the reversion are very small, but the hardness tends to soften slightly. Any changes in transmission electron micrographs by the reversion treatment cannot be detected.

  20. Nodeless superconductivity and time-reversal symmetry breaking in the noncentrosymmetric superconductor Re24Ti5

    NASA Astrophysics Data System (ADS)

    Shang, T.; Pang, G. M.; Baines, C.; Jiang, W. B.; Xie, W.; Wang, A.; Medarde, M.; Pomjakushina, E.; Shi, M.; Mesot, J.; Yuan, H. Q.; Shiroka, T.

    2018-01-01

    The noncentrosymmetric superconductor Re24Ti5 , a time-reversal symmetry- (TRS-) breaking candidate with Tc=6 K , was studied by means of muon-spin rotation/relaxation (μ SR ) and tunnel-diode oscillator techniques. At the macroscopic level, its bulk superconductivity was investigated via electrical resistivity, magnetic susceptibility, and heat-capacity measurements. The low-temperature penetration depth, superfluid density, and electronic heat capacity all evidence an s -wave coupling with an enhanced superconducting gap. The spontaneous magnetic fields revealed by zero-field μ SR below Tc indicate a time-reversal symmetry breaking and thus the unconventional nature of superconductivity in Re24Ti5 . The concomitant occurrence of TRS breaking also in the isostructural Re6(Zr ,Hf ) compounds hints at its common origin in this superconducting family and that an enhanced spin-orbital coupling does not affect pairing symmetry.

  1. Real-Time Reverse Transcription–Polymerase Chain Reaction Assay for SARS-associated Coronavirus

    PubMed Central

    Emery, Shannon L.; Bowen, Michael D.; Newton, Bruce R.; Winchell, Jonas M.; Meyer, Richard F.; Tong, Suxiang; Cook, Byron T.; Holloway, Brian P.; McCaustland, Karen A.; Rota, Paul A.; Bankamp, Bettina; Lowe, Luis E.; Ksiazek, Tom G.; Bellini, William J.; Anderson, Larry J.

    2004-01-01

    A real-time reverse transcription–polymerase chain reaction (RT-PCR) assay was developed to rapidly detect the severe acute respiratory syndrome–associated coronavirus (SARS-CoV). The assay, based on multiple primer and probe sets located in different regions of the SARS-CoV genome, could discriminate SARS-CoV from other human and animal coronaviruses with a potential detection limit of <10 genomic copies per reaction. The real-time RT-PCR assay was more sensitive than a conventional RT-PCR assay or culture isolation and proved suitable to detect SARS-CoV in clinical specimens. Application of this assay will aid in diagnosing SARS-CoV infection. PMID:15030703

  2. And the first one now will later be last: Time-reversal in cormack-jolly-seber models

    USGS Publications Warehouse

    Nichols, James D.

    2016-01-01

    The models of Cormack, Jolly and Seber (CJS) are remarkable in providing a rich set of inferences about population survival, recruitment, abundance and even sampling probabilities from a seemingly limited data source: a matrix of 1's and 0's reflecting animal captures and recaptures at multiple sampling occasions. Survival and sampling probabilities are estimated directly in CJS models, whereas estimators for recruitment and abundance were initially obtained as derived quantities. Various investigators have noted that just as standard modeling provides direct inferences about survival, reversing the time order of capture history data permits direct modeling and inference about recruitment. Here we review the development of reverse-time modeling efforts, emphasizing the kinds of inferences and questions to which they seem well suited.

  3. Time-reversal in geophysics: the key for imaging a seismic source, generating a virtual source or imaging with no source (Invited)

    NASA Astrophysics Data System (ADS)

    Tourin, A.; Fink, M.

    2010-12-01

    The concept of time-reversal (TR) focusing was introduced in acoustics by Mathias Fink in the early nineties: a pulsed wave is sent from a source, propagates in an unknown media and is captured at a transducer array termed a “Time Reversal Mirror (TRM)”. Then the waveforms received at each transducer are flipped in time and sent back resulting in a wave converging at the original source regardless of the complexity of the propagation medium. TRMs have now been implemented in a variety of physical scenarios from GHz microwaves to MHz ultrasonics and to hundreds of Hz in ocean acoustics. Common to this broad range of scales is a remarkable robustness exemplified by observations that the more complex the medium (random or chaotic), the sharper the focus. A TRM acts as an antenna that uses complex environments to appear wider than it is, resulting for a broadband pulse, in a refocusing quality that does not depend on the TRM aperture. We show that the time-reversal concept is also at the heart of very active research fields in seismology and applied geophysics: imaging of seismic sources, passive imaging based on noise correlations, seismic interferometry, monitoring of CO2 storage using the virtual source method. All these methods can indeed be viewed in a unified framework as an application of the so-called time-reversal cavity approach. That approach uses the fact that a wave field can be predicted at any location inside a volume (without source) from the knowledge of both the field and its normal derivative on the surrounding surface S, which for acoustic scalar waves is mathematically expressed in the Helmholtz Kirchhoff (HK) integral. Thus in the first step of an ideal TR process, the field coming from a point-like source as well as its normal derivative should be measured on S. In a second step, the initial source is removed and monopole and dipole sources reemit the time reversal of the components measured in the first step. Instead of directly computing

  4. The effect of left-right reversal on film: Watching Kurosawa reversed

    PubMed Central

    Bertamini, Marco; Bode, Carole; Bruno, Nicola

    2011-01-01

    The mirror reversal of an image is subtly different from the original. Often such change goes unnoticed in pictures, although it can affect preference. For the first time we studied the effect of mirror reversal of feature films. People watched Yojimbo or Sanjuro in a cinema, both classic films by Akira Kurosawa. They knew that this was a study and filled out a questionnaire. On one day Yojimbo was shown in its original orientation, and on another day the film was mirror reversed. Sanjuro was shown reversed on one day and non-reversed on another day. Viewers did not notice the reversal, even when they had seen the film before and considered themselves fans of Kurosawa. We compared this with estimates from a survey. In addition, the question about the use of space (scenography) revealed that although people who had seen the film before gave higher ratings compared with those who had not, this was only true when the film was not reversed. PMID:23145243

  5. On valuing patches: estimating contributions to metapopulation growth with reverse-time capture-recapture modeling

    Treesearch

    Jamie S. Sanderlin; Peter M. Waser; James E. Hines; James D. Nichols

    2012-01-01

    Metapopulation ecology has historically been rich in theory, yet analytical approaches for inferring demographic relationships among local populations have been few. We show how reverse-time multi-state capture­recapture models can be used to estimate the importance of local recruitment and interpopulation dispersal to metapopulation growth. We use 'contribution...

  6. Time Reversal Methods for Structural Health Monitoring of Metallic Structures Using Guided Waves

    DTIC Science & Technology

    2011-09-01

    measure elastic properties of thin isotropic materials and laminated composite plates. Two types of waves propagate a symmetric wave and antisymmetric...compare it to the original signal. In this time reversal procedure wave propagation from point-A to point-B and can be modeled as a convolution ...where * is the convolution operator and transducer transmit and receive transfer function are neglected for simplification. In the frequency

  7. Modeling of the attenuation of stress waves in concrete based on the Rayleigh damping model using time-reversal and PZT transducers

    NASA Astrophysics Data System (ADS)

    Tian, Zhen; Huo, Linsheng; Gao, Weihang; Li, Hongnan; Song, Gangbing

    2017-10-01

    Wave-based concrete structural health monitoring has attracted much attention. A stress wave experiences significant attenuation in concrete, however there is a lack of a unified method for predicting the attenuation coefficient of the stress wave. In this paper, a simple and effective absorption attenuation model of stress waves in concrete is developed based on the Rayleigh damping model, which indicates that the absorption attenuation coefficient of stress waves in concrete is directly proportional to the square of the stress wave frequency when the damping ratio is small. In order to verify the theoretical model, related experiments were carried out. During the experiments, a concrete beam was designed in which the d33-model piezoelectric smart aggregates were embedded to detect the propagation of stress waves. It is difficult to distinguish direct stress waves due to the complex propagation paths and the reflection and scattering of stress waves in concrete. Hence, as another innovation of this paper, a new method for computing the absorption attenuation coefficient based on the time-reversal method is developed. Due to the self-adaptive focusing properties of the time-reversal method, the time-reversed stress wave focuses and generates a peak value. The time-reversal method eliminates the adverse effects of multipaths, reflection, and scattering. The absorption attenuation coefficient is computed by analyzing the peak value changes of the time-reversal focused signal. Finally, the experimental results are found to be in good agreement with the theoretical model.

  8. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    DOE PAGES

    Finn, John M.

    2015-03-01

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a 'special divergence-free' property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. Wemore » also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Ref. [11], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Ref. [35], appears to work very well.« less

  9. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, John M., E-mail: finn@lanl.gov

    2015-03-15

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint.more » We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004

  10. Results of the Baikal Experiment on Observations of Macroscopic Nonlocal Correlations in Reverse Time

    NASA Astrophysics Data System (ADS)

    Korotaev, S. M.; Serdyuk, V. O.; Kiktenko, E. O.; Budnev, N. M.; Gorohov, J. V.

    Although the general theory macroscopic quantum entanglement of is still in its infancy, consideration of the matter in the framework of action-at-a distance electrodynamics predicts for the random dissipative processes observability of the advanced nonlocal correlations (time reversal causality). These correlations were really revealed in our previous experiments with some large-scale heliogeophysical processes as the source ones and the lab detectors as the probe ones. Recently a new experiment has been performing on the base of Baikal Deep Water Neutrino Observatory. The thick water layer is an excellent shield against any local impacts on the detectors. The first annual series 2012/2013 has demonstrated that detector signals respond to the heliogeophysical (external) processes and causal connection of the signals directed downwards: from the Earth surface to the Baikal floor. But this nonlocal connection proved to be in reverse time. In addition advanced nonlocal correlation of the detector signal with the regional source-process: the random component of hydrological activity in the upper layer was revealed and the possibility of its forecast on nonlocal correlations was demonstrated. But the strongest macroscopic nonlocal correlations are observed at extremely low frequencies, that is at periods of several months. Therefore the above results should be verified in a longer experiment. We verify them by data of the second annual series 2013/2014 of the Baikal experiment. All the results have been confirmed, although some quantitative parameters of correlations and time reversal causal links turned out different due to nonstationarity of the source-processes. A new result is displaying of the advanced response of nonlocal correlation detector to the earthquake. This opens up the prospect of the earthquake forecast on the new physical principle, although further confirmation in the next events is certainly needed. The continuation of the Baikal experiment with

  11. Position-dependent radiative transfer as a tool for studying Anderson localization: Delay time, time-reversal and coherent backscattering

    NASA Astrophysics Data System (ADS)

    van Tiggelen, B. A.; Skipetrov, S. E.; Page, J. H.

    2017-05-01

    Previous work has established that the localized regime of wave transport in open media is characterized by a position-dependent diffusion coefficient. In this work we study how the concept of position-dependent diffusion affects the delay time, the transverse confinement, the coherent backscattering, and the time reversal of waves. Definitions of energy transport velocity of localized waves are proposed. We start with a phenomenological model of radiative transfer and then present a novel perturbational approach based on the self-consistent theory of localization. The latter allows us to obtain results relevant for realistic experiments in disordered quasi-1D wave guides and 3D slabs.

  12. Microseismic reverse time migration with a multi-cross-correlation staining algorithm for fracture imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Congcong; Jia, Xiaofeng; Liu, Shishuo; Zhang, Jie

    2018-02-01

    Accurate characterization of hydraulic fracturing zones is currently becoming increasingly important in production optimization, since hydraulic fracturing may increase the porosity and permeability of the reservoir significantly. Recently, the feasibility of the reverse time migration (RTM) method has been studied for the application in imaging fractures during borehole microseismic monitoring. However, strong low-frequency migration noise, poorly illuminated areas, and the low signal to noise ratio (SNR) data can degrade the imaging results. To improve the quality of the images, we propose a multi-cross-correlation staining algorithm to incorporate into the microseismic reverse time migration for imaging fractures using scattered data. Under the modified RTM method, our results are revealed in two images: one is the improved RTM image using the multi-cross-correlation condition, and the other is an image of the target region using the generalized staining algorithm. The numerical examples show that, compared with the conventional RTM, our method can significantly improve the spatial resolution of images, especially for the image of target region.

  13. TR-BREATH: Time-Reversal Breathing Rate Estimation and Detection.

    PubMed

    Chen, Chen; Han, Yi; Chen, Yan; Lai, Hung-Quoc; Zhang, Feng; Wang, Beibei; Liu, K J Ray

    2018-03-01

    In this paper, we introduce TR-BREATH, a time-reversal (TR)-based contact-free breathing monitoring system. It is capable of breathing detection and multiperson breathing rate estimation within a short period of time using off-the-shelf WiFi devices. The proposed system exploits the channel state information (CSI) to capture the miniature variations in the environment caused by breathing. To magnify the CSI variations, TR-BREATH projects CSIs into the TR resonating strength (TRRS) feature space and analyzes the TRRS by the Root-MUSIC and affinity propagation algorithms. Extensive experiment results indoor demonstrate a perfect detection rate of breathing. With only 10 s of measurement, a mean accuracy of can be obtained for single-person breathing rate estimation under the non-line-of-sight (NLOS) scenario. Furthermore, it achieves a mean accuracy of in breathing rate estimation for a dozen people under the line-of-sight scenario and a mean accuracy of in breathing rate estimation of nine people under the NLOS scenario, both with 63 s of measurement. Moreover, TR-BREATH can estimate the number of people with an error around 1. We also demonstrate that TR-BREATH is robust against packet loss and motions. With the prevailing of WiFi, TR-BREATH can be applied for in-home and real-time breathing monitoring.

  14. Reversible simulation of irreversible computation

    NASA Astrophysics Data System (ADS)

    Li, Ming; Tromp, John; Vitányi, Paul

    1998-09-01

    Computer computations are generally irreversible while the laws of physics are reversible. This mismatch is penalized by among other things generating excess thermic entropy in the computation. Computing performance has improved to the extent that efficiency degrades unless all algorithms are executed reversibly, for example by a universal reversible simulation of irreversible computations. All known reversible simulations are either space hungry or time hungry. The leanest method was proposed by Bennett and can be analyzed using a simple ‘reversible’ pebble game. The reachable reversible simulation instantaneous descriptions (pebble configurations) of such pebble games are characterized completely. As a corollary we obtain the reversible simulation by Bennett and, moreover, show that it is a space-optimal pebble game. We also introduce irreversible steps and give a theorem on the tradeoff between the number of allowed irreversible steps and the memory gain in the pebble game. In this resource-bounded setting the limited erasing needs to be performed at precise instants during the simulation. The reversible simulation can be modified so that it is applicable also when the simulated computation time is unknown.

  15. Time-reversal and rotation symmetry breaking superconductivity in Dirac materials

    NASA Astrophysics Data System (ADS)

    Chirolli, Luca; de Juan, Fernando; Guinea, Francisco

    2017-05-01

    We consider mixed symmetry superconducting phases in Dirac materials in the odd-parity channel, where pseudoscalar and vector order parameters can coexist due to their similar critical temperatures when attractive interactions are of a finite range. We show that the coupling of these order parameters to unordered magnetic dopants favors the condensation of time-reversal symmetry breaking (TRSB) phases, characterized by a condensate magnetization, rotation symmetry breaking, and simultaneous ordering of the dopant moments. We find a rich phase diagram of mixed TRSB phases characterized by peculiar bulk quasiparticles, with Weyl nodes and nodal lines, and distinctive surface states. These findings are consistent with recent experiments on NbxBi2Se3 that report evidence of point nodes, nematicity, and TRSB superconductivity induced by Nb magnetic moments.

  16. Imaging of human tooth using ultrasound based chirp-coded nonlinear time reversal acoustics.

    PubMed

    Dos Santos, Serge; Prevorovsky, Zdenek

    2011-08-01

    Human tooth imaging sonography is investigated experimentally with an acousto-optic noncoupling set-up based on the chirp-coded nonlinear time reversal acoustic concept. The complexity of the tooth internal structure (enamel-dentine interface, cracks between internal tubules) is analyzed by adapting the nonlinear elastic wave spectroscopy (NEWS) with the objective of the tomography of damage. Optimization of excitations using intrinsic symmetries, such as time reversal (TR) invariance, reciprocity, correlation properties are then proposed and implemented experimentally. The proposed medical application of this TR-NEWS approach is implemented on a third molar human tooth and constitutes an alternative of noncoupling echodentography techniques. A 10 MHz bandwidth ultrasonic instrumentation has been developed including a laser vibrometer and a 20 MHz contact piezoelectric transducer. The calibrated chirp-coded TR-NEWS imaging of the tooth is obtained using symmetrized excitations, pre- and post-signal processing, and the highly sensitive 14 bit resolution TR-NEWS instrumentation previously calibrated. Nonlinear signature coming from the symmetry properties is observed experimentally in the tooth using this bi-modal TR-NEWS imaging after and before the focusing induced by the time-compression process. The TR-NEWS polar B-scan of the tooth is described and suggested as a potential application for modern echodentography. It constitutes the basis of the self-consistent harmonic imaging sonography for monitoring cracks propagation in the dentine, responsible of human tooth structural health. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature

    PubMed Central

    Gâteau, Jérôme; Marsac, Laurent; Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Mickaël; Fink, Mathias

    2010-01-01

    Brain treatment through the skull with High Intensity Focused Ultrasound (HIFU) can be achieved with multichannel arrays and adaptive focusing techniques such as time-reversal. This method requires a reference signal to be either emitted by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull derived from CT images. This non-invasive computational method focuses with precision, but suffers from modeling and repositioning errors that reduce the accessible acoustic pressure at the focus in comparison with fully experimental time-reversal using an implanted hydrophone. In this paper, this simulation-based targeting has been used experimentally as a first step for focusing through an ex vivo human skull at a single location. It has enabled the creation of a cavitation bubble at focus that spontaneously emitted an ultrasonic wave received by the array. This active source signal has allowed 97%±1.1% of the reference pressure (hydrophone-based) to be restored at the geometrical focus. To target points around the focus with an optimal pressure level, conventional electronic steering from the initial focus has been combined with bubble generation. Thanks to step by step bubble generation, the electronic steering capabilities of the array through the skull were improved. PMID:19770084

  18. Preload Monitoring of Bolted L-Shaped Lap Joints Using Virtual Time Reversal Method.

    PubMed

    Du, Fei; Xu, Chao; Wu, Guannan; Zhang, Jie

    2018-06-13

    L-shaped bolt lap joints are commonly used in aerospace and civil structures. However, bolt joints are frequently subjected to loosening, and this has a significant effect on the safety and reliability of these structures. Therefore, bolt preload monitoring is very important, especially at the early stage of loosening. In this paper, a virtual time reversal guided wave method is presented to monitor preload of bolted L-shaped lap joints accurately and simply. In this method, a referenced reemitting signal (RRS) is extracted from the bolted structure in fully tightened condition. Then the RRS is utilized as the excitation signal for the bolted structure in loosening states, and the normalized peak amplitude of refocused wave packet is used as the tightness index (TI A ). The proposed method is experimentally validated by L-shaped bolt joints with single and multiple bolts. Moreover, the selections of guided wave frequency and tightness index are also discussed. The results demonstrate that the relationship between TI A and bolt preload is linear. The detection sensitivity is improved significantly compared with time reversal (TR) method, particularly when bolt loosening is at its embryo stage. The results also show that TR method is an effective method for detection of the number of loosening bolts.

  19. Rethinking fast and slow based on a critique of reaction-time reverse inference

    PubMed Central

    Krajbich, Ian; Bartling, Björn; Hare, Todd; Fehr, Ernst

    2015-01-01

    Do people intuitively favour certain actions over others? In some dual-process research, reaction-time (RT) data have been used to infer that certain choices are intuitive. However, the use of behavioural or biological measures to infer mental function, popularly known as ‘reverse inference', is problematic because it does not take into account other sources of variability in the data, such as discriminability of the choice options. Here we use two example data sets obtained from value-based choice experiments to demonstrate that, after controlling for discriminability (that is, strength-of-preference), there is no evidence that one type of choice is systematically faster than the other. Moreover, using specific variations of a prominent value-based choice experiment, we are able to predictably replicate, eliminate or reverse previously reported correlations between RT and selfishness. Thus, our findings shed crucial light on the use of RT in inferring mental processes and strongly caution against using RT differences as evidence favouring dual-process accounts. PMID:26135809

  20. Rethinking fast and slow based on a critique of reaction-time reverse inference.

    PubMed

    Krajbich, Ian; Bartling, Björn; Hare, Todd; Fehr, Ernst

    2015-07-02

    Do people intuitively favour certain actions over others? In some dual-process research, reaction-time (RT) data have been used to infer that certain choices are intuitive. However, the use of behavioural or biological measures to infer mental function, popularly known as 'reverse inference', is problematic because it does not take into account other sources of variability in the data, such as discriminability of the choice options. Here we use two example data sets obtained from value-based choice experiments to demonstrate that, after controlling for discriminability (that is, strength-of-preference), there is no evidence that one type of choice is systematically faster than the other. Moreover, using specific variations of a prominent value-based choice experiment, we are able to predictably replicate, eliminate or reverse previously reported correlations between RT and selfishness. Thus, our findings shed crucial light on the use of RT in inferring mental processes and strongly caution against using RT differences as evidence favouring dual-process accounts.

  1. Armored RNA as Virus Surrogate in a Real-Time Reverse Transcriptase PCR Assay Proficiency Panel

    PubMed Central

    Hietala, S. K.; Crossley, B. M.

    2006-01-01

    In recent years testing responsibilities for high-consequence pathogens have been expanded from national reference laboratories into networks of local and regional laboratories in order to support enhanced disease surveillance and to test for surge capacity. This movement of testing of select agents and high-consequence pathogens beyond reference laboratories introduces a critical need for standardized, noninfectious surrogates of disease agents for use as training and proficiency test samples. In this study, reverse transcription-PCR assay RNA targets were developed and packaged as armored RNA for use as a noninfectious, quantifiable synthetic substitute for four high-consequence animal pathogens: classical swine fever virus; foot-and-mouth disease virus; vesicular stomatitis virus, New Jersey serogroup; and vesicular stomatitis virus, Indiana serogroup. Armored RNA spiked into oral swab fluid specimens mimicked virus-positive clinical material through all stages of the reverse transcription-PCR testing process, including RNA recovery by four different commercial extraction procedures, reverse transcription, PCR amplification, and real-time detection at target concentrations consistent with the dynamic ranges of the existing real-time PCR assays. The armored RNA concentrations spiked into the oral swab fluid specimens were stable under storage conditions selected to approximate the extremes of time and temperature expected for shipping and handling of proficiency panel samples, including 24 h at 37°C and 2 weeks at temperatures ranging from ambient room temperature to −70°C. The analytic test performance, including the reproducibility over the dynamic range of the assays, indicates that armored RNA can provide a noninfectious, quantifiable, and stable virus surrogate for specific assay training and proficiency test purposes. PMID:16390950

  2. Implicit time-marching solution of the Navier-Stokes equations for thrust reversing and thrust vectoring nozzle flows

    NASA Technical Reports Server (NTRS)

    Imlay, S. T.

    1986-01-01

    An implicit finite volume method is investigated for the solution of the compressible Navier-Stokes equations for flows within thrust reversing and thrust vectoring nozzles. Thrust reversing nozzles typically have sharp corners, and the rapid expansion and large turning angles near these corners are shown to cause unacceptable time step restrictions when conventional approximate factorization methods are used. In this investigation these limitations are overcome by using second-order upwind differencing and line Gauss-Siedel relaxation. This method is implemented with a zonal mesh so that flows through complex nozzle geometries may be efficiently calculated. Results are presented for five nozzle configurations including two with time varying geometries. Three cases are compared with available experimental data and the results are generally acceptable.

  3. Spontaneous breaking of time-reversal symmetry in strongly interacting two-dimensional electron layers in silicon and germanium.

    PubMed

    Shamim, S; Mahapatra, S; Scappucci, G; Klesse, W M; Simmons, M Y; Ghosh, A

    2014-06-13

    We report experimental evidence of a remarkable spontaneous time-reversal symmetry breaking in two-dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si:P and Ge:P delta layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time-reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two-dimensional electrons are confined to narrow half-filled impurity bands.

  4. Deconvolution of acoustic emissions for source localization using time reverse modeling

    NASA Astrophysics Data System (ADS)

    Kocur, Georg Karl

    2017-01-01

    Impact experiments on small-scale slabs made of concrete and aluminum were carried out. Wave motion radiated from the epicenter of the impact was recorded as voltage signals by resonant piezoelectric transducers. Numerical simulations of the elastic wave propagation are performed to simulate the physical experiments. The Hertz theory of contact is applied to estimate the force impulse, which is subsequently used for the numerical simulation. Displacements at the transducer positions are calculated numerically. A deconvolution function is obtained by comparing the physical (voltage signal) and the numerical (calculated displacement) experiments. Acoustic emission signals due to pencil-lead breaks are recorded, deconvolved and applied for localization using time reverse modeling.

  5. Digital Sequences and a Time Reversal-Based Impact Region Imaging and Localization Method

    PubMed Central

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Qian, Weifeng

    2013-01-01

    To reduce time and cost of damage inspection, on-line impact monitoring of aircraft composite structures is needed. A digital monitor based on an array of piezoelectric transducers (PZTs) is developed to record the impact region of impacts on-line. It is small in size, lightweight and has low power consumption, but there are two problems with the impact alarm region localization method of the digital monitor at the current stage. The first one is that the accuracy rate of the impact alarm region localization is low, especially on complex composite structures. The second problem is that the area of impact alarm region is large when a large scale structure is monitored and the number of PZTs is limited which increases the time and cost of damage inspections. To solve the two problems, an impact alarm region imaging and localization method based on digital sequences and time reversal is proposed. In this method, the frequency band of impact response signals is estimated based on the digital sequences first. Then, characteristic signals of impact response signals are constructed by sinusoidal modulation signals. Finally, the phase synthesis time reversal impact imaging method is adopted to obtain the impact region image. Depending on the image, an error ellipse is generated to give out the final impact alarm region. A validation experiment is implemented on a complex composite wing box of a real aircraft. The validation results show that the accuracy rate of impact alarm region localization is approximately 100%. The area of impact alarm region can be reduced and the number of PZTs needed to cover the same impact monitoring region is reduced by more than a half. PMID:24084123

  6. Three dimensional time reversal optical tomography

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Alrubaiee, M.; Xu, M.; Gayen, S. K.

    2011-03-01

    Time reversal optical tomography (TROT) approach is used to detect and locate absorptive targets embedded in a highly scattering turbid medium to assess its potential in breast cancer detection. TROT experimental arrangement uses multi-source probing and multi-detector signal acquisition and Multiple-Signal-Classification (MUSIC) algorithm for target location retrieval. Light transport from multiple sources through the intervening medium with embedded targets to the detectors is represented by a response matrix constructed using experimental data. A TR matrix is formed by multiplying the response matrix by its transpose. The eigenvectors with leading non-zero eigenvalues of the TR matrix correspond to embedded objects. The approach was used to: (a) obtain the location and spatial resolution of an absorptive target as a function of its axial position between the source and detector planes; and (b) study variation in spatial resolution of two targets at the same axial position but different lateral positions. The target(s) were glass sphere(s) of diameter ~9 mm filled with ink (absorber) embedded in a 60 mm-thick slab of Intralipid-20% suspension in water with an absorption coefficient μa ~ 0.003 mm-1 and a transport mean free path lt ~ 1 mm at 790 nm, which emulate the average values of those parameters for human breast tissue. The spatial resolution and accuracy of target location depended on axial position, and target contrast relative to the background. Both the targets could be resolved and located even when they were only 4-mm apart. The TROT approach is fast, accurate, and has the potential to be useful in breast cancer detection and localization.

  7. Conjugate gradient and cross-correlation based least-square reverse time migration and its application

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Dong; Ge, Zhong-Hui; Li, Zhen-Chun

    2017-09-01

    Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain reliable reflectivity of the subsurface it is necessary to solve the imaging problem using inversion. The least-square reverse time migration (LSRTM) (also known as linearized reflectivity inversion) aims to obtain relatively high-resolution amplitude preserving imaging by including the inverse of the Hessian matrix. In practice, the conjugate gradient algorithm is proven to be an efficient iterative method for enabling use of LSRTM. The velocity gradient can be derived from a cross-correlation between observed data and simulated data, making LSRTM independent of wavelet signature and thus more robust in practice. Tests on synthetic and marine data show that LSRTM has good potential for use in reservoir description and four-dimensional (4D) seismic images compared to traditional RTM and Fourier finite difference (FFD) migration. This paper investigates the first order approximation of LSRTM, which is also known as the linear Born approximation. However, for more complex geological structures a higher order approximation should be considered to improve imaging quality.

  8. Correlational signatures of time-reversal symmetry breaking in two-dimensional flow

    NASA Astrophysics Data System (ADS)

    Hogg, Charlie; Ouellette, Nicholas

    2015-11-01

    Classical turbulence theories posit that broken spatial symmetries should be (statistically) restored at small scales. But since turbulent flows are inherently dissipative, time reversal symmetry is expected to remain broken throughout the cascade. However, the precise dynamical signature of this broken symmetry is not well understood. Recent work has shed new light on this fundamental question by considering the Lagrangian structure functions of power. Here, we take a somewhat different approach by studying the Lagrangian correlation functions of velocity and acceleration. We measured these correlations using particle tracking velocimetry in a quasi-two-dimensional electromagnetically driven flow that displayed net inverse energy transfer. We show that the correlation functions of the velocity and acceleration magnitudes are not symmetric in time, and that the degree of asymmetry can be related to the flux of energy between scales, suggesting that the asymmetry has a dynamical origin.

  9. Model for estimating the penetration depth limit of the time-reversed ultrasonically encoded optical focusing technique

    PubMed Central

    Jang, Mooseok; Ruan, Haowen; Judkewitz, Benjamin; Yang, Changhuei

    2014-01-01

    The time-reversed ultrasonically encoded (TRUE) optical focusing technique is a method that is capable of focusing light deep within a scattering medium. This theoretical study aims to explore the depth limits of the TRUE technique for biological tissues in the context of two primary constraints – the safety limit of the incident light fluence and a limited TRUE’s recording time (assumed to be 1 ms), as dynamic scatterer movements in a living sample can break the time-reversal scattering symmetry. Our numerical simulation indicates that TRUE has the potential to render an optical focus with a peak-to-background ratio of ~2 at a depth of ~103 mm at wavelength of 800 nm in a phantom with tissue scattering characteristics. This study sheds light on the allocation of photon budget in each step of the TRUE technique, the impact of low signal on the phase measurement error, and the eventual impact of the phase measurement error on the strength of the TRUE optical focus. PMID:24663917

  10. Multisource least-squares reverse-time migration with structure-oriented filtering

    NASA Astrophysics Data System (ADS)

    Fan, Jing-Wen; Li, Zhen-Chun; Zhang, Kai; Zhang, Min; Liu, Xue-Tong

    2016-09-01

    The technology of simultaneous-source acquisition of seismic data excited by several sources can significantly improve the data collection efficiency. However, direct imaging of simultaneous-source data or blended data may introduce crosstalk noise and affect the imaging quality. To address this problem, we introduce a structure-oriented filtering operator as preconditioner into the multisource least-squares reverse-time migration (LSRTM). The structure-oriented filtering operator is a nonstationary filter along structural trends that suppresses crosstalk noise while maintaining structural information. The proposed method uses the conjugate-gradient method to minimize the mismatch between predicted and observed data, while effectively attenuating the interference noise caused by exciting several sources simultaneously. Numerical experiments using synthetic data suggest that the proposed method can suppress the crosstalk noise and produce highly accurate images.

  11. Parameters influencing focalization spot in time reversal of acoustic waves

    NASA Astrophysics Data System (ADS)

    Zophoniasson, Harald; Bolzmacher, Christian; Hafez, Moustafa

    2015-05-01

    Time reversal is an approach that can be used to focus acoustic waves in a particular location on a surface, allowing a multitouch tactile feedback interaction. The spatial resolution in this case depends on several parameters, such as geometrical parameters, frequency used and material properties, described by the Lamb wave theory. This paper highlights the impact of frequency, geometrical parameters such as plate thickness and transducer's surface on the focused spot dimensions. In this paper a study of the influence of the plate's thickness and the frequency bandwidth used in the focusing process is presented. It is also shown that the dimension of the piezoelectric diaphragms used has little influence on the spatial resolution. Resonant behavior of the plate and its implication on focus point dimension and focalization contrast were investigated.

  12. Elastic Reverse Time Migration (RTM) From Surface Topography

    NASA Astrophysics Data System (ADS)

    Akram, Naveed; Chen, Xiaofei

    2017-04-01

    Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.

  13. Elastic Reverse Time Migration (RTM) From Surface Topography

    NASA Astrophysics Data System (ADS)

    Naveed, A.; Chen, X.

    2016-12-01

    Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.

  14. Numerical investigation on the effects of acceleration reversal times in Rayleigh-Taylor Instability with multiple reversals

    NASA Astrophysics Data System (ADS)

    Farley, Zachary; Aslangil, Denis; Banerjee, Arindam; Lawrie, Andrew G. W.

    2017-11-01

    An implicit large eddy simulation (ILES) code, MOBILE, is used to explore the growth rate of the mixing layer width of the acceleration-driven Rayleigh-Taylor instability (RTI) under variable acceleration histories. The sets of computations performed consist of a series of accel-decel-accel (ADA) cases in addition to baseline constant acceleration and accel-decel (AD) cases. The ADA cases are a series of varied times for the second acceleration reversal (t2) and show drastic differences in the growth rates. Upon the deceleration phase, the kinetic energy of the flow is shifted into internal wavelike patterns. These waves are evidenced by the examined differences in growth rate in the second acceleration phase for the set of ADA cases. Here, we investigate global parameters that include mixing width, growth rates and the anisotropy tensor for the kinetic energy to better understand the behavior of the growth during the re-acceleration period. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  15. Time Reversal Acoustic Communication Using Filtered Multitone Modulation

    PubMed Central

    Sun, Lin; Chen, Baowei; Li, Haisen; Zhou, Tian; Li, Ruo

    2015-01-01

    The multipath spread in underwater acoustic channels is severe and, therefore, when the symbol rate of the time reversal (TR) acoustic communication using single-carrier (SC) modulation is high, the large intersymbol interference (ISI) span caused by multipath reduces the performance of the TR process and needs to be removed using the long adaptive equalizer as the post-processor. In this paper, a TR acoustic communication method using filtered multitone (FMT) modulation is proposed in order to reduce the residual ISI in the processed signal using TR. In the proposed method, FMT modulation is exploited to modulate information symbols onto separate subcarriers with high spectral containment and TR technique, as well as adaptive equalization is adopted at the receiver to suppress ISI and noise. The performance of the proposed method is assessed through simulation and real data from a trial in an experimental pool. The proposed method was compared with the TR acoustic communication using SC modulation with the same spectral efficiency. Results demonstrate that the proposed method can improve the performance of the TR process and reduce the computational complexity of adaptive equalization for post-process. PMID:26393586

  16. Time Reversal Acoustic Communication Using Filtered Multitone Modulation.

    PubMed

    Sun, Lin; Chen, Baowei; Li, Haisen; Zhou, Tian; Li, Ruo

    2015-09-17

    The multipath spread in underwater acoustic channels is severe and, therefore, when the symbol rate of the time reversal (TR) acoustic communication using single-carrier (SC) modulation is high, the large intersymbol interference (ISI) span caused by multipath reduces the performance of the TR process and needs to be removed using the long adaptive equalizer as the post-processor. In this paper, a TR acoustic communication method using filtered multitone (FMT) modulation is proposed in order to reduce the residual ISI in the processed signal using TR. In the proposed method, FMT modulation is exploited to modulate information symbols onto separate subcarriers with high spectral containment and TR technique, as well as adaptive equalization is adopted at the receiver to suppress ISI and noise. The performance of the proposed method is assessed through simulation and real data from a trial in an experimental pool. The proposed method was compared with the TR acoustic communication using SC modulation with the same spectral efficiency. Results demonstrate that the proposed method can improve the performance of the TR process and reduce the computational complexity of adaptive equalization for post-process.

  17. Analysis of Current-mode Detectors For Resonance Detection In Neutron Optics Time Reversal Symmetry Experiment

    NASA Astrophysics Data System (ADS)

    Forbes, Grant; Noptrex Collaboration

    2017-09-01

    One of the most promising explanations for the observed matter-antimatter asymmetry in our universe is the search for new sources of time-reversal (T) symmetry violation. The current amount of violation seen in the kaon and B-meson systems is not sufficient to describe this asymmetry. The Neutron Optics Time Reversal Experiment Collaboration (NOPTREX) is a null test for T violation in polarized neutron transmission through a polarized 139La target. Due to the high neutron flux needed for this experiment, as well as the ability to effectively subtract background noise, a current-mode neutron detector that can resolve resonances at epithermal energies has been proposed. In order to ascertain if this detector design would meet the requirements for the eventual NOPTREX experiment, prototypical detectors were tested at the NOBORU beam at the Japan Proton Accelerator Research Complex (JPARC) facility. Resonances in In and Ta were measured and the collected data was analyzed. This presentation will describe the analysis process and the efficacy of the detectors will be discussed. Department of Energy under Contract DE-SC0008107, UGRAS Scholarship.

  18. Depth profile of a time-reversal focus in an elastic solid

    DOE PAGES

    Remillieux, Marcel C.; Anderson, Brian E.; Ulrich, T. J.; ...

    2015-04-01

    The out-of-plane velocity component is focused on the flat surface of an isotropic solid sample using the principle of time reversal. This experiment is often reproduced in the context of nondestructive testing for imaging features near the surface of the sample. However, it is not clear how deep the focus extends into the bulk of the sample and what its profile is. In this paper, this question is answered using both numerical simulations and experimental data. The profiles of the foci are expressed in terms of the wavelengths of the dominant waves, based on the interpretation of the Lamb’s problemmore » and the use of the diffraction limit.« less

  19. Interplay of Coulomb interactions and disorder in three-dimensional quadratic band crossings without time-reversal symmetry and with unequal masses for conduction and valence bands

    NASA Astrophysics Data System (ADS)

    Mandal, Ipsita; Nandkishore, Rahul M.

    2018-03-01

    Coulomb interactions famously drive three-dimensional quadratic band crossing semimetals into a non-Fermi liquid phase of matter. In a previous work [Nandkishore and Parameswaran, Phys. Rev. B 95, 205106 (2017), 10.1103/PhysRevB.95.205106], the effect of disorder on this non-Fermi liquid phase was investigated, assuming that the band structure was isotropic, assuming that the conduction and valence bands had the same band mass, and assuming that the disorder preserved exact time-reversal symmetry and statistical isotropy. It was shown that the non-Fermi liquid fixed point is unstable to disorder and that a runaway flow to strong disorder occurs. In this paper, we extend that analysis by relaxing the assumption of time-reversal symmetry and allowing the electron and hole masses to differ (but continuing to assume isotropy of the low energy band structure). We first incorporate time-reversal symmetry breaking disorder and demonstrate that there do not appear any new fixed points. Moreover, while the system continues to flow to strong disorder, time-reversal-symmetry-breaking disorder grows asymptotically more slowly than time-reversal-symmetry-preserving disorder, which we therefore expect should dominate the strong-coupling phase. We then allow for unequal electron and hole masses. We show that whereas asymmetry in the two masses is irrelevant in the clean system, it is relevant in the presence of disorder, such that the `effective masses' of the conduction and valence bands should become sharply distinct in the low-energy limit. We calculate the RG flow equations for the disordered interacting system with unequal band masses and demonstrate that the problem exhibits a runaway flow to strong disorder. Along the runaway flow, time-reversal-symmetry-preserving disorder grows asymptotically more rapidly than both time-reversal-symmetry-breaking disorder and the Coulomb interaction.

  20. Echodentography based on nonlinear time reversal tomography: Ultrasonic nonlinear signature identification

    NASA Astrophysics Data System (ADS)

    Santos, Serge Dos; Farova, Zuzana; Kus, Vaclav; Prevorovsky, Zdenek

    2012-05-01

    This paper examines possibilities of using Nonlinear Elastic Wave Spectroscopy (NEWS) methods in dental investigations. Themain task consisted in imaging cracks or other degradation signatures located in dentin close to the Enamel-Dentine Junction (EDJ). NEWS approach was investigated experimentally with a new bi-modal acousto-optic set-up based on the chirp-coded nonlinear ultrasonic time reversal (TR) concepts. Complex internal structure of the tooth is analyzed by the TR-NEWS procedure adapted to tomography-like imaging of the tooth damages. Ultrasonic instrumentation with 10 MHz bandwidth has been set together including laser vibrometer used to detect responses of the tooth on its excitation carried out by a contact piezoelectric transducer. Bi-modal TR-NEWS images of the tooth were created before and after focusing, which resulted from the time compression. The polar B-scan of the tooth realized with TR-NEWS procedure is suggested to be applied as a new echodentography imaging.

  1. Berezinskii-Kosterlitz-Thouless transition in the time-reversal-symmetric Hofstadter-Hubbard model

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2018-01-01

    Assuming that two-component Fermi gases with opposite artificial magnetic fields on a square optical lattice are well described by the so-called time-reversal-symmetric Hofstadter-Hubbard model, we explore the thermal superfluid properties along with the critical Berezinskii-Kosterlitz-Thouless (BKT) transition temperature in this model over a wide range of its parameters. In particular, since our self-consistent BCS-BKT approach takes the multiband butterfly spectrum explicitly into account, it unveils how dramatically the interband contribution to the phase stiffness dominates the intraband one with an increasing interaction strength for any given magnetic flux.

  2. Time-reversal-symmetric single-photon wave packets for free-space quantum communication.

    PubMed

    Trautmann, N; Alber, G; Agarwal, G S; Leuchs, G

    2015-05-01

    Readout and retrieval processes are proposed for efficient, high-fidelity quantum state transfer between a matter qubit, encoded in the level structure of a single atom or ion, and a photonic qubit, encoded in a time-reversal-symmetric single-photon wave packet. They are based on controlling spontaneous photon emission and absorption of a matter qubit on demand in free space by stimulated Raman adiabatic passage. As these processes do not involve mode selection by high-finesse cavities or photon transport through optical fibers, they offer interesting perspectives as basic building blocks for free-space quantum-communication protocols.

  3. Reversibility of female sterilization.

    PubMed

    Siegler, A M; Hulka, J; Peretz, A

    1985-04-01

    The discussion considers the current status of reversibility of sterilization in the US and describes clinical and experimental efforts for developing techniques designed for reversibility. It focuses on regret following sterilization, reversal potential of current sterilization techniques, patient selection, current reversal techniques, results of sterilization procedures, experimental approaches to reversal of current techniques of sterilization, and sterilization procedures devised for reversibility, in humans and in animals. Request is the 1st stage of reversal, but a request for sterilization reversal (SR) does not always mean regret for a decision made at the time. Frequently it is a wish to restore fertility because life circumstances have changed after a sterilization that was ppropriate at the time it was performed. Schwyhart and Kutner reviewed 22 studies published between 1949-69 in which they found that the percentage of patients regretting the procedure ranged from 1.3-15%. Requests for reversal remain low in most countries, but if sterilization becomes a more popular method of contraception, requests will also increase. The ideal operation considered as a reversaible method of sterilization should include an easy, reliable outpatient method of tubal occlusion with miniml risk or patient discomfort that subsequently could be reversed without the need for a major surgical intervention. Endoscopic methods have progressed toward the 1st objective. A recent search of the literature uncovered few series of SR of more than 50 cases. The 767 operations found were analyzed with regard to pregnancy outcome. The precent of live births varied from 74-78.8%, and the occurance of tubal pregnancies ranged from 1.7-6.5%. All of the confounding variables in patient selection and small numbers of reported procedures preclude any conclusion about the different techniques or the number of operations that give a surgeon a level of expertise. Few authors classify their

  4. Chickadees discriminate contingency reversals presented consistently, but not frequently.

    PubMed

    McMillan, Neil; Hahn, Allison H; Congdon, Jenna V; Campbell, Kimberley A; Hoang, John; Scully, Erin N; Spetch, Marcia L; Sturdy, Christopher B

    2017-07-01

    Chickadees are high-metabolism, non-migratory birds, and thus an especially interesting model for studying how animals follow patterns of food availability over time. Here, we studied whether black-capped chickadees (Poecile atricapillus) could learn to reverse their behavior and/or to anticipate changes in reinforcement when the reinforcer contingencies for each stimulus were not stably fixed in time. In Experiment 1, we examined the responses of chickadees on an auditory go/no-go task, with constant reversals in reinforcement contingencies every 120 trials across daily testing intervals. Chickadees did not produce above-chance discrimination; however, when trained with a procedure that only reversed after successful discrimination, chickadees were able to discriminate and reverse their behavior successfully. In Experiment 2, we examined the responses of chickadees when reversals were structured to occur at the same time once per day, and chickadees were again able to discriminate and reverse their behavior over time, though they showed no reliable evidence of reversal anticipation. The frequency of reversals throughout the day thus appears to be an important determinant for these animals' performance in reversal procedures.

  5. Magnetotelluric inversion via reverse time migration algorithm of seismic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Taeyoung; Shin, Changsoo

    2007-07-01

    We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversionmore » algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.« less

  6. 'Einselection' of pointer observables: The new H-theorem?

    NASA Astrophysics Data System (ADS)

    Kastner, Ruth E.

    2014-11-01

    In attempting to derive irreversible macroscopic thermodynamics from reversible microscopic dynamics, Boltzmann inadvertently smuggled in a premise that assumed the very irreversibility he was trying to prove: 'molecular chaos'. The program of 'einselection' (environmentally induced superselection) within Everettian approaches faces a similar 'Loschmidt's Paradox': the universe, according to the Everettian picture, is a closed system obeying only unitary dynamics, and it therefore contains no distinguishable environmental subsystems with the necessary 'phase randomness' to effect einselection of a pointer observable. The theoretically unjustified assumption of distinguishable environmental subsystems is the hidden premise that makes the derivation of einselection circular. In effect, it presupposes the 'emergent' structures from the beginning. Thus the problem of basis ambiguity remains unsolved in Everettian interpretations.

  7. Heavy ion beam probe operation in time varying equilibria of improved confinement reversed field pinch discharges.

    PubMed

    Demers, D R; Chen, X; Schoch, P M; Fimognari, P J

    2010-10-01

    Operation of a heavy ion beam probe (HIBP) on a reversed field pinch is unique from other toroidal applications because the magnetic field is more temporal and largely produced by plasma current. Improved confinement, produced through the transient application of a poloidal electric field which leads to a reduction of dynamo activity, exhibits gradual changes in equilibrium plasma quantities. A consequence of this is sweeping of the HIBP trajectories by the dynamic magnetic field, resulting in motion of the sample volume. In addition, the plasma potential evolves with the magnetic equilibrium. Measurement of the potential as a function of time is thus a combination of temporal changes of the equilibrium and motion of the sample volume. A frequent additional complication is a nonideal balance of ion current on the detectors resulting from changes in the beam trajectory (magnetic field) and energy (plasma potential). This necessitates use of data selection criteria. Nevertheless, the HIBP on the Madison Symmetric Torus has acquired measurements as a function of time throughout improved confinement. A technique developed to infer the potential in the improved confinement reversed field pinch from HIBP data in light of the time varying plasma equilibrium will be discussed.

  8. Time-reversal transcranial ultrasound beam focusing using a k-space method

    PubMed Central

    Jing, Yun; Meral, F. Can; Clement, Greg. T.

    2012-01-01

    This paper proposes the use of a k-space method to obtain the correction for transcranial ultrasound beam focusing. Mirroring past approaches, A synthetic point source at the focal point is numerically excited, and propagated through the skull, using acoustic properties acquired from registered computed tomograpy of the skull being studied. The received data outside the skull contains the correction information and can be phase conjugated (time reversed) and then physically generated to achieve a tight focusing inside the skull, by assuming quasi-plane transmission where shear waves are not present or their contribution can be neglected. Compared with the conventional finite-difference time-domain method for wave propagation simulation, it will be shown that the k-space method is significantly more accurate even for a relatively coarse spatial resolution, leading to a dramatically reduced computation time. Both numerical simulations and experiments conducted on an ex vivo human skull demonstrate that, precise focusing can be realized using the k-space method with a spatial resolution as low as only 2.56 grid points per wavelength, thus allowing treatment planning computation on the order of minutes. PMID:22290477

  9. Time reversal and charge conjugation in an embedding quantum simulator.

    PubMed

    Zhang, Xiang; Shen, Yangchao; Zhang, Junhua; Casanova, Jorge; Lamata, Lucas; Solano, Enrique; Yung, Man-Hong; Zhang, Jing-Ning; Kim, Kihwan

    2015-08-04

    A quantum simulator is an important device that may soon outperform current classical computations. A basic arithmetic operation, the complex conjugate, however, is considered to be impossible to be implemented in such a quantum system due to the linear character of quantum mechanics. Here, we present the experimental quantum simulation of such an unphysical operation beyond the regime of unitary and dissipative evolutions through the embedding of a quantum dynamics in the electronic multilevels of a (171)Yb(+) ion. We perform time reversal and charge conjugation, which are paradigmatic examples of antiunitary symmetry operators, in the evolution of a Majorana equation without the tomographic knowledge of the evolving state. Thus, these operations can be applied regardless of the system size. Our approach offers the possibility to add unphysical operations to the toolbox of quantum simulation, and provides a route to efficiently compute otherwise intractable quantities, such as entanglement monotones.

  10. Time reversal and charge conjugation in an embedding quantum simulator

    PubMed Central

    Zhang, Xiang; Shen, Yangchao; Zhang, Junhua; Casanova, Jorge; Lamata, Lucas; Solano, Enrique; Yung, Man-Hong; Zhang, Jing-Ning; Kim, Kihwan

    2015-01-01

    A quantum simulator is an important device that may soon outperform current classical computations. A basic arithmetic operation, the complex conjugate, however, is considered to be impossible to be implemented in such a quantum system due to the linear character of quantum mechanics. Here, we present the experimental quantum simulation of such an unphysical operation beyond the regime of unitary and dissipative evolutions through the embedding of a quantum dynamics in the electronic multilevels of a 171Yb+ ion. We perform time reversal and charge conjugation, which are paradigmatic examples of antiunitary symmetry operators, in the evolution of a Majorana equation without the tomographic knowledge of the evolving state. Thus, these operations can be applied regardless of the system size. Our approach offers the possibility to add unphysical operations to the toolbox of quantum simulation, and provides a route to efficiently compute otherwise intractable quantities, such as entanglement monotones. PMID:26239028

  11. Search for Time Reversal Violating Effects: R-Correlation Measurement in Neutron Decay.

    PubMed

    Bodek, K; Ban, G; Beck, M; Bialek, A; Bryś, T; Czarnecki, A; Fetscher, W; Gorel, P; Kirch, K; Kistryn, St; Kozela, A; Kuźniak, M; Lindroth, A; Naviliat-Cuncic, O; Pulut, J; Serebrov, A; Severijns, N; Stephan, E; Zejma, J

    2005-01-01

    An experiment aiming at the simultaneous determination of both transversal polarization components of electrons emitted in the decay of free neutrons begins data taking using the polarized cold neutron beam (FUNSPIN) from the Swiss Neutron Spallation Source (SINQ) at the Paul-Scherrer Institute, Villigen. A non-zero value of R due to the e(-) polarization component, which is perpendicular to the plane spanned by the spin of the decaying neutron and the electron momentum, would signal a violation of time reversal symmetry and thus physics beyond the Standard Model. Present status of the project and the results from analysis of the first data sample will be discussed.

  12. Reverse Dynamization

    PubMed Central

    Glatt, Vaida; Bartnikowski, Nicole; Quirk, Nicholas; Schuetz, Michael; Evans, Christopher

    2016-01-01

    Background: Reverse dynamization is a technology for enhancing the healing of osseous defects. With use of an external fixator, the axial stiffness across the defect is initially set low and subsequently increased. The purpose of the study described in this paper was to explore the efficacy of reverse dynamization under different conditions. Methods: Rat femoral defects were stabilized with external fixators that allowed the stiffness to be modulated on living animals. Recombinant human bone morphogenetic protein-2 (rhBMP-2) was implanted into the defects on a collagen sponge. Following a dose-response experiment, 5.5 μg of rhBMP-2 was placed into the defect under conditions of very low (25.4-N/mm), low (114-N/mm), medium (185-N/mm), or high (254-N/mm) stiffness. Reverse dynamization was evaluated with 2 different starting stiffnesses: low (114 N/mm) and very low (25.4 N/mm). In both cases, high stiffness (254 N/mm) was imposed after 2 weeks. Healing was assessed with radiographs, micro-computed tomography (μCT), histological analysis, and mechanical testing. Results: In the absence of dynamization, the medium-stiffness fixators provided the best healing. Reverse dynamization starting with very low stiffness was detrimental to healing. However, with low initial stiffness, reverse dynamization considerably improved healing with minimal residual cartilage, enhanced cortication, increased mechanical strength, and smaller callus. Histological analysis suggested that, in all cases, healing provoked by rhBMP-2 occurred by endochondral ossification. Conclusions: These data confirm the potential utility of reverse dynamization as a way of improving bone healing but indicate that the stiffness parameters need to be selected carefully. Clinical Relevance: Reverse dynamization may reduce the amount of rhBMP-2 needed to induce healing of recalcitrant osseous lesions, reduce the time to union, and decrease the need for prolonged external fixation. PMID:27098327

  13. Imaging Faults in Carbonate Reservoir using Full Waveform Inversion and Reverse Time Migration of Walkaway VSP Data

    NASA Astrophysics Data System (ADS)

    Takam Takougang, E. M.; Bouzidi, Y.

    2016-12-01

    Multi-offset Vertical Seismic Profile (walkaway VSP) data were collected in an oil field located in a shallow water environment dominated by carbonate rocks, offshore the United Arab Emirates. The purpose of the survey was to provide structural information of the reservoir, around and away from the borehole. Five parallel lines were collected using an air gun at 25 m shot interval and 4 m source depth. A typical recording tool with 20 receivers spaced every 15.1 m, and located in a deviated borehole with an angle varying between 0 and 24 degree from the vertical direction, was used to record the data. The recording tool was deployed at different depths for each line, from 521 m to 2742 m depth. Smaller offsets were used for shallow receivers and larger offsets for deeper receivers. The lines merged to form the input dataset for waveform tomography. The total length of the combined lines was 9 km, containing 1344 shots and 100 receivers in the borehole located half-way down. Acoustic full waveform inversion was applied in the frequency domain to derive a high resolution velocity model. The final velocity model derived after the inversion using the frequencies 5-40 Hz, showed good correlation with velocities estimated from vertical incidence VSP and sonic log, confirming the success of the inversion. The velocity model showed anomalous low values in areas that correlate with known location of hydrocarbon reservoir. Pre-stack depth Reverse time migration was then applied using the final velocity model from waveform inversion and the up-going wavefield from the input data. The final estimated source signature from waveform inversion was used as input source for reverse time migration. To save computational memory and time, every 3 shots were used during reverse time migration and the data were low-pass filtered to 30 Hz. Migration artifacts were attenuated using a second order derivative filter. The final migration image shows a good correlation with the waveform

  14. Extending compile-time reverse mode and exploiting partial separability in ADIFOR. ADIFOR Working Note No. 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bischof, C.H.; El-Khadiri, M.

    1992-10-01

    The numerical methods employed in the solution of many scientific computing problems require the computation of the gradient of a function f: R{sup n} {yields} R. ADIFOR is a source translator that, given a collection of subroutines to compute f, generates Fortran 77 code for computing the derivative of this function. Using the so-called torsion problem from the MINPACK-2 test collection as an example, this paper explores two issues in automatic differentiation: the efficient computation of derivatives for partial separable functions and the use of the compile-time reverse mode for the generation of derivatives. We show that orders of magnitudesmore » of improvement are possible when exploiting partial separability and maximizing use of the reverse mode.« less

  15. Time-controllable Nkcc1 knockdown replicates reversible hearing loss in postnatal mice.

    PubMed

    Watabe, Takahisa; Xu, Ming; Watanabe, Miho; Nabekura, Junichi; Higuchi, Taiga; Hori, Karin; Sato, Mitsuo P; Nin, Fumiaki; Hibino, Hiroshi; Ogawa, Kaoru; Masuda, Masatsugu; Tanaka, Kenji F

    2017-10-19

    Identification of the causal effects of specific proteins on recurrent and partially reversible hearing loss has been difficult because of the lack of an animal model that provides reversible gene knockdown. We have developed the transgenic mouse line Actin-tTS::Nkcc1 tetO/tetO for manipulatable expression of the cochlear K + circulation protein, NKCC1. Nkcc1 transcription was blocked by the binding of a tetracycline-dependent transcriptional silencer to the tetracycline operator sequences inserted upstream of the Nkcc1 translation initiation site. Administration of the tetracycline derivative doxycycline reversibly regulated Nkcc1 knockdown. Progeny from pregnant/lactating mothers fed doxycycline-free chow from embryonic day 0 showed strong suppression of Nkcc1 expression (~90% downregulation) and Nkcc1 null phenotypes at postnatal day 35 (P35). P35 transgenic mice from mothers fed doxycycline-free chow starting at P0 (delivery) showed weaker suppression of Nkcc1 expression (~70% downregulation) and less hearing loss with mild cochlear structural changes. Treatment of these mice at P35 with doxycycline for 2 weeks reactivated Nkcc1 transcription to control levels and improved hearing level at high frequency; i.e., these doxycycline-treated mice exhibited partially reversible hearing loss. Thus, development of the Actin-tTS::Nkcc1 tetO/tetO transgenic mouse line provides a mouse model for the study of variable hearing loss through reversible knockdown of Nkcc1.

  16. A reversible fluorescent probe for real-time live-cell imaging and quantification of endogenous hydropolysulfides.

    PubMed

    Umezawa, Keitaro; Kamiya, Mako; Urano, Yasuteru

    2018-05-23

    The chemical biology of reactive sulfur species, including hydropolysulfides, has been a subject undergoing intense study in recent years, but further understanding of their 'intact' function in living cells has been limited due to a lack of appropriate analytical tools. In order to overcome this limitation, we developed a new type of fluorescent probe which reversibly and selectively reacts to hydropolysulfides. The probe enables live-cell visualization and quantification of endogenous hydropolysulfides without interference from intrinsic thiol species such as glutathione. Additionally, real-time reversible monitoring of oxidative-stress-induced fluctuation of intrinsic hydropolysulfides has been achieved with a temporal resolution in the order of seconds, a result which has not yet been realized using conventional methods. These results reveal the probe's versatility as a new fluorescence imaging tool to understand the function of intracellular hydropolysulfides. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect of the stimulus frequency and pulse number of repetitive transcranial magnetic stimulation on the inter-reversal time of perceptual reversal on the right superior parietal lobule

    NASA Astrophysics Data System (ADS)

    Nojima, Kazuhisa; Ge, Sheng; Katayama, Yoshinori; Ueno, Shoogo; Iramina, Keiji

    2010-05-01

    The aim of this study is to investigate the effect of the stimulus frequency and pulses number of repetitive transcranial magnetic stimulation (rTMS) on the inter-reversal time (IRT) of perceptual reversal on the right superior parietal lobule (SPL). The spinning wheel illusion was used as the ambiguous figures stimulation in this study. To investigate the rTMS effect over the right SPL during perceptual reversal, 0.25 Hz 60 pulse, 1 Hz 60 pulse, 0.5 Hz 120 pulse, 1 Hz 120 pulse, and 1 Hz 240 pulse biphasic rTMS at 90% of resting motor threshold was applied over the right SPL and the right posterior temporal lobe (PTL), respectively. As a control, a no TMS was also conducted. It was found that rTMS on 0.25 Hz 60 pulse and 1 Hz 60 pulse applied over the right SPL caused shorter IRT. In contrast, it was found that rTMS on 1 Hz 240-pulse applied over the right SPL caused longer IRT. On the other hand, there is no significant difference between IRTs when the rTMS on 0.5 Hz 120 pulse and 1 Hz 120 pulse were applied over the right SPL. Therefore, the applying of rTMS over the right SPL suggests that the IRT of perceptual reversal is effected by the rTMS conditions such as the stimulus frequency and the number of pulses.

  18. Elastic and acoustic wavefield decompositions and application to reverse time migrations

    NASA Astrophysics Data System (ADS)

    Wang, Wenlong

    P- and S-waves coexist in elastic wavefields, and separation between them is an essential step in elastic reverse-time migrations (RTMs). Unlike the traditional separation methods that use curl and divergence operators, which do not preserve the wavefield vector component information, we propose and compare two vector decomposition methods, which preserve the same vector components that exist in the input elastic wavefield. The amplitude and phase information is automatically preserved, so no amplitude or phase corrections are required. The decoupled propagation method is extended from elastic to viscoelastic wavefields. To use the decomposed P and S vector wavefields and generate PP and PS images, we create a new 2D migration context for isotropic, elastic RTM which includes PS vector decomposition; the propagation directions of both incident and reflected P- and S-waves are calculated directly from the stress and particle velocity definitions of the decomposed P- and S-wave Poynting vectors. Then an excitation-amplitude image condition that scales the receiver wavelet by the source vector magnitude produces angle-dependent images of PP and PS reflection coefficients with the correct polarities, polarization, and amplitudes. It thus simplifies the process of obtaining PP and PS angle-domain common-image gathers (ADCIGs); it is less effort to generate ADCIGs from vector data than from scalar data. Besides P- and S-waves decomposition, separations of up- and down-going waves are also a part of processing of multi-component recorded data and propagating wavefields. A complex trace based up/down separation approach is extended from acoustic to elastic, and combined with P- and S-wave decomposition by decoupled propagation. This eliminates the need for a Fourier transform over time, thereby significantly reducing the storage cost and improving computational efficiency. Wavefield decomposition is applied to both synthetic elastic VSP data and propagating wavefield

  19. Time reversal violation in radiative beta decay: experimental plans

    NASA Astrophysics Data System (ADS)

    Behr, J. A.; McNeil, J.; Anholm, M.; Gorelov, A.; Melconian, D.; Ashery, D.

    2017-01-01

    Some explanations for the excess of matter over antimatter in the universe involve sources of time reversal violation (TRV) in addition to the one known in the standard model of particle physics. We plan to search for TRV in a correlation between the momenta of the beta, neutrino, and the radiative gamma sometimes emitted in nuclear beta decay. Correlations involving three (out of four) momenta are sensitive at lowest order to different TRV physics than observables involving spin, such as electric dipole moments and spin-polarized beta decay correlations. Such experiments have been done in radiative kaon decay, but not in systems involving the lightest generation of quarks. An explicit low-energy physics model being tested produces TRV effects in the Fermi beta decay of the neutron, tritium, or some positron-decaying isotopes. We will present plans to measure the TRV asymmetry in radiative beta decay of laser-trapped 38mK at better than 0.01 sensitivity, including suppression of background from positron annihilation. Supported by NSERC, D.O.E., Israel Science Foundation. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.

  20. Confirming Time-reversal Symmetry of a Directed Percolation Phase Transition in a Model of Neutral Evolutionary Dynamics

    NASA Astrophysics Data System (ADS)

    Ordway, Stephen; King, Dawn; Bahar, Sonya

    Reaction-diffusion processes, such as branching-coalescing random walks, can be used to describe the underlying dynamics of nonequilibrium phase transitions. In an agent-based, neutral model of evolutionary dynamics, we have previously shown that our system undergoes a continuous, nonequilibrium phase transition, from extinction to survival, as various system parameters were tuned. This model was shown to belong to the directed percolation (DP) universality class, by measuring the critical exponents corresponding to correlation length ξ⊥, correlation time ξ| |, and particle density β. The fourth critical exponent that defines the DP universality class is β', which measures the survival probability of growth from a single seed organism. Since DP universality is theorized to have time-reversal symmetry, it is assumed that β = β '. In order to confirm the existence of time-reversal symmetry in our model, we evaluate the system growth from a single asexually reproducing organism. Importantly, the critical exponent β' could be useful for comparison to experimental studies of phase transitions in biological systems, since observing growth of microbial populations is significantly easier than observing death. This research was supported by funding from the James S. McDonnell Foundation.

  1. Monitoring of Pre-Load on Rock Bolt Using Piezoceramic-Transducer Enabled Time Reversal Method.

    PubMed

    Huo, Linsheng; Wang, Bo; Chen, Dongdong; Song, Gangbing

    2017-10-27

    Rock bolts ensure structural stability for tunnels and many other underground structures. The pre-load on a rock bolt plays an important role in the structural reinforcement and it is vital to monitor the pre-load status of rock bolts. In this paper, a rock bolt pre-load monitoring method based on the piezoceramic enabled time reversal method is proposed. A lead zirconate titanate (PZT) patch transducer, which works as an actuator to generate stress waves, is bonded onto the anchor plate of the rock bolt. A smart washer, which is fabricated by sandwiching a PZT patch between two metal rings, is installed between the hex nut and the anchor plate along the rock bolt. The smart washer functions as a sensor to detect the stress wave. With the increase of the pre-load values on the rock bolt, the effective contact surface area between the smart washer and the anchor plate, benefiting the stress wave propagation crossing the contact surface. With the help of time reversal technique, experimental results reveal that the magnitude of focused signal clearly increases with the increase of the pre-load on a rock bolt before the saturation which happens beyond a relatively high value of the pre-load. The proposed method provides an innovative and real time means to monitor the pre-load level of a rock bolt. By employing this method, the pre-load degradation process on a rock bolt can be clearly monitored. Please note that, currently, the proposed method applies to only new rock bolts, on which it is possible to install the PZT smart washer.

  2. Translation of time-reversal violation in the neutral K-meson system into a table-top mechanical system

    NASA Astrophysics Data System (ADS)

    Reiser, Andreas; Schubert, Klaus R.; Stiewe, Jürgen

    2012-08-01

    Weak interactions break time-reversal (T) symmetry in the two-state system of neutral K-mesons. We present and discuss a two-state mechanical system, i.e. a Foucault-type pendulum on a rotating table, for a full representation of {K^0}{{\\overlineK}{}^0} transitions by the pendulum motions including T violation. The pendulum moves with two different oscillation frequencies and two different magnetic dampings. Its equation of motion is identical to the differential equation for the real part of the CPT-symmetric K-meson wavefunction. The pendulum is able to represent microscopic CP and T violation with CPT symmetry owing to the macroscopic Coriolis force, which breaks the symmetry under reversal-of-motion. Video clips of the pendulum motions are given as supplementary material.

  3. Imaging Fracking Zones by Microseismic Reverse Time Migration for Downhole Microseismic Monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Zhang, H.

    2015-12-01

    Hydraulic fracturing is an engineering tool to create fractures in order to better recover oil and gas from low permeability reservoirs. Because microseismic events are generally associated with fracturing development, microseismic monitoring has been used to evaluate the fracking process. Microseismic monitoring generally relies on locating microseismic events to understand the spatial distribution of fractures. For the multi-stage fracturing treatment, fractures created in former stages are strong scatterers in the medium and can induce strong scattering waves on the waveforms for microseismic events induced during later stages. In this study, we propose to take advantage of microseismic scattering waves to image fracking zones by using seismic reverse time migration method. For downhole microseismic monitoring that involves installing a string of seismic sensors in a borehole near the injection well, the observation geometry is actually similar to the VSP (vertical seismic profile) system. For this reason, we adapt the VSP migration method for the common shot gather to the common event gather. Microseismic reverse-time migration method involves solving wave equation both forward and backward in time for each microseismic event. At current stage, the microseismic RTM is based on 2D acoustic wave equation (Zhang and Sun, 2008), solved by the finite-difference method with PML absorbing boundary condition applied to suppress the reflections of artificial boundaries. Additionally, we use local wavefield decomposition instead of cross-correlation imaging condition to suppress the imaging noise. For testing the method, we create a synthetic dataset for a downhole microseismic monitoring system with multiple fracking stages. It shows that microseismic migration using individual event is able to clearly reveal the fracture zone. The shorter distance between fractures and the microseismic event the clearer the migration image is. By summing migration images for many

  4. Acoustic Longitudinal Field NIF Optic Feature Detection Map Using Time-Reversal & MUSIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, S K

    2006-02-09

    We developed an ultrasonic longitudinal field time-reversal and MUltiple SIgnal Classification (MUSIC) based detection algorithm for identifying and mapping flaws in fused silica NIF optics. The algorithm requires a fully multistatic data set, that is one with multiple, independently operated, spatially diverse transducers, each transmitter of which, in succession, launches a pulse into the optic and the scattered signal measured and recorded at every receiver. We have successfully localized engineered ''defects'' larger than 1 mm in an optic. We confirmed detection and localization of 3 mm and 5 mm features in experimental data, and a 0.5 mm in simulated datamore » with sufficiently high signal-to-noise ratio. We present the theory, experimental results, and simulated results.« less

  5. Pseudospectral reverse time migration based on wavefield decomposition

    NASA Astrophysics Data System (ADS)

    Du, Zengli; Liu, Jianjun; Xu, Feng; Li, Yongzhang

    2017-05-01

    The accuracy of seismic numerical simulations and the effectiveness of imaging conditions are important in reverse time migration studies. Using the pseudospectral method, the precision of the calculated spatial derivative of the seismic wavefield can be improved, increasing the vertical resolution of images. Low-frequency background noise, generated by the zero-lag cross-correlation of mismatched forward-propagated and backward-propagated wavefields at the impedance interfaces, can be eliminated effectively by using the imaging condition based on the wavefield decomposition technique. The computation complexity can be reduced when imaging is performed in the frequency domain. Since the Fourier transformation in the z-axis may be derived directly as one of the intermediate results of the spatial derivative calculation, the computation load of the wavefield decomposition can be reduced, improving the computation efficiency of imaging. Comparison of the results for a pulse response in a constant-velocity medium indicates that, compared with the finite difference method, the peak frequency of the Ricker wavelet can be increased by 10-15 Hz for avoiding spatial numerical dispersion, when the second-order spatial derivative of the seismic wavefield is obtained using the pseudospectral method. The results for the SEG/EAGE and Sigsbee2b models show that the signal-to-noise ratio of the profile and the imaging quality of the boundaries of the salt dome migrated using the pseudospectral method are better than those obtained using the finite difference method.

  6. Selective Mode Focusing in a Plate of Arbitrary Shape Applying Time Reversal Mirrors

    DOE PAGES

    Payan, Cedric; Remillieux, Marcel C.; Bas, Pierre-Yves Le; ...

    2017-11-01

    In this study, a time reversal mirror is used to remotely focus symmetric or antisymmetric modes in a plate of arbitrary shape without the need of precise knowledge about material properties and geometry. The addition or subtraction of the forward motions recorded by two laser beams located on both sides of the plate allows, respectively, to focus a symmetric or an antisymmetric mode. The concept is validated using experimental and numerical analysis on an aluminum plate of complex machined geometry which exhibits various thicknesses as well as a bi-materials zone. Finally, the limitations and possible ways to overcome them aremore » then presented.« less

  7. Selective Mode Focusing in a Plate of Arbitrary Shape Applying Time Reversal Mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payan, Cedric; Remillieux, Marcel C.; Bas, Pierre-Yves Le

    In this study, a time reversal mirror is used to remotely focus symmetric or antisymmetric modes in a plate of arbitrary shape without the need of precise knowledge about material properties and geometry. The addition or subtraction of the forward motions recorded by two laser beams located on both sides of the plate allows, respectively, to focus a symmetric or an antisymmetric mode. The concept is validated using experimental and numerical analysis on an aluminum plate of complex machined geometry which exhibits various thicknesses as well as a bi-materials zone. Finally, the limitations and possible ways to overcome them aremore » then presented.« less

  8. Time-reversal symmetry-breaking superconductivity in epitaxial bismuth/nickel bilayers.

    PubMed

    Gong, Xinxin; Kargarian, Mehdi; Stern, Alex; Yue, Di; Zhou, Hexin; Jin, Xiaofeng; Galitski, Victor M; Yakovenko, Victor M; Xia, Jing

    2017-03-01

    Superconductivity that spontaneously breaks time-reversal symmetry (TRS) has been found, so far, only in a handful of three-dimensional (3D) crystals with bulk inversion symmetry. We report an observation of spontaneous TRS breaking in a 2D superconducting system without inversion symmetry: the epitaxial bilayer films of bismuth and nickel. The evidence comes from the onset of the polar Kerr effect at the superconducting transition in the absence of an external magnetic field, detected by the ultrasensitive loop-less fiber-optic Sagnac interferometer. Because of strong spin-orbit interaction and lack of inversion symmetry in a Bi/Ni bilayer, superconducting pairing cannot be classified as singlet or triplet. We propose a theoretical model where magnetic fluctuations in Ni induce the superconducting pairing of the [Formula: see text] orbital symmetry between the electrons in Bi. In this model, the order parameter spontaneously breaks the TRS and has a nonzero phase winding number around the Fermi surface, thus making it a rare example of a 2D topological superconductor.

  9. Time-reversal symmetry-breaking superconductivity in epitaxial bismuth/nickel bilayers

    DOE PAGES

    Gong, Xinxin; Kargarian, Mehdi; Stern, Alex; ...

    2017-03-31

    Superconductivity that spontaneously breaks time-reversal symmetry (TRS) has been found, so far, only in a handful of three-dimensional (3D) crystals with bulk inversion symmetry. We report an observation of spontaneous TRS breaking in a 2D superconducting system without inversion symmetry: the epitaxial bilayer films of bismuth and nickel. The evidence comes from the onset of the polar Kerr effect at the superconducting transition in the absence of an external magnetic field, detected by the ultrasensitive loop-less fiber-optic Sagnac interferometer. Because of strong spin-orbit interaction and lack of inversion symmetry in a Bi/Ni bilayer, superconducting pairing cannot be classified as singletmore » or triplet.We propose a theoretical model where magnetic fluctuations in Ni induce the superconducting pairing of the d xy ± id x2-y2 orbital symmetry between the electrons in Bi. In this model, the order parameter spontaneously breaks the TRS and has a nonzero phase winding number around the Fermi surface, thus making it a rare example of a 2D topological superconductor.« less

  10. Josephson current signatures of the Majorana flat bands on the surface of time-reversal-invariant Weyl and Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Chen, Anffany; Pikulin, Dmitry I.; Franz, Marcel

    A linear Josephson junction mediated by the surface states of a time-reversal-invariant Weyl or Dirac semimetal localizes Majorana flat bands protected by the time-reversal symmetry. We show that as a result, the Josephson current exhibits a discontinuous jump at π phase difference which can serve as an experimental signature of the Majorana bands. The magnitude of the jump scales proportionally to the junction length and the momentum space distance between the Weyl nodes projected onto the junction. It also exhibits a characteristic dependence on the junction orientation. We demonstrate that the jump is robust against the effects of non-zero temperature and weak non-magnetic disorder. This work was supported by NSERC and CIfAR. In addition A.C. acknowledges support by the 2016 Boulder Summer School for Condensed Matter and Materials Physics through NSF Grant DMR-13001648.

  11. Experimental demonstration of multiuser communication in deep water using time reversal.

    PubMed

    Shimura, T; Ochi, H; Song, H C

    2013-10-01

    Multiuser communication is demonstrated using experimental data (450-550 Hz) collected in deep water, south of Japan. The multiple users are spatially distributed either in depth or range while a 114-m long, 20-element vertical array (i.e., base station) is deployed to around the sound channel axis (~1000 m). First, signals received separately from ranges of 150 km and 180 km at various depths are combined asynchronously to generate multiuser communication sequences for subsequent processing, achieving an aggregate data rate of 300 bits/s for up to three users. Adaptive time reversal is employed to separate collided packets at the base station, followed by a single channel decision feedback equalizer. Then it is demonstrated that two users separated by 3 km in range at ~1000 m depth can transmit information simultaneously to the base station at ~500 km range with an aggregate data rate of 200 bits/s.

  12. Time Course, Behavioral Safety, and Protective Efficacy of Centrally Active Reversible Acetylcholinesterase Inhibitors in Cynomolgus Macaques.

    PubMed

    Hamilton, Lindsey R; Schachter, Steven C; Myers, Todd M

    2017-07-01

    Galantamine hydrobromide and (-)huperzine A, centrally active reversible acetylcholinesterase inhibitors, are potentially superior to the current standard, pyridostigmine bromide, as a pretreatment for organophosphorus chemical warfare nerve agent intoxication. Galantamine, huperzine, and pyridostigmine were compared for time course of acetylcholinesterase inhibition in 12 cynomolgus macaques. Although both galantamine and huperzine shared a similar time course profile for acetylcholinesterase inhibition, huperzine was 88 times more potent than galantamine. The dose for 50% acetylcholinesterase inhibition (ID 50 ) was 4.1 ug/kg for huperzine, 362 ug/kg for galantamine, and 30.9 ug/kg for pyridostigmine. In a safety assessment, galantamine, huperzine, and pyridostigmine were examined using an operant time-estimation task. Huperzine and pyridostigmine were devoid of behavioral toxicity, whereas galantamine was behaviorally toxic at doses producing peak acetylcholinesterase inhibition of about 50% and higher. Following pretreatment with galantamine, huperzine or pyridostigmine, monkeys were challenged with the median lethal dose of soman at the time of peak acetylcholinesterase inhibition and evaluated for overt signs of soman toxicity (cholinergic crisis, convulsions). Both huperzine and galantamine were equally effective at preventing overt signs of soman toxicity, but neither drug was capable of preventing soman-induced neurobehavioral disruption. In contrast, three of four pyridostigmine-pretreated animals exposed to soman exhibited convulsions and required therapy. Full functional recovery required 3-16 days. The degree of acetylcholinesterase inhibition was lower for pyridostigmine, but rates of recovery of acetylcholinesterase activity following soman challenge were comparable for all drug pretreatments. Huperzine may be the more promising centrally active reversible acetylcholinesterase inhibitor due to its greater potency and superior safety profile.

  13. The MTV experiment: a test of time reversal symmetry using polarized 8Li

    NASA Astrophysics Data System (ADS)

    Murata, J.; Baba, H.; Behr, J. A.; Hirayama, Y.; Iguri, T.; Ikeda, M.; Kato, T.; Kawamura, H.; Kishi, R.; Levy, C. D. P.; Nakaya, Y.; Ninomiya, K.; Ogawa, N.; Onishi, J.; Openshaw, R.; Pearson, M.; Seitaibashi, E.; Tanaka, S.; Tanuma, R.; Totsuka, Y.; Toyoda, T.

    2014-01-01

    The MTV ( Mott Polarimetry for T- Violation Experiment) experiment at TRIUMF-ISAC ( Isotope Separator and ACcelerator), which aims to achieve the highest precision test of time reversal symmetry in polarized nuclear beta decay by measuring a triple correlation ( R-correlation), is motivated by the search for a new physics beyond the Standard Model. In this experiment, the existence of non-zero transverse electron polarization is examined utilizing the analyzing power of Mott scattering from a thin metal foil. Backward scattering electron tracks are measured using a multi-wire drift chamber for the first time. The MTV experiment was commissioned at ISAC in 2009 using an 80 % polarized 8Li beam at 107 pps, resulting in 0.1 % statistical precision on the R-parameter in the first physics run performed in 2010. Next generation cylindrical drift chamber (CDC) is now being installed for the future run.

  14. Sperm harvesting and cryopreservation during vasectomy reversal is not cost effective.

    PubMed

    Boyle, Karen E; Thomas, Anthony J; Marmar, Joel L; Hirshberg, Steven; Belker, Arnold M; Jarow, Jonathan P

    2006-04-01

    To determine whether sperm harvesting and cryopreservation at the time of vasectomy reversal is cost-effective. Model of actual costs and results at five institutions. Multicenter study comprising five centers, including university hospitals and private practices. Men undergoing vasectomy reversal. We established two models for vasectomy reversal. The first model was sperm harvesting and cryopreservation at the time of vasectomy reversal. The second model was sperm harvesting at the time of IVF only if the patient remained azoospermic after vasectomy reversal. Vasectomy reversal procedures modeled included bilateral vasovasostomy and bilateral epididymovasostomy. The costs for each procedure at the five institutions were collated and median costs determined. Median cost of procedure and calculated financial comparisons. The median cost of testicular sperm extraction/cryopreservation performed at the time of bilateral vasovasostomy was $1,765 (range, $1,025-$2,800). The median cost of microsurgical epididymal sperm aspiration or testicular sperm extraction with cryopreservation performed at the time of epididymovasostomy was $1,209 (range, $905-$2,488). The average of the median costs for percutaneous sperm aspiration or testicular sperm aspiration for those patients with a failed vasectomy reversal was $725 (range, $400-$1,455). Sperm retrieval with cryopreservation at the time of vasectomy reversal is not a cost-effective management strategy.

  15. Microseismic imaging using Geometric-mean Reverse-Time Migration in Hydraulic Fracturing Monitoring

    NASA Astrophysics Data System (ADS)

    Yin, J.; Ng, R.; Nakata, N.

    2017-12-01

    Unconventional oil and gas exploration techniques such as hydraulic fracturing are associated with microseismic events related to the generation and development of fractures. For example, hydraulic fracturing, which is popular in Southern Oklahoma, produces earthquakes that are greater than magnitude 2.0. Finding the accurate locations, and mechanisms, of these events provides important information of local stress conditions, fracture distribution, hazard assessment, and economical impact. The accurate source location is also important to separate fracking-induced and wastewater disposal induced seismicity. Here, we implement a wavefield-based imaging method called Geometric-mean Reverse-Time Migration (GmRTM), which takes the advantage of accurate microseismic location based on wavefield back projection. We apply GmRTM to microseismic data collected during hydraulic fracturing for imaging microseismic source locations, and potentially, fractures. Assuming an accurate velocity model, GmRTM can improve the spatial resolution of source locations compared to HypoDD or P/S travel-time based methods. We will discuss the results from GmRTM and HypoDD using this field dataset and synthetic data.

  16. Time-reversal imaging techniques applied to tremor waveforms near Cholame, California to locate tectonic tremor

    NASA Astrophysics Data System (ADS)

    Horstmann, T.; Harrington, R. M.; Cochran, E. S.

    2012-12-01

    Frequently, the lack of distinctive phase arrivals makes locating tectonic tremor more challenging than locating earthquakes. Classic location algorithms based on travel times cannot be directly applied because impulsive phase arrivals are often difficult to recognize. Traditional location algorithms are often modified to use phase arrivals identified from stacks of recurring low-frequency events (LFEs) observed within tremor episodes, rather than single events. Stacking the LFE waveforms improves the signal-to-noise ratio for the otherwise non-distinct phase arrivals. In this study, we apply a different method to locate tectonic tremor: a modified time-reversal imaging approach that potentially exploits the information from the entire tremor waveform instead of phase arrivals from individual LFEs. Time reversal imaging uses the waveforms of a given seismic source recorded by multiple seismometers at discrete points on the surface and a 3D velocity model to rebroadcast the waveforms back into the medium to identify the seismic source location. In practice, the method works by reversing the seismograms recorded at each of the stations in time, and back-propagating them from the receiver location individually into the sub-surface as a new source time function. We use a staggered-grid, finite-difference code with 2.5 ms time steps and a grid node spacing of 50 m to compute the rebroadcast wavefield. We calculate the time-dependent curl field at each grid point of the model volume for each back-propagated seismogram. To locate the tremor, we assume that the source time function back-propagated from each individual station produces a similar curl field at the source position. We then cross-correlate the time dependent curl field functions and calculate a median cross-correlation coefficient at each grid point. The highest median cross-correlation coefficient in the model volume is expected to represent the source location. For our analysis, we use the velocity model of

  17. A model for inferring transport rates from observed confinement times in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren C.; Milroy, Richard D.; Slough, John T.

    1985-03-01

    A one-dimensional transport model is developed to simulate the confinement of plasma and magnetic flux in a field-reversed configuration. Given the resistivity, the confinement times can be calculated. Approximate expressions are found which yield the magnitude and gross profile of the resistivity if the confinement times are known. These results are applied to experimental data from experiments, primarily TRX-1, to uncover trends in the transport properties. Several important conclusions emerge. The transport depends profoundly, and inexplicably, on the plasma formation mode. The inferred transport differs in several ways from the predictions of local lower-hybrid-drift turbulence theory. Finally, the gross resistivity exhibits an unusual trend with xs (separatrix radius rs divided by the conducting wall radius rc ), and is peaked near the magnetic axis for certain predictable conditions.

  18. Using a modified time-reverse imaging technique to locate low-frequency earthquakes on the San Andreas Fault near Cholame, California

    USGS Publications Warehouse

    Horstmann, Tobias; Harrington, Rebecca M.; Cochran, Elizabeth S.

    2015-01-01

    We present a new method to locate low-frequency earthquakes (LFEs) within tectonic tremor episodes based on time-reverse imaging techniques. The modified time-reverse imaging technique presented here is the first method that locates individual LFEs within tremor episodes within 5 km uncertainty without relying on high-amplitude P-wave arrivals and that produces similar hypocentral locations to methods that locate events by stacking hundreds of LFEs without having to assume event co-location. In contrast to classic time-reverse imaging algorithms, we implement a modification to the method that searches for phase coherence over a short time period rather than identifying the maximum amplitude of a superpositioned wavefield. The method is independent of amplitude and can help constrain event origin time. The method uses individual LFE origin times, but does not rely on a priori information on LFE templates and families.We apply the method to locate 34 individual LFEs within tremor episodes that occur between 2010 and 2011 on the San Andreas Fault, near Cholame, California. Individual LFE location accuracies range from 2.6 to 5 km horizontally and 4.8 km vertically. Other methods that have been able to locate individual LFEs with accuracy of less than 5 km have mainly used large-amplitude events where a P-phase arrival can be identified. The method described here has the potential to locate a larger number of individual low-amplitude events with only the S-phase arrival. Location accuracy is controlled by the velocity model resolution and the wavelength of the dominant energy of the signal. Location results are also dependent on the number of stations used and are negligibly correlated with other factors such as the maximum gap in azimuthal coverage, source–station distance and signal-to-noise ratio.

  19. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction.

    PubMed

    Corman, V M; Eckerle, I; Bleicker, T; Zaki, A; Landt, O; Eschbach-Bludau, M; van Boheemen, S; Gopal, R; Ballhause, M; Bestebroer, T M; Muth, D; Müller, M A; Drexler, J F; Zambon, M; Osterhaus, A D; Fouchier, R M; Drosten, C

    2012-09-27

    We present two real-time reverse-transcription polymerase chain reaction assays for a novel human coronavirus (CoV), targeting regions upstream of the E gene (upE) or within open reading frame (ORF)1b, respectively. Sensitivity for upE is 3.4 copies per reaction (95% confidence interval (CI): 2.5–6.9 copies) or 291 copies/mL of sample. No cross-reactivity was observed with coronaviruses OC43, NL63, 229E, SARS-CoV, nor with 92 clinical specimens containing common human respiratory viruses. We recommend using upE for screening and ORF1b for confirmation.

  20. Thermodynamic glass transition in a spin glass without time-reversal symmetry

    PubMed Central

    Baños, Raquel Alvarez; Cruz, Andres; Fernandez, Luis Antonio; Gil-Narvion, Jose Miguel; Gordillo-Guerrero, Antonio; Guidetti, Marco; Iñiguez, David; Maiorano, Andrea; Marinari, Enzo; Martin-Mayor, Victor; Monforte-Garcia, Jorge; Muñoz Sudupe, Antonio; Navarro, Denis; Parisi, Giorgio; Perez-Gaviro, Sergio; Ruiz-Lorenzo, Juan Jesus; Schifano, Sebastiano Fabio; Seoane, Beatriz; Tarancon, Alfonso; Tellez, Pedro; Tripiccione, Raffaele; Yllanes, David

    2012-01-01

    Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method. PMID:22493229

  1. Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators

    NASA Astrophysics Data System (ADS)

    Chang, Cui-Zu; Li, Mingda

    2016-03-01

    The quantum anomalous Hall effect (QAHE), the last member of Hall family, was predicted to exhibit quantized Hall conductivity {σyx}=\\frac{{{e}2}}{h} without any external magnetic field. The QAHE shares a similar physical phenomenon with the integer quantum Hall effect (QHE), whereas its physical origin relies on the intrinsic topological inverted band structure and ferromagnetism. Since the QAHE does not require external energy input in the form of magnetic field, it is believed that this effect has unique potential for applications in future electronic devices with low-power consumption. More recently, the QAHE has been experimentally observed in thin films of the time-reversal symmetry breaking ferromagnetic (FM) topological insulators (TI), Cr- and V- doped (Bi,Sb)2Te3. In this topical review, we review the history of TI based QAHE, the route to the experimental observation of the QAHE in the above two systems, the current status of the research of the QAHE, and finally the prospects for future studies.

  2. Time reversal focusing of high amplitude sound in a reverberation chamber.

    PubMed

    Willardson, Matthew L; Anderson, Brian E; Young, Sarah M; Denison, Michael H; Patchett, Brian D

    2018-02-01

    Time reversal (TR) is a signal processing technique that can be used for intentional sound focusing. While it has been studied in room acoustics, the application of TR to produce a high amplitude focus of sound in a room has not yet been explored. The purpose of this study is to create a virtual source of spherical waves with TR that are of sufficient intensity to study nonlinear acoustic propagation. A parameterization study of deconvolution, one-bit, clipping, and decay compensation TR methods is performed to optimize high amplitude focusing and temporal signal focus quality. Of all TR methods studied, clipping is shown to produce the highest amplitude focal signal. An experiment utilizing eight horn loudspeakers in a reverberation chamber is done with the clipping TR method. A peak focal amplitude of 9.05 kPa (173.1 dB peak re 20 μPa) is achieved. Results from this experiment indicate that this high amplitude focusing is a nonlinear process.

  3. [Difference of three standard curves of real-time reverse-transcriptase PCR in viable Vibrio parahaemolyticus quantification].

    PubMed

    Jin, Mengtong; Sun, Wenshuo; Li, Qin; Sun, Xiaohong; Pan, Yingjie; Zhao, Yong

    2014-04-04

    We evaluated the difference of three standard curves in quantifying viable Vibrio parahaemolyticus in samples by real-time reverse-transcriptase PCR (Real-time RT-PCR). The standard curve A was established by 10-fold diluted cDNA. The cDNA was reverse transcripted after RNA synthesized in vitro. The standard curve B and C were established by 10-fold diluted cDNA. The cDNA was synthesized after RNA isolated from Vibrio parahaemolyticus in pure cultures (10(8) CFU/mL) and shrimp samples (10(6) CFU/g) (Standard curve A and C were proposed for the first time). Three standard curves were performed to quantitatively detect V. parahaemolyticus in six samples, respectively (Two pure cultured V. parahaemolyticus samples, two artificially contaminated cooked Litopenaeus vannamei samples and two artificially contaminated Litopenaeus vannamei samples). Then we evaluated the quantitative results of standard curve and the plate counting results and then analysed the differences. The three standard curves all show a strong linear relationship between the fractional cycle number and V. parahaemolyticus concentration (R2 > 0.99); The quantitative results of Real-time PCR were significantly (p < 0.05) lower than the results of plate counting. The relative errors compared with the results of plate counting ranked standard curve A (30.0%) > standard curve C (18.8%) > standard curve B (6.9%); The average differences between standard curve A and standard curve B and C were - 2.25 Lg CFU/mL and - 0.75 Lg CFU/mL, respectively, and the mean relative errors were 48.2% and 15.9%, respectively; The average difference between standard curve B and C was among (1.47 -1.53) Lg CFU/mL and the average relative errors were among 19.0% - 23.8%. Standard curve B could be applied to Real-time RT-PCR when quantify the number of viable microorganisms in samples.

  4. An Introductory-Geology Exercise on the Polar-Reversal Time Scale.

    ERIC Educational Resources Information Center

    Shea, James Herbert

    1986-01-01

    Presents a three-part exercise which provides undergraduates with opportunities to work with data related to the earth's magnetic field. Includes student materials for activities in determining the history of the earth's magnetic field, in finding the general pattern of declination, and for looking for a polar reversal history. (ML)

  5. QUANTIFICATION OF ENTEROVIRUS AND HEPATITIS A VIRUSES IN WELLS AND SPRINGS IN EAST TENNESSEE USING REAL-TIME REVERSE TRANSCIPTION PCR

    EPA Science Inventory

    This project involves development, validation testing and application of a fast, efficient method of quantitatively measuring occurrence and concentration of common human viral pathogens, enterovirus and hepatitis A virus, in ground water samples using real-time reverse transcrip...

  6. Ultrasound shock wave generator with one-bit time reversal in a dispersive medium, application to lithotripsy

    NASA Astrophysics Data System (ADS)

    Montaldo, Gabriel; Roux, Philippe; Derode, Arnaud; Negreira, Carlos; Fink, Mathias

    2002-02-01

    The building of high-power ultrasonic sources from piezoelectric ceramics is limited by the maximum voltage that the ceramics can endure. We have conceived a device that uses a small number of piezoelectric transducers fastened to a cylindrical metallic waveguide. A one-bit time- reversal operation transforms the long-lasting low-level dispersed wave forms into a sharp pulse, thus taking advantage of dispersion to generate high-power ultrasound. The pressure amplitude that is generated at the focus is found to be 15 times greater than that achieved with comparable standard techniques. Applications to lithotripsy are discussed and the destructive efficiency of the system is demonstrated on pieces of chalk.

  7. Earth's magnetic moment during geomagnetic reversals

    NASA Astrophysics Data System (ADS)

    Sokoloff, D. D.

    2017-11-01

    The behavior of the dipole magnetic moment of the geomagnetic field during the reversals is considered. By analogy with the reversals of the magnetic field of the Sun, the scenario is suggested in which during the reversal the mean dipole moment becomes zero, whereas the instantaneous value of the dipole magnetic moment remains nonzero and the corresponding vector rotates from the vicinity of one geographical pole to the other. A thorough discussion concerning the definition of the mean magnetic moment, which is used in this concept, is presented. Since the behavior of the geomagnetic field during the reversal is far from stationary, the ensemble average instead of the time average has to be considered.

  8. 41 CFR 102-74.520 - How much time does the Regional Officer have to affirm or reverse the Federal agency buildings...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false How much time does the...) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Occasional Use of Public Buildings Appeals § 102-74.520 How much time does the Regional Officer have to affirm or reverse the Federal agency...

  9. Computation by symmetry operations in a structured model of the brain: Recognition of rotational invariance and time reversal

    NASA Astrophysics Data System (ADS)

    McGrann, John V.; Shaw, Gordon L.; Shenoy, Krishna V.; Leng, Xiaodan; Mathews, Robert B.

    1994-06-01

    Symmetries have long been recognized as a vital component of physical and biological systems. What we propose here is that symmetry operations are an important feature of higher brain function and result from the spatial and temporal modularity of the cortex. These symmetry operations arise naturally in the trion model of the cortex. The trion model is a highly structured mathematical realization of the Mountcastle organizational principle [Mountcastle, in The Mindful Brain (MIT, Cambridge, 1978)] in which the cortical column is the basic neural network of the cortex and is comprised of subunit minicolumns, which are idealized as trions with three levels of firing. A columnar network of a small number of trions has a large repertoire of quasistable, periodic spatial-temporal firing magic patterns (MP's), which can be excited. The MP's are related by specific symmetries: Spatial rotation, parity, ``spin'' reversal, and time reversal as well as other ``global'' symmetry operations in this abstract internal language of the brain. These MP's can be readily enhanced (as well as inherent categories of MP's) by only a small change in connection strengths via a Hebb learning rule. Learning introduces small breaking of the symmetries in the connectivities which enables a symmetry in the patterns to be recognized in the Monte Carlo evolution of the MP's. Examples of the recognition of rotational invariance and of a time-reversed pattern are presented. We propose the possibility of building a logic device from the hardware implementation of a higher level architecture of trion cortical columns.

  10. General Multimechanism Reversible-Irreversible Time-Dependent Constitutive Deformation Model Being Developed

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Arnold, Steven M.

    2001-01-01

    Since most advanced material systems (for example metallic-, polymer-, and ceramic-based systems) being currently researched and evaluated are for high-temperature airframe and propulsion system applications, the required constitutive models must account for both reversible and irreversible time-dependent deformations. Furthermore, since an integral part of continuum-based computational methodologies (be they microscale- or macroscale-based) is an accurate and computationally efficient constitutive model to describe the deformation behavior of the materials of interest, extensive research efforts have been made over the years on the phenomenological representations of constitutive material behavior in the inelastic analysis of structures. From a more recent and comprehensive perspective, the NASA Glenn Research Center in conjunction with the University of Akron has emphasized concurrently addressing three important and related areas: that is, 1) Mathematical formulation; 2) Algorithmic developments for updating (integrating) the external (e.g., stress) and internal state variables; 3) Parameter estimation for characterizing the model. This concurrent perspective to constitutive modeling has enabled the overcoming of the two major obstacles to fully utilizing these sophisticated time-dependent (hereditary) constitutive models in practical engineering analysis. These obstacles are: 1) Lack of efficient and robust integration algorithms; 2) Difficulties associated with characterizing the large number of required material parameters, particularly when many of these parameters lack obvious or direct physical interpretations.

  11. Effect of Time Dependent Bending of Current Sheets in Response to Generation of Plasma Jets and Reverse Currents

    NASA Astrophysics Data System (ADS)

    Frank, Anna

    Magnetic reconnection is a basis for many impulsive phenomena in space and laboratory plasmas accompanied by effective transformation of magnetic energy. Reconnection processes usually occur in relatively thin current sheets (CSs), which separate magnetic fields of different or opposite directions. We report on recent observations of time dependent bending of CSs, which results from plasma dynamics inside the sheet. The experiments are carried out with the CS-3D laboratory device (Institute of General Physics RAS, Moscow) [1]. The CS magnetic structure with an X line provides excitation of the Hall currents and plasma acceleration from the X line to both side edges [2]. In the presence of the guide field By the Hall currents give rise to bending of the sheet: the peripheral regions located away from the X line are deflected from CS middle plane (z=0) in the opposite directions ±z [3]. We have revealed generation of reverse currents jy near the CS edges, i.e. the currents flowing in the opposite direction to the main current in the sheet [4]. There are strong grounds to believe that reverse currents are generated by the outflow plasma jets [5], accelerated inside the sheet and penetrated into the regions with strong normal magnetic field component Bz [4]. An impressive effect of sudden change in the sign of the CS bend has been disclosed recently, when analyzing distributions of plasma density [6] and current away from the X line, in the presence of the guide field By. The CS configuration suddenly becomes opposite from that observed at the initial stage, and this effect correlates well with generation of reverse currents. Consequently this effect can be related to excitation of the reverse Hall currents owing to generation of reverse currents jy in the CS. Hence it may be concluded that CSs may exhibit time dependent vertical z-displacements, and the sheet geometry depends on excitation of the Hall currents, acceleration of plasma jets and generation of reverse

  12. Elastic least-squares reverse time migration with velocities and density perturbation

    NASA Astrophysics Data System (ADS)

    Qu, Yingming; Li, Jinli; Huang, Jianping; Li, Zhenchun

    2018-02-01

    Elastic least-squares reverse time migration (LSRTM) based on the non-density-perturbation assumption can generate false-migrated interfaces caused by density variations. We perform an elastic LSRTM scheme with density variations for multicomponent seismic data to produce high-quality images in Vp, Vs and ρ components. However, the migrated images may suffer from crosstalk artefacts caused by P- and S-waves coupling in elastic LSRTM no matter what model parametrizations used. We have proposed an elastic LSRTM with density variations method based on wave modes separation to reduce these crosstalk artefacts by using P- and S-wave decoupled elastic velocity-stress equations to derive demigration equations and gradient formulae with respect to Vp, Vs and ρ. Numerical experiments with synthetic data demonstrate the capability and superiority of the proposed method. The imaging results suggest that our method promises imaging results with higher quality and has a faster residual convergence rate. Sensitivity analysis of migration velocity, migration density and stochastic noise verifies the robustness of the proposed method for field data.

  13. Domino model for geomagnetic field reversals.

    PubMed

    Mori, N; Schmitt, D; Wicht, J; Ferriz-Mas, A; Mouri, H; Nakamichi, A; Morikawa, M

    2013-01-01

    We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting of a system of interacting macrospins aligned along a ring. Each spin has unit length and is described by its angle with respect to the rotational axis. The orientation of the spins can vary in time due to spin-spin interaction and random forcing. We statistically describe the behavior of the sum of all spins for different parameters. The term "domino model" in the title refers to the interaction among the spins. We compare the model results with geomagnetic field reversals and dynamo simulations and find strikingly similar behavior. The aggregate of all spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking an excursion). Most of the time the spins are aligned or antialigned and deviate only slightly with respect to the rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole). Reversals are fast compared to the times in between and they occur at random times, both in the model and in the case of the Earth's magnetic field.

  14. How decision reversibility affects motivation.

    PubMed

    Bullens, Lottie; van Harreveld, Frenk; Förster, Jens; Higgins, Tory E

    2014-04-01

    The present research examined how decision reversibility can affect motivation. On the basis of extant findings, it was suggested that 1 way it could affect motivation would be to strengthen different regulatory foci, with reversible decision making, compared to irreversible decision making, strengthening prevention-related motivation relatively more than promotion-related motivation. If so, then decision reversibility should have effects associated with the relative differences between prevention and promotion motivation. In 5 studies, we manipulated the reversibility of a decision and used different indicators of regulatory focus motivation to test these predictions. Specifically, Study 1 tested for differences in participants' preference for approach versus avoidance strategies toward a desired end state. In Study 2, we used speed and accuracy performance as indicators of participants' regulatory motivation, and in Study 3, we measured global versus local reaction time performance. In Study 4, we approached the research question in a different way, making use of the value-from-fit hypothesis (Higgins, 2000, 2002). We tested whether a fit between chronic regulatory focus and focus induced by the reversibility of the decision increased participants' subjective positive feelings about the decision outcome. Finally, in Study 5, we tested whether regulatory motivation, induced by decision reversibility, also influenced participants' preference in specific product features. The results generally support our hypothesis showing that, compared to irreversible decisions, reversible decisions strengthen a prevention focus more than a promotion focus. Implications for research on decision making are discussed.

  15. Extending the boundaries of reverse engineering

    NASA Astrophysics Data System (ADS)

    Lawrie, Chris

    2002-04-01

    In today's market place the potential of Reverse Engineering as a time compression tool is commonly lost under its traditional definition. The term Reverse Engineering was coined way back at the advent of CMM machines and 3D CAD systems to describe the process of fitting surfaces to captured point data. Since these early beginnings, downstream hardware scanning and digitising systems have evolved in parallel with an upstream demand, greatly increasing the potential of a point cloud data set within engineering design and manufacturing processes. The paper will discuss the issues surrounding Reverse Engineering at the turn of the millennium.

  16. High resolution crustal image of South California Continental Borderland: Reverse time imaging including multiples

    NASA Astrophysics Data System (ADS)

    Bian, A.; Gantela, C.

    2014-12-01

    Strong multiples were observed in marine seismic data of Los Angeles Regional Seismic Experiment (LARSE).It is crucial to eliminate these multiples in conventional ray-based or one-way wave-equation based depth image methods. As long as multiples contain information of target zone along travelling path, it's possible to use them as signal, to improve the illumination coverage thus enhance the image quality of structural boundaries. Reverse time migration including multiples is a two-way wave-equation based prestack depth image method that uses both primaries and multiples to map structural boundaries. Several factors, including source wavelet, velocity model, back ground noise, data acquisition geometry and preprocessing workflow may influence the quality of image. The source wavelet is estimated from direct arrival of marine seismic data. Migration velocity model is derived from integrated model building workflow, and the sharp velocity interfaces near sea bottom needs to be preserved in order to generate multiples in the forward and backward propagation steps. The strong amplitude, low frequency marine back ground noise needs to be removed before the final imaging process. High resolution reverse time image sections of LARSE Lines 1 and Line 2 show five interfaces: depth of sea-bottom, base of sedimentary basins, top of Catalina Schist, a deep layer and a possible pluton boundary. Catalina Schist shows highs in the San Clemente ridge, Emery Knoll, Catalina Ridge, under Catalina Basin on both the lines, and a minor high under Avalon Knoll. The high of anticlinal fold in Line 1 is under the north edge of Emery Knoll and under the San Clemente fault zone. An area devoid of any reflection features are interpreted as sides of an igneous plume.

  17. Switching times of nanoscale FePt: Finite size effects on the linear reversal mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, M. O. A.; Chantrell, R. W.

    2015-04-20

    The linear reversal mechanism in FePt grains ranging from 2.316 nm to 5.404 nm has been simulated using atomistic spin dynamics, parametrized from ab-initio calculations. The Curie temperature and the critical temperature (T{sup *}), at which the linear reversal mechanism occurs, are observed to decrease with system size whilst the temperature window T{sup *}

  18. Is reverse hybrid hip replacement the solution?

    PubMed

    Lindalen, Einar; Havelin, Leif I; Nordsletten, Lars; Dybvik, Eva; Fenstad, Anne M; Hallan, Geir; Furnes, Ove; Høvik, Oystein; Röhrl, Stephan M

    2011-12-01

    Reverse hybrid hip replacement uses a cemented all-polyethylene cup and an uncemented stem. Despite increasing use of this method in Scandinavia, there has been very little documentation of results. We have therefore analyzed the results from the Norwegian Arthroplasty Register (NAR), with up to 10 years of follow-up. The NAR has been collecting data on total hip replacement (THR) since 1987. Reverse hybrid hip replacements were used mainly from 2000. We extracted data on reverse hybrid THR from this year onward until December 31, 2009, and compared the results with those from cemented implants over the same period. Specific cup/stem combinations involving 100 cases or more were selected. In addition, only combinations that were taken into use in 2005 or earlier were included. 3,963 operations in 3,630 patients were included. We used the Kaplan-Meier method and Cox regression analysis for estimation of prosthesis survival and relative risk of revision. The main endpoint was revision for any cause, but we also performed specific analyses on different reasons for revision. We found equal survival to that from cemented THR at 5 years (cemented: 97.0% (95% CI: 96.8-97.2); reverse hybrid: 96.7% (96.0-97.4)) and at 7 years (cemented: 96.0% (95.7-96.2); reverse hybrid: 95.6% (94.4-96.7)). Adjusted relative risk of revision of the reverse hybrids was 1.1 (0.9-1.4). In patients under 60 years of age, we found similar survival of the 2 groups at 5 and 7 years, with an adjusted relative risk of revision of reverse hybrids of 0.9 (0.6-1.3) compared to cemented implants. With a follow-up of up to 10 years, reverse hybrid THRs performed well, and similarly to all-cemented THRs from the same time period. The reverse hybrid method might therefore be an alternative to all-cemented THR. Longer follow-up time is needed to evaluate whether reverse hybrid hip replacement has any advantages over all-cemented THR.

  19. Superconductivity. Observation of broken time-reversal symmetry in the heavy-fermion superconductor UPt₃.

    PubMed

    Schemm, E R; Gannon, W J; Wishne, C M; Halperin, W P; Kapitulnik, A

    2014-07-11

    Models of superconductivity in unconventional materials can be experimentally differentiated by the predictions they make for the symmetries of the superconducting order parameter. In the case of the heavy-fermion superconductor UPt3, a key question is whether its multiple superconducting phases preserve or break time-reversal symmetry (TRS). We tested for asymmetry in the phase shift between left and right circularly polarized light reflected from a single crystal of UPt3 at normal incidence and found that this so-called polar Kerr effect appears only below the lower of the two zero-field superconducting transition temperatures. Our results provide evidence for broken TRS in the low-temperature superconducting phase of UPt3, implying a complex two-component order parameter for superconductivity in this system. Copyright © 2014, American Association for the Advancement of Science.

  20. Time reversal of arbitrary photonic temporal modes via nonlinear optical frequency conversion

    NASA Astrophysics Data System (ADS)

    Raymer, Michael G.; Reddy, Dileep V.; van Enk, Steven J.; McKinstrie, Colin J.

    2018-05-01

    Single-photon wave packets can carry quantum information between nodes of a quantum network. An important general operation in photon-based quantum information systems is ‘blind’ reversal of a photon’s temporal wave packet envelope, that is, the ability to reverse an envelope without knowing the temporal state of the photon. We present an all-optical means for doing so, using nonlinear-optical frequency conversion driven by a short pump pulse. The process used may be sum-frequency generation or four-wave Bragg scattering. This scheme allows for quantum operations such as a temporal-mode parity sorter. We also verify that the scheme works for arbitrary states (not only single-photon ones) of an unknown wave packet.

  1. Magnetic reversals from planetary dynamo waves.

    PubMed

    Sheyko, Andrey; Finlay, Christopher C; Jackson, Andrew

    2016-11-24

    A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes place in Earth's core, but the precise mechanism is debated. The majority of numerical geodynamo simulations that exhibit reversals operate in a regime in which the viscosity of the fluid remains important, and in which the dynamo mechanism primarily involves stretching and twisting of field lines by columnar convection. Here we present an example of another class of reversing-geodynamo model, which operates in a regime of comparatively low viscosity and high magnetic diffusivity. This class does not fit into the paradigm of reversal regimes that are dictated by the value of the local Rossby number (the ratio of advection to Coriolis force). Instead, stretching of the magnetic field by a strong shear in the east-west flow near the imaginary cylinder just touching the inner core and parallel to the axis of rotation is crucial to the reversal mechanism in our models, which involves a process akin to kinematic dynamo waves. Because our results are relevant in a regime of low viscosity and high magnetic diffusivity, and with geophysically appropriate boundary conditions, this form of dynamo wave may also be involved in geomagnetic reversals.

  2. Enriched classification of parafermionic gapped phases with time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Tao; Zhang, Guang-Ming

    2018-03-01

    Based on the recently established parafermionic matrix product states, we study the classification of one-dimensional gapped phases of parafermions with time-reversal (TR) symmetry satisfying T2=1 . Without extra symmetry, it has been found that Zp parafermionic gapped phases can be classified as topological phases, spontaneous symmetry breaking (SSB) phases, and a trivial phase, which are uniquely labeled by the divisors n of p . In the presence of TR symmetry, however, the enriched classification is characterized by three indices n , κ , and μ , where κ ∈Z2 denotes the linear or projective TR actions on the edges, and μ ∈Z2 indicates the commutation relations between the TR and (fractionalized) charge operator. For the Zr-symmetric parafermionic ground states, where r =p for trivial or topological phases, and r =p /n for SSB phases, each original gapped phase with odd r is divided into two phases, while each phase with even r is further separated into four phases. The gapped parafermionic phases with the TR symmetry include the symmetry protected topological phases, symmetry enriched topological phases, and the SSB coexisting symmetry protected topological phases. From analyzing the structures and symmetries of their reduced density matrices of these resulting topological phases, we can obtain the topologically protected degeneracies of their entanglement spectra.

  3. Mean-field studies of time reversal breaking states in super-heavy nuclei with the Gogny force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robledo, L. M., E-mail: luis.robledo@uam.es

    2015-10-15

    Recent progress on the description of time reversal breaking (odd mass and multi-quasiparticle excitation) states in super-heavy nuclei within a mean field framework and using several flavors of the Gogny interaction is reported. The study includes ground and excited states in selected odd mass isotopes of nobelium and mendelevium as well as high K isomeric states in {sup 254}No. These are two and four-quasiparticle excitations that are treated in the same self-consistent HFB plus blocking framework as the odd mass states.

  4. Communication: Photoionization of degenerate orbitals for randomly oriented molecules: The effect of time-reversal symmetry on recoil-ion momentum angular distributions

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshi-Ichi

    2018-04-01

    The photoelectron asymmetry parameter β, which characterizes the direction of electrons ejected from a randomly oriented molecular ensemble by linearly polarized light, is investigated for degenerate orbitals. We show that β is totally symmetric under the symmetry operation of the point group of a molecule, and it has mixed properties under time reversal. Therefore, all degenerate molecular orbitals, except for the case of degeneracy due to time reversal, have the same β (Wigner-Eckart theorem). The exceptions are e-type complex orbitals of the Cn, Sn, Cnh, T, and Th point groups, and calculations on boric acid (C3h symmetry) are performed as an example. However, including those point groups, all degenerate orbitals have the same β if those orbitals are real. We discuss the implications of this operator formalism for molecular alignment and photoelectron circular dichroism.

  5. Consistency of influenza A virus detection test results across respiratory specimen collection methods using real-time reverse transcription-PCR.

    PubMed

    Spencer, Sarah; Gaglani, Manjusha; Naleway, Allison; Reynolds, Sue; Ball, Sarah; Bozeman, Sam; Henkle, Emily; Meece, Jennifer; Vandermause, Mary; Clipper, Lydia; Thompson, Mark

    2013-11-01

    In our prospective cohort study, we compared the performance of nasopharyngeal, oropharyngeal, and nasal swabs for the detection of influenza virus using real-time reverse transcription-PCR assay. Joint consideration of results from oropharyngeal and nasal swabs was as effective as consideration of results from nasopharyngeal swabs alone, as measured by sensitivity and noninferiority analysis.

  6. Multipathing Via Three Parameter Common Image Gathers (CIGs) From Reverse Time Migration

    NASA Astrophysics Data System (ADS)

    Ostadhassan, M.; Zhang, X.

    2015-12-01

    A noteworthy problem for seismic exploration is effects of multipathing (both wanted or unwanted) caused by subsurface complex structures. We show that reverse time migration (RTM) combined with a unified, systematic three parameter framework that flexibly handles multipathing can be accomplished by adding one more dimension (image time) to the angle domain common image gather (ADCIG) data. RTM is widely used to generate prestack depth migration images. When using the cross-correlation image condition in 2D prestack migration in RTM, the usual practice is to sum over all the migration time steps. Thus all possible wave types and paths automatically contribute to the resulting image, including destructive wave interferences, phase shifts, and other distortions. One reason is that multipath (prismatic wave) contributions are not properly sorted and mapped in the ADCIGs. Also, multipath arrivals usually have different instantaneous attributes (amplitude, phase and frequency), and if not separated, the amplitudes and phases in the final prestack image will not stack coherently across sources. A prismatic path satisfies an image time for it's unique path; Cavalca and Lailly (2005) show that RTM images with multipaths can provide more complete target information in complex geology, as multipaths usually have different incident angles and amplitudes compared to primary reflections. If the image time slices within a cross-correlation common-source migration are saved for each image time, this three-parameter (incident angle, depth, image time) volume can be post-processed to generate separate, or composite, images of any desired subset of the migrated data. Images can by displayed for primary contributions, any combination of primary and multipath contributions (with or without artifacts), or various projections, including the conventional ADCIG (angle vs depth) plane. Examples show that signal from the true structure can be separated from artifacts caused by multiple

  7. Superactivity of peroxidase solubilized in reversed micellar systems.

    PubMed

    Setti, L; Fevereiro, P; Melo, E P; Pifferi, P G; Cabral, J M; Aires-Barros, M R

    1995-12-01

    Vaccinium mirtyllus peroxidase solubilized in reversed micelles was used for the oxidation of guaiacol. Some relevant parameters for the enzymatic activity, such as pH, w(o) (molar ratio water/surfactant), surfactant type and concentration, and cosurfactant concentration, were investigated. The peroxidase showed higher activities in reversed micelles than in aqueous solution. The stability of the peroxidase in reversed micelles was also studied, namely, the effect of w(o) and temperature on enzyme deactivation. The peroxidase displayed higher stabilities in CTAB/hexanol in isooctane reversed micelles, with half-life times higher than 500 h.

  8. Detecting a subsurface cylinder by a Time Reversal MUSIC like method

    NASA Astrophysics Data System (ADS)

    Solimene, Raffaele; Dell'Aversano, Angela; Leone, Giovanni

    2014-05-01

    In this contribution the problem of imaging a buried homogeneous circular cylinder is dealt with for a two-dimensional scalar geometry. Though the addressed geometry is extremely simple as compared to real world scenarios, it can be considered of interest for a classical GPR civil engineering applicative context: that is the subsurface prospecting of urban area in order to detect and locate buried utilities. A large body of methods for subsurface imaging have been presented in literature [1], ranging from migration algorithms to non-linear inverse scattering approaches. More recently, also spectral estimation methods, which benefit from sub-array data arrangement, have been proposed and compared in [2].Here a Time Reversal MUSIC (TRM) like method is employed. TRM has been initially conceived to detect point-like scatterers and then generalized to the case of extended scatterers [3]. In the latter case, no a priori information about the scatterers is exploited. However, utilities often can be schematized as circular cylinders. Here, we develop a TRM variant which use this information to properly tailor the steering vector while implementing TRM. Accordingly, instead of a spatial map [3], the imaging procedure returns the scatterer's parameters such as its center position, radius and dielectric permittivity. The study is developed by numerical simulations. First the free-space case is considered in order to more easily introduce the idea and the problem mathematical structure. Then the analysis is extended to the half-space case. In both situations a FDTD forward solver is used to generate the synthetic data. As usual in TRM, a multi-view/multi-static single-frequency configuration is considered and emphasis is put on the role played by the number of available sensors. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." [1] A. Randazzo and R

  9. Prestack reverse time migration for tilted transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Jang, Seonghyung; Hien, Doan Huy

    2013-04-01

    According to having interest in unconventional resource plays, anisotropy problem is naturally considered as an important step for improving the seismic image quality. Although it is well known prestack depth migration for the seismic reflection data is currently one of the powerful tools for imaging complex geological structures, it may lead to migration error without considering anisotropy. Asymptotic analysis of wave propagation in transversely isotropic (TI) media yields a dispersion relation of couple P- and SV wave modes that can be converted to a fourth order scalar partial differential equation (PDE). By setting the shear wave velocity equal zero, the fourth order PDE, called an acoustic wave equation for TI media, can be reduced to couple of second order PDE systems and we try to solve the second order PDE by the finite difference method (FDM). The result of this P wavefield simulation is kinematically similar to elastic and anisotropic wavefield simulation. We develop prestack depth migration algorithm for tilted transversely isotropic media using reverse time migration method (RTM). RTM is a method for imaging the subsurface using inner product of source wavefield extrapolation in forward and receiver wavefield extrapolation in backward. We show the subsurface image in TTI media using the inner product of partial derivative wavefield with respect to physical parameters and observation data. Since the partial derivative wavefields with respect to the physical parameters require extremely huge computing time, so we implemented the imaging condition by zero lag crosscorrelation of virtual source and back propagating wavefield instead of partial derivative wavefields. The virtual source is calculated directly by solving anisotropic acoustic wave equation, the back propagating wavefield on the other hand is calculated by the shot gather used as the source function in the anisotropic acoustic wave equation. According to the numerical model test for a simple

  10. Reversible changes in cell morphology due to cytoskeletal rearrangements measured in real-time by QCM-D.

    PubMed

    Tymchenko, Nina; Nilebäck, Erik; Voinova, Marina V; Gold, Julie; Kasemo, Bengt; Svedhem, Sofia

    2012-12-01

    The mechanical properties and responses of cells to external stimuli (including drugs) are closely connected to important phenomena such as cell spreading, motility, activity, and potentially even differentiation. Here, reversible changes in the viscoelastic properties of surface-attached fibroblasts were induced by the cytoskeleton-perturbing agent cytochalasin D, and studied in real-time by the quartz crystal microbalance with dissipation (QCM-D) technique. QCM-D is a surface sensitive technique that measures changes in (dynamically coupled) mass and viscoelastic properties close to the sensor surface, within a distance into the cell that is usually only a fraction of its size. In this work, QCM-D was combined with light microscopy to study in situ cell attachment and spreading. Overtone-dependent changes of the QCM-D responses (frequency and dissipation shifts) were first recorded, as fibroblast cells attached to protein-coated sensors in a window equipped flow module. Then, as the cell layer had stabilised, morphological changes were induced in the cells by injecting cytochalasin D. This caused changes in the QCM-D signals that were reversible in the sense that they disappeared upon removal of cytochalasin D. These results are compared to other cell QCM-D studies. Our results stress the combination of QCM-D and light microscopy to help interpret QCM-D results obtained in cell assays and thus suggests a direction to develop the QCM-D technique as an even more useful tool for real-time cell studies.

  11. Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions.

    PubMed

    Xue, Fei; MacDonald, A H

    2018-05-04

    We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.

  12. Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions

    NASA Astrophysics Data System (ADS)

    Xue, Fei; MacDonald, A. H.

    2018-05-01

    We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.

  13. Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop.

    PubMed

    Jiang, Xingxing; Cheng, Mengfan; Luo, Fengguang; Deng, Lei; Fu, Songnian; Ke, Changjian; Zhang, Minming; Tang, Ming; Shum, Ping; Liu, Deming

    2016-12-12

    A novel electro-optic chaos source is proposed on the basis of the reverse-time chaos theory and an analog-digital hybrid feedback loop. The analog output of the system can be determined by the numeric states of shift registers, which makes the system robust and easy to control. The dynamical properties as well as the complexity dependence on the feedback parameters are investigated in detail. The correlation characteristics of the system are also studied. Two improving strategies which were established in digital field and analog field are proposed to conceal the time-delay signature. The proposed scheme has the potential to be used in radar and optical secure communication systems.

  14. Consistency of Influenza A Virus Detection Test Results across Respiratory Specimen Collection Methods Using Real-Time Reverse Transcription-PCR

    PubMed Central

    Gaglani, Manjusha; Naleway, Allison; Reynolds, Sue; Ball, Sarah; Bozeman, Sam; Henkle, Emily; Meece, Jennifer; Vandermause, Mary; Clipper, Lydia; Thompson, Mark

    2013-01-01

    In our prospective cohort study, we compared the performance of nasopharyngeal, oropharyngeal, and nasal swabs for the detection of influenza virus using real-time reverse transcription-PCR assay. Joint consideration of results from oropharyngeal and nasal swabs was as effective as consideration of results from nasopharyngeal swabs alone, as measured by sensitivity and noninferiority analysis. PMID:24108606

  15. Statistical analysis of strait time index and a simple model for trend and trend reversal

    NASA Astrophysics Data System (ADS)

    Chen, Kan; Jayaprakash, C.

    2003-06-01

    We analyze the daily closing prices of the Strait Time Index (STI) as well as the individual stocks traded in Singapore's stock market from 1988 to 2001. We find that the Hurst exponent is approximately 0.6 for both the STI and individual stocks, while the normal correlation functions show the random walk exponent of 0.5. We also investigate the conditional average of the price change in an interval of length T given the price change in the previous interval. We find strong correlations for price changes larger than a threshold value proportional to T; this indicates that there is no uniform crossover to Gaussian behavior. A simple model based on short-time trend and trend reversal is constructed. We show that the model exhibits statistical properties and market swings similar to those of the real market.

  16. Specific detection of rinderpest virus by real-time reverse transcription-PCR in preclincal and clinical samples of experimentally infected cattle

    USDA-ARS?s Scientific Manuscript database

    A highly sensitive detection test for Rinderpest virus (RPV), based on a real-time reverse transcription-PCR (RT-PR) system, was developed. Five different RPV genomic targets were examined, and one was selected and optimized to detect viral RNA in infected tissue culture fluid with a level of detec...

  17. Characterization of Covalent-Reversible EGFR Inhibitors

    PubMed Central

    2017-01-01

    Within the spectrum of kinase inhibitors, covalent-reversible inhibitors (CRIs) provide a valuable alternative approach to classical covalent inhibitors. This special class of inhibitors can be optimized for an extended drug-target residence time. For CRIs, it was shown that the fast addition of thiols to electron-deficient olefins leads to a covalent bond that can break reversibly under proteolytic conditions. Research groups are just beginning to include CRIs in their arsenal of compound classes, and, with that, the understanding of this interesting set of chemical warheads is growing. However, systems to assess both characteristics of the covalent-reversible bond in a simple experimental setting are sparse. Here, we have developed an efficient methodology to characterize the covalent and reversible properties of CRIs and to investigate their potential in targeting clinically relevant variants of the receptor tyrosine kinase EGFR.

  18. Incoherent dictionary learning for reducing crosstalk noise in least-squares reverse time migration

    NASA Astrophysics Data System (ADS)

    Wu, Juan; Bai, Min

    2018-05-01

    We propose to apply a novel incoherent dictionary learning (IDL) algorithm for regularizing the least-squares inversion in seismic imaging. The IDL is proposed to overcome the drawback of traditional dictionary learning algorithm in losing partial texture information. Firstly, the noisy image is divided into overlapped image patches, and some random patches are extracted for dictionary learning. Then, we apply the IDL technology to minimize the coherency between atoms during dictionary learning. Finally, the sparse representation problem is solved by a sparse coding algorithm, and image is restored by those sparse coefficients. By reducing the correlation among atoms, it is possible to preserve most of the small-scale features in the image while removing much of the long-wavelength noise. The application of the IDL method to regularization of seismic images from least-squares reverse time migration shows successful performance.

  19. Development of duplex SYBR Green I-based real-time quantitative reverse-transcription PCR for detection and discrimination of grapevine viruses

    USDA-ARS?s Scientific Manuscript database

    A SYBR® Green-based real-time quantitative reverse transcription PCR (qRT-PCR) assay in combination with melt curve analysis (MCA) was developed for the detection of nine grapevine viruses. The detection limits for singleplex qRT-PCR for all nine grapevine viruses were determined to be in the range ...

  20. High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Lai, Puxiang; Ma, Cheng; Xu, Xiao; Suzuki, Yuta; Grabar, Alexander A.; Wang, Lihong V.

    2014-03-01

    Time-reversed ultrasonically encoded (TRUE) optical focusing is an emerging technique that focuses light deep into scattering media by phase-conjugating ultrasonically encoded diffuse light. In previous work, the speed of TRUE focusing was limited to no faster than 1 Hz by the response time of the photorefractive phase conjugate mirror, or the data acquisition and streaming speed of the digital camera; photorefractive-crystal-based TRUE focusing was also limited to the visible spectral range. These time-consuming schemes prevent this technique from being applied in vivo, since living biological tissue has a speckle decorrelation time on the order of a millisecond. In this work, using a Tedoped Sn2P2S6 photorefractive crystal at a near-infrared wavelength of 793 nm, we achieved TRUE focusing inside dynamic scattering media having a speckle decorrelation time as short as 7.7 ms. As the achieved speed approaches the tissue decorrelation rate, this work is an important step forward toward in vivo applications of TRUE focusing in deep tissue imaging, photodynamic therapy, and optical manipulation.

  1. The posterior reversible encephalopathy syndrome.

    PubMed

    Sanjay, K Mandal; Partha, P Chakraborty

    2008-09-01

    The posterior/potentially reversible encephalopathy syndrome is a unique syndrome encountered commonly in hypertensive encephalopathy. A 13-year-old boy presented with of intermittent high grade fever, throbbing headache and non-projective vomiting for 5 days. The patient had a blood pressure of 120/80 mmHg but fundoscopy documented grade 3 hypertensive retinopathy. The patient improved symptomatically following conservative management. However, on the 5(th) post-admission day headache reappeared, and blood pressure measured at that time was 240/120 mmHg. Neuroimaging suggested white matter abnormalities. Search for the etiology of secondary hypertension led to the diagnosis of pheochromocytoma. Repeated MRI after successful surgical excision of the tumor patient showed reversal of white matter abnormalities. Reversible leucoencephalopathy due to pheochromocytoma have not been documented in literature previously.

  2. Seasonal pattern of reverse mounting in the groove-billed ani (Crotophaga sulcirostris)

    USGS Publications Warehouse

    Bowen, B.S.; Koford, Rolf R.; Vehrencamp, S.L.

    1991-01-01

    We observed reverse mounting behavior in a color-banded population of Groove-billed Anis (Crotophaga sulcirostris) in Costa Rica. Sex was determined with measurements and laparotomies. Reverse mounting appeared nearly identical to mounting by males. Of 27 mountings in which at least one bird was banded, 15 were reverse mountings. Only reverse mountings (11 observations) were observed in the pre-breeding period. During the breeding season males mounted females in 12 of 16 mountings; one of the reverse mountings followed nest predation. The timing of reverse mounting in anis suggests that it has an adaptive function in courtship. The proximate mechanism may be differential timing between partners in the development of breeding condition or of sexual motivation.

  3. Two applications of time reversal mirrors: seismic radio and seismic radar.

    PubMed

    Hanafy, Sherif M; Schuster, Gerard T

    2011-10-01

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar to radar surveillance, detecting and tracking a moving object(s) in a remote area, including the determination of the objects speed of movement. Both applications require the prior recording of calibration Green's functions in the area of interest. This reference Green's function will be used as a codebook to decrypt the coded message in the first application and as a moving sensor for the second application. Field tests show that seismic radar can detect the moving coordinates (x(t), y(t), z(t)) of a person running through a calibration site. This information also allows for a calculation of his velocity as a function of location. Results with the seismic radio are successful in seismically detecting and decoding coded pulses produced by a hammer. Both seismic radio and radar are highly robust to signals in high noise environments due to the super-stacking property of TRMs. © 2011 Acoustical Society of America

  4. Population pharmacokinetic–pharmacodynamic analysis for sugammadex-mediated reversal of rocuronium-induced neuromuscular blockade

    PubMed Central

    Kleijn, Huub J; Zollinger, Daniel P; van den Heuvel, Michiel W; Kerbusch, Thomas

    2011-01-01

    AIMS An integrated population pharmacokinetic–pharmacodynamic model was developed with the following aims: to simultaneously describe pharmacokinetic behaviour of sugammadex and rocuronium; to establish the pharmacokinetic–pharmacodynamic model for rocuronium-induced neuromuscular blockade and reversal by sugammadex; to evaluate covariate effects; and to explore, by simulation, typical covariate effects on reversal time. METHODS Data (n = 446) from eight sugammadex clinical studies covering men, women, non-Asians, Asians, paediatrics, adults and the elderly, with various degrees of renal impairment, were used. Modelling and simulation techniques based on physiological principles were applied to capture rocuronium and sugammadex pharmacokinetics and pharmacodynamics and to identify and quantify covariate effects. RESULTS Sugammadex pharmacokinetics were affected by renal function, bodyweight and race, and rocuronium pharmacokinetics were affected by age, renal function and race. Sevoflurane potentiated rocuronium-induced neuromuscular blockade. Posterior predictive checks and bootstrapping illustrated the accuracy and robustness of the model. External validation showed concordance between observed and predicted reversal times, but interindividual variability in reversal time was pronounced. Simulated reversal times in typical adults were 0.8, 1.5 and 1.4 min upon reversal with sugammadex 16 mg kg−1 3 min after rocuronium, sugammadex 4 mg kg−1 during deep neuromuscular blockade and sugammadex 2 mg kg−1 during moderate blockade, respectively. Simulations indicated that reversal times were faster in paediatric patients and slightly slower in elderly patients compared with adults. Renal function did not affect reversal time. CONCLUSIONS Simulations of the therapeutic dosing regimens demonstrated limited impact of age, renal function and sevoflurane use, as predicted reversal time in typical subjects was always <2 min. PMID:21535448

  5. Time-dependent reversal of significant intrapulmonary shunt after liver transplantation.

    PubMed

    Jin, Xin; Sun, Byung Joo; Song, Jae-Kwan; Roh, Jae-Hyung; Jang, Jeong Yoon; Kim, Dae-Hee; Lim, Young-Suk; Song, Jong-Min; Kang, Duk-Hyun; Lee, Sung Gyu

    2018-03-05

    Although the association between intrapulmonary shunt (IPS) and liver cirrhosis is clear, data of repeated contrast echocardiography (CE) before and after liver transplantation (LT) to evaluate factors associated with IPS are limited. Hand-agitated saline was used for CE and, by assessing left-chamber opacification, IPS was classified as grade 0 to 4. Grade 3/4 constituted significant IPS and hepatopulmonary syndrome (HPS) was defined as significant IPS with the arterial partial pressure of oxygen < 70 mmHg. Before LT, 253 patients underwent CE and the frequency of significant IPS and HPS were 44% (n = 112) and 7% (n = 17), respectively. Child-Pugh score (odds ratio [OR], 1.345; 95% confidence interval [CI], 1.090 to 1.660; p = 0.006) and arterial oxygen content (OR, 0.838; 95% CI, 0.708 to 0.991; p = 0.039) were independent determinants of significant IPS, whereas direct bilirubin (OR, 1.076; 95% CI, 1.012 to 1.144; p = 0.019) was the only variable associated with HPS. Among 153 patients who underwent successful LT, repeated CE was performed in 97 (63%), which showed significant reductions in IPS grade (from 2.6 ± 1.0 to 1.2 ± 1.3, p < 0.001) and the prevalence of significant IPS (from 56% to 20%, p = 0.038). After adjustment for pre-LT IPS grade, time from LT to repeated CE presented negative linear relationship with post-LT IPS grade (r 2 = 0.366, p < 0.001) and was the only determinant of post-LT IPS grade (OR, 1.009; 95% CI, 1.003 to 1.014; p = 0.004). Repeated CE is useful to evaluate intrapulmonary vascular change before and after LT. Reversal of IPS after successful LT is time-dependent and follow-up duration should be considered for accurate assessment of IPS after LT.

  6. Calculations of unsteady turbulent boundary layers with flow reversal

    NASA Technical Reports Server (NTRS)

    Nash, J. F.; Patel, V. C.

    1975-01-01

    The results are presented of a series of computational experiments aimed at studying the characteristics of time-dependent turbulent boundary layers with embedded reversed-flow regions. A calculation method developed earlier was extended to boundary layers with reversed flows for this purpose. The calculations were performed for an idealized family of external velocity distributions, and covered a range of degrees of unsteadiness. The results confirmed those of previous studies in demonstrating that the point of flow reversal is nonsingular in a time-dependent boundary layer. A singularity was observed to develop downstream of reversal, under certain conditions, accompanied by the breakdown of the boundary-layer approximations. A tentative hypothesis was advanced in an attempt to predict the appearance of the singularity, and is shown to be consistent with the calculated results.

  7. Design and Assessment of a Real Time Reverse Transcription-PCR Method to Genotype Single-Stranded RNA Male-Specific Coliphages (Family Leviviridae).

    EPA Science Inventory

    A real-time, reverse transcription-PCR (RT-qPCR) assay was developed to differentiate the four genogroups of male-specific ssRNA coliphages (FRNA) (family Leviviridae). As FRNA display a trend of source-specificity (human sewage or animal waste) at the genogroup level, this assa...

  8. Process of forming compounds using reverse micelle or reverse microemulsion systems

    DOEpatents

    Linehan, John C.; Fulton, John L.; Bean, Roger M.

    1998-01-01

    The present invention is directed to a process for producing a nanometer-sized metal compound. The process comprises forming a reverse micelle or reverse microemulsion system comprising a polar fluid in a non-polar or low-polarity fluid. A first reactant comprising a multi-component, water-soluble metal compound is introduced into the polar fluid in a non-polar or low-polarity fluid. This first reactant can be introduced into the reverse micelle or reverse microemulsion system during formation thereof or subsequent to the formation of the reverse micelle or microemulsion system. The water-soluble metal compound is then reacted in the reverse micelle or reverse microemulsion system to form the nanometer-sized metal compound. The nanometer-sized metal compound is then precipitated from the reverse micelle or reverse microemulsion system.

  9. Applying time-reverse-imaging techniques to locate individual low-frequency earthquakes on the San Andreas fault near Cholame, California

    NASA Astrophysics Data System (ADS)

    Horstmann, T.; Harrington, R. M.; Cochran, E.; Shelly, D. R.

    2013-12-01

    Observations of non-volcanic tremor have become ubiquitous in recent years. In spite of the abundance of observations, locating tremor remains a difficult task because of the lack of distinctive phase arrivals. Here we use time-reverse-imaging techniques that do not require identifying phase arrivals to locate individual low-frequency-earthquakes (LFEs) within tremor episodes on the San Andreas fault near Cholame, California. Time windows of 1.5-second duration containing LFEs are selected from continuously recorded waveforms of the local seismic network filtered between 1-5 Hz. We propagate the time-reversed seismic signal back through the subsurface using a staggered-grid finite-difference code. Assuming all rebroadcasted waveforms result from similar wave fields at the source origin, we search for wave field coherence in time and space to obtain the source location and origin time where the constructive interference is a maximum. We use an interpolated velocity model with a grid spacing of 100 m and a 5 ms time step to calculate the relative curl field energy amplitudes for each rebroadcasted seismogram every 50 ms for each grid point in the model. Finally, we perform a grid search for coherency in the curl field using a sliding time window, and taking the absolute value of the correlation coefficient to account for differences in radiation pattern. The highest median cross-correlation coefficient value over at a given grid point indicates the source location for the rebroadcasted event. Horizontal location errors based on the spatial extent of the highest 10% cross-correlation coefficient are on the order of 4 km, and vertical errors on the order of 3 km. Furthermore, a test of the method using earthquake data shows that the method produces an identical hypocentral location (within errors) as that obtained by standard ray-tracing methods. We also compare the event locations to a LFE catalog that locates the LFEs from stacked waveforms of repeated LFEs

  10. Near-threshold photoionization of hydrogenlike uranium studied in ion-atom collisions via the time-reversed process.

    PubMed

    Stöhlker, T; Ma, X; Ludziejewski, T; Beyer, H F; Bosch, F; Brinzanescu, O; Dunford, R W; Eichler, J; Hagmann, S; Ichihara, A; Kozhuharov, C; Krämer, A; Liesen, D; Mokler, P H; Stachura, Z; Swiat, P; Warczak, A

    2001-02-05

    Radiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel. The results prove that for high- Z systems, higher-order multipole contributions and magnetic corrections persist even at energies close to the threshold.

  11. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  12. Operating room discharge after deep neuromuscular block reversed with sugammadex compared with shallow block reversed with neostigmine: a randomized controlled trial.

    PubMed

    Putz, Laurie; Dransart, Christophe; Jamart, Jacques; Marotta, Maria-Laura; Delnooz, Geraldine; Dubois, Philippe E

    2016-12-01

    To determine if reversing a deep or moderate block with sugammadex, compared with a shallow block reversed with neostigmine, reduces the time to operating room discharge after surgery and the time spent in the postanesthesia care unit. A randomized controlled trial. Monocentric study performed from February 2011 until May 2012. One hundred consenting women with American Society of Anesthesiologists grade I or II were randomized into 2 groups. Laparoscopic hysterectomy was performed under desflurane general anesthesia. For the neostigmine (N) group, 0.45 mg · kg -1 rocuronium was followed by spontaneous recovery. A 5-mg rescue bolus was administered only if surgical evaluation was unacceptable. At the end of surgery, 50 μg · kg -1 neostigmine with glycopyrrolate was administered. For the sugammadex (S) group, a higher intubating rocuronium dose (0.6 mg · kg -1 ) was followed by 5-mg boluses each time the train-of-four count exceeded 2. Sugammadex (2-4 mg · kg -1 ) was administered to reverse the block. All patients were extubated after obtaining a train-of-four ratio of 0.9. The duration between the end of surgery and operating room discharge and the time spent in the postanesthesia care unit. The time till operating room discharge was shorter and more predictable in group S (9.15±4.28 minutes vs 13.87±11.43 minutes in group N; P=.005). The maximal duration in group S was 22 minutes, compared with 72 minutes in group N. The time spent in the postanesthesia care unit was not significantly different (group S: 47.75±31.77 minutes and group N: 53.43±40.57 minutes; P=.543). Maintaining a deep neuromuscular block during laparoscopic hysterectomy reversed at the end of the procedure with sugammadex enabled a faster and more predictable time till operating room discharge than did the classical combination of a shallower block reversed with neostigmine. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Whole Brain Radiation-Induced Impairments in Learning and Memory Are Time-Sensitive and Reversible by Systemic Hypoxia

    PubMed Central

    Warrington, Junie P.; Csiszar, Anna; Mitschelen, Matthew; Lee, Yong Woo; Sonntag, William E.

    2012-01-01

    Whole brain radiation therapy (WBRT) is commonly used for treatment of primary and metastatic brain tumors; however, cognitive impairment occurs in 40–50% of brain tumor survivors. The etiology of the cognitive impairment following WBRT remains elusive. We recently reported that radiation-induced cerebrovascular rarefaction within hippocampal subregions could be completely reversed by systemic hypoxia. However, the effects of this intervention on learning and memory have not been reported. In this study, we assessed the time-course for WBRT-induced impairments in contextual and spatial learning and the capacity of systemic hypoxia to reverse WBRT-induced deficits in spatial memory. A clinical fractionated series of 4.5Gy WBRT was administered to mice twice weekly for 4 weeks, and after various periods of recovery, behavioral analyses were performed. To study the effects of systemic hypoxia, mice were subjected to 11% (hypoxia) or 21% oxygen (normoxia) for 28 days, initiated 1 month after the completion of WBRT. Our results indicate that WBRT induces a transient deficit in contextual learning, disruption of working memory, and progressive impairment of spatial learning. Additionally, systemic hypoxia completely reversed WBRT-induced impairments in learning and these behavioral effects as well as increased vessel density persisted for at least 2 months following hypoxia treatment. Our results provide critical support for the hypothesis that cerebrovascular rarefaction is a key component of cognitive impairment post-WBRT and indicate that processes of learning and memory, once thought to be permanently impaired after WBRT, can be restored. PMID:22279591

  14. Streaming reversal of energetic particles in the magnetotail during a substorm

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Williams, D. J.; Eastman, T. E.; Frank, L. A.; Akasofu, S.-I.

    1984-01-01

    A case of reversal in the streaming anisotropy of energetic ions and in the plasma flow observed from the IMP 8 spacecraft during a substorm on February 8, 1978 is studied in detail using measurements of energetic particles, plasma, and magnetic field. Four new features emerge when high time resolution data are examined in detail. The times of streaming reversal of energetic particles in different energy ranges do not coincide with the time of plasma flow reversal. Qualitatively different velocity distributions are observed in earthward and tailward plasma flows during the observed flow reversal intervals. Strong tailward streaming of energetic particles can be detected during northward magnetic field environments and, conversely, earthward streaming in southward field environments. During the period of tailward streaming of energetic particles, earthward streaming fluxes are occasionally detected.

  15. Flux-trapping during the formation of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Armstrong, W. T.; Harding, D. G.; Crawford, E. A.; Hoffman, A. L.

    1982-11-01

    Flux-trapping during the early formation phases of a field-reversed configuration has been studied experimentally on the field-reversed theta-pinch TRX-1. An annular z-pinch preionizer was employed to permit ionization at high values of reverse-bias flux. Contrary to previous analysis, the rate of flux loss was not governed exclusively by inertially limited plasma convection to the tube walls. At high reverse flux levels, a pressure bearing sheath was observed to form at the tube walls and the flux loss was restricted by resistive diffusion across this sheath. The characteristic time for flux loss was 0.08rt (cm) μsec, independent of the bias field and independent of the fill pressure for fill pressures above 15 mTorr D2. Octopole barrier fields were found to be effective in limiting the inertially governed flux loss at very early times before the wall sheath formed.

  16. GPU-accelerated element-free reverse-time migration with Gauss points partition

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen; Jia, Xiaofeng; Qiang, Xiaodong

    2018-06-01

    An element-free method (EFM) has been demonstrated successfully in elasticity, heat conduction and fatigue crack growth problems. We present the theory of EFM and its numerical applications in seismic modelling and reverse time migration (RTM). Compared with the finite difference method and the finite element method, the EFM has unique advantages: (1) independence of grids in computation and (2) lower expense and more flexibility (because only the information of the nodes and the boundary of the concerned area is required). However, in EFM, due to improper computation and storage of some large sparse matrices, such as the mass matrix and the stiffness matrix, the method is difficult to apply to seismic modelling and RTM for a large velocity model. To solve the problem of storage and computation efficiency, we propose a concept of Gauss points partition and utilise the graphics processing unit to improve the computational efficiency. We employ the compressed sparse row format to compress the intermediate large sparse matrices and attempt to simplify the operations by solving the linear equations with CULA solver. To improve the computation efficiency further, we introduce the concept of the lumped mass matrix. Numerical experiments indicate that the proposed method is accurate and more efficient than the regular EFM.

  17. Time-reversed ultrasonically encoded (TRUE) focusing for deep-tissue optogenetic modulation

    NASA Astrophysics Data System (ADS)

    Brake, Joshua; Ruan, Haowen; Robinson, J. Elliott; Liu, Yan; Gradinaru, Viviana; Yang, Changhuei

    2018-02-01

    The problem of optical scattering was long thought to fundamentally limit the depth at which light could be focused through turbid media such as fog or biological tissue. However, recent work in the field of wavefront shaping has demonstrated that by properly shaping the input light field, light can be noninvasively focused to desired locations deep inside scattering media. This has led to the development of several new techniques which have the potential to enhance the capabilities of existing optical tools in biomedicine. Unfortunately, extending these methods to living tissue has a number of challenges related to the requirements for noninvasive guidestar operation, speed, and focusing fidelity. Of existing wavefront shaping methods, time-reversed ultrasonically encoded (TRUE) focusing is well suited for applications in living tissue since it uses ultrasound as a guidestar which enables noninvasive operation and provides compatibility with optical phase conjugation for high-speed operation. In this paper, we will discuss the results of our recent work to apply TRUE focusing for optogenetic modulation, which enables enhanced optogenetic stimulation deep in tissue with a 4-fold spatial resolution improvement in 800-micron thick acute brain slices compared to conventional focusing, and summarize future directions to further extend the impact of wavefront shaping technologies in biomedicine.

  18. Spatial reversal learning in preclinical scrapie-inoculated mice.

    PubMed

    Lysons, A M; Woollard, S J

    1996-04-10

    Acquisition and reversal of a two-choice spatial discrimination were tested in scrapie-inoculated mice. Both acquisition and reversal were normal in mice tested 138 and 103 days prior to the onset of clinical symptoms. At 65 days before onset of clinical symptoms, scrapie-inoculated mice required more trails to criterion in reversal learning, but this effect was not significant in a second experiment (68 days preclinical) and was transient: no effect was seen 33 days before symptoms. However, the course of reversal learning was abnormal in all three late preclinical groups (68, 65 and 33 days before symptoms). Reversal learning in these three groups was characterized by a rapid extinction of the original discrimination, followed by a period, absent in controls, during which performance showed no further improvement. This effect corresponds in time of onset to the appearance of characteristic neuropathological features.

  19. Reversible anaesthesia of free-ranging lions (Panthera leo) in Zimbabwe.

    PubMed

    Fahlman, A; Loveridge, A; Wenham, C; Foggin, C; Arnemo, J M; Nyman, G

    2005-12-01

    The combination of medetomidine-zolazepam-tiletamine with subsequent antagonism by atipamezole was evaluated for reversible anaesthesia of free-ranging lions (Panthera leo). Twenty-one anaesthetic events of 17 free-ranging lions (5 males and 12 females, body weight 105-211 kg) were studied in Zimbabwe. Medetomidine at 0.027-0.055 mg/kg (total dose 4-11 mg) and zolazepam-tiletamine at 0.38-1.32 mg/kg (total dose 50-275 mg) were administered i.m. by dart injection. The doses were gradually decreased to improve recovery. Respiratory and heart rates, rectal temperature and relative haemoglobin oxygen saturation (SpO2) were recorded every 15 min. Arterial blood samples were collected from 5 lions for analysis of blood gases and acid-base status. For anaesthetic reversal, atipamezole was administered i.m. at 2.5 or 5 times the medetomidine dose. Induction was smooth and all lions were anaesthetised with good muscle relaxation within 3.4-9.5 min after darting. The predictable working time was a minimum of 1 h and no additional drug doses were needed. Respiratory and heart rates and SpO2 were stable throughout anaesthesia, whereas rectal temperature changed significantly over time. Atipamezole at 2.5 times the medetomidine dose was sufficient for reversal and recoveries were smooth and calm in all lions independent of the atipamezole dose. First sign of recovery was observed 3-27 min after reversal. The animals were up walking 8-26 min after reversal when zolazepam-tiletamine doses < 1 mg/kg were used. In practice, a total dose of 6 mg medetomidine and 80 mg zolazepam-tiletamine and reversal with 15 mg atipamezole can be used for either sex of an adult or subadult lion. The drugs and doses used in this study provided a reliable, safe and reversible anaesthesia protocol for free-ranging lions.

  20. Thermal Hall conductivity in the spin-triplet superconductor with broken time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Imai, Yoshiki; Wakabayashi, Katsunori; Sigrist, Manfred

    2017-01-01

    Motivated by the spin-triplet superconductor Sr2RuO4 , the thermal Hall conductivity is investigated for several pairing symmetries with broken time-reversal symmetry. In the chiral p -wave phase with a fully opened quasiparticle excitation gap, the temperature dependence of the thermal Hall conductivity has a temperature linear term associated with the topological property directly and an exponential term, which shows a drastic change around the Lifshitz transition. Examining f -wave states as alternative candidates with d =Δ0z ̂(kx2-ky2) (kx±i ky) and Δ0z ̂kxky(kx±i ky) with gapless quasiparticle excitations, we study the temperature dependence of the thermal Hall conductivity, where for the former state the thermal Hall conductivity has a quadratic dependence on temperature, originating from the linear dispersions, in addition to linear and exponential behavior. The obtained result may enable us to distinguish between the chiral p -wave and f -wave states in Sr2RuO4 .

  1. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light

    PubMed Central

    Ruan, Haowen; Brake, Joshua; Robinson, J. Elliott; Liu, Yan; Jang, Mooseok; Xiao, Cheng; Zhou, Chunyi; Gradinaru, Viviana; Yang, Changhuei

    2017-01-01

    Noninvasive light focusing deep inside living biological tissue has long been a goal in biomedical optics. However, the optical scattering of biological tissue prevents conventional optical systems from tightly focusing visible light beyond several hundred micrometers. The recently developed wavefront shaping technique time-reversed ultrasonically encoded (TRUE) focusing enables noninvasive light delivery to targeted locations beyond the optical diffusion limit. However, until now, TRUE focusing has only been demonstrated inside nonliving tissue samples. We present the first example of TRUE focusing in 2-mm-thick living brain tissue and demonstrate its application for optogenetic modulation of neural activity in 800-μm-thick acute mouse brain slices at a wavelength of 532 nm. We found that TRUE focusing enabled precise control of neuron firing and increased the spatial resolution of neuronal excitation fourfold when compared to conventional lens focusing. This work is an important step in the application of TRUE focusing for practical biomedical uses. PMID:29226248

  2. Interferometric measurement method for Z2 invariants of time-reversal invariant topological insulators

    NASA Astrophysics Data System (ADS)

    Grusdt, Fabian; Abanin, Dmitry; Demler, Eugene

    2013-05-01

    Recently experiments with ultracold atoms started to explore topological phases in 1D optical lattices. While transport measurements are challenging in these systems, ways to directly measure topological quantum numbers using a combination of Bloch oscillations and Ramsey interferometry have been explored (Atala et al., arXiv:1212.0572). In this talk I will present ways to measure the Z2 topological quantum numbers of two and three dimensional time-reversal invariant (TR) topological insulators. In this case non-Abelian Bloch oscillations can be combined with Ramsey interferometry to map out the topological properties of a given band-structure. Our method is very general and works even in the presence of accidental degeneracies. The applicability of the scheme is discussed for different theoretically proposed implementations of TR topological insulators using ultracold atoms. F. G. is grateful to Harvard University for hospitality and acknowledges financial support from Graduate School Materials Science in Mainz (MAINZ).

  3. Evaluating the Reverse Time Migration Method on the dense Lapnet / Polenet seismic array in Europe

    NASA Astrophysics Data System (ADS)

    Dupont, Aurélien; Le Pichon, Alexis

    2013-04-01

    In this study, results are obtained using the reverse time migration method used as benchmark to evaluate the implemented method by Walker et al., (2010, 2011). Explosion signals recorded by the USArray and extracted from the TAIRED catalogue (TA Infrasound Reference Event Database user community / Vernon et al., 2012) are investigated. The first one is an explosion at Camp Minden, Louisiana (2012-10-16 04:25:00 UTC) and the second one is a natural gas explosion near Price, Utah (2012-11-20 15:20:00 UTC). We compare our results to automatic solutions (www.iris.edu/spud/infrasoundevent). The good agreement between both solutions validates our detection method. In a second time, we analyse data from the Lapnet / Polenet dense seismic network (Kozlovskaya et al., 2008). Detection and location in two-dimensional space and time of infrasound events presumably due to acoustic-to-seismic coupling, during the 2007-2009 period in Europe, are presented. The aim of this work is to integrate near-real time network performance predictions at regional scales to improve automatic detection of infrasonic sources. The use of dense seismic networks provides a valuable tool to monitor infrasonic phenomena, since seismic location has recently proved to be more accurate than infrasound locations due to the large number of seismic sensors.

  4. Idarucizumab: A Review as a Reversal Agent for Dabigatran.

    PubMed

    Syed, Yahiya Y

    2016-08-01

    Idarucizumab (Praxbind(®)), a humanized monoclonal antibody, is a specific reversal agent for the direct oral thrombin inhibitor dabigatran, available as its prodrug dabigatran etexilate (Pradaxa(®)). Idarucizumab is approved in several countries (including the USA, the EU, Canada and Australia) for use in adult patients on dabigatran when the reversal of its anticoagulant effects is required for emergency surgery/procedures or in the event of life-threatening or uncontrolled bleeding. In the ongoing pivotal RE-VERSE AD trial in these populations (n = 90), intravenous idarucizumab 5 g reversed dabigatran-induced prolongation of dilute thrombin time (dTT) and ecarin clotting time (ECT) within minutes. The median maximum percentage reversal was 100 % for both assays (primary endpoint). Idarucizumab normalized dTT and ECT in 88-98 % of patients who had elevated levels at baseline. After idarucizumab administration, bleeding stopped in 97 % of evaluable patients in the bleeding cohort within 24 h (median time to cessation of bleeding was 11.4 h), and the rate of normal intraoperative haemostasis was 92 % in the surgical cohort. Idarucizumab was generally well tolerated. In conclusion, idarucizumab is a unique and specific treatment option for the reversal of the anticoagulant effects of dabigatran in adult patients requiring emergency procedures or in the event of life-threatening or uncontrolled bleeding.

  5. Information criteria for quantifying loss of reversibility in parallelized KMC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gourgoulias, Konstantinos, E-mail: gourgoul@math.umass.edu; Katsoulakis, Markos A., E-mail: markos@math.umass.edu; Rey-Bellet, Luc, E-mail: luc@math.umass.edu

    Parallel Kinetic Monte Carlo (KMC) is a potent tool to simulate stochastic particle systems efficiently. However, despite literature on quantifying domain decomposition errors of the particle system for this class of algorithms in the short and in the long time regime, no study yet explores and quantifies the loss of time-reversibility in Parallel KMC. Inspired by concepts from non-equilibrium statistical mechanics, we propose the entropy production per unit time, or entropy production rate, given in terms of an observable and a corresponding estimator, as a metric that quantifies the loss of reversibility. Typically, this is a quantity that cannot bemore » computed explicitly for Parallel KMC, which is why we develop a posteriori estimators that have good scaling properties with respect to the size of the system. Through these estimators, we can connect the different parameters of the scheme, such as the communication time step of the parallelization, the choice of the domain decomposition, and the computational schedule, with its performance in controlling the loss of reversibility. From this point of view, the entropy production rate can be seen both as an information criterion to compare the reversibility of different parallel schemes and as a tool to diagnose reversibility issues with a particular scheme. As a demonstration, we use Sandia Lab's SPPARKS software to compare different parallelization schemes and different domain (lattice) decompositions.« less

  6. Information criteria for quantifying loss of reversibility in parallelized KMC

    NASA Astrophysics Data System (ADS)

    Gourgoulias, Konstantinos; Katsoulakis, Markos A.; Rey-Bellet, Luc

    2017-01-01

    Parallel Kinetic Monte Carlo (KMC) is a potent tool to simulate stochastic particle systems efficiently. However, despite literature on quantifying domain decomposition errors of the particle system for this class of algorithms in the short and in the long time regime, no study yet explores and quantifies the loss of time-reversibility in Parallel KMC. Inspired by concepts from non-equilibrium statistical mechanics, we propose the entropy production per unit time, or entropy production rate, given in terms of an observable and a corresponding estimator, as a metric that quantifies the loss of reversibility. Typically, this is a quantity that cannot be computed explicitly for Parallel KMC, which is why we develop a posteriori estimators that have good scaling properties with respect to the size of the system. Through these estimators, we can connect the different parameters of the scheme, such as the communication time step of the parallelization, the choice of the domain decomposition, and the computational schedule, with its performance in controlling the loss of reversibility. From this point of view, the entropy production rate can be seen both as an information criterion to compare the reversibility of different parallel schemes and as a tool to diagnose reversibility issues with a particular scheme. As a demonstration, we use Sandia Lab's SPPARKS software to compare different parallelization schemes and different domain (lattice) decompositions.

  7. HuR interacts with human immunodeficiency virus type 1 reverse transcriptase, and modulates reverse transcription in infected cells

    PubMed Central

    Lemay, Julie; Maidou-Peindara, Priscilla; Bader, Thomas; Ennifar, Eric; Rain, Jean-Christophe; Benarous, Richard; Liu, Lang Xia

    2008-01-01

    Reverse transcription of the genetic material of human immunodeficiency virus type 1 (HIV-1) is a critical step in the replication cycle of this virus. This process, catalyzed by reverse transcriptase (RT), is well characterized at the biochemical level. However, in infected cells, reverse transcription occurs in a multiprotein complex – the reverse transcription complex (RTC) – consisting of viral genomic RNA associated with viral proteins (including RT) and, presumably, as yet uncharacterized cellular proteins. Very little is known about the cellular proteins interacting with the RTC, and with reverse transcriptase in particular. We report here that HIV-1 reverse transcription is affected by the levels of a nucleocytoplasmic shuttling protein – the RNA-binding protein HuR. A direct protein-protein interaction between RT and HuR was observed in a yeast two-hybrid screen and confirmed in vitro by homogenous time-resolved fluorescence (HTRF). We mapped the domain interacting with HuR to the RNAse H domain of RT, and the binding domain for RT to the C-terminus of HuR, partially overlapping the third RRM RNA-binding domain of HuR. HuR silencing with specific siRNAs greatly impaired early and late steps of reverse transcription, significantly inhibiting HIV-1 infection. Moreover, by mutagenesis and immunoprecipitation studies, we could not detect the binding of HuR to the viral RNA. These results suggest that HuR may be involved in and may modulate the reverse transcription reaction of HIV-1, by an as yet unknown mechanism involving a protein-protein interaction with HIV-1 RT. PMID:18544151

  8. Experimental localization of an acoustic sound source in a wind-tunnel flow by using a numerical time-reversal technique.

    PubMed

    Padois, Thomas; Prax, Christian; Valeau, Vincent; Marx, David

    2012-10-01

    The possibility of using the time-reversal technique to localize acoustic sources in a wind-tunnel flow is investigated. While the technique is widespread, it has scarcely been used in aeroacoustics up to now. The proposed method consists of two steps: in a first experimental step, the acoustic pressure fluctuations are recorded over a linear array of microphones; in a second numerical step, the experimental data are time-reversed and used as input data for a numerical code solving the linearized Euler equations. The simulation achieves the back-propagation of the waves from the array to the source and takes into account the effect of the mean flow on sound propagation. The ability of the method to localize a sound source in a typical wind-tunnel flow is first demonstrated using simulated data. A generic experiment is then set up in an anechoic wind tunnel to validate the proposed method with a flow at Mach number 0.11. Monopolar sources are first considered that are either monochromatic or have a narrow or wide-band frequency content. The source position estimation is well-achieved with an error inferior to the wavelength. An application to a dipolar sound source shows that this type of source is also very satisfactorily characterized.

  9. Reversible and non-reversible changes in nanostructured Si in humid atmosphere

    NASA Astrophysics Data System (ADS)

    Zhigalov, V.; Pyatilova, O.; Timoshenkov, S.; Gavrilov, S.

    2014-12-01

    Atmosphere water influence in the nanostructured silicon (NSS) was investigated by IR-spectroscopy and electron work function measurement. Long-term non-reversible dynamics of IR-spectra was found as a result of 100% humidity influence on the nanostructured silicon. It was indicated that air humidity affects on the work function. Dynamics of the electron work function consists of reversible and non-reversible components. Reversible component appears as strong anti-correlation between work function and humidity. Work function change of NSS is about 0.4 eV while the humidity changes between 0% and 100%. Reversible component can be explained by physical sorption of water molecules on the surface. Non-reversible component manifests as long-term decreasing trend of work function in humid atmosphere. Transition curve during abruptly humidity changes alters its shape. Non-reversible component can be explained by chemisorption of water.

  10. Detection of SYT-SSX mutant transcripts in formalin-fixed paraffin-embedded sarcoma tissues using one-step reverse transcriptase real-time PCR.

    PubMed

    Norlelawati, A T; Mohd Danial, G; Nora, H; Nadia, O; Zatur Rawihah, K; Nor Zamzila, A; Naznin, M

    2016-04-01

    Synovial sarcoma (SS) is a rare cancer and accounts for 5-10% of adult soft tissue sarcomas. Making an accurate diagnosis is difficult due to the overlapping histological features of SS with other types of sarcomas and the non-specific immunohistochemistry profile findings. Molecular testing is thus considered necessary to confirm the diagnosis since more than 90% of SS cases carry the transcript of t(X;18)(p11.2;q11.2). The purpose of this study is to diagnose SS at molecular level by testing for t(X;18) fusion-transcript expression through One-step reverse transcriptase real-time Polymerase Chain Reaction (PCR). Formalin-fixed paraffin-embedded tissue blocks of 23 cases of soft tissue sarcomas, which included 5 and 8 cases reported as SS as the primary diagnosis and differential diagnosis respectively, were retrieved from the Department of Pathology, Tengku Ampuan Afzan Hospital, Kuantan, Pahang. RNA was purified from the tissue block sections and then subjected to One-step reverse transcriptase real-time PCR using sequence specific hydrolysis probes for simultaneous detection of either SYT-SSX1 or SYT-SSX2 fusion transcript. Of the 23 cases, 4 cases were found to be positive for SYT-SSX fusion transcript in which 2 were diagnosed as SS whereas in the 2 other cases, SS was the differential diagnosis. Three cases were excluded due to failure of both amplification assays SYT-SSX and control β-2-microglobulin. The remaining 16 cases were negative for the fusion transcript. This study has shown that the application of One-Step reverse transcriptase real time PCR for the detection SYT-SSX transcript is feasible as an aid in confirming the diagnosis of synovial sarcoma.

  11. Outbreak of hepatitis E virus infection in Darfur, Sudan: effectiveness of real-time reverse transcription-PCR analysis of dried blood spots.

    PubMed

    Mérens, Audrey; Guérin, Philippe Jean; Guthmann, Jean-Paul; Nicand, Elisabeth

    2009-06-01

    Biological samples collected in refugee camps during an outbreak of hepatitis E were used to compare the accuracy of hepatitis E virus RNA amplification by real-time reverse transcription-PCR (RT-PCR) for sera and dried blood spots (concordance of 90.6%). Biological profiles (RT-PCR and serology) of asymptomatic individuals were also analyzed.

  12. Structure and dynamics of water in nonionic reverse micelles: a combined time-resolved infrared and small angle x-ray scattering study.

    PubMed

    van der Loop, Tibert H; Panman, Matthijs R; Lotze, Stephan; Zhang, Jing; Vad, Thomas; Bakker, Huib J; Sager, Wiebke F C; Woutersen, Sander

    2012-07-28

    We study the structure and reorientation dynamics of nanometer-sized water droplets inside nonionic reverse micelles (water/Igepal-CO-520/cyclohexane) with time-resolved mid-infrared pump-probe spectroscopy and small angle x-ray scattering. In the time-resolved experiments, we probe the vibrational and orientational dynamics of the O-D bonds of dilute HDO:H(2)O mixtures in Igepal reverse micelles as a function of temperature and micelle size. We find that even small micelles contain a large fraction of water that reorients at the same rate as water in the bulk, which indicates that the polyethylene oxide chains of the surfactant do not penetrate into the water volume. We also observe that the confinement affects the reorientation dynamics of only the first hydration layer. From the temperature dependent surface-water dynamics, we estimate an activation enthalpy for reorientation of 45 ± 9 kJ mol(-1) (11 ± 2 kcal mol(-1)), which is close to the activation energy of the reorientation of water molecules in ice.

  13. Strand-specific real-time RT-PCR quantitation of Maize fine streak virus genomic and positive-sense RNAs using high temperature reverse transcription

    USDA-ARS?s Scientific Manuscript database

    Efforts to analyze the replicative RNA produced by Maize fine streak virus (MVSF) within maize tissue was complicated by the lack of specificity during cDNA generation using standard reverse transcriptase protocols. Real-time qRT-PCR using cDNA generated by priming with random hexamers does not dist...

  14. Inorganic fouling mitigation by salinity cycling in batch reverse osmosis.

    PubMed

    Warsinger, David M; Tow, Emily W; Maswadeh, Laith A; Connors, Grace B; Swaminathan, Jaichander; Lienhard V, John H

    2018-06-15

    Enhanced fouling resistance has been observed in recent variants of reverse osmosis (RO) desalination which use time-varying batch or semi-batch processes, such as closed-circuit RO (CCRO) and pulse flow RO (PFRO). However, the mechanisms of batch processes' fouling resistance are not well-understood, and models have not been developed for prediction of their fouling performance. Here, a framework for predicting reverse osmosis fouling is developed by comparing the fluid residence time in batch and continuous (conventional) reverse osmosis systems to the nucleation induction times for crystallization of sparingly soluble salts. This study considers the inorganic foulants calcium sulfate (gypsum), calcium carbonate (calcite), and silica, and the work predicts maximum recovery ratios for the treatment of typical water sources using batch reverse osmosis (BRO) and continuous reverse osmosis. The prediction method is validated through comparisons to the measured time delay for CaSO 4 membrane scaling in a bench-scale, recirculating reverse osmosis unit. The maximum recovery ratio for each salt solution (CaCO 3 , CaSO 4 ) is individually predicted as a function of inlet salinity, as shown in contour plots. Next, the maximum recovery ratios of batch and conventional RO are compared across several water sources, including seawater, brackish groundwater, and RO brine. Batch RO's shorter residence times, associated with cycling from low to high salinity during each batch, enable significantly higher recovery ratios and higher salinity than in continuous RO for all cases examined. Finally, representative brackish RO brine samples were analyzed to determine the maximum possible recovery with batch RO. Overall, the induction time modeling methodology provided here can be used to allow batch RO to operate at high salinity and high recovery, while controlling scaling. The results show that, in addition to its known energy efficiency improvement, batch RO has superior inorganic

  15. Solving a bi-objective mathematical model for location-routing problem with time windows in multi-echelon reverse logistics using metaheuristic procedure

    NASA Astrophysics Data System (ADS)

    Ghezavati, V. R.; Beigi, M.

    2016-12-01

    During the last decade, the stringent pressures from environmental and social requirements have spurred an interest in designing a reverse logistics (RL) network. The success of a logistics system may depend on the decisions of the facilities locations and vehicle routings. The location-routing problem (LRP) simultaneously locates the facilities and designs the travel routes for vehicles among established facilities and existing demand points. In this paper, the location-routing problem with time window (LRPTW) and homogeneous fleet type and designing a multi-echelon, and capacitated reverse logistics network, are considered which may arise in many real-life situations in logistics management. Our proposed RL network consists of hybrid collection/inspection centers, recovery centers and disposal centers. Here, we present a new bi-objective mathematical programming (BOMP) for LRPTW in reverse logistic. Since this type of problem is NP-hard, the non-dominated sorting genetic algorithm II (NSGA-II) is proposed to obtain the Pareto frontier for the given problem. Several numerical examples are presented to illustrate the effectiveness of the proposed model and algorithm. Also, the present work is an effort to effectively implement the ɛ-constraint method in GAMS software for producing the Pareto-optimal solutions in a BOMP. The results of the proposed algorithm have been compared with the ɛ-constraint method. The computational results show that the ɛ-constraint method is able to solve small-size instances to optimality within reasonable computing times, and for medium-to-large-sized problems, the proposed NSGA-II works better than the ɛ-constraint.

  16. JANUS: a bit-wise reversible integrator for N-body dynamics

    NASA Astrophysics Data System (ADS)

    Rein, Hanno; Tamayo, Daniel

    2018-01-01

    Hamiltonian systems such as the gravitational N-body problem have time-reversal symmetry. However, all numerical N-body integration schemes, including symplectic ones, respect this property only approximately. In this paper, we present the new N-body integrator JANUS , for which we achieve exact time-reversal symmetry by combining integer and floating point arithmetic. JANUS is explicit, formally symplectic and satisfies Liouville's theorem exactly. Its order is even and can be adjusted between two and ten. We discuss the implementation of JANUS and present tests of its accuracy and speed by performing and analysing long-term integrations of the Solar system. We show that JANUS is fast and accurate enough to tackle a broad class of dynamical problems. We also discuss the practical and philosophical implications of running exactly time-reversible simulations.

  17. Flux-trapping during the formation of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Armstrong, W. T.; Harding, D. G.; Crawford, E. A.; Hoffman, A. L.

    1981-10-01

    Optimized trapping of bias flux during the early formation phases of a Field Reversed Configuration was studied experimentally on the field reversed theta pinch TRX-1. An annular z-pinch preionizer was employed to permit ionization at high values of initial reverse bias flux. Octopole barrier fields are pulsed during field reversal to minimize plasma/wall contact and associated loss of reverse flux. Also, second half cycle operation was examined in obtaining very high values of reverse flux. Flux loss is generally observed to be governed by resistive diffusion through a current sheath at the plasma boundary, rather than flux convection to the plasma boundary. Trapped reverse flux at the time of field reversal, as well as after the radial implosion, is observed to increase with the applied bias field. This increase is greatest, and in fact nearly linear with bias field, when barrier fields are employed. Barrier fields also appear to broaden the current sheath, which results in some flux loss and a less dynamic radial implosion. A general model and one dimensional simulation of flux loss is described and correlated with experimental results.

  18. Reversibility and energy dissipation in adiabatic superconductor logic.

    PubMed

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-03-06

    Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.

  19. Reverse alignment "mirror image" visualization as a laparoscopic training tool improves task performance.

    PubMed

    Dunnican, Ward J; Singh, T Paul; Ata, Ashar; Bendana, Emma E; Conlee, Thomas D; Dolce, Charles J; Ramakrishnan, Rakesh

    2010-06-01

    Reverse alignment (mirror image) visualization is a disconcerting situation occasionally faced during laparoscopic operations. This occurs when the camera faces back at the surgeon in the opposite direction from which the surgeon's body and instruments are facing. Most surgeons will attempt to optimize trocar and camera placement to avoid this situation. The authors' objective was to determine whether the intentional use of reverse alignment visualization during laparoscopic training would improve performance. A standard box trainer was configured for reverse alignment, and 34 medical students and junior surgical residents were randomized to train with either forward alignment (DIRECT) or reverse alignment (MIRROR) visualization. Enrollees were tested on both modalities before and after a 4-week structured training program specific to their modality. Student's t test was used to determine differences in task performance between the 2 groups. Twenty-one participants completed the study (10 DIRECT, 11 MIRROR). There were no significant differences in performance time between DIRECT or MIRROR participants during forward or reverse alignment initial testing. At final testing, DIRECT participants had improved times only in forward alignment performance; they demonstrated no significant improvement in reverse alignment performance. MIRROR participants had significant time improvement in both forward and reverse alignment performance at final testing. Reverse alignment imaging for laparoscopic training improves task performance for both reverse alignment and forward alignment tasks. This may be translated into improved performance in the operating room when faced with reverse alignment situations. Minimal lab training can account for drastic adaptation to this environment.

  20. The Reverse Time Migration technique coupled with Interior Penalty Discontinuous Galerkin method.

    NASA Astrophysics Data System (ADS)

    Baldassari, C.; Barucq, H.; Calandra, H.; Denel, B.; Diaz, J.

    2009-04-01

    Seismic imaging is based on the seismic reflection method which produces an image of the subsurface from reflected waves recordings by using a tomography process and seismic migration is the industrial standard to improve the quality of the images. The migration process consists in replacing the recorded wavefields at their actual place by using various mathematical and numerical methods but each of them follows the same schedule, according to the pioneering idea of Claerbout: numerical propagation of the source function (propagation) and of the recorded wavefields (retropropagation) and next, construction of the image by applying an imaging condition. The retropropagation step can be realized accouting for the time reversibility of the wave equation and the resulting algorithm is currently called Reverse Time Migration (RTM). To be efficient, especially in three dimensional domain, the RTM requires the solution of the full wave equation by fast numerical methods. Finite element methods are considered as the best discretization method for solving the wave equation, even if they lead to the solution of huge systems with several millions of degrees of freedom, since they use meshes adapted to the domain topography and the boundary conditions are naturally taken into account in the variational formulation. Among the different finite element families, the spectral element one (SEM) is very interesting because it leads to a diagonal mass matrix which dramatically reduces the cost of the numerical computation. Moreover this method is very accurate since it allows the use of high order finite elements. However, SEM uses meshes of the domain made of quadrangles in 2D or hexaedra in 3D which are difficult to compute and not always suitable for complex topographies. Recently, Grote et al. applied the IPDG (Interior Penalty Discontinuous Galerkin) method to the wave equation. This approach is very interesting since it relies on meshes with triangles in 2D or tetrahedra in 3D

  1. Performance Comparison with Different Antenna Properties in Time Reversal Ultra-Wideband Communications for Sensor System Applications

    PubMed Central

    Ding, Shuai

    2017-01-01

    The complexity reduction of receivers in ultrawideband (UWB) communication when time reversal (TR) technique is applied makes it suitable for low-cost and low-power sensor systems. Larger antenna dispersion can generally lead to a less stable phase center and will increase the interference in UWB communications based on pulse radio, whereas a higher antenna gain will result in higher channel gain and further larger channel capacity. To find out the trade-off between antenna gain and dispersion, we performed the channel measurements using different antennas in a dense multipath environment and established the distribution of channel capacities based on the measured channel responses. The results show that the capacity loss caused by antenna dispersion cannot be compensated by antenna gain with line-of-sight transmission to some extent, the effect of phase center on the communication system is negligible, and antennas with smaller time dispersion will have a better energy focusing property and anti-interference performance in TR systems. PMID:29301195

  2. Performance Comparison with Different Antenna Properties in Time Reversal Ultra-Wideband Communications for Sensor System Applications.

    PubMed

    Yang, Yu; Wang, Bing-Zhong; Ding, Shuai

    2017-12-30

    The complexity reduction of receivers in ultrawideband (UWB) communication when time reversal (TR) technique is applied makes it suitable for low-cost and low-power sensor systems. Larger antenna dispersion can generally lead to a less stable phase center and will increase the interference in UWB communications based on pulse radio, whereas a higher antenna gain will result in higher channel gain and further larger channel capacity. To find out the trade-off between antenna gain and dispersion, we performed the channel measurements using different antennas in a dense multipath environment and established the distribution of channel capacities based on the measured channel responses. The results show that the capacity loss caused by antenna dispersion cannot be compensated by antenna gain with line-of-sight transmission to some extent, the effect of phase center on the communication system is negligible, and antennas with smaller time dispersion will have a better energy focusing property and anti-interference performance in TR systems.

  3. Rapid and Quantitative Detection of Hepatitis A Virus from Green Onion and Strawberry Rinses by Use of Real-Time Reverse Transcription-PCR

    PubMed Central

    Shan, X. C.; Wolffs, P.; Griffiths, M. W.

    2005-01-01

    In this study, an immunomagnetic capture method and a real-time reverse transcription-PCR assay were used to quantify hepatitis A virus (HAV) in green onion and strawberry rinses. This combined protocol detected as low as 0.5 PFU HAV in produce rinses and concentrated HAV levels up to 20-fold. PMID:16151164

  4. Quantitative evaluation of stone fragments in extracorporeal shock wave lithotripsy using a time reversal operator

    NASA Astrophysics Data System (ADS)

    Wang, Jen-Chieh; Zhou, Yufeng

    2017-03-01

    Extracorporeal shock wave lithotripsy (ESWL) has been used widely in the noninvasive treatment of kidney calculi. The fine fragments less than 2 mm in size can be discharged by urination, which determines the success of ESWL. Although ultrasonic and fluorescent imaging are used to localize the calculi, it's challenging to monitor the stone comminution progress, especially at the late stage of ESWL when fragments spread out as a cloud. The lack of real-time and quantitative evaluation makes this procedure semi-blind, resulting in either under- or over-treatment after the legal number of pulses required by FDA. The time reversal operator (TRO) method has the ability to detect point-like scatterers, and the number of non-zero eigenvalues of TRO is equal to that of the scatterers. In this study, the validation of TRO method to identify stones was illustrated from both numerical and experimental results for one to two stones with various sizes and locations. Furthermore, the parameters affecting the performance of TRO method has also been investigated. Overall, TRO method is effective in identifying the fragments in a stone cluster in real-time. Further development of a detection system and evaluation of its performance both in vitro and in vivo during ESWL is necessary for application.

  5. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    PubMed Central

    Mei, Jun; Chen, Zeguo; Wu, Ying

    2016-01-01

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Γ point, we can construct pseudo-time-reversal symmetry as well as pseudo-spin states in this classical system. We develop an effective Hamiltonian for the associated dispersion bands around the Brillouin zone center, and find the inherent link between the band inversion and the topological phase transition. With numerical simulations, we unambiguously demonstrate the unidirectional propagation of acoustic edge states along the interface between a topologically nontrivial acoustic crystal and a trivial one, and the robustness of the edge states against defects with sharp bends. Our work provides a new design paradigm for manipulating and transporting acoustic waves in a topologically protected manner. Technological applications and devices based on our design are expected in various frequency ranges of interest, spanning from infrasound to ultrasound. PMID:27587311

  6. Reverse osmosis water purification system

    NASA Technical Reports Server (NTRS)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  7. A gaussian model for simulated geomagnetic field reversals

    NASA Astrophysics Data System (ADS)

    Wicht, Johannes; Meduri, Domenico G.

    2016-10-01

    Field reversals are the most spectacular events in the geomagnetic history but remain little understood. Here we explore the dipole behaviour in particularly long numerical dynamo simulations to reveal statistically significant conditions required for reversals and excursions to happen. We find that changes in the axial dipole moment behaviour are crucial while the equatorial dipole moment plays a negligible role. For small Rayleigh numbers, the axial dipole always remains strong and stable and obeys a clearly Gaussian probability distribution. Only when the Rayleigh number is increased sufficiently the axial dipole can reverse and its distribution becomes decisively non-Gaussian. Increased likelihoods around zero indicate a pronounced lingering in a new low dipole moment state. Reversals and excursions can only happen when axial dipole fluctuations are large enough to drive the system from the high dipole moment state assumed during stable polarity epochs into the low dipole moment state. Since it is just a matter of chance which polarity is amplified during dipole recovery, reversals and grand excursions, i.e. excursions during which the dipole assumes reverse polarity, are equally likely. While the overall reversal behaviour seems Earth-like, a closer comparison to palaeomagnetic findings suggests that the simulated events last too long and that grand excursions are too rare. For a particularly large Ekman number we find a second but less Earth-like type of reversals where the total field decays and recovers after a certain time.

  8. The polarized atomic-beam target for the EDDA experiment and the time-reversal invariance test at COSY

    NASA Astrophysics Data System (ADS)

    Eversheim, P. D.; Altmeier, M.; Felden, O.

    1997-02-01

    For the the EDDA experiment, which was set up to measure the p¯-p¯ excitation function during the acceleration ramp of the cooler synchrotron COSY at Jülich, a polarized atomic-beam target was designed regarding the restrictions imposed by the geometry of the EDDA detector. Later, when the time-reversal invariance experiment is to be performed, the EDDA detector will serve as efficient internal polarimeter and the source has to deliver tensor polarized deuterons. The modular design of this polarized atomic-beam target that allows to meet these conditions will be discussed in comparison to other existing polarized atomic-beam targets.

  9. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shen, Yuecheng; Ruan, Haowen; Brodie, Frank L.; Wong, Terence T. W.; Yang, Changhuei; Wang, Lihong V.

    2018-01-01

    Normal development of the visual system in infants relies on clear images being projected onto the retina, which can be disrupted by lens opacity caused by congenital cataract. This disruption, if uncorrected in early life, results in amblyopia (permanently decreased vision even after removal of the cataract). Doctors are able to prevent amblyopia by removing the cataract during the first several weeks of life, but this surgery risks a host of complications, which can be equally visually disabling. Here, we investigated the feasibility of focusing light noninvasively through highly scattering cataractous lenses to stimulate the retina, thereby preventing amblyopia. This approach would allow the cataractous lens removal surgery to be delayed and hence greatly reduce the risk of complications from early surgery. Employing a wavefront shaping technique named time-reversed ultrasonically encoded optical focusing in reflection mode, we focused 532-nm light through a highly scattering ex vivo adult human cataractous lens. This work demonstrates a potential clinical application of wavefront shaping techniques.

  10. Magnetic flux trapping during field reversal in the formation of a field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren C.

    1985-11-01

    The flow of plasma and magnetic flux toward a wall is examined in a slab geometry where the magnetic field is parallel to the wall. Magnetohydrodynamic (MHD) flow with a quasisteady approximation is assumed that reduces the problem to three coupled ordinary differential equations. The calculated behavior shows that a thin current sheath is established at the wall in which a variety of phenomena appear, including significant resistive heating and rapid deceleration of the plasma flow. The sheath physics determines the speed at which flux and plasma flow toward the wall. The model has been applied to the field-reversal phase of a field-reversed theta pinch, during which the reduced magnetic field near the wall drives an outward flow of plasma and magnetic flux. The analysis leads to approximate expressions for the instantaneous flow speed, the loss of magnetic flux during the field reversal phase, the integrated heat flow to the wall, and the highest possible magnetic flux retained after reversal. Predictions from this model are compared with previous time-dependent MHD calculations and with experimental results from the TRX-1 [Proceedings of the 4th Symposium on the Physics and Technology of Compact Toroids, 27-29 October 1981 (Lawrence Livermore National Laboratory, Livermore, CA, 1982), p. 61] and TRX-2 [Proceedings of the 6th U.S. Symposium on Compact Toroid Research, 20-23 February, 1984 (Princeton Plasma Physics Laboratory, Princeton, NJ, 1984), p. 154] experiments.

  11. Polar Field Reversals and Active Region Decay

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Ettinger, Sophie

    2017-09-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. We summarize the published evidence from observation and modeling of the influence of meridional flow variations and decaying active region flux's spatial distribution, such as the Joy's law tilt angle. Using NSO Kitt Peak synoptic magnetograms covering cycles 21-24, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed trailing-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with trailing-polarity flux located poleward of leading-polarity flux. The activity complexes of the cycle 21 and 22 maxima were larger and longer-lived than those of the cycle 23 and 24 maxima, and the poleward surges were stronger and more unipolar and the polar field changes larger and faster. The cycle 21 and 22 polar reversals were dominated by only a few long-lived complexes whereas the cycle 23 and 24 reversals were the cumulative effects of more numerous, shorter-lived regions. We conclude that sizes and lifetimes of activity complexes are key to

  12. Fully gapped superconductivity in single crystals of noncentrosymmetric Re6Zr with broken time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Pang, G. M.; Nie, Z. Y.; Wang, A.; Singh, D.; Xie, W.; Jiang, W. B.; Chen, Y.; Singh, R. P.; Smidman, M.; Yuan, H. Q.

    2018-06-01

    The noncentrosymmetric superconductor Re6Zr has attracted much interest due to the observation of broken time-reversal symmetry in the superconducting state. Here we report an investigation of the superconducting gap structure of Re6Zr single crystals by measuring the magnetic penetration depth shift Δ λ (T ) and electronic specific heat Ce(T ) . Δ λ (T ) exhibits an exponential temperature dependence behavior for T ≪Tc , which indicates a fully open superconducting gap. Our analysis shows that a single gap s -wave model is sufficient to describe both the superfluid density ρs(T ) and Ce(T ) results, with a fitted gap magnitude larger than the weak coupling BCS value, providing evidence for fully gapped superconductivity in Re6Zr with moderate coupling.

  13. Non invasive transcostal focusing based on the decomposition of the time reversal operator: in vitro validation

    NASA Astrophysics Data System (ADS)

    Cochard, Étienne; Prada, Claire; Aubry, Jean-François; Fink, Mathias

    2010-03-01

    Thermal ablation induced by high intensity focused ultrasound has produced promising clinical results to treat hepatocarcinoma and other liver tumors. However skin burns have been reported due to the high absorption of ultrasonic energy by the ribs. This study proposes a method to produce an acoustic field focusing on a chosen target while sparing the ribs, using the decomposition of the time-reversal operator (DORT method). The idea is to apply an excitation weight vector to the transducers array which is orthogonal to the subspace of emissions focusing on the ribs. The ratio of the energies absorbed at the focal point and on the ribs has been enhanced up to 100-fold as demonstrated by the measured specific absorption rates.

  14. Manipulating one-way space wave and its refraction by time-reversal and parity symmetry breaking

    PubMed Central

    Poo, Yin; He, Cheng; Xiao, Chao; Lu, Ming-Hui; Wu, Rui-Xin; Chen, Yan-Feng

    2016-01-01

    One-way transmission and negative refraction are the exotic wave properties founded in photonic crystals which attract a great attention due to their promising applications in photonic devices. How to integrate such two phenomena in one material or device is interesting and valuable. In this work, we theoretically and experimentally demonstrate that one-way electromagnetic space wave can be realized by means of two-dimensional magnetic photonic crystals. Simultaneously breaking the time-reversal and parity symmetries of the magnetic photonic crystals designed, we observe oblique incident space wave propagating one-way in the magnetic photonic crystals with positive or negative refraction occurring at interfaces, which can be manipulated upon the incident angle and operating frequency. Our work may offer a potential platform to realize some exotic photoelectronic and microwave devices such as one-way imaging and one-way cloaking. PMID:27387438

  15. Time reversal optical tomography locates fluorescent targets in a turbid medium

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Gayen, S. K.

    2013-03-01

    A fluorescence optical tomography approach that extends time reversal optical tomography (TROT) to locate fluorescent targets embedded in a turbid medium is introduced. It uses a multi-source illumination and multi-detector signal acquisition scheme, along with TR matrix formalism, and multiple signal classification (MUSIC) to construct pseudo-image of the targets. The samples consisted of a single or two small tubes filled with water solution of Indocyanine Green (ICG) dye as targets embedded in a 250 mm × 250 mm × 60 mm rectangular cell filled with Intralipid-20% suspension as the scattering medium. The ICG concentration was 1μM, and the Intralipid-20% concentration was adjusted to provide ~ 1-mm transport length for both excitation wavelength of 790 nm and fluorescence wavelength around 825 nm. The data matrix was constructed using the diffusely transmitted fluorescence signals for all scan positions, and the TR matrix was constructed by multiplying data matrix with its transpose. A pseudo spectrum was calculated using the signal subspace of the TR matrix. Tomographic images were generated using the pseudo spectrum. The peaks in the pseudo images provided locations of the target(s) with sub-millimeter accuracy. Concurrent transmission TROT measurements corroborated fluorescence-TROT findings. The results demonstrate that TROT is a fast approach that can be used to obtain accurate three-dimensional position information of fluorescence targets embedded deep inside a highly scattering medium, such as, a contrast-enhanced tumor in a human breast.

  16. Faraday waves under time-reversed excitation.

    PubMed

    Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas

    2013-03-01

    Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer et al., Phys. Rev. E 78, 036218 (2008)]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions.

  17. Late reversal reaction after 10 years of adequately treated leprosy.

    PubMed Central

    Thacker, A. K.; Kumar, P.; Mukhija, R. D.; Sharma, S. P.

    1997-01-01

    Differentiation between a relapse or late reversal reaction following completion of regular drug therapy in patients with leprosy is often difficult, though it has definite therapeutic implications. The present case documents a late reversal reaction occurring an unusually long time after the completion of multi-drug therapy. Images Figure PMID:9519194

  18. The detection of flaws in austenitic welds using the decomposition of the time-reversal operator

    NASA Astrophysics Data System (ADS)

    Cunningham, Laura J.; Mulholland, Anthony J.; Tant, Katherine M. M.; Gachagan, Anthony; Harvey, Gerry; Bird, Colin

    2016-04-01

    The non-destructive testing of austenitic welds using ultrasound plays an important role in the assessment of the structural integrity of safety critical structures. The internal microstructure of these welds is highly scattering and can lead to the obscuration of defects when investigated by traditional imaging algorithms. This paper proposes an alternative objective method for the detection of flaws embedded in austenitic welds based on the singular value decomposition of the time-frequency domain response matrices. The distribution of the singular values is examined in the cases where a flaw exists and where there is no flaw present. A lower threshold on the singular values, specific to austenitic welds, is derived which, when exceeded, indicates the presence of a flaw. The detection criterion is successfully implemented on both synthetic and experimental data. The datasets arising from welds containing a flaw are further interrogated using the decomposition of the time-reversal operator (DORT) method and the total focusing method (TFM), and it is shown that images constructed via the DORT algorithm typically exhibit a higher signal-to-noise ratio than those constructed by the TFM algorithm.

  19. The detection of flaws in austenitic welds using the decomposition of the time-reversal operator

    PubMed Central

    Cunningham, Laura J.; Mulholland, Anthony J.; Gachagan, Anthony; Harvey, Gerry; Bird, Colin

    2016-01-01

    The non-destructive testing of austenitic welds using ultrasound plays an important role in the assessment of the structural integrity of safety critical structures. The internal microstructure of these welds is highly scattering and can lead to the obscuration of defects when investigated by traditional imaging algorithms. This paper proposes an alternative objective method for the detection of flaws embedded in austenitic welds based on the singular value decomposition of the time-frequency domain response matrices. The distribution of the singular values is examined in the cases where a flaw exists and where there is no flaw present. A lower threshold on the singular values, specific to austenitic welds, is derived which, when exceeded, indicates the presence of a flaw. The detection criterion is successfully implemented on both synthetic and experimental data. The datasets arising from welds containing a flaw are further interrogated using the decomposition of the time-reversal operator (DORT) method and the total focusing method (TFM), and it is shown that images constructed via the DORT algorithm typically exhibit a higher signal-to-noise ratio than those constructed by the TFM algorithm. PMID:27274683

  20. A semi-analytical model of a time reversal cavity for high-amplitude focused ultrasound applications

    NASA Astrophysics Data System (ADS)

    Robin, J.; Tanter, M.; Pernot, M.

    2017-09-01

    Time reversal cavities (TRC) have been proposed as an efficient approach for 3D ultrasound therapy. They allow the precise spatio-temporal focusing of high-power ultrasound pulses within a large region of interest with a low number of transducers. Leaky TRCs are usually built by placing a multiple scattering medium, such as a random rod forest, in a reverberating cavity, and the final peak pressure gain of the device only depends on the temporal length of its impulse response. Such multiple scattering in a reverberating cavity is a complex phenomenon, and optimisation of the device’s gain is usually a cumbersome process, mostly empirical, and requiring numerical simulations with extremely long computation times. In this paper, we present a semi-analytical model for the fast optimisation of a TRC. This model decouples ultrasound propagation in an empty cavity and multiple scattering in a multiple scattering medium. It was validated numerically and experimentally using a 2D-TRC and numerically using a 3D-TRC. Finally, the model was used to determine rapidly the optimal parameters of the 3D-TRC which had been confirmed by numerical simulations.

  1. Sensitivity of geomagnetic reversal rate on core evolution from numerical dynamos

    NASA Astrophysics Data System (ADS)

    Driscoll, P. E.; Davies, C. J.

    2017-12-01

    The paleomagnetic record indicates the geodynamo has evolved from frequently reversing to non-reversing (superchron) magnetic states several times over the Phanerozoic. Previous theoretical studies demonstrated a positive correlation between magnetic reversal rate and core-mantle boundary heat flux. However, attempts to identify such a correlation between reversal rates and proxies for internal cooling rate, such as plume events, superchron cycles, and subduction rates, have been inconclusive. Here we revisit the magnetic reversal occurrence rate in numerical dynamos at low Ekman numbers (faster rotation) and high magnetic Prandtl numbers (ratio of viscous and magnetic diffusivities). We focus on how the correlation between reversal rate and convective power depends on the core evolution rate and on other factors, such as Ek, Pm, and thermal boundary conditions. We apply our results to the seafloor reversal record in an attempt to infer the energetic evolution of the lower mantle and core over that period.

  2. Paleomagnetic Study of a Reversal of the Earth's Magnetic Field.

    PubMed

    Dunn, J R; Fuller, M; Ito, H; Schmidt, V A

    1971-05-21

    A detailed record of a field reversal has been obtained from the natural remanent magnetization of the Tatoosh intrusion in Mount Rainier National Park, Washington. The reversal took place at 14.7 +/- 1 million years and is interpreted to be from reverse to normal. A decrease in the intensity of the field of about an order of magnitude occurs immediately before the reversal, while its orientation remains substantially unchanged. The onset of the reversal is marked by abrupt swinging of the virtual geomagnetic pole along an arc of a great circle. During the reversal the pole traces a path across the Pacific. In the last stage of the process recorded in the sections, the succession of virtual geomagnetic poles is very similar to those generated by secular variation in the recent past. Although the cooling rate of the intrusion is not sufficiently well known to permit a useful calculation of the duration of the reversal process, an estimate based on the length of the supposed secular variation cycles gives 1 to 4 x 103 years for the reversal of field direction and approximately 1 x 104 years for the time scale of the intensity changes.

  3. Reverse Flood Routing with the Lag-and-Route Storage Model

    NASA Astrophysics Data System (ADS)

    Mazi, K.; Koussis, A. D.

    2010-09-01

    This work presents a method for reverse routing of flood waves in open channels, which is an inverse problem of the signal identification type. Inflow determination from outflow measurements is useful in hydrologic forensics and in optimal reservoir control, but has been seldom studied. Such problems are ill posed and their solution is sensitive to small perturbations present in the data, or to any related uncertainty. Therefore the major difficulty in solving this inverse problem consists in controlling the amplification of errors that inevitably befall flow measurements, from which the inflow signal is to be determined. The lag-and-route model offers a convenient framework for reverse routing, because not only is formal deconvolution not required, but also reverse routing is through a single linear reservoir. In addition, this inversion degenerates to calculating the intermediate inflow (prior to the lag step) simply as the sum of the outflow and of its time derivative multiplied by the reservoir’s time constant. The remaining time shifting (lag) of the intermediate, reversed flow presents no complications, as pure translation causes no error amplification. Note that reverse routing with the inverted Muskingum scheme (Koussis et al., submitted to the 12th Plinius Conference) fails when that scheme is specialised to the Kalinin-Miljukov model (linear reservoirs in series). The principal functioning of the reverse routing procedure was verified first with perfect field data (outflow hydrograph generated by forward routing of a known inflow hydrograph). The field data were then seeded with random error. To smooth the oscillations caused by the imperfect (measured) outflow data, we applied a multipoint Savitzky-Golay low-pass filter. The combination of reverse routing and filtering achieved an effective recovery of the inflow signal extremely efficiently. Specifically, we compared the reverse routing results of the inverted lag-and-route model and of the inverted

  4. Self-Healing of Unentangled Polymer Networks with Reversible Bonds

    PubMed Central

    Stukalin, Evgeny B.; Cai, Li-Heng; Kumar, N. Arun; Leibler, Ludwik; Rubinstein, Michael

    2013-01-01

    Self-healing polymeric materials are systems that after damage can revert to their original state with full or partial recovery of mechanical strength. Using scaling theory we study a simple model of autonomic self-healing of unentangled polymer networks. In this model one of the two end monomers of each polymer chain is fixed in space mimicking dangling chains attachment to a polymer network, while the sticky monomer at the other end of each chain can form pairwise reversible bond with the sticky end of another chain. We study the reaction kinetics of reversible bonds in this simple model and analyze the different stages in the self-repair process. The formation of bridges and the recovery of the material strength across the fractured interface during the healing period occur appreciably faster after shorter waiting time, during which the fractured surfaces are kept apart. We observe the slowest formation of bridges for self-adhesion after bringing into contact two bare surfaces with equilibrium (very low) density of open stickers in comparison with self-healing. The primary role of anomalous diffusion in material self-repair for short waiting times is established, while at long waiting times the recovery of bonds across fractured interface is due to hopping diffusion of stickers between different bonded partners. Acceleration in bridge formation for self-healing compared to self-adhesion is due to excess non-equilibrium concentration of open stickers. Full recovery of reversible bonds across fractured interface (formation of bridges) occurs after appreciably longer time than the equilibration time of the concentration of reversible bonds in the bulk. PMID:24347684

  5. Time distribution of adsorption entropy of gases on heterogeneous surfaces by reversed-flow gas chromatography.

    PubMed

    Katsanos, Nicholas A; Kapolos, John; Gavril, Dimitrios; Bakaoukas, Nicholas; Loukopoulos, Vassilios; Koliadima, Athanasia; Karaiskakis, George

    2006-09-15

    The reversed-flow gas chromatography (RF-GC) technique has been applied to measure the adsorption entropy over time, when gaseous pentane is adsorbed on the surface of two solids (gamma-alumina and a silica supported rhodium catalyst) at 393.15 and 413.15K, respectively. Utilizing experimental chromatographic data, this novel methodology also permits the simultaneous measurement of the local adsorption energy, epsilon, local equilibrium adsorbed concentration, c(s)(*), and local adsorption isotherm, theta(p, T, epsilon) in a time resolved way. In contrast with other inverse gas chromatographic methods, which determine the standard entropy at zero surface coverage, the present method operates over a wide range of surface coverage taking into account not only the adsorbate-adsorbent interaction, but also the adsorbate-adsorbate interaction. One of the most interesting observations of the present work is the fact that the interaction of n-pentane is spontaneous on the Rh/SiO(2) catalyst for a very short time interval compared to that on gamma-Al(2)O(3). This can explain the different kinetic behavior of each particular gas-solid system, and it can be attributed to the fact that large amounts of n-C(5)H(12) are present on the active sites of the Rh/SiO(2) catalyst compared to those on gamma-Al(2)O(3), as the local equilibrium adsorbed concentration values, c(s)(*), indicate.

  6. Non-equilibrium dynamic reversal of in-plane ferromagnetic elliptical disk

    NASA Astrophysics Data System (ADS)

    Kim, June-Seo; Hwang, Hee-Kyeong; You, Chun-Yeol

    2018-01-01

    The ultrafast switching mechanism of an in-plane magnetized elliptical magnetic disk by applying dynamic out-of-plane magnetic field pulses is investigated by performing micromagnetic simulations. For the in-plane magnetized nanostructures, the out-of-plane magnetic field is able to rotate the direction of magnetization when the precession torque overcomes the shape anisotropy of the system. This type magnetization reversal is one of non-equilibrium dynamic within a certain transition time util the precession torque is equivalent to the damping torque. By controlling the rise time or fall times of dynamic out-of-plane field pulses, the transition time can be also successively tuned and then an ultrafast switching of an elliptical magnetic nano-disk is clearly achieved by controlling the precessional torque. As another reversal approach, sinusoidal magnetic fields in gigahertz range are applied to the system. Consequently, the thresholds of switching fields are drastically decreased. We also reveal that the ferromagnetic resonance frequencies at the center and the edge of the elliptical disk are most important for microwave sinusoidal out-of-plane magnetic field induced magnetization reversal.

  7. Cranioplasty prosthesis manufacturing based on reverse engineering technology

    PubMed Central

    Chrzan, Robert; Urbanik, Andrzej; Karbowski, Krzysztof; Moskała, Marek; Polak, Jarosław; Pyrich, Marek

    2012-01-01

    Summary Background Most patients with large focal skull bone loss after craniectomy are referred for cranioplasty. Reverse engineering is a technology which creates a computer-aided design (CAD) model of a real structure. Rapid prototyping is a technology which produces physical objects from virtual CAD models. The aim of this study was to assess the clinical usefulness of these technologies in cranioplasty prosthesis manufacturing. Material/Methods CT was performed on 19 patients with focal skull bone loss after craniectomy, using a dedicated protocol. A material model of skull deficit was produced using computer numerical control (CNC) milling, and individually pre-operatively adjusted polypropylene-polyester prosthesis was prepared. In a control group of 20 patients a prosthesis was manually adjusted to each patient by a neurosurgeon during surgery, without using CT-based reverse engineering/rapid prototyping. In each case, the prosthesis was implanted into the patient. The mean operating times in both groups were compared. Results In the group of patients with reverse engineering/rapid prototyping-based cranioplasty, the mean operating time was shorter (120.3 min) compared to that in the control group (136.5 min). The neurosurgeons found the new technology particularly useful in more complicated bone deficits with different curvatures in various planes. Conclusions Reverse engineering and rapid prototyping may reduce the time needed for cranioplasty neurosurgery and improve the prosthesis fitting. Such technologies may utilize data obtained by commonly used spiral CT scanners. The manufacturing of individually adjusted prostheses should be commonly used in patients planned for cranioplasty with synthetic material. PMID:22207125

  8. Why do airlines want and use thrust reversers? A compilation of airline industry responses to a survey regarding the use of thrust reversers on commercial transport airplanes

    NASA Technical Reports Server (NTRS)

    Yetter, Jeffrey A.

    1995-01-01

    Although thrust reversers are used for only a fraction of the airplane operating time, their impact on nacelle design, weight, airplane cruise performance, and overall airplane operating and maintenance expenses is significant. Why then do the airlines want and use thrust reversers? In an effort to understand the airlines need for thrust reversers, a survey of the airline industry was made to determine why and under what situations thrust reversers are currently used or thought to be needed. The survey was intended to help establish the cost/benefits trades for the use of thrust reversers and airline opinion regarding alternative deceleration devices. A compilation and summary of the responses given to the survey questionnaire is presented.

  9. Dynamic, in vivo, real-time detection of retinal oxidative status in a model of elevated intraocular pressure using a novel, reversibly responsive, profluorescent nitroxide probe.

    PubMed

    Rayner, Cassie L; Gole, Glen A; Bottle, Steven E; Barnett, Nigel L

    2014-12-01

    Changes to the redox status of biological systems have been implicated in the pathogenesis of a wide variety of disorders including cancer, Ischemia-reperfusion (I/R) injury and neurodegeneration. In times of metabolic stress e.g. ischaemia/reperfusion, reactive oxygen species (ROS) production overwhelms the intrinsic antioxidant capacity of the cell, damaging vital cellular components. The ability to quantify ROS changes in vivo, is therefore essential to understanding their biological role. Here we evaluate the suitability of a novel reversible profluorescent probe containing a redox-sensitive nitroxide moiety (methyl ester tetraethylrhodamine nitroxide, ME-TRN), as an in vivo, real-time reporter of retinal oxidative status. The reversible nature of the probe's response offers the unique advantage of being able to monitor redox changes in both oxidizing and reducing directions in real time. After intravitreal administration of the ME-TRN probe, we induced ROS production in rat retina using an established model of complete, acute retinal ischaemia followed by reperfusion. After restoration of blood flow, retinas were imaged using a Micron III rodent fundus fluorescence imaging system, to quantify the redox-response of the probe. Fluorescent intensity declined during the first 60 min of reperfusion. The ROS-induced change in probe fluorescence was ameliorated with the retinal antioxidant, lutein. Fluorescence intensity in non-Ischemia eyes did not change significantly. This new probe and imaging technology provide a reversible and real-time response to oxidative changes and may allow the in vivo testing of antioxidant therapies of potential benefit to a range of diseases linked to oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Phase diagram and quench dynamics of the cluster-XY spin chain

    NASA Astrophysics Data System (ADS)

    Montes, Sebastián; Hamma, Alioscia

    2012-08-01

    We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.

  11. Phase diagram and quench dynamics of the cluster-XY spin chain.

    PubMed

    Montes, Sebastián; Hamma, Alioscia

    2012-08-01

    We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.

  12. Paleointensity Behavior and Intervals Between Geomagnetic Reversals in the Last 167 Ma

    NASA Astrophysics Data System (ADS)

    Kurazhkovskii, A. Yu.; Kurazhkovskaya, N. A.; Klain, B. I.

    2018-01-01

    The results of comparative analysis of the behavior of paleointensity and polarity (intervals between reversals) of the geomagnetic field for the last 167 Ma are presented. Similarities and differences in the behavior of these characteristics of the geomagnetic field are discussed. It is shown that bursts of paleointensity and long intervals between reversals occurred at high mean values of paleointensity in the Cretaceous and Paleogene. However, there are differences between the paleointensity behavior and the reversal regime: (1) the characteristic times of paleointensity variations are less than the characteristic times of the frequency of geomagnetic reversals, (2) the achievement of maximum values of paleointensity at the Cretaceous-Paleogene boundary and the termination of paleointensity bursts after the boundary of 45-40 Ma are not marked by explicit features in the geomagnetic polarity behavior.

  13. Spontaneous time reversal symmetry breaking in atomically confined two-dimensional impurity bands in silicon and germanium

    NASA Astrophysics Data System (ADS)

    Ghosh, Arindam

    Three-dimensional bulk-doped semiconductors, in particular phosphorus (P)-doped silicon (Si) and germanium (Ge), are among the best studied systems for many fundamental concepts in solid state physics, ranging from the Anderson metal-insulator transition to the many-body Coulomb interaction effects on quantum transport. Recent advances in material engineering have led to vertically confined doping of phosphorus (P) atoms inside bulk crystalline silicon and germanium, where the electron transport occurs through one or very few atomic layers, constituting a new and unique platform to investigate many of these phenomena at reduced dimensions. In this talk I shall present results of extensive quantum transport experiments in delta-doped silicon and germanium epilayers, over a wide range of doping density that allow independent tuning of the on-site Coulomb interaction and hopping energy scales. We find that low-frequency flicker noise, or the 1 / f noise, in the electrical conductance of these systems is exceptionally low, and in fact among the lowest when compared with other low-dimensional materials. This is attributed to the physical separation of the conduction electrons, embedded inside the crystalline semiconductor matrix, from the charged fluctuators at the surface. Most importantly, we find a remarkable suppression of weak localization effects, including the quantum correction to conductivity and universal conductance fluctuations, with decreasing doping density or, equivalently, increasing effective on-site Coulomb interaction. In-plane magneto-transport measurements indicate the presence of intrinsic local spin fluctuations at low doping although no signatures of long range magnetic order could be identified. We argue that these results indicate a spontaneous breakdown of time reversal symmetry, which is one of the most fundamental and robust symmetries of nonmagnetic quantum systems. While the microscopic origin of this spontaneous time reversal symmetry

  14. An algebra of reversible computation.

    PubMed

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  15. Reverse-Tangent Injection in a Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2007-01-01

    Injection of working fluid into a centrifugal compressor in the reverse tangent direction has been invented as a way of preventing flow instabilities (stall and surge) or restoring stability when stall or surge has already commenced. The invention applies, in particular, to a centrifugal compressor, the diffuser of which contains vanes that divide the flow into channels oriented partly radially and partly tangentially. In reverse-tangent injection, a stream or jet of the working fluid (the fluid that is compressed) is injected into the vaneless annular region between the blades of the impeller and the vanes of the diffuser. As used here, "reverse" signifies that the injected flow opposes (and thereby reduces) the tangential component of the velocity of the impeller discharge. At the same time, the injected jet acts to increase the radial component of the velocity of the impeller discharge.

  16. A Probabilistic Assessment of the Next Geomagnetic Reversal

    NASA Astrophysics Data System (ADS)

    Buffett, Bruce; Davis, William

    2018-02-01

    Deterministic forecasts for the next geomagnetic reversal are not feasible due to large uncertainties in the present-day state of the Earth's core. A more practical approach relies on probabilistic assessments using paleomagnetic observations to characterize the amplitude of fluctuations in the geomagnetic dipole. We use paleomagnetic observations for the past 2 Myr to construct a stochastic model for the axial dipole field and apply well-established methods to evaluate the probability of the next geomagnetic reversal as a function of time. For a present-day axial dipole moment of 7.6 × 1022 A m2, the probability of the dipole entering a reversed state is less than 2% after 20 kyr. This probability rises to 11% after 50 kyr. An imminent geomagnetic reversal is not supported by paleomagnetic observations. The current rate of decline in the dipole moment is unusual but within the natural variability predicted by the stochastic model.

  17. Second Law Violations by Means of a Stratification of Temperature Due to Force Fields

    NASA Astrophysics Data System (ADS)

    Trupp, Andreas

    2002-11-01

    In 1868 J.C. Maxwell proved that a perpetual motion machine of the second kind would become possible, if the equilibrium temperature in a vertical column of gas subject to gravity were a function of height. However, Maxwell had claimed that the temperature had to be the same at all points of the column. So did Boltzmann. Their opponent was Loschmidt. He claimed that the equilibrium temperature declined with height, and that a perpetual motion machine of the second kind operating by means of such column was compatible with the second law of thermodynamics. Extending the general idea behind Loschmidt's concept to other force fields, gravity can be replaced by molecular forces acting on molecules that try to escape from the surface of a liquid into the vapor space. Experiments proving the difference of temperature between the liquid and the vapor phase were conducted in the 19th century already.

  18. Reverse surface-polariton cherenkov radiation

    PubMed Central

    Tao, Jin; Wang, Qi Jie; Zhang, Jingjing; Luo, Yu

    2016-01-01

    The existence of reverse Cherenkov radiation for surface plasmons is demonstrated analytically. It is shown that in a metal-insulator-metal (MIM) waveguide, surface plasmon polaritons (SPPs) excited by an electron moving at a speed higher than the phase velocity of SPPs can generate Cherenkov radiation, which can be switched from forward to reverse direction by tuning the core thickness of the waveguide. Calculations are performed in both frequency and time domains, demonstrating that a radiation pattern with a backward-pointing radiation cone can be achieved at small waveguide core widths, with energy flow opposite to the wave vector of SPPs. Our study suggests the feasibility of generating and steering electron radiation in simple plasmonic systems, opening the gate for various applications such as velocity-selective particle detections. PMID:27477061

  19. Time reversal seismic imaging using laterally reflected surface waves in southern California

    NASA Astrophysics Data System (ADS)

    Tape, C.; Liu, Q.; Tromp, J.; Plesch, A.; Shaw, J. H.

    2010-12-01

    We use observed post-surface-wave seismic waveforms to image shallow (upper 10 km) lateral reflectors in southern California. Our imaging technique employs the 3D crustal model m16 of Tape et al. (2009), which is accurate for most local earthquakes over the period range 2-30 s. Model m16 captures the resonance of the major sedimentary basins in southern California, as well as some lateral surface wave reflections associated with these basins. We apply a 3D Gaussian smoothing function (12 km horizontal, 2 km vertical) to model m16. This smoothing has the effect of suppressing synthetic waveforms within the period range of interest (3-10 s) that are associated with reflections (single and multiple) from these basins. The smoothed 3D model serves as the background model within which we propagate an ``adjoint wavefield'' comprised of time-reversed windows of post-surface-wave coda waveforms that are initiated at the respective station locations. This adjoint wavefield constructively interferes with the regular wavefield in the locations of potential reflectors. The potential reflectors are revealed in an ``event kernel,'' which is the time-integrated volumetric field for each earthquake. By summing (or ``stacking'') the event kernels from 28 well-recorded earthquakes, we identify several reflectors using this imaging procedure. The most prominent lateral reflectors occur in proximity to: the southernmost San Joaquin basin, the Los Angeles basin, the San Pedro basin, the Ventura basin, the Manix basin, the San Clemente--Santa Cruz--Santa Barbara ridge, and isolated segments of the San Jacinto and San Andreas faults. The correspondence between observed coherent coda waveforms and the imaged reflectors provides a solid basis for interpreting the kernel features as material contrasts. The 3D spatial extent and amplitude of the kernel features provide constraints on the geometry and material contrast of the imaged reflectors.

  20. Real-time sub-Ångstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene

    NASA Astrophysics Data System (ADS)

    Kisielowski, Christian; Wang, Lin-Wang; Specht, Petra; Calderon, Hector A.; Barton, Bastian; Jiang, Bin; Kang, Joo H.; Cieslinski, Robert

    2013-07-01

    The dynamic responses of a rhodium catalyst and a graphene sheet are investigated upon random excitation with 80 kV electrons. An extraordinary electron microscope stability and resolution allow studying temporary atom displacements from their equilibrium lattice sites into metastable sites across projected distances as short as 60 pm. In the rhodium catalyst, directed and reversible atom displacements emerge from excitations into metastable interstitial sites and surface states that can be explained by single atom trajectories. Calculated energy barriers of 0.13 eV and 1.05 eV allow capturing single atom trapping events at video rates that are stabilized by the Rh [110] surface corrugation. Molecular dynamics simulations reveal that randomly delivered electrons can also reversibly enhance the sp3 and the sp1 characters of the sp2-bonded carbon atoms in graphene. The underlying collective atom motion can dynamically stabilize characteristic atom displacements that are unpredictable by single atom trajectories. We detect three specific displacements and use two of them to propose a path for the irreversible phase transformation of a graphene nanoribbon into carbene. Collectively stabilized atom displacements greatly exceed the thermal vibration amplitudes described by Debye-Waller factors and their measured dose rate dependence is attributed to tunable phonon contributions to the internal energy of the systems. Our experiments suggest operating electron microscopes with beam currents as small as zepto-amperes/nm2 in a weak-excitation approach to improve on sample integrity and allow for time-resolved studies of conformational object changes that probe for functional behavior of catalytic surfaces or molecules.

  1. Acceleration of stable TTI P-wave reverse-time migration with GPUs

    NASA Astrophysics Data System (ADS)

    Kim, Youngseo; Cho, Yongchae; Jang, Ugeun; Shin, Changsoo

    2013-03-01

    When a pseudo-acoustic TTI (tilted transversely isotropic) coupled wave equation is used to implement reverse-time migration (RTM), shear wave energy is significantly included in the migration image. Because anisotropy has intrinsic elastic characteristics, coupling P-wave and S-wave modes in the pseudo-acoustic wave equation is inevitable. In RTM with only primary energy or the P-wave mode in seismic data, the S-wave energy is regarded as noise for the migration image. To solve this problem, we derive a pure P-wave equation for TTI media that excludes the S-wave energy. Additionally, we apply the rapid expansion method (REM) based on a Chebyshev expansion and a pseudo-spectral method (PSM) to calculate spatial derivatives in the wave equation. When REM is incorporated with the PSM for the spatial derivatives, wavefields with high numerical accuracy can be obtained without grid dispersion when performing numerical wave modeling. Another problem in the implementation of TTI RTM is that wavefields in an area with high gradients of dip or azimuth angles can be blown up in the progression of the forward and backward algorithms of the RTM. We stabilize the wavefields by applying a spatial-frequency domain high-cut filter when calculating the spatial derivatives using the PSM. In addition, to increase performance speed, the graphic processing unit (GPU) architecture is used instead of traditional CPU architecture. To confirm the degree of acceleration compared to the CPU version on our RTM, we then analyze the performance measurements according to the number of GPUs employed.

  2. Dynamical similarity of geomagnetic field reversals.

    PubMed

    Valet, Jean-Pierre; Fournier, Alexandre; Courtillot, Vincent; Herrero-Bervera, Emilio

    2012-10-04

    No consensus has been reached so far on the properties of the geomagnetic field during reversals or on the main features that might reveal its dynamics. A main characteristic of the reversing field is a large decrease in the axial dipole and the dominant role of non-dipole components. Other features strongly depend on whether they are derived from sedimentary or volcanic records. Only thermal remanent magnetization of lava flows can capture faithful records of a rapidly varying non-dipole field, but, because of episodic volcanic activity, sequences of overlying flows yield incomplete records. Here we show that the ten most detailed volcanic records of reversals can be matched in a very satisfactory way, under the assumption of a common duration, revealing common dynamical characteristics. We infer that the reversal process has remained unchanged, with the same time constants and durations, at least since 180 million years ago. We propose that the reversing field is characterized by three successive phases: a precursory event, a 180° polarity switch and a rebound. The first and third phases reflect the emergence of the non-dipole field with large-amplitude secular variation. They are rarely both recorded at the same site owing to the rapidly changing field geometry and last for less than 2,500 years. The actual transit between the two polarities does not last longer than 1,000 years and might therefore result from mechanisms other than those governing normal secular variation. Such changes are too brief to be accurately recorded by most sediments.

  3. Universal reverse-transcriptase real-time PCR for infectious hematopoietic necrosis virus (IHNV)

    USGS Publications Warehouse

    Purcell, Maureen K.; Thompson, Rachel L.; Garver, Kyle A.; Hawley, Laura M.; Batts, William N.; Sprague, Laura; Sampson, Corie; Winton, James R.

    2013-01-01

    Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonid fishes in North America, Europe and Asia and is reportable to the World Organization for Animal Health (OIE). Phylogenetic analysis has identified 5 major virus genogroups of IHNV worldwide, designated U, M, L, E and J; multiple subtypes also exist within those genogroups. Here, we report the development and validation of a universal IHNV reverse-transcriptase real-time PCR (RT-rPCR) assay targeting the IHNV nucleocapsid (N) gene. Properties of diagnostic sensitivity (DSe) and specificity (DSp) were defined using laboratory-challenged steelhead trout Oncorhynchus mykiss, and the new assay was compared to the OIE-accepted conventional PCR test and virus isolation in cell culture. The IHNV N gene RT-rPCR had 100% DSp and DSe and a higher estimated diagnostic odds ratio (DOR) than virus culture or conventional PCR. The RT-rPCR assay was highly repeatable within a laboratory and highly reproducible between laboratories. Field testing of the assay was conducted on a random sample of juvenile steelhead collected from a hatchery raceway experiencing an IHN epizootic. The RT-rPCR detected a greater number of positive samples than cell culture and there was 40% agreement between the 2 tests. Overall, the RT-rPCR assay was highly sensitive, specific, repeatable and reproducible and is suitable for use in a diagnostic setting.

  4. Spectroscopic Visualization of Inversion and Time-Reversal Symmetry Breaking Weyl Semi-metals

    NASA Astrophysics Data System (ADS)

    Beidenkopf, Haim

    A defining property of a topological material is the existence of surface bands that cannot be realized but as the termination of a topological bulk. In a Weyl semi-metal these surface states are in the form of Fermi-arcs. Their open-contour Fermi-surface curves between pairs of surface projections of bulk Weyl cones. Such Dirac-like bulk bands, as opposed to the gapped bulk of topological insulators, land a unique opportunity to examine the deep notion of bulk to surface correspondence. We study the intricate properties both of inversion symmetry broken and of time-reversal symmetry broken Weyl semimetals using scanning tunneling spectroscopy. We visualize the Fermi arc states on the surface of the non-centrosymmetric Weyl semi-metal TaAs. Using the distinct structure and spatial distribution of the wavefunctions associated with the different topological and trivial bands we detect the scattering processes that involve Fermi arcs. Each of these imaged scattering processes entails information on the unique nature of Fermi arcs and their correspondence to the topological bulk. We further visualize the magnetic response of the candidate magnetic Weyl semimetal GdPtBi in which the magnetic order parameter is coupled to the topological classification. European Research Council (ERC-StG no. 678702, TOPO-NW\\x9D), the Israel Science Foundation (ISF), and the United States-Israel Binational Science Foundation (BSF).

  5. Synthesis of cadmium sulfide in situ in reverse micelles and in hydrocarbon gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, C.; Pileni, M.P.

    1988-04-21

    The synthesis in situ of cadmium sulfide semiconductors in AOT reverse micelles produces smaller and more monodispersed particles than are obtained in Triton reverse micelles or in aqueous solution. When gelatine is added to the previous solution, the semiconductor is entrapped in a hydrocarbon gel and it size remains the same as that obtained in reverse micelles. The size of the sulfite cadmium aggregate formed in AOT hydrocarbon gels is similar to that obtained under similar conditions in AOT reverse micelles. AOT surfactant can play the role of stabilizing agent. However, a more efficient stabilization is obtained by adding tomore » AOT reverse micelles another stabilizing agent such as sodium hexametaphosphate. The crystallite size is strongly dependent on the ratio of the cadmium and sulfur ions, defined by x = (Cd/sup 2 +/)/(S/sup 2 -//. The yield of reduced viologen obtained by CdS irradiation in AOT reverse micelles is 15 times more efficient than that formed in aqueous solutions whereas it is only three times more in hydrocarbon gels.« less

  6. Water dynamics in large and small reverse micelles: From two ensembles to collective behavior

    PubMed Central

    Moilanen, David E.; Fenn, Emily E.; Wong, Daryl; Fayer, Michael D.

    2009-01-01

    The dynamics of water in Aerosol-OT reverse micelles are investigated with ultrafast infrared spectroscopy of the hydroxyl stretch. In large reverse micelles, the dynamics of water are separable into two ensembles: slow interfacial water and bulklike core water. As the reverse micelle size decreases, the slowing effect of the interface and the collective nature of water reorientation begin to slow the dynamics of the core water molecules. In the smallest reverse micelles, these effects dominate and all water molecules have the same long time reorientational dynamics. To understand and characterize the transition in the water dynamics from two ensembles to collective reorientation, polarization and frequency selective infrared pump-probe experiments are conducted on the complete range of reverse micelle sizes from a diameter of 1.6–20 nm. The crossover between two ensemble and collective reorientation occurs near a reverse micelle diameter of 4 nm. Below this size, the small number of confined water molecules and structural changes in the reverse micelle interface leads to homogeneous long time reorientation. PMID:19586114

  7. Examination of time-reversal acoustics in shallow water and applications to noncoherent underwater communications.

    PubMed

    Smith, Kevin B; Abrantes, Antonio A M; Larraza, Andres

    2003-06-01

    The shallow water acoustic communication channel is characterized by strong signal degradation caused by multipath propagation and high spatial and temporal variability of the channel conditions. At the receiver, multipath propagation causes intersymbol interference and is considered the most important of the channel distortions. This paper examines the application of time-reversal acoustic (TRA) arrays, i.e., phase-conjugated arrays (PCAs), that generate a spatio-temporal focus of acoustic energy at the receiver location, eliminating distortions introduced by channel propagation. This technique is self-adaptive and automatically compensates for environmental effects and array imperfections without the need to explicitly characterize the environment. An attempt is made to characterize the influences of a PCA design on its focusing properties with particular attention given to applications in noncoherent underwater acoustic communication systems. Due to the PCA spatial diversity focusing properties, PC arrays may have an important role in an acoustic local area network. Each array is able to simultaneously transmit different messages that will focus only at the destination receiver node.

  8. A graphic approach to include dissipative-like effects in reversible thermal cycles

    NASA Astrophysics Data System (ADS)

    Gonzalez-Ayala, Julian; Arias-Hernandez, Luis Antonio; Angulo-Brown, Fernando

    2017-05-01

    Since the decade of 1980's, a connection between a family of maximum-work reversible thermal cycles and maximum-power finite-time endoreversible cycles has been established. The endoreversible cycles produce entropy at their couplings with the external heat baths. Thus, this kind of cycles can be optimized under criteria of merit that involve entropy production terms. Meanwhile the relation between the concept of work and power is quite direct, apparently, the finite-time objective functions involving entropy production have not reversible counterparts. In the present paper we show that it is also possible to establish a connection between irreversible cycle models and reversible ones by means of the concept of "geometric dissipation", which has to do with the equivalent role of a deficit of areas between some reversible cycles and the Carnot cycle and actual dissipative terms in a Curzon-Ahlborn engine.

  9. Time-symmetric integration in astrophysics

    NASA Astrophysics Data System (ADS)

    Hernandez, David M.; Bertschinger, Edmund

    2018-04-01

    Calculating the long-term solution of ordinary differential equations, such as those of the N-body problem, is central to understanding a wide range of dynamics in astrophysics, from galaxy formation to planetary chaos. Because generally no analytic solution exists to these equations, researchers rely on numerical methods that are prone to various errors. In an effort to mitigate these errors, powerful symplectic integrators have been employed. But symplectic integrators can be severely limited because they are not compatible with adaptive stepping and thus they have difficulty in accommodating changing time and length scales. A promising alternative is time-reversible integration, which can handle adaptive time-stepping, but the errors due to time-reversible integration in astrophysics are less understood. The goal of this work is to study analytically and numerically the errors caused by time-reversible integration, with and without adaptive stepping. We derive the modified differential equations of these integrators to perform the error analysis. As an example, we consider the trapezoidal rule, a reversible non-symplectic integrator, and show that it gives secular energy error increase for a pendulum problem and for a Hénon-Heiles orbit. We conclude that using reversible integration does not guarantee good energy conservation and that, when possible, use of symplectic integrators is favoured. We also show that time-symmetry and time-reversibility are properties that are distinct for an integrator.

  10. Ultra-fast magnetic vortex core reversal by a local field pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rückriem, R.; Albrecht, M., E-mail: manfred.albrecht@physik.uni-augsburg.de; Schrefl, T.

    2014-02-03

    Magnetic vortex core reversal of a 20-nm-thick permalloy disk with a diameter of 100 nm was studied by micromagnetic simulations. By applying a global out-of-plane magnetic field pulse, it turned out that the final core polarity is very sensitive to pulse width and amplitude, which makes it hard to control. The reason for this phenomenon is the excitation of radial spin waves, which dominate the reversal process. The excitation of spin waves can be strongly suppressed by applying a local field pulse within a small area at the core center. With this approach, ultra-short reversal times of about 15 ps weremore » achieved, which are ten times faster compared to a global pulse.« less

  11. Tunable reverse-biased graphene/silicon heterojunction Schottky diode sensor.

    PubMed

    Singh, Amol; Uddin, Ahsan; Sudarshan, Tangali; Koley, Goutam

    2014-04-24

    A new chemical sensor based on reverse-biased graphene/Si heterojunction diode has been developed that exhibits extremely high bias-dependent molecular detection sensitivity and low operating power. The device takes advantage of graphene's atomically thin nature, which enables molecular adsorption on its surface to directly alter graphene/Si interface barrier height, thus affecting the junction current exponentially when operated in reverse bias and resulting in ultrahigh sensitivity. By operating the device in reverse bias, the work function of graphene, and hence the barrier height at the graphene/Si heterointerface, can be controlled by the bias magnitude, leading to a wide tunability of the molecular detection sensitivity. Such sensitivity control is also possible by carefully selecting the graphene/Si heterojunction Schottky barrier height. Compared to a conventional graphene amperometric sensor fabricated on the same chip, the proposed sensor demonstrated 13 times higher sensitivity for NO₂ and 3 times higher for NH₃ in ambient conditions, while consuming ∼500 times less power for same magnitude of applied voltage bias. The sensing mechanism based on heterojunction Schottky barrier height change has been confirmed using capacitance-voltage measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Reversals and collisions optimize protein exchange in bacterial swarms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiri, Aboutaleb; Harvey, Cameron; Buchmann, Amy

    Swarming groups of bacteria coordinate their behavior by self-organizing as a population to move over surfaces in search of nutrients and optimal niches for colonization. Many open questions remain about the cues used by swarming bacteria to achieve this self-organization. While chemical cue signaling known as quorum sensing is well-described, swarming bacteria often act and coordinate on time scales that could not be achieved via these extracellular quorum sensing cues. Here, cell-cell contact-dependent protein exchange is explored as amechanism of intercellular signaling for the bacterium Myxococcus xanthus. A detailed biologically calibrated computational model is used to study how M. xanthusmore » optimizes the connection rate between cells and maximizes the spread of an extracellular protein within the population. The maximum rate of protein spreading is observed for cells that reverse direction optimally for swarming. Cells that reverse too slowly or too fast fail to spread extracellular protein efficiently. In particular, a specific range of cell reversal frequencies was observed to maximize the cell-cell connection rate and minimize the time of protein spreading. Furthermore, our findings suggest that predesigned motion reversal can be employed to enhance the collective behavior of biological synthetic active systems.« less

  13. Coevolution can reverse predator–prey cycles

    PubMed Central

    Cortez, Michael H.; Weitz, Joshua S.

    2014-01-01

    A hallmark of Lotka–Volterra models, and other ecological models of predator–prey interactions, is that in predator–prey cycles, peaks in prey abundance precede peaks in predator abundance. Such models typically assume that species life history traits are fixed over ecologically relevant time scales. However, the coevolution of predator and prey traits has been shown to alter the community dynamics of natural systems, leading to novel dynamics including antiphase and cryptic cycles. Here, using an eco-coevolutionary model, we show that predator–prey coevolution can also drive population cycles where the opposite of canonical Lotka–Volterra oscillations occurs: predator peaks precede prey peaks. These reversed cycles arise when selection favors extreme phenotypes, predator offense is costly, and prey defense is effective against low-offense predators. We present multiple datasets from phage–cholera, mink–muskrat, and gyrfalcon–rock ptarmigan systems that exhibit reversed-peak ordering. Our results suggest that such cycles are a potential signature of predator–prey coevolution and reveal unique ways in which predator–prey coevolution can shape, and possibly reverse, community dynamics. PMID:24799689

  14. Coevolution can reverse predator-prey cycles.

    PubMed

    Cortez, Michael H; Weitz, Joshua S

    2014-05-20

    A hallmark of Lotka-Volterra models, and other ecological models of predator-prey interactions, is that in predator-prey cycles, peaks in prey abundance precede peaks in predator abundance. Such models typically assume that species life history traits are fixed over ecologically relevant time scales. However, the coevolution of predator and prey traits has been shown to alter the community dynamics of natural systems, leading to novel dynamics including antiphase and cryptic cycles. Here, using an eco-coevolutionary model, we show that predator-prey coevolution can also drive population cycles where the opposite of canonical Lotka-Volterra oscillations occurs: predator peaks precede prey peaks. These reversed cycles arise when selection favors extreme phenotypes, predator offense is costly, and prey defense is effective against low-offense predators. We present multiple datasets from phage-cholera, mink-muskrat, and gyrfalcon-rock ptarmigan systems that exhibit reversed-peak ordering. Our results suggest that such cycles are a potential signature of predator-prey coevolution and reveal unique ways in which predator-prey coevolution can shape, and possibly reverse, community dynamics.

  15. Dynamical time-reversal symmetry breaking and photo-induced chiral spin liquids in frustrated Mott insulators

    DOE PAGES

    Claassen, Martin; Jiang, Hong -Chen; Moritz, Brian; ...

    2017-10-30

    The search for quantum spin liquids in frustrated quantum magnets recently has enjoyed a surge of interest, with various candidate materials under intense scrutiny. However, an experimental confirmation of a gapped topological spin liquid remains an open question. Here, we show that circularly polarized light can provide a knob to drive frustrated Mott insulators into a chiral spin liquid, realizing an elusive quantum spin liquid with topological order. We find that the dynamics of a driven Kagome Mott insulator is well-captured by an effective Floquet spin model, with heating strongly suppressed, inducing a scalar spin chirality S i · (Smore » j × S k) term which dynamically breaks time-reversal while preserving SU(2) spin symmetry. We fingerprint the transient phase diagram and find a stable photo-induced chiral spin liquid near the equilibrium state. Furthermore, the results presented suggest employing dynamical symmetry breaking to engineer quantum spin liquids and access elusive phase transitions that are not readily accessible in equilibrium.« less

  16. Understanding Indiana's Reverse Transfer Students: A Case Study in Institutional Research

    ERIC Educational Resources Information Center

    Hillman, Nick; Lum, Tim; Hossler, Don

    2008-01-01

    Among all the students who transfer from one institution to another during their academic careers, a distinct group of "reverse transfer" students has emerged over time. Reverse transfer occurs when students begin their college careers at 4-year institutions but eventually transfer into 2-year institutions. Using student unit record data…

  17. Transition of unsteady velocity profiles with reverse flow

    NASA Astrophysics Data System (ADS)

    Das, Debopam; Arakeri, Jaywant H.

    1998-11-01

    This paper deals with the stability and transition to turbulence of wall-bounded unsteady velocity profiles with reverse flow. Such flows occur, for example, during unsteady boundary layer separation and in oscillating pipe flow. The main focus is on results from experiments in time-developing flow in a long pipe, which is decelerated rapidly. The flow is generated by the controlled motion of a piston. We obtain analytical solutions for laminar flow in the pipe and in a two-dimensional channel for arbitrary piston motions. By changing the piston speed and the length of piston travel we cover a range of values of Reynolds number and boundary layer thickness. The velocity profiles during the decay of the flow are unsteady with reverse flow near the wall, and are highly unstable due to their inflectional nature. In the pipe, we observe from flow visualization that the flow becomes unstable with the formation of what appears to be a helical vortex. The wavelength of the instability [simeq R: similar, equals]3[delta] where [delta] is the average boundary layer thickness, the average being taken over the time the flow is unstable. The time of formation of the vortices scales with the average convective time scale and is [simeq R: similar, equals]39/([Delta]u/[delta]), where [Delta]u=(umax[minus sign]umin) and umax, umin and [delta] are the maximum velocity, minimum velocity and boundary layer thickness respectively at each instant of time. The time to transition to turbulence is [simeq R: similar, equals]33/([Delta]u/[delta]). Quasi-steady linear stability analysis of the velocity profiles brings out two important results. First that the stability characteristics of velocity profiles with reverse flow near the wall collapse when scaled with the above variables. Second that the wavenumber corresponding to maximum growth does not change much during the instability even though the

  18. Alternative stable qP wave equations in TTI media with their applications for reverse time migration

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Wang, Huazhong; Liu, Wenqing

    2015-10-01

    Numerical instabilities may arise if the spatial variation of symmetry axis is handled improperly when implementing P-wave modeling and reverse time migration in heterogeneous tilted transversely isotropic (TTI) media, especially in the cases where fast changes exist in TTI symmetry axis’ directions. Based on the pseudo-acoustic approximation to anisotropic elastic wave equations in Cartesian coordinates, alternative second order qP (quasi-P) wave equations in TTI media are derived in this paper. Compared with conventional stable qP wave equations, the proposed equations written in stress components contain only spatial derivatives of wavefield variables (stress components) and are free from spatial derivatives involving media parameters. These lead to an easy and efficient implementation for stable P-wave modeling and imaging. Numerical experiments demonstrate the stability and computational efficiency of the presented equations in complex TTI media.

  19. Reversible Oxygen Gas Sensor Based On Electrochemiluminescence

    PubMed Central

    Zhang, Lihua; Tsow, Francis

    2013-01-01

    A novel and robust oxygen gas sensor based on electrochemiluminescence of Ru(bpy)33+/+ ion annihilation in an ionic liquid is presented. Real-time detection of environmental oxygen concentration together with selective, sensitive and reversible performance is demonstrated. PMID:20386795

  20. Production Planning and Simulation for Reverse Supply Chain

    NASA Astrophysics Data System (ADS)

    Murayama, Takeshi; Yoda, Mitsunobu; Eguchi, Toru; Oba, Fuminori

    This paper describes a production planning method for a reverse supply chain, in which a disassembly company takes reusable components from returned used products and supplies the reusable components for a product manufacturer. This method addresses the issue that the timings and quantities of returned products and reusable components obtained from them are unknown. This method first predicts the quantities of returned products and reusable components at each time period by using reliability models. Using the prediction result, the method performs production planning based on Material Requirements Planning (MRP). This method enables us to plan at each time period: the quantity of the products to be disassembled; the quantity of the reusable components to be used; and the quantity of the new components to be produced. The flow of the components and products through a forward and reverse supply chain is simulated to show the effectiveness of the method.

  1. Pattern reversal responses in man and cat: a comparison.

    PubMed

    Schuurmans, R P; Berninger, T

    1984-01-01

    In 42 enucleated and arterially perfused cat eyes, graded potentials were recorded from the retina (ERG) and from the optic nerve ( ONR ) in response to checker-board stimuli, reversing at a low temporal frequency in a square wave mode. The ERG and ONR responses show an almost perfect duplication of the response to each reversal of the pattern and exhibit, in contrast to luminance responses, striking similarities in response characteristics such as amplitude, wave shape and time course. Furthermore, the amplitude versus check size plots coincide in both responses. In cat, pattern reversal responses can be recorded from 74 to 9 min of arc, correlating to the cat's visual resolution. In man, almost identical responses can be recorded for the pattern ERG. However, in accordance with the difference in visual resolution in man and cat, a parallel shift for the human pattern reversal ERG response to higher spatial frequencies is observed.

  2. Slowly switching between environments facilitates reverse evolution in small populations.

    PubMed

    Tan, Longzhi; Gore, Jeff

    2012-10-01

    Natural populations must constantly adapt to ever-changing environmental conditions. A particularly interesting question is whether such adaptations can be reversed by returning the population to an ancestral environment. Such evolutionary reversals have been observed in both natural and laboratory populations. However, the factors that determine the reversibility of evolution are still under debate. The time scales of environmental change vary over a wide range, but little is known about how the rate of environmental change influences the reversibility of evolution. Here, we demonstrate computationally that slowly switching between environments increases the reversibility of evolution for small populations that are subject to only modest clonal interference. For small populations, slow switching reduces the mean number of mutations acquired in a new environment and also increases the probability of reverse evolution at each of these "genetic distances." As the population size increases, slow switching no longer reduces the genetic distance, thus decreasing the evolutionary reversibility. We confirm this effect using both a phenomenological model of clonal interference and also a Wright-Fisher stochastic simulation that incorporates genetic diversity. Our results suggest that the rate of environmental change is a key determinant of the reversibility of evolution, and provides testable hypotheses for experimental evolution. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  3. Mobile Timekeeping Application Built on Reverse-Engineered JPL Infrastructure

    NASA Technical Reports Server (NTRS)

    Witoff, Robert J.

    2013-01-01

    Every year, non-exempt employees cumulatively waste over one man-year tracking their time and using the timekeeping Web page to save those times. This app eliminates this waste. The innovation is a native iPhone app. Libraries were built around a reverse- engineered JPL API. It represents a punch-in/punch-out paradigm for timekeeping. It is accessible natively via iPhones, and features ease of access. Any non-exempt employee can natively punch in and out, as well as save and view their JPL timecard. This app is built on custom libraries created by reverse-engineering the standard timekeeping application. Communication is through custom libraries that re-route traffic through BrowserRAS (remote access service). This has value at any center where employees track their time.

  4. 49 CFR 230.89 - Reverse gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Reverse gear. 230.89 Section 230.89 Transportation... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants... quadrant. Proper counterbalance shall be provided for the valve gear. (b) Air-operated power reverse gear...

  5. Defect detection around rebars in concrete using focused ultrasound and reverse time migration.

    PubMed

    Beniwal, Surendra; Ganguli, Abhijit

    2015-09-01

    Experimental and numerical investigations have been performed to assess the feasibility of damage detection around rebars in concrete using focused ultrasound and a Reverse Time Migration (RTM) based subsurface imaging algorithm. Since concrete is heterogeneous, an unfocused ultrasonic field will be randomly scattered by the aggregates, thereby masking information about damage(s). A focused ultrasonic field, on the other hand, increases the possibility of detection of an anomaly due to enhanced amplitude of the incident field in the focal region. Further, the RTM based reconstruction using scattered focused field data is capable of creating clear images of the inspected region of interest. Since scattering of a focused field by a damaged rebar differs qualitatively from that of an undamaged rebar, distinct images of damaged and undamaged situations are obtained in the RTM generated images. This is demonstrated with both numerical and experimental investigations. The total scattered field, acquired on the surface of the concrete medium, is used as input for the RTM algorithm to generate the subsurface image that helps to identify the damage. The proposed technique, therefore, has some advantage since knowledge about the undamaged scenario for the concrete medium is not necessary to assess its integrity. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Geomagnetic Reversals in Neoproterozoic Cap Carbonates and Time Constraints on Snowball Earth Events

    NASA Astrophysics Data System (ADS)

    Trindade, R. I.; Font, E.; Nedelec, A.

    2008-05-01

    The end of the Neoproterozoic is characterized by ubiquitous glacial deposition being followed by the onset of extensive carbonate platforms, marking important changes in climate. The duration of these climatic oscillations is still poorly constrained with estimates varying from hundreds to hundreds of thousand years. Here we report a high-resolution magnetostratigraphic study of Neoproterozoic cap carbonates from the Amazon Craton. These rocks represent the first transgressive carbonate sequence after glacial deposits and present the isotopic signatures and sedimentary structures that typify cap carbonates elsewhere in the world, such as negative delta13C values, tubes, aragonite-pseudomorph crystal fans, pseudo-tepees (megaripples). Age constraints are given by shifts in 87Sr/86Sr ratios towards values greater than 0.7081 and by a Pb-Pb age of 627 ± 32 Ma. Two sections five kilometers apart were sampled with a 20 cm spacing (=101 sites) and revealed five coherent reversals. Magnetization is carried by detrital hematite. These data were used to constrain both the paleogeographic position of the Amazon Craton by the end of Neoproterozoic glaciations, and the time of cap carbonate deposition (in the order of hundreds of thousand years) with implications for geochemical models. Comparison with results from correlative successions in Africa, Oman and Australia will also be presented.

  7. Reversal of oxycodone and hydrocodone tolerance by diazepam.

    PubMed

    Gonek, Maciej; Akbarali, Hamid I; Henderson, Graeme; Dewey, William L

    2017-11-01

    The Centers for Disease Control has declared opioid abuse to be an epidemic. Overdose deaths are largely assumed to be the result of excessive opioid consumption. In many of these cases, however, opioid abusers are often polydrug abusers. Benzodiazepines are one of the most commonly co-abused substances and pose a significant risk to opioid users. In 2016, the FDA required boxed warnings - the FDA's strongest warning - for prescription opioid analgesics and benzodiazepines about the serious risks associated with using these medications at the same time. The point of our studies was to evaluate the interactions between these two classes of drugs. We investigated whether diazepam adds to the depressant effects of opioids or do they alter the levels of tolerance to opioids. In the present study, we have found that the antinociceptive tolerance that developed to repeated administration of oxycodone was reversed by an acute dose of diazepam. Antinociceptive tolerance to hydrocodone was also reversed by acute injection of diazepam; however, a fourfold higher dose of diazepam was required when compared to reversal of oxycodone-induced tolerance. These doses of diazepam did not potentiate the acute antinociceptive effect of either opioid. The same dose of diazepam that reversed oxycodone antinociceptive tolerance also reversed oxycodone locomotor tolerance while having no potentiating effects. These studies show that diazepam does not potentiate the acute effect of prescription opioids but reverses the tolerance developed after chronic administration of the drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Application of reverse engineering in the medical industry.

    NASA Astrophysics Data System (ADS)

    Kaleev, A. A.; Kashapov, L. N.; Kashapov, N. F.; Kashapov, R. N.

    2017-09-01

    The purpose of this research is to develop on the basis of existing analogs new design of ophthalmologic microsurgical tweezers by using reverse engineering techniques. Virtual model was obtained by using a three-dimensional scanning system Solutionix Rexcan 450 MP. Geomagic Studio program was used to remove defects and inaccuracies of the obtained parametric model. A prototype of the finished model was made on the installation of laser stereolithography Projet 6000. Total time of the creation was 16 hours from the reverse engineering procedure to 3D-printing of the prototype.

  9. Reverse Correlation in Neurophysiology

    ERIC Educational Resources Information Center

    Ringach, Dario; Shapley, Robert

    2004-01-01

    This article presents a review of reverse correlation in neurophysiology. We discuss the basis of reverse correlation in linear transducers and in spiking neurons. The application of reverse correlation to measure the receptive fields of visual neurons using white noise and m-sequences, and classical findings about spatial and color processing in…

  10. Dependence of the duration of geomagnetic polarity reversals on site latitude.

    PubMed

    Clement, Bradford M

    2004-04-08

    An important constraint on the processes governing the geodynamo--the flow in the outer core responsible for generating Earth's magnetic field--is the duration of geomagnetic polarity reversals; that is, how long it takes for Earth's magnetic field to reverse. It is generally accepted that Earth's magnetic field strength drops to low levels during polarity reversals, and the field direction progresses through a 180 degrees change while the field is weak. The time it takes for this process to happen, however, remains uncertain, with estimates ranging from a few thousand up to 28,000 years. Here I present an analysis of the available sediment records of the four most recent polarity reversals. These records yield an average estimate of about 7,000 years for the time it takes for the directional change to occur. The variation about this mean duration is not random, but instead varies with site latitude, with shorter durations observed at low-latitude sites, and longer durations observed at mid- to high-latitude sites. Such variation of duration with site latitude is predicted by simple geometrical reversal models, in which non-dipole fields are allowed to persist while the axial dipole decays through zero and then builds in the opposite direction, and provides a constraint on numerical dynamo models.

  11. A simple statistical model for geomagnetic reversals

    NASA Technical Reports Server (NTRS)

    Constable, Catherine

    1990-01-01

    The diversity of paleomagnetic records of geomagnetic reversals now available indicate that the field configuration during transitions cannot be adequately described by simple zonal or standing field models. A new model described here is based on statistical properties inferred from the present field and is capable of simulating field transitions like those observed. Some insight is obtained into what one can hope to learn from paleomagnetic records. In particular, it is crucial that the effects of smoothing in the remanence acquisition process be separated from true geomagnetic field behavior. This might enable us to determine the time constants associated with the dominant field configuration during a reversal.

  12. Nickel-hydrogen cell reversal characteristics

    NASA Technical Reports Server (NTRS)

    Lurie, Charles

    1994-01-01

    Nickel-hydrogen cell reversal characteristics are being studied as part of a TRW program directed towards development of a high current battery cell bypass switch. The following are discussed: cell bypass switch; nickel-hydrogen cell reversal characteristics; and nickel-hydrogen cell chemistry: discharge/reversal and overdischarge (reversal) with nickel and hydrogen precharge.

  13. Full-waveform detection of non-impulsive seismic events based on time-reversal methods

    NASA Astrophysics Data System (ADS)

    Solano, Ericka Alinne; Hjörleifsdóttir, Vala; Liu, Qinya

    2017-12-01

    We present a full-waveform detection method for non-impulsive seismic events, based on time-reversal principles. We use the strain Green's tensor as a matched filter, correlating it with continuous observed seismograms, to detect non-impulsive seismic events. We show that this is mathematically equivalent to an adjoint method for detecting earthquakes. We define the detection function, a scalar valued function, which depends on the stacked correlations for a group of stations. Event detections are given by the times at which the amplitude of the detection function exceeds a given value relative to the noise level. The method can make use of the whole seismic waveform or any combination of time-windows with different filters. It is expected to have an advantage compared to traditional detection methods for events that do not produce energetic and impulsive P waves, for example glacial events, landslides, volcanic events and transform-fault earthquakes for events which velocity structure along the path is relatively well known. Furthermore, the method has advantages over empirical Greens functions template matching methods, as it does not depend on records from previously detected events, and therefore is not limited to events occurring in similar regions and with similar focal mechanisms as these events. The method is not specific to any particular way of calculating the synthetic seismograms, and therefore complicated structural models can be used. This is particularly beneficial for intermediate size events that are registered on regional networks, for which the effect of lateral structure on the waveforms can be significant. To demonstrate the feasibility of the method, we apply it to two different areas located along the mid-oceanic ridge system west of Mexico where non-impulsive events have been reported. The first study area is between Clipperton and Siqueiros transform faults (9°N), during the time of two earthquake swarms, occurring in March 2012 and May

  14. A spectroscopic system for time- and space-resolved studies of impurities on the EXTRAP-T2 reversed field pinch

    NASA Astrophysics Data System (ADS)

    Sallander, J.

    1998-06-01

    The radial distribution of impurity line emission in the EXTRAP-T2 reversed field pinch (RFP) is studied with a five viewing chord, absolutely calibrated, spectrometer system. The light is analyzed with a single 0.5 m grating spectrometer. Different parts of the entrance slit are used for different channels. This arrangement makes it possible to use the system over a wide wavelength range, from 2500 to 6500 Å, without having to recalibrate the relative sensitivity for the different channels. The rather short plasma pulses of 10-15 ms require a high time resolution. The use of photomultiplier tubes provides a time resolution of 10 μs which is limited by the transient recorders used. The result is a robust, low-cost system that produces reliable measurements of the radial dependence of emission from a wide range of impurity ions.

  15. Breakthrough dynamics of s-metolachlor metabolites in drinking water wells: Transport pathways and time to trend reversal

    NASA Astrophysics Data System (ADS)

    Farlin, Julien; Gallé, Tom; Bayerle, Michael; Pittois, Denis; Köppchen, Stephan; Krause, Martina; Hofmann, Diana

    2018-06-01

    We present the results of a two years study on the contamination of the Luxembourg Sandstone aquifer by metolachlor-ESA and metolachlor-OXA, two major transformation products of s-metolachlor. The aim of the study was twofold: (i) assess whether elevated concentrations of both transformation products (up to 1000 ng/l) were due to fast flow breakthough events of short duration or the signs of a contamination of the entire aquifer and (ii) estimate the time to trend reversal once the parent compound was withdrawn from the market. These two questions were addressed by a combined use of groundwater monitoring, laboratory experiments and numerical simulations of the fate of the degradation products in the subsurface. Twelve springs were sampled weekly over an eighteen month period, and the degradation rates of both the parent compound and its transformation products were measured on a representative soil in the laboratory using a radiolabeled precursor. Modelling with the numeric code PEARL simulating pesticide fate in soil coupled to a simple transfer function model for the aquifer compartment, and calibrated from the field and laboratory data, predicts a significant damping by the aquifer of the peaks of concentration of both metolachlor-ESA and -OXA leached from the soil. The time to trend reversal following the ban of s-metolachlor in spring protection zones should be observed before the end of the decade, while the return of contaminant concentrations below the drinking water limit of 100 ng/l however is expected to last up to twelve years. The calculated contribution to total water discharge of the fast-flow component from cropland and short-circuiting the aquifer was small in most springs (median of 1.2%), but sufficient to cause additional peaks of concentration of several hundred nanograms per litre in spring water. These peaks are superimposed on the more steady contamination sustained by the base flow, and should cease immediately once application of the

  16. Acoustic Reverse Time Migration of the Cascadia Subduction Zone Dataset

    NASA Astrophysics Data System (ADS)

    Jia, L.; Mallick, S.

    2017-12-01

    Reverse time migration (RTM) is a wave-equation based migration method, which provides more accurate images than ray-based migration methods, especially for the structures in deep areas, making it an effective tool for imaging the subduction plate boundary. In this work, we extend the work of Fortin (2015) and applied acoustic finite-element RTM on the Cascadia Subduction Zone (CSZ) dataset. The dataset was acquired by Cascadia Open-Access Seismic Transects (COAST) program, targeting the megathrust in the central Cascadia subduction zone (Figure 1). The data on a 2D seismic reflection line that crosses the Juan de Fuca/North American subduction boundary off Washington (Line 5) were pre-processed and worked through Kirchhoff prestack depth migration (PSDM). Figure 2 compares the depth image of Line 5 of the CSZ data using Kirchhoff PSDM (top) and RTM (bottom). In both images, the subducting plate is indicated with yellow arrows. Notice that the RTM image is much superior to the PSDM image by several aspects. First, the plate boundary appears to be much more continuous in the RTM image than the PSDM image. Second, the RTM image indicates the subducting plate is relatively smooth on the seaward (west) side between 0-50 km. Within the deformation front of the accretionary prism (50-80 km), the RTM image shows substantial roughness in the subducting plate. These features are not clear in the PSDM image. Third, the RTM image shows a lot of fine structures below the subducting plate which are almost absent in the PSDM image. Finally, the RTM image indicates that the plate is gently dipping within the undeformed sediment (0-50 km) and becomes steeply dipping beyond 50 km as it enters the deformation front of the accretionary prism. Although the same conclusion could be drawn from the discontinuous plate boundary imaged by PSDM, RTM results are far more convincing than the PSDM.

  17. The Geomagnetic Field During a Reversal

    NASA Technical Reports Server (NTRS)

    Heirtzler, James R.

    2003-01-01

    By modifying the IGRF it is possible to learn what may happen to the geomagnetic field during a geomagnetic reversal. If the entire IGRF reverses then the declination and inclination only reverse when the field strength is zero. If only the dipole component of the IGRF reverses a large geomagnetic field remains when the dipole component is zero and he direction of the field at the end of the reversal is not exactly reversed from the directions at the beginning of the reversal.

  18. Photoacoustic tomography using a fiber based Fabry-Perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method

    NASA Astrophysics Data System (ADS)

    Grün, H.; Paltauf, G.; Haltmeier, M.; Burgholzer, P.

    2007-07-01

    Photoacoustic imaging is based on the generation of acoustic waves in a semitransparent sample (e.g. soft tissue) after illumination with short pulses of light or radio waves. The goal is to recover the spatial distribution of absorbed energy density inside the sample from acoustic pressure signals measured outside the sample (photoacoustic inverse problem). If the acoustic pressure outside the illuminated sample is measured with a large-aperture detector, the signal at a certain time is given by an integral of the generated acoustic pressure distribution over an area that is determined by the shape of the detector. For example a planar detector measures the projections of the initial pressure distribution over planes parallel to the detector plane, which is the Radon transform of the initial pressure distribution. Stable and exact three-dimensional imaging with planar integrating detector requires measurements in all directions of space and so the receiver plane has to be rotated to cover the entire detection surface. We have recently presented a simpler set-up for exact imaging which requires only a single rotation axis and therefor the fragmentation of the area detector into line detectors perpendicular to the rotation axis. Using a two-dimensional reconstruction method and applying the inverse two-dimensional Radon transform afterwards gives an exact reconstruction of the three-dimensional sample with this set-up. In order to achieve high resolution, a fiber based Fabry-Perot interferometer is used. It is a single mode fiber with two fiber bragg gratings on both ends of the line detector. Thermal shifts and vibrations are compensated by frequency locking of the laser. The high resolution and the good performance of this integrating line detector has been demonstrated by photoacoustic measurements with line grid samples and phantoms using a model-based time reversal method for image reconstruction. The time reversed pressure field can be calculated directly by

  19. [Application of transcription mediated amplification and real-time reverse transcription polymerase chain reaction in detection of human immunodeficiency virus RNA].

    PubMed

    Wu, Daxian; Tao, Shuhui; Liu, Shuiping; Zhou, Jiebin; Tan, Deming; Hou, Zhouhua

    2017-07-28

    To observe the sensitivity of transcription mediated amplification (TMA), and to compare its performance with real-time reverse transcription polymerase chain reaction (real-time RT-PCR) in detecting human immunodeficiency virus RNA (HIV RNA).
 Methods: TMA system was established with TaqMan probes, specific primers, moloney murine leukemia virus (MMLV) reverse transcriptase, T7 RNA polymerase, and reaction substrates. The sensitivity of TMA was evaluated by amplifying a group of 10-fold diluted HIV RNA standards which were transcribed in vitro. A total of 60 plasma of HIV infected patients were measured by TMA and Cobas Amplicor HIV-1 Monitor test to observe the positive rate. The correlation and concordance of the above two technologies were investigated by linear regression and Bland-Altman analysis.
 Results: TMA system was established successfully and HIV RNA transcribed standards at concentration of equal or more than 10 copies/mL could be detected by TMA technology. Among 60 samples of plasma from HIV infected patients, 46 were positively detected and 12 were negatively amplified by both TMA and Cobas reagents; 2 samples were positively tested by Cobas reagent but negatively tested by TMA system. The concordance rate of the two methods was 97.1% and the difference of positive detection rate between the two methods was not statistically significant (P>0.05). Linear regression was used for 46 samples which were positively detected by both TMA and Cobas reagents and showed an excellent correlation between the two reagents (r=0.997, P<0.001). Bland-Altma analysis revealed that the mean different value of HIV RNA levels for denary logarithm was 0.02. Forty-four samples were included in 95% of credibility interval of concordance.
 Conclusion: TMA system has the potential of high sensitivity. TMA and real-time RT-PCR keep an excellent correlation and consistency in detecting HIV RNA.

  20. Base modifications affecting RNA polymerase and reverse transcriptase fidelity.

    PubMed

    Potapov, Vladimir; Fu, Xiaoqing; Dai, Nan; Corrêa, Ivan R; Tanner, Nathan A; Ong, Jennifer L

    2018-06-20

    Ribonucleic acid (RNA) is capable of hosting a variety of chemically diverse modifications, in both naturally-occurring post-transcriptional modifications and artificial chemical modifications used to expand the functionality of RNA. However, few studies have addressed how base modifications affect RNA polymerase and reverse transcriptase activity and fidelity. Here, we describe the fidelity of RNA synthesis and reverse transcription of modified ribonucleotides using an assay based on Pacific Biosciences Single Molecule Real-Time sequencing. Several modified bases, including methylated (m6A, m5C and m5U), hydroxymethylated (hm5U) and isomeric bases (pseudouridine), were examined. By comparing each modified base to the equivalent unmodified RNA base, we can determine how the modification affected cumulative RNA polymerase and reverse transcriptase fidelity. 5-hydroxymethyluridine and N6-methyladenosine both increased the combined error rate of T7 RNA polymerase and reverse transcriptases, while pseudouridine specifically increased the error rate of RNA synthesis by T7 RNA polymerase. In addition, we examined the frequency, mutational spectrum and sequence context of reverse transcription errors on DNA templates from an analysis of second strand DNA synthesis.

  1. Nickel: The time-reversal symmetry conserving partner of iron on a chalcogenide topological insulator

    NASA Astrophysics Data System (ADS)

    Vondráček, M.; Cornils, L.; Minár, J.; Warmuth, J.; Michiardi, M.; Piamonteze, C.; Barreto, L.; Miwa, J. A.; Bianchi, M.; Hofmann, Ph.; Zhou, L.; Kamlapure, A.; Khajetoorians, A. A.; Wiesendanger, R.; Mi, J.-L.; Iversen, B.-B.; Mankovsky, S.; Borek, St.; Ebert, H.; Schüler, M.; Wehling, T.; Wiebe, J.; Honolka, J.

    2016-10-01

    We report on the quenching of single Ni adatom moments on Te-terminated Bi2Te2Se and Bi2Te3 topological insulator surfaces. The effect is noted as a missing x-ray magnetic circular dichroism for resonant L3 ,2 transitions into partially filled Ni 3 d states of theory-derived occupancy nd=9.2 . On the basis of a comparative study of Ni and Fe using scanning tunneling microscopy and ab initio calculations, we are able to relate the element specific moment formation to a local Stoner criterion. Our theory shows that while Fe adatoms form large spin moments of ms=2.54 μB with out-of-plane anisotropy due to a sufficiently large density of states at the Fermi energy, Ni remains well below an effective Stoner threshold for local moment formation. With the Fermi level remaining in the bulk band gap after adatom deposition, nonmagnetic Ni and preferentially out-of-plane oriented magnetic Fe with similar structural properties on Bi2Te2Se surfaces constitute a perfect platform to study the off-on effects of time-reversal symmetry breaking on topological surface states.

  2. Theory of superconductivity with non-Hermitian and parity-time reversal symmetric Cooper pairing symmetry

    NASA Astrophysics Data System (ADS)

    Ghatak, Ananya; Das, Tanmoy

    2018-01-01

    Recently developed parity (P ) and time-reversal (T ) symmetric non-Hermitian systems govern a rich variety of new and characteristically distinct physical properties, which may or may not have a direct analog in their Hermitian counterparts. We study here a non-Hermitian, PT -symmetric superconducting Hamiltonian that possesses a real quasiparticle spectrum in the PT -unbroken region of the Brillouin zone. Within a single-band mean-field theory, we find that real quasiparticle energies are possible when the superconducting order parameter itself is either Hermitian or anti-Hermitian. Within the corresponding Bardeen-Cooper-Schrieffer (BCS) theory, we find that several properties are characteristically distinct and novel in the non-Hermitian pairing case than its Hermitian counterpart. One of our significant findings is that while a Hermitian superconductor gives a second-order phase transition, the non-Hermitian one produces a robust first-order phase transition. The corresponding thermodynamic properties and the Meissner effect are also modified accordingly. Finally, we discuss how such a PT -symmetric pairing can emerge from an antisymmetric potential, such as the Dzyloshinskii-Moriya interaction, but with an external bath, or complex potential, among others.

  3. Earth's magnetic field is probably not reversing.

    PubMed

    Brown, Maxwell; Korte, Monika; Holme, Richard; Wardinski, Ingo; Gunnarson, Sydney

    2018-05-15

    The geomagnetic field has been decaying at a rate of ∼5% per century from at least 1840, with indirect observations suggesting a decay since 1600 or even earlier. This has led to the assertion that the geomagnetic field may be undergoing a reversal or an excursion. We have derived a model of the geomagnetic field spanning 30-50 ka, constructed to study the behavior of the two most recent excursions: the Laschamp and Mono Lake, centered at 41 and 34 ka, respectively. Here, we show that neither excursion demonstrates field evolution similar to current changes in the geomagnetic field. At earlier times, centered at 49 and 46 ka, the field is comparable to today's field, with an intensity structure similar to today's South Atlantic Anomaly (SAA); however, neither of these SAA-like fields develop into an excursion or reversal. This suggests that the current weakened field will also recover without an extreme event such as an excursion or reversal. The SAA-like field structure at 46 ka appears to be coeval with published increases in geomagnetically modulated beryllium and chlorine nuclide production, despite the global dipole field not weakening significantly in our model during this time. This agreement suggests a greater complexity in the relationship between cosmogenic nuclide production and the geomagnetic field than is commonly assumed.

  4. Rapid and sensitive detection of canine distemper virus by real-time reverse transcription recombinase polymerase amplification.

    PubMed

    Wang, Jianchang; Wang, Jinfeng; Li, Ruiwen; Liu, Libing; Yuan, Wanzhe

    2017-08-15

    Canine distemper, caused by Canine distemper virus (CDV), is a highly contagious and fatal systemic disease in free-living and captive carnivores worldwide. Recombinase polymerase amplification (RPA), as an isothermal gene amplification technique, has been explored for the molecular detection of diverse pathogens. A real-time reverse transcription RPA (RT-RPA) assay for the detection of canine distemper virus (CDV) using primers and exo probe targeting the CDV nucleocapsid protein gene was developed. A series of other viruses were tested by the RT-RPA.Thirty-two field samples were further tested by RT-RPA, and the resuts were compared with those obtained by the real-time RT-PCR. The RT-RPA assay was performed successfully at 40 °C, and the results were obtained within 3 min-12 min. The assay could detect CDV, but did not show cross-detection of canine parvovirus-2 (CPV-2), canine coronavirus (CCoV), canine parainfluenza virus (CPIV), pseudorabies virus (PRV) or Newcastle disease virus (NDV), demonstrating high specificity. The analytical sensitivity of RT-RPA was 31.8 copies in vitro transcribed CDV RNA, which is 10 times lower than the real-time RT-PCR. The assay performance was validated by testing 32 field samples and compared to real-time RT-PCR. The results indicated an excellent correlation between RT-RPA and a reference real-time RT-PCR method. Both assays provided the same results, and R 2 value of the positive results was 0.947. The results demonstrated that the RT-RPA assay offers an alternative tool for simple, rapid, and reliable detection of CDV both in the laboratory and point-of-care facility, especially in the resource-limited settings.

  5. Muscular activation during reverse and non-reverse chewing cycles in unilateral posterior crossbite.

    PubMed

    Piancino, Maria Grazia; Farina, Dario; Talpone, Francesca; Merlo, Andrea; Bracco, Pietro

    2009-04-01

    The aim of this study was to characterize the kinematics and masseter muscle activation in unilateral posterior crossbite. Eighty-two children (8.6 +/- 1.3 yr of age) with unilateral posterior crossbite and 12 children (8.9 +/- 0.6 yr of age) with normal occlusion were selected for the study. Electromyography (EMG) and kinematics were concurrently recorded during mastication of a soft bolus and a hard bolus. The percentage of reverse cycles in the group of patients was 59.0 +/- 33.1% (soft bolus) and 69.7 +/- 29.7% (hard bolus) when chewing on the crossbite side. When chewing on the non-affected side, the number of reverse cycles was 16.7 +/- 24.5% (soft bolus) and 16.7 +/- 22.3% (hard bolus). The reverse cycles on the crossbite side were narrower with respect to the cycles on the non-affected side. Although both types of cycles in patients resulted in lower EMG activity of the masseter of the crossbite side than of the contralateral masseter, the activity of the non-affected side was larger for reverse than for non-reverse cycles. It was concluded that when chewing on the crossbite side, the masseter activity is reduced on the mastication side (crossbite) and is unaltered (non-reverse cycles) or increased (reverse) on the non-affected side.

  6. How reverse shoulder arthroplasty works.

    PubMed

    Walker, Matthew; Brooks, Jordan; Willis, Matthew; Frankle, Mark

    2011-09-01

    The reverse total shoulder arthroplasty was introduced to treat the rotator cuff-deficient shoulder. Since its introduction, an improved understanding of the biomechanics of rotator cuff deficiency and reverse shoulder arthroplasty has facilitated the development of modern reverse arthroplasty designs. We review (1) the basic biomechanical challenges associated with the rotator cuff-deficient shoulder; (2) the biomechanical rationale for newer reverse shoulder arthroplasty designs; (3) the current scientific evidence related to the function and performance of reverse shoulder arthroplasty; and (4) specific technical aspects of reverse shoulder arthroplasty. A PubMed search of the English language literature was conducted using the key words reverse shoulder arthroplasty, rotator cuff arthropathy, and biomechanics of reverse shoulder arthroplasty. Articles were excluded if the content fell outside of the biomechanics of these topics, leaving the 66 articles included in this review. Various implant design factors as well as various surgical implantation techniques affect stability of reverse shoulder arthroplasty and patient function. To understand the implications of individual design factors, one must understand the function of the normal and the cuff-deficient shoulder and coalesce this understanding with the pathology presented by each patient to choose the proper surgical technique for reconstruction. Several basic science and clinical studies improve our understanding of various design factors in reverse shoulder arthroplasty. However, much work remains to further elucidate the performance of newer designs and to evaluate patient outcomes using validated instruments such as the American Society for Elbow Surgery, simple shoulder test, and the Constant-Murley scores.

  7. Reverse triage: more than just another method.

    PubMed

    Pollaris, Gwen; Sabbe, Marc

    2016-08-01

    Reverse triage is a way to rapidly create inpatient surge capacity by identifying hospitalized patients who do not require major medical assistance for at least 96 h and who only have a small risk for serious complications resulting from early discharge. Electronic searches were conducted in the MEDLINE, TRIP, Cochrane Library, CINAHL, EMBASE, Web of Science, and SCOPUS databases to identify relevant publications published from 2004 to 2014. The reference lists of all relevant articles were screened for additional relevant studies that might have been missed in the primary searches. There will always be small individual differences in the reverse triage decision process, influencing the potential effect on surge capacity, but at most, 10-20% of hospital total bed capacity can be made available within a few hours. Reverse triage could be a response to Emergency Department (ED) crowding, as it gives priority to ED patients with urgent needs over inpatients who can be discharged with little to no health risks. The early discharge of inpatients entails negative consequences. They often return to the ED for further assessment, treatment, and even readmission. When time to a medical referral or bed is less than 4-6 h, 100 additional lives per annum are predicted to be potentially saved. The results of our systematic review identified only a small number of publications addressing reverse triage, indicating that reverse triage and surge capacity are relatively new subjects of research within the medical field. Not all research questions could be fully answered.

  8. Development and Evaluation of Novel Real-Time Reverse Transcription-PCR Assays with Locked Nucleic Acid Probes Targeting Leader Sequences of Human-Pathogenic Coronaviruses

    PubMed Central

    Chan, Jasper Fuk-Woo; Choi, Garnet Kwan-Yue; Tsang, Alan Ka-Lun; Tee, Kah-Meng; Lam, Ho-Yin; Yip, Cyril Chik-Yan; To, Kelvin Kai-Wang; Cheng, Vincent Chi-Chung; Yeung, Man-Lung; Lau, Susanna Kar-Pui; Woo, Patrick Chiu-Yat; Chan, Kwok-Hung; Tang, Bone Siu-Fai

    2015-01-01

    Based on findings in small RNA-sequencing (Seq) data analysis, we developed highly sensitive and specific real-time reverse transcription (RT)-PCR assays with locked nucleic acid probes targeting the abundantly expressed leader sequences of Middle East respiratory syndrome coronavirus (MERS-CoV) and other human coronaviruses. Analytical and clinical evaluations showed their noninferiority to a commercial multiplex PCR test for the detection of these coronaviruses. PMID:26019210

  9. Rapid group-, serotype-, and vaccine strain-specific identification of poliovirus isolates by real-time reverse transcription-PCR using degenerate primers and probes containing deoxyinosine residues.

    PubMed

    Kilpatrick, David R; Yang, Chen-Fu; Ching, Karen; Vincent, Annelet; Iber, Jane; Campagnoli, Ray; Mandelbaum, Mark; De, Lina; Yang, Su-Ju; Nix, Allan; Kew, Olen M

    2009-06-01

    We have adapted our previously described poliovirus diagnostic reverse transcription-PCR (RT-PCR) assays to a real-time RT-PCR (rRT-PCR) format. Our highly specific assays and rRT-PCR reagents are designed for use in the WHO Global Polio Laboratory Network for rapid and large-scale identification of poliovirus field isolates.

  10. Reverse Logistics at the Commander, Naval Surface Forces Real-time & Reutilization Asset Management (R-RAM) San Diego Warehouse

    DTIC Science & Technology

    2008-12-01

    Asset Management) in December 2000 when the system was converted from UADPS to a Commercial-of-the-Shelf (COTS) product from a company called Lawson...materials and disposal (Stock, 1992, p. 25). In 1998, Carter and Ellram stated that Reverse Logistics is a process whereby companies can become...35 billion (p. 275). In the white paper authored by Dr. James Stock in 1998, he highlighted the benefits achieved by companies practicing reverse

  11. Study of time-reversal-based signal processing applied to polarimetric GPR detection of elongated targets

    NASA Astrophysics Data System (ADS)

    Santos, Vinicius Rafael N.; Teixeira, Fernando L.

    2017-04-01

    Ground penetrating radar (GPR) is a useful sensing modality for mapping and identification of underground infrastructure networks, such as metal and concrete pipes (gas, water or sewer), phone conduits or cables, and other buried objects. Due to the polarization-dependent response of typical targets, it is of interest to investigate the optimum antenna arrangement and/or combination of arrangements that maximize the detection and classification capabilities of polarimetric GPR imaging systems. Here, we provide a preliminary study of time-reversal-based techniques applied to target detection by GPR utilizing different relative orientations of linear-polarized antenna elements (with respect to each other, as well as to the targets). We modeled three different pipe materials (metallic, plastic and concrete) and GPR systems operating at center frequencies of 100 MHz and 200 MHz. Full-wave numerical simulations are adopted to account for mutual coupling between targets. This type of assessment study may contribute to the improvement of GPR data interpretation of infrastructure networks in urban area surveys and in other engineering studies.

  12. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media

    NASA Astrophysics Data System (ADS)

    Lai, Puxiang; Suzuki, Yuta; Xu, Xiao; Wang, Lihong V.

    2013-07-01

    Scattering dominates light propagation in biological tissue, and therefore restricts both resolution and penetration depth in optical imaging within thick tissue. As photons travel into the diffusive regime, typically 1 mm beneath human skin, their trajectories transition from ballistic to diffusive due to the increased number of scattering events, which makes it impossible to focus, much less track, photon paths. Consequently, imaging methods that rely on controlled light illumination are ineffective in deep tissue. This problem has recently been addressed by a novel method capable of dynamically focusing light in thick scattering media via time reversal of ultrasonically encoded (TRUE) diffused light. Here, using photorefractive materials as phase conjugate mirrors, we show a direct visualization and dynamic control of optical focusing with this light delivery method, and demonstrate its application for focused fluorescence excitation and imaging in thick turbid media. These abilities are increasingly critical for understanding the dynamic interactions of light with biological matter and processes at different system levels, as well as their applications for biomedical diagnosis and therapy.

  13. END-DIASTOLIC FLOW REVERSAL LIMITS THE EFFICACY OF PEDIATRIC INTRAAORTIC BALLOON PUMP COUNTERPULSATION

    PubMed Central

    Bartoli, Carlo R.; Rogers, Benjamin D.; Ionan, Constantine E.; Koenig, Steven C.; Pantalos, George M.

    2013-01-01

    OBJECTIVE Counterpulsation with an intraaortic balloon pump (IABP) has not achieved the same successes or clinical use in pediatric patients as in adults. In a pediatric animal model, IABP efficacy was investigated to determine whether IABP timing with a high-fidelity blood pressure signal may improve counterpulsation therapy versus a low-fidelity signal. METHODS In Yorkshire piglets (n=19, 13.0±0.5 kg) with coronary ligation-induced acute ischemic left ventricular failure, pediatric IABPs (5 or 7cc) were placed in the descending thoracic aorta. Inflation and deflation were timed with traditional criteria from low-fidelity (fluid-filled) and high-fidelity (micromanometer) blood pressure signals during 1:1 support. Aortic, carotid, and coronary hemodynamics were measured with pressure and flow transducers. Myocardial oxygen consumption was calculated from coronary sinus and arterial blood samples. Left ventricular myocardial blood flow and end-organ blood flow were measured with microspheres. RESULTS Despite significant suprasystolic diastolic augmentation and afterload reduction at heart rates of 105±3bmp, left ventricular myocardial blood flow, myocardial oxygen consumption, the myocardial oxygen supply/demand relationship, cardiac output, and end-organ blood flow did not change. Statistically significant end-diastolic coronary, carotid, and aortic flow reversal occurred with IABP deflation. Inflation and deflation timed with a high-fidelity versus low-fidelity signal did not attenuate systemic flow reversal or improve the myocardial oxygen supply/demand relationship. CONCLUSIONS Systemic end-diastolic flow reversal limited counterpulsation efficacy in a pediatric model of acute left ventricular failure. Adjustment of IABP inflation and deflation timing with traditional criteria and a high-fidelity blood pressure waveform did not improve IABP efficacy or attenuate flow reversal. End-diastolic flow reversal may limit the efficacy of IABP counterpulsation therapy

  14. Locating the source of diffusion in complex networks by time-reversal backward spreading.

    PubMed

    Shen, Zhesi; Cao, Shinan; Wang, Wen-Xu; Di, Zengru; Stanley, H Eugene

    2016-03-01

    Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observable nodes. Here we develop a time-reversal backward spreading algorithm to locate the source of a diffusion-like process efficiently and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insofar as the locatability condition is assured. Our tools greatly improve our ability to locate the source of diffusion in complex networks based on limited accessibility of nodal information. Moreover, they have implications for controlling a variety of dynamical processes taking place on complex networks, such as inhibiting epidemics, slowing the spread of rumors, pollution control, and environmental protection.

  15. Locating the source of diffusion in complex networks by time-reversal backward spreading

    NASA Astrophysics Data System (ADS)

    Shen, Zhesi; Cao, Shinan; Wang, Wen-Xu; Di, Zengru; Stanley, H. Eugene

    2016-03-01

    Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observable nodes. Here we develop a time-reversal backward spreading algorithm to locate the source of a diffusion-like process efficiently and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insofar as the locatability condition is assured. Our tools greatly improve our ability to locate the source of diffusion in complex networks based on limited accessibility of nodal information. Moreover, they have implications for controlling a variety of dynamical processes taking place on complex networks, such as inhibiting epidemics, slowing the spread of rumors, pollution control, and environmental protection.

  16. Ethical sensitivity in obsessive-compulsive disorder and generalized anxiety disorder: the role of reversal learning.

    PubMed

    Szabó, Csilla; Németh, Attila; Kéri, Szabolcs

    2013-12-01

    In obsessive-compulsive disorder (OCD), amplified moral sensitivity may be related to the orbitofrontal-striatal circuit, which is also critical in reversal learning. This study examined three questions: (1) What aspects of ethical sensitivity is altered in OCD?; (2) What is the relationship between ethical sensitivity and reversal learning?; (3) Are potential alterations in ethical sensitivity and reversal learning present in generalized anxiety disorder (GAD)? Participants were 28 outpatients with OCD, 21 individuals with GAD, and 30 matched healthy controls. Participants received the ethical sensitivity scale questionnaire (ESSQ), rating scales for clinical symptoms, a reversal learning task, and the Wisconsin Card Sorting Test (WCST). We found higher ethical sensitivity scores in OCD compared with healthy controls in the case of generating interpretations and options and identifying the consequences of actions. Individuals with OCD displayed prolonged reaction times on probabilistic errors without shift and final reversal errors. Participants with GAD did not differ from healthy controls on the ESSQ, but they were slower on reversal learning relative to nonpatients. In OCD, reaction time on final reversal errors mediated the relationship between ethical sensitivity and compulsions. WCST performance was intact in OCD and GAD. Small sample size, limited neuropsychological assessment, self-rating scale for ethical sensitivity. Prolonged reaction time at switching reinforcement contingencies is related to increased ethical sensitivity in OCD. Slow affective switching may link ethical sensitivity and compulsions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Far-field detection of sub-wavelength Tetris without extra near-field metal parts based on phase prints of time-reversed fields with intensive background interference.

    PubMed

    Chen, Yingming; Wang, Bing-Zhong

    2014-07-14

    Time-reversal (TR) phase prints are first used in far-field (FF) detection of sub-wavelength (SW) deformable scatterers without any extra metal structure positioned in the vicinity of the target. The 2D prints derive from discrete short-time Fourier transform of 1D TR electromagnetic (EM) signals. Because the time-invariant intensive background interference is effectively centralized by TR technique, the time-variant weak indication from FF SW scatterers can be highlighted. This method shows a different use of TR technique in which the focus peak of TR EM waves is unusually removed and the most useful information is conveyed by the other part.

  18. Dissociative detachment and memory impairment: reversible amnesia or encoding failure?

    PubMed

    Allen, J G; Console, D A; Lewis, L

    1999-01-01

    The authors propose that clinicians endeavor to differentiate between reversible and irreversible memory failures in patients with dissociative symptoms who report "memory gaps" and "lost time." The classic dissociative disorders, such as dissociative amnesia and dissociative identity disorder, entail reversible memory failures associated with encoding experience in altered states. The authors propose another realm of memory failures associated with severe dissociative detachment that may preclude the level of encoding of ongoing experience needed to support durable autobiographical memories. They describe how dissociative detachment may be intertwined with neurobiological factors that impair memory, and they spell out the significance of distinguishing reversible and irreversible memory impairment for diagnosis, patient education, psychotherapy, and research.

  19. Geomagnetic Field During a Reversal

    NASA Technical Reports Server (NTRS)

    Heirtzler, J. R.

    2003-01-01

    It has frequently been suggested that only the geomagnetic dipole, rather than higher order poles, reverse during a geomagnetic field reversal. Under this assumption the geomagnetic field strength has been calculated for the surface of the Earth for various steps of the reversal process. Even without an eminent a reversal of the field, extrapolation of the present secular change (although problematic) shows that the field strength may become zero in some geographic areas within a few hundred years.

  20. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  1. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  2. On possibility of time reversal symmetry violation in neutrino elastic scattering on polarized electron target

    NASA Astrophysics Data System (ADS)

    Sobków, W.; Błaut, A.

    2018-03-01

    In this paper we indicate a possibility of utilizing the elastic scattering of Dirac low-energy (˜ 1 MeV) electron neutrinos (ν _es) on a polarized electron target (PET) in testing the time reversal symmetry violation (TRSV). We consider a scenario in which the incoming ν _e beam is a superposition of left chiral (LC) and right chiral (RC) states. LC ν _e interact mainly by the standard V-A and small admixture of non-standard scalar S_L, pseudoscalar P_L, tensor T_L interactions, while RC ones are only detected by the exotic V + A and S_R, P_R, T_R interactions. As a result of the superposition of the two chiralities the transverse components of ν e spin polarization (T-even and T-odd) may appear. We compute the differential cross section as a function of the recoil electron azimuthal angle and scattered electron energy, and show how the interference terms between standard V-A and exotic S_R, P_R, T_R couplings depend on the various angular correlations among the transversal ν _e spin polarization, the polarization of the electron target, the incoming neutrino momentum and the outgoing electron momentum in the limit of relativistic ν _e. We illustrate how the maximal value of recoil electrons azimuthal asymmetry and the asymmetry axis location of outgoing electrons depend on the azimuthal angle of the transversal component of the ν _e spin polarization, both for the time reversal symmetry conservation (TRSC) and TRSV. Next, we display that the electron energy spectrum and polar angle distribution of the recoil electrons are also sensitive to the interference terms between V-A and S_R, P_R, T_R couplings, proportional to the T-even and T-odd angular correlations among the transversal ν _e polarization, the electron polarization of the target, and the incoming ν _e momentum, respectively. We also discuss the possibility of testing the TRSV by observing the azimuthal asymmetry of outgoing electrons, using the PET without the impact of the transversal

  3. Higher outcomes of vasectomy reversal in men with the same female partner as before vasectomy.

    PubMed

    Ostrowski, Kevin A; Polackwich, A Scott; Kent, Joe; Conlin, Michael J; Hedges, Jason C; Fuchs, Eugene F

    2015-01-01

    We reviewed fertility outcomes of vasectomy reversal at a high surgical volume center in men with the same female partner as before vasectomy. We retrospectively studied a prospective database. All vasectomy reversals were performed by a single surgeon (EFF). Patients who underwent microsurgical vasectomy reversal and had the same female partner as before vasectomy were identified from 1978 to 2011. Pregnancy and live birth rates, procedure type (bilateral vasovasostomy, bilateral vasoepididymostomy, unilateral vasovasostomy or unilateral vasoepididymostomy), patency rate, time from reversal and spouse age were evaluated. We reviewed the records of 3,135 consecutive microsurgical vasectomy reversals. Of these patients 524 (17%) who underwent vasectomy reversal had the same female partner as before vasectomy. Complete information was available on 258 patients (49%), who had a 94% vas patency rate. The clinical pregnancy rate was 83% by natural means compared to 60% in our general vasectomy reversal population (p <0.0001). On logistic regression analysis controlling for female partner and patient ages, years from vasectomy and vasectomy reversal with the same female partner the OR was 2 (p <0.007). Average time from vasectomy was 5.7 years. Average patient and female partner age at reversal was 38.9 and 33.2 years, respectively. Outcomes of clinical pregnancy and live birth rates are higher in men who undergo microsurgical vasectomy reversal with the same female partner. These outcomes may be related to a shorter interval from vasectomy, previous fertility and couple motivation. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. Development of a Real-Time, TaqMan Reverse Transcription-PCR Assay for Detection and Differentiation of Lyssavirus Genotypes 1, 5, and 6

    PubMed Central

    Wakeley, P. R.; Johnson, N.; McElhinney, L. M.; Marston, D.; Sawyer, J.; Fooks, A. R.

    2005-01-01

    Several reverse transcription-PCR (RT-PCR) methods have been reported for the detection of rabies and rabies-related viruses. These methods invariably involve multiple transfers of nucleic acids between different tubes, with the risk of contamination leading to the production of false-positive results. Here we describe a single, closed-tube, nonnested RT-PCR with TaqMan technology that distinguishes between classical rabies virus (genotype 1) and European bat lyssaviruses 1 and 2 (genotypes 5 and 6) in real time. The TaqMan assay is rapid, sensitive, and specific and allows for the genotyping of unknown isolates concomitant with the RT-PCR. The assay can be applied quantitatively and the use of an internal control enables the quality of the isolated template to be assessed. Despite sequence heterogeneity in the N gene between the different genotypes, a universal forward and reverse primer set has been designed, allowing for the simplification of previously described assays. We propose that within a geographically constrained area, this assay will be a useful tool for the detection and differentiation of members of the Lyssavirus genus. PMID:15956398

  5. Optimization of the elution buffer and concentration method for detecting hepatitis E virus in swine liver using a nested reverse transcription-polymerase chain reaction and real-time reverse transcription-polymerase chain reaction.

    PubMed

    Son, Na Ry; Seo, Dong Joo; Lee, Min Hwa; Seo, Sheungwoo; Wang, Xiaoyu; Lee, Bog-Hieu; Lee, Jeong-Su; Joo, In-Sun; Hwang, In-Gyun; Choi, Changsun

    2014-09-01

    The aim of this study was to develop an optimal technique for detecting hepatitis E virus (HEV) in swine livers. Here, three elution buffers and two concentration methods were compared with respect to enhancing recovery of HEV from swine liver samples. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and nested RT-PCR were performed to detect HEV RNA. When phosphate-buffered saline (PBS, pH 7.4) was used to concentrate HEV in swine liver samples using ultrafiltration, real-time RT-PCR detected HEV in 6 of the 26 samples. When threonine buffer was used to concentrate HEV using polyethylene glycol (PEG) precipitation and ultrafiltration, real-time RT-PCR detected HEV in 1 and 3 of the 26 samples, respectively. When glycine buffer was used to concentrate HEV using ultrafiltration and PEG precipitation, real-time RT-PCR detected HEV in 1 and 3 samples of the 26 samples, respectively. When nested RT-PCR was used to detect HEV, all samples tested negative regardless of the type of elution buffer or concentration method used. Therefore, the combination of real-time RT-PCR and ultrafiltration with PBS buffer was the most sensitive and reliable method for detecting HEV in swine livers. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges

    NASA Astrophysics Data System (ADS)

    Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.

    2018-05-01

    Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.

  7. Real-Time Reverse Transcription-PCR Assay for Detection of Mumps Virus RNA in Clinical Specimens▿

    PubMed Central

    Boddicker, Jennifer D.; Rota, Paul A.; Kreman, Trisha; Wangeman, Andrea; Lowe, Louis; Hummel, Kimberly B.; Thompson, Robert; Bellini, William J.; Pentella, Michael; DesJardin, Lucy E.

    2007-01-01

    The mumps virus is a negative-strand RNA virus in the family Paramyxoviridae. Mumps infection results in an acute illness with symptoms including fever, headache, and myalgia, followed by swelling of the salivary glands. Complications of mumps can include meningitis, deafness, pancreatitis, orchitis, and first-trimester abortion. Laboratory confirmation of mumps infection can be made by the detection of immunoglobulin M-specific antibodies to mumps virus in acute-phase serum samples, the isolation of mumps virus in cell culture, or by detection of the RNA of the mumps virus by reverse transcription (RT)-PCR. We developed and validated a multiplex real-time RT-PCR assay for rapid mumps diagnosis in a clinical setting. This assay used oligonucleotide primers and a TaqMan probe targeting the mumps SH gene, as well as primers and a probe that targeted the human RNase P gene to assess the presence of PCR inhibitors and as a measure of specimen quality. The test was specific, since it did not amplify a product from near-neighbor viruses, as well as sensitive and accurate. Real-time RT-PCR results showed 100% correlation with results from viral culture, the gold standard for mumps diagnostic testing. Assay efficiency was over 90% and displayed good precision after performing inter- and intraassay replicates. Thus, we have developed and validated a molecular method for rapidly diagnosing mumps infection that may be used to complement existing techniques. PMID:17652480

  8. Time reversal for localization of sources of infrasound signals in a windy stratified atmosphere.

    PubMed

    Lonzaga, Joel B

    2016-06-01

    Time reversal is used for localizing sources of recorded infrasound signals propagating in a windy, stratified atmosphere. Due to the convective effect of the background flow, the back-azimuths of the recorded signals can be substantially different from the source back-azimuth, posing a significant difficulty in source localization. The back-propagated signals are characterized by negative group velocities from which the source back-azimuth and source-to-receiver (STR) distance can be estimated using the apparent back-azimuths and trace velocities of the signals. The method is applied to several distinct infrasound arrivals recorded by two arrays in the Netherlands. The infrasound signals were generated by the Buncefield oil depot explosion in the U.K. in December 2005. Analyses show that the method can be used to substantially enhance estimates of the source back-azimuth and the STR distance. In one of the arrays, for instance, the deviations between the measured back-azimuths of the signals and the known source back-azimuth are quite large (-1° to -7°), whereas the deviations between the predicted and known source back-azimuths are small with an absolute mean value of <1°. Furthermore, the predicted STR distance is off only by <5% of the known STR distance.

  9. Reversible, on-demand generation of aqueous two-phase microdroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton

    The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phasemore » transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.« less

  10. Advancing reversible shape memory by tuning the polymer network architecture

    DOE PAGES

    Li, Qiaoxi; Zhou, Jing; Vatankhah-Varnoosfaderani, Mohammad; ...

    2016-02-02

    Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior—reversible shape memory (RSM), which occurs naturally without applying any external force and particular structural design. There are three RSM properties: (i) range of reversible strain, (ii) rate of strain recovery, and (iii) decay of reversibility with time, which can be improved by tuning the architecture of the polymer network. Different types of poly(octylene adipate) networks were synthesized, allowing for control of cross-link density and network topology, including randomly cross-linked network by free-radical polymerization, thiol–ene clicked network with enhanced mesh uniformity, and loosemore » network with deliberately incorporated dangling chains. It is shown that the RSM properties are controlled by average cross-link density and crystal size, whereas topology of a network greatly affects its extensibility. In conclusion, we have achieved 80% maximum reversible range, 15% minimal decrease in reversibility, and fast strain recovery rate up to 0.05 K –1, i.e., ca. 5% per 10 s at a cooling rate of 5 K/min.« less

  11. The effect of current reversal on coated titanium electrodes

    NASA Astrophysics Data System (ADS)

    Elnathan, Francis

    Coated titanium electrodes have applications in the electrochemical industry, including water treatment and swimming pool chlorination. Current/polarity reverse electrolysis is a technique used for "self-cleaning" of the coated titanium anodes employed in water disinfection and treatment. However, the literature holds very little information about the effects of polarity reversal on these anodes. The present work appears to be the first to investigate coated titanium anodes in polarity reversal in a systematic method. Two commercial titanium electrodes (RuTi and IrTa) were studied. Polarity reversal was the main electrochemical technique employing a current density of 1200 A/m 2, except when current density was studied. The effects of NO 3-, SO42-, ClO4 -, HPO42-, CO32-, Mg2+ and Ca2+ on electrode lifetime were examined. Analysis of the electrochemical results showed that plateau time (tau p), for gas evolution, is highly important to the lifetime of the coated titanium anodes. The effects of three electrolysis variables on the coated titanium anode life were examined. Current density was observed to have an inverse relationship with anode life while reversal cycle time had a direct relation with lifetime. NaCl concentration had no discernible effect. In general, the RuTi electrode exhibited longer lifetimes than IrTa except for a few specific conditions. The influence of the concentration of five anions (NO3-, SO42-, ClO 4-, HPO42-, and CO3 2-) was determined. Changing the composition and concentration of anions affected the lifetimes of the two electrodes, especially nitrate, hydrogen phosphate and carbonate. The lifetime of IrTa was highest in nitrate, and increased as a function of nitrate concentration. The service life of RuTi was highest in hydrogen phosphate, and increased with increasing hydrogen phosphate concentration. Lifetime of both anodes decreased with increasing carbonate ions. The effects of Mg2+ and Ca2+ on electrode lifetime were examined with

  12. Real time bolt preload monitoring using piezoceramic transducers and time reversal technique—a numerical study with experimental verification

    NASA Astrophysics Data System (ADS)

    Parvasi, Seyed Mohammad; Ho, Siu Chun Michael; Kong, Qingzhao; Mousavi, Reza; Song, Gangbing

    2016-08-01

    Bolted joints are ubiquitous structural elements, and form critical connections in mechanical and civil structures. As such, loosened bolted joints may lead to catastrophic failures of these structures, thus inspiring a growing interest in monitoring of bolted joints. A novel energy based wave method is proposed in this study to monitor the axial load of bolted joint connections. In this method, the time reversal technique was used to focus the energy of a piezoelectric (PZT)-generated ultrasound wave from one side of the interface to be measured as a signal peak by another PZT transducer on the other side of the interface. A tightness index (TI) was defined and used to correlate the peak amplitude to the bolt axial load. The TI bypasses the need for more complex signal processing required in other energy-based methods. A coupled, electro-mechanical analysis with elasto-plastic finite element method was used to simulate and analyze the PZT based ultrasonic wave propagation through the interface of two steel plates connected by a single nut and bolt connection. Numerical results, backed by experimental results from testing on a bolted connection between two steel plates, revealed that the peak amplitude of the focused signal increases as the bolt preload (torque level) increases due to the enlarging true contact area of the steel plates. The amplitude of the focused peak saturates and the TI reaches unity as the bolt axial load reaches a threshold value. These conditions are associated with the maximum possible true contact area between the surfaces of the bolted connection.

  13. A Reverse Shock in GRB 160509A

    NASA Astrophysics Data System (ADS)

    Laskar, Tanmoy; Alexander, Kate D.; Berger, Edo; Fong, Wen-fai; Margutti, Raffaella; Shivvers, Isaac; Williams, Peter K. G.; Kopač, Drejc; Kobayashi, Shiho; Mundell, Carole; Gomboc, Andreja; Zheng, WeiKang; Menten, Karl M.; Graham, Melissa L.; Filippenko, Alexei V.

    2016-12-01

    We present the second multi-frequency radio detection of a reverse shock in a γ-ray burst. By combining our extensive radio observations of the Fermi-Large Area Telescope γ-ray burst 160509A at z = 1.17 up to 20 days after the burst with Swift X-ray observations and ground-based optical and near-infrared data, we show that the afterglow emission comprises distinct reverse shock and forward shock contributions: the reverse shock emission dominates in the radio band at ≲10 days, while the forward shock emission dominates in the X-ray, optical, and near-infrared bands. Through multi-wavelength modeling, we determine a circumburst density of {n}0≈ {10}-3 {{cm}}-3, supporting our previous suggestion that a low-density circumburst environment is conducive to the production of long-lasting reverse shock radiation in the radio band. We infer the presence of a large excess X-ray absorption column, N H ≈ 1.5 × 1022 {{cm}}-2, and a high rest-frame optical extinction, A V ≈ 3.4 mag. We identify a jet break in the X-ray light curve at {t}{jet}≈ 6 {days}, and thus derive a jet opening angle of {θ }{jet}≈ 4^\\circ , yielding a beaming-corrected kinetic energy and radiated γ-ray energy of {E}{{K}}≈ 4× {10}50 erg and {E}γ ≈ 1.3× {10}51 erg (1-104 keV, rest frame), respectively. Consistency arguments connecting the forward shocks and reverse shocks suggest a deceleration time of {t}{dec} ≈ 460 s ≈ T 90, a Lorentz factor of {{Γ }}({t}{dec})≈ 330, and a reverse-shock-to-forward-shock fractional magnetic energy density ratio of {R}{{B}}\\equiv {ɛ }{{B},{RS}}/{ɛ }{{B},{FS}}≈ 8. Our study highlights the power of rapid-response radio observations in the study of the properties and dynamics of γ-ray burst ejecta.

  14. One-way propagation of bulk states and robust edge states in photonic crystals with broken inversion and time-reversal symmetries

    NASA Astrophysics Data System (ADS)

    Lu, Jin-Cheng; Chen, Xiao-Dong; Deng, Wei-Min; Chen, Min; Dong, Jian-Wen

    2018-07-01

    The valley is a flexible degree of freedom for light manipulation in photonic systems. In this work, we introduce the valley concept in magnetic photonic crystals with broken inversion symmetry. One-way propagation of bulk states is demonstrated by exploiting the pseudo-gap where bulk states only exist at one single valley. In addition, the transition between Hall and valley-Hall nontrivial topological phases is also studied in terms of the competition between the broken inversion and time-reversal symmetries. At the photonic boundary between two topologically distinct photonic crystals, we illustrate the one-way propagation of edge states and demonstrate their robustness against defects.

  15. Rotational reorientation dynamics of Aerosol-OT reverse micelles formed in near-critical propane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heitz, M.P.; Bright, F.V.

    1996-06-01

    The rotational reorientation kinetics of two fluorescent solutes (rhodamine 6G, R6G, and rhodamine 101, R101) have been determined in sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol-OT, AOT) reverse micelles formed in liquid and near-critical propane. We show that the amount of water loading ([water]/[AOT], R), continuous phase density, and temperature all influence the solute rotational dynamics. In all cases, the decay of anisotropy data (i.e., frequency-dependent differential polarized phase angle and polarized modulation ratio) are well described by a bi-exponential decay law. We find that the faster rotational correlation times are similar to but slightly less than the values predicted for an individualmore » AOT reverse micelle rotating in propane. The recovered rotational correlation times range from 200 to 500 ps depending on experimental conditions. This faster rotational process is explained in terms of lateral diffusion of the fluorophore along the water/headgroup interfacial region within the reverse micelle. The recovered values for the slower rotational correlation times range from 7 to 18 ns. These larger rotational reorientation times are assigned to varying micelle-micelle (i.e., tail-tail) interactions in the low-density, highly compressible fluid region. We also quantify the contribution of the reverse micellar {open_quotes}aggregate{close_quotes} to the total decay of anisotropy. {copyright} {ital 1996} {ital Society for Applied Spectroscopy}« less

  16. Comparison of confinement in resistive-shell reversed-field pinch devices with two different magnetic shell penetration times

    NASA Astrophysics Data System (ADS)

    Gravestijn, R. M.; Drake, J. R.; Hedqvist, A.; Rachlew, E.

    2004-01-01

    A loop voltage is required to sustain the reversed-field pinch (RFP) equilibrium. The configuration is characterized by redistribution of magnetic helicity but with the condition that the total helicity is maintained constant. The magnetic field shell penetration time, tgrs, has a critical role in the stability and performance of the RFP. Confinement in the EXTRAP device has been studied with two values of tgrs, first (EXTRAP-T2) with tgrs of the order of the typical relaxation cycle timescale and then (EXTRAP-T2R) with tgrs much longer than the relaxation cycle timescale, but still much shorter than the pulse length. Plasma parameters show significant improvements in confinement in EXTRAP-T2R. The typical loop voltage required to sustain comparable electron poloidal beta values is a factor of 3 lower in the EXTRAP-T2R device. The improvement is attributed to reduced magnetic turbulence.

  17. Exercise prescription to reverse frailty.

    PubMed

    Bray, Nick W; Smart, Rowan R; Jakobi, Jennifer M; Jones, Gareth R

    2016-10-01

    Frailty is a clinical geriatric syndrome caused by physiological deficits across multiple systems. These deficits make it challenging to sustain homeostasis required for the demands of everyday life. Exercise is likely the best therapy to reverse frailty status. Literature to date suggests that pre-frail older adults, those with 1-2 deficits on the Cardiovascular Health Study-Frailty Phenotype (CHS-frailty phenotype), should exercise 2-3 times a week, for 45-60 min. Aerobic, resistance, flexibility, and balance training components should be incorporated but resistance and balance activities should be emphasized. On the other hand, frail (CHS-frailty phenotype ≥ 3 physical deficits) older adults should exercise 3 times per week, for 30-45 min for each session with an emphasis on aerobic training. During aerobic, balance, and flexibility training, both frail and pre-frail older adults should work at an intensity equivalent to a rating of perceived exertion of 3-4 ("somewhat hard") on the Borg CR10 scale. Resistance-training intensity should be based on a percentage of 1-repetition estimated maximum (1RM). Program onset should occur at 55% of 1RM (endurance) and progress to higher intensities of 80% of 1RM (strength) to maximize functional gains. Exercise is the medicine to reverse or mitigate frailty, preserve quality of life, and restore independent functioning in older adults at risk of frailty.

  18. Reverse Logistics at the Commander, Naval Surface Forces Real-Time and Reutilization Asset Management (R-RAM) San Diego Warehouse

    DTIC Science & Technology

    2008-11-20

    in December 2000 when the system was converted from UADPS to a Commercial-off-the-shelf (COTS) product from a company called Lawson Insight (2008...In 1998, Carter and Ellram stated that Reverse Logistics is a process whereby companies can become more environmentally efficient through recycling...by companies practicing reverse logistics:  In 1996, Baxter’s environmental initiatives saved the company $11 million; cost avoidance efforts (e.g

  19. Three-Dimensional Passive-Source Reverse-Time Migration of Converted Waves: The Method

    NASA Astrophysics Data System (ADS)

    Li, Jiahang; Shen, Yang; Zhang, Wei

    2018-02-01

    At seismic discontinuities in the crust and mantle, part of the compressional wave energy converts to shear wave, and vice versa. These converted waves have been widely used in receiver function (RF) studies to image discontinuity structures in the Earth. While generally successful, the conventional RF method has its limitations and is suited mostly to flat or gently dipping structures. Among the efforts to overcome the limitations of the conventional RF method is the development of the wave-theory-based, passive-source reverse-time migration (PS-RTM) for imaging complex seismic discontinuities and scatters. To date, PS-RTM has been implemented only in 2D in the Cartesian coordinate for local problems and thus has limited applicability. In this paper, we introduce a 3D PS-RTM approach in the spherical coordinate, which is better suited for regional and global problems. New computational procedures are developed to reduce artifacts and enhance migrated images, including back-propagating the main arrival and the coda containing the converted waves separately, using a modified Helmholtz decomposition operator to separate the P and S modes in the back-propagated wavefields, and applying an imaging condition that maintains a consistent polarity for a given velocity contrast. Our new approach allows us to use migration velocity models with realistic velocity discontinuities, improving accuracy of the migrated images. We present several synthetic experiments to demonstrate the method, using regional and teleseismic sources. The results show that both regional and teleseismic sources can illuminate complex structures and this method is well suited for imaging dipping interfaces and sharp lateral changes in discontinuity structures.

  20. A practical implementation of 3D TTI reverse time migration with multi-GPUs

    NASA Astrophysics Data System (ADS)

    Li, Chun; Liu, Guofeng; Li, Yihang

    2017-05-01

    Tilted transversely isotropic (TTI) media are typical earth anisotropy media from practical observational studies. Accurate anisotropic imaging is recognized as a breakthrough in areas with complex anisotropic structures. TTI reverse time migration (RTM) is an important method for these areas. However, P and SV waves are coupled together in the pseudo-acoustic wave equation. The SV wave is regarded as an artifact for RTM of the P wave. We adopt matching of the anisotropy parameters to suppress the SV artifacts. Another problem in the implementation of TTI RTM is instability of the numerical solution for a variably oriented axis of symmetry. We adopt Fletcher's equation by setting a small amount of SV velocity without an acoustic approximation to stabilize the wavefield propagation. To improve calculation efficiency, we use NVIDIA graphic processing unit (GPU) with compute unified device architecture instead of traditional CPU architecture. To accomplish this, we introduced a random velocity boundary and an extended homogeneous anisotropic boundary for the remaining four anisotropic parameters in the source propagation. This process avoids large storage memory and IO requirements, which is important when using a GPU with limited bandwidth of PCI-E. Furthermore, we extend the single GPU code to multi-GPUs and present a corresponding high concurrent strategy with multiple asynchronous streams, which closely achieved an ideal speedup ratio of 2:1 when compared with a single GPU. Synthetic tests validate the correctness and effectiveness of our multi-GPUs-based TTI RTM method.

  1. Comparison of reversal with neostigmine of low-dose rocuronium vs. reversal with sugammadex of high-dose rocuronium for a short procedure.

    PubMed

    Choi, E S; Oh, A Y; Koo, B W; Hwang, J W; Han, J W; Seo, K S; Ahn, S H; Jeong, W J

    2017-10-01

    Some short procedures require deep neuromuscular blockade, which needs to be reversed at the end of the procedure. Forty-four patients undergoing elective laryngeal micro-surgery were randomly allocated into two groups: rocuronium 0.45 mg.kg -1 with neostigmine (50 μg.kg -1 with glycopyrrolate 10 μg.kg -1 ) reversal (moderate block group) vs. rocuronium 0.90 mg.kg -1 with sugammadex (4 mg.kg -1 ) reversal (deep block group). The primary outcome was the intubating conditions during laryngoscopy secondary outcomes included recovery of neuromuscular block; conditions for tracheal intubation; satisfaction score as determined by the surgeon; onset of neuromuscular block; and postoperative sore throat. The onset of neuromuscular block was more rapid, and intubation conditions and ease of intra-operative laryngoscopy were more favourable, and the satisfaction score was lower in the moderate block group compared with the deep block group. No difference was found in the incidence of postoperative sore throat. In laryngeal micro-surgery, the use of rocuronium 0.9 mg.kg -1 with sugammadex for reversal was associated with better surgical conditions and a shorter recovery time than rocuronium 0.45 mg.kg -1 with neostigmine. © 2017 The Association of Anaesthetists of Great Britain and Ireland.

  2. Reverse Current in Solar Flares

    NASA Technical Reports Server (NTRS)

    Knight, J. W., III

    1978-01-01

    An idealized steady state model of a stream of energetic electrons neutralized by a reverse current in the pre-flare solar plasma was developed. These calculations indicate that, in some cases, a significant fraction of the beam energy may be dissipated by the reverse current. Joule heating by the reverse current is a more effective mechanism for heating the plasma than collisional losses from the energetic electrons because the Ohmic losses are caused by thermal electrons in the reverse current which have much shorter mean free paths than the energetic electrons. The heating due to reverse currents is calculated for two injected energetic electron fluxes. For the smaller injected flux, the temperature of the coronal plasma is raised by about a factor of two. The larger flux causes the reverse current drift velocity to exceed the critical velocity for the onset of ion cyclotron turbulence, producing anomalous resistivity and an order of magnitude increase in the temperature. The heating is so rapid that the lack of ionization equilibrium may produce a soft X-ray and EUV pulse from the corona.

  3. On the applicability of low-dimensional models for convective flow reversals at extreme Prandtl numbers

    NASA Astrophysics Data System (ADS)

    Mannattil, Manu; Pandey, Ambrish; Verma, Mahendra K.; Chakraborty, Sagar

    2017-12-01

    Constructing simpler models, either stochastic or deterministic, for exploring the phenomenon of flow reversals in fluid systems is in vogue across disciplines. Using direct numerical simulations and nonlinear time series analysis, we illustrate that the basic nature of flow reversals in convecting fluids can depend on the dimensionless parameters describing the system. Specifically, we find evidence of low-dimensional behavior in flow reversals occurring at zero Prandtl number, whereas we fail to find such signatures for reversals at infinite Prandtl number. Thus, even in a single system, as one varies the system parameters, one can encounter reversals that are fundamentally different in nature. Consequently, we conclude that a single general low-dimensional deterministic model cannot faithfully characterize flow reversals for every set of parameter values.

  4. Effect of dilution in sperm maturation media and time of storage on sperm motility and fertilizing capacity of cryopreserved semen of sex-reversed female rainbow trout.

    PubMed

    Judycka, Sylwia; Ciereszko, Andrzej; Dobosz, Stefan; Zalewski, Tomasz; Dietrich, Grzegorz J

    2017-05-01

    Masculinized females, also called neomales or sex-reversed females have a male phenotype but retain the female genotype (XX). Therefore, all spermatozoa produced in their functional testes carry an X chromosome, which is desired for the production of all-female rainbow trout populations. Semen of sex-reversed female rainbow trout is of low quality and in vitro maturation is required, which includes dilution of sperm suspensions with specially formulated maturation solutions. The aim of this study was to determine the effect of dilution in different maturation media on sperm quality (sperm motility characteristics and fertilizing capacity) of frozen/thawed sperm of sex-reversed female rainbow trout. The effect of time of post-thaw storage (0, 15, 60 and 120min) on semen quality was also tested. Sperm motility parameters and fertilization rate at the eyed and hatching stages were assessed for post-thaw semen diluted in different media. The cryopreservation procedure resulted in high post-thaw sperm motility of about 57% and did not differ from fresh semen. Unexpectedly, maturation media decreased sperm activation capacity immediately after dilution; however, sperm motility increased over time. Fertilization rates of frozen/thawed semen were high (71-87%) and did not differ significantly between experimental variants at any of tested periods of storage. Our results demonstrated that the effect of the maturation media on frozen/thawed sperm is different from that of fresh sperm. The progressive increase in post-thaw sperm motility in maturation media can potentially be applied to routine hatchery practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Structural and temporal requirements for geomagnetic field reversal deduced from lava flows.

    PubMed

    Singer, Brad S; Hoffman, Kenneth A; Coe, Robert S; Brown, Laurie L; Jicha, Brian R; Pringle, Malcolm S; Chauvin, Annick

    2005-03-31

    Reversals of the Earth's magnetic field reflect changes in the geodynamo--flow within the outer core--that generates the field. Constraining core processes or mantle properties that induce or modulate reversals requires knowing the timing and morphology of field changes that precede and accompany these reversals. But the short duration of transitional field states and fragmentary nature of even the best palaeomagnetic records make it difficult to provide a timeline for the reversal process. 40Ar/39Ar dating of lavas on Tahiti, long thought to record the primary part of the most recent 'Matuyama-Brunhes' reversal, gives an age of 795 +/- 7 kyr, indistinguishable from that of lavas in Chile and La Palma that record a transition in the Earth's magnetic field, but older than the accepted age for the reversal. Only the 'transitional' lavas on Maui and one from La Palma (dated at 776 +/- 2 kyr), agree with the astronomical age for the reversal. Here we propose that the older lavas record the onset of a geodynamo process, which only on occasion would result in polarity change. This initial instability, associated with the first of two decreases in field intensity, began approximately 18 kyr before the actual polarity switch. These data support the claim that complete reversals require a significant period for magnetic flux to escape from the solid inner core and sufficiently weaken its stabilizing effect.

  6. Slow equilibration of reversed-phase columns for the separation of ionized solutes.

    PubMed

    Marchand, D H; Williams, L A; Dolan, J W; Snyder, L R

    2003-10-10

    Reversed-phase columns that have been stored in buffer-free solvents can exhibit pronounced retention-time drift when buffered, low-pH mobile phases are used with ionized solutes. Whereas non-ionized compounds exhibit constant retention times within 20 min of the beginning of mobile phase flow, the retention of ionized compounds can continue to change (by 20% or more) for several hours. If mobile phase pH is changed from low to high and back again, an even longer time may be required before the column reaches equilibration at low pH. The speed of column equilibration for ionized solutes can vary significantly among different reversed-phase columns and is not affected by flow rate.

  7. Reverse Core Engine with Thrust Reverser

    NASA Technical Reports Server (NTRS)

    Chandler, Jesse M. (Inventor); Suciu, Gabriel L. (Inventor)

    2017-01-01

    An engine system has a gas generator, a bi-fi wall surrounding at least a portion of the gas generator, a casing surrounding a fan, and the casing having first and second thrust reverser doors which in a deployed position abut each other and the bi-fi wall.

  8. Characterization of Rare Reverse Flow Events in Adverse Pressure Gradient Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Kaehler, Christian J.; Bross, Matthew; Fuchs, Thomas

    2017-11-01

    Time-resolved tomographic flow fields measured in the viscous sublayer region of a turbulent boundary layer subjected to an adverse pressure gradient (APG) are examined with the aim to resolve and characterize reverse flow events at Reτ = 5000. The fields were measured using a novel high resolution tomographic particle tracking technique. It is shown that this technique is able to fully resolve mean and time dependent features of the complex three-dimensional flow with high accuracy down to very near-wall distances ( 10 μm). From time resolved Lagrangian particle trajectories, statistical information as well as instantaneous topological features of near-wall flow events are deduced. Similar to the zero pressure gradient case (ZPG), it was found that individual events with reverse flow components still occur relatively rarely under the action of the pressure gradient investigated here. However, reverse flow events comprised of many individual events, are shown to appear in relatively organized groupings in both spanwise and streamise directions. Furthermore, instantaneous measurements of reverse flow events show that these events are associated with the motion of low-momentum streaks in the near-wall region. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures and the individual project Grant KA1808/8-2 of the Deutsche Forschungsgemeinschaft.

  9. 41 CFR 102-74.520 - How much time does the Regional Officer have to affirm or reverse the Federal agency buildings...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regional Officer have to affirm or reverse the Federal agency buildings manager's decision after receiving... buildings manager's decision after receiving the notification of appeal from the affected person or organization? The Regional Officer must affirm or reverse the Federal agency buildings manager's decision...

  10. Reversal of radial glow distribution in helicon plasma induced by reversed magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhao, G.; Niu, C.; Liu, Z. W.; Ouyang, J. T.; Chen, Q.

    2017-02-01

    In this work, the reversal of radial glow distribution induced by reversed magnetic field is reported. Based on the Boswell antenna which is symmetric and insensitive to the magnetic field direction, it seems such a phenomenon in theory appears impossible. However, according to the diagnostic of the helicon waves by magnetic probe, it is found that the direction of magnetic field significantly affects the propagation characteristic of helicon waves, i.e., the interchange of the helicon waves at the upper and the lower half of tube was caused by reversing the direction of magnetic field. It is suggested that the variation of helicon wave against the direction of magnetic field causes the reversed radial glow distribution. The appearance of the traveling wave does not only improve the discharge strength, but also determines the transition of the discharge mode.

  11. Thermally assisted magnetization reversal in sub-micron sized magnetic thin films

    NASA Astrophysics Data System (ADS)

    Koch, Roger H.

    2000-03-01

    We have measured the rate of thermally assisted magnetization reversal of sub-micron sized magnetic thin film elements. For fields H just less than the zero-temperature coercive field H_C, the probability of reversal, P^exps (t), increases for short times, t, achieves a maximum value, and then decreases exponentially. The temperature dependence of the reversal is consistent with a temperature independent barrier height. Micromagnetic simulations exhibit the same behavior, and show that the reversal for a film without disorder proceeds through the annihilation of two domain walls that move from opposite sides of the sample. The behavior of P^exps (t) can be understood using a simple ``energy-ladder" model of thermal activation. In this model, the film reverses its magnetization direction by thermally activating (reversibly) through a ladder of intermediate metastable states. The measured data are consistent with there being a handful of these states in the energy landscape of the film. These states are a result of the disorder in the film and we will show micromagnetic simulation movies depicting this behavior. In collaboration with G. Grinstein, G.A. Keefe, Yu Lu, P.L. Trouilloud, W. J. Gallagher, S.S.P. Parkin, S. Ingvarson, and G. Xaio

  12. Closeout Report - Search for Time Reversal Symmetry Violation with TREK at J-PARC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohl, Michael

    2015-04-15

    positions. Two former graduate students of the group have graduated and received their PhD degrees in nuclear physics (Dr. Anusha Liyanage and Dr. Ozgur Ates). In particular, this award has enabled Dr. Kohl to pursue the TREK project (Time Reversal Experiment with Kaons) at J-PARC, which he has been leading and advancing as International Spokesperson. Originally proposed as a search for time reversal symmetry violation [6], the project has evolved into a precision test of lepton flavor universality in the Standard Model along with sensitive searches for physics beyond the Standard Model through a possible discovery of new particles such as a sterile neutrino or a neutral gauge boson from the hidden sector in the mass region up to 300 MeV/c2 [7]. Experiment TREK/E36, first proposed in 2010, has been mounted between November 2014 and April 2015, and commissioning with beam has been started in April 2015, with production running anticipated in early summer and late fall 2015. It uses the apparatus from the previous KEK/E-246 experiment with partial upgrades to measure the ratio of decay widths of leptonic two-body decays of the charged kaon to µν and eν, respectively, which is highly sensitive to the ratio of electromagnetic charged lepton couplings and possible new physics processes that could differentiate between μ and e, hence breaking lepton flavor universality of the Standard Model. Through the searches for neutral massive particles, TREK/E36 can severely constrain any new physics scenarios designed to explain the proton radius puzzle [12, 13].« less

  13. Geomagnetic Reversals during the Phanerozoic.

    PubMed

    McElhinny, M W

    1971-04-09

    An antalysis of worldwide paleomagnetic measurements suggests a periodicity of 350 x 10(6) years in the polarity of the geomagnetic field. During the Mesozoic it is predominantly normal, whereas during the Upper Paleozoic it is predominantly reversed. Although geomagnetic reversals occur at different rates throughout the Phanerozoic, there appeaars to be no clear correlation between biological evolutionary rates and reversal frequency.

  14. Internally Controlled, Multiplex Real-Time Reverse Transcription PCR for Dengue Virus and Yellow Fever Virus Detection.

    PubMed

    Rojas, Alejandra; Diagne, Cheikh T; Stittleburg, Victoria D; Mohamed-Hadley, Alisha; de Guillén, Yvalena Arévalo; Balmaseda, Angel; Faye, Oumar; Faye, Ousmane; Sall, Amadou A; Harris, Eva; Pinsky, Benjamin A; Waggoner, Jesse J

    2018-04-02

    The differential diagnosis of dengue virus (DENV) and yellow fever virus (YFV) infections in endemic areas is complicated by nonspecific early clinical manifestations. In this study, we describe an internally controlled, multiplex real-time reverse transcription PCR (rRT-PCR) for the detection of DENV and YFV. The DENV-YFV assay demonstrated specific detection and had a dynamic range of 2.0-8.0 log 10 copies/μL of eluate for each DENV serotype and YFV. Clinical performance was similar to a published pan-DENV assay: 48/48 acute-phase samples from dengue cases were detected in both assays. For YFV detection, mock samples were prepared with nine geographically diverse YFV isolates over a range of concentrations. The DENV-YFV assay detected 62/65 replicates, whereas 54/65 were detected using a reference YFV rRT-PCR. Given the reemergence of DENV and YFV in areas around the world, the DENV-YFV assay should be a useful tool to narrow the differential diagnosis and provide early case detection.

  15. Reverse hybrid total hip arthroplasty.

    PubMed

    Wangen, Helge; Havelin, Leif I; Fenstad, Anne M; Hallan, Geir; Furnes, Ove; Pedersen, Alma B; Overgaard, Søren; Kärrholm, Johan; Garellick, Göran; Mäkelä, Keijo; Eskelinen, Antti; Nordsletten, Lars

    2017-06-01

    Background and purpose - The use of a cemented cup together with an uncemented stem in total hip arthroplasty (THA) has become popular in Norway and Sweden during the last decade. The results of this prosthetic concept, reverse hybrid THA, have been sparsely described. The Nordic Arthroplasty Register Association (NARA) has already published 2 papers describing results of reverse hybrid THAs in different age groups. Based on data collected over 2 additional years, we wanted to perform in depth analyses of not only the reverse hybrid concept but also of the different cup/stem combinations used. Patients and methods - From the NARA, we extracted data on reverse hybrid THAs from January 1, 2000 until December 31, 2013. 38,415 such hips were studied and compared with cemented THAs. The Kaplan-Meier method and Cox regression analyses were used to estimate the prosthesis survival and the relative risk of revision. The main endpoint was revision for any reason. We also performed specific analyses regarding the different reasons for revision and analyses regarding the cup/stem combinations used in more than 500 cases. Results - We found a higher rate of revision for reverse hybrids than for cemented THAs, with an adjusted relative risk of revision (RR) of 1.4 (95% CI: 1.3-1.5). At 10 years, the survival rate was 94% (CI: 94-95) for cemented THAs and 92% (95% CI: 92-93) for reverse hybrids. The results for the reverse hybrid THAs were inferior to those for cemented THAs in patients aged 55 years or more (RR =1.1, CI: 1.0-1.3; p < 0.05). We found a higher rate of early revision due to periprosthetic femoral fracture for reverse hybrids than for cemented THAs in patients aged 55 years or more (RR =3.1, CI: 2.2-4.5; p < 0.001). Interpretation - Reverse hybrid THAs had a slightly higher rate of revision than cemented THAs in patients aged 55 or more. The difference in survival was mainly caused by a higher incidence of early revision due to periprosthetic femoral fracture in

  16. [Comparison of neostigmine induced reversal of rocuronium in different age children].

    PubMed

    Liu, Jinzhu; Cheng, Zhaoyu

    2016-03-15

    To compare the effectiveness of neostigmine induced reversal of rocuronium in neonates, infants, young children and children. One hundred and sixty ASA I or II pediatric patients undergoings elective surgical procedures under total intravenous anesthesia were enrolled during July 2014 to April 2015 in Tianjin Children's Hospital. The patients were divided into four groups according to ages: neonate group, infant group, young children group and children group.Then control subgroup and neostigmine reversal subgroup including twenty patients were randomly selected from every different age groups by the method of random number table. After induction of anesthesia, 0.6 mg/kg rocuronium was administered, and 0.2 mg/kg maintenance doses given as required during period of operation. Neuromuscular block was monitored using acceleromyographic train of four (TOF). When T1/control returned to 15%, 0.03 mg/kg neostigmine and 0.01 mg/kg atropine were given to patients of reversal subgroups, and saline 0.1 ml/kg was given to patients of control subgroups. The recovery time of T25, T75, TR0.7, recovery index, blood pressure, heart rate and adverse reactions were observed and recorded. In control subgroups, the recovery time of T75 for neonates, infants, young children and children were (27.10±8.72), (16.70±6.35), (13.05±1.96), (14.40±3.08) min, respectively (F=25.052, P<0.01). The recovery time of TR0.7 were (27.75±8.56), (18.45±5.62), (14.95±2.64), (15.70±3.36) min, respectively (F=22.496, P<0.01). The recovery index were (20.75±7.09), (12.40±5.04), (10.01±2.00), (10.55±2.82) min, respectively (F=22.725, P<0.01). There were no significant difference for the every recovery time and recovery index between infants, young children and children (all P>0.05). But the recovery time of T75, TR0.7 and recovery index in neonate group were longer than other age groups (all P<0.01). In reversal subgroups , the recovery time of T75 for neonates, infants, young children and

  17. Imipramine attenuates neuroinflammatory signaling and reverses stress-induced social avoidance.

    PubMed

    Ramirez, Karol; Shea, Daniel T; McKim, Daniel B; Reader, Brenda F; Sheridan, John F

    2015-05-01

    Psychosocial stress is associated with altered immunity, anxiety and depression. Previously we showed that repeated social defeat (RSD) promoted microglia activation and social avoidance behavior that persisted for 24days after cessation of RSD. The aim of the present study was to determine if imipramine (a tricyclic antidepressant) would reverse RSD-inducedsocial avoidance and ameliorate neuroinflammatory responses. To test this, C57BL/6 mice were divided into treatment groups. One group from RSD and controls received daily injections of imipramine for 24days, following 6 cycles of RSD. Two other groups were treated with saline. RSD mice spent significantly less time in the interaction zone when an aggressor was present in the cage. Administration of imipramine reversed social avoidance behavior, significantly increasing the interaction time, so that it was similar to that of control mice. Moreover, 24days of imipramine treatment in RSD mice significantly decreased stress-induced mRNA levels for IL-6 in brain microglia. Following ex vivo LPS stimulation, microglia from mice exposed to RSD, had higher mRNA expression of IL-6, TNF-α, and IL-1β, and this was reversed by imipramine treatment. In a second experiment, imipramine was added to drinking water confirming the reversal of social avoidant behavior and decrease in mRNA expression of IL-6 in microglia. These data suggest that the antidepressant imipramine may exert its effect, in part, by down-regulating microglial activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Imipramine attenuates neuroinflammatory signaling and reverses stress-induced social avoidance

    PubMed Central

    Ramirez, Karol; Shea, Daniel T.; McKim, Daniel B.; B.F., Reader; Sheridan, John F.

    2015-01-01

    Psychosocial stress is associated with altered immunity, anxiety and depression. Previously we showed that repeated social defeat (RSD) promoted microglia activation and social avoidance behavior that persisted for 24 days after cessation of RSD. The aim of the present study was to determine if imipramine (a tricyclic antidepressant) would reverse RSD-induced social avoidance and ameliorate neuroinflammatory responses. To test this, C57BL/6 mice were divided into treatment groups. One group from RSD and controls received daily injections of imipramine for 24 days, following 6 cycles of RSD. Two other groups were treated with saline. RSD mice spent significantly less time in the interaction zone when an aggressor was present in the cage. Administration of imipramine reversed social avoidance behavior, significantly increasing the interaction time, so that it was similar to that of control mice. Moreover, 24 days of imipramine treatment in RSD mice significantly decreased stress-induced mRNA levels for IL-6 in brain microglia. Following ex vivo LPS stimulation, microglia from mice exposed to RSD, had higher mRNA expression of IL-6, TNF-α, and IL-1β, and this was reversed by imipramine treatment. In a second experiment, imipramine was added to drinking water confirming the reversal of social avoidant behavior and decrease in mRNA expression of IL-6 in microglia. These data suggest that the antidepressant imipramine may exert its effect, in part, by down-regulating microglial activation. PMID:25701613

  19. Reversal of multidrug resistance by surfactants.

    PubMed Central

    Woodcock, D. M.; Linsenmeyer, M. E.; Chojnowski, G.; Kriegler, A. B.; Nink, V.; Webster, L. K.; Sawyer, W. H.

    1992-01-01

    Cremophor EL, a pharmacologically inactive solubilising agent, has been shown to reverse multidrug resistance (MDR). Using flow cytometric evaluation of equilibrium intracellular levels of daunorubicin (DNR), we found that eight other surface active agents will also reverse MDR. All the active detergents contain polyethoxylated moieties but have no similarities in their hydrophobic components. The properties of three polyethoxylated surfactants that showed the lowest toxicities, Cremophor, Tween 80 and Solutol HS15, were examined in more detail. The concentrations of Tween 80 and Solutol required to reverse DNR exclusion were 10-fold lower than for Cremophor. However while concentrations greater than or equal to 1:10(2) of the former two surfactants resulted in breakdown of cells, even 1:10 of Cremophor did not lyse cells. Studies of the effects of Cremophor on the uptake and efflux of DNR in normal and MDR cell types showed that Cremophor increases intracellular DNR primarily by locking the rapid efflux from the cells. This blockage of drug efflux may be mediated by a substantial alteration in the fluidity of cell membranes induced by Cremophor, as shown by decreased fluorescence anisotropy of a membrane probe. Consistent with these data, coinjection of adriamycin plus Cremophor into mice carrying a multidrug resistant P388 transplantable tumour significantly increased the survival time of the mice compared with adriamycin treatment alone. PMID:1637678

  20. Findings suggest possible link between geomagnetic reversals and field intensity

    NASA Astrophysics Data System (ADS)

    Hoffman, Kenneth A.

    For the past 2000 years the Earth's magnetic field has been weakening. At the going rate of decay, the field's dipole—generated within the convecting metallic fluid of the outer core—would totally vanish, perhaps passing through zero and reversing polarity, in the coming millennia. This scenario of a coming attempt by Earth's dynamo to reverse its polarity is suggested by direct observation of the field since the 19th century and laboratory investigation of historic lavas and other fired materials that record the ambient field while cooling.The ongoing weakening of the field does not insure that a reversal will occur. After all, the north-south axial dipole changes to the opposite direction only on occasion; it currently reverses a few times each million years. How the dynamo actually approaches an attempted change of polarity and, moreover, the degree to which such a process can be predicted, are unclear. Nonetheless, a major step toward such an understanding may have been made through recently reported paleomagnetic findings obtained from the long, quasi-continuous records derived from Ocean Drilling Project (ODP) marine sediment cores.