Loudness perception and speech intensity control in Parkinson's disease.
Clark, Jenna P; Adams, Scott G; Dykstra, Allyson D; Moodie, Shane; Jog, Mandar
2014-01-01
The aim of this study was to examine loudness perception in individuals with hypophonia and Parkinson's disease. The participants included 17 individuals with hypophonia related to Parkinson's disease (PD) and 25 age-equivalent controls. The three loudness perception tasks included a magnitude estimation procedure involving a sentence spoken at 60, 65, 70, 75 and 80 dB SPL, an imitation task involving a sentence spoken at 60, 65, 70, 75 and 80 dB SPL, and a magnitude production procedure involving the production of a sentence at five different loudness levels (habitual, two and four times louder and two and four times quieter). The participants with PD produced a significantly different pattern and used a more restricted range than the controls in their perception of speech loudness, imitation of speech intensity, and self-generated estimates of speech loudness. The results support a speech loudness perception deficit in PD involving an abnormal perception of externally generated and self-generated speech intensity. Readers will recognize that individuals with hypophonia related to Parkinson's disease may demonstrate a speech loudness perception deficit involving the abnormal perception of externally generated and self-generated speech intensity. Copyright © 2014 Elsevier Inc. All rights reserved.
Spectral and binaural loudness summation for hearing-impaired listeners.
Oetting, Dirk; Hohmann, Volker; Appell, Jens-E; Kollmeier, Birger; Ewert, Stephan D
2016-05-01
Sensorineural hearing loss typically results in a steepened loudness function and a reduced dynamic range from elevated thresholds to uncomfortably loud levels for narrowband and broadband signals. Restoring narrowband loudness perception for hearing-impaired (HI) listeners can lead to overly loud perception of broadband signals and it is unclear how binaural presentation affects loudness perception in this case. Here, loudness perception quantified by categorical loudness scaling for nine normal-hearing (NH) and ten HI listeners was compared for signals with different bandwidth and different spectral shape in monaural and in binaural conditions. For the HI listeners, frequency- and level-dependent amplification was used to match the narrowband monaural loudness functions of the NH listeners. The average loudness functions for NH and HI listeners showed good agreement for monaural broadband signals. However, HI listeners showed substantially greater loudness for binaural broadband signals than NH listeners: on average a 14.1 dB lower level was required to reach "very loud" (range 30.8 to -3.7 dB). Overall, with narrowband loudness compensation, a given binaural loudness for broadband signals above "medium loud" was reached at systematically lower levels for HI than for NH listeners. Such increased binaural loudness summation was not found for loudness categories below "medium loud" or for narrowband signals. Large individual variations in the increased loudness summation were observed and could not be explained by the audiogram or the narrowband loudness functions. Copyright © 2016 Elsevier B.V. All rights reserved.
Crukley, Jeffery; Scollie, Susan D
2014-03-01
The purpose of this study was to determine the effects of hearing instruments set to Desired Sensation Level version 5 (DSL v5) hearing instrument prescription algorithm targets and equipped with directional microphones and digital noise reduction (DNR) on children's sentence recognition in noise performance and loudness perception in a classroom environment. Ten children (ages 8-17 years) with stable, congenital sensorineural hearing losses participated in the study. Participants were fitted bilaterally with behind-the-ear hearing instruments set to DSL v5 prescriptive targets. Sentence recognition in noise was evaluated using the Bamford-Kowal-Bench Speech in Noise Test (Niquette et al., 2003). Loudness perception was evaluated using a modified version of the Contour Test of Loudness Perception (Cox, Alexander, Taylor, & Gray, 1997). Children's sentence recognition in noise performance was significantly better when using directional microphones alone or in combination with DNR than when using omnidirectional microphones alone or in combination with DNR. Children's loudness ratings for sounds above 72 dB SPL were lowest when fitted with the DSL v5 Noise prescription combined with directional microphones. DNR use showed no effect on loudness ratings. Use of the DSL v5 Noise prescription with a directional microphone improved sentence recognition in noise performance and reduced loudness perception ratings for loud sounds relative to a typical clinical reference fitting with the DSL v5 Quiet prescription with no digital signal processing features enabled. Potential clinical strategies are discussed.
Manchaiah, Vinaya; Zhao, Fei; Oladeji, Susan; Ratinaud, Pierre
2018-01-01
Purpose: The current study was aimed at understanding the patterns in the social representation of loud music reported by young adults in different countries. Materials and Methods: The study included a sample of 534 young adults (18–25 years) from India, Iran, Portugal, United Kingdom, and United States. Participants were recruited using a convince sampling, and data were collected using the free association task. Participants were asked to provide up to five words or phrases that come to mind when thinking about “loud music.” The data were first analyzed using the qualitative content analysis. This was followed by quantitative cluster analysis and chi-square analysis. Results: The content analysis suggested 19 main categories of responses related to loud music. The cluster analysis resulted in for main clusters, namely: (1) emotional oriented perception; (2) problem oriented perception; (3) music and enjoyment oriented perception; and (4) positive emotional and recreation-oriented perception. Country of origin was associated with the likelihood of participants being in each of these clusters. Conclusion: The current study highlights the differences and similarities in young adults’ perception of loud music. These results may have implications to hearing health education to facilitate healthy listening habits. PMID:29457602
Real-time loudness normalisation with combined cochlear implant and hearing aid stimulation
Van Eeckhoutte, Maaike; Van Deun, Lieselot; Francart, Tom
2018-01-01
Background People who use a cochlear implant together with a contralateral hearing aid—so-called bimodal listeners—have poor localisation abilities and sounds are often not balanced in loudness across ears. In order to address the latter, a loudness balancing algorithm was created, which equalises the loudness growth functions for the two ears. The algorithm uses loudness models in order to continuously adjust the two signals to loudness targets. Previous tests demonstrated improved binaural balance, improved localisation, and better speech intelligibility in quiet for soft phonemes. In those studies, however, all stimuli were preprocessed so spontaneous head movements and individual head-related transfer functions were not taken into account. Furthermore, the hearing aid processing was linear. Study design In the present study, we simplified the acoustical loudness model and implemented the algorithm in a real-time system. We tested bimodal listeners on speech perception and on sound localisation, both in normal loudness growth configuration and in a configuration with a modified loudness growth function. We also used linear and compressive hearing aids. Results The comparison between the original acoustical loudness model and the new simplified model showed loudness differences below 3% for almost all tested speech-like stimuli and levels. We found no effect of balancing the loudness growth across ears for speech perception ability in quiet and in noise. We found some small improvements in localisation performance. Further investigation with a larger sample size is required. PMID:29617421
Evaluating the loudness of phantom auditory perception (tinnitus) in rats.
Jastreboff, P J; Brennan, J F
1994-01-01
Using our behavioral paradigm for evaluating tinnitus, the loudness of salicylate-induced tinnitus was evaluated in 144 rats by comparing their behavioral responses induced by different doses of salicylate to those induced by different intensities of a continuous reference tone mimicking tinnitus. Group differences in resistance to extinction were linearly related to salicylate dose and, at moderate intensities, to the reference tone as well. Comparison of regression equations for salicylate versus tone effects permitted estimation of the loudness of salicylate-induced tinnitus. These results extend the animal model of tinnitus and provide evidence that the loudness of phantom auditory perception is expressed through observable behavior, can be evaluated, and its changes detected.
Amplitude modulation reduces loudness adaptation to high-frequency tones.
Wynne, Dwight P; George, Sahara E; Zeng, Fan-Gang
2015-07-01
Long-term loudness perception of a sound has been presumed to depend on the spatial distribution of activated auditory nerve fibers as well as their temporal firing pattern. The relative contributions of those two factors were investigated by measuring loudness adaptation to sinusoidally amplitude-modulated 12-kHz tones. The tones had a total duration of 180 s and were either unmodulated or 100%-modulated at one of three frequencies (4, 20, or 100 Hz), and additionally varied in modulation depth from 0% to 100% at the 4-Hz frequency only. Every 30 s, normal-hearing subjects estimated the loudness of one of the stimuli played at 15 dB above threshold in random order. Without any amplitude modulation, the loudness of the unmodulated tone after 180 s was only 20% of the loudness at the onset of the stimulus. Amplitude modulation systematically reduced the amount of loudness adaptation, with the 100%-modulated stimuli, regardless of modulation frequency, maintaining on average 55%-80% of the loudness at onset after 180 s. Because the present low-frequency amplitude modulation produced minimal changes in long-term spectral cues affecting the spatial distribution of excitation produced by a 12-kHz pure tone, the present result indicates that neural synchronization is critical to maintaining loudness perception over time.
The effect of change in spectral slope and formant frequencies on the perception of loudness.
Duvvuru, Sirisha; Erickson, Molly
2013-11-01
This study attempts to understand how changes in spectral slope and formant frequency influence changes in perceived loudness. It was hypothesized that voices synthesized with steeper spectral slopes will be perceived as less loud than voices synthesized with less steep spectral slopes, in spite of the fact that they are of equal root mean square (RMS) amplitude. It was also hypothesized that stimuli with higher formant patterns will be perceived as louder than those with lower formant patterns, in spite of the fact that they are of equal RMS amplitude. Repeated measures factorial design. For the pitches A3, C4, B4, and F5, three different source signals were synthesized with varying slopes of -9, -12, and -15 dB/octave using a frequency vibrato rate of 5.6 Hz and a frequency vibrato extent of 50 cents. Each of the three source signals were filtered using two formant patterns, a lower formant pattern typical of a mezzo-soprano (pattern A) and a higher formant pattern typical of a soprano (pattern B) for the vowel /a/. For each pitch, the six stimuli were combined into all possible pairs and normalized to equal RMS amplitude. Listeners were presented with 120 paired stimuli (60 pairs repeated twice). The listener's task was to indicate whether the first or second stimulus in the pair was louder. Generally, as the spectral slope decreased, perceived loudness increased, with the magnitude of the perceived difference in loudness being related to the degree of difference in spectral slope. Likewise, at all pitches except A3, perceived loudness increased as formant frequency increased. RMS amplitude is an important predictor of loudness perception, but many other factors also affect the perception of this important vocal parameter. Spectral composition is one such factor and must be considered when using loudness perception in the process of clinical diagnostics. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Autophonic Loudness of Singers in Simulated Room Acoustic Environments.
Yadav, Manuj; Cabrera, Densil
2017-05-01
This paper aims to study the effect of room acoustics and phonemes on the perception of loudness of one's own voice (autophonic loudness) for a group of trained singers. For a set of five phonemes, 20 singers vocalized over several autophonic loudness ratios, while maintaining pitch constancy over extreme voice levels, within five simulated rooms. There were statistically significant differences in the slope of the autophonic loudness function (logarithm of autophonic loudness as a function of voice sound pressure level) for the five phonemes, with slopes ranging from 1.3 (/a:/) to 2.0 (/z/). There was no significant variation in the autophonic loudness function slopes with variations in room acoustics. The autophonic room response, which represents a systematic decrease in voice levels with increasing levels of room reflections, was also studied, with some evidence found in support. Overall, the average slope of the autophonic room response for the three corner vowels (/a:/, /i:/, and /u:/) was -1.4 for medium autophonic loudness. The findings relating to the slope of the autophonic loudness function are in agreement with the findings of previous studies where the sensorimotor mechanisms in regulating voice were shown to be more important in the perception of autophonic loudness than hearing of room acoustics. However, the role of room acoustics, in terms of the autophonic room response, is shown to be more complicated, requiring further inquiry. Overall, it is shown that autophonic loudness grows at more than twice the rate of loudness growth for sounds created outside the human body. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Effect of Pulse Rate on Loudness Discrimination in Cochlear Implant Users.
Azadpour, Mahan; McKay, Colette M; Svirsky, Mario A
2018-03-12
Stimulation pulse rate affects current amplitude discrimination by cochlear implant (CI) users, indicated by the evidence that the JND (just noticeable difference) in current amplitude delivered by a CI electrode becomes larger at higher pulse rates. However, it is not clearly understood whether pulse rate would affect discrimination of speech intensities presented acoustically to CI processors, or what the size of this effect might be. Intensity discrimination depends on two factors: the growth of loudness with increasing sound intensity and the loudness JND (or the just noticeable loudness increment). This study evaluated the hypothesis that stimulation pulse rate affects loudness JND. This was done by measuring current amplitude JNDs in an experiment design based on signal detection theory according to which loudness discrimination is related to internal noise (which is manifested by variability in loudness percept in response to repetitions of the same physical stimulus). Current amplitude JNDs were measured for equally loud pulse trains of 500 and 3000 pps (pulses per second) by increasing the current amplitude of the target pulse train until it was perceived just louder than a same-rate or different-rate reference pulse train. The JND measures were obtained at two presentation levels. At the louder level, the current amplitude JNDs were affected by the rate of the reference pulse train in a way that was consistent with greater noise or variability in loudness perception for the higher pulse rate. The results suggest that increasing pulse rate from 500 to 3000 pps can increase loudness JND by 60 % at the upper portion of the dynamic range. This is equivalent to a 38 % reduction in the number of discriminable steps for acoustic and speech intensities.
Mental Imagery for Musical Changes in Loudness
Bailes, Freya; Bishop, Laura; Stevens, Catherine J.; Dean, Roger T.
2012-01-01
Musicians imagine music during mental rehearsal, when reading from a score, and while composing. An important characteristic of music is its temporality. Among the parameters that vary through time is sound intensity, perceived as patterns of loudness. Studies of mental imagery for melodies (i.e., pitch and rhythm) show interference from concurrent musical pitch and verbal tasks, but how we represent musical changes in loudness is unclear. Theories suggest that our perceptions of loudness change relate to our perceptions of force or effort, implying a motor representation. An experiment was conducted to investigate the modalities that contribute to imagery for loudness change. Musicians performed a within-subjects loudness change recall task, comprising 48 trials. First, participants heard a musical scale played with varying patterns of loudness, which they were asked to remember. There followed an empty interval of 8 s (nil distractor control), or the presentation of a series of four sine tones, or four visual letters or three conductor gestures, also to be remembered. Participants then saw an unfolding score of the notes of the scale, during which they were to imagine the corresponding scale in their mind while adjusting a slider to indicate the imagined changes in loudness. Finally, participants performed a recognition task of the tone, letter, or gesture sequence. Based on the motor hypothesis, we predicted that observing and remembering conductor gestures would impair loudness change scale recall, while observing and remembering tone or letter string stimuli would not. Results support this prediction, with loudness change recalled less accurately in the gestures condition than in the control condition. An effect of musical training suggests that auditory and motor imagery ability may be closely related to domain expertise. PMID:23227014
Unilateral Cochlear Implantation Reduces Tinnitus Loudness in Bimodal Hearing: A Prospective Study
Servais, Jérôme J.; Hörmann, Karl; Wallhäusser-Franke, Elisabeth
2017-01-01
Perceptive and receptive aspects of subjective tinnitus like loudness and tinnitus-related distress are partly independent. The high percentage of hearing loss in individuals with tinnitus suggests causality of hearing impairment particularly for the tinnitus percept, leading to the hypothesis that restoration of auditory input has a larger effect on tinnitus loudness than on tinnitus-related distress. Furthermore, it is assumed that high levels of depression or anxiety prevent reductions of tinnitus loudness and distress following restoration of activity in the cochlea. This prospective study investigated the influence of unilateral cochlear implant (CI) on tinnitus in 19 postlingually deafened adults during 6 months following implantation. All had bimodal provision with the other ear being continuously supported by a hearing aid. On the day before CI implantation (T1, T2), and at about 3 and 6 months postsurgery (T3, T4), participants were questioned about their current tinnitus. Loudness was rated on a Numeric Rating Scale, distress was assessed by the TQ12 Tinnitus Questionnaire, and depression and anxiety were recorded with the Hospital Anxiety and Depression Scale. At T2, 79% experienced tinnitus, one participant developed tinnitus after implantation. Following implantation, tinnitus loudness was reduced significantly by 42%, while reductions in tinnitus-related distress (−24%), depression (−20%), and anxiety (−20%) did not attain statistical significance. Significant correlations existed between tinnitus measures, and between postimplantation tinnitus-related distress and anxiety and depression scores. Moreover, improvement of hearing in the CI ear was significantly correlated with reduction in tinnitus loudness. A new aspect of this study is the particular influence of CI provision on perceptive aspects of preexisting tinnitus (hypothesis 1), with the effect size regarding postimplant reduction of perceived tinnitus loudness (1.40) being much larger than effect sizes on the reduction of tinnitus-related distress (0.38), depression (0.53), and anxiety (0.53). Contrary to expectation both tinnitus measures reduce even in the majority of CI recipients with increased levels of anxiety or depression. This suggests that reduction of the tinnitus signal by restoring activity in the cochlea cannot be entirely compensated for by central tinnitus mechanisms and results in a reduction of perceptive and less so of reactive aspects of subjective tinnitus. PMID:28326059
Perceptual Bias and Loudness Change: An Investigation of Memory, Masking, and Psychophysiology
NASA Astrophysics Data System (ADS)
Olsen, Kirk N.
Loudness is a fundamental aspect of human auditory perception that is closely associated with a sound's physical acoustic intensity. The dynamic quality of intensity change is an inherent acoustic feature in real-world listening domains such as speech and music. However, perception of loudness change in response to continuous intensity increases (up-ramps) and decreases (down-ramps) has received relatively little empirical investigation. Overestimation of loudness change in response to up-ramps is said to be linked to an adaptive survival response associated with looming (or approaching) motion in the environment. The hypothesised 'perceptual bias' to looming auditory motion suggests why perceptual overestimation of up-ramps may occur; however it does not offer a causal explanation. It is concluded that post-stimulus judgements of perceived loudness change are significantly affected by a cognitive recency response bias that, until now, has been an artefact of experimental procedure. Perceptual end-level differences caused by duration specific sensory adaptation at peripheral and/or central stages of auditory processing may explain differences in post-stimulus judgements of loudness change. Experiments that investigate human responses to acoustic intensity dynamics, encompassing topics from basic auditory psychophysics (e.g., sensory adaptation) to cognitive-emotional appraisal of increasingly complex stimulus events such as music and auditory warnings, are proposed for future research.
Wensveen, Paul J; Huijser, Léonie A E; Hoek, Lean; Kastelein, Ronald A
2016-01-01
Loudness perception can be studied based on the assumption that sounds of equal loudness elicit equal reaction time (RT; or "response latency"). We measured the underwater RTs of a harbor porpoise to narrowband frequency-modulated sounds and constructed six equal-latency contours. The contours paralleled the audiogram at low sensation levels (high RTs). At high-sensation levels, contours flattened between 0.5 and 31.5 kHz but dropped substantially (RTs shortened) beyond those frequencies. This study suggests that equal-latency-based frequency weighting can emulate noise perception in porpoises for low and middle frequencies but that the RT-loudness correlation is relatively weak for very high frequencies.
Social Representation of "Loud Music" in Young Adults: A Cross-Cultural Study.
Manchaiah, Vinaya; Zhao, Fei; Widen, Stephen; Auzenne, Jasmin; Beukes, Eldré W; Ahmadi, Tayebeh; Tomé, David; Mahadeva, Deepthi; Krishna, Rajalakshmi; Germundsson, Per
2017-06-01
Exposure to recreational noise, particularly music exposure, is considered one of the biggest public health hazards of our time. Some important influencing factors such as socioeconomic status, educational background, and cross-cultural perspectives have previously been found to be associated with attitudes toward loud music and the use of hearing protection. Although culture seems to play an important role, there is relatively little known about how it influences perceptions regarding loud music exposure in young adults. The present study was aimed to explore cross-cultural perceptions of and reactions to loud music in young adults (18-25 yr) using the theory of social representations. The study used a cross-sectional survey design. The study sample included young adults (n = 534) from five different countries (India, Iran, Portugal, the United States, and the United Kingdom) who were recruited using convenience sampling. Data were collected using a questionnaire. Data were analyzed using a content analysis, co-occurrence analysis, and also χ² analysis. Fairly equal numbers of positive and negative connotations (∼40%) were noted in all countries. However, the χ² analysis showed significant differences between the countries (most positive connotations were found in India and Iran, whereas the most negative connotations were found in the United Kingdom and Portugal) regarding the informants' perception of loud music. The co-occurrence analysis results generally indicate that the category "negative emotions and actions" occurred most frequently, immediately followed by the category "positive emotions and actions." The other most frequently occurring categories included "acoustics," "physical aliment," "location," and "ear and hearing problems." These six categories formed the central nodes of the social representation of loud music exposure in the global index. Although some similarities and differences were noted among the social representations toward loud music among countries, it is noteworthy that more similarities than differences were noted among countries. The study results suggest that "loud music" is perceived to have both positive and negative aspects within society and culture. We suggest that the health promotion strategies should focus on changing societal norms and regulations to be more effective in decreasing the noise- and/or music-induced auditory symptoms among young adults. American Academy of Audiology
Abnormal Auditory Gain in Hyperacusis: Investigation with a Computational Model
Diehl, Peter U.; Schaette, Roland
2015-01-01
Hyperacusis is a frequent auditory disorder that is characterized by abnormal loudness perception where sounds of relatively normal volume are perceived as too loud or even painfully loud. As hyperacusis patients show decreased loudness discomfort levels (LDLs) and steeper loudness growth functions, it has been hypothesized that hyperacusis might be caused by an increase in neuronal response gain in the auditory system. Moreover, since about 85% of hyperacusis patients also experience tinnitus, the conditions might be caused by a common mechanism. However, the mechanisms that give rise to hyperacusis have remained unclear. Here, we have used a computational model of the auditory system to investigate candidate mechanisms for hyperacusis. Assuming that perceived loudness is proportional to the summed activity of all auditory nerve (AN) fibers, the model was tuned to reproduce normal loudness perception. We then evaluated a variety of potential hyperacusis gain mechanisms by determining their effects on model equal-loudness contours and comparing the results to the LDLs of hyperacusis patients with normal hearing thresholds. Hyperacusis was best accounted for by an increase in non-linear gain in the central auditory system. Good fits to the average patient LDLs were obtained for a general increase in gain that affected all frequency channels to the same degree, and also for a frequency-specific gain increase in the high-frequency range. Moreover, the gain needed to be applied after subtraction of spontaneous activity of the AN, which is in contrast to current theories of tinnitus generation based on amplification of spontaneous activity. Hyperacusis and tinnitus might therefore be caused by different changes in neuronal processing in the central auditory system. PMID:26236277
The impact of perilaryngeal vibration on the self-perception of loudness and the Lombard effect.
Brajot, François-Xavier; Nguyen, Don; DiGiovanni, Jeffrey; Gracco, Vincent L
2018-04-05
The role of somatosensory feedback in speech and the perception of loudness was assessed in adults without speech or hearing disorders. Participants completed two tasks: loudness magnitude estimation of a short vowel and oral reading of a standard passage. Both tasks were carried out in each of three conditions: no-masking, auditory masking alone, and mixed auditory masking plus vibration of the perilaryngeal area. A Lombard effect was elicited in both masking conditions: speakers unconsciously increased vocal intensity. Perilaryngeal vibration further increased vocal intensity above what was observed for auditory masking alone. Both masking conditions affected fundamental frequency and the first formant frequency as well, but only vibration was associated with a significant change in the second formant frequency. An additional analysis of pure-tone thresholds found no difference in auditory thresholds between masking conditions. Taken together, these findings indicate that perilaryngeal vibration effectively masked somatosensory feedback, resulting in an enhanced Lombard effect (increased vocal intensity) that did not alter speakers' self-perception of loudness. This implies that the Lombard effect results from a general sensorimotor process, rather than from a specific audio-vocal mechanism, and that the conscious self-monitoring of speech intensity is not directly based on either auditory or somatosensory feedback.
Loudness growth in 1/2-octave bands (LGOB)--a procedure for the assessment of loudness.
Allen, J B; Hall, J L; Jeng, P S
1990-08-01
In this paper, a method that has been developed for the assessment and quantification of loudness perception in normal-hearing and hearing-impaired persons is described. The method has been named LGOB, which stands for loudness growth in 1/2-octave bands. The method uses 1/2-octave bands of noise, centered at 0.25, 0.5, 1.0, 2.0, and 4.0 kHz, with subjective levels between a subject's threshold of hearing and the "too loud" level. The noise bands are presented to the subject, randomized over frequency and level, and the subject is asked to respond with a loudness rating (one of: VERY SOFT, SOFT, OK, LOUD, VERY LOUD, TOO LOUD). Subject responses (normal and hearing-impaired) are then compared to the average responses of a group of normal-hearing subjects. This procedure allows one to estimate the subject's loudness growth relative to normals, as a function of frequency and level. The results may be displayed either as isoloudness contours or as recruitment curves. In its present form, the measurements take less than 30 min. The signal presentation and analysis is done using a PC and a PC plug-in board having a digital to analog converter.
Rasetshwane, Daniel M.; Trevino, Andrea C.; Gombert, Jessa N.; Liebig-Trehearn, Lauren; Kopun, Judy G.; Jesteadt, Walt; Neely, Stephen T.; Gorga, Michael P.
2015-01-01
This study describes procedures for constructing equal-loudness contours (ELCs) in units of phons from categorical loudness scaling (CLS) data and characterizes the impact of hearing loss on these estimates of loudness. Additionally, this study developed a metric, level-dependent loudness loss, which uses CLS data to specify the deviation from normal loudness perception at various loudness levels and as function of frequency for an individual listener with hearing loss. CLS measurements were made in 87 participants with hearing loss and 61 participants with normal hearing. An assessment of the reliability of CLS measurements was conducted on a subset of the data. CLS measurements were reliable. There was a systematic increase in the slope of the low-level segment of the CLS functions with increase in the degree of hearing loss. ELCs derived from CLS measurements were similar to standardized ELCs (International Organization for Standardization, ISO 226:2003). The presence of hearing loss decreased the vertical spacing of the ELCs, reflecting loudness recruitment and reduced cochlear compression. Representing CLS data in phons may lead to wider acceptance of CLS measurements. Like the audiogram that specifies hearing loss at threshold, level-dependent loudness loss describes deficit for suprathreshold sounds. Such information may have implications for the fitting of hearing aids. PMID:25920842
Salomons, Erik M; Janssen, Sabine A
2011-06-01
In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A-weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels.
Bierer, Julie Arenberg; Nye, Amberly D
2014-01-01
Objective The objective of the present study, performed in cochlear implant listeners, was to examine how the level of current required to detect single-channel electrical pulse trains relates to loudness perception on the same channel. The working hypothesis was that channels with relatively high thresholds, when measured with a focused current pattern, interface poorly to the auditory nerve. For such channels a smaller dynamic range between perceptual threshold and the most comfortable loudness would result, in part, from a greater sensitivity to changes in electrical field spread compared to low-threshold channels. The narrower range of comfortable listening levels may have important implications for speech perception. Design Data were collected from eight, adult cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp.). The partial tripolar (pTP) electrode configuration, consisting of one intracochlear active electrode, two flanking electrodes carrying a fraction (σ) of the return current, and an extracochlear ground, was used for stimulation. Single-channel detection thresholds and most comfortable listening levels were acquired using the most focused pTP configuration possible (σ ≥ 0.8) to identify three channels for further testing – those with the highest, median, and lowest thresholds – for each subject. Threshold, equal-loudness contours (at 50% of the monopolar dynamic range), and loudness growth functions were measured for each of these three test channels using various partial tripolar fractions. Results For all test channels, thresholds increased as the electrode configuration became more focused. The rate of increase with the focusing parameter σ was greatest for the high-threshold channel compared to the median- and low-threshold channels. The 50% equal-loudness contours exhibited similar rates of increase in level across test channels and subjects. Additionally, test channels with the highest thresholds had the narrowest dynamic ranges (for σ ≥ 0.5) and steepest growth of loudness functions for all electrode configurations. Conclusions Together with previous studies using focused stimulation, the results suggest that auditory responses to electrical stimuli at both threshold and suprathreshold current levels are not uniform across the electrode array of individual cochlear implant listeners. Specifically, the steeper growth of loudness and thus smaller dynamic ranges observed for high-threshold channels are consistent with a degraded electrode-neuron interface, which could stem from lower numbers of functioning auditory neurons or a relatively large distance between the neurons and electrodes. These findings may have potential implications for how stimulation levels are set during the clinical mapping procedure, particularly for speech-processing strategies that use focused electrical fields. PMID:25036146
Yadav, Manuj; Cabrera, Densil; Kenny, Dianna T
2015-09-01
Messa di voce (MDV) is a singing exercise that involves sustaining a single pitch with a linear change in loudness from silence to maximum intensity (the crescendo part) and back to silence again (the decrescendo part), with time symmetry between the two parts. Previous studies have used the sound pressure level (SPL, in decibels) of a singer's voice to measure loudness, so as to assess the linearity of each part-an approach that has limitations due to loudness and SPL not being linearly related. This article studies the loudness envelope shapes of MDVs, comparing the SPL approach with approaches that are more closely related to human loudness perception. The MDVs were performed by a cohort of tertiary singing students, recorded six times (once per semester) over a period of 3 years. The loudness envelopes were derived for a typical audience listening position, and for listening to one's own singing, using three models: SPL, Stevens' power law-based model, and a computational loudness model. The effects on the envelope shape due to room acoustics (an important effect) and vibrato (minimal effect) were also considered. The results showed that the SPL model yielded a lower proportion of linear crescendi and decrescendi, compared with other models. The Stevens' power law-based model provided results similar to the more complicated computational loudness model. Longitudinally, there was no consistent trend in the shape of the MDV loudness envelope for the cohort although there were some individual singers who exhibited improvements in linearity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Effects of Loudness Cues on Respiration in Individuals with Parkinson’s disease
Sadagopan, Neeraja; Huber, Jessica E.
2012-01-01
Individuals with Parkinson’s disease (PD) demonstrate low vocal intensity (hypophonia) which results in reduced speech intelligibility. We examined the effects of three cues to increase loudness on respiratory support in individuals with PD. Kinematic data from the rib cage and abdomen were collected using respiratory plethysmography while participants read a short passage. Individuals with PD and normal age- and sex-matched controls (OC) increased sound pressure level (SPL) to a similar extent. As compared to OC, individuals with PD used larger rib cage volume excursions in all conditions. Further, they did not slow their rate of speech in noise as OC speakers did. Respiratory strategies used to support increased loudness varied with the cue, but the two groups did not differ in the strategies used. When asked to target a specific loudness, both groups used more abdominal effort than at comfortable loudness. Speaking in background noise resulted in the largest increase in SPL with the most efficient respiratory patterns, suggesting natural or implicit cues may be best when treating hypophonia in individuals with PD. Data demonstrate the possibility that both vocal loudness and speech rate are impacted by cognitive mechanisms (attention or self-perception) in individuals with PD. PMID:17266087
Tinnitus: Distinguishing between Subjectively Perceived Loudness and Tinnitus-Related Distress
Wallhäusser-Franke, Elisabeth; Brade, Joachim; Balkenhol, Tobias; D'Amelio, Roberto; Seegmüller, Andrea; Delb, Wolfgang
2012-01-01
Objectives Overall success of current tinnitus therapies is low, which may be due to the heterogeneity of tinnitus patients. Therefore, subclassification of tinnitus patients is expected to improve therapeutic allocation, which, in turn, is hoped to improve therapeutic success for the individual patient. The present study aims to define factors that differentially influence subjectively perceived tinnitus loudness and tinnitus-related distress. Methods In a questionnaire-based cross-sectional survey, the data of 4705 individuals with tinnitus were analyzed. The self-report questionnaire contained items about subjective tinnitus loudness, type of onset, awareness and localization of the tinnitus, hearing impairment, chronic comorbidities, sleep quality, and psychometrically validated questionnaires addressing tinnitus-related distress, depressivity, anxiety, and somatic symptom severity. In a binary step-wise logistic regression model, we tested the predictive power of these variables on subjective tinnitus loudness and tinnitus-related distress. Results The present data contribute to the distinction between subjective tinnitus loudness and tinnitus-related distress. Whereas subjective loudness was associated with permanent awareness and binaural localization of the tinnitus, tinnitus-related distress was associated with depressivity, anxiety, and somatic symptom severity. Conclusions Subjective tinnitus loudness and the potential presence of severe depressivity, anxiety, and somatic symptom severity should be assessed separately from tinnitus-related distress. If loud tinnitus is the major complaint together with mild or moderate tinnitus-related distress, therapies should focus on auditory perception. If levels of depressivity, anxiety or somatic symptom severity are severe, therapies and further diagnosis should focus on these symptoms at first. PMID:22529921
Tinnitus Intensity Dependent Gamma Oscillations of the Contralateral Auditory Cortex
van der Loo, Elsa; Gais, Steffen; Congedo, Marco; Vanneste, Sven; Plazier, Mark; Menovsky, Tomas; Van de Heyning, Paul; De Ridder, Dirk
2009-01-01
Background Non-pulsatile tinnitus is considered a subjective auditory phantom phenomenon present in 10 to 15% of the population. Tinnitus as a phantom phenomenon is related to hyperactivity and reorganization of the auditory cortex. Magnetoencephalography studies demonstrate a correlation between gamma band activity in the contralateral auditory cortex and the presence of tinnitus. The present study aims to investigate the relation between objective gamma-band activity in the contralateral auditory cortex and subjective tinnitus loudness scores. Methods and Findings In unilateral tinnitus patients (N = 15; 10 right, 5 left) source analysis of resting state electroencephalographic gamma band oscillations shows a strong positive correlation with Visual Analogue Scale loudness scores in the contralateral auditory cortex (max r = 0.73, p<0.05). Conclusion Auditory phantom percepts thus show similar sound level dependent activation of the contralateral auditory cortex as observed in normal audition. In view of recent consciousness models and tinnitus network models these results suggest tinnitus loudness is coded by gamma band activity in the contralateral auditory cortex but might not, by itself, be responsible for tinnitus perception. PMID:19816597
Meng, Qi; Sun, Yang; Kang, Jian
2017-12-01
The sound environment and acoustic perception of open-air markets, which are very common in high-density urban open spaces, play important roles in terms of the urban soundscape. Based on objective and subjective measurements of a typical temporary open-air market in Harbin city, China, the effects of the temporary open-air market on the sound environment and acoustic perception were studied, considering different crowd densities. It was observed that a temporary open-air market without zoning increases the sound pressure level and subjective loudness by 2.4dBA and 0.21dBA, respectively, compared to the absence of a temporary market. Different from the sound pressure level and subjective loudness, the relationship between crowd density and the perceived acoustic comfort is parabolic. Regarding the effect of a temporary open-air market with different zones on the sound environment and acoustic perception, when the crowd densities were the same, subjective loudness in the fruit and vegetable sales area was always higher than in the food sales area and the clothing sales area. In terms of acoustic comfort, with an increase in crowd density, acoustic comfort in the fruit and vegetable sales area decreased, and acoustic comfort in the food sales area and the clothing sales area exhibited a parabolic change trend of increase followed by decrease. Overall, acoustic comfort can be effectively improved by better planning temporary open-air markets in high-density urban open spaces. Copyright © 2017 Elsevier B.V. All rights reserved.
Phonetic Realization and Perception of Prominence among Lexical Tones in Mandarin Chinese
ERIC Educational Resources Information Center
Bao, Mingzhen
2008-01-01
Linguistic prominence is defined as words or syllables perceived auditorily as standing out from their environment. It is explored through changes in pitch, duration and loudness. In this study, phonetic realization and perception of prominence among lexical tones in Mandarin Chinese was investigated in two experiments. Experiment 1 explored…
Categorical scaling of partial loudness in a condition of masking release.
Verhey, Jesko L; Heeren, Wiebke
2015-08-01
Categorical loudness scaling was used to measure suprathreshold release from masking. The signal was a 986-Hz sinusoid that was embedded in a bandpass-filtered masking noise. This noise was either unmodulated or was amplitude modulated with a square-wave modulator. The unmodulated noise had either the same level as the modulated noise or had a level that was reduced by the difference in thresholds for the 986-Hz signal obtained with the modulated and unmodulated noise masker presented at the same level (i.e., the masking release). A comparison with loudness matching data of the same set of subjects showed that the data obtained with loudness scaling capture main aspects of the change in suprathreshold perception of the sinusoid when the masker was modulated. The scaling data for the signal masked by the unmodulated noise with the reduced masker level were similar to that for the signal embedded in the modulated noise. This similarity supports the hypothesis that the mechanism eliciting the masking release is effectively reducing the masker level.
Bramhall, Naomi F; Konrad-Martin, Dawn; McMillan, Garnett P
2018-01-15
To determine whether auditory brainstem response (ABR) wave I amplitude is associated with measures of auditory perception in young people with normal distortion product otoacoustic emissions (DPOAEs) and varying levels of noise exposure history. Tinnitus, loudness tolerance, and speech perception ability were measured in 31 young military Veterans and 43 non-Veterans (19 to 35 years of age) with normal pure-tone thresholds and DPOAEs. Speech perception was evaluated in quiet using Northwestern University Auditory Test (NU-6) word lists and in background noise using the words in noise (WIN) test. Loudness discomfort levels were measured using 1-, 3-, 4-, and 6-kHz pulsed pure tones. DPOAEs and ABRs were collected in each participant to assess outer hair cell and auditory nerve function. The probability of reporting tinnitus in this sample increased by a factor of 2.0 per 0.1 µV decrease in ABR wave I amplitude (95% Bayesian confidence interval, 1.1 to 5.0) for males and by a factor of 2.2 (95% confidence interval, 1.0 to 6.4) for females after adjusting for sex and DPOAE levels. Similar results were obtained in an alternate model adjusted for pure-tone thresholds in addition to sex and DPOAE levels. No apparent relationship was found between wave I amplitude and either loudness tolerance or speech perception in quiet or noise. Reduced ABR wave I amplitude was associated with an increased risk of tinnitus, even after adjusting for DPOAEs and sex. In contrast, wave III and V amplitudes had little effect on tinnitus risk. This suggests that changes in peripheral input at the level of the inner hair cell or auditory nerve may lead to increases in central gain that give rise to the perception of tinnitus. Although the extent of synaptopathy in the study participants cannot be measured directly, these findings are consistent with the prediction that tinnitus may be a perceptual consequence of cochlear synaptopathy.
Spectro-Temporal Weighting of Loudness
Oberfeld, Daniel; Heeren, Wiebke; Rennies, Jan; Verhey, Jesko
2012-01-01
Real-world sounds like speech or traffic noise typically exhibit spectro-temporal variability because the energy in different spectral regions evolves differently as a sound unfolds in time. However, it is currently not well understood how the energy in different spectral and temporal portions contributes to loudness. This study investigated how listeners weight different temporal and spectral components of a sound when judging its overall loudness. Spectral weights were measured for the combination of three loudness-matched narrowband noises with different center frequencies. To measure temporal weights, 1,020-ms stimuli were presented, which randomly changed in level every 100 ms. Temporal weights were measured for each narrowband noise separately, and for a broadband noise containing the combination of the three noise bands. Finally, spectro-temporal weights were measured with stimuli where the level of the three narrowband noises randomly and independently changed every 100 ms. The data consistently showed that (i) the first 300 ms of the sounds had a greater influence on overall loudness perception than later temporal portions (primacy effect), and (ii) the lowest noise band contributed significantly more to overall loudness than the higher bands. The temporal weights did not differ between the three frequency bands. Notably, the spectral weights and temporal weights estimated from the conditions with only spectral or only temporal variability were very similar to the corresponding weights estimated in the spectro-temporal condition. The results indicate that the temporal and the spectral weighting of the loudness of a time-varying sound are independent processes. The spectral weights remain constant across time, and the temporal weights do not change across frequency. The results are discussed in the context of current loudness models. PMID:23209670
Development of an algorithm for automatic detection and rating of squeak and rattle events
NASA Astrophysics Data System (ADS)
Chandrika, Unnikrishnan Kuttan; Kim, Jay H.
2010-10-01
A new algorithm for automatic detection and rating of squeak and rattle (S&R) events was developed. The algorithm utilizes the perceived transient loudness (PTL) that approximates the human perception of a transient noise. At first, instantaneous specific loudness time histories are calculated over 1-24 bark range by applying the analytic wavelet transform and Zwicker loudness transform to the recorded noise. Transient specific loudness time histories are then obtained by removing estimated contributions of the background noise from instantaneous specific loudness time histories. These transient specific loudness time histories are summed to obtain the transient loudness time history. Finally, the PTL time history is obtained by applying Glasberg and Moore temporal integration to the transient loudness time history. Detection of S&R events utilizes the PTL time history obtained by summing only 18-24 barks components to take advantage of high signal-to-noise ratio in the high frequency range. A S&R event is identified when the value of the PTL time history exceeds the detection threshold pre-determined by a jury test. The maximum value of the PTL time history is used for rating of S&R events. Another jury test showed that the method performs much better if the PTL time history obtained by summing all frequency components is used. Therefore, r ating of S&R events utilizes this modified PTL time history. Two additional jury tests were conducted to validate the developed detection and rating methods. The algorithm developed in this work will enable automatic detection and rating of S&R events with good accuracy and minimum possibility of false alarm.
Balkenhol, Tobias; Wallhäusser-Franke, Elisabeth; Delb, Wolfgang
2013-01-01
Background The phantom auditory perception of subjective tinnitus is associated with aberrant brain activity as evidenced by magneto- and electroencephalographic studies. We tested the hypotheses (1) that psychoacoustically measured tinnitus loudness is related to gamma oscillatory band power, and (2) that tinnitus loudness and tinnitus-related distress are related to distinct brain activity patterns as suggested by the distinction between loudness and distress experienced by tinnitus patients. Furthermore, we explored (3) how hearing impairment, minimum masking level, and (4) psychological comorbidities are related to spontaneous oscillatory brain activity in tinnitus patients. Methods and Findings Resting state oscillatory brain activity recorded electroencephalographically from 46 male tinnitus patients showed a positive correlation between gamma band oscillations and psychoacoustic tinnitus loudness determined with the reconstructed tinnitus sound, but not with the other psychoacoustic loudness measures that were used. Tinnitus-related distress did also correlate with delta band activity, but at electrode positions different from those associated with tinnitus loudness. Furthermore, highly distressed tinnitus patients exhibited a higher level of theta band activity. Moreover, mean hearing loss between 0.125 kHz and 16 kHz was associated with a decrease in gamma activity, whereas minimum masking levels correlated positively with delta band power. In contrast, psychological comorbidities did not express significant correlations with oscillatory brain activity. Conclusion Different clinically relevant tinnitus characteristics show distinctive associations with spontaneous brain oscillatory power. Results support hypothesis (1), but exclusively for the tinnitus loudness derived from matching to the reconstructed tinnitus sound. This suggests to preferably use the reconstructed tinnitus spectrum to determine psychoacoustic tinnitus loudness. Results also support hypothesis (2). Moreover, hearing loss and minimum masking level correlate with oscillatory power in distinctive frequency bands. The lack of an association between psychological comorbidities and oscillatory power may be attributed to the overall low level of mental health problems in the present sample. PMID:23326394
MP3 players and hearing loss: adolescents' perceptions of loud music and hearing conservation.
Vogel, Ineke; Brug, Johannes; Hosli, Esther J; van der Ploeg, Catharina P B; Raat, Hein
2008-03-01
To explore adolescents' behaviors and opinions about exposure to loud music from MP3 players. We conducted a qualitative analysis of focus-group discussions with adolescents aged 12 to 18 years from 2 large secondary schools (1 urban and 1 rural) for pre-vocational and pre-university education. The semi-structured question route was theoretically framed within the protection motivation theory. Most adolescents-especially male students and students from pre-vocational schools-indicated that they often played their MP3 players at maximum volume. Although they appeared to be generally aware of the risks of exposure to loud music, they expressed low personal vulnerability to music-induced hearing loss. Most adolescents said that they would not accept any interference with their music-exposure habits. Interventions should target students from pre-vocational schools and should focus on increasing adolescents' knowledge of the risks of loud music and how to protect themselves. Besides hearing education for adolescents and technical modifications of MP3 players, volume-level regulations for MP3 players may be warranted.
Discrimination between sequential and simultaneous virtual channels with electrical hearing
Landsberger, David; Galvin, John J.
2011-01-01
In cochlear implants (CIs), simultaneous or sequential stimulation of adjacent electrodes can produce intermediate pitch percepts between those of the component electrodes. However, it is unclear whether simultaneous and sequential virtual channels (VCs) can be discriminated. In this study, CI users were asked to discriminate simultaneous and sequential VCs; discrimination was measured for monopolar (MP) and bipolar + 1 stimulation (BP + 1), i.e., relatively broad and focused stimulation modes. For sequential VCs, the interpulse interval (IPI) varied between 0.0 and 1.8 ms. All stimuli were presented at comfortably loud, loudness-balanced levels at a 250 pulse per second per electrode (ppse) stimulation rate. On average, CI subjects were able to reliably discriminate between sequential and simultaneous VCs. While there was no significant effect of IPI or stimulation mode on VC discrimination, some subjects exhibited better VC discrimination with BP + 1 stimulation. Subjects’ discrimination between sequential and simultaneous VCs was correlated with electrode discrimination, suggesting that spatial selectivity may influence perception of sequential VCs. To maintain equal loudness, sequential VC amplitudes were nearly double those of simultaneous VCs, presumably resulting in a broader spread of excitation. These results suggest that perceptual differences between simultaneous and sequential VCs might be explained by differences in the spread of excitation. PMID:21895094
Discrimination between sequential and simultaneous virtual channels with electrical hearing.
Landsberger, David; Galvin, John J
2011-09-01
In cochlear implants (CIs), simultaneous or sequential stimulation of adjacent electrodes can produce intermediate pitch percepts between those of the component electrodes. However, it is unclear whether simultaneous and sequential virtual channels (VCs) can be discriminated. In this study, CI users were asked to discriminate simultaneous and sequential VCs; discrimination was measured for monopolar (MP) and bipolar + 1 stimulation (BP + 1), i.e., relatively broad and focused stimulation modes. For sequential VCs, the interpulse interval (IPI) varied between 0.0 and 1.8 ms. All stimuli were presented at comfortably loud, loudness-balanced levels at a 250 pulse per second per electrode (ppse) stimulation rate. On average, CI subjects were able to reliably discriminate between sequential and simultaneous VCs. While there was no significant effect of IPI or stimulation mode on VC discrimination, some subjects exhibited better VC discrimination with BP + 1 stimulation. Subjects' discrimination between sequential and simultaneous VCs was correlated with electrode discrimination, suggesting that spatial selectivity may influence perception of sequential VCs. To maintain equal loudness, sequential VC amplitudes were nearly double those of simultaneous VCs, presumably resulting in a broader spread of excitation. These results suggest that perceptual differences between simultaneous and sequential VCs might be explained by differences in the spread of excitation. © 2011 Acoustical Society of America
Kim, Shin Hye; Jang, Ji Hye; Lee, Sang-Yeon; Han, Jae Joon; Koo, Ja-Won; Vanneste, Sven; De Ridder, Dirk; Song, Jae-Jin
2016-01-01
Although tinnitus retraining therapy (TRT) is efficacious in most patients, the exact mechanism is unclear and no predictor of improvement is available. We correlated the extent of improvement with pre-TRT quantitative electroencephalography (qEEG) findings to identify neural predictors of improvement after TRT. Thirty-two patients with debilitating tinnitus were prospectively enrolled, and qEEG data were recorded before their initial TRT sessions. Three months later, these qEEG findings were correlated with the percentage improvements in the Tinnitus Handicap Inventory (THI) scores, and numeric rating scale (NRS) scores of tinnitus loudness and tinnitus perception. The THI score improvement was positively correlated with the pre-treatment activities of the left insula and the left rostral and pregenual anterior cingulate cortices (rACC/pgACC), which control parasympathetic activity. Additionally, the activities of the right auditory cortices and the parahippocampus, areas that generate tinnitus, negatively correlated with improvements in loudness. Improvements in the NRS scores of tinnitus perception correlated positively with the pre-TRT activities of the bilateral rACC/pgACC, areas suggested to form the core of the noise-canceling system. The current study supports both the classical neurophysiological and integrative models of tinnitus; our results serve as a milestone in the development of precision medicine in the context of TRT. PMID:27381994
Kim, Shin Hye; Jang, Ji Hye; Lee, Sang-Yeon; Han, Jae Joon; Koo, Ja-Won; Vanneste, Sven; De Ridder, Dirk; Song, Jae-Jin
2016-07-06
Although tinnitus retraining therapy (TRT) is efficacious in most patients, the exact mechanism is unclear and no predictor of improvement is available. We correlated the extent of improvement with pre-TRT quantitative electroencephalography (qEEG) findings to identify neural predictors of improvement after TRT. Thirty-two patients with debilitating tinnitus were prospectively enrolled, and qEEG data were recorded before their initial TRT sessions. Three months later, these qEEG findings were correlated with the percentage improvements in the Tinnitus Handicap Inventory (THI) scores, and numeric rating scale (NRS) scores of tinnitus loudness and tinnitus perception. The THI score improvement was positively correlated with the pre-treatment activities of the left insula and the left rostral and pregenual anterior cingulate cortices (rACC/pgACC), which control parasympathetic activity. Additionally, the activities of the right auditory cortices and the parahippocampus, areas that generate tinnitus, negatively correlated with improvements in loudness. Improvements in the NRS scores of tinnitus perception correlated positively with the pre-TRT activities of the bilateral rACC/pgACC, areas suggested to form the core of the noise-canceling system. The current study supports both the classical neurophysiological and integrative models of tinnitus; our results serve as a milestone in the development of precision medicine in the context of TRT.
Measuring the Evolution of Contemporary Western Popular Music
Serrà, Joan; Corral, Álvaro; Boguñá, Marián; Haro, Martín; Arcos, Josep Ll.
2012-01-01
Popular music is a key cultural expression that has captured listeners' attention for ages. Many of the structural regularities underlying musical discourse are yet to be discovered and, accordingly, their historical evolution remains formally unknown. Here we unveil a number of patterns and metrics characterizing the generic usage of primary musical facets such as pitch, timbre, and loudness in contemporary western popular music. Many of these patterns and metrics have been consistently stable for a period of more than fifty years. However, we prove important changes or trends related to the restriction of pitch transitions, the homogenization of the timbral palette, and the growing loudness levels. This suggests that our perception of the new would be rooted on these changing characteristics. Hence, an old tune could perfectly sound novel and fashionable, provided that it consisted of common harmonic progressions, changed the instrumentation, and increased the average loudness. PMID:22837813
Measuring the Evolution of Contemporary Western Popular Music
NASA Astrophysics Data System (ADS)
Serrà, Joan; Corral, Álvaro; Boguñá, Marián; Haro, Martín; Arcos, Josep Ll.
2012-07-01
Popular music is a key cultural expression that has captured listeners' attention for ages. Many of the structural regularities underlying musical discourse are yet to be discovered and, accordingly, their historical evolution remains formally unknown. Here we unveil a number of patterns and metrics characterizing the generic usage of primary musical facets such as pitch, timbre, and loudness in contemporary western popular music. Many of these patterns and metrics have been consistently stable for a period of more than fifty years. However, we prove important changes or trends related to the restriction of pitch transitions, the homogenization of the timbral palette, and the growing loudness levels. This suggests that our perception of the new would be rooted on these changing characteristics. Hence, an old tune could perfectly sound novel and fashionable, provided that it consisted of common harmonic progressions, changed the instrumentation, and increased the average loudness.
Measuring the evolution of contemporary western popular music.
Serrà, Joan; Corral, Alvaro; Boguñá, Marián; Haro, Martín; Arcos, Josep Ll
2012-01-01
Popular music is a key cultural expression that has captured listeners' attention for ages. Many of the structural regularities underlying musical discourse are yet to be discovered and, accordingly, their historical evolution remains formally unknown. Here we unveil a number of patterns and metrics characterizing the generic usage of primary musical facets such as pitch, timbre, and loudness in contemporary western popular music. Many of these patterns and metrics have been consistently stable for a period of more than fifty years. However, we prove important changes or trends related to the restriction of pitch transitions, the homogenization of the timbral palette, and the growing loudness levels. This suggests that our perception of the new would be rooted on these changing characteristics. Hence, an old tune could perfectly sound novel and fashionable, provided that it consisted of common harmonic progressions, changed the instrumentation, and increased the average loudness.
Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H
2015-01-01
Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.
Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J.; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M.; Lenarz, Thomas; Lim, Hubert H.
2015-01-01
Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus. PMID:26046763
Hearing at low and infrasonic frequencies.
Møller, H; Pedersen, C S
2004-01-01
The human perception of sound at frequencies below 200 Hz is reviewed. Knowledge about our perception of this frequency range is important, since much of the sound we are exposed to in our everyday environment contains significant energy in this range. Sound at 20-200 Hz is called low-frequency sound, while for sound below 20 Hz the term infrasound is used. The hearing becomes gradually less sensitive for decreasing frequency, but despite the general understanding that infrasound is inaudible, humans can perceive infrasound, if the level is sufficiently high. The ear is the primary organ for sensing infrasound, but at levels somewhat above the hearing threshold it is possible to feel vibrations in various parts of the body. The threshold of hearing is standardized for frequencies down to 20 Hz, but there is a reasonably good agreement between investigations below this frequency. It is not only the sensitivity but also the perceived character of a sound that changes with decreasing frequency. Pure tones become gradually less continuous, the tonal sensation ceases around 20 Hz, and below 10 Hz it is possible to perceive the single cycles of the sound. A sensation of pressure at the eardrums also occurs. The dynamic range of the auditory system decreases with decreasing frequency. This compression can be seen in the equal-loudness-level contours, and it implies that a slight increase in level can change the perceived loudness from barely audible to loud. Combined with the natural spread in thresholds, it may have the effect that a sound, which is inaudible to some people, may be loud to others. Some investigations give evidence of persons with an extraordinary sensitivity in the low and infrasonic frequency range, but further research is needed in order to confirm and explain this phenomenon.
The effect of auditory memory load on intensity resolution in individuals with Parkinson's disease
NASA Astrophysics Data System (ADS)
Richardson, Kelly C.
Purpose: The purpose of the current study was to investigate the effect of auditory memory load on intensity resolution in individuals with Parkinson's disease (PD) as compared to two groups of listeners without PD. Methods: Nineteen individuals with Parkinson's disease, ten healthy age- and hearing-matched adults, and ten healthy young adults were studied. All listeners participated in two intensity discrimination tasks differing in auditory memory load; a lower memory load, 4IAX task and a higher memory load, ABX task. Intensity discrimination performance was assessed using a bias-free measurement of signal detectability known as d' (d-prime). Listeners further participated in a continuous loudness scaling task where they were instructed to rate the loudness level of each signal intensity using a computerized 150mm visual analogue scale. Results: Group discrimination functions indicated significantly lower intensity discrimination sensitivity (d') across tasks for the individuals with PD, as compared to the older and younger controls. No significant effect of aging on intensity discrimination was observed for either task. All three listeners groups demonstrated significantly lower intensity discrimination sensitivity for the higher auditory memory load, ABX task, compared to the lower auditory memory load, 4IAX task. Furthermore, a significant effect of aging was identified for the loudness scaling condition. The younger controls were found to rate most stimuli along the continuum as significantly louder than the older controls and the individuals with PD. Conclusions: The persons with PD showed evidence of impaired auditory perception for intensity information, as compared to the older and younger controls. The significant effect of aging on loudness perception may indicate peripheral and/or central auditory involvement.
Early age noise exposure increases loudness perception - A novel animal model of hyperacusis.
Alkharabsheh, Ana'am; Xiong, Fen; Xiong, Binbin; Manohar, Senthilvelan; Chen, Guangdi; Salvi, Richard; Sun, Wei
2017-04-01
The neural mechanisms that give rise to hyperacusis, a reduction in loudness tolerance, are largely unknown. Some reports suggest that hyperacusis is linked to childhood hearing loss. However, the evidence for this is largely circumstantial. In order to rigorously test this hypothesis, we studied loudness changes in rats caused by intense noise exposure (12 kHz narrow band noise, 115 dB SPL, 4 h) at postnatal 16 days. Rats without noise exposure were used as controls. The exposed noise group (n = 7) showed a mean 40-50 dB hearing loss compared to the control group (n = 8) at high frequencies (>= 8 kHz) and less hearing loss at lower frequencies. Loudness was evaluated using sound reaction time and loudness response functions in an operant conditioning-based behavioral task using narrow-band noise (40-110 dB SPL, centered at 2, 4 and 12 kHz). Interestingly, the sound reaction time of the noise group was significantly shorter than the control group at supra-threshold levels. The average reaction time was less than 100 ms in the noise group at 100 dB SPL, which was three times shorter than the control group. Our results indicate that early noise-induced hearing loss leads to a significant increase of loudness, a behavior indicative of hyperacusis. Our results are consistent with clinical reports suggesting that hearing loss at an early age is a significant risk factor for hyperacusis. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Mulligan, B. E.; Goodman, L. S.; McBride, D. K.; Mitchell, T. M.; Crosby, T. N.
1984-08-01
This work reviews the areas of auditory attention, recognition, memory and auditory perception of patterns, pitch, and loudness. The review was written from the perspective of human engineering and focuses primarily on auditory processing of information contained in acoustic signals. The impetus for this effort was to establish a data base to be utilized in the design and evaluation of acoustic displays.
The Central Role of Recognition in Auditory Perception: A Neurobiological Model
ERIC Educational Resources Information Center
McLachlan, Neil; Wilson, Sarah
2010-01-01
The model presents neurobiologically plausible accounts of sound recognition (including absolute pitch), neural plasticity involved in pitch, loudness and location information integration, and streaming and auditory recall. It is proposed that a cortical mechanism for sound identification modulates the spectrotemporal response fields of inferior…
Cognitive-Perceptual Examination of Remediation Approaches to Hypokinetic Dysarthria
ERIC Educational Resources Information Center
McAuliffe, Megan J.; Kerr, Sarah E.; Gibson, Elizabeth M. R.; Anderson, Tim; LaShell, Patrick J.
2014-01-01
Purpose: To determine how increased vocal loudness and reduced speech rate affect listeners' cognitive-perceptual processing of hypokinetic dysarthric speech associated with Parkinson's disease. Method: Fifty-one healthy listener participants completed a speech perception experiment. Listeners repeated phrases produced by 5 individuals…
Current steering with partial tripolar stimulation mode in cochlear implants.
Wu, Ching-Chih; Luo, Xin
2013-04-01
The large spread of excitation is a major cause of poor spectral resolution for cochlear implant (CI) users. Partial tripolar (pTP) mode has been proposed to reduce current spread by returning an equally distributed fraction (0.5 × σ) of current to two flanking electrodes and the rest to an extra-cochlear ground. This study tested the efficacy of incorporating current steering into pTP mode to add spectral channels. Different proportions of current [α × σ and (1 - α) × σ] were returned to the basal and apical flanking electrodes respectively to shape the electric field. Loudness and pitch perception with α from 0 to 1 in steps of 0.1 was simulated with a computational model of CI stimulation and tested on the apical, middle, and basal electrodes of six CI subjects. The highest σ allowing for full loudness growth within the implant compliance limit was chosen for each main electrode. Pitch ranking was measured between pairs of loudness-balanced steered pTP stimuli with an α interval of 0.1 at the most comfortable level. Results demonstrated that steered pTP stimuli with α around 0.5 required more current to achieve equal loudness than those with α around 0 or 1, maybe due to more focused excitation patterns. Subjects usually perceived decreasing pitches as α increased from 0 to 1, somewhat consistent with the apical shift of the center of gravity of excitation pattern in the model. Pitch discrimination was not better with α around 0.5 than with α around 0 or 1, except for some subjects and electrodes. For three subjects with better pitch discrimination, about half of the pitch ranges of two adjacent main electrodes overlapped with each other in steered pTP mode. These results suggest that current steering with focused pTP mode may improve spectral resolution and pitch perception with CIs.
Vocal analysis of suicidal movie characters.
Palinkas-Sanches, Elaine; Sanches, Marsal; Ferrari, Maria Cristina C; Oliveira, Gisele; Behlau, Mara
2010-12-01
The aim of this study was to describe the auditory-perceptive evaluation and the psychodynamic aspects of voice samples among suicidal movie characters. Voice samples of 48 characters (27 male, 21 female), extracted from 36 movies produced between 1968 and 2006, were analyzed. The samples were evaluated through a specific protocol focusing on the auditory-perceptive evaluation (voice quality, resonance, pitch, loudness, modulation, pauses, articulation and rhythm) and the psychodynamic aspects of voice. 85.5% of the samples exhibited abnormal findings in at least five parameters of the auditory-perceptive analysis, such as breathiness (n=42; 87.5% of the samples), hoarseness (n=39; 81.2%) and strain (n=29; 60.4%), as well as laryngopharingeal resonance (n=39; 81.2%), either high pitch (n=14; 29.2%), or decreased loudness (n=31; 64.6%). With respect to the psychodynamic aspects, dismay was detected in 50% (n=24) of the samples, hopelessness in 47.9% (n=23), resignation in 37.5% (n=18), and sadness in 33.3% (n=16). Our findings suggest the existence of specific patterns used by actors during the interpretation of suicidal characters. The replication of these findings among real patients may contribute to improvement in the evaluation of potential suicidal patients, as well as the implementation of preventive measures.
Shekhawat, Giriraj Singh; Stinear, Cathy M; Searchfield, Grant D
2015-10-01
Tinnitus is the phantom perception of sound and can have negative effect on the quality of life. Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique, which can increase or decrease the cortical excitability in the brain region to which it is applied. tDCS has been used for tinnitus research since 2006. To investigate whether tDCS affects tinnitus perception, related emotion, or both, and the potential implications for tinnitus management. A scoping review was undertaken using the methods proposed by Arksey and O'Malley. After initial consideration of title relevance and reading abstracts, 15 studies were included in this review. The data from these studies were charted to investigate the impact of tDCS on tinnitus perception and emotions. tDCS results in transient suppression of tinnitus loudness and annoyance; however, it does not lead to long-term impact on tinnitus related emotion. Local stimulation of different sites of stimulation (left temporoparietal area, dorsolateral prefrontal cortex, and auditory cortex) might modulate tinnitus perception (loudness) and emotions differently; however, further research is needed to explore this hypothesis. This review has identified aspects of methodologies that require attention in upcoming tinnitus and tDCS trials to offer better insights. tDCS is an effective research tool for transient tinnitus neuromodulation. However, efforts should be invested in designing clinical trials using local and multiple sites of stimulation, optimized parameters, and objective outcome measures before it can be translated in to a clinical tool for tinnitus management. © The Author(s) 2015.
Should children who use cochlear implants wear hearing aids in the opposite ear?
Ching, T Y; Psarros, C; Hill, M; Dillon, H; Incerti, P
2001-10-01
The aim of this study was to investigate 1) whether a hearing aid needs to be adjusted differently depending on whether a child wears a cochlear implant or another hearing aid in the contralateral ear; 2) whether the use of a hearing aid and a cochlear implant in opposite ears leads to binaural interference; and 3) whether the use of a hearing aid and a cochlear implant in opposite ears leads to binaural benefits in speech perception, localization, and communicative functioning in real life. Sixteen children participated in this study. All children used a Nucleus 22 or Nucleus 24 cochlear implant system programmed with the SPEAK strategy in one ear. The hearing aid amplification requirements in the nonimplanted ear of these children were determined using two procedures. A paired comparison technique was used to identify the frequency response that was best for speech intelligibility in quiet, and a loudness balancing technique was used to match the loudness of speech in the ear with a hearing aid to that with a cochlear implant. Eleven of the 16 children participated in the investigation of binaural effects. Performance in speech perception, localization, and communicative functioning was assessed under four aided conditions: cochlear implant with hearing aid as worn, cochlear implant alone, hearing aid alone, and cochlear implant with hearing aid adjusted according to individual requirements. Fifteen of the 16 children whose amplification requirements were determined preferred a hearing aid frequency response that was within +/-6 dB/octave of the NAL-RP prescription. On average, the children required 6 dB more gain than prescribed to balance the loudness of the implanted ear for a speech signal presented at 65 dB SPL. For all 11 children whose performance was evaluated for investigating binaural effects, there was no indication of significantly poorer performance under bilaterally aided conditions compared with unilaterally aided conditions. On average, there were significant benefits in speech perception, localization, and aural/oral function when the children used cochlear implants with adjusted hearing aids than when they used cochlear implants alone. All individuals showed benefits in at least one of the measures. Hearing aids for children who also use cochlear implants can be selected using the NAL-RP prescription. Adjustment of hearing aid gain to match loudness in the implanted ear can facilitate integration of signals from both ears, leading to better speech perception. Given that there are binaural advantages from using cochlear implants with hearing aids in opposite ears, clinicians should advise parents and other professionals about these potential advantages, and facilitate bilateral amplification by adjusting hearing aids after stable cochlear implant MAPs are established.
Psychoacoustic Assessment to Improve Tinnitus Diagnosis
Hutchins, Sean; Hébert, Sylvie
2013-01-01
The diagnosis of tinnitus relies on self-report. Psychoacoustic measurements of tinnitus pitch and loudness are essential for assessing claims and discriminating true from false ones. For this reason, the quantification of tinnitus remains a challenging research goal. We aimed to: (1) assess the precision of a new tinnitus likeness rating procedure with a continuous-pitch presentation method, controlling for music training, and (2) test whether tinnitus psychoacoustic measurements have the sensitivity and specificity required to detect people faking tinnitus. Musicians and non-musicians with tinnitus, as well as simulated malingerers without tinnitus, were tested. Most were retested several weeks later. Tinnitus pitch matching was first assessed using the likeness rating method: pure tones from 0.25 to 16 kHz were presented randomly to participants, who had to rate the likeness of each tone to their tinnitus, and to adjust its level from 0 to 100 dB SPL. Tinnitus pitch matching was then assessed with a continuous-pitch method: participants had to match the pitch of their tinnitus to an external tone by moving their finger across a touch-sensitive strip, which generated a continuous pure tone from 0.5 to 20 kHz in 1-Hz steps. The predominant tinnitus pitch was consistent across both methods for both musicians and non-musicians, although musicians displayed better external tone pitch matching abilities. Simulated malingerers rated loudness much higher than did the other groups with a high degree of specificity (94.4%) and were unreliable in loudness (not pitch) matching from one session to the other. Retest data showed similar pitch matching responses for both methods for all participants. In conclusion, tinnitus pitch and loudness reliably correspond to the tinnitus percept, and psychoacoustic loudness matches are sensitive and specific to the presence of tinnitus. PMID:24349414
Hearing the Music in the Spectrum of Hydrogen
ERIC Educational Resources Information Center
LoPresto, Michael C.
2016-01-01
Throughout a general education course on sound and light aimed at music and art students, analogies between subjective perceptions of objective properties of sound and light waves are a recurring theme. Demonstrating that the pitch and loudness of musical sounds are related to the frequency and intensity of a sound wave is simple and students are…
Towards a Better Understanding of Temporary Threshold Shift of Hearing.
1980-03-01
recovery from TTS is influenced by drugs, medications, time of day, hypnosis , good thoughts or extra-sensory perception." I am only concerned in this...that is how our instrumentation works", to which may be added: "Because that is how we hear the loudness of noise." But are these sufficient reasons
ERIC Educational Resources Information Center
Williams, David Brian; Hoskin, Richard K.
This report describes features of the Audio Laboratory System (ALS), a device which supports research activities of the Southwest Regional Laboratory's Music Program. The ALS is used primarily to generate recorded audio tapes for psychomusicology research related to children's perception and learning of music concepts such as pitch, loudness,…
Lugli, Marco; Romani, Romano; Ponzi, Stefano; Bacciu, Salvatore; Parmigiani, Stefano
2009-01-01
We auditorily stimulated patients affected by subjective tinnitus with broadband noise containing a notch around their tinnitus frequency. We assessed the long-term effects on tinnitus perception in patients listening to notched noise stimuli (referred to as windowed sound therapy [WST]) by measuring the variation of subjects' tinnitus loudness over a period of 2-12 months. We tested the effectiveness of WST using non-notched broadband noise and noise of water as control sound therapies. We found a significant long-term reduction of tinnitus loudness in subjects treated with notched noise but not in those treated with control stimulations. These results point to the importance of the personalized sound treatment of tinnitus sufferers for the development of an effective tinnitus sound therapy.
The self in action effects: selective attenuation of self-generated sounds.
Weiss, Carmen; Herwig, Arvid; Schütz-Bosbach, Simone
2011-11-01
The immediate experience of self-agency, that is, the experience of generating and controlling our actions, is thought to be a key aspect of selfhood. It has been suggested that this experience is intimately linked to internal motor signals associated with the ongoing actions. These signals should lead to an attenuation of the sensory consequences of one's own actions and thereby allow classifying them as self-generated. The discovery of shared representations of actions between self and other, however, challenges this idea and suggests similar attenuation of one's own and other's sensory action effects. Here, we tested these assumptions by comparing sensory attenuation of self-generated and observed sensory effects. More specifically, we compared the loudness perception of sounds that were either self-generated, generated by another person or a computer. In two experiments, we found a reduced perception of loudness intensity specifically related to self-generation. Furthermore, the perception of sounds generated by another person and a computer did not differ from each other. These findings indicate that one's own agentive influence upon the outside world has a special perceptual quality which distinguishes it from any sort of external influence, including human and non-human sources. This suggests that a real sense of self-agency is not a socially shared but rather a unique and private experience. Copyright © 2011 Elsevier B.V. All rights reserved.
Poreisz, Csaba; Paulus, Walter; Moser, Tobias; Lang, Nicolas
2009-05-29
Cortical excitability changes as well as imbalances in excitatory and inhibitory circuits play a distinct pathophysiological role in chronic tinnitus. Repetitive transcranial magnetic stimulation (rTMS) over the temporoparietal cortex was recently introduced to modulate tinnitus perception. In the current study, the effect of theta-burst stimulation (TBS), a novel rTMS paradigm was investigated in chronic tinnitus. Twenty patients with chronic tinnitus completed the study. Tinnitus severity and loudness were monitored using a tinnitus questionnaire (TQ) and a visual analogue scale (VAS) before each session. Patients received 600 pulses of continuous TBS (cTBS), intermittent TBS (iTBS) and intermediate TBS (imTBS) over left inferior temporal cortex with an intensity of 80% of the individual active or resting motor threshold. Changes in subjective tinnitus perception were measured with a numerical rating scale (NRS). TBS applied to inferior temporal cortex appeared to be safe. Although half of the patients reported a slight attenuation of tinnitus perception, group analysis resulted in no significant difference when comparing the three specific types of TBS. Converting the NRS into the VAS allowed us to compare the time-course of aftereffects. Only cTBS resulted in a significant short-lasting improvement of the symptoms. In addition there was no significant difference when comparing the responder and non-responder groups regarding their anamnestic and audiological data. The TQ score correlated significantly with the VAS, lower loudness indicating less tinnitus distress. TBS does not offer a promising outcome for patients with tinnitus in the presented study.
Effects of pedagogical ideology on the perceived loudness and noise levels in preschools.
Jonsdottir, Valdis; Rantala, Leena M; Oskarsson, Gudmundur Kr; Sala, Eeva
2015-01-01
High activity noise levels that result in detrimental effects on speech communication have been measured in preschools. To find out if different pedagogical ideologies affect the perceived loudness and levels of noise, a questionnaire study inquiring about the experience of loudness and voice symptoms was carried out in Iceland in eight private preschools, called "Hjalli model", and in six public preschools. Noise levels were also measured in the preschools. Background variables (stress level, age, length of working career, education, smoking, and number of children per teacher) were also analyzed in order to determine how much they contributed toward voice symptoms and the experience of noisiness. Results indicate that pedagogical ideology is a significant factor for predicting noise and its consequences. Teachers in the preschool with tighter pedagogical control of discipline (the "Hjalli model") experienced lower activity noise loudness than teachers in the preschool with a more relaxed control of behavior (public preschool). Lower noise levels were also measured in the "Hjalli model" preschool and fewer "Hjalli model" teachers reported voice symptoms. Public preschool teachers experienced more stress than "Hjalli model" teachers and the stress level was, indeed, the background variable that best explained the voice symptoms and the teacher's perception of a noisy environment. Discipline, structure, and organization in the type of activity predicted the activity noise level better than the number of children in the group. Results indicate that pedagogical ideology is a significant factor for predicting self-reported noise and its consequences.
rTMS Induced Tinnitus Relief Is Related to an Increase in Auditory Cortical Alpha Activity
Müller, Nadia; Lorenz, Isabel; Langguth, Berthold; Weisz, Nathan
2013-01-01
Chronic tinnitus, the continuous perception of a phantom sound, is a highly prevalent audiological symptom. A promising approach for the treatment of tinnitus is repetitive transcranial magnetic stimulation (rTMS) as this directly affects tinnitus-related brain activity. Several studies indeed show tinnitus relief after rTMS, however effects are moderate and vary strongly across patients. This may be due to a lack of knowledge regarding how rTMS affects oscillatory activity in tinnitus sufferers and which modulations are associated with tinnitus relief. In the present study we examined the effects of five different stimulation protocols (including sham) by measuring tinnitus loudness and tinnitus-related brain activity with Magnetoencephalography before and after rTMS. Changes in oscillatory activity were analysed for the stimulated auditory cortex as well as for the entire brain regarding certain frequency bands of interest (delta, theta, alpha, gamma). In line with the literature the effects of rTMS on tinnitus loudness varied strongly across patients. This variability was also reflected in the rTMS effects on oscillatory activity. Importantly, strong reductions in tinnitus loudness were associated with increases in alpha power in the stimulated auditory cortex, while an unspecific decrease in gamma and alpha power, particularly in left frontal regions, was linked to an increase in tinnitus loudness. The identification of alpha power increase as main correlate for tinnitus reduction sheds further light on the pathophysiology of tinnitus. This will hopefully stimulate the development of more effective therapy approaches. PMID:23390539
Grose, John H; Buss, Emily; Hall, Joseph W
2017-01-01
The purpose of this study was to test the hypothesis that listeners with frequent exposure to loud music exhibit deficits in suprathreshold auditory performance consistent with cochlear synaptopathy. Young adults with normal audiograms were recruited who either did ( n = 31) or did not ( n = 30) have a history of frequent attendance at loud music venues where the typical sound levels could be expected to result in temporary threshold shifts. A test battery was administered that comprised three sets of procedures: (a) electrophysiological tests including distortion product otoacoustic emissions, auditory brainstem responses, envelope following responses, and the acoustic change complex evoked by an interaural phase inversion; (b) psychoacoustic tests including temporal modulation detection, spectral modulation detection, and sensitivity to interaural phase; and (c) speech tests including filtered phoneme recognition and speech-in-noise recognition. The results demonstrated that a history of loud music exposure can lead to a profile of peripheral auditory function that is consistent with an interpretation of cochlear synaptopathy in humans, namely, modestly abnormal auditory brainstem response Wave I/Wave V ratios in the presence of normal distortion product otoacoustic emissions and normal audiometric thresholds. However, there were no other electrophysiological, psychophysical, or speech perception effects. The absence of any behavioral effects in suprathreshold sound processing indicated that, even if cochlear synaptopathy is a valid pathophysiological condition in humans, its perceptual sequelae are either too diffuse or too inconsequential to permit a simple differential diagnosis of hidden hearing loss.
ERIC Educational Resources Information Center
Macdonald, Margaret; Campbell, Kenneth
2011-01-01
An infrequent physical increase in the intensity of an auditory stimulus relative to an already loud frequently occurring "standard" is processed differently than an equally perceptible physical decrease in intensity. This may be because a physical increment results in increased activation in two different systems, a transient and a change…
Association of Chronic Subjective Tinnitus with Neuro- Cognitive Performance.
Gudwani, Sunita; Munjal, Sanjay K; Panda, Naresh K; Kohli, Adarsh
2017-12-01
Chronic subjective tinnitus is associated with cognitive disruptions affecting perception, thinking, language, reasoning, problem solving, memory, visual tasks (reading) and attention. To evaluate existence of any association between tinnitus parameters and neuropsychological performance to explain cognitive processing. Study design was prospective, consisting 25 patients with idiopathic chronic subjective tinnitus and gave informed consent before planning their treatment. Neuropsychological profile included (i) performance on verbal information, comprehension, arithmetic and digit span; (ii) non-verbal performance for visual pattern completion analogies; (iii) memory performance for long-term, recent, delayed-recall, immediate-recall, verbal-retention, visualretention, visual recognition; (iv) reception, interpretation and execution for visual motor gestalt. Correlation between tinnitus onset duration/ loudness perception with neuropsychological profile was assessed by calculating Spearman's coefficient. Findings suggest that tinnitus may interfere with cognitive processing especially performance on digit span, verbal comprehension, mental balance, attention & concentration, immediate recall, visual recognition and visual-motor gestalt subtests. Negative correlation between neurocognitive tasks with tinnitus loudness and onset duration indicated their association. Positive correlation between tinnitus and visual-motor gestalt performance indicated the brain dysfunction. Tinnitus association with non-auditory processing of verbal, visual and visuo-spatial information suggested neuroplastic changes that need to be targeted in cognitive rehabilitation.
Intensity coding in electric hearing: effects of electrode configurations and stimulation waveforms.
Chua, Tiffany Elise H; Bachman, Mark; Zeng, Fan-Gang
2011-01-01
Current cochlear implants typically stimulate the auditory nerve with biphasic pulses and monopolar electrode configurations. Tripolar stimulation can increase spatial selectivity and potentially improve place pitch related perception but requires higher current levels to elicit the same loudness as monopolar stimulation. The present study combined delayed pseudomonophonasic pulses, which produce lower thresholds, with tripolar stimulation in an attempt to solve the power-performance tradeoff problem. The present study systematically measured thresholds, dynamic range, loudness growth, and intensity discrimination using either biphasic or delayed pseudomonophonasic pulses under both monopolar and tripolar stimulation. Participants were five Clarion cochlear implant users. For each subject, data from apical, middle, and basal electrode positions were collected when possible. Compared with biphasic pulses, delayed pseudomonophonasic pulses increased the dynamic range by lowering thresholds while maintaining comparable maximum allowable levels under both electrode configurations. However, delayed pseudomonophonasic pulses did not change the shape of loudness growth function and actually increased intensity discrimination limens, especially at lower current levels. The present results indicate that delayed pseudomonophonasic pulses coupled with tripolar stimulation cannot provide significant power savings nor can it increase the functional dynamic range. Whether this combined stimulation could improve functional spectral resolution remains to be seen.
Effects of speech style, room acoustics, and vocal fatigue on vocal effort
Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J.
2016-01-01
Vocal effort is a physiological measure that accounts for changes in voice production as vocal loading increases. It has been quantified in terms of sound pressure level (SPL). This study investigates how vocal effort is affected by speaking style, room acoustics, and short-term vocal fatigue. Twenty subjects were recorded while reading a text at normal and loud volumes in anechoic, semi-reverberant, and reverberant rooms in the presence of classroom babble noise. The acoustics in each environment were modified by creating a strong first reflection in the talker position. After each task, the subjects answered questions addressing their perception of the vocal effort, comfort, control, and clarity of their own voice. Variation in SPL for each subject was measured per task. It was found that SPL and self-reported effort increased in the loud style and decreased when the reflective panels were present and when reverberation time increased. Self-reported comfort and control decreased in the loud style, while self-reported clarity increased when panels were present. The lowest magnitude of vocal fatigue was experienced in the semi-reverberant room. The results indicate that early reflections may be used to reduce vocal effort without modifying reverberation time. PMID:27250179
Macherey, Olivier; Carlyon, Robert P; Chatron, Jacques; Roman, Stéphane
2017-06-01
Most cochlear implants (CIs) activate their electrodes non-simultaneously in order to eliminate electrical field interactions. However, the membrane of auditory nerve fibers needs time to return to its resting state, causing the probability of firing to a pulse to be affected by previous pulses. Here, we provide new evidence on the effect of pulse polarity and current level on these interactions. In experiment 1, detection thresholds and most comfortable levels (MCLs) were measured in CI users for 100-Hz pulse trains consisting of two consecutive biphasic pulses of the same or of opposite polarity. All combinations of polarities were studied: anodic-cathodic-anodic-cathodic (ACAC), CACA, ACCA, and CAAC. Thresholds were lower when the adjacent phases of the two pulses had the same polarity (ACCA and CAAC) than when they were different (ACAC and CACA). Some subjects showed a lower threshold for ACCA than for CAAC while others showed the opposite trend demonstrating that polarity sensitivity at threshold is genuine and subject- or electrode-dependent. In contrast, anodic (CAAC) pulses always showed a lower MCL than cathodic (ACCA) pulses, confirming previous reports. In experiments 2 and 3, the subjects compared the loudness of several pulse trains differing in current level separately for ACCA and CAAC. For 40 % of the electrodes tested, loudness grew non-monotonically as a function of current level for ACCA but never for CAAC. This finding may relate to a conduction block of the action potentials along the fibers induced by a strong hyperpolarization of their central processes. Further analysis showed that the electrodes showing a lower threshold for ACCA than for CAAC were more likely to yield a non-monotonic loudness growth. It is proposed that polarity sensitivity at threshold reflects the local neural health and that anodic asymmetric pulses should preferably be used to convey sound information while avoiding abnormal loudness percepts.
Shekhawat, Giriraj Singh; Sundram, Frederick; Bikson, Marom; Truong, Dennis; De Ridder, Dirk; Stinear, Cathy M; Welch, David; Searchfield, Grant D
2016-05-01
Tinnitus is the perception of a phantom sound. The aim of this study was to compare current intensity (center anode 1 mA and 2 mA), duration (10 minutes and 20 minutes), and location (left temporoparietal area [LTA] and dorsolateral prefrontal cortex [DLPFC]) using 4 × 1 high-definition transcranial direct current stimulation (HD-tDCS) for tinnitus reduction. Twenty-seven participants with chronic tinnitus (>2 years) and mean age of 53.5 years underwent 2 sessions of HD-tDCS of the LTA and DLPFC in a randomized order with a 1 week gap between site of stimulation. During each session, a combination of 4 different settings were used in increasing dose (1 mA, 10 minutes; 1 mA, 20 minutes; 2 mA, 10 minutes; and 2 mA, 20 minutes). The impact of different settings on tinnitus loudness and annoyance was documented. Twenty-one participants (77.78%) reported a minimum of 1 point reduction on tinnitus loudness or annoyance scales. There were significant changes in loudness and annoyance for duration of stimulation,F(1, 26) = 10.08,P< .005, and current intensity,F(1, 26) = 14.24,P= .001. There was no interaction between the location, intensity, and duration of stimulation. Higher intensity (2 mA) and longer duration (20 minutes) of stimulation were more effective. A current intensity of 2 mA for 20-minute duration was the most effective setting used for tinnitus relief. The stimulation of the LTA and DLPFC were equally effective for suppressing tinnitus loudness and annoyance. © The Author(s) 2015.
Effects of pedagogical ideology on the perceived loudness and noise levels in preschools
Jonsdottir, Valdis; Rantala, Leena M.; Oskarsson, Gudmundur Kr.; Sala, Eeva
2015-01-01
High activity noise levels that result in detrimental effects on speech communication have been measured in preschools. To find out if different pedagogical ideologies affect the perceived loudness and levels of noise, a questionnaire study inquiring about the experience of loudness and voice symptoms was carried out in Iceland in eight private preschools, called “Hjalli model”, and in six public preschools. Noise levels were also measured in the preschools. Background variables (stress level, age, length of working career, education, smoking, and number of children per teacher) were also analyzed in order to determine how much they contributed toward voice symptoms and the experience of noisiness. Results indicate that pedagogical ideology is a significant factor for predicting noise and its consequences. Teachers in the preschool with tighter pedagogical control of discipline (the “Hjalli model”) experienced lower activity noise loudness than teachers in the preschool with a more relaxed control of behavior (public preschool). Lower noise levels were also measured in the “Hjalli model” preschool and fewer “Hjalli model” teachers reported voice symptoms. Public preschool teachers experienced more stress than “Hjalli model” teachers and the stress level was, indeed, the background variable that best explained the voice symptoms and the teacher's perception of a noisy environment. Discipline, structure, and organization in the type of activity predicted the activity noise level better than the number of children in the group. Results indicate that pedagogical ideology is a significant factor for predicting self-reported noise and its consequences. PMID:26356370
Loudness function derives from data on electrical discharge rates in auditory nerve fibers
NASA Technical Reports Server (NTRS)
Howes, W. L.
1973-01-01
Judgements of the loudness of pure-tone sound stimuli yield a loudness function which relates perceived loudness to stimulus amplitude. A loudness function is derived from physical evidence alone without regard to human judgments. The resultant loudness function is L=K(q-q0), where L is loudness, q is effective sound pressure (specifically q0 at the loudness threshold), and K is generally a weak function of the number of stimulated auditory nerve fibers. The predicted function is in agreement with loudness judgment data reported by Warren, which imply that, in the suprathreshold loudness regime, decreasing the sound-pressure level by 6 db results in halving the loudness.
Intensity coding in electric hearing: Effects of electrode configurations and stimulation waveforms
Chua, Tiffany Elise H.; Bachman, Mark; Zeng, Fan-Gang
2011-01-01
Objectives Current cochlear implants typically stimulate the auditory nerve with biphasic pulses and monopolar electrode configurations. Tripolar stimulation can increase spatial selectivity and potentially improve place pitch related perception, but requires higher current levels to elicit the same loudness as monopolar stimulation. The present study combined delayed pseudomonophonasic pulses, which produce lower thresholds, with tripolar stimulation in an attempt to solve the power-performance tradeoff problem. Design The present study systematically measured thresholds, dynamic range, loudness growth, and intensity discrimination using either biphasic or delayed pseudomonophonasic pulses under both monopolar and tripolar stimulation. Participants were 5 Clarion cochlear implant users. For each subject, data from apical, middle and basal electrode positions were collected when possible. Results Compared with biphasic pulses, delayed pseudomonophonasic pulses increased the dynamic range by lowering thresholds while maintaining comparable maximum allowable levels under both electrode configurations. However, delayed pseudomonophonasic pulses did not change the shape of loudness growth function and actually increased intensity discrimination limens, especially at lower current levels. Conclusions The present results indicate that delayed pseudomonophonasic pulses coupled with tripolar stimulation cannot provide significant power savings, nor can it increase the functional dynamic range. Whether this combined stimulation could improve functional spectral resolution remains to be seen. PMID:21610498
The effects of tones in noise on human annoyance and performance
NASA Astrophysics Data System (ADS)
Lee, Joonhee
Building mechanical equipment often generates prominent tones because most systems include rotating parts like fans and pumps. These tonal noises can cause unpleasant user experiences in spaces and, in turn, lead to increased complaints by building occupants. Currently, architectural engineers can apply the noise criteria guidelines in standards or publications to achieve acceptable noise conditions for assorted types of spaces. However, these criteria do not apply well if the noise contains perceptible tones. The annoyance thresholds experienced by the general population with regards to the degree of tones in noise is a significant piece of knowledge that has not been well-established. Thus, this dissertation addresses the relationship between human perception and noises with tones in the built environment. Four phases of subjective testing were conducted in an indoor acoustic testing chamber at the University of Nebraska to achieve the research objective. The results indicate that even the least prominent tones in noises can significantly decrease the cognitive performance of participants on a mentally demanding task. Factorial repeated-measures analysis of variance of test results have proven that tonality has a crucial influence on working memory capacity of subjects, whereas loudness levels alone did not. A multidimensional annoyance model, incorporating psycho-acoustical attributes of noise in addition to loudness and tonality, has been proposed as a more accurate annoyance model.
Newman, C W; Wharton, J A; Shivapuja, B G; Jacobson, G P
1994-01-01
Tinnitus is often a disturbing symptom which affects 6-20% of the population. Relationships among tinnitus pitch and loudness judgments, audiometric speech understanding measures and self-perceived handicap were evaluated in a sample of subjects with tinnitus and hearing loss (THL). Data obtained from the THL sample on the audiometric speech measures were compared to the performance of an age-matched hearing loss only (HL) group. Both groups had normal hearing through 1 kHz with a sloping configuration of < or = 20 dB/octave between 2-12 kHz. The THL subjects performed more poorly on the low predictability items of the Speech Perception in Noise Test, suggesting that tinnitus may interfere with the perception of speech signals having reduced linguistic redundancy. The THL subjects rated their tinnitus as annoying at relatively low sensation levels using the pitch-match frequency as the reference tone. Further, significant relationships were found between loudness judgment measures and self-rated annoyance. No predictable relationships were observed between the audiometric speech measures and perceived handicap using the Tinnitus Handicap Questionnaire. These findings support the use of self-report measures in tinnitus patients in that audiometric speech tests alone may be insufficient in describing an individual's reaction to his/her communication breakdowns.
Tai, Yihsin; Husain, Fatima T
2018-04-01
Despite having normal hearing sensitivity, patients with chronic tinnitus may experience more difficulty recognizing speech in adverse listening conditions as compared to controls. However, the association between the characteristics of tinnitus (severity and loudness) and speech recognition remains unclear. In this study, the Quick Speech-in-Noise test (QuickSIN) was conducted monaurally on 14 patients with bilateral tinnitus and 14 age- and hearing-matched adults to determine the relation between tinnitus characteristics and speech understanding. Further, Tinnitus Handicap Inventory (THI), tinnitus loudness magnitude estimation, and loudness matching were obtained to better characterize the perceptual and psychological aspects of tinnitus. The patients reported low THI scores, with most participants in the slight handicap category. Significant between-group differences in speech-in-noise performance were only found at the 5-dB signal-to-noise ratio (SNR) condition. The tinnitus group performed significantly worse in the left ear than in the right ear, even though bilateral tinnitus percept and symmetrical thresholds were reported in all patients. This between-ear difference is likely influenced by a right-ear advantage for speech sounds, as factors related to testing order and fatigue were ruled out. Additionally, significant correlations found between SNR loss in the left ear and tinnitus loudness matching suggest that perceptual factors related to tinnitus had an effect on speech-in-noise performance, pointing to a possible interaction between peripheral and cognitive factors in chronic tinnitus. Further studies, that take into account both hearing and cognitive abilities of patients, are needed to better parse out the effect of tinnitus in the absence of hearing impairment.
NASA Astrophysics Data System (ADS)
Moore, Brian C. J.
Psychoacoustics
RLE (Research Laboratory of Electronics) Progress Report Number 126.
1984-01-01
Loudness 184 26.3 Binaural Hearing 186 S.26.4 Hearing Aid Research 188 26.5 Discrimination of Spectral Shape 191 26.6 Tactile Perception of Speech... beating in the pulse. It is these high intensities which are responsible for large A.C. Stark shifts and ionization RLE P.R. No. 126 12 * . . . Atomic...Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1984. 26.3 Binaural Hearing National Institutes of Health (Grant
Formby, Craig; Payne, JoAnne; Yang, Xin; Wu, Delphanie; Parton, Jason M
2017-02-01
This study was undertaken with the purpose of streamlining clinical measures of loudness growth to facilitate and enhance prescriptive fitting of nonlinear hearing aids. Repeated measures of loudness at 500 and 3,000 Hz were obtained bilaterally at monthly intervals over a 6-month period from three groups of young adult listeners. All volunteers had normal audiometric hearing sensitivity and middle ear function, and all denied problems related to sound tolerance. Group 1 performed judgments of soft and loud, but OK for presentation of ascending sound levels. We defined these judgments operationally as absolute judgments of loudness. Group 2 initially performed loudness judgments across a continuum of seven loudness categories ranging from judgments of very soft to uncomfortably loud for presentation of ascending sound levels per the Contour Test of Loudness; we defined these judgments as relative judgments of loudness. In the same session, they then performed the absolute judgments for soft and loud, but OK sound levels. Group 3 performed the same set of loudness judgments as did group 2, but the task order was reversed such that they performed the absolute judgments initially within each test session followed by the relative judgments. The key findings from this study were as follows: (1) Within group, the absolute and relative tasks yielded clinically similar judgments for soft and for loud, but OK sound levels. These judgments were largely independent of task order, ear, frequency, or trial order within a given session. (2) Loudness judgments increased, on average, by ∼3 dB between the first and last test session, which is consistent with the commonly reported acclimatization effect reported for incremental changes in loudness discomfort levels as a consequence of chronic bilateral hearing aid use. (3) Measured and predicted comfortable judgments of loudness were in good agreement for the individual listener and for groups of listeners. These comfortable judgments bisect the measured levels judged for soft and for loud, but OK sounds. (4) Loudness judgments within the same loudness category varied across listeners within group by as much as 50 to 60 dB. Such large variation in judgments of loudness is problematic, especially because hearing-impaired listeners are known to exhibit similarly large ranges of intersubject response variation and, yet, poplar prescriptive fitting strategies continue to use average rather than individual loudness data to fit nonlinear hearing aids. The primary conclusions drawn from these findings are that reliable absolute judgments of soft and loud, but OK are clinically practical and economical to measure and, from these judgments, good estimates of comfortable loudness can also be predicted for individuals or for groups of listeners. Such loudness data, as measured as described in this report, offer promise for streamlining and enhancing prescriptive fitting of nonlinear hearing aids to target gain settings for soft (audible), comfortable , and loud, but OK (tolerable) sound inputs for the individual listener.
Formby, Craig; Payne, JoAnne; Yang, Xin; Wu, Delphanie; Parton, Jason M.
2017-01-01
This study was undertaken with the purpose of streamlining clinical measures of loudness growth to facilitate and enhance prescriptive fitting of nonlinear hearing aids. Repeated measures of loudness at 500 and 3,000 Hz were obtained bilaterally at monthly intervals over a 6-month period from three groups of young adult listeners. All volunteers had normal audiometric hearing sensitivity and middle ear function, and all denied problems related to sound tolerance. Group 1 performed judgments of soft and loud, but OK for presentation of ascending sound levels. We defined these judgments operationally as absolute judgments of loudness. Group 2 initially performed loudness judgments across a continuum of seven loudness categories ranging from judgments of very soft to uncomfortably loud for presentation of ascending sound levels per the Contour Test of Loudness; we defined these judgments as relative judgments of loudness. In the same session, they then performed the absolute judgments for soft and loud, but OK sound levels. Group 3 performed the same set of loudness judgments as did group 2, but the task order was reversed such that they performed the absolute judgments initially within each test session followed by the relative judgments. The key findings from this study were as follows: (1) Within group, the absolute and relative tasks yielded clinically similar judgments for soft and for loud, but OK sound levels. These judgments were largely independent of task order, ear, frequency, or trial order within a given session. (2) Loudness judgments increased, on average, by ∼3 dB between the first and last test session, which is consistent with the commonly reported acclimatization effect reported for incremental changes in loudness discomfort levels as a consequence of chronic bilateral hearing aid use. (3) Measured and predicted comfortable judgments of loudness were in good agreement for the individual listener and for groups of listeners. These comfortable judgments bisect the measured levels judged for soft and for loud, but OK sounds. (4) Loudness judgments within the same loudness category varied across listeners within group by as much as 50 to 60 dB. Such large variation in judgments of loudness is problematic, especially because hearing-impaired listeners are known to exhibit similarly large ranges of intersubject response variation and, yet, poplar prescriptive fitting strategies continue to use average rather than individual loudness data to fit nonlinear hearing aids. The primary conclusions drawn from these findings are that reliable absolute judgments of soft and loud, but OK are clinically practical and economical to measure and, from these judgments, good estimates of comfortable loudness can also be predicted for individuals or for groups of listeners. Such loudness data, as measured as described in this report, offer promise for streamlining and enhancing prescriptive fitting of nonlinear hearing aids to target gain settings for soft (audible), comfortable, and loud, but OK (tolerable) sound inputs for the individual listener. PMID:28286363
The sound intensity and characteristics of variable-pitch pulse oximeters.
Yamanaka, Hiroo; Haruna, Junichi; Mashimo, Takashi; Akita, Takeshi; Kinouchi, Keiko
2008-06-01
Various studies worldwide have found that sound levels in hospitals significantly exceed the World Health Organization (WHO) guidelines, and that this noise is associated with audible signals from various medical devices. The pulse oximeter is now widely used in health care; however the health effects associated with the noise from this equipment remain largely unclarified. Here, we analyzed the sounds of variable-pitch pulse oximeters, and discussed the possible associated risk of sleep disturbance, annoyance, and hearing loss. The Nellcor N 595 and Masimo SET Radical pulse oximeters were measured for equivalent continuous A-weighted sound pressure levels (L(Aeq)), loudness levels, and loudness. Pulse beep pitches were also identified using Fast Fourier Transform (FFT) analysis and compared with musical pitches as controls. Almost all alarm sounds and pulse beeps from the instruments tested exceeded 30 dBA, a level that may induce sleep disturbance and annoyance. Several alarm sounds emitted by the pulse oximeters exceeded 70 dBA, which is known to induce hearing loss. The loudness of the alarm sound of each pulse oximeter did not change in proportion to the sound volume level. The pitch of each pulse beep did not correspond to musical pitch levels. The results indicate that sounds from pulse oximeters pose a potential risk of not only sleep disturbance and annoyance but also hearing loss, and that these sounds are unnatural for human auditory perception.
NASA Astrophysics Data System (ADS)
Xing, Y. F.; Wang, Y. S.; Shi, L.; Guo, H.; Chen, H.
2016-01-01
According to the human perceptional characteristics, a method combined by the optimal wavelet-packet transform and artificial neural network, so-called OWPT-ANN model, for psychoacoustical recognition is presented. Comparisons of time-frequency analysis methods are performed, and an OWPT with 21 critical bands is designed for feature extraction of a sound, as is a three-layer back-propagation ANN for sound quality (SQ) recognition. Focusing on the loudness and sharpness, the OWPT-ANN model is applied on vehicle noises under different working conditions. Experimental verifications show that the OWPT can effectively transfer a sound into a time-varying energy pattern as that in the human auditory system. The errors of loudness and sharpness of vehicle noise from the OWPT-ANN are all less than 5%, which suggest a good accuracy of the OWPT-ANN model in SQ recognition. The proposed methodology might be regarded as a promising technique for signal processing in the human-hearing related fields in engineering.
The central role of recognition in auditory perception: a neurobiological model.
McLachlan, Neil; Wilson, Sarah
2010-01-01
The model presents neurobiologically plausible accounts of sound recognition (including absolute pitch), neural plasticity involved in pitch, loudness and location information integration, and streaming and auditory recall. It is proposed that a cortical mechanism for sound identification modulates the spectrotemporal response fields of inferior colliculus neurons and regulates the encoding of the echoic trace in the thalamus. Identification involves correlation of sequential spectral slices of the stimulus-driven neural activity with stored representations in association with multimodal memories, verbal lexicons, and contextual information. Identities are then consolidated in auditory short-term memory and bound with attribute information (usually pitch, loudness, and direction) that has been integrated according to the identities' spectral properties. Attention to, or recall of, a particular identity will excite a particular sequence in the identification hierarchies and so lead to modulation of thalamus and inferior colliculus neural spectrotemporal response fields. This operates as an adaptive filter for identities, or their attributes, and explains many puzzling human auditory behaviors, such as the cocktail party effect, selective attention, and continuity illusions.
Automatic loudness control in short-form content for broadcasting.
Pires, Leandro da S; Vieira, Maurílio N; Yehia, Hani C
2017-03-01
During the early years of the International Telecommunication Union (ITU) loudness calculation standard for sound broadcasting [ITU-R (2006), Rec. BS Series, 1770], the need for additional loudness descriptors to evaluate short-form content, such as commercials and live inserts, was identified. This work proposes a loudness control scheme to prevent loudness jumps, which can bother audiences. It employs short-form content audio detection and dynamic range processing methods for the maximum loudness level criteria. Detection is achieved by combining principal component analysis for dimensionality reduction and support vector machines for binary classification. Subsequent processing is based on short-term loudness integrators and Hilbert transformers. The performance was assessed using quality classification metrics and demonstrated through a loudness control example.
Loudness enhancement and decrement in four paradigms
NASA Technical Reports Server (NTRS)
Elmasian, R.; Galambos, R.; Bernheim, A., Jr.
1980-01-01
When one tone burst (the conditioner) preceeds another (the target) by 100 ms, target loudness is enhanced if the conditioner is more intense and decreased if it is less intense. We show here that similar loudness enhancements and decrements occur when the conditioner follows the target. In all instances, monaural loudness enhancements (in which the conditioner and target are delivered to the same ear) are greater than the dichotic enhancements (in which the conditioner is presented contralaterally), but the decrements, which are smaller than the enhancements, are similar in magnitude. Loudness enhancements and decrements are similar to sequential loudness effects and central tendency effects; the major difference is the relatively very large increases in loudness obtainable in loudness enhancement experiments. We outline a mechanism to account for these loudness phenomena and suggest that this mechanism is responsible for similar perceptual effects that occur in other stimulus dimensions and modalities.
Effect of sonic boom asymmetry on subjective loudness
NASA Technical Reports Server (NTRS)
Leatherwood, Jack D.; Sullivan, Brenda M.
1992-01-01
The NASA Langley Research Center's sonic boom apparatus was used in an experimental study to quantify subjective loudness response to a wide range of asymmetrical N-wave sonic boom signatures. Results were used to assess the relative performance of several metrics as loudness estimators for asymmetrical signatures and to quantify in detail the effects on subjective loudness of varying both the degree and direction of signature loudness asymmetry. Findings of the study indicated that Perceived Level (Steven's Mark 7) and A-weighted sound exposure level were the best metrics for quantifying asymmetrical boom loudness. Asymmetrical signatures were generally rated as being less loud than symmetrical signatures of equivalent Perceived Level. The magnitude of the loudness reductions increased as the degree of boom asymmetry increased, and depended upon the direction of asymmetry. These loudness reductions were not accounted for by any of the metrics. Corrections were determined for use in adjusting calculated Perceived Level values to account for these reductions. It was also demonstrated that the subjects generally incorporated the loudness components of the complete signatures when making their subjective judgments.
Relations among pure-tone sound stimuli, neural activity, and the loudness sensation
NASA Technical Reports Server (NTRS)
Howes, W. L.
1972-01-01
Both the physiological and psychological responses to pure-tone sound stimuli are used to derive formulas which: (1) relate the loudness, loudness level, and sound-pressure level of pure tones; (2) apply continuously over most of the acoustic regime, including the loudness threshold; and (3) contain no undetermined coefficients. Some of the formulas are fundamental for calculating the loudness of any sound. Power-law formulas relating the pure-tone sound stimulus, neural activity, and loudness are derived from published data.
... work or away from work? Top of Page Videos Videos View Low Resolution Video Keep the volume down – Too loud and too ... damage your hearing Audio Description View Low Resolution Video Too loud for too long: Loud noises damage ...
Knudson, Inge M; Melcher, Jennifer R
2016-06-01
Increases in the acoustic startle response (ASR) of animals have been reported following experimental manipulations to induce tinnitus, an auditory disorder defined by phantom perception of sound. The increases in ASR have been proposed to signify the development of hyperacusis, a clinical condition defined by intolerance of normally tolerable sound levels. To test this proposal, the present study compared ASR amplitude to measures of sound-level tolerance (SLT) in humans, the only species in which SLT can be directly assessed. Participants had clinically normal/near-normal hearing thresholds, were free of psychotropic medications, and comprised people with tinnitus and without. ASR was measured as eyeblink-related electromyographic activity in response to a noise pulse presented at a range of levels and in two background conditions (noise and quiet). SLT was measured as loudness discomfort level (LDL), the lowest level of sound deemed uncomfortable, and via a questionnaire on the loudness of sounds in everyday life. Regardless of tinnitus status, ASR amplitude at a given stimulus level increased with decreasing LDL, but showed no relationship to SLT self-reported via the questionnaire. These relationships (or lack thereof) could not be attributed to hearing threshold, age, anxiety, or depression. The results imply that increases in ASR in the animal work signify decreases in LDL specifically and may not correspond to the development of hyperacusis as would be self-reported by a clinic patient.
Darling, Meghan; Huber, Jessica E.
2012-01-01
Purpose Individuals with Parkinson’s disease (PD) exhibit differences in displacement and velocity of the articulators as compared to older adults. The purpose of the current study was to examine effects of three loudness cues on articulatory movement patterns in individuals with PD. Methods Nine individuals diagnosed with idiopathic PD and 9 age- and sex- matched healthy controls produced sentences in four conditions: 1) comfortable loudness, 2) targeting 10dB above comfortable, 3) twice as loud as comfortable, and 4) in background noise. Lip and jaw kinematics and acoustic measurements were obtained. Results Both groups significantly increased sound pressure level (SPL) in the loud conditions as compared to comfortable. For the loud conditions, both groups had the highest SPL in background noise and 10dB and the lowest in twice as loud. Control participants produced the largest opening displacement in background noise and the smallest in twice as loud. Conversely, individuals with PD produced the largest opening displacement in twice as loud and the smallest in background noise. Conclusions Control participants and individuals with PD responded to cues to increase loudness in different ways. Changes in SPL may explain differences in kinematics for the control participants, but do not for individuals with PD. PMID:21386044
Hall, Deborah A; Mehta, Rajnikant L; Fackrell, Kathryn
2017-09-18
Loudness is a major auditory dimension of tinnitus and is used to diagnose severity, counsel patients, or as a measure of clinical efficacy in audiological research. There is no standard test for tinnitus loudness, but matching and rating methods are popular. This article provides important new knowledge about the reliability and validity of an audiologist-administered tinnitus loudness matching test and a patient-reported tinnitus loudness rating. Retrospective analysis of loudness data for 91 participants with stable subjective tinnitus enrolled in a randomized controlled trial of a novel drug for tinnitus. There were two baseline assessments (screening, Day 1) and a posttreatment assessment (Day 28). About 66%-70% of the variability from screening to Day 1 was attributable to the true score. But measurement error, indicated by the smallest detectable change, was high for both tinnitus loudness matching (20 dB) and tinnitus loudness rating (3.5 units). Only loudness rating captured a sensation that was meaningful to people who lived with the experience of tinnitus. The tinnitus loudness rating performed better against acceptability criteria for reliability and validity than did the tinnitus loudness matching test administered by an audiologist. But the rating question is still limited because it is a single-item instrument and is probably able to detect only large changes (at least 3.5 points).
Durai, Mithila; Searchfield, Grant D
2017-01-01
Objectives: A randomized cross-over trial in 18 participants tested the hypothesis that nature sounds, with unpredictable temporal characteristics and high valence would yield greater improvement in tinnitus than constant, emotionally neutral broadband noise. Study Design: The primary outcome measure was the Tinnitus Functional Index (TFI). Secondary measures were: loudness and annoyance ratings, loudness level matches, minimum masking levels, positive and negative emotionality, attention reaction and discrimination time, anxiety, depression and stress. Each sound was administered using MP3 players with earbuds for 8 continuous weeks, with a 3 week wash-out period before crossing over to the other treatment sound. Measurements were undertaken for each arm at sound fitting, 4 and 8 weeks after administration. Qualitative interviews were conducted at each of these appointments. Results: From a baseline TFI score of 41.3, sound therapy resulted in TFI scores at 8 weeks of 35.6; broadband noise resulted in significantly greater reduction (8.2 points) after 8 weeks of sound therapy use than nature sounds (3.2 points). The positive effect of sound on tinnitus was supported by secondary outcome measures of tinnitus, emotion, attention, and psychological state, but not interviews. Tinnitus loudness level match was higher for BBN at 8 weeks; while there was little change in loudness level matches for nature sounds. There was no change in minimum masking levels following sound therapy administration. Self-reported preference for one sound over another did not correlate with changes in tinnitus. Conclusions: Modeled under an adaptation level theory framework of tinnitus perception, the results indicate that the introduction of broadband noise shifts internal adaptation level weighting away from the tinnitus signal, reducing tinnitus magnitude. Nature sounds may modify the affective components of tinnitus via a secondary, residual pathway, but this appears to be less important for sound effectiveness. The different rates of adaptation to broadband noise and nature sound by the auditory system may explain the different tinnitus loudness level matches. In addition to group effects there also appears to be a great deal of individual variation. A sound therapy framework based on adaptation level theory is proposed that accounts for individual variation in preference and response to sound. Clinical Trial Registration: www.anzctr.org.au, identifier #12616000742471.
Durai, Mithila; Searchfield, Grant D.
2017-01-01
Objectives: A randomized cross-over trial in 18 participants tested the hypothesis that nature sounds, with unpredictable temporal characteristics and high valence would yield greater improvement in tinnitus than constant, emotionally neutral broadband noise. Study Design: The primary outcome measure was the Tinnitus Functional Index (TFI). Secondary measures were: loudness and annoyance ratings, loudness level matches, minimum masking levels, positive and negative emotionality, attention reaction and discrimination time, anxiety, depression and stress. Each sound was administered using MP3 players with earbuds for 8 continuous weeks, with a 3 week wash-out period before crossing over to the other treatment sound. Measurements were undertaken for each arm at sound fitting, 4 and 8 weeks after administration. Qualitative interviews were conducted at each of these appointments. Results: From a baseline TFI score of 41.3, sound therapy resulted in TFI scores at 8 weeks of 35.6; broadband noise resulted in significantly greater reduction (8.2 points) after 8 weeks of sound therapy use than nature sounds (3.2 points). The positive effect of sound on tinnitus was supported by secondary outcome measures of tinnitus, emotion, attention, and psychological state, but not interviews. Tinnitus loudness level match was higher for BBN at 8 weeks; while there was little change in loudness level matches for nature sounds. There was no change in minimum masking levels following sound therapy administration. Self-reported preference for one sound over another did not correlate with changes in tinnitus. Conclusions: Modeled under an adaptation level theory framework of tinnitus perception, the results indicate that the introduction of broadband noise shifts internal adaptation level weighting away from the tinnitus signal, reducing tinnitus magnitude. Nature sounds may modify the affective components of tinnitus via a secondary, residual pathway, but this appears to be less important for sound effectiveness. The different rates of adaptation to broadband noise and nature sound by the auditory system may explain the different tinnitus loudness level matches. In addition to group effects there also appears to be a great deal of individual variation. A sound therapy framework based on adaptation level theory is proposed that accounts for individual variation in preference and response to sound. Clinical Trial Registration: www.anzctr.org.au, identifier #12616000742471. PMID:28337139
... Videos for Educators Search English Español Can Loud Music Hurt My Ears? KidsHealth / For Kids / Can Loud Music Hurt My Ears? Print en español La música ... up? Oh! You want to know if loud music can hurt your ears . Are you asking because ...
Berenstein, Carlo K; Vanpoucke, Filiep J; Mulder, Jef J S; Mens, Lucas H M
2010-12-01
Tripolar and other electrode configurations that use simultaneous stimulation inside the cochlea have been tested to reduce channel interactions compared to the monopolar stimulation conventionally used in cochlear implant systems. However, these "focused" configurations require increased current levels to achieve sufficient loudness. In this study, we investigate whether highly accurate recordings of the intracochlear electrical field set up by monopolar and tripolar configurations correlate to their effect on loudness. We related the intra-scalar potential distribution to behavioral loudness, by introducing a free parameter (α) which parameterizes the degree to which the potential field peak set up inside the scala tympani is still present at the location of the targeted neural tissue. Loudness balancing was performed on four levels between behavioral threshold and the most comfortable loudness level in a group of 10 experienced Advanced Bionics cochlear implant users. The effect of the amount of focusing on loudness was well explained by α per subject location along the basilar membrane. We found that α was unaffected by presentation level. Moreover, the ratios between the monopolar and tripolar currents, balanced for equal loudness, were approximately the same for all presentation levels. This suggests a linear loudness growth with increasing current level and that the equal peak hypothesis may predict the loudness of threshold as well as at supra-threshold levels. These results suggest that advanced electrical field imaging, complemented with limited psychophysical testing, more specifically at only one presentation level, enables estimation of the loudness growth of complex electrode configurations. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Rathsam, Jonathan; Loubeau, Alexandra; Klos, Jacob
2013-01-01
The National Aeronautics and Space Administration's High Speed Project is developing a predictive capability for annoyance caused by shaped sonic booms transmitted indoors. The predictive capability is intended for use by aircraft designers as well as by aircraft noise regulators who are considering lifting the current prohibition on overland civil supersonic flight. The goal of the current study is to use an indoor simulator to validate two models developed using headphone tests for annoyance caused by sonic booms with and without rattle augmentation. The predictors in the proposed models include Moore and Glasberg's Stationary Loudness Level, the time derivative of Moore and Glasberg's time-varying short-term Loudness Level, and the difference between two weighted sound exposure levels, CSEL-ASEL. The indoor simulator provides a more realistic listening environment than headphones due to lowfrequency sound reproduction down to 6 Hz, which also causes perceptible tactile vibration. The results of this study show that a model consisting of {PL + (CSEL-ASEL)} is a reliable predictor of annoyance caused by shaped sonic booms alone, rattle sounds alone, and shaped sonic booms and rattle sounds together.
A loudness calculation procedure applied to shaped sonic booms
NASA Technical Reports Server (NTRS)
Shepherd, Kevin P.; Sullivan, Brenda M.
1991-01-01
Described here is a procedure that can be used to calculate the loudness of sonic booms. The procedure is applied to a wide range of sonic booms, both classical N-waves and a variety of other shapes of booms. The loudness of N-waves is controlled by overpressure and the associated rise time. The loudness of shaped booms is highly dependent on the characteristics of the initial shock. A comparison of the calculated loudness values indicates that shaped booms may have significantly reduced loudness relative to N-waves having the same peak overpressure. This result implies that a supersonic transport designed to yield minimized sonic booms may be substantially more acceptable than an unconstrained design.
Morphometric Differences of Vocal Tract Articulators in Different Loudness Conditions in Singing.
Echternach, Matthias; Burk, Fabian; Burdumy, Michael; Traser, Louisa; Richter, Bernhard
2016-01-01
Dynamic MRI analysis of phonation has gathered interest in voice and speech physiology. However, there are limited data addressing the extent to which articulation is dependent on loudness. 12 professional singer subjects of different voice classifications were analysed concerning the vocal tract profiles recorded with dynamic real-time MRI with 25fps in different pitch and loudness conditions. The subjects were asked to sing ascending scales on the vowel /a/ in three loudness conditions (comfortable=mf, very soft=pp, very loud=ff, respectively). Furthermore, fundamental frequency and sound pressure level were analysed from the simultaneously recorded optical audio signal after noise cancellation. The data show articulatory differences with respect to changes of both pitch and loudness. Here, lip opening and pharynx width were increased. While the vertical larynx position was rising with pitch it was lower for greater loudness. Especially, the lip opening and pharynx width were more strongly correlated with the sound pressure level than with pitch. For the vowel /a/ loudness has an effect on articulation during singing which should be considered when articulatory vocal tract data are interpreted.
Uys, Marinda; Pottas, Lidia; Vinck, Bart; van Dijk, Catherine
2012-12-01
To date, the main direction in frequency-lowering hearing aid studies has been in relation to speech perception abilities. With improvements in hearing aid technology, interest in musical perception as a dimension that could improve hearing aid users' quality of life has grown. The purpose of this study was to determine the influence of non-linear frequency compression (NFC) on hearing aid users' subjective impressions of listening to music. DESIGN & SAMPLE: A survey research design was implemented to elicit participants' (N=40) subjective impressions of musical stimuli with and without NFC. The use of NFC significantly improved hearing aid users' perception of the musical qualities of overall fidelity, tinniness and reverberance. Although participants preferred to listen to the loudness, fullness, crispness, naturalness and pleasantness of music with the use of NFC, these benefits were not significant. The use of NFC can increase hearing aid users' enjoyment and appreciation of music. Given that a relatively large percentage of hearing aid users express a loss of enjoyment of music, audiologists should not ignore the possible benefits of NFC, especially if one takes into account that previous research indicates speech perception benefits with this technology.
Knobel, Keila Alessandra Baraldi; Lima, Maria Cecília Marconi Pinheiro
2014-01-01
Exposure to loud sound during leisure activities for long periods of time is an important area to implement preventive health education, especially among young people. The aim was to identify the relations among awareness about the damaging effects of loud levels of sounds, previous exposures do loud sounds, preferences-related to sound levels and knowledge about hearing protection with age, gender, and their parent's educational level among children. Prospective cross-sectional. Seven hundred and forty students (5-16 years old) and 610 parents participated in the study. Chi-square test, Fisher exact test and linear regression. About 86.5% of the children consider that loud sounds damage the ears and 53.7% dislike noisy places. Children were previously exposed to parties and concerts with loud music, Mardi Gras, firecrackers and loud music at home or in the car and loud music with earphones. About 18.4% of the younger children could select the volume of the music, versus 65.3% of the older ones. Children have poor information about hearing protection and do not have hearing protection device. Knowledge about the risks related to exposures to loud sounds and about strategies to protect their hearing increases with age, but preference for loud sounds and exposures to it increases too. Gender and parents' instructional level have little influence on the studied variables. Many of the children's recreational activities are noisy. It is possible that the tendency of increasing preference for loud sounds with age might be a result of a learned behavior.
Kotowski, Michael R; Smith, Sandi W; Johnstone, Patti M; Pritt, Erin
2011-01-01
Brochures containing messages developed according to the Extended Parallel Process Model were deployed to increase intentions to use hearing protection for college students. These brochures were presented to one-half of a college student sample, after which a questionnaire was administered to assess perceptions of threat, efficacy, and behavioral intentions. The other half of the sample completed the questionnaire and then received brochures. Results indicated that people receiving the brochure before the questionnaire reported greater perceptions of hearing loss threat and efficacy to use ear plugs when in loud environments, however, intentions to use ear plugs were unchanged. Distribution of the brochure also resulted in greater perceptions of hearing loss threat and efficacy to use over-the-ear headphones when using devices such as MP3 players. In this case, however, intentions to use over-the-ear headphones increased. Results are discussed in terms of future research and practical applications.
A practical method of predicting the loudness of complex electrical stimuli
NASA Astrophysics Data System (ADS)
McKay, Colette M.; Henshall, Katherine R.; Farrell, Rebecca J.; McDermott, Hugh J.
2003-04-01
The output of speech processors for multiple-electrode cochlear implants consists of current waveforms with complex temporal and spatial patterns. The majority of existing processors output sequential biphasic current pulses. This paper describes a practical method of calculating loudness estimates for such stimuli, in addition to the relative loudness contributions from different cochlear regions. The method can be used either to manipulate the loudness or levels in existing processing strategies, or to control intensity cues in novel sound processing strategies. The method is based on a loudness model described by McKay et al. [J. Acoust. Soc. Am. 110, 1514-1524 (2001)] with the addition of the simplifying approximation that current pulses falling within a temporal integration window of several milliseconds' duration contribute independently to the overall loudness of the stimulus. Three experiments were carried out with six implantees who use the CI24M device manufactured by Cochlear Ltd. The first experiment validated the simplifying assumption, and allowed loudness growth functions to be calculated for use in the loudness prediction method. The following experiments confirmed the accuracy of the method using multiple-electrode stimuli with various patterns of electrode locations and current levels.
Factors influencing tinnitus loudness and annoyance.
Hiller, Wolfgang; Goebel, Gerhard
2006-12-01
To evaluate the 2 major components of tinnitus severity, loudness and annoyance, and their degree of dependence on characteristics of tinnitus manifestation, history, and etiology. Cross-sectional survey performed during the first months of 2004. Nonclinical population. A total of 4995 members of the German Tinnitus League. Comprehensive screening questionnaire, including the Klockhoff and Lindblom loudness grading system and the miniversion of the Tinnitus Questionnaire. A moderate correlation of 0.45 was found between tinnitus loudness and annoyance. Both factors were generally higher in men, those older than 50 years, those with binaural and centrally perceived tinnitus, those with increased noise sensitivity, and those who had continuous tinnitus without interruptions. Tinnitus that lasted 12 months or less had a stronger influence on annoyance (odds ratio [OR], 1.96) than on loudness (OR, 0.45), whereas the contrary was found for tinnitus of more than 5 years' duration (ORs, 0.72 and 2.11, respectively). Loudness and annoyance were increased in subjects with coexisting hearing loss, vertigo, and hyperacusis. The impact of hyperacusis on annoyance was clearly stronger than on loudness (ORs, 21.91 vs 9.47). Several clinical factors of tinnitus influence perceived loudness and annoyance. Both are distinguishable components of tinnitus severity.
Morphometric Differences of Vocal Tract Articulators in Different Loudness Conditions in Singing
Echternach, Matthias; Burk, Fabian; Burdumy, Michael; Traser, Louisa; Richter, Bernhard
2016-01-01
Introduction Dynamic MRI analysis of phonation has gathered interest in voice and speech physiology. However, there are limited data addressing the extent to which articulation is dependent on loudness. Material and Methods 12 professional singer subjects of different voice classifications were analysed concerning the vocal tract profiles recorded with dynamic real-time MRI with 25fps in different pitch and loudness conditions. The subjects were asked to sing ascending scales on the vowel /a/ in three loudness conditions (comfortable = mf, very soft = pp, very loud = ff, respectively). Furthermore, fundamental frequency and sound pressure level were analysed from the simultaneously recorded optical audio signal after noise cancellation. Results The data show articulatory differences with respect to changes of both pitch and loudness. Here, lip opening and pharynx width were increased. While the vertical larynx position was rising with pitch it was lower for greater loudness. Especially, the lip opening and pharynx width were more strongly correlated with the sound pressure level than with pitch. Conclusion For the vowel /a/ loudness has an effect on articulation during singing which should be considered when articulatory vocal tract data are interpreted. PMID:27096935
Perceiving similarity and comprehending metaphor.
Marks, L E; Hammeal, R J; Bornstein, M H
1987-01-01
We conducted a series of 3 experiments to assess the comprehension of 4 types of cross-modal (synesthetic) similarities in nearly 500 3.5-13.5-year-old children and more than 100 adults. We tested both perceptual and verbal (metaphoric) modes. Children of all ages and adults matched pitch to brightness and loudness to brightness, thereby showing that even very young children recognize perceptual similarities between hearing and vision. Children did not consistently recognize similarity between pitch and size until about age 11. This difference in developmental timetables is compatible with the view that pitch-brightness and loudness-brightness similarities are intrinsic characteristics of perception (characteristics based, perhaps, on common sensory codes), whereas pitch-size similarity may be learned (perhaps through association of size with resonance properties). In a parallel verbal task, even 4-year-old children showed at least some capacity to translate meanings metaphorically from one modality to another (e.g., rating "low pitched" as dim and "high pitched" as bright). But not all literal meanings produced metaphoric equivalents in the youngest children (e.g., rating "sunlight" brighter but not louder than "moonlight"). Improvements with age in making metaphoric translations of synesthetic expressions paralleled increasing differentiation of meanings along literal dimensions and increasing capacity to integrate meanings of components in compound expressions. We postulate that perceptual knowledge about objects and events is represented in terms of locations in a multidimensional space; cross-modal similarities imply that the space is also multimodal. Verbal processes later gain access to this graded perceptual knowledge, thus permitting the interpretation of synesthetic metaphors according to the rules of cross-modal perception.
Development and Current Status of the “Cambridge” Loudness Models
2014-01-01
This article reviews the evolution of a series of models of loudness developed in Cambridge, UK. The first model, applicable to stationary sounds, was based on modifications of the model developed by Zwicker, including the introduction of a filter to allow for the effects of transfer of sound through the outer and middle ear prior to the calculation of an excitation pattern, and changes in the way that the excitation pattern was calculated. Later, modifications were introduced to the assumed middle-ear transfer function and to the way that specific loudness was calculated from excitation level. These modifications led to a finite calculated loudness at absolute threshold, which made it possible to predict accurately the absolute thresholds of broadband and narrowband sounds, based on the assumption that the absolute threshold corresponds to a fixed small loudness. The model was also modified to give predictions of partial loudness—the loudness of one sound in the presence of another. This allowed predictions of masked thresholds based on the assumption that the masked threshold corresponds to a fixed small partial loudness. Versions of the model for time-varying sounds were developed, which allowed prediction of the masked threshold of any sound in a background of any other sound. More recent extensions incorporate binaural processing to account for the summation of loudness across ears. In parallel, versions of the model for predicting loudness for hearing-impaired ears have been developed and have been applied to the development of methods for fitting multichannel compression hearing aids. PMID:25315375
Perceptions regarding workplace hazards at a veterinary teaching hospital.
Weaver, Dustin R; Newman, Lee S; Lezotte, Dennis C; Morley, Paul S
2010-07-01
To assess perceptions of personnel working at a veterinary teaching hospital regarding risks of occupational hazards and compare those perceptions with assessments made by occupational safety experts. Cross-sectional study. A representative sample of personnel (n = 90) working at the veterinary teaching hospital at Colorado State University and a panel of 3 occupational safety experts. Hospital personnel ranked perceptions of 14 physical, chemical, and biological workplace hazards and listed the injuries, illnesses, and near misses they had experienced. The expert panel provided consensus rankings of the same 14 hazards for 9 sections of the facility. Risk perceptions provided by the 2 sources were compared. Risk perceptions did not differ significantly between hospital personnel and the expert panel for most of the site-specific comparisons (94/126 [75%]). Personnel perceived greater risks for some physical hazards (loud noises, sharps injuries, and ionizing radiation) and some chemical or materials exposures (insecticides or pesticides and tissue digester emissions). In contrast, the expert panel perceived greater risks for physical hazards (bite or crush and restraining and moving animals), chemical exposures (anesthetic waste gas), and biological exposures (Toxoplasma gondii, antimicrobial-resistant bacteria, and allergens). Participants and safety experts had similar perceptions about occupational risks, but there were important differences where hospital personnel apparently overestimated or underappreciated the risks for workplace hazards. This type of study may be useful in guiding development of optimal workplace safety programs for veterinary hospitals.
Quality and loudness judgments for music subjected to compression limiting.
Croghan, Naomi B H; Arehart, Kathryn H; Kates, James M
2012-08-01
Dynamic-range compression (DRC) is used in the music industry to maximize loudness. The amount of compression applied to commercial recordings has increased over time due to a motivating perspective that louder music is always preferred. In contrast to this viewpoint, artists and consumers have argued that using large amounts of DRC negatively affects the quality of music. However, little research evidence has supported the claims of either position. The present study investigated how DRC affects the perceived loudness and sound quality of recorded music. Rock and classical music samples were peak-normalized and then processed using different amounts of DRC. Normal-hearing listeners rated the processed and unprocessed samples on overall loudness, dynamic range, pleasantness, and preference, using a scaled paired-comparison procedure in two conditions: un-equalized, in which the loudness of the music samples varied, and loudness-equalized, in which loudness differences were minimized. Results indicated that a small amount of compression was preferred in the un-equalized condition, but the highest levels of compression were generally detrimental to quality, whether loudness was equalized or varied. These findings are contrary to the "louder is better" mentality in the music industry and suggest that more conservative use of DRC may be preferred for commercial music.
Musical Expertise and the Ability to Imagine Loudness
Bishop, Laura; Bailes, Freya; Dean, Roger T.
2013-01-01
Most perceived parameters of sound (e.g. pitch, duration, timbre) can also be imagined in the absence of sound. These parameters are imagined more veridically by expert musicians than non-experts. Evidence for whether loudness is imagined, however, is conflicting. In music, the question of whether loudness is imagined is particularly relevant due to its role as a principal parameter of performance expression. This study addressed the hypothesis that the veridicality of imagined loudness improves with increasing musical expertise. Experts, novices and non-musicians imagined short passages of well-known classical music under two counterbalanced conditions: 1) while adjusting a slider to indicate imagined loudness of the music and 2) while tapping out the rhythm to indicate imagined timing. Subtests assessed music listening abilities and working memory span to determine whether these factors, also hypothesised to improve with increasing musical expertise, could account for imagery task performance. Similarity between each participant’s imagined and listening loudness profiles and reference recording intensity profiles was assessed using time series analysis and dynamic time warping. The results suggest a widespread ability to imagine the loudness of familiar music. The veridicality of imagined loudness tended to be greatest for the expert musicians, supporting the predicted relationship between musical expertise and musical imagery ability. PMID:23460791
Musical expertise and the ability to imagine loudness.
Bishop, Laura; Bailes, Freya; Dean, Roger T
2013-01-01
Most perceived parameters of sound (e.g. pitch, duration, timbre) can also be imagined in the absence of sound. These parameters are imagined more veridically by expert musicians than non-experts. Evidence for whether loudness is imagined, however, is conflicting. In music, the question of whether loudness is imagined is particularly relevant due to its role as a principal parameter of performance expression. This study addressed the hypothesis that the veridicality of imagined loudness improves with increasing musical expertise. Experts, novices and non-musicians imagined short passages of well-known classical music under two counterbalanced conditions: 1) while adjusting a slider to indicate imagined loudness of the music and 2) while tapping out the rhythm to indicate imagined timing. Subtests assessed music listening abilities and working memory span to determine whether these factors, also hypothesised to improve with increasing musical expertise, could account for imagery task performance. Similarity between each participant's imagined and listening loudness profiles and reference recording intensity profiles was assessed using time series analysis and dynamic time warping. The results suggest a widespread ability to imagine the loudness of familiar music. The veridicality of imagined loudness tended to be greatest for the expert musicians, supporting the predicted relationship between musical expertise and musical imagery ability.
Nachtigall, Paul E; Supin, Alexander Y
2016-01-01
Stranded whales and dolphins have sometimes been associated with loud anthropogenic sounds. Echolocating whales produce very loud sounds themselves and have developed the ability to protect their hearing from their own signals. A false killer whale's hearing sensitivity was measured when a faint warning sound was given just before the presentation of an increase in intensity to 170 dB. If the warning occurred within 1-9 s, as opposed to 20-40 s, the whale showed a 13-dB reduction in hearing sensitivity. Warning sounds before loud pulses may help mitigate the effects of loud anthropogenic sounds on wild animals.
Durai, Mithila; O'Keeffe, Mary G; Searchfield, Grant D
2017-03-01
Existing evidence suggests a strong relationship between tinnitus and emotion. The objective of this study was to examine the effects of short-term emotional changes along valence and arousal dimensions on tinnitus outcomes. Emotional stimuli were presented in two different modalities: auditory and visual. The authors hypothesized that (1) negative valence (unpleasant) stimuli and/or high arousal stimuli will lead to greater tinnitus loudness and annoyance than positive valence and/or low arousal stimuli, and (2) auditory emotional stimuli, which are in the same modality as the tinnitus, will exhibit a greater effect on tinnitus outcome measures than visual stimuli. Auditory and visual emotive stimuli were administered to 22 participants (12 females and 10 males) with chronic tinnitus, recruited via email invitations send out to the University of Auckland Tinnitus Research Volunteer Database. Emotional stimuli used were taken from the International Affective Digital Sounds- Version 2 (IADS-2) and the International Affective Picture System (IAPS) (Bradley and Lang, 2007a, 2007b). The Emotion Regulation Questionnaire (Gross and John, 2003) was administered alongside subjective ratings of tinnitus loudness and annoyance, and psychoacoustic sensation level matches to external sounds. Males had significantly different emotional regulation scores than females. Negative valence emotional auditory stimuli led to higher tinnitus loudness ratings in males and females and higher annoyance ratings in males only; loudness matches of tinnitus remained unchanged. The visual stimuli did not have an effect on tinnitus ratings. The results are discussed relative to the Adaptation Level Theory Model of Tinnitus. The results indicate that the negative valence dimension of emotion is associated with increased tinnitus magnitude judgements and gender effects may also be present, but only when the emotional stimulus is in the auditory modality. Sounds with emotional associations may be used for sound therapy for tinnitus relief; it is of interest to determine whether the emotional component of sound treatments can play a role in reversing the negative responses discussed in this paper. Copyright © 2016 Elsevier B.V. All rights reserved.
Loudness and annoyance response to simulated outdoor and indoor sonic booms
NASA Technical Reports Server (NTRS)
Leatherwood, Jack D.; Sullivan, Brenda M.
1993-01-01
The sonic boom simulator of the Langley Research Center was used to quantify subjective loudness and annoyance response to simulated indoor and outdoor sonic boom signatures. The indoor signatures were derived from the outdoor signatures by application of house filters that approximated the noise reduction characteristics of a residential structure. Two indoor listening situations were simulated: one with the windows open and the other with the windows closed. Results were used to assess loudness and annoyance as sonic boom criterion measures and to evaluate several metrics as estimators of loudness and annoyance. The findings indicated that loudness and annoyance were equivalent criterion measures for outdoor booms but not for indoor booms. Annoyance scores for indoor booms were significantly higher than indoor loudness scores. Thus, annoyance was recommended as the criterion measure of choice for general use in assessing sonic boom subjective effects. Perceived level was determined to be the best estimator of annoyance for both indoor and outdoor booms, and of loudness for outdoor booms. It was recommended as the metric of choice for predicting sonic boom subjective effects.
A Dynamically Focusing Cochlear Implant Strategy Can Improve Vowel Identification in Noise.
Arenberg, Julie G; Parkinson, Wendy S; Litvak, Leonid; Chen, Chen; Kreft, Heather A; Oxenham, Andrew J
2018-03-09
The standard, monopolar (MP) electrode configuration used in commercially available cochlear implants (CI) creates a broad electrical field, which can lead to unwanted channel interactions. Use of more focused configurations, such as tripolar and phased array, has led to mixed results for improving speech understanding. The purpose of the present study was to assess the efficacy of a physiologically inspired configuration called dynamic focusing, using focused tripolar stimulation at low levels and less focused stimulation at high levels. Dynamic focusing may better mimic cochlear excitation patterns in normal acoustic hearing, while reducing the current levels necessary to achieve sufficient loudness at high levels. Twenty postlingually deafened adult CI users participated in the study. Speech perception was assessed in quiet and in a four-talker babble background noise. Speech stimuli were closed-set spondees in noise, and medial vowels at 50 and 60 dB SPL in quiet and in noise. The signal to noise ratio was adjusted individually such that performance was between 40 and 60% correct with the MP strategy. Subjects were fitted with three experimental strategies matched for pulse duration, pulse rate, filter settings, and loudness on a channel-by-channel basis. The strategies included 14 channels programmed in MP, fixed partial tripolar (σ = 0.8), and dynamic partial tripolar (σ at 0.8 at threshold and 0.5 at the most comfortable level). Fifteen minutes of listening experience was provided with each strategy before testing. Sound quality ratings were also obtained. Speech perception performance for vowel identification in quiet at 50 and 60 dB SPL and for spondees in noise was similar for the three tested strategies. However, performance on vowel identification in noise was significantly better for listeners using the dynamic focusing strategy. Sound quality ratings were similar for the three strategies. Some subjects obtained more benefit than others, with some individual differences explained by the relation between loudness growth and the rate of change from focused to broader stimulation. These initial results suggest that further exploration of dynamic focusing is warranted. Specifically, optimizing such strategies on an individual basis may lead to improvements in speech perception for more adult listeners and improve how CIs are tailored. Some listeners may also need a longer period of time to acclimate to a new program.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Low-frequency sound affects active micromechanics in the human inner ear
Kugler, Kathrin; Wiegrebe, Lutz; Grothe, Benedikt; Kössl, Manfred; Gürkov, Robert; Krause, Eike; Drexl, Markus
2014-01-01
Noise-induced hearing loss is one of the most common auditory pathologies, resulting from overstimulation of the human cochlea, an exquisitely sensitive micromechanical device. At very low frequencies (less than 250 Hz), however, the sensitivity of human hearing, and therefore the perceived loudness is poor. The perceived loudness is mediated by the inner hair cells of the cochlea which are driven very inadequately at low frequencies. To assess the impact of low-frequency (LF) sound, we exploited a by-product of the active amplification of sound outer hair cells (OHCs) perform, so-called spontaneous otoacoustic emissions. These are faint sounds produced by the inner ear that can be used to detect changes of cochlear physiology. We show that a short exposure to perceptually unobtrusive, LF sounds significantly affects OHCs: a 90 s, 80 dB(A) LF sound induced slow, concordant and positively correlated frequency and level oscillations of spontaneous otoacoustic emissions that lasted for about 2 min after LF sound offset. LF sounds, contrary to their unobtrusive perception, strongly stimulate the human cochlea and affect amplification processes in the most sensitive and important frequency range of human hearing. PMID:26064536
Hearing protection for clubbers is music to their ears.
Beach, Elizabeth; Williams, Warwick; Gilliver, Megan
2010-12-01
while it is difficult to promote the use of hearing protectors in noisy workplaces and leisure settings, some nightclub attendees choose to wear earplugs when exposed to loud music. This qualitative study investigated the perceptions of clubbers about the advantages and disadvantages of earplug use in nightclubs. Such first-hand information could potentially be used to educate non-wearers about the features of different earplug types, the experience of wearing earplugs and their relative merits. structured telephone interviews were conducted with 20 regular clubbers who wear different types of earplugs at nightclubs. Participants were asked about their experience of wearing earplugs and, in particular, what they perceive to be the advantages and disadvantages of earplugs. participants' responses revealed that cheaper foam earplugs are considered less satisfactory than more expensive earplugs, which are relatively discreet and comfortable, facilitate communication with others, create minimal music distortion and, in some cases, improve music sound quality. In terms of effectiveness, all types of earplugs were considered beneficial in reducing the after-effects of loud music and providing hearing protection. the perceived advantages of earplugs, which are often not recognised by non-earplug wearers, should be communicated in order to encourage the use of earplugs among clubbers.
Perceptual aspects of singing.
Sundberg, J
1994-06-01
The relations between acoustic and perceived characteristics of vowel sounds are demonstrated with respect to timbre, loudness, pitch, and expressive time patterns. The conditions for perceiving an ensemble of sine tones as one tone or several tones are reviewed. There are two aspects of timbre of voice sounds: vowel quality and voice quality. Although vowel quality depends mainly on the frequencies of the lowest two formants. In particular, the center frequency of the so-called singer's formant seems perceptually relevant. Vocal loudness, generally assumed to correspond closely to the sound pressure level, depends rather on the amplitude balance between the lower and the higher spectrum partials. The perceived pitch corresponds to the fundamental frequency, or for vibrato tones, the mean of this frequency. In rapid passages, such as coloratura singing, special patterns are used. Pitch and duration differences are categorically perceived in music. This means that small variations in tuning or duration do not affect the musical interval and the note value perceived. Categorical perception is used extensively in music performance for the purpose of musical expression because without violating the score, the singer may sharpen or flatten and lengthen or shorten the tones, thereby creating musical expression.
NASA Astrophysics Data System (ADS)
Liang, Ruiyu; Xi, Ji; Bao, Yongqiang
2017-07-01
To improve the performance of gain compensation based on three-segment sound pressure level (SPL) in hearing aids, an improved multichannel loudness compensation method based on eight-segment SPL was proposed. Firstly, the uniform cosine modulated filter bank was designed. Then, the adjacent channels which have low or gradual slopes were adaptively merged to obtain the corresponding non-uniform cosine modulated filter according to the audiogram of hearing impaired persons. Secondly, the input speech was decomposed into sub-band signals and the SPL of every sub-band signal was computed. Meanwhile, the audible SPL range from 0 dB SPL to 120 dB SPL was equally divided into eight segments. Based on these segments, a different prescription formula was designed to compute more detailed gain to compensate according to the audiogram and the computed SPL. Finally, the enhanced signal was synthesized. Objective experiments showed the decomposed signals after cosine modulated filter bank have little distortion. Objective experiments showed that the hearing aids speech perception index (HASPI) and hearing aids speech quality index (HASQI) increased 0.083 and 0.082 on average, respectively. Subjective experiments showed the proposed algorithm can effectively improve the speech recognition of six hearing impaired persons.
Stein, Alwina; Engell, Alva; Lau, Pia; Wunderlich, Robert; Junghoefer, Markus; Wollbrink, Andreas; Bruchmann, Maximilian; Rudack, Claudia; Pantev, Christo
2015-01-01
Chronic tinnitus seems to be caused by reduced inhibition among frequency selective neurons in the auditory cortex. One possibility to reduce tinnitus perception is to induce inhibition onto over-activated neurons representing the tinnitus frequency via tailor-made notched music (TMNM). Since lateral inhibition is modifiable by spectral energy contrasts, the question arises if the effects of inhibition-induced plasticity can be enhanced by introducing increased spectral energy contrasts (ISEC) in TMNM. Eighteen participants suffering from chronic tonal tinnitus, pseudo randomly assigned to either a classical TMNM or an ISEC-TMNM group, listened to notched music for three hours on three consecutive days. The music was filtered for both groups by introducing a notch filter centered at the individual tinnitus frequency. For the ISEC-TMNM group a frequency bandwidth of 3/8 octaves on each side of the notch was amplified, additionally, by about 20 dB. Before and after each music exposure, participants rated their subjectively perceived tinnitus loudness on a visual analog scale. During the magnetoencephalographic recordings, participants were stimulated with either a reference tone of 500 Hz or a test tone with a carrier frequency representing the individual tinnitus pitch. Perceived tinnitus loudness was significantly reduced after TMNM exposure, though TMNM type did not influence the loudness ratings. Tinnitus related neural activity in the N1m time window and in the so called tinnitus network comprising temporal, parietal and frontal regions was reduced after TMNM exposure. The ISEC-TMNM group revealed even enhanced inhibition-induced plasticity in a temporal and a frontal cortical area. Overall, inhibition of tinnitus related neural activity could be strengthened in people affected with tinnitus by increasing spectral energy contrast in TMNM, confirming the concepts of inhibition-induced plasticity via TMNM and spectral energy contrasts.
Stein, Alwina; Engell, Alva; Lau, Pia; Wunderlich, Robert; Junghoefer, Markus; Wollbrink, Andreas; Bruchmann, Maximilian; Rudack, Claudia; Pantev, Christo
2015-01-01
Chronic tinnitus seems to be caused by reduced inhibition among frequency selective neurons in the auditory cortex. One possibility to reduce tinnitus perception is to induce inhibition onto over-activated neurons representing the tinnitus frequency via tailor-made notched music (TMNM). Since lateral inhibition is modifiable by spectral energy contrasts, the question arises if the effects of inhibition-induced plasticity can be enhanced by introducing increased spectral energy contrasts (ISEC) in TMNM. Eighteen participants suffering from chronic tonal tinnitus, pseudo randomly assigned to either a classical TMNM or an ISEC-TMNM group, listened to notched music for three hours on three consecutive days. The music was filtered for both groups by introducing a notch filter centered at the individual tinnitus frequency. For the ISEC-TMNM group a frequency bandwidth of 3/8 octaves on each side of the notch was amplified, additionally, by about 20 dB. Before and after each music exposure, participants rated their subjectively perceived tinnitus loudness on a visual analog scale. During the magnetoencephalographic recordings, participants were stimulated with either a reference tone of 500 Hz or a test tone with a carrier frequency representing the individual tinnitus pitch. Perceived tinnitus loudness was significantly reduced after TMNM exposure, though TMNM type did not influence the loudness ratings. Tinnitus related neural activity in the N1m time window and in the so called tinnitus network comprising temporal, parietal and frontal regions was reduced after TMNM exposure. The ISEC-TMNM group revealed even enhanced inhibition-induced plasticity in a temporal and a frontal cortical area. Overall, inhibition of tinnitus related neural activity could be strengthened in people affected with tinnitus by increasing spectral energy contrast in TMNM, confirming the concepts of inhibition-induced plasticity via TMNM and spectral energy contrasts. PMID:25951605
Relating binaural pitch perception to the individual listener's auditory profile.
Santurette, Sébastien; Dau, Torsten
2012-04-01
The ability of eight normal-hearing listeners and fourteen listeners with sensorineural hearing loss to detect and identify pitch contours was measured for binaural-pitch stimuli and salience-matched monaurally detectable pitches. In an effort to determine whether impaired binaural pitch perception was linked to a specific deficit, the auditory profiles of the individual listeners were characterized using measures of loudness perception, cognitive ability, binaural processing, temporal fine structure processing, and frequency selectivity, in addition to common audiometric measures. Two of the listeners were found not to perceive binaural pitch at all, despite a clear detection of monaural pitch. While both binaural and monaural pitches were detectable by all other listeners, identification scores were significantly lower for binaural than for monaural pitch. A total absence of binaural pitch sensation coexisted with a loss of a binaural signal-detection advantage in noise, without implying reduced cognitive function. Auditory filter bandwidths did not correlate with the difference in pitch identification scores between binaural and monaural pitches. However, subjects with impaired binaural pitch perception showed deficits in temporal fine structure processing. Whether the observed deficits stemmed from peripheral or central mechanisms could not be resolved here, but the present findings may be useful for hearing loss characterization.
Loudness of steady sounds - A new theory
NASA Technical Reports Server (NTRS)
Howes, W. L.
1979-01-01
A new mathematical theory for calculating the loudness of steady sounds from power summation and frequency interaction, based on psychoacoustic and physiological information, assuems that loudness is a subjective measure of the electrical energy transmitted along the auditory nerve to the central nervous system. The auditory system consists of the mechanical part modeled by a bandpass filter with a transfer function dependent on the sound pressure, and the electrical part where the signal is transformed into a half-wave reproduction represented by the electrical power in impulsive discharges transmitted along neurons comprising the auditory nerve. In the electrical part the neurons are distributed among artificial parallel channels with frequency bandwidths equal to 'critical bandwidths for loudness', within which loudness is constant for constant sound pressure. The total energy transmitted to the central nervous system is the sum of the energy transmitted in all channels, and the loudness is proportional to the square root of the total filtered sound energy distributed over all channels. The theory explains many psychoacoustic phenomena such as audible beats resulting from closely spaced tones, interaction of sound stimuli which affect the same neurons affecting loudness, and of individually subliminal sounds becoming audible if they lie within the same critical band.
Tjaden, Kris; Wilding, Greg
2011-01-01
This study examined the extent to which articulatory rate reduction and increased loudness were associated with adjustments in utterance-level measures of fundamental frequency (F(0)) variability for speakers with dysarthria and healthy controls that have been shown to impact on intelligibility in previously published studies. More generally, the current study sought to compare and contrast how a slower-than-normal rate and increased vocal loudness impact on a variety of utterance-level F(0) characteristics for speakers with dysarthria and healthy controls. Eleven speakers with Parkinson's disease, 15 speakers with multiple sclerosis, and 14 healthy control speakers were audio recorded while reading a passage in habitual, loud, and slow conditions. Magnitude production was used to elicit variations in rate and loudness. Acoustic measures of duration, intensity and F(0) were obtained. For all speaker groups, a slower-than-normal articulatory rate and increased vocal loudness had distinct effects on F(0) relative to the habitual condition, including a tendency for measures of F(0) variation to be greater in the loud condition and reduced in the slow condition. These results suggest implications for the treatment of dysarthria. Copyright © 2010 S. Karger AG, Basel.
Tjaden, Kris; Wilding, Greg
2011-01-01
Objective This study examined the extent to which articulatory rate reduction and increased loudness were associated with adjustments in utterance-level measures of fundamental frequency (F0) variability for speakers with dysarthria and healthy controls that have been shown to impact on intelligibility in previously published studies. More generally, the current study sought to compare and contrast how a slower-than-normal rate and increased vocal loudness impact on a variety of utterance-level F0 characteristics for speakers with dysarthria and healthy controls. Patients and Methods Eleven speakers with Parkinson's disease, 15 speakers with multiple sclerosis, and 14 healthy control speakers were audio recorded while reading a passage in habitual, loud, and slow conditions. Magnitude production was used to elicit variations in rate and loudness. Acoustic measures of duration, intensity and F0 were obtained. Results and Conclusions For all speaker groups, a slower-than-normal articulatory rate and increased vocal loudness had distinct effects on F0 relative to the habitual condition, including a tendency for measures of F0 variation to be greater in the loud condition and reduced in the slow condition. These results suggest implications for the treatment of dysarthria. PMID:20938199
47 CFR 73.4075 - Commercials, loud.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Commercials, loud. 73.4075 Section 73.4075 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.4075 Commercials, loud. See Memorandum Opinion and Order...
47 CFR 73.4075 - Commercials, loud.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Commercials, loud. 73.4075 Section 73.4075 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.4075 Commercials, loud. See Memorandum Opinion and Order...
NASA Astrophysics Data System (ADS)
Charbonneau, Jeremy
As the perceived quality of a product is becoming more important in the manufacturing industry, more emphasis is being placed on accurately predicting the sound quality of everyday objects. This study was undertaken to improve upon current prediction techniques with regard to the psychoacoustic descriptor of loudness and an improved binaural summation technique. The feasibility of this project was first investigated through a loudness matching experiment involving thirty-one subjects and pure tones of constant sound pressure level. A dependence of binaural summation on frequency was observed which had previously not been a subject of investigation in the reviewed literature. A follow-up investigation was carried out with forty-eight volunteers and pure tones of constant sensation level. Contrary to existing theories in literature the resulting loudness matches revealed an amplitude versus frequency relationship which confirmed the perceived increase in loudness when a signal was presented to both ears simultaneously as opposed to one ear alone. The resulting trend strongly indicated that the higher the frequency of the presented signal, the greater the increase in observed binaural summation. The results from each investigation were summarized into a single binaural summation algorithm and inserted into an improved time-varying loudness model. Using experimental techniques, it was demonstrated that the updated binaural summation algorithm was a considerable improvement over the state of the art approach for predicting the perceived binaural loudness. The improved function retained the ease of use from the original model while additionally providing accurate estimates of diotic listening conditions from monaural WAV files. It was clearly demonstrated using a validation jury test that the revised time-varying loudness model was a significant improvement over the previously standardized approach.
Evaluation of Extended-Wear Hearing Technology for Children with Hearing Loss.
Wolfe, Jace; Schafer, Erin; Martella, Natalie; Morais, Mila; Mann, Misty
2015-01-01
Research shows that many older children and teenagers who have mild to moderately severe sensorineural hearing loss do not use their hearing instruments during all waking hours. A variety of reasons may contribute toward this problem, including concerns about cosmetics associated with hearing aid use and the inconvenience of daily maintenance associated with hearing instruments. Extended-wear hearing instruments are inserted into the wearer's ear canal by an audiologist and are essentially invisible to outside observers. The goal of this study was to evaluate the potential benefits and limitations associated with use of extended-wear hearing instruments in a group of children with hearing loss. A two-way repeated measures design was used to examine performance differences obtained with the participants' daily-wear hearing instruments versus that obtained with extended-wear hearing instruments. Sixteen children, ages 10-17 yr old, with sensorineural hearing loss ranging from mild to moderately severe. Probe microphone measures were completed to evaluate the aided output of device. Behavioral test measures included word recognition in quiet, sentence recognition in noise, aided warble-tone thresholds, and psychophysical loudness scaling. Questionnaires were also administered to evaluate subjective performance with each hearing technology. Data logging suggested that many participants were not using their daily-wear hearing instruments during all waking hours (mean use was less than 6 h/day). Real ear probe microphone measurements indicated that a closer fit to the Desired Sensation Level Version 5 prescriptive targets was achieved with the children's daily-wear instruments when compared to the extended-wear instruments. There was no statistically significant difference in monosyllabic word recognition at 50 or 60 dBA obtained with the two hearing technologies. Sentence recognition in noise obtained with use of the extended-wear devices was, however, significantly better than what was obtained with the daily-wear hearing aids. Aided warble-tone thresholds indicated significantly better audibility for low-level sounds with use of the daily-wear hearing technology, but loudness scaling results produced mixed results. Specifically, the participants generally reported greater loudness perception with use of their daily-wear hearing aids at 2000 Hz, but use of the extended-wear hearing technology provided greater loudness perception at 4000 Hz. Finally, the participants reported higher levels of subjective performance with use of the extended-wear hearing instruments. Although some measures suggested that daily-wear hearing instruments provided better audibility than the extended-wear hearing devices, word recognition in quiet was similar with use of the two technologies, and sentence recognition in noise was better with the extended-wear hearing technology. In addition, the participants in this study reported better subjective benefit associated with the use of extended-wear hearing technology. Collectively, the results of this study suggest that extended-wear hearing technology is a viable option for older children and teenagers with mild to moderately severe hearing loss. American Academy of Audiology.
Leung, Yeptain; Oates, Jennifer; Chan, Siew Pang
2018-02-15
The aim of this study was to provide a systematic review of the aspects of verbal communication contributing to listener perceptions of speaker gender with a view to providing clinicians with guidance for the selection of the training goals when working with transsexual individuals. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) guidelines were adopted in this systematic review. Studies evaluating the contribution of aspects of verbal communication to listener perceptions of speaker gender were rated against a new risk of bias assessment tool. Relevant data were extracted, and narrative synthesis was then conducted. Meta-analyses were conducted when appropriate data were available. Thirty-eight articles met the eligibility criteria. Meta-analysis showed speaking fundamental frequency contributing to 41.6% of the variance in gender perception. Auditory-perceptual and acoustic measures of pitch, resonance, loudness, articulation, and intonation were found to be associated with listeners' perceptions of speaker gender. Tempo and stress were not significantly associated. Mixed findings were found as to the contribution of a breathy voice quality to gender perception. Nonetheless, there exists significant risk of bias in this body of research. Speech and language clinicians working with transsexual individuals may use the results of this review for goal setting. Further research is required to redress the significant risk of bias.
Hearing the music in the spectrum of hydrogen
NASA Astrophysics Data System (ADS)
LoPresto, Michael C.
2016-03-01
Throughout a general education course on sound and light aimed at music and art students, analogies between subjective perceptions of objective properties of sound and light waves are a recurring theme. Demonstrating that the pitch and loudness of musical sounds are related to the frequency and intensity of a sound wave is simple and students are easily able to draw the analogies with the color and brightness of light. When considering an entire spectrum, the presence of multiple frequencies and wavelengths of different intensities is perceived by the ear as sound quality, or musical timbre, while the perception of the eye is the tone or hue of a color. What follows is a description of a demonstration that draws the analogy between musical sound quality and the tone or hue of light in which the emission spectrum of hydrogen is considered and actually played as a musical chord.
The effect of loudness on the reverberance of music: reverberance prediction using loudness models.
Lee, Doheon; Cabrera, Densil; Martens, William L
2012-02-01
This study examines the auditory attribute that describes the perceived amount of reverberation, known as "reverberance." Listening experiments were performed using two signals commonly heard in auditoria: excerpts of orchestral music and western classical singing. Listeners adjusted the decay rate of room impulse responses prior to convolution with these signals, so as to match the reverberance of each stimulus to that of a reference stimulus. The analysis examines the hypothesis that reverberance is related to the loudness decay rate of the underlying room impulse response. This hypothesis is tested using computational models of time varying or dynamic loudness, from which parameters analogous to conventional reverberation parameters (early decay time and reverberation time) are derived. The results show that listening level significantly affects reverberance, and that the loudness-based parameters outperform related conventional parameters. Results support the proposed relationship between reverberance and the computationally predicted loudness decay function of sound in rooms. © 2012 Acoustical Society of America
10 Hz Amplitude Modulated Sounds Induce Short-Term Tinnitus Suppression
Neff, Patrick; Michels, Jakob; Meyer, Martin; Schecklmann, Martin; Langguth, Berthold; Schlee, Winfried
2017-01-01
Objectives: Acoustic stimulation or sound therapy is proposed as a main treatment option for chronic subjective tinnitus. To further probe the field of acoustic stimulations for tinnitus therapy, this exploratory study compared 10 Hz amplitude modulated (AM) sounds (two pure tones, noise, music, and frequency modulated (FM) sounds) and unmodulated sounds (pure tone, noise) regarding their temporary suppression of tinnitus loudness. First, it was hypothesized that modulated sounds elicit larger temporary loudness suppression (residual inhibition) than unmodulated sounds. Second, with manipulation of stimulus loudness and duration of the modulated sounds weaker or stronger effects of loudness suppression were expected, respectively. Methods: We recruited 29 participants with chronic tonal tinnitus from the multidisciplinary Tinnitus Clinic of the University of Regensburg. Participants underwent audiometric, psychometric and tinnitus pitch matching assessments followed by an acoustic stimulation experiment with a tinnitus loudness growth paradigm. In a first block participants were stimulated with all of the sounds for 3 min each and rated their subjective tinnitus loudness to the pre-stimulus loudness every 30 s after stimulus offset. The same procedure was deployed in the second block with the pure tone AM stimuli matched to the tinnitus frequency, manipulated in length (6 min), and loudness (reduced by 30 dB and linear fade out). Repeated measures mixed model analyses of variance (ANOVA) were calculated to assess differences in loudness growth between the stimuli for each block separately. Results: First, we found that all sounds elicit a short-term suppression of tinnitus loudness (seconds to minutes) with strongest suppression right after stimulus offset [F(6, 1331) = 3.74, p < 0.01]. Second, similar to previous findings we found that AM sounds near the tinnitus frequency produce significantly stronger tinnitus loudness suppression than noise [vs. Pink noise: t(27) = −4.22, p < 0.0001]. Finally, variants of the AM sound matched to the tinnitus frequency reduced in sound level resulted in less suppression while there was no significant difference observed for a longer stimulation duration. Moreover, feasibility of the overall procedure could be confirmed as scores of both tinnitus loudness and questionnaires were lower after the experiment [tinnitus loudness: t(27) = 2.77, p < 0.01; Tinnitus Questionnaire: t(27) = 2.06, p < 0.05; Tinnitus Handicap Inventory: t(27) = 1.92, p = 0.065]. Conclusion: Taken together, these results imply that AM sounds, especially in or around the tinnitus frequency, may induce larger suppression than unmodulated sounds. Future studies should thus evaluate this approach in longitudinal studies and real life settings. Furthermore, the putative neural relation of these sound stimuli with a modulation rate in the EEG α band to the observed tinnitus suppression should be probed with respective neurophysiological methods. PMID:28579955
Vanneste, Sven; De Ridder, Dirk
2012-01-01
Tinnitus is the perception of a sound in the absence of an external sound source. It is characterized by sensory components such as the perceived loudness, the lateralization, the tinnitus type (pure tone, noise-like) and associated emotional components, such as distress and mood changes. Source localization of quantitative electroencephalography (qEEG) data demonstrate the involvement of auditory brain areas as well as several non-auditory brain areas such as the anterior cingulate cortex (dorsal and subgenual), auditory cortex (primary and secondary), dorsal lateral prefrontal cortex, insula, supplementary motor area, orbitofrontal cortex (including the inferior frontal gyrus), parahippocampus, posterior cingulate cortex and the precuneus, in different aspects of tinnitus. Explaining these non-auditory brain areas as constituents of separable subnetworks, each reflecting a specific aspect of the tinnitus percept increases the explanatory power of the non-auditory brain areas involvement in tinnitus. Thus, the unified percept of tinnitus can be considered an emergent property of multiple parallel dynamically changing and partially overlapping subnetworks, each with a specific spontaneous oscillatory pattern and functional connectivity signature. PMID:22586375
Rate and Loudness Manipulations in Dysarthria: Acoustic and Perceptual Findings.
ERIC Educational Resources Information Center
Tjaden, Kris; Wilding, Gregory E.
2004-01-01
Both rate reduction and increased loudness reportedly are associated with an increase in the size of the articulatory-acoustic working space and improved acoustic distinctiveness for speakers with dysarthria. Improved intelligibility also has been reported. Few studies have directly compared rate and loudness effects for speakers with dysarthria,…
Binaural Loudness Summation in the Hearing Impaired.
ERIC Educational Resources Information Center
Hawkins, David B.; And Others
1987-01-01
Binaural loudness summation was measured using three different paradigms with 10 normally hearing and 20 bilaterally symmetrical high-frequency sensorineural hearing loss subjects. Binaural summation increased with presentation level using the loudness matching procedure, with values in the 6-10 dB range. Summation decreased with level using the…
NASA Astrophysics Data System (ADS)
Yi, Wei-Min; Wang, Feige; Wu, Xue-Bing; Yang, Jinyi; Bai, Jin-Ming; Fan, Xiaohui; Brandt, William N.; Ho, Luis C.; Zuo, Wenwen; Kim, Minjin; Wang, Ran; Yang, Qian; Zhang, Ju-jia; Wang, Fang; Wang, Jian-Guo; Ai, Yanli; Fan, Yu-Feng; Chang, Liang; Wang, Chuan-Jun; Lun, Bao-Li; Xin, Yu-Xin
2014-11-01
Very few of the z > 5 quasars discovered to date have been radio-loud, with radio-to-optical flux ratios (radio-loudness parameters) higher than 10. Here we report the discovery of an optically luminous radio-loud quasar, SDSS J013127.34-032100.1 (J0131-0321 in short), at z = 5.18 ± 0.01 using the Lijiang 2.4 m and Magellan telescopes. J0131-0321 has a spectral energy distribution consistent with that of radio-loud quasars. With an i-band magnitude of 18.47 and a radio flux density of 33 mJy, its radio-loudness parameter is ~100. The optical and near-infrared spectra taken by Magellan enable us to estimate its bolometric luminosity to be L bol ~ 1.1 × 1048 erg s-1, approximately 4.5 times greater than that of the most distant quasar known to date. The black hole mass of J0131-0321 is estimated to be 2.7 × 109 M ⊙, with an uncertainty up to 0.4 dex. Detailed physical properties of this high-redshift, radio-loud, potentially super-Eddington quasar can be probed in the future with more dedicated and intensive follow-up observations using multi-wavelength facilities.
The relationship between loudness intensity functions and the click-ABR wave V latency.
Serpanos, Y C; O'Malley, H; Gravel, J S
1997-10-01
To assess the relationship of loudness growth and the click-evoked auditory brain stem response (ABR) wave V latency-intensity function (LIF) in listeners with normal hearing or cochlear hearing loss. The effect of hearing loss configuration on the intensity functions was also examined. Behavioral and electrophysiological intensity functions were obtained using click stimuli of comparable intensities in listeners with normal hearing (Group I; n = 10), and cochlear hearing loss of flat (Group II; n = 10) or sloping (Group III; n = 10) configurations. Individual intensity functions were obtained from measures of loudness growth using the psychophysical methods of absolute magnitude estimation and production of loudness (geometrically averaged to provide the measured loudness function), and from the wave V latency measures of the ABR. Slope analyses for the behavioral and electrophysiological intensity functions were separately performed by group. The loudness growth functions for the groups with cochlear hearing loss approximated the normal function at high intensities, with overall slope values consistent with those reported from previous psychophysical research. The ABR wave V LIF for the group with a flat configuration of cochlear hearing loss approximated the normal function at high intensities, and was displaced parallel to the normal function for the group with sloping configuration. The relationship between the behavioral and electrophysiological intensity functions was examined at individual intensities across the range of the functions for each subject. A significant relationship was obtained between loudness and the ABR wave V LIFs for the groups with normal hearing and flat configuration of cochlear hearing loss; the association was not significant (p = 0.10) for the group with a sloping configuration of cochlear hearing loss. The results of this study established a relationship between loudness and the ABR wave V latency for listeners with normal hearing, and flat cochlear hearing loss. In listeners with a sloping configuration of cochlear hearing loss, the relationship was not significant. This suggests that the click-evoked ABR may be used to estimate loudness growth at least for individuals with normal hearing and those with a flat configuration of cochlear hearing loss. Predictive equations were derived to estimate loudness growth for these groups. The use of frequency-specific stimuli may provide more precise information on the nature of the relationship between loudness growth and the ABR wave V latency, particularly for listeners with sloping configurations of cochlear hearing loss.
The Dynamic Range Paradox: A Central Auditory Model of Intensity Change Detection
Simpson, Andrew J.R.; Reiss, Joshua D.
2013-01-01
In this paper we use empirical loudness modeling to explore a perceptual sub-category of the dynamic range problem of auditory neuroscience. Humans are able to reliably report perceived intensity (loudness), and discriminate fine intensity differences, over a very large dynamic range. It is usually assumed that loudness and intensity change detection operate upon the same neural signal, and that intensity change detection may be predicted from loudness data and vice versa. However, while loudness grows as intensity is increased, improvement in intensity discrimination performance does not follow the same trend and so dynamic range estimations of the underlying neural signal from loudness data contradict estimations based on intensity just-noticeable difference (JND) data. In order to account for this apparent paradox we draw on recent advances in auditory neuroscience. We test the hypothesis that a central model, featuring central adaptation to the mean loudness level and operating on the detection of maximum central-loudness rate of change, can account for the paradoxical data. We use numerical optimization to find adaptation parameters that fit data for continuous-pedestal intensity change detection over a wide dynamic range. The optimized model is tested on a selection of equivalent pseudo-continuous intensity change detection data. We also report a supplementary experiment which confirms the modeling assumption that the detection process may be modeled as rate-of-change. Data are obtained from a listening test (N = 10) using linearly ramped increment-decrement envelopes applied to pseudo-continuous noise with an overall level of 33 dB SPL. Increments with half-ramp durations between 5 and 50,000 ms are used. The intensity JND is shown to increase towards long duration ramps (p<10−6). From the modeling, the following central adaptation parameters are derived; central dynamic range of 0.215 sones, 95% central normalization, and a central loudness JND constant of 5.5×10−5 sones per ms. Through our findings, we argue that loudness reflects peripheral neural coding, and the intensity JND reflects central neural coding. PMID:23536749
Narayana, Shalini; Fox, Peter T.; Zhang, Wei; Franklin, Crystal; Robin, Donald A.; Vogel, Deanie; Ramig, Lorraine O.
2009-01-01
LSVT® LOUD (Lee Silverman Voice Treatment) is efficacious in the treatment of speech disorders in idiopathic Parkinson’s disease (IPD), particularly hypophonia. Functional imaging in patients with IPD has shown abnormalities in several speech regions and changes in these areas immediately following treatment. This study serves to extend the analysis by correlating changes of regional neural activity with the main behavioral change following treatment, namely, increased vocal intensity. Ten IPD participants with hypophonia were studied before and after LSVT LOUD. Cerebral blood flow during rest and reading conditions were measured by H215O-positron emission tomography. Z-score images were generated by contrasting reading with rest conditions for pre- and post-LSVT LOUD sessions. Neuronal activity during reading in the pre- versus post-LSVT LOUD contrast was correlated with corresponding change in vocal intensity to generate correlation images. Behaviorally, vocal intensity for speech tasks increased significantly after LSVT LOUD. The contrast and correlation analyses indicate a treatment-dependent shift to the right hemisphere with modification in the speech motor regions as well as in prefrontal and temporal areas. We interpret the modification of activity in these regions to be a top–down effect of LSVT LOUD. The absence of an effect of LSVT LOUD on the basal ganglion supports this argument. Our findings indicate that the therapeutic effect of LSVT LOUD in IPD hypophonia results from a shift in cortical activity to the right hemisphere. These findings demonstrate that the short-term changes in the speech motor and multimodal integration areas can occur in a top–down manner. PMID:19639554
Narayana, Shalini; Fox, Peter T; Zhang, Wei; Franklin, Crystal; Robin, Donald A; Vogel, Deanie; Ramig, Lorraine O
2010-02-01
LSVT LOUD (Lee Silverman Voice Treatment) is efficacious in the treatment of speech disorders in idiopathic Parkinson's disease (IPD), particularly hypophonia. Functional imaging in patients with IPD has shown abnormalities in several speech regions and changes in these areas immediately following treatment. This study serves to extend the analysis by correlating changes of regional neural activity with the main behavioral change following treatment, namely, increased vocal intensity. Ten IPD participants with hypophonia were studied before and after LSVT LOUD. Cerebral blood flow during rest and reading conditions were measured by H(2)(15)O-positron emission tomography. Z-score images were generated by contrasting reading with rest conditions for pre- and post-LSVT LOUD sessions. Neuronal activity during reading in the pre- versus post-LSVT LOUD contrast was correlated with corresponding change in vocal intensity to generate correlation images. Behaviorally, vocal intensity for speech tasks increased significantly after LSVT LOUD. The contrast and correlation analyses indicate a treatment-dependent shift to the right hemisphere with modification in the speech motor regions as well as in prefrontal and temporal areas. We interpret the modification of activity in these regions to be a top-down effect of LSVT LOUD. The absence of an effect of LSVT LOUD on the basal ganglion supports this argument. Our findings indicate that the therapeutic effect of LSVT LOUD in IPD hypophonia results from a shift in cortical activity to the right hemisphere. These findings demonstrate that the short-term changes in the speech motor and multimodal integration areas can occur in a top-down manner. (c) 2009 Wiley-Liss, Inc.
D'Agostino, Justin; Spehar, Stephanie N; Delgado, Roberto
2016-01-01
Researchers hypothesize that male loud calls play several roles in primate societies including in the context of intergroup spacing and spatial coordination. Field studies examining the behavioural correlates of vocalizations are essential to evaluate the function of these calls. This preliminary study, from July 2011 to January 2012, explores the behavioural contexts and correlates of male loud calls in a habituated group of red langurs (Presbytis rubicunda) in the Wehea Forest, East Kalimantan, Indonesia. In analysing 418 h of data collection, we find a total of 87 vocal behaviours, including bouts of multiple calls in rapid succession (i.e. calling events) and individual loud calls. In this sample, most vocal behaviour takes place in the morning with 59% of calling events occurring before 8.00 h. The mean rate of calling events is 0.12 events/h, and the mean rate of individual loud calls is 0.20 calls/h. The mean number of calling events per day is 1.31 (range: 0-4), and the mean number of individual loud calls per day is 2.81 (range: 0-13). The rate of calling events is highest in the context of intragroup conflict, followed by intergroup encounters, predator threat, group travel, and the highest number of individual loud calls occurred during intergroup encounters. Although these results are preliminary, they suggest that adult male loud calls among red langurs at Wehea may play a role in both intergroup spacing and social coordination, supporting the hypothesis that these calls can serve different functions. © 2016 S. Karger AG, Basel.
78 FR 70907 - Implementation of the Commercial Advertisement Loudness Mitigation (CALM) Act
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-27
... television industry can monitor and control the loudness level of digital TV programming. The rules took... references ITU-R BS.1770-3.''). As explained in the CALM Act Report and Order, the ITU-R BS.1770 measurement... includes improved guidance for measuring the loudness of surround programming in both its multichannel...
An examination of cue redundancy theory in cross-cultural decoding of emotions in music.
Kwoun, Soo-Jin
2009-01-01
The present study investigated the effects of structural features of music (i.e., variations in tempo, loudness, or articulation, etc.) and cultural and learning factors in the assignments of emotional meaning in music. Four participant groups, young Koreans, young Americans, older Koreans, and older Americans, rated emotional expressions of Korean folksongs with three adjective scales: happiness, sadness and anger. The results of the study are in accordance with the Cue Redundancy model of emotional perception in music, indicating that expressive music embodies both universal auditory cues that communicate the emotional meanings of music across cultures and cultural specific cues that result from cultural convention.
A factor analytical study of tinnitus complaint behaviour.
Jakes, S C; Hallam, R S; Chambers, C; Hinchcliffe, R
1985-01-01
Two separate factor analyses were conducted on various self-rated complaints about tinnitus and related neuro-otological symptoms, together with audiometric measurements of tinnitus 'intensity' (masking level and loudness matching levels). Two general tinnitus complaint factors were identified, i.e. 'intrusiveness of tinnitus' and 'distress due to tinnitus'. 3 specific tinnitus complaint factors were also found, i.e. 'sleep disturbance', 'medication use' and 'interference with passive auditory entertainments'. Other neuro-otological symptoms and the audiometric measures did not load on these factors. An exception was provided by loudness matches at 1 kHz, which had a small loading on the 'intrusiveness of tinnitus' factor. Self-rated loudness had a high loading on this factor. Otherwise, the loudness (either self-rated or determined by loudness matching) was unrelated to complaint dimensions. The clinical implications of the multifactorial nature of tinnitus complaint behaviour are considered.
[Subjective difficulties in young people related to extensive loud music listening].
Budimcić, Milenko; Ignatović, Snezana; Zivić, Ljubica
2010-01-01
For human ear, noise represents every undesirable and valueless sound. In disco clubs, as in some other places with loud music mostly attended by young people, the level of noise sometimes attains over 100 dB. As reported by numerous studies, a high noise level could induce subjective difficulties (ear buzzing, audition loss, vertigo and palpitations, anxiety, high blood pressure, decreased concentration, lowered memory storing). Assessment of subjective difficulties occurring in young people when staying in places with a high noise level (cafes, disco clubs, rock concerts), which can produce health problems, due to loud music, in association with demographic data, addictions and personal life style data. One of the goals is to find factors leading to subjective difficulties, which would be objectively studied in the second stage of the research and marked as early predictors of possible health problems. The study was conducted among 780 students of the Higher Healthcare School of Professional Studied in Belgrade. We used a questionnaire with 20 questions, divided into four categories: demographic data, case-history data, subjective problems and addictions of the subjects. In the statistical data processing we used the methods of descriptive and exploratory analysis, chi-square tests, correlation tests and Mantel-Haenszel odds ratio. After listening loud music, 54.0% of examined subjects felt ear buzzing, and 4.6% had hearing damage. The habit of visiting places with loud music, mostly once a week in duration of 2-3 hours per visit had 80.4% of subjects. The presence of subjective complaints after listening of loud music was in association with loud music listening and disco clubs visits.The major reasons of the present subjective difficulties could be predicated by listening of loud music and club visits (r = 0.918 and r = 0.857). A relative risk for subjective difficulties presentation was 1.599. According to the results of our study, over half of children develop loud music-induced subjective problems involving ear buzzing and occasionally hearing loss.
A Comparison of Presentation Levels to Maximize Word Recognition Scores
Guthrie, Leslie A.; Mackersie, Carol L.
2010-01-01
Background While testing suprathreshold word recognition at multiple levels is considered best practice, studies on practice patterns do not suggest that this is common practice. Audiologists often test at a presentation level intended to maximize recognition scores, but methods for selecting this level are not well established for a wide range of hearing losses. Purpose To determine the presentation level methods that resulted in maximum suprathreshold phoneme-recognition scores while avoiding loudness discomfort. Research Design Performance-intensity functions were obtained for 40 participants with sensorineural hearing loss using the Computer-Assisted Speech Perception Assessment. Participants had either gradually sloping (mild, moderate, moderately severe/severe) or steeply sloping losses. Performance-intensity functions were obtained at presentation levels ranging from 10 dB above the SRT to 5 dB below the UCL (uncomfortable level). In addition, categorical loudness ratings were obtained across a range of intensities using speech stimuli. Scores obtained at UCL – 5 dB (maximum level below loudness discomfort) were compared to four alternative presentation-level methods. The alternative presentation-level methods included sensation level (SL; 2 kHz reference, SRT reference), a fixed-level (95 dB SPL) method, and the most comfortable loudness level (MCL). For the SL methods, scores used in the analysis were selected separately for the SRT and 2 kHz references based on several criteria. The general goal was to choose levels that represented asymptotic performance while avoiding loudness discomfort. The selection of SLs varied across the range of hearing losses. Results Scores obtained using the different presentation-level methods were compared to scores obtained using UCL – 5 dB. For the mild hearing loss group, the mean phoneme scores were similar for all presentation levels. For the moderately severe/severe group, the highest mean score was obtained using UCL - 5 dB. For the moderate and steeply sloping groups, the mean scores obtained using 2 kHz SL were equivalent to UCL - 5 dB, whereas scores obtained using the SRT SL were significantly lower than those obtained using UCL - 5 dB. The mean scores corresponding to MCL and 95 dB SPL were significantly lower than scores for UCL - 5 dB for the moderate and the moderately severe/severe group. Conclusions For participants with mild to moderate gradually sloping losses and for those with steeply sloping losses, the UCL – 5 dB and the 2 kHz SL methods resulted in the highest scores without exceeding listeners' UCLs. For participants with moderately severe/severe losses, the UCL - 5 dB method resulted in the highest phoneme recognition scores. PMID:19594086
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Wei-Min; Bai, Jin-Ming; Zhang, Ju-jia
2014-11-10
Very few of the z > 5 quasars discovered to date have been radio-loud, with radio-to-optical flux ratios (radio-loudness parameters) higher than 10. Here we report the discovery of an optically luminous radio-loud quasar, SDSS J013127.34–032100.1 (J0131–0321 in short), at z = 5.18 ± 0.01 using the Lijiang 2.4 m and Magellan telescopes. J0131–0321 has a spectral energy distribution consistent with that of radio-loud quasars. With an i-band magnitude of 18.47 and a radio flux density of 33 mJy, its radio-loudness parameter is ∼100. The optical and near-infrared spectra taken by Magellan enable us to estimate its bolometric luminosity to be Lmore » {sub bol} ∼ 1.1 × 10{sup 48} erg s{sup –1}, approximately 4.5 times greater than that of the most distant quasar known to date. The black hole mass of J0131–0321 is estimated to be 2.7 × 10{sup 9} M {sub ☉}, with an uncertainty up to 0.4 dex. Detailed physical properties of this high-redshift, radio-loud, potentially super-Eddington quasar can be probed in the future with more dedicated and intensive follow-up observations using multi-wavelength facilities.« less
Hiller, Wolfgang; Goebel, Gerhard
2007-01-01
This study evaluates sociodemographic and clinical characteristics of patients reporting discrepant levels of tinnitus loudness and annoyance. 4958 subjects recruited from a national tinnitus association completed a comprehensive screening questionnaire including Klockhoff and Lindblom's loudness grading system and the psychometric Mini-TQ (Tinnitus Questionnaire). There was a moderate correlation of 0.45 between loudness and annoyance. Of the subjects reporting very loud tinnitus, about one third had only mild or moderate annoyance scores. They were not different from those with high annoyance regarding age, gender and tinnitus duration, but annoyance was increased when subjects had additional hearing loss (OR = 1.71), vertigo/dizziness (OR = 1.94) or hyperacusis (OR = 4.96). Another significant predictor was history of neurological disease (OR = 3.16). Subjects reported low annoyance despite high loudness more often if not feeling low/depressed and not considering themselves as victims of their noises. A specific psychological profile was found to characterize annoyed tinnitus sufferers. Permanent awareness of the noises, decreased ability to ignore them and concentration difficulties were reported frequently even when overall annoyance scores were comparatively low. It is concluded that the coexistence of tinnitus with hearing loss, vertigo/dizziness and hyperacusis as complicating otological conditions seems to be of clinical relevance for the prediction of high annoyance levels. Tinnitus loudness and annoyance are not necessarily congruent and should be assessed separately. (c) 2007 S. Karger AG, Basel.
IRAS observations of radio-quiet and radio-loud quasars
NASA Technical Reports Server (NTRS)
Neugebauer, G.; Soifer, B. T.; Miley, G.; Habing, H. J.; Young, E.; Low, F. J.; Beichman, C. A.; Clegg, P. E.; Harris, S.; Rowan-Robinson, M.
1984-01-01
Observations from 12 to 100 microns are presented of two radio-quiet and three radio-loud quasars. Over this wavelength range, all five have grossly similar continuum energy distributions. The continua of the radio-loud quasars are consistent with synchrotron radiation. There is an indication, however, of excess 100 micron emission in the two radio-quiet quasars.
Effects of Loud and Amplified Speech on Sentence and Word Intelligibility in Parkinson Disease
ERIC Educational Resources Information Center
Neel, Amy T.
2009-01-01
Purpose: In the two experiments in this study, the author examined the effects of increased vocal effort (loud speech) and amplification on sentence and word intelligibility in speakers with Parkinson disease (PD). Methods: Five talkers with PD produced sentences and words at habitual levels of effort and using loud speech techniques. Amplified…
Hall, Deborah A; Haider, Haula; Szczepek, Agnieszka J; Lau, Pia; Rabau, Sarah; Jones-Diette, Julie; Londero, Alain; Edvall, Niklas K; Cederroth, Christopher R; Mielczarek, Marzena; Fuller, Thomas; Batuecas-Caletrio, Angel; Brueggemen, Petra; Thompson, Dean M; Norena, Arnaud; Cima, Rilana F F; Mehta, Rajnikant L; Mazurek, Birgit
2016-06-01
There is no evidence-based guidance to facilitate design decisions for confirmatory trials or systematic reviews investigating treatment efficacy for adults with tinnitus. This systematic review therefore seeks to ascertain the current status of trial designs by identifying and evaluating the reporting of outcome domains and instruments in the treatment of adults with tinnitus. Records were identified by searching PubMed, EMBASE CINAHL, EBSCO, and CENTRAL clinical trial registries (ClinicalTrials.gov, ISRCTN, ICTRP) and the Cochrane Database of Systematic Reviews. Eligible records were those published from 1 July 2006 to 12 March 2015. Included studies were those reporting adults aged 18 years or older who reported tinnitus as a primary complaint, and who were enrolled into a randomised controlled trial, a before and after study, a non-randomised controlled trial, a case-controlled study or a cohort study, and written in English. Studies with fewer than 20 participants were excluded. Two hundred and twenty-eight studies were included. Thirty-five different primary outcome domains were identified spanning seven categories (tinnitus percept, impact of tinnitus, co-occurring complaints, quality of life, body structures and function, treatment-related outcomes and unclear or not specified). Over half the studies (55 %) did not clearly define the complaint of interest. Tinnitus loudness was the domain most often reported (14 %), followed by tinnitus distress (7 %). Seventy-eight different primary outcome instruments were identified. Instruments assessing multiple attributes of the impact of tinnitus were most common (34 %). Overall, 24 different patient-reported tools were used, predominantly the Tinnitus Handicap Inventory (15 %). Loudness was measured in diverse ways including a numerical rating scale (8 %), loudness matching (4 %), minimum masking level (1 %) and loudness discomfort level (1 %). Ten percent of studies did not clearly report the instrument used. Our findings indicate poor appreciation of the basic principles of good trial design, particularly the importance of specifying what aspect of therapeutic benefit is the main outcome. No single outcome was reported in all studies and there was a broad diversity of outcome instruments. The systematic review protocol is registered on PROSPERO (International Prospective Register of Systematic Reviews): CRD42015017525 . Registered on 12 March 2015 revised on 15 March 2016.
Krobath, I; Römer, H; Hartbauer, M
2017-01-01
Males of a trilling species in the Mecopoda complex produce conspicuous calling songs that consist of two motifs: an amplitude-modulated motif with alternating loud and soft segments (AM-motif) and a continuous, high-intensity trill. The function of these song motifs for female attraction and competition between males was investigated. We tested the hypothesis that males modify their signaling behavior depending on the social environment (presence/absence of females or rival males) when they compete for mates. Therefore, we analyzed acoustic signaling of males in three different situations: (1) solo singing, (2) acoustic interaction with another male, and (3) singing in the presence of a female. In addition, the preference of females for these song motifs and further song parameters was studied in two-choice experiments. As expected, females showed a preference for conspicuous and loud song elements, but nevertheless, males increased the proportion of the AM-motif in the presence of a female. In acoustic interactions, males reduced bout duration significantly compared to both other situations. However, song bouts in this situation still overlapped more than expected by chance, which indicates intentionally simultaneous singing. A multivariate statistical analysis revealed that the proportion of the AM-motif and the duration of loud segments within the AM-motif allow a reliable prediction of whether males sing in isolation, compete with another male, or sing in the presence of a female. These results indicate that the AM-motif plays a dominant role especially in close-range courtship and that males are challenged in finding a balance between attracting females and saving energy during repeated acoustic interactions. Males of acoustic insects often produce conspicuous calling songs that have a dual function in male-male competition and mate attraction. High signal amplitudes and signal rates are associated with high energetic costs for signal production. We would therefore predict that males adjust their signaling behavior according to their perception of the social context. Here we studied signal production and mate choice in a katydid, where males switch between loud and soft song segments in a dynamic way. Additionally, we examined the attractiveness of different song elements in female choice tests. Our results show how males of this katydid deal with the conflict of remaining attractive for females and competing with a costly signal with rivals.
Mooney, T Aran; Samson, Julia E; Schlunk, Andrea D; Zacarias, Samantha
2016-07-01
Sound is an abundant cue in the marine environment, yet we know little regarding the frequency range and levels which induce behavioral responses in ecologically key marine invertebrates. Here we address the range of sounds that elicit unconditioned behavioral responses in squid Doryteuthis pealeii, the types of responses generated, and how responses change over multiple sound exposures. A variety of response types were evoked, from inking and jetting to body pattern changes and fin movements. Squid responded to sounds from 80 to 1000 Hz, with response rates diminishing at the higher and lower ends of this frequency range. Animals responded to the lowest sound levels in the 200-400 Hz range. Inking, an escape response, was confined to the lower frequencies and highest sound levels; jetting was more widespread. Response latencies were variable but typically occurred after 0.36 s (mean) for jetting and 0.14 s for body pattern changes; pattern changes occurred significantly faster. These results demonstrate that squid can exhibit a range of behavioral responses to sound include fleeing, deimatic and protean behaviors, all of which are associated with predator evasion. Response types were frequency and sound level dependent, reflecting a relative loudness concept to sound perception in squid.
Flanagan, Sheila; Zorilă, Tudor-Cătălin; Stylianou, Yannis; Moore, Brian C J
2018-01-01
Auditory processing disorder (APD) may be diagnosed when a child has listening difficulties but has normal audiometric thresholds. For adults with normal hearing and with mild-to-moderate hearing impairment, an algorithm called spectral shaping with dynamic range compression (SSDRC) has been shown to increase the intelligibility of speech when background noise is added after the processing. Here, we assessed the effect of such processing using 8 children with APD and 10 age-matched control children. The loudness of the processed and unprocessed sentences was matched using a loudness model. The task was to repeat back sentences produced by a female speaker when presented with either speech-shaped noise (SSN) or a male competing speaker (CS) at two signal-to-background ratios (SBRs). Speech identification was significantly better with SSDRC processing than without, for both groups. The benefit of SSDRC processing was greater for the SSN than for the CS background. For the SSN, scores were similar for the two groups at both SBRs. For the CS, the APD group performed significantly more poorly than the control group. The overall improvement produced by SSDRC processing could be useful for enhancing communication in a classroom where the teacher's voice is broadcast using a wireless system.
NASA Astrophysics Data System (ADS)
Hyde, Jerald R.
2004-05-01
It is clear to those who ``listen'' to concert halls and evaluate their degree of acoustical success that it is quite difficult to separate the acoustical response at a given seat from the multi-modal perception of the whole event. Objective concert hall data have been collected for the purpose of finding a link with their related subjective evaluation and ultimately with the architectural correlates which produce the sound field. This exercise, while important, tends to miss the point that a concert or opera event utilizes all the senses of which the sound field and visual stimuli are both major contributors to the experience. Objective acoustical factors point to visual input as being significant in the perception of ``acoustical intimacy'' and with the perception of loudness versus distance in large halls. This paper will review the evidence of visual input as a factor in what we ``hear'' and introduce concepts of perceptual constancy, distance perception, static and dynamic visual stimuli, and the general process of the psychology of the integrated experience. A survey of acousticians on their opinions about the auditory-visual aspects of the concert hall experience will be presented. [Work supported in part from the Veneklasen Research Foundation and Veneklasen Associates.
Cortical encoding of pitch: Recent results and open questions
Walker, Kerry M.M.; Bizley, Jennifer K.; King, Andrew J.; Schnupp, Jan W.H.
2011-01-01
It is widely appreciated that the key predictor of the pitch of a sound is its periodicity. Neural structures which support pitch perception must therefore be able to reflect the repetition rate of a sound, but this alone is not sufficient. Since pitch is a psychoacoustic property, a putative cortical code for pitch must also be able to account for the relationship between the amount to which a sound is periodic (i.e. its temporal regularity) and the perceived pitch salience, as well as limits in our ability to detect pitch changes or to discriminate rising from falling pitch. Pitch codes must also be robust in the presence of nuisance variables such as loudness or timbre. Here, we review a large body of work on the cortical basis of pitch perception, which illustrates that the distribution of cortical processes that give rise to pitch perception is likely to depend on both the acoustical features and functional relevance of a sound. While previous studies have greatly advanced our understanding, we highlight several open questions regarding the neural basis of pitch perception. These questions can begin to be addressed through a cooperation of investigative efforts across species and experimental techniques, and, critically, by examining the responses of single neurons in behaving animals. PMID:20457240
ERIC Educational Resources Information Center
Spielman, Jennifer; Mahler, Leslie; Halpern, Angela; Gilley, Phllip; Klepitskaya, Olga; Ramig, Lorraine
2011-01-01
Purpose: Intensive voice therapy (LSVT[R]LOUD) can effectively manage voice and speech symptoms associated with idiopathic Parkinson disease (PD). This small-group study evaluated voice and speech in individuals with and without deep brain stimulation of the subthalamic nucleus (STN-DBS) before and after LSVT LOUD, to determine whether outcomes…
ERIC Educational Resources Information Center
Mefferd, Antje S.
2017-01-01
Purpose: This study sought to determine decoupled tongue and jaw displacement changes and their specific contributions to acoustic vowel contrast changes during slow, loud, and clear speech. Method: Twenty typical talkers repeated "see a kite again" 5 times in 4 speech conditions (typical, slow, loud, clear). Speech kinematics were…
Is there addiction to loud music? Findings in a group of non-professional pop/rock musicians.
Schmuziger, Nicolas; Patscheke, Jochen; Stieglitz, Rolf; Probst, Rudolf
2012-01-09
Listening to loud music may be connected to addictive behavior possibly leading to damaging effects on the cochlea. We hypothesized that members of non-professional pop/rock bands with regular exposure to loud music are more likely to show an addictive-like behavior for loud music than matched control subjects. Fifty non-professional musicians and 50 matched control subjects were asked to complete the Northeastern Music Listening Survey (NEMLS) with two basic components. The first comprises an adaptation of the validated Michigan Alcohol Screening Test (MAST) to study the addictive-like behavior towards loud music. The second comprises the criteria outlined by the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) of the American Psychiatric Society for the diagnosis of substance dependence. The NEMLS was scored using the same point system as used in the MAST. The DSM-IV criteria for substance dependence were met by nine of the musician group and by one control subject. Seven of these nine musicians also had a positive NEMLS score. Traits of addictive-like behavior to loud music were detected more often in members of nonprofessional pop/rock bands than in control subjects.
Dependence of loudness evaluation by drivers on vehicle styling.
Yoshida, Junji; Igata, Takumi
2012-12-01
Influence of participants' impressions of vehicle styling on loudness of acceleration sounds was investigated. A series of images of luxury and sporty vehicles were presented to the participants while acceleration sounds were being replayed. The results indicated that frequent drivers perceived that the sound associated with luxury vehicles was louder than that associated with sporty vehicles. On the other hand, infrequent drivers perceived almost no difference between the loudness of the two vehicle types. Then, the infrequent drivers underwent a pseudo-loudness evaluation test to increase amount of experience for listening vehicle sound with vehicle styling image. After the procedure, the influence of vehicle styling on loudness was investigated again for the infrequent drivers. The result showed that the influence for the infrequent drivers was quite different from that for the frequent drivers. The participants who rarely drove perceived that the sound associated with luxury vehicles was softer than that associated with sporty vehicles. Furthermore, a questionnaire was filled out by both groups to investigate their preferred vehicle characteristics such as exterior design and engine performance. As a result, loudness was clarified to depend on both the participants' impressions of vehicle styling and their preferred vehicle characteristics.
Investigating the Fraction of Radio-Loud Quasars with High Velocity Broad Emission LInes
NASA Astrophysics Data System (ADS)
Bhattacharjee, Anirban; Gilbert, Miranda; Brotherton, Michael S.
2018-06-01
Quasars show a bimodal distribution in their radio emission, with some having powerful radio-emitting jets (radio-loud), and most having weak or no jets (radio-quiet). Surveys have shown around 10% of of quasars have detectable radio emissions. These quasars are called radio-loud. Several multiwavelength studies have shown that radio-loud quasars have different properties than radio-quiet quasars. This fraction of radio-loud quasars to radio-quiet quasars has been assumed to be constant across all parameter space. In this study, we breakdown the parameter space with respect to the increasing velocity dispersion of broad emission lines. Our sample has been drawn from 2011 Shen et al. catalog of more than 100,000 quasars. In this study, we demonstrate that this fraction varies with respect to the increasing velocity dispersion (FWHM) of broad emission lines. We compare three different emission lines: H-Beta, MgII, and CIV. We observe with increasing FWHM of these three emission lines, fraction of radio-loud quasars within the subset increases. This poster presents our initial results into investigating whether the fraction of RL quasars remains 10% in different parameter space.
Probst, Thomas; Pryss, Rüdiger; Langguth, Berthold; Schlee, Winfried
2016-01-01
The psychological process how tinnitus loudness leads to tinnitus distress remains unclear. This cross-sectional study investigated the mediating role of the emotional state “stress level” and of the two components of the emotional state “arousal” and “valence” with N = 658 users of the “TrackYourTinnitus” smartphone application. Stress mediated the relationship between tinnitus loudness and tinnitus distress in a simple mediation model and even in a multiple mediation model when arousal and valence were held constant. Arousal mediated the loudness-distress relationship when holding valence constant, but not anymore when controlling for valence as well as for stress. Valence functioned as a mediator when controlling for arousal and even when holding arousal and stress constant. The direct effect of tinnitus loudness on tinnitus distress remained significant in all models. This study demonstrates that emotional states affect the process how tinnitus loudness leads to tinnitus distress. We thereby could show that the mediating influence of emotional valence is at least equally strong as the influence of stress. Implications of the findings for future research, assessment, and clinical management of tinnitus are discussed. PMID:26853815
Is there addiction to loud music? Findings in a group of non-professional pop/rock musicians
Schmuziger, Nicolas; Patscheke, Jochen; Stieglitz, Rolf; Probst, Rudolf
2012-01-01
Listening to loud music may be connected to addictive behavior possibly leading to damaging effects on the cochlea. We hypothesized that members of non-professional pop/rock bands with regular exposure to loud music are more likely to show an addictive-like behavior for loud music than matched control subjects. Fifty non-professional musicians and 50 matched control subjects were asked to complete the Northeastern Music Listening Survey (NEMLS) with two basic components. The first comprises an adaptation of the validated Michigan Alcohol Screening Test (MAST) to study the addictive-like behavior towards loud music. The second comprises the criteria outlined by the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) of the American Psychiatric Society for the diagnosis of substance dependence. The NEMLS was scored using the same point system as used in the MAST. The DSM-IV criteria for substance dependence were met by nine of the musician group and by one control subject. Seven of these nine musicians also had a positive NEMLS score. Traits of addictive-like behavior to loud music were detected more often in members of nonprofessional pop/rock bands than in control subjects. PMID:26557326
Bouwer, Fleur L; Werner, Carola M; Knetemann, Myrthe; Honing, Henkjan
2016-05-01
Beat perception is the ability to perceive temporal regularity in musical rhythm. When a beat is perceived, predictions about upcoming events can be generated. These predictions can influence processing of subsequent rhythmic events. However, statistical learning of the order of sounds in a sequence can also affect processing of rhythmic events and must be differentiated from beat perception. In the current study, using EEG, we examined the effects of attention and musical abilities on beat perception. To ensure we measured beat perception and not absolute perception of temporal intervals, we used alternating loud and soft tones to create a rhythm with two hierarchical metrical levels. To control for sequential learning of the order of the different sounds, we used temporally regular (isochronous) and jittered rhythmic sequences. The order of sounds was identical in both conditions, but only the regular condition allowed for the perception of a beat. Unexpected intensity decrements were introduced on the beat and offbeat. In the regular condition, both beat perception and sequential learning were expected to enhance detection of these deviants on the beat. In the jittered condition, only sequential learning was expected to affect processing of the deviants. ERP responses to deviants were larger on the beat than offbeat in both conditions. Importantly, this difference was larger in the regular condition than in the jittered condition, suggesting that beat perception influenced responses to rhythmic events in addition to sequential learning. The influence of beat perception was present both with and without attention directed at the rhythm. Moreover, beat perception as measured with ERPs correlated with musical abilities, but only when attention was directed at the stimuli. Our study shows that beat perception is possible when attention is not directed at a rhythm. In addition, our results suggest that attention may mediate the influence of musical abilities on beat perception. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
In dubio pro silentio - Even Loud Music Does Not Facilitate Strenuous Ergometer Exercise.
Kreutz, Gunter; Schorer, Jörg; Sojke, Dominik; Neugebauer, Judith; Bullack, Antje
2018-01-01
Background: Music listening is wide-spread in amateur sports. Ergometer exercise is one such activity which is often performed with loud music. Aim and Hypotheses: We investigated the effects of electronic music at different intensity levels on ergometer performance (physical performance, force on the pedal, pedaling frequency), perceived fatigue and heart rate in healthy adults. We assumed that higher sound intensity levels are associated with greater ergometer performance and less perceived effort, particularly for untrained individuals. Methods: Groups of high trained and low trained healthy males ( N = 40; age = 25.25 years; SD = 3.89 years) were tested individually on an ergometer while electronic dance music was played at 0, 65, 75, and 85 dB. Participants assessed their music experience during the experiment. Results: Majorities of participants rated the music as not too loud (65%), motivating (77.50%), appropriate for this sports exercise (90%), and having the right tempo (67.50%). Participants noticed changes in the acoustical environment with increasing intensity levels, but no further effects on any of the physical or other subjective measures were found for neither of the groups. Therefore, the main hypothesis must be rejected. Discussion: These findings suggest that high loudness levels do not positively influence ergometer performance. The high acceptance of loud music and perceived appropriateness could be based on erroneous beliefs or stereotypes. Reasons for the widespread use of loud music in fitness sports needs further investigation. Reducing loudness during fitness exercise may not compromise physical performance or perceived effort.
Barros, Caio G; Swardfager, Walter; Moreno, Sylvain; Bortz, Graziela; Ilari, Beatriz; Jackowski, Andrea P; Ploubidis, George; Little, Todd D; Lamont, Alexandra; Cogo-Moreira, Hugo
2017-01-01
Given the relationship between language acquisition and music processing, musical perception (MP) skills have been proposed as a tool for early diagnosis of speech and language difficulties; therefore, a psychometric instrument is needed to assess music perception in children under 10 years of age, a crucial period in neurodevelopment. We created a set of 80 musical stimuli encompassing seven domains of music perception to inform perception of tonal, atonal, and modal stimuli, in a random sample of 1006 children, 6-13 years of age, equally distributed from first to fifth grades, from 14 schools (38% private schools) in So Paulo State. The underlying model was tested using confirmatory factor analysis. A model encompassing seven orthogonal specific domains (contour, loudness, scale, timbre, duration, pitch, and meter) and one general music perception factor, the "m-factor," showed excellent fit indices. The m-factor, previously hypothesized in the literature but never formally tested, explains 93% of the reliable variance in measurement, while only 3.9% of the reliable variance could be attributed to the multidimensionality caused by the specific domains. The 80 items showed no differential item functioning based on sex, age, or enrolment in public vs. private school, demonstrating the important psychometric feature of invariance. Like Charles Spearman's g-factor of intelligence, the m-factor is robust and reliable. It provides a convenient measure of auditory stimulus apprehension that does not rely on verbal information, offering a new opportunity to probe biological and psychological relationships with music perception phenomena and the etiologies of speech and language disorders.
Assessing Music Perception in Young Children: Evidence for and Psychometric Features of the M-Factor
Barros, Caio G.; Swardfager, Walter; Moreno, Sylvain; Bortz, Graziela; Ilari, Beatriz; Jackowski, Andrea P.; Ploubidis, George; Little, Todd D.; Lamont, Alexandra; Cogo-Moreira, Hugo
2017-01-01
Given the relationship between language acquisition and music processing, musical perception (MP) skills have been proposed as a tool for early diagnosis of speech and language difficulties; therefore, a psychometric instrument is needed to assess music perception in children under 10 years of age, a crucial period in neurodevelopment. We created a set of 80 musical stimuli encompassing seven domains of music perception to inform perception of tonal, atonal, and modal stimuli, in a random sample of 1006 children, 6–13 years of age, equally distributed from first to fifth grades, from 14 schools (38% private schools) in So Paulo State. The underlying model was tested using confirmatory factor analysis. A model encompassing seven orthogonal specific domains (contour, loudness, scale, timbre, duration, pitch, and meter) and one general music perception factor, the “m-factor,” showed excellent fit indices. The m-factor, previously hypothesized in the literature but never formally tested, explains 93% of the reliable variance in measurement, while only 3.9% of the reliable variance could be attributed to the multidimensionality caused by the specific domains. The 80 items showed no differential item functioning based on sex, age, or enrolment in public vs. private school, demonstrating the important psychometric feature of invariance. Like Charles Spearman's g-factor of intelligence, the m-factor is robust and reliable. It provides a convenient measure of auditory stimulus apprehension that does not rely on verbal information, offering a new opportunity to probe biological and psychological relationships with music perception phenomena and the etiologies of speech and language disorders. PMID:28174518
Convery, Elizabeth; Keidser, Gitte
2011-03-01
Adults with severe and profound hearing loss tend to be long-term, full-time users of amplification who are highly reliant on their hearing aids. As a result of these characteristics, they are often reluctant to update their hearing aids when new features or signal-processing algorithms become available. Due to the electroacoustic constraints of older devices, many severely and profoundly hearing-impaired adults continue to wear hearing aids that provide more low- and mid-frequency gain and less high-frequency gain than would be prescribed by the National Acoustic Laboratories' revised formula with profound correction factor (NAL-RP). To investigate the effect of a gradual change in gain/frequency response on experienced hearing-aid wearers with moderately severe to profound hearing loss. Double-blind, randomized controlled trial. Twenty-three experienced adult hearing-aid users with severe and profound hearing loss participated in the study. Participants were selected for inclusion in the study if the gain/frequency response of their own hearing aids differed significantly from their NAL-RP prescription. Participants were assigned either to a control or to an experimental group balanced for aided ear three-frequency pure-tone average (PTA) and age. Participants were fitted with Siemens Artis 2 SP behind-the-ear (BTE) hearing aids that were matched to the gain/frequency response of their own hearing aids for a 65 dB SPL input level. The experimental group progressed incrementally to their NAL-RP targets over the course of 15 wk, while the control group maintained their initial settings throughout the study. Aided speech discrimination testing, loudness scaling, and structured questionnaires were completed at 3, 6, 9, 12, and 15 wk postfitting. A paired comparison between the old and new gain/frequency responses was completed at 1 and 15 wk postfitting. Statistical analysis was conducted to examine differences between the experimental and control groups and changes in objective performance and subjective perception over time. The results of the study showed that participants in the experimental group were subjectively accepting of the changes to their amplification characteristics, as evidenced by nonsignificant changes in the ratings of device performance over time. Perception of loudness, sound quality, speech intelligibility, and own voice volume did not change significantly throughout the study. Objectively, participants in the experimental group demonstrated poorer speech discrimination performance as the study progressed, although there was no change in objective loudness perception. According to the paired comparison, there was an overall subjective preference for the original gain/frequency response among all participants, although participants in the experimental group did show an increase in preference for the NAL-RP response by the end of the study. Based on the findings of this study, we suggest that undertaking a gradual change to a new gain/frequency response with severely and profoundly hearing-impaired adults is a feasible procedure. However, we recommend that clinicians select transition candidates carefully and initiate the procedure only if there is a clinical reason for doing so. A validated prescriptive formula should be used as a transition target, and speech discrimination performance should be monitored throughout the transition. American Academy of Audiology.
Emotional expression of noise: A cross-cultural study
NASA Astrophysics Data System (ADS)
Kuwano, S.; Namba, S.; Hashimoto, T.; Berglund, B.; Rui, Zheng Da; Schick, A.; Hoege, H.; Florentine, M.
1991-12-01
In our cross-cultural study of noise problems, the connotative meaning of the concepts of "loudness", "noisiness" and "annoyance" were examined by using semantic differential in five countries. All concepts, except for loudness in Japan and China, were found to have negative images. Japanese and Chinese loudness were judged as neutral. In the present study, emotional expressions of various noises were examined by using the method of selected description in five countries—Japan, Sweden, West Germany, China and the U.S.A. Subjects were asked to select the adjectives which they thought appropriate for expressing their impression of each noise. On the basis of the adjectives selected and cluster analysis, it was found that "loud" in Japan, Sweden and China has neutral connotations, while "loud" in Germany and the U.S.A. has negative connotations. It was also suggested that "noisy" and "annoying" are not differentiated in Japan, while in the other four countries these two adjectives are used in different ways.
Effects of utterance length and vocal loudness on speech breathing in older adults.
Huber, Jessica E
2008-12-31
Age-related reductions in pulmonary elastic recoil and respiratory muscle strength can affect how older adults generate subglottal pressure required for speech production. The present study examined age-related changes in speech breathing by manipulating utterance length and loudness during a connected speech task (monologue). Twenty-three older adults and twenty-eight young adults produced a monologue at comfortable loudness and pitch and with multi-talker babble noise playing in the room to elicit louder speech. Dependent variables included sound pressure level, speech rate, and lung volume initiation, termination, and excursion. Older adults produced shorter utterances than young adults overall. Age-related effects were larger for longer utterances. Older adults demonstrated very different lung volume adjustments for loud speech than young adults. These results suggest that older adults have a more difficult time when the speech system is being taxed by both utterance length and loudness. The data were consistent with the hypothesis that both young and older adults use utterance length in premotor speech planning processes.
Horizontal sound localization in cochlear implant users with a contralateral hearing aid.
Veugen, Lidwien C E; Hendrikse, Maartje M E; van Wanrooij, Marc M; Agterberg, Martijn J H; Chalupper, Josef; Mens, Lucas H M; Snik, Ad F M; John van Opstal, A
2016-06-01
Interaural differences in sound arrival time (ITD) and in level (ILD) enable us to localize sounds in the horizontal plane, and can support source segregation and speech understanding in noisy environments. It is uncertain whether these cues are also available to hearing-impaired listeners who are bimodally fitted, i.e. with a cochlear implant (CI) and a contralateral hearing aid (HA). Here, we assessed sound localization behavior of fourteen bimodal listeners, all using the same Phonak HA and an Advanced Bionics CI processor, matched with respect to loudness growth. We aimed to determine the availability and contribution of binaural (ILDs, temporal fine structure and envelope ITDs) and monaural (loudness, spectral) cues to horizontal sound localization in bimodal listeners, by systematically varying the frequency band, level and envelope of the stimuli. The sound bandwidth had a strong effect on the localization bias of bimodal listeners, although localization performance was typically poor for all conditions. Responses could be systematically changed by adjusting the frequency range of the stimulus, or by simply switching the HA and CI on and off. Localization responses were largely biased to one side, typically the CI side for broadband and high-pass filtered sounds, and occasionally to the HA side for low-pass filtered sounds. HA-aided thresholds better than 45 dB HL in the frequency range of the stimulus appeared to be a prerequisite, but not a guarantee, for the ability to indicate sound source direction. We argue that bimodal sound localization is likely based on ILD cues, even at frequencies below 1500 Hz for which the natural ILDs are small. These cues are typically perturbed in bimodal listeners, leading to a biased localization percept of sounds. The high accuracy of some listeners could result from a combination of sufficient spectral overlap and loudness balance in bimodal hearing. Copyright © 2016 Elsevier B.V. All rights reserved.
Weichenberger, Markus; Bauer, Martin; Kühler, Robert; Hensel, Johannes; Forlim, Caroline Garcia; Ihlenfeld, Albrecht; Ittermann, Bernd; Gallinat, Jürgen; Koch, Christian; Kühn, Simone
2017-01-01
In the present study, the brain's response towards near- and supra-threshold infrasound (IS) stimulation (sound frequency < 20 Hz) was investigated under resting-state fMRI conditions. The study involved two consecutive sessions. In the first session, 14 healthy participants underwent a hearing threshold-as well as a categorical loudness scaling measurement in which the individual loudness perception for IS was assessed across different sound pressure levels (SPL). In the second session, these participants underwent three resting-state acquisitions, one without auditory stimulation (no-tone), one with a monaurally presented 12-Hz IS tone (near-threshold) and one with a similar tone above the individual hearing threshold corresponding to a 'medium loud' hearing sensation (supra-threshold). Data analysis mainly focused on local connectivity measures by means of regional homogeneity (ReHo), but also involved independent component analysis (ICA) to investigate inter-regional connectivity. ReHo analysis revealed significantly higher local connectivity in right superior temporal gyrus (STG) adjacent to primary auditory cortex, in anterior cingulate cortex (ACC) and, when allowing smaller cluster sizes, also in the right amygdala (rAmyg) during the near-threshold, compared to both the supra-threshold and the no-tone condition. Additional independent component analysis (ICA) revealed large-scale changes of functional connectivity, reflected in a stronger activation of the right amygdala (rAmyg) in the opposite contrast (no-tone > near-threshold) as well as the right superior frontal gyrus (rSFG) during the near-threshold condition. In summary, this study is the first to demonstrate that infrasound near the hearing threshold may induce changes of neural activity across several brain regions, some of which are known to be involved in auditory processing, while others are regarded as keyplayers in emotional and autonomic control. These findings thus allow us to speculate on how continuous exposure to (sub-)liminal IS could exert a pathogenic influence on the organism, yet further (especially longitudinal) studies are required in order to substantialize these findings.
A principal components model of soundscape perception.
Axelsson, Östen; Nilsson, Mats E; Berglund, Birgitta
2010-11-01
There is a need for a model that identifies underlying dimensions of soundscape perception, and which may guide measurement and improvement of soundscape quality. With the purpose to develop such a model, a listening experiment was conducted. One hundred listeners measured 50 excerpts of binaural recordings of urban outdoor soundscapes on 116 attribute scales. The average attribute scale values were subjected to principal components analysis, resulting in three components: Pleasantness, eventfulness, and familiarity, explaining 50, 18 and 6% of the total variance, respectively. The principal-component scores were correlated with physical soundscape properties, including categories of dominant sounds and acoustic variables. Soundscape excerpts dominated by technological sounds were found to be unpleasant, whereas soundscape excerpts dominated by natural sounds were pleasant, and soundscape excerpts dominated by human sounds were eventful. These relationships remained after controlling for the overall soundscape loudness (Zwicker's N(10)), which shows that 'informational' properties are substantial contributors to the perception of soundscape. The proposed principal components model provides a framework for future soundscape research and practice. In particular, it suggests which basic dimensions are necessary to measure, how to measure them by a defined set of attribute scales, and how to promote high-quality soundscapes.
Laboratory study of effects of sonic boom shaping on subjective loudness and acceptability
NASA Technical Reports Server (NTRS)
Leatherwood, Jack D.; Sullivan, Brenda M.
1992-01-01
A laboratory study was conducted to determine the effects of sonic boom signature shaping on subjective loudness and acceptability. The study utilized the sonic boom simulator at the Langley Research Center. A wide range of symmetrical, front-shock-minimized signature shapes were investigated together with a limited number of asymmetrical signatures. Subjective loudness judgments were obtained from 60 test subjects by using an 11-point numerical category scale. Acceptability judgments were obtained using the method of constant stimuli. Results were used to assess the relative predictive ability of several noise metrics, determine the loudness benefits of detailed boom shaping, and derive laboratory sonic boom acceptability criteria. These results indicated that the A-weighted sound exposure level, the Stevens Mark 7 Perceived Level, and the Zwicker Loudness Level metrics all performed well. Significant reductions in loudness were obtained by increasing front-shock rise time and/or decreasing front-shock overpressure of the front-shock minimized signatures. In addition, the asymmetrical signatures were rated to be slightly quieter than the symmetrical front-shock-minimized signatures of equal A-weighted sound exposure level. However, this result was based on a limited number of asymmetric signatures. The comparison of laboratory acceptability results with acceptability data obtained in more realistic situations also indicated good agreement.
Why Do People Like Loud Sound? A Qualitative Study.
Welch, David; Fremaux, Guy
2017-08-11
Many people choose to expose themselves to potentially dangerous sounds such as loud music, either via speakers, personal audio systems, or at clubs. The Conditioning, Adaptation and Acculturation to Loud Music (CAALM) Model has proposed a theoretical basis for this behaviour. To compare the model to data, we interviewed a group of people who were either regular nightclub-goers or who controlled the sound levels in nightclubs (bar managers, musicians, DJs, and sound engineers) about loud sound. Results showed four main themes relating to the enjoyment of loud sound: arousal/excitement, facilitation of socialisation, masking of both external sound and unwanted thoughts, and an emphasis and enhancement of personal identity. Furthermore, an interesting incidental finding was that sound levels appeared to increase gradually over the course of the evening until they plateaued at approximately 97 dBA Leq around midnight. Consideration of the data generated by the analysis revealed a complex of influential factors that support people in wanting exposure to loud sound. Findings were considered in terms of the CAALM Model and could be explained in terms of its principles. From a health promotion perspective, the Social Ecological Model was applied to consider how the themes identified might influence behaviour. They were shown to influence people on multiple levels, providing a powerful system which health promotion approaches struggle to address.
Fraser, Matthew; McKay, Colette M.
2012-01-01
Temporal modulation transfer functions (TMTFs) were measured for six users of cochlear implants, using different carrier rates and levels. Unlike most previous studies investigating modulation detection, the experimental design limited potential effects of overall loudness cues. Psychometric functions (percent correct discrimination of modulated from unmodulated stimuli versus modulation depth) were obtained. For each modulation depth, each modulated stimulus was loudness balanced to the unmodulated reference stimulus, and level jitter was applied in the discrimination task. The loudness-balance data showed that the modulated stimuli were louder than the unmodulated reference stimuli with the same average current, thus confirming the need to limit loudness cues when measuring modulation detection. TMTFs measured in this way had a low-pass characteristic, with a cut-off frequency (at comfortably loud levels) similar to that for normal-hearing listeners. A reduction in level caused degradation in modulation detection efficiency and a lower-cut-off frequency (i.e. poorer temporal resolution). An increase in carrier rate also led to a degradation in modulation detection efficiency, but only at lower levels or higher modulation frequencies. When detection thresholds were expressed as a proportion of dynamic range, there was no effect of carrier rate for the lowest modulation frequency (50 Hz) at either level. PMID:22146425
In dubio pro silentio – Even Loud Music Does Not Facilitate Strenuous Ergometer Exercise
Kreutz, Gunter; Schorer, Jörg; Sojke, Dominik; Neugebauer, Judith; Bullack, Antje
2018-01-01
Background: Music listening is wide-spread in amateur sports. Ergometer exercise is one such activity which is often performed with loud music. Aim and Hypotheses: We investigated the effects of electronic music at different intensity levels on ergometer performance (physical performance, force on the pedal, pedaling frequency), perceived fatigue and heart rate in healthy adults. We assumed that higher sound intensity levels are associated with greater ergometer performance and less perceived effort, particularly for untrained individuals. Methods: Groups of high trained and low trained healthy males (N = 40; age = 25.25 years; SD = 3.89 years) were tested individually on an ergometer while electronic dance music was played at 0, 65, 75, and 85 dB. Participants assessed their music experience during the experiment. Results: Majorities of participants rated the music as not too loud (65%), motivating (77.50%), appropriate for this sports exercise (90%), and having the right tempo (67.50%). Participants noticed changes in the acoustical environment with increasing intensity levels, but no further effects on any of the physical or other subjective measures were found for neither of the groups. Therefore, the main hypothesis must be rejected. Discussion: These findings suggest that high loudness levels do not positively influence ergometer performance. The high acceptance of loud music and perceived appropriateness could be based on erroneous beliefs or stereotypes. Reasons for the widespread use of loud music in fitness sports needs further investigation. Reducing loudness during fitness exercise may not compromise physical performance or perceived effort. PMID:29867622
Frenzilli, Giada; Ryskalin, Larisa; Ferrucci, Michela; Cantafora, Emanuela; Chelazzi, Silvia; Giorgi, Filippo S; Lenzi, Paola; Scarcelli, Vittoria; Frati, Alessandro; Biagioni, Francesca; Gambardella, Stefano; Falleni, Alessandra; Fornai, Francesco
2017-01-01
Exposure to loud noise is a major environmental threat to public health. Loud noise exposure, apart from affecting the inner ear, is deleterious for cardiovascular, endocrine and nervous systems and it is associated with neuropsychiatric disorders. In this study we investigated DNA, neurotransmitters and immune-histochemical alterations induced by exposure to loud noise in three major brain areas (cerebellum, hippocampus, striatum) of Wistar rats. Rats were exposed to loud noise (100 dBA) for 12 h. The effects of noise on DNA integrity in all three brain areas were evaluated by using Comet assay. In parallel studies, brain monoamine levels and morphology of nigrostriatal pathways, hippocampus and cerebellum were analyzed at different time intervals (24 h and 7 days) after noise exposure. Loud noise produced a sudden increase in DNA damage in all the brain areas under investigation. Monoamine levels detected at 7 days following exposure were differently affected depending on the specific brain area. Namely, striatal but not hippocampal dopamine (DA) significantly decreased, whereas hippocampal and cerebellar noradrenaline (NA) was significantly reduced. This is in line with pathological findings within striatum and hippocampus consisting of a decrease in striatal tyrosine hydroxylase (TH) combined with increased Bax and glial fibrillary acidic protein (GFAP). Loud noise exposure lasting 12 h causes immediate DNA, and long-lasting neurotransmitter and immune-histochemical alterations within specific brain areas of the rat. These alterations may suggest an anatomical and functional link to explain the neurobiology of diseases which prevail in human subjects exposed to environmental noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunert-Bajraszewska, Magdalena; Katarzynski, Krzysztof; Siemiginowska, Aneta
2009-11-10
We present new results on X-ray properties of radio-loud broad absorption line (BAL) quasars and focus on broadband spectral properties of a high-ionization BAL (HiBAL) compact steep spectrum (CSS) radio-loud quasar 1045+352. This HiBAL quasar has a very complex radio morphology indicating either strong interactions between a radio jet and the surrounding interstellar medium or a possible re-start of the jet activity. We detected 1045+352 quasar in a short 5 ksec Chandra ACIS-S observation. We applied theoretical models to explain spectral energy distribution of 1045+352 and argue that non-thermal, inverse-Compton (IC) emission from the innermost parts of the radio jetmore » can account for a large fraction of the observed X-ray emission. In our analysis, we also consider a scenario in which the observed X-ray emission from radio-loud BAL quasars can be a sum of IC jet X-ray emission and optically thin corona X-ray emission. We compiled a sample of radio-loud BAL quasars that were observed in X-rays to date and report no correlation between their X-ray and radio luminosity. However, the radio-loud BAL quasars show a large range of X-ray luminosities and absorption columns. This is consistent with the results obtained earlier for radio-quiet BAL quasars and may indicate an orientation effect in BAL quasars or more complex dependence between X-ray emission, radio emission, and an orientation based on the radio morphology.« less
Loudness enhancement - Monaural, binaural, and dichotic
NASA Technical Reports Server (NTRS)
Elmasian, R.; Galambos, R.
1975-01-01
When one tone burst (T) precedes another (S) by 100 msec, variations in the intensity of T systematically influence the loudness of S. When T is more intense than S, S is increased; and when T is less intense, S loudness is decreased. This occurs in monaural, binaural, and dichotic paradigms of signal presentation. When T and S are presented to the same ear (monaural or binaural), there is more enhancement with less intersubject variability than when they are presented to different ears (dichotic paradigm). Monaural enhancements as large as 30 dB can readily be demonstrated, but decrements rarely exceed 5 dB. Possible physiological mechanisms are discussed for this loudness enhancement, which apparently shares certain characteristics with time-order error, assimilation, and temporal partial masking experiments.
Gupta, Neelima; Sharma, Arun; Singh, P P; Goyal, Abhishek; Sao, Rahul
2014-09-01
Exposure to loud sounds results in a mild to profound degree of temporary or permanent hearing loss. Though occupational noise exposure remains the most commonly identified cause of noise-induced hearing loss, potentially hazardous noise can be encountered during recreational activities. Unfortunately not much attention is being given to the increasing trend of prolonged exposure to noisy environment, in the younger generation of Indians. The purpose of our study was to know the knowledge of college students about the harmful effects of loud music, prevailing practices with regard to exposure to recreational music and the subjective effects that this exposure is causing if any. Cross Sectional survey of College Students (n = 940), from randomly selected colleges of Delhi University. Majority of students listened to music using music-enabled phones; earphones were preferred and 56.6 % participants listened to music on a loud volume. Effects experienced due to loud sound were headache (58 %), inability to concentrate (48 %), and ringing sensation in the ear (41.8 %). Only 2.7 % respondents used ear protection device in loud volume settings. Twenty-three percent respondents complained of transient decreased hearing and other effects after exposure to loud music. 83.8 % knew that loud sound has harmful effect on hearing but still only 2.7 % used protection device. The survey indicates that we need to generate more such epidemiological data and follow up studies on the high risk group; so as to be able to convincingly sensitize the Indian young generation to take care of their hearing and the policy makers to have more information and education campaigns for this preventable cause of deafness.
Noise alters hair-bundle mechanics at the cochlear apex
NASA Astrophysics Data System (ADS)
Strimbu, C. Elliott; Fridberger, Anders
2015-12-01
Exposure to loud sounds can lead to both permanent and short term changes in auditory sensitivity. Permanent hearing loss is often associated with gross changes in cochlear morphology including the loss of hair cells and auditory nerve fibers while the mechanisms of short term threshold shifts are much less well understood and may vary at different locations across the cochlea. Previous reports suggest that exposure to loud sounds leads to a decrease in the cochlear microphonic potential and in the stiffness of the organ of Corti. Because the cochlear microphonic reflects changes in the membrane potential of the hair cells, this suggests that hair-bundle motion should be reversibly altered following exposure to loud sounds. Using an in vitro preparation of the guinea pig temporal bone we investigate changes in the micro-mechanical response near the cochlear apex following a brief (up to 10 - 20 minutes) exposure to loud (˜ 120 dB) tones near the best frequency at this location. We use time-resolved confocal imaging to record the motion of outer hair cell bundles before and after acoustic overstimulation. We have also recorded larger-scale structural views of the organ of Corti before and after exposure to the loud sound. Conventional electrophysiological techniques are used measure the cochlear microphonic potential. As has been previously reported, following acoustic overexposure the cochlear microphonic declines in value and typically recovers on the order of 30 - 60 minutes. Hair-bundle trajectories are affected following the loud sound and typically recover on a somewhat faster time scale than the microphonic potential, although the results vary considerably across preparations. Preliminary results also suggest reversible changes in the hair cell's resting potential following the loud sound.
Why Do People Like Loud Sound? A Qualitative Study
Welch, David; Fremaux, Guy
2017-01-01
Many people choose to expose themselves to potentially dangerous sounds such as loud music, either via speakers, personal audio systems, or at clubs. The Conditioning, Adaptation and Acculturation to Loud Music (CAALM) Model has proposed a theoretical basis for this behaviour. To compare the model to data, we interviewed a group of people who were either regular nightclub-goers or who controlled the sound levels in nightclubs (bar managers, musicians, DJs, and sound engineers) about loud sound. Results showed four main themes relating to the enjoyment of loud sound: arousal/excitement, facilitation of socialisation, masking of both external sound and unwanted thoughts, and an emphasis and enhancement of personal identity. Furthermore, an interesting incidental finding was that sound levels appeared to increase gradually over the course of the evening until they plateaued at approximately 97 dBA Leq around midnight. Consideration of the data generated by the analysis revealed a complex of influential factors that support people in wanting exposure to loud sound. Findings were considered in terms of the CAALM Model and could be explained in terms of its principles. From a health promotion perspective, the Social Ecological Model was applied to consider how the themes identified might influence behaviour. They were shown to influence people on multiple levels, providing a powerful system which health promotion approaches struggle to address. PMID:28800097
NASA Technical Reports Server (NTRS)
Hellman, R. P.
1985-01-01
A large scale laboratory investigation of loudness, annoyance, and noisiness produced by single-tone-noise complexes was undertaken to establish a broader data base for quanitification and prediction of perceived annoyance of sounds containing tonal components. Loudness, annoyance, and noisiness were distinguished as separate, distinct, attributes of sound. Three different spectral patterns of broadband noise with and without added tones were studied: broadband-flat, low-pass, and high-pass. Judgments were obtained by absolute magnitude estimation supplement by loudness matching. The data were examined and evaluated to determine the potential effects of (1) the overall sound pressure level (SPL) of the noise-tone complex, (2) tone SPL, (3) noise SPL, (4) tone-to-noise ratio, (5) the frequency of the added tone, (6) noise spectral shape, and (7) subjective attribute judged on absolute magnitude of annoyance. Results showed that, in contrast to noisiness, loudness and annoyance growth behavior depends on the relationship between the frequency of the added tone and the spectral shape of the noise. The close correspondence between the frequency of the added tone and the spectral shape of the noise. The close correspondence between loundness and annoyance suggests that, to better understand perceived annoyance of sound mixtures, it is necessary to relate the results to basic auditory mechanisms governing loudness and masking.
Kastelein, Ronald A; Wensveen, Paul J; Terhune, John M; de Jong, Christ A F
2011-01-01
Equal-loudness functions describe relationships between the frequencies of sounds and their perceived loudness. This pilot study investigated the possibility of deriving equal-loudness contours based on the assumption that sounds of equal perceived loudness elicit equal reaction times (RTs). During a psychoacoustic underwater hearing study, the responses of two young female harbor seals to tonal signals between 0.125 and 100 kHz were filmed. Frame-by-frame analysis was used to quantify RT (the time between the onset of the sound stimulus and the onset of movement of the seal away from the listening station). Near-threshold equal-latency contours, as surrogates for equal-loudness contours, were estimated from RT-level functions fitted to mean RT data. The closer the received sound pressure level was to the 50% detection hearing threshold, the more slowly the animals reacted to the signal (RT range: 188-982 ms). Equal-latency contours were calculated relative to the RTs shown by each seal at sound levels of 0, 10, and 20 dB above the detection threshold at 1 kHz. Fifty percent detection thresholds are obtained with well-trained subjects actively listening for faint familiar sounds. When calculating audibility ranges of sounds for harbor seals in nature, it may be appropriate to consider levels 20 dB above this threshold.
Remnant radio-loud AGN in the Herschel-ATLAS field
NASA Astrophysics Data System (ADS)
Mahatma, V. H.; Hardcastle, M. J.; Williams, W. L.; Brienza, M.; Brüggen, M.; Croston, J. H.; Gurkan, G.; Harwood, J. J.; Kunert-Bajraszewska, M.; Morganti, R.; Röttgering, H. J. A.; Shimwell, T. W.; Tasse, C.
2018-04-01
Only a small fraction of observed active galactic nuclei (AGN) display large-scale radio emission associated with jets, yet these radio-loud AGN have become increasingly important in models of galaxy evolution. In determining the dynamics and energetics of the radio sources over cosmic time, a key question concerns what happens when their jets switch off. The resulting `remnant' radio-loud AGN have been surprisingly evasive in past radio surveys, and therefore statistical information on the population of radio-loud AGN in their dying phase is limited. In this paper, with the recent developments of Low-Frequency Array (LOFAR) and the Very Large Array, we are able to provide a systematically selected sample of remnant radio-loud AGN in the Herschel-ATLAS field. Using a simple core-detection method, we constrain the upper limit on the fraction of remnants in our radio-loud AGN sample to 9 per cent, implying that the extended lobe emission fades rapidly once the core/jets turn off. We also find that our remnant sample has a wide range of spectral indices (-1.5≤slant α ^{1400}_{150}≤slant -0.5), confirming that the lobes of some remnants may possess flat spectra at low frequencies just as active sources do. We suggest that, even with the unprecedented sensitivity of LOFAR, our sample may still only contain the youngest of the remnant population.
Pitch and Loudness from Tinnitus in Individuals with Noise-induced Hearing Loss
Flores, Leticia Sousa; Teixeira, Adriane Ribeiro; Rosito, Leticia Petersen Schmidt; Seimetz, Bruna Macagnin; Dall'Igna, Celso
2015-01-01
Introduction Tinnitus is one of the symptoms that affects individuals suffering from noise induced hearing loss. This condition can be disabling, leading the affected individual to turn away from work. Objective This literature review aims to analyze the possible association between gender and tinnitus pitch and loudness, the degree of hearing loss and the frequencies affected in subjects with noise-induced hearing loss. Methods This contemporary cohort study was conducted through a cross-sectional analysis. The study sample consisted of adults with unilateral or bilateral tinnitus, who had been diagnosed with noise-induced hearing loss. The patients under analysis underwent an otorhinolaryngological evaluation, pure tone audiometry, and acuphenometry. Results The study included 33 subjects with noise-induced hearing loss diagnoses, of which 22 (66.7%) were men. Authors observed no statistical difference between gender and loudness/pitch tinnitus and loudness/pitch in subjects with bilateral tinnitus. Authors found an inverse relation between tinnitus loudness with intensity greater hearing threshold and the average of the thresholds and the grade of hearing loss. The tinnitus pitch showed no association with higher frequency of hearing threshold. Conclusion Data analysis shows that, among the individuals evaluated, the greater the hearing loss, the lower the loudness of tinnitus. We did not observe an association between hearing loss and tinnitus pitch. PMID:27413408
Davidson, Lisa S; Skinner, Margaret W; Holstad, Beth A; Fears, Beverly T; Richter, Marie K; Matusofsky, Margaret; Brenner, Christine; Holden, Timothy; Birath, Amy; Kettel, Jerrica L; Scollie, Susan
2009-06-01
The purpose of this study was to examine the effects of a wider instantaneous input dynamic range (IIDR) setting on speech perception and comfort in quiet and noise for children wearing the Nucleus 24 implant system and the Freedom speech processor. In addition, children's ability to understand soft and conversational level speech in relation to aided sound-field thresholds was examined. Thirty children (age, 7 to 17 years) with the Nucleus 24 cochlear implant system and the Freedom speech processor with two different IIDR settings (30 versus 40 dB) were tested on the Consonant Nucleus Consonant (CNC) word test at 50 and 60 dB SPL, the Bamford-Kowal-Bench Speech in Noise Test, and a loudness rating task for four-talker speech noise. Aided thresholds for frequency-modulated tones, narrowband noise, and recorded Ling sounds were obtained with the two IIDRs and examined in relation to CNC scores at 50 dB SPL. Speech Intelligibility Indices were calculated using the long-term average speech spectrum of the CNC words at 50 dB SPL measured at each test site and aided thresholds. Group mean CNC scores at 50 dB SPL with the 40 IIDR were significantly higher (p < 0.001) than with the 30 IIDR. Group mean CNC scores at 60 dB SPL, loudness ratings, and the signal to noise ratios-50 for Bamford-Kowal-Bench Speech in Noise Test were not significantly different for the two IIDRs. Significantly improved aided thresholds at 250 to 6000 Hz as well as higher Speech Intelligibility Indices afforded improved audibility for speech presented at soft levels (50 dB SPL). These results indicate that an increased IIDR provides improved word recognition for soft levels of speech without compromising comfort of higher levels of speech sounds or sentence recognition in noise.
Measuring the Moment-to-Moment Variability of Tinnitus: The TrackYourTinnitus Smart Phone App.
Schlee, Winfried; Pryss, Rüdiger C; Probst, Thomas; Schobel, Johannes; Bachmeier, Alexander; Reichert, Manfred; Langguth, Berthold
2016-01-01
Tinnitus, the phantom perception of sound without a corresponding external sound, is a frequent disorder which causes significant morbidity. So far there is no treatment available that reliably reduces the tinnitus perception. The research is hampered by the large heterogeneity of tinnitus and the fact that the tinnitus perception fluctuates over time. It is therefore necessary to develop tools for measuring fluctuations of tinnitus perception over time and for analyzing data on single subject basis. However, this type of longitudinal measurement is difficult to perform using the traditional research methods such as paper-and-pencil questionnaires or clinical interviews. Ecological momentary assessment (EMA) represents a research concept that allows the assessment of subjective measurements under real-life conditions using portable electronic devices and thereby enables the researcher to collect longitudinal data under real-life conditions and high cost efficiency. Here we present a new method for recording the longitudinal development of tinnitus perception using a modern smartphone application available for iOS and Android devices with no costs for the users. The TrackYourTinnitus (TYT) app is available and maintained since April 2014. A number of 857 volunteers with an average age of 44.1 years participated in the data collection between April 2014 and February 2016. The mean tinnitus distress at the initial measurement was rated on average 13.9 points on the Mini-Tinnitus Questionnaire (Mini-TQ; max. 24 points). Importantly, we could demonstrate that the regular use of the TYT app has no significant negative influence on the perception of the tinnitus loudness nor on the tinnitus distress. The TYT app can therefore be proposed as a safe instrument for the longitudinal assessment of tinnitus perception in the everyday life of the patient.
Measuring the Moment-to-Moment Variability of Tinnitus: The TrackYourTinnitus Smart Phone App
Schlee, Winfried; Pryss, Rüdiger C.; Probst, Thomas; Schobel, Johannes; Bachmeier, Alexander; Reichert, Manfred; Langguth, Berthold
2016-01-01
Tinnitus, the phantom perception of sound without a corresponding external sound, is a frequent disorder which causes significant morbidity. So far there is no treatment available that reliably reduces the tinnitus perception. The research is hampered by the large heterogeneity of tinnitus and the fact that the tinnitus perception fluctuates over time. It is therefore necessary to develop tools for measuring fluctuations of tinnitus perception over time and for analyzing data on single subject basis. However, this type of longitudinal measurement is difficult to perform using the traditional research methods such as paper-and-pencil questionnaires or clinical interviews. Ecological momentary assessment (EMA) represents a research concept that allows the assessment of subjective measurements under real-life conditions using portable electronic devices and thereby enables the researcher to collect longitudinal data under real-life conditions and high cost efficiency. Here we present a new method for recording the longitudinal development of tinnitus perception using a modern smartphone application available for iOS and Android devices with no costs for the users. The TrackYourTinnitus (TYT) app is available and maintained since April 2014. A number of 857 volunteers with an average age of 44.1 years participated in the data collection between April 2014 and February 2016. The mean tinnitus distress at the initial measurement was rated on average 13.9 points on the Mini-Tinnitus Questionnaire (Mini-TQ; max. 24 points). Importantly, we could demonstrate that the regular use of the TYT app has no significant negative influence on the perception of the tinnitus loudness nor on the tinnitus distress. The TYT app can therefore be proposed as a safe instrument for the longitudinal assessment of tinnitus perception in the everyday life of the patient. PMID:28018210
... traffic on a busy street. Listening to loud music, especially on headphones, is a common cause of ... by Keeping the volume down when listening to music Wearing earplugs when using loud equipment NIH: National ...
A laboratory study of subjective response to sonic booms measured at White Sands Missile Range
NASA Technical Reports Server (NTRS)
Sullivan, Brenda M.; Leatherwood, Jack D.
1993-01-01
The Sonic Boom Simulator of the Langley Research Center was used to quantify subjective loudness response to boom signatures consisting of: (1) simulator reproductions of booms recently recorded at White Sands Missile Range; (2) idealized N-waves; and (3) idealized booms having intermediate shocks. The booms with intermediate shocks represented signatures derived from CFD predictions. The recorded booms represented those generated by F15 and T38 aircraft flyovers and represented a variety of waveforms reflecting the effects of propagation through a turbulent atmosphere. These waveforms included the following shape categories: N-waves, peaked, rounded, and U-shaped. Results showed that Perceived Level and Zwicker Loudness Level were good estimators of the loudness of turbulence modified sonic booms. No significant differences were observed between loudness responses for the several shape categories when expressed in terms of Perceived Level. Thus, Perceived Level effectively accounted for waveform differences due to turbulence. Idealized booms with intermediate shocks, however, were rated as being approximately 2.7 dB(PL) less loud than the recorded signatures. This difference was not accounted for by PL.
... Protect your hearing by wearing earplugs at loud music concerts and around noisy machinery, like in wood ... More on this topic for: Kids Can Loud Music Hurt My Ears? What Is an Ear Infection? ...
Four odontocete species change hearing levels when warned of impending loud sound.
Nachtigall, Paul E; Supin, Alexander Ya; Pacini, Aude F; Kastelein, Ronald A
2018-03-01
Hearing sensitivity change was investigated when a warning sound preceded a loud sound in the false killer whale (Pseudorca crassidens), the bottlenose dolphin (Tursiops truncatus), the beluga whale (Delphinaperus leucas) and the harbor porpoise (Phocoena phocoena). Hearing sensitivity was measured using pip-train test stimuli and auditory evoked potential recording. When the test/warning stimuli preceded a loud sound, hearing thresholds before the loud sound increased relative to the baseline by 13 to 17 dB. Experiments with multiple frequencies of exposure and shift provided evidence of different amounts of hearing change depending on frequency, indicating that the hearing sensation level changes were not likely due to a simple stapedial reflex. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Loudness enhancement: Monaural, binaural and dichotic
NASA Technical Reports Server (NTRS)
Elmasian, R. O.; Galambos, R.
1975-01-01
It is shown that when one tone burst precedes another by 100 msec variations in the intensity of the first systematically influences the loudness of second. When the first burst is more intense than the second, the second is increased and when the first burst is less intense, the loudness of the second is decreased. This occurs in monaural, binaural and dichotic paradigms of signal presentation. Where both bursts are presented to the same ear there is more enhancement with less intersubject variability than when they are presented to different ears. Monaural enhancements as large as 30 db can readily be demonstrated, but decrements rarely exceed 5 db. Possible physiological mechanisms are discussed for this loudness enhancement, which apparently shares certain characteristics with time-order-error, assimilation, and temporal partial masking experiments.
Loudness enhancement following contralateral stimulation.
NASA Technical Reports Server (NTRS)
Galambos, R.; Bauer, J.; Picton, T.; Squires, K.; Squires , N.
1972-01-01
The apparent loudness of a tone pip can be increased by 15 dB or more if it is preceded by a tone burst to the contralateral ear. The experiment is done by delaying the pip, S1, by a variable time, Delta-T, after the offset of a contralateral tone; the listener assesses the loudness of S1 by adjusting the intensity of a second tone pip, S2, that follows S1 by 1500 msec. Some parametric explorations of the phenomenon are reported here.
Loudness of dynamic stimuli in acoustic and electric hearing.
Zhang, C; Zeng, F G
1997-11-01
Traditional loudness models have been based on the average energy and the critical band analysis of steady-state sounds. However, most environmental sounds, including speech, are dynamic stimuli, in which the average level [e.g., the root-mean-square (rms) level] does not account for the large temporal fluctuations. The question addressed here was whether two stimuli of the same rms level but different peak levels would produce an equal loudness sensation. A modern adaptive procedure was used to replicate two classic experiments demonstrating that the sensation of "beats" in a two- or three-tone complex resulted in a louder sensation [E. Zwicker and H. Fastl, Psychoacoustics-Facts and Models (Springer-Verlag, Berlin, 1990)]. Two additional experiments were conducted to study exclusively the effects of the temporal envelope on the loudness sensation of dynamic stimuli. Loudness balance was performed by normal-hearing listeners between a white noise and a sinusoidally amplitude-modulated noise in one experiment, and by cochlear implant listeners between two harmonic stimuli of the same magnitude spectra, but different phase spectra, in the other experiment. The results from both experiments showed that, for two stimuli of the same rms level, the stimulus with greater temporal fluctuations sometimes produced a significantly louder sensation, depending on the temporal frequency and overall stimulus level. In normal-hearing listeners, the louder sensation was produced for the amplitude-modulated stimuli with modulation frequencies lower than 400 Hz, and gradually disappeared above 400 Hz, resulting in a low-pass filtering characteristic which bore some similarity to the temporal modulation transfer function. The extent to which loudness was greater was a nonmonotonic function of level in acoustic hearing and a monotonically increasingly function in electric hearing. These results suggest that the loudness sensation of a dynamic stimulus is not limited to a 100-ms temporal integration process, and may be determined jointly by a compression process in the cochlea and an expansion process in the brain. A level-dependent compression scheme that may better restore normal loudness of dynamic stimuli in hearing aids and cochlear implants is proposed.
... minute risks permanent hearing loss 110 Chain saw, rock concert 105 Personal stereo system at maximum level ... too. Doctors, parents, and educators worry about portable music players and other noisy gadgets damaging hearing in ...
MedlinePlus Videos and Cool Tools
... of Organizations Free Publications Glossary Have a question? Information specialists can answer your questions in English or ... us on Contact Us Privacy Accessibility Freedom of Information Act Site Map Website Policies Free Publications Content ...
... turn Javascript on. Protect Your Hearing Know which noises can cause damage. Wear earplugs when you are ... to 12 about the causes and prevention of noise-induced hearing loss. 110 Decibels Regular exposure of ...
Acoustic Trauma - Hearing Loss in Teenagers
... caused by exposure to loud noises, such as music played through headphones. The authors of another study ... going on around them while listening to the music, according to the AAP. See Music: How Loud ...
Documenting laryngeal change following prolonged loud reading. A videostroboscopic study.
Gelfer, M P; Andrews, M L; Schmidt, C P
1996-12-01
This study investigated the effects of prolonged loud reading on trained and untrained subjects. Subjects were eight young women singers, and eight young women with limited musical experience. Each subject underwent videostroboscopic examination prior to and following 1 h of prolonged loud reading. The pretest and posttest videotaped samples were randomized and presented to three experienced judges, who evaluated various aspects of laryngeal appearance and vibratory characteristics. Analyses of group data revealed that untrained subjects showed a small but significant increase in amplitude of vocal fold excursion following the experimental task. No significant differences were noted in the trained singer group. When individual variation was analyzed, it was found that most subjects did not show many changes from pretest to posttest. It was concluded that a l-h loud-reading task was not sufficient to induce notable laryngeal alterations.
Sonic Boom Mitigation Through Aircraft Design and Adjoint Methodology
NASA Technical Reports Server (NTRS)
Rallabhandi, Siriam K.; Diskin, Boris; Nielsen, Eric J.
2012-01-01
This paper presents a novel approach to design of the supersonic aircraft outer mold line (OML) by optimizing the A-weighted loudness of sonic boom signature predicted on the ground. The optimization process uses the sensitivity information obtained by coupling the discrete adjoint formulations for the augmented Burgers Equation and Computational Fluid Dynamics (CFD) equations. This coupled formulation links the loudness of the ground boom signature to the aircraft geometry thus allowing efficient shape optimization for the purpose of minimizing the impact of loudness. The accuracy of the adjoint-based sensitivities is verified against sensitivities obtained using an independent complex-variable approach. The adjoint based optimization methodology is applied to a configuration previously optimized using alternative state of the art optimization methods and produces additional loudness reduction. The results of the optimizations are reported and discussed.
Cheng, Tzu-Han; Tsai, Chen-Gia
2016-01-01
Although music and the emotion it conveys unfold over time, little is known about how listeners respond to shifts in musical emotions. A special technique in heavy metal music utilizes dramatic shifts between loud and soft passages. Loud passages are penetrated by distorted sounds conveying aggression, whereas soft passages are often characterized by a clean, calm singing voice and light accompaniment. The present study used heavy metal songs and soft sea sounds to examine how female listeners' respiration rates and heart rates responded to the arousal changes associated with auditory stimuli. The high-frequency power of heart rate variability (HF-HRV) was used to assess cardiac parasympathetic activity. The results showed that the soft passages of heavy metal songs and soft sea sounds expressed lower arousal and induced significantly higher HF-HRVs than the loud passages of heavy metal songs. Listeners' respiration rate was determined by the arousal level of the present music passage, whereas the heart rate was dependent on both the present and preceding passages. Compared with soft sea sounds, the loud music passage led to greater deceleration of the heart rate at the beginning of the following soft music passage. The sea sounds delayed the heart rate acceleration evoked by the following loud music passage. The data provide evidence that sound-induced parasympathetic activity affects listeners' heart rate in response to the following music passage. These findings have potential implications for future research on the temporal dynamics of musical emotions.
The Radio-Loud Narrow-Line Quasar SDSS J172206.03+565451.6
NASA Astrophysics Data System (ADS)
Komossa, Stefanie; Voges, Wolfgang; Adorf, Hans-Martin; Xu, Dawei; Mathur, Smita; Anderson, Scott F.
2006-03-01
We report identification of the radio-loud narrow-line quasar SDSS J172206.03+565451.6, which we found in the course of a search for radio-loud narrow-line active galactic nuclei (AGNs). SDSS J172206.03+565451.6 is only about the fourth securely identified radio-loud narrow-line quasar and the second-most radio loud, with a radio index R1.4~100-700. Its black hole mass, MBH~=(2-3)×107 Msolar estimated from Hβ line width and 5100 Å luminosity, is unusually small given its radio loudness, and the combination of mass and radio index puts SDSS J172206.03+565451.6 in a scarcely populated region of MBH-R diagrams. SDSS J172206.03+565451.6 is a classical narrow-line Seyfert 1-type object with FWHMHβ~=1490 km s-1, an intensity ratio of [O III]/Hβ~=0.7, and Fe II emission complexes with Fe II λ4570/Hβ~=0.7. The ionization parameter of its narrow-line region, estimated from the line ratio [O II]/[O III], is similar to Seyferts, and its high ratio of [Ne V]/[Ne III] indicates a strong EUV-to-soft X-ray excess. We advertise the combined usage of [O II]/[O III] and [Ne V]/[Ne III] diagrams as a useful diagnostic tool to estimate ionization parameters and to constrain the EUV-soft X-ray continuum shape relatively independently from other parameters.
Skilful force control in expert pianists.
Oku, Takanori; Furuya, Shinichi
2017-05-01
Dexterous object manipulation in skilful behaviours such as surgery, craft making, and musical performance involves fast, precise, and efficient control of force with the fingers. A challenge in playing musical instruments is the requirement of independent control of the magnitude and rate of force production, which typically vary in relation to loudness and tempo. However, it is unknown how expert musicians skilfully control finger force to elicit tones with a wide range of loudness and tempi. Here, we addressed this issue by comparing the variation of spatiotemporal characteristics of force during repetitive and simultaneous piano keystrokes in relation to the loudness and tempo between pianists and musically untrained individuals. While the peak key-descending velocity varied with loudness but not with tempo in both groups, the peak and impulse of the key-depressing force were smaller in pianists than in the non-musicians, specifically when eliciting loud tones, suggesting superior energetic efficiency in the trained individuals. The key-depressing force was more consistent across strikes in pianists than in the non-musicians at all loudness levels but only at slow tempi, confirming expertise-dependency of precise force control. A regression analysis demonstrated that individual differences in the keystroke rates when playing at the fastest tempo across the trained pianists were negatively associated with the force impulse during the key depression but not with the peak force only at the loudest tone. This suggests that rapid reductions of force following the key depression plays a role in considerably fast performance of repetitive piano keystrokes.
Modulation frequency discrimination with single and multiple channels in cochlear implant users
Galvin, John J.; Oba, Sandy; Başkent, Deniz; Fu, Qian-Jie
2015-01-01
Temporal envelope cues convey important speech information for cochlear implant (CI) users. Many studies have explored CI users’ single-channel temporal envelope processing. However, in clinical CI speech processors, temporal envelope information is processed by multiple channels. Previous studies have shown that amplitude modulation frequency discrimination (AMFD) thresholds are better when temporal envelopes are delivered to multiple rather than single channels. In clinical fitting, current levels on single channels must often be reduced to accommodate multi-channel loudness summation. As such, it is unclear whether the multi-channel advantage in AMFD observed in previous studies was due to coherent envelope information distributed across the cochlea or to greater loudness associated with multi-channel stimulation. In this study, single- and multi-channel AMFD thresholds were measured in CI users. Multi-channel component electrodes were either widely or narrowly spaced to vary the degree of overlap between neural populations. The reference amplitude modulation (AM) frequency was 100 Hz, and coherent modulation was applied to all channels. In Experiment 1, single- and multi-channel AMFD thresholds were measured at similar loudness. In this case, current levels on component channels were higher for single- than for multi-channel AM stimuli, and the modulation depth was approximately 100% of the perceptual dynamic range (i.e., between threshold and maximum acceptable loudness). Results showed no significant difference in AMFD thresholds between similarly loud single- and multi-channel modulated stimuli. In Experiment 2, single- and multi-channel AMFD thresholds were compared at substantially different loudness. In this case, current levels on component channels were the same for single-and multi-channel stimuli (“summation-adjusted” current levels) and the same range of modulation (in dB) was applied to the component channels for both single- and multi-channel testing. With the summation-adjusted current levels, loudness was lower with single than with multiple channels and the AM depth resulted in substantial stimulation below single-channel audibility, thereby reducing the perceptual range of AM. Results showed that AMFD thresholds were significantly better with multiple channels than with any of the single component channels. There was no significant effect of the distribution of electrodes on multi-channel AMFD thresholds. The results suggest that increased loudness due to multi-channel summation may contribute to the multi-channel advantage in AMFD, and that that overall loudness may matter more than the distribution of envelope information in the cochlea. PMID:25746914
A physical classification scheme for blazars
NASA Astrophysics Data System (ADS)
Landt, Hermine; Padovani, Paolo; Perlman, Eric S.; Giommi, Paolo
2004-06-01
Blazars are currently separated into BL Lacertae objects (BL Lacs) and flat spectrum radio quasars based on the strength of their emission lines. This is performed rather arbitrarily by defining a diagonal line in the Ca H&K break value-equivalent width plane, following Marchã et al. We readdress this problem and put the classification scheme for blazars on firm physical grounds. We study ~100 blazars and radio galaxies from the Deep X-ray Radio Blazar Survey (DXRBS) and 2-Jy radio survey and find a significant bimodality for the narrow emission line [OIII]λ5007. This suggests the presence of two physically distinct classes of radio-loud active galactic nuclei (AGN). We show that all radio-loud AGN, blazars and radio galaxies, can be effectively separated into weak- and strong-lined sources using the [OIII]λ5007-[OII]λ3727 equivalent width plane. This plane allows one to disentangle orientation effects from intrinsic variations in radio-loud AGN. Based on DXRBS, the strongly beamed sources of the new class of weak-lined radio-loud AGN are made up of BL Lacs at the ~75 per cent level, whereas those of the strong-lined radio-loud AGN include mostly (~97 per cent) quasars.
Stellar Dynamics and Star Formation Histories of z ∼ 1 Radio-loud Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barišić, Ivana; Van der Wel, Arjen; Chauké, Priscilla
We investigate the stellar kinematics and stellar populations of 58 radio-loud galaxies of intermediate luminosities ( L {sub 3} {sub GHz} > 10{sup 23} W Hz{sup −1}) at 0.6 < z < 1. This sample is constructed by cross-matching galaxies from the deep VLT/VIMOS LEGA-C spectroscopic survey with the VLA 3 GHz data set. The LEGA-C continuum spectra reveal for the first time stellar velocity dispersions and age indicators of z ∼ 1 radio galaxies. We find that z ∼ 1 radio-loud active galactic nucleus (AGN) occur exclusively in predominantly old galaxies with high velocity dispersions: σ {sub *} >more » 175 km s{sup −1}, corresponding to black hole masses in excess of 10{sup 8} M {sub ⊙}. Furthermore, we confirm that at a fixed stellar mass the fraction of radio-loud AGN at z ∼ 1 is five to 10 times higher than in the local universe, suggesting that quiescent, massive galaxies at z ∼ 1 switch on as radio AGN on average once every Gyr. Our results strengthen the existing evidence for a link between high black hole masses, radio loudness, and quiescence at z ∼ 1.« less
Gottermeier, L; De Filippo, C L; Block, M G
1991-08-01
Hearing aid fitting involves a two-phase process of preselection and evaluation (Seewald RC and Ross M. Amplification for the Hearing Impaired 1988:213-271). The purpose of the present study was to examine alternative procedures that clinicians might use in the evaluation phase to verify the adequacy of hearing aid preselection decisions for severely and profoundly hearing-impaired listeners. Bekesy tracking, loudness rating, and conventional bracketing procedures were used to determine threshold, most comfortable listening level, and uncomfortable listening level for 10 hearing-impaired young adults. Stimuli were pulsed pure tones of 500, 1000, and 2000 Hz and filtered words. Means and standard deviations of most comfortable listening levels and uncomfortable listening levels derived from loudness judgments of the 10 subjects showed only nominal differences across procedures. However, correlation analysis (Pearson r) indicated that individuals responded to the three procedures in varying ways, producing different loudness judgments and overall dynamic ranges. Thus, test procedure may influence the clinician's final evaluation of a preselected hearing aid. Initial work suggests that closed-set response categories such as loudness rating can limit measurement variability and potentially guide the clinician's evaluation of hearing aid preselection decisions.
Perceptual consequences of disrupted auditory nerve activity.
Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold
2005-06-01
Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique contribution of neural synchrony to sensory perception but also provide guidance for translational research in terms of better diagnosis and management of human communication disorders.
Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Green, Vanessa A; Alberti, Gloria; Boccasini, Adele; Smaldone, Angela; Oliva, Doretta; Bosco, Andrea
2014-08-01
Assessing automatic feedback technologies to promote safe travel and speech loudness control in two men with multiple disabilities, respectively. The men were involved in two single-case studies. In Study I, the technology involved a microprocessor, two photocells, and a verbal feedback device. The man received verbal alerting/feedback when the photocells spotted an obstacle in front of him. In Study II, the technology involved a sound-detecting unit connected to a throat and an airborne microphone, and to a vibration device. Vibration occurred when the man's speech loudness exceeded a preset level. The man included in Study I succeeded in using the automatic feedback in substitution of caregivers' alerting/feedback for safe travel. The man of Study II used the automatic feedback to successfully reduce his speech loudness. Automatic feedback can be highly effective in helping persons with multiple disabilities improve their travel and speech performance.
Validation of a Korean Version of the Tinnitus Handicap Questionnaire
Yoo, Ik Won; Hwang, Sun Jin; Hwang, Soon Young
2015-01-01
Objectives The goal of the present study was to evaluate the reliability and validity of the Korean version of the tinnitus handicap questionnaire (THQ-K). Methods A total of 60 patients were included in this study. Patients responded to the THQ-K, the tinnitus handicap inventory (THI), Beck's depression index (BDI), and the visual analogue scale (VAS) for loudness and pitch, loudness match, and minimum masking level (MML) test were performed. Results Internal consistency of the THQ-K was examined using Cronbach coefficient alpha. Cronbach alpha was 0.96. The THQ-K showed a significant correlation with THI, BDI, VAS for distress, and VAS for loudness, but no significant correlation with psychoacoustic measurement of tinnitus, such as loudness match, pitch match, and MML. Conclusion The THQ-K is a reliable and valid test for evaluating the degree of handicap due to tinnitus for both research and clinical use. PMID:26330911
Hall, Deborah A; Mehta, Rajnikant L; Fackrell, Kathryn
2018-03-08
The authors respond to a letter to the editor (Sabour, 2018) concerning the interpretation of validity in the context of evaluating treatment-related change in tinnitus loudness over time. The authors refer to several landmark methodological publications and an international standard concerning the validity of patient-reported outcome measurement instruments. The tinnitus loudness rating performed better against our reported acceptability criteria for (face and convergent) validity than did the tinnitus loudness matching test. It is important to distinguish between tests that evaluate the validity of measuring treatment-related change over time and tests that quantify the accuracy of diagnosing tinnitus as a case and non-case.
Optical microvariability of selected PG QSOs
NASA Astrophysics Data System (ADS)
Jang, Minhwan
2005-02-01
This is a preliminary report of the continuing search for significant optical microvariability in a selected sample of radio-quiet and radio-loud quasi-stellar objects (QSOs). Total of 24 Paloma-Green (PG) quasars are observed. Among them, 17 objects are classified as radio-quiet and seven objects are classified radio-loud. In this classification, the ratio R, radio to optical flux density, is required to be less than 1 in order to assure the objects are reasonably radio-quiet. Two out of 17 radio-quiet QSOs and six out of eight radio-loud QSOs were microvariable. This apparent contrast in microvariations between radio-quiet and radio-loud QSOs does not provide firm support for the theoretical model utilizing discrete events in accretion disks and implies substantial support for models based on propagating shocks on relativistic jets as the likely process responsible for producing most of the microvariations are observed in AGNs.
Thigpen, Nina N; Bartsch, Felix; Keil, Andreas
2017-04-01
Emotional experience changes visual perception, leading to the prioritization of sensory information associated with threats and opportunities. These emotional biases have been extensively studied by basic and clinical scientists, but their underlying mechanism is not known. The present study combined measures of brain-electric activity and autonomic physiology to establish how threat biases emerge in human observers. Participants viewed stimuli designed to differentially challenge known properties of different neuronal populations along the visual pathway: location, eye, and orientation specificity. Biases were induced using aversive conditioning with only 1 combination of eye, orientation, and location predicting a noxious loud noise and replicated in a separate group of participants. Selective heart rate-orienting responses for the conditioned threat stimulus indicated bias formation. Retinotopic visual brain responses were persistently and selectively enhanced after massive aversive learning for only the threat stimulus and dissipated after extinction training. These changes were location-, eye-, and orientation-specific, supporting the hypothesis that short-term plasticity in primary visual neurons mediates the formation of perceptual biases to threat. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The Relevance of Interoception in Chronic Tinnitus: Analyzing Interoceptive Sensibility and Accuracy
Lau, Pia; Miesen, Miriam; Wunderlich, Robert; Stein, Alwina; Engell, Alva; Gerlach, Alexander L.; Junghöfer, Markus; Ehring, Thomas
2015-01-01
In order to better understand tinnitus and distress associated with tinnitus, psychological variables such as emotional and cognitive processing are a central element in theoretical models of this debilitating condition. Interoception, that is, the perception of internal processes, may be such a psychological factor relevant to tinnitus. Against this background, 20 participants suffering from chronic tinnitus and 20 matched healthy controls were tested with questionnaires, assessing interoceptive sensibility, and participated in two tasks, assessing interoceptive accuracy: the Schandry task, a heartbeat estimation assignment, and a skin conductance fluctuations perception task assessing the participants' ability to perceive phasic increases in sympathetic activation were used. To test stress reactivity, a construct tightly connected to tinnitus onset, we also included a stress induction. No differences between the groups were found for interoceptive accuracy and sensibility. However, the tinnitus group tended to overestimate the occurrence of phasic activation. Loudness of the tinnitus was associated with reduced interoceptive performance under stress. Our results indicate that interoceptive sensibility and accuracy do not play a significant role in tinnitus. However, tinnitus might be associated with a tendency to overestimate physical changes. PMID:26583114
A neurophysiological approach to tinnitus: clinical implications.
Jastreboff, P J; Hazell, J W
1993-02-01
This paper presents a neurophysiological approach to tinnitus and discusses its clinical implications. A hypothesis of discordant damage of inner and outer hair cells systems in tinnitus generation is outlined. A recent animal model has facilitated the investigation of the mechanisms of tinnitus and has been further refined to allow for the measurement of tinnitus pitch and loudness. The analysis of the processes involved in tinnitus detection postulates the involvement of an abnormal increase of gain within the auditory system. Moreover, it provides a basis for treating patients with hyperacusis, which we are considering to be a pre-tinnitus state. Analysis of the process of tinnitus perception allows for the possibility of facilitating the process of tinnitus habituation for the purpose of its alleviation. The combining of theoretical analysis with clinical findings has resulted in the creation of a multidisciplinary Tinnitus Centre. The foundation of the Centre focuses on two goals: the clinical goal is to remove tinnitus perception from the patient's consciousness, while directing research toward finding a mechanism-based method for the suppression of tinnitus generators and processes responsible for enhancement of tinnitus-related neuronal activity.
Cheng, Tzu-Han; Tsai, Chen-Gia
2016-01-01
Although music and the emotion it conveys unfold over time, little is known about how listeners respond to shifts in musical emotions. A special technique in heavy metal music utilizes dramatic shifts between loud and soft passages. Loud passages are penetrated by distorted sounds conveying aggression, whereas soft passages are often characterized by a clean, calm singing voice and light accompaniment. The present study used heavy metal songs and soft sea sounds to examine how female listeners’ respiration rates and heart rates responded to the arousal changes associated with auditory stimuli. The high-frequency power of heart rate variability (HF-HRV) was used to assess cardiac parasympathetic activity. The results showed that the soft passages of heavy metal songs and soft sea sounds expressed lower arousal and induced significantly higher HF-HRVs than the loud passages of heavy metal songs. Listeners’ respiration rate was determined by the arousal level of the present music passage, whereas the heart rate was dependent on both the present and preceding passages. Compared with soft sea sounds, the loud music passage led to greater deceleration of the heart rate at the beginning of the following soft music passage. The sea sounds delayed the heart rate acceleration evoked by the following loud music passage. The data provide evidence that sound-induced parasympathetic activity affects listeners’ heart rate in response to the following music passage. These findings have potential implications for future research on the temporal dynamics of musical emotions. PMID:26925009
Mean and extreme radio properties of quasars and the origin of radio emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kratzer, Rachael M.; Richards, Gordon T.
2015-02-01
We investigate the evolution of both the radio-loud fraction (RLF) and (using stacking analysis) the mean radio loudness of quasars. We consider how these properties evolve as a function of redshift and luminosity, black hole (BH) mass and accretion rate, and parameters related to the dominance of a wind in the broad emission-line region. We match the FIRST source catalog to samples of luminous quasars (both spectroscopic and photometric), primarily from the Sloan Digital Sky Survey. After accounting for catastrophic errors in BH mass estimates at high redshift, we find that both the RLF and the mean radio luminosity increasemore » for increasing BH mass and decreasing accretion rate. Similarly, both the RLF and mean radio loudness increase for quasars that are argued to have weaker radiation line driven wind components of the broad emission-line region. In agreement with past work, we find that the RLF increases with increasing optical/UV luminosity and decreasing redshift, while the mean radio loudness evolves in the exact opposite manner. This difference in behavior between the mean radio loudness and the RLF in L−z may indicate selection effects that bias our understanding of the evolution of the RLF; deeper surveys in the optical and radio are needed to resolve this discrepancy. Finally, we argue that radio-loud (RL) and radio-quiet (RQ) quasars may be parallel sequences, but where only RQ quasars at one extreme of the distribution are likely to become RL, possibly through slight differences in spin and/or merger history.« less
Snoring significance in patients undergoing home sleep studies.
Hunsaker, Darrell H; Riffenburgh, Robert H
2006-05-01
To analyze the impact of snoring, independent of obstructive sleep apnea syndrome on patients referred for home sleep studies and to report a new technology for the reporting of snoring, using sophisticated sound collection and noise-canceling technology. A retrospective statistical review of consecutive anonymous data compiled from questionnaires and digital data of snoring loudness and duration measured at the upper lip during unattended home sleep studies in 4,860 patients referred for snoring and sleep-disturbed breathing. A strong relationship exists between a history of snoring and complaints of daytime sleepiness (80%), obesity (73%), and chronic fatigue (78%) (all yield P<0.001). By contrast, only 42% to 48% of patients without these symptoms complain of snoring. In 3 multiple-regression analyses, the percent of time snoring, average loudness, and peak loudness are all significantly predicted by the apnea hypopnea index (all P<0.003), body mass index (all P<0.001), and age (P=0.014). Daytime sleepiness was strongly predicted by percent time snoring (P=0.014), weakly by average loudness (P=0.046), and not at all by peak loudness (P=0.303). By using a pair of microphones placed at the upper lip, one that samples breath sounds and the other ambient sound and artifact noise, the NovaSOM QSG measures snoring while canceling ambient noise. The clinical impact of snoring on the patient as well as the bed partner, independent of obstructive sleep apnea syndrome, is an unrecognized factor in sleep-disturbed breathing. Measurable criteria to define snoring are suggested. Snoring loudness is not measured in most laboratory Polysomnograms. B-3b.
NASA Astrophysics Data System (ADS)
Anderson, Paul August
Loud noise in aquaria represents a cacophonous environment for captive fishes. I tested the effects of loud noise on acoustic communication, feeding behavior, courtship behavior, and the stress response of the lined seahorse, Hippocampus erectus. Total Root Mean Square (RMS) power of ambient noise to which seahorses are exposed in captivity varies widely but averages 126.1 +/- 0.8 deciBels with reference to one micropascal (dB re: 1 muPa) at the middle of the water column and 133.7 +/- 1.1 dB at the tank bottom, whereas ambient noise in the wild averages 119.6 +/- 3.5 dB. Hearing sensitivity of H. erectus, measured from auditory evoked potentials, demonstrated maximum spectrum-level sensitivities of 105.0 +/- 1.5 dB and 3.5 x 10-3 + 7.6 x 10-4 m/s2 at 200 Hz; which is characteristic of hearing generalists. H. erectus produces acoustic clicks with mean peak spectrum-level amplitudes of 94.3 +/- 0.9 dB at 232 +/- 16 Hz and 1.5 x 10 -3 +/- 1.9 x 10-4 m/s2 at 265 +/- 22 Hz. Frequency matching of clicks to best hearing sensitivity, and estimates of audition of broadband signals suggest that seahorses may hear conspecific clicks, especially in terms of particle motion. Behavioral investigations revealed that clicking did not improve prey capture proficiency. However, animals clicked more often as time progressed in a courtship sequence, and mates performed more courtship behaviors with control animals than with muted animals, lending additional evidence to the role of clicking as an acoustic signal during courtship. Despite loud noise and the role of clicking in communication, masking of the acoustic signal was not demonstrated. Seahorses exposed to loud noise in aquaria for one month demonstrated physiological, chronic stress responses: reduced weight and body condition, and increased heterophil to lymphocyte ratio. Behavioral alterations were characterized by greater mean and variance of activity among animals housed in loud tanks in the first week, followed by habituation. By week four, animals in loud tanks demonstrated variable performance of clicking and piping, putative distress behaviors. Despite the physiological stress response, animals in loud tanks did not reduce feeding response or courtship behavior, suggesting allostasis.
Improving Speech Perception in Noise with Current Focusing in Cochlear Implant Users
Srinivasan, Arthi G.; Padilla, Monica; Shannon, Robert V.; Landsberger, David M.
2013-01-01
Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical. PMID:23467170
Phonological perception by birds: budgerigars can perceive lexical stress.
Hoeschele, Marisa; Fitch, W Tecumseh
2016-05-01
Metrical phonology is the perceptual "strength" in language of some syllables relative to others. The ability to perceive lexical stress is important, as it can help a listener segment speech and distinguish the meaning of words and sentences. Despite this importance, there has been little comparative work on the perception of lexical stress across species. We used a go/no-go operant paradigm to train human participants and budgerigars (Melopsittacus undulatus) to distinguish trochaic (stress-initial) from iambic (stress-final) two-syllable nonsense words. Once participants learned the task, we presented both novel nonsense words, and familiar nonsense words that had certain cues removed (e.g., pitch, duration, loudness, or vowel quality) to determine which cues were most important in stress perception. Members of both species learned the task and were then able to generalize to novel exemplars, showing categorical learning rather than rote memorization. Tests using reduced stimuli showed that humans could identify stress patterns with amplitude and pitch alone, but not with only duration or vowel quality. Budgerigars required more than one cue to be present and had trouble if vowel quality or amplitude were missing as cues. The results suggest that stress patterns in human speech can be decoded by other species. Further comparative stress-perception research with more species could help to determine what species characteristics predict this ability. In addition, tests with a variety of stimuli could help to determine how much this ability depends on general pattern learning processes versus vocalization-specific cues.
Nachtigall, Paul E; Supin, Alexander Ya; Estaban, Jose-Antonio; Pacini, Aude F
2016-02-01
Ice-dwelling beluga whales are increasingly being exposed to anthropogenic loud sounds. Beluga's hearing sensitivity measured during a warning sound just preceding a loud sound was tested using pip-train stimuli and auditory evoked potential recording. When the test/warning stimulus with a frequency of 32 or 45 kHz preceded the loud sound with a frequency of 32 kHz and a sound pressure level of 153 dB re 1 μPa, 2 s, hearing thresholds before the loud sound increased relative to the baseline. The threshold increased up to 15 dB for the test frequency of 45 kHz and up to 13 dB for the test frequency of 32 kHz. These threshold increases were observed during two sessions of 36 trials each. Extinction tests revealed no change during three experimental sessions followed by a jump-like return to baseline thresholds. The low exposure level producing the hearing-dampening effect (156 dB re 1 µPa(2)s in each trial), and the manner of extinction, may be considered as evidence that the observed hearing threshold increases were a demonstration of conditioned dampening of hearing when the whale anticipated the quick appearance of a loud sound in the same way demonstrated in the false killer whale and bottlenose dolphin.
VizieR Online Data Catalog: Blazars equivalent widths and radio luminosity (Landt+, 2004)
NASA Astrophysics Data System (ADS)
Landt, H.; Padovani, P.; Perlman, E. S.; Giommi, P.
2004-07-01
Blazars are currently separated into BL Lacertae objects (BL Lacs) and flat spectrum radio quasars based on the strength of their emission lines. This is performed rather arbitrarily by defining a diagonal line in the Ca H&K break value-equivalent width plane, following Marcha et al. (1996MNRAS.281..425M). We readdress this problem and put the classification scheme for blazars on firm physical grounds. We study ~100 blazars and radio galaxies from the Deep X-ray Radio Blazar Survey (DXRBS, Cat. and ) and 2-Jy radio survey and find a significant bimodality for the narrow emission line [OIII]{lambda}5007. This suggests the presence of two physically distinct classes of radio-loud active galactic nuclei (AGN). We show that all radio-loud AGN, blazars and radio galaxies, can be effectively separated into weak- and strong-lined sources using the [OIII]{lambda}5007-[OII]{lambda}3727 equivalent width plane. This plane allows one to disentangle orientation effects from intrinsic variations in radio-loud AGN. Based on DXRBS, the strongly beamed sources of the new class of weak-lined radio-loud AGN are made up of BL Lacs at the ~75 per cent level, whereas those of the strong-lined radio-loud AGN include mostly (~97 per cent) quasars. (4 data files).
Bauer, Jay J; Mittal, Jay; Larson, Charles R; Hain, Timothy C
2006-04-01
The present study tested whether subjects respond to unanticipated short perturbations in voice loudness feedback with compensatory responses in voice amplitude. The role of stimulus magnitude (+/- 1,3 vs 6 dB SPL), stimulus direction (up vs down), and the ongoing voice amplitude level (normal vs soft) were compared across compensations. Subjects responded to perturbations in voice loudness feedback with a compensatory change in voice amplitude 76% of the time. Mean latency of amplitude compensation was 157 ms. Mean response magnitudes were smallest for 1-dB stimulus perturbations (0.75 dB) and greatest for 6-dB conditions (0.98 dB). However, expressed as gain, responses for 1-dB perturbations were largest and almost approached 1.0. Response magnitudes were larger for the soft voice amplitude condition compared to the normal voice amplitude condition. A mathematical model of the audio-vocal system captured the main features of the compensations. Previous research has demonstrated that subjects can respond to an unanticipated perturbation in voice pitch feedback with an automatic compensatory response in voice fundamental frequency. Data from the present study suggest that voice loudness feedback can be used in a similar manner to monitor and stabilize voice amplitude around a desired loudness level.
Tjaden, Kris; Sussman, Joan E; Wilding, Gregory E
2014-06-01
The perceptual consequences of rate reduction, increased vocal intensity, and clear speech were studied in speakers with multiple sclerosis (MS), Parkinson's disease (PD), and healthy controls. Seventy-eight speakers read sentences in habitual, clear, loud, and slow conditions. Sentences were equated for peak amplitude and mixed with multitalker babble for presentation to listeners. Using a computerized visual analog scale, listeners judged intelligibility or speech severity as operationally defined in Sussman and Tjaden (2012). Loud and clear but not slow conditions improved intelligibility relative to the habitual condition. With the exception of the loud condition for the PD group, speech severity did not improve above habitual and was reduced relative to habitual in some instances. Intelligibility and speech severity were strongly related, but relationships for disordered speakers were weaker in clear and slow conditions versus habitual. Both clear and loud speech show promise for improving intelligibility and maintaining or improving speech severity in multitalker babble for speakers with mild dysarthria secondary to MS or PD, at least as these perceptual constructs were defined and measured in this study. Although scaled intelligibility and speech severity overlap, the metrics further appear to have some separate value in documenting treatment-related speech changes.
Koch, Jennifer; Flemming, Jan; Zeffiro, Thomas; Rufer, Michael; Orr, Scott P.; Mueller-Pfeiffer, Christoph
2016-01-01
In the “loud-tone” procedure, a series of brief, loud, pure-tone stimuli are presented in a task-free situation. It is an established paradigm for measuring autonomic sensitization in posttraumatic stress disorder (PTSD). Successful use of this procedure during fMRI requires elicitation of brain responses that have sufficient signal-noise ratios when recorded in a supine, rather than sitting, position. We investigated the modulating effects of posture and stimulus spectral composition on peripheral psychophysiological responses to loud sounds. Healthy subjects (N = 24) weekly engaged in a loud-tone-like procedure that presented 500 msec, 95 dB sound pressure level, pure-tone or white-noise stimuli, either while sitting or supine and while peripheral physiological responses were recorded. Heart rate, skin conductance, and eye blink electromyographic responses were larger to white-noise than pure-tone stimuli (p’s < 0.001, generalized eta squared 0.073–0.076). Psychophysiological responses to the stimuli were similar in the sitting and supine position (p’s ≥ 0.082). Presenting white noise, rather than pure-tone, stimuli may improve the detection sensitivity of the neural concomitants of heightened autonomic responses by generating larger responses. Recording in the supine position appears to have little or no impact on psychophysiological response magnitudes to the auditory stimuli. PMID:27583659
Young adults' use and output level settings of personal music systems.
Torre, Peter
2008-10-01
There are growing concerns over noise exposure via personal music system use by young adults. One purpose of this study was to evaluate the prevalence of personal music system use and the listening patterns associated with these systems in a large sample of young adults. A second purpose of this study was to measure the dB SPL in the ear canal of young adults while they blindly set the volume of a personal music system to four settings. In the first study, the personal music system use survey was completed by 1016 students at various locations on the San Diego State University campus. Questions included sex, age, ethnicity, race, and whether or not they used a personal music system. Students who answered Yes to using a personal music system were instructed to complete the remaining 11 closed-set questions. These questions dealt with type of earphones used with the system, most common listening environment, length of time per day the system was used, and the volume setting. The differences between women and men and across ethnicity and race were evaluated for the questions. In the second study, a probe microphone placed in the ear canal of 32 participants was used to determine the dB SPL of four loudness categories at which the participants blindly set the level of a personal music system: low, medium or comfortable, loud, and very loud. In study 1, over 90% of the participants who completed the survey reported using a personal music system. Over 50% of those who use a personal music system reported listening between 1 and 3 hrs and almost 90% reported listening at either a medium or loud volume. Men were significantly more likely to report listening to their system for a longer duration compared with women and more likely to report listening at a very loud volume. There was a trend for Hispanic or Latino students to report listening for longer durations compared with Not Hispanic or Latino students, but this difference was not statistically significant. Black or African American students were significantly more likely to report listening to their personal music system between 3 and 5 hrs and more than 5 hrs and to report listening at a very loud volume compared with other racial groups. In study 2, the mean dB SPL values for low, medium or comfortable, loud, and very loud were 62.0, 71.6, 87.7, and 97.8 dB SPL, respectively. Men set the level of very loud significantly higher than women. It is clear that a vast majority of young adults who completed the personal music system use survey listen to a system using earphones. Most of the respondents listen between 1 and 3 hrs a day at a medium or loud volume. Based on the probe microphone measurement results, the volume settings for reported durations may not be hazardous for hearing. Long-term use of personal music systems, however, in combination with other noise exposures (i.e., recreational, occupational), and their effect on hearing remains a question for additional research.
Variability of measured sonic boom signatures. Volume 2: Data report
NASA Technical Reports Server (NTRS)
Elmer, K. R.; Joshi, M. C.
1994-01-01
Sonic boom signatures from two databases, the BOOMFILE and the XB-70, were analyzed in terms of C-weighted sound exposure level (CSEL), A-weighted sound exposure level (ASEL), and Stevens Mark VII perceived level (PLdB), as well as the more traditional peak positive overpressure and rise time. The variability of these parameters due to propagation through atmosphere was analyzed for different aircraft Mach number and altitude groups. The low Mach number/low altitude group had significantly greater variation in rise time, overpressure, and loudness level than the high Mach number/high altitude group. The loudness of measured booms were found to have a variation of up to 25 dB relative to the loudness of boom predicted for a non-turbulent atmosphere. This is due primarily to the steeper ray paths of the high Mach number/high altitude group and the corresponding shorter distances traveled by these rays through the lower atmosphere resulting in reduced refraction effects. The general trend of decreased overpressure and loudness level with increasing lateral distance was also seen. Sonic boom signatures from early morning flights had less variation in rise time and overpressure than afternoon flights because of reduced turbulence. Measures of asymmetry (difference between compression and expansion portion of the signature) showed that the variability in Delta loudness level was greater than the variability in Delta overpressure due to the large influence of turbulence on rise time. Lastly, analysis of data within 50 percent of lateral cutoff showed that the mean value for overpressure and loudness level was independent of time of day but that the frequency with which it occurred was greater in the morning. This is a clear indicator of increased turbulence in the afternoon.
How Stressful Is "Deep Bubbling"?
Tyrmi, Jaana; Laukkanen, Anne-Maria
2017-03-01
Water resistance therapy by phonating through a tube into the water is used to treat dysphonia. Deep submersion (≥10 cm in water, "deep bubbling") is used for hypofunctional voice disorders. Using it with caution is recommended to avoid vocal overloading. This experimental study aimed to investigate how strenuous "deep bubbling" is. Fourteen subjects, half of them with voice training, repeated the syllable [pa:] in comfortable speaking pitch and loudness, loudly, and in strained voice. Thereafter, they phonated a vowel-like sound both in comfortable loudness and loudly into a glass resonance tube immersed 10 cm into the water. Oral pressure, contact quotient (CQ, calculated from electroglottographic signal), and sound pressure level were studied. The peak oral pressure P(oral) during [p] and shuttering of the outer end of the tube was measured to estimate the subglottic pressure P(sub) and the mean P(oral) during vowel portions to enable calculation of transglottic pressure P(trans). Sensations during phonation were reported with an open-ended interview. P(sub) and P(oral) were higher in "deep bubbling" and P(trans) lower than in loud syllable phonation, but the CQ did not differ significantly. Similar results were obtained for the comparison between loud "deep bubbling" and strained phonation, although P(sub) did not differ significantly. Most of the subjects reported "deep bubbling" to be stressful only for respiratory and lip muscles. No big differences were found between trained and untrained subjects. The CQ values suggest that "deep bubbling" may increase vocal fold loading. Further studies should address impact stress during water resistance exercises. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Thinking Out Loud while Studying Text: Rehearsing Key Ideas.
ERIC Educational Resources Information Center
Muth, K. Denise; And Others
1988-01-01
A study involving 32 undergraduate students was conducted to identify mechanisms by which instructional objectives affect learning. Protocols for thinking out loud were examined for evidence of rehearsal activity. Results suggest that instructional objectives enhanced real-time rehearsal activity, recall, and reading time. (TJH)
Characteristics of Gamma-Ray Loud Blazars in the VLBA Imaging and Polarimetry Survey
NASA Technical Reports Server (NTRS)
Linford, J. D.; Taylor, G. B.; Romani, R. W.; Healey, S. E.; Helmboldt, J. F.; Readhead, A. C.; Reeves, R.; Richards, J. L.; Cotter, G.
2010-01-01
The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed as part of the VLBA Imaging and Polarimetry Survey. This large, flux-limited sample of active galactic nuclei (AGNs) provides insights into the mechanism that produces strong gamma-ray emission. At lower flux levels, radio flux density does not directly correlate with gamma-ray flux. We find that the LAT-detected BL Lac objects tend to be similar to the non-LAT BL Lac objects, but that the LAT-detected FSRQs are often significantly different from the non-LAT FSRQs. The differences between the gamma-ray loud and quiet FSRQS can be explained by Doppler boosting; these objects appear to require larger Doppler factors than those of the BL Lac objects. It is possible that the gamma-ray loud FSRQs are fundamentally different from the gamma-ray quiet FSRQs. Strong polarization at the base of the jet appears to be a signature for gamma-ray loud AGNs.
Sonic boom acceptability studies
NASA Technical Reports Server (NTRS)
Shepherd, Kevin P.; Sullivan, Brenda M.; Leatherwood, Jack D.; Mccurdy, David A.
1992-01-01
The determination of the magnitude of sonic boom exposure which would be acceptable to the general population requires, as a starting point, a method to assess and compare individual sonic booms. There is no consensus within the scientific and regulatory communities regarding an appropriate sonic boom assessment metric. Loudness, being a fundamental and well-understood attribute of human hearing was chosen as a means of comparing sonic booms of differing shapes and amplitudes. The figure illustrates the basic steps which yield a calculated value of loudness. Based upon the aircraft configuration and its operating conditions, the sonic boom pressure signature which reaches the ground is calculated. This pressure-time history is transformed to the frequency domain and converted into a one-third octave band spectrum. The essence of the loudness method is to account for the frequency response and integration characteristics of the auditory system. The result of the calculation procedure is a numerical description (perceived level, dB) which represents the loudness of the sonic boom waveform.
The impact of tinnitus characteristics and associated variables on tinnitus-related handicap.
Degeest, S; Corthals, P; Dhooge, I; Keppler, H
2016-01-01
This study aimed to determine the characteristics of tinnitus and tinnitus-related variables and explore their possible relationship with tinnitus-related handicap. Eighty-one patients with chronic tinnitus were included. The study protocol measured hearing status, tinnitus pitch, loudness, maskability and loudness discomfort levels. All patients filled in the Tinnitus Sample Case History Questionnaire, the Hyperacusis Questionnaire and the Tinnitus Handicap Inventory. The relationship of each variable with the Tinnitus Handicap Inventory score was evaluated by univariate and multivariate analyses. Five univariables were associated with the Tinnitus Handicap Inventory score: loudness discomfort level, subjective tinnitus loudness, tinnitus awareness, noise intolerance and Hyperacusis Questionnaire score. Multiple regression analysis showed that the Hyperacusis Questionnaire score and tinnitus awareness were independently associated with the Tinnitus Handicap Inventory score. Hyperacusis and tinnitus awareness were independently associated with the Tinnitus Handicap Inventory score. Questionnaires on tinnitus and hyperacusis are especially suited to providing additional insight into tinnitus-related handicap and are therefore useful for evaluating tinnitus patients.
Agreement and Reliability of Tinnitus Loudness Matching and Pitch Likeness Rating
Hoare, Derek J.; Edmondson-Jones, Mark; Gander, Phillip E.; Hall, Deborah A.
2014-01-01
The ability to reproducibly match tinnitus loudness and pitch is important to research and clinical management. Here we examine agreement and reliability of tinnitus loudness matching and pitch likeness ratings when using a computer-based method to measure the tinnitus spectrum and estimate a dominant tinnitus pitch, using tonal or narrowband sounds. Group level data indicated a significant effect of time between test session 1 and 2 for loudness matching, likely procedural or perceptual learning, which needs to be accounted in study design. Pitch likeness rating across multiple frequencies appeared inherently more variable and with no systematic effect of time. Dominant pitch estimates reached a level of clinical acceptability when sessions were spaced two weeks apart. However when dominant tinnitus pitch assessments were separated by three months, acceptable agreement was achieved only for group mean data, not for individual estimates. This has implications for prescription of some sound-based interventions that rely on accurate measures of individual dominant tinnitus pitch. PMID:25478690
NASA Astrophysics Data System (ADS)
KAWAI, K.; YANO, T.
2002-02-01
This paper reports an experimental study determining the effects of the type and loudness of individual sounds on the overall impression of the sound environment. Field and laboratory experiments were carried out. In each experiment, subjects evaluated the sound environment presented, which consisted of combinations of three individual sounds of road traffic, singing crickets and the murmuring of a river, with five bipolar adjective scales such as Good-Bad, Active-Calm and Natural-Artificial. Overall loudness had the strongest effect on most types of evaluations; relative SPL has a greater effect than overall loudness on a particular evaluation of the natural-artificial scale. The test sounds in the field experiment were generally evaluated as more good and more natural than those in the laboratory. The results of comparisons between laboratory and field sounds indicate a difference in the trend between them. This difference may be explained by the term of selective listening but that needs further investigation.
NASA Astrophysics Data System (ADS)
Han, Hyung-Suk
2012-12-01
The indoor noise of a ship is usually determined using the A-weighted sound pressure level. However, in order to better understand this phenomenon, evaluation parameters that more accurately reflect the human sense of hearing are required. To find the level of the satisfaction index of the noise inside a naval vessel such as "Loudness" and "Annoyance", psycho-acoustic evaluation of various sound recordings from the naval vessel was performed in a laboratory. The objective of this paper is to develop a single index of "Loudness" and "Annoyance" for noise inside a naval vessel according to a psycho-acoustic evaluation by using psychological responses such as Noise Rating (NR), Noise Criterion (NC), Room Criterion (RC), Preferred Speech Interference Level (PSIL) and loudness level. Additionally, in order to determine a single index of satisfaction for noise such as "Loudness" and "Annoyance", with respect to a human's sense of hearing, a back-propagation neural network is applied.
Fermi LAT Detection of a GeV Flare from the Radio-Loud Narrow-Line Sy1 1H 0323+342
NASA Astrophysics Data System (ADS)
Carpenter, Bryce; Ojha, Roopesh
2013-08-01
The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed increasing gamma-ray flux from a source positionally consistent with 1H 0323+342 (RA=03h24m41.1613s, Dec=+34d10m45.856s, J2000; Beasley et al. 2002, ApJS, 141, 13) at z= 0.061 (Marcha et al. 1996, MNRAS, 281, 425). This is the second nearest radio-loud Narrow-Line Seyfert 1 galaxy, a small and important class of gamma-ray loud AGN (Abdo et al.
Interpreting radiative efficiency in radio-loud AGNs
NASA Astrophysics Data System (ADS)
Hardcastle, Martin
2018-04-01
Radiative efficiency in radio-loud active galactic nuclei is governed by the accretion rate onto the central black hole rather than directly by the type of accreted matter; while it correlates with real differences in host galaxies and environments, it does not provide unambiguous information about particular objects.
Performance Assessment of Communication Enhancement Devices TEA HI Threat Headset
2015-08-01
while mitigating hearing loss and tinnitus caused by exposure to loud, steady-state and impulsive noise. Active devices should theoretically have...mitigating hearing loss and tinnitus caused by exposure to loud, steady-state and impulsive noise. The general approach for this assessment was to use
Bright Sneezes and Dark Coughs, Loud Sunlight and Soft Moonlight.
ERIC Educational Resources Information Center
Marks, Lawrence E.
1982-01-01
In a series of four experiments, subjects used scales of loudness, pitch, and brightness to evaluate the meanings of a variety of synesthetic metaphors--expressions in which words or phrases describing experiences proper to one sense modality transfer their meaning to another modality. (Author/PN)
Bastian, Robert W; Thomas, James P
2016-09-01
Assess the correlation between self-rating scales of talkativeness and loudness with various types of voice disorders. This is a retrospective study. A total of 974 patients were analyzed. The cohort study included 430 consecutive patients presenting to the senior author with voice complaints from December 1995 to December 1998. The case-control study added 544 consecutive patients referred to the same examiner from January 1988 to December 1998 for vocal fold examination before thyroid, parathyroid, and carotid surgery. Patient responses on seven-point Likert self-rating scales of talkativeness and loudness were compared with laryngeal disease. Mucosal lesions clearly associated with vibratory trauma are strongly associated with a high self-rating of talkativeness. Laryngeal deconditioning disorders were associated with a low self-rating of talkativeness. Use of a simple self-rating scale of vocal loudness and talkativeness during history taking can reliably orient the examiner to the types of voice disorders likely to be diagnosed subsequently during vocal capability testing and visual laryngeal examination. The high degree of talkativeness and loudness seen in vocal overdoers correlates well with mucosal disorders such as nodules, polyps, capillary ectasia, epidermoid inclusion cysts, and hemorrhage. A lower degree of talkativeness correlates with muscle deconditioning disorders such as vocal fold bowing, atrophy, presbyphonia, and vocal fatigue syndrome. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Park, H K; Bradley, J S
2009-07-01
This paper reports the results of an evaluation of the merits of standard airborne sound insulation measures with respect to subjective ratings of the annoyance and loudness of transmitted sounds. Subjects listened to speech and music sounds modified to represent transmission through 20 different walls with sound transmission class (STC) ratings from 34 to 58. A number of variations in the standard measures were also considered. These included variations in the 8-dB rule for the maximum allowed deficiency in the STC measure as well as variations in the standard 32-dB total allowed deficiency. Several spectrum adaptation terms were considered in combination with weighted sound reduction index (R(w)) values as well as modifications to the range of included frequencies in the standard rating contour. A STC measure without an 8-dB rule and an R(w) rating with a new spectrum adaptation term were better predictors of annoyance and loudness ratings of speech sounds. R(w) ratings with one of two modified C(tr) spectrum adaptation terms were better predictors of annoyance and loudness ratings of transmitted music sounds. Although some measures were much better predictors of responses to one type of sound than were the standard STC and R(w) values, no measure was remarkably improved for predicting annoyance and loudness ratings of both music and speech sounds.
Articulatory-to-Acoustic Relations in Response to Speaking Rate and Loudness Manipulations
ERIC Educational Resources Information Center
Mefferd, Antje S.; Green, Jordan R.
2010-01-01
Purpose: In this investigation, the authors determined the strength of association between tongue kinematic and speech acoustics changes in response to speaking rate and loudness manipulations. Performance changes in the kinematic and acoustic domains were measured using two aspects of speech production presumably affecting speech clarity:…
77 FR 40276 - Implementation of the Commercial Advertisement Loudness Mitigation (CALM) Act
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-09
... crafting effective rules ``due to the subjective nature of many of the factors that contribute to loudness... stages of distribution (i.e., production, post-production and real time production).\\25\\ It specifically... Reply''); Ex Parte Comments of Sens. Sheldon Whitehouse, Sherrod Brown, Tim Johnson, Claire McCaskill...
Loudness Change in Response to Dynamic Acoustic Intensity
ERIC Educational Resources Information Center
Olsen, Kirk N.; Stevens, Catherine J.; Tardieu, Julien
2010-01-01
Three experiments investigate psychological, methodological, and domain-specific characteristics of loudness change in response to sounds that continuously increase in intensity (up-ramps), relative to sounds that decrease (down-ramps). Timbre (vowel, violin), layer (monotone, chord), and duration (1.8 s, 3.6 s) were manipulated in Experiment 1.…
Improving speech perception in noise with current focusing in cochlear implant users.
Srinivasan, Arthi G; Padilla, Monica; Shannon, Robert V; Landsberger, David M
2013-05-01
Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical. Copyright © 2013 Elsevier B.V. All rights reserved.
To risk or not to risk: Anxiety and the calibration between risk perception and danger mitigation.
Notebaert, Lies; Masschelein, Stijn; Wright, Bridget; MacLeod, Colin
2016-06-01
Anxiety prepares an organism for dealing with threats by recruiting cognitive resources to process information about the threat, and by engaging physiological systems to prepare a response. Heightened trait anxiety is associated with biases in both these processes: high trait-anxious individuals tend to report heightened risk perceptions, and inappropriate engagement in danger mitigation behavior. However, no research has addressed whether the calibration between risk perception and danger mitigation behavior is affected by anxiety, though it is well recognized that this calibration is crucial for adaptive functioning. The current study aimed to examine whether anxiety is characterized by better or worse calibration of danger mitigation behavior to variations in risk magnitude. Low and high trait-anxious participants were presented with information about the likelihood and severity of a danger (loud noise burst) on each trial. Participants could decide to mitigate this danger by investing a virtual coin, at the cost of losing danger mitigation ability on subsequent trials. Importantly, level of risk likelihood and severity were varied independently, and the multiplicative relationship between the 2 defined total danger. Multilevel modeling showed that the magnitude of total danger predicted the probability of coin investments, over and above the effects of risk likelihood and severity, suggesting that participants calibrated their danger mitigation behavior to integrated risk information. Crucially, this calibration was affected by trait anxiety, indicating better calibration in high trait-anxious individuals. These results are discussed in light of existing knowledge and models of the effect of anxiety on risk perception and decision-making. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
2015-07-01
providing a hear-thru, or active capability while mitigating hearing loss and tinnitus caused by exposure to loud, steady-state and impulse noise. Active...loss and tinnitus caused by exposure to loud, steady-state and impulse noise. The general approach was to use ANSI standard measurement procedures
Decibels via Loudness--Distance Properties of a Loudspeaker
ERIC Educational Resources Information Center
Bates, Alan
2014-01-01
Loudness, or sound intensity level, is a human perceived or subjective measurement with units, decibels, based on the response of the human ear to different sound intensities. The response of the human ear at fixed frequency is close to being logarithmic. The experiment reported here investigates the relationship between measured sound intensity…
Structured Counseling for Auditory Dynamic Range Expansion.
Gold, Susan L; Formby, Craig
2017-02-01
A structured counseling protocol is described that, when combined with low-level broadband sound therapy from bilateral sound generators, offers audiologists a new tool for facilitating the expansion of the auditory dynamic range (DR) for loudness. The protocol and its content are specifically designed to address and treat problems that impact hearing-impaired persons who, due to their reduced DRs, may be limited in the use and benefit of amplified sound from hearing aids. The reduced DRs may result from elevated audiometric thresholds and/or reduced sound tolerance as documented by lower-than-normal loudness discomfort levels (LDLs). Accordingly, the counseling protocol is appropriate for challenging and difficult-to-fit persons with sensorineural hearing losses who experience loudness recruitment or hyperacusis. Positive treatment outcomes for individuals with the former and latter conditions are highlighted in this issue by incremental shifts (improvements) in LDL and/or categorical loudness judgments, associated reduced complaints of sound intolerance, and functional improvements in daily communication, speech understanding, and quality of life leading to improved hearing aid benefit, satisfaction, and aided sound quality, posttreatment.
Lee, Hyun-Ho; Lee, Sang-Kwon
2009-09-01
Booming sound is one of the important sounds in a passenger car. The aim of the paper is to develop the objective evaluation method of interior booming sound. The development method is based on the sound metrics and ANN (artificial neural network). The developed method is called the booming index. Previous work maintained that booming sound quality is related to loudness and sharpness--the sound metrics used in psychoacoustics--and that the booming index is developed by using the loudness and sharpness for a signal within whole frequency between 20 Hz and 20 kHz. In the present paper, the booming sound quality was found to be effectively related to the loudness at frequencies below 200 Hz; thus the booming index is updated by using the loudness of the signal filtered by the low pass filter at frequency under 200 Hz. The relationship between the booming index and sound metric is identified by an ANN. The updated booming index has been successfully applied to the objective evaluation of the booming sound quality of mass-produced passenger cars.
Structured Counseling for Auditory Dynamic Range Expansion
Gold, Susan L.; Formby, Craig
2017-01-01
A structured counseling protocol is described that, when combined with low-level broadband sound therapy from bilateral sound generators, offers audiologists a new tool for facilitating the expansion of the auditory dynamic range (DR) for loudness. The protocol and its content are specifically designed to address and treat problems that impact hearing-impaired persons who, due to their reduced DRs, may be limited in the use and benefit of amplified sound from hearing aids. The reduced DRs may result from elevated audiometric thresholds and/or reduced sound tolerance as documented by lower-than-normal loudness discomfort levels (LDLs). Accordingly, the counseling protocol is appropriate for challenging and difficult-to-fit persons with sensorineural hearing losses who experience loudness recruitment or hyperacusis. Positive treatment outcomes for individuals with the former and latter conditions are highlighted in this issue by incremental shifts (improvements) in LDL and/or categorical loudness judgments, associated reduced complaints of sound intolerance, and functional improvements in daily communication, speech understanding, and quality of life leading to improved hearing aid benefit, satisfaction, and aided sound quality, posttreatment. PMID:28286367
State of the art in perceptual design of hearing aids
NASA Astrophysics Data System (ADS)
Edwards, Brent W.; van Tasell, Dianne J.
2002-05-01
Hearing aid capabilities have increased dramatically over the past six years, in large part due to the development of small, low-power digital signal processing chips suitable for hearing aid applications. As hearing aid signal processing capabilities increase, there will be new opportunities to apply perceptually based knowledge to technological development. Most hearing loss compensation techniques in today's hearing aids are based on simple estimates of audibility and loudness. As our understanding of the psychoacoustical and physiological characteristics of sensorineural hearing loss improves, the result should be improved design of hearing aids and fitting methods. The state of the art in hearing aids will be reviewed, including form factors, user requirements, and technology that improves speech intelligibility, sound quality, and functionality. General areas of auditory perception that remain unaddressed by current hearing aid technology will be discussed.
Annoyance from industrial noise: indicators for a wide variety of industrial sources.
Alayrac, M; Marquis-Favre, C; Viollon, S; Morel, J; Le Nost, G
2010-09-01
In the study of noises generated by industrial sources, one issue is the variety of industrial noise sources and consequently the complexity of noises generated. Therefore, characterizing the environmental impact of an industrial plant requires better understanding of the noise annoyance caused by industrial noise sources. To deal with the variety of industrial sources, the proposed approach is set up by type of spectral features and based on a perceptive typology of steady and permanent industrial noises comprising six categories. For each perceptive category, listening tests based on acoustical factors are performed on noise annoyance. Various indicators are necessary to predict noise annoyance due to various industrial noise sources. Depending on the spectral features of the industrial noise sources, noise annoyance indicators are thus assessed. In case of industrial noise sources without main spectral features such as broadband noise, noise annoyance is predicted by the A-weighted sound pressure level L(Aeq) or the loudness level L(N). For industrial noises with spectral components such as low-frequency noises with a main component at 100 Hz or noises with spectral components in middle frequencies, indicators are proposed here that allow good prediction of noise annoyance by taking into account spectral features.
Sound quality indicators for urban places in Paris cross-validated by Milan data.
Ricciardi, Paola; Delaitre, Pauline; Lavandier, Catherine; Torchia, Francesca; Aumond, Pierre
2015-10-01
A specific smartphone application was developed to collect perceptive and acoustic data in Paris. About 3400 questionnaires were analyzed, regarding the global sound environment characterization, the perceived loudness of some emergent sources and the presence time ratio of sources that do not emerge from the background. Sound pressure level was recorded each second from the mobile phone's microphone during a 10-min period. The aim of this study is to propose indicators of urban sound quality based on linear regressions with perceptive variables. A cross validation of the quality models extracted from Paris data was carried out by conducting the same survey in Milan. The proposed sound quality general model is correlated with the real perceived sound quality (72%). Another model without visual amenity and familiarity is 58% correlated with perceived sound quality. In order to improve the sound quality indicator, a site classification was performed by Kohonen's Artificial Neural Network algorithm, and seven specific class models were developed. These specific models attribute more importance on source events and are slightly closer to the individual data than the global model. In general, the Parisian models underestimate the sound quality of Milan environments assessed by Italian people.
The Role of Soundscape in Nature-Based Rehabilitation: A Patient Perspective.
Cerwén, Gunnar; Pedersen, Eja; Pálsdóttir, Anna-María
2016-12-11
Nature-based rehabilitation (NBR) has convincing support in research, yet the underlying mechanisms are not fully understood. The present study sought to increase understanding of the role of soundscapes in NBR, an aspect paid little attention thus far. Transcribed interviews with 59 patients suffering from stress-related mental disorders and undergoing a 12-week therapy programme in the rehabilitation garden in Alnarp, Sweden, were analysed using Interpretative Phenomenology Analysis (IPA). Described sounds were categorised as natural, technological or human. The results showed that patients frequently referred to natural sounds as being part of a pleasant and "quiet" experience that supported recovery and induced "soft fascination". Technological sounds were experienced as disturbing, while perception of human sounds varied depending on loudness and the social context. The study further uncovered how sound influenced patients' behaviour and experiences in the garden, through examination of three cross-theme dimensions that materialised in the study; sound in relation to overall perception, sound in relation to garden usage, and increased susceptibility to sound. The findings are discussed in relation to NBR; the need for a more nuanced understanding of susceptibility to sound among people suffering from mental fatigue was identified and design considerations for future rehabilitation gardens were formulated.
NASA Technical Reports Server (NTRS)
Dillon, Christina
2013-01-01
The goal of this project was to design, model, build, and test a flat panel speaker and frame for a spherical dome structure being made into a simulator. The simulator will be a test bed for evaluating an immersive environment for human interfaces. This project focused on the loud speakers and a sound diffuser for the dome. The rest of the team worked on an Ambisonics 3D sound system, video projection system, and multi-direction treadmill to create the most realistic scene possible. The main programs utilized in this project, were Pro-E and COMSOL. Pro-E was used for creating detailed figures for the fabrication of a frame that held a flat panel loud speaker. The loud speaker was made from a thin sheet of Plexiglas and 4 acoustic exciters. COMSOL, a multiphysics finite analysis simulator, was used to model and evaluate all stages of the loud speaker, frame, and sound diffuser. Acoustical testing measurements were utilized to create polar plots from the working prototype which were then compared to the COMSOL simulations to select the optimal design for the dome. The final goal of the project was to install the flat panel loud speaker design in addition to a sound diffuser on to the wall of the dome. After running tests in COMSOL on various speaker configurations, including a warped Plexiglas version, the optimal speaker design included a flat piece of Plexiglas with a rounded frame to match the curvature of the dome. Eight of these loud speakers will be mounted into an inch and a half of high performance acoustic insulation, or Thinsulate, that will cover the inside of the dome. The following technical paper discusses these projects and explains the engineering processes used, knowledge gained, and the projected future goals of this project
Intrinsic, Narrow N V Absorption Reveals a Clumpy Outflow in z < 0.4 Radio-Loud Quasars
NASA Astrophysics Data System (ADS)
DeMarcy, Bryan; Serra, Viktoriah; Culliton, Chris; Ganguly, Rajib; Runnoe, Jessie; Charlton, Jane; Eracleous, Michael; Misawa, Toru; Narayanan, Anand
2018-01-01
Quasar outflows are often invoked in models for galaxy evolution to inject energy and momentum into the gas in the host galaxy and influence its star formation history. Thus, the study of quasar outflows is essential for understanding galaxy evolution. N V absorption systems within the associated region (|Δv| ≤ 5000 km s-1) of the quasar are thought to be intrinsic since many show evidence for partial covering of the quasar. A recent archival study of quasar spectra taken with COS/G130M or G160M found 39/181 radio-quiet quasars show intrinsic N V absorption, while none of the 31 radio-loud quasars have N V absorption detected (Culliton et al. 2017). Further investigation of these radio-loud quasars showed a clear bias towards compact morphologies as revealed by FIRST 1.4 GHz imaging and comparatively flat radio spectra. This suggests we are viewing more face-on orientations which prevent us from seeing absorption outflows. The cause for such bias within the HST archive is still unknown; however, it could explain the lack of radio-loud intrinsic N V absorption seen by Culliton et al. (2017). Alternatively, the quasar wind structure may be fundamentally different between radio-loud and radio-quiet objects. We used COS/G130M or G160M to obtain rest-frame UV spectra (1195 Å - 1250 Å) of 14 low-redshift SDSS radio-loud quasars which show lobe-dominated FIRST morphologies to distinguish between these possibilities. Intrinsic N V absorption was detected in 6 of our 14 quasars. This suggests the lack of detections in the archival study was a result of an orientation effect/sampling bias rather than to differences in wind structure between radio-loud and radio-quiet quasars. Interestingly, we find significant overlap in radio core fractions between quasars with and without N V detection. Quasars in our sample with N V detection span a range of core fractions from < 0.01 up to 0.89 while those without detected N V range from 0.04 up to 0.93. A laminar outflow with a small opening angle would be difficult to explain given this overlap in radio core fractions. Our observations suggest a clumpy, sporadic outflow is the more likely explanation.
NASA Astrophysics Data System (ADS)
Rimskaya-Korsavkova, L. K.
2017-07-01
To find the possible reasons for the midlevel elevation of the Weber fraction in intensity discrimination of a tone burst, a comparison was performed for the complementary distributions of spike activity of an ensemble of space nerves, such as the distribution of time instants when spikes occur, the distribution of interspike intervals, and the autocorrelation function. The distribution properties were detected in a poststimulus histogram, an interspike interval histogram, and an autocorrelation histogram—all obtained from the reaction of an ensemble of model space nerves in response to an auditory noise burst-useful tone burst complex. Two configurations were used: in the first, the peak amplitude of the tone burst was varied and the noise amplitude was fixed; in the other, the tone burst amplitude was fixed and the noise amplitude was varied. Noise could precede or follow the tone burst. The noise and tone burst durations, as well as the interval between them, was 4 kHz and corresponded to the characteristic frequencies of the model space nerves. The profiles of all the mentioned histograms had two maxima. The values and the positions of the maxima in the poststimulus histogram corresponded to the amplitudes and mutual time position of the noise and the tone burst. The maximum that occurred in response to the tone burst action could be a basis for the formation of the loudness of the latter (explicit loudness). However, the positions of the maxima in the other two histograms did not depend on the positions of tone bursts and noise in the combinations. The first maximum fell in short intervals and united intervals corresponding to the noise and tone burst durations. The second maximum fell in intervals corresponding to a tone burst delay with respect to noise, and its value was proportional to the noise amplitude or tone burst amplitude that was smaller in the complex. An increase in tone burst or noise amplitudes was caused by nonlinear variations in the two maxima and the ratio between them. The size of the first maximum in the of interspike interval distribution could be the basis for the formation of the loudness of the masked tone burst (implicit loudness), and the size of the second maximum, for the formation of intensity in the periodicity pitch of the complex. The auditory effect of the midlevel enhancement of tone burst loudness could be the result of variations in the implicit tone burst loudness caused by variations in tone-burst or noise intensity. The reason for the enhancement of the Weber fraction could be competitive interaction between such subjective qualities as explicit and implicit tone-burst loudness and the intensity of the periodicity pitch of the complex.
De Ridder, Dirk; Vanneste, Sven; Weisz, Nathan; Londero, Alain; Schlee, Winnie; Elgoyhen, Ana Belen; Langguth, Berthold
2014-07-01
Tinnitus is a considered to be an auditory phantom phenomenon, a persistent conscious percept of a salient memory trace, externally attributed, in the absence of a sound source. It is perceived as a phenomenological unified coherent percept, binding multiple separable clinical characteristics, such as its loudness, the sidedness, the type (pure tone, noise), the associated distress and so on. A theoretical pathophysiological framework capable of explaining all these aspects in one model is highly needed. The model must incorporate both the deafferentation based neurophysiological models and the dysfunctional noise canceling model, and propose a 'tinnitus core' subnetwork. The tinnitus core can be defined as the minimal set of brain areas that needs to be jointly activated (=subnetwork) for tinnitus to be consciously perceived, devoid of its affective components. The brain areas involved in the other separable characteristics of tinnitus can be retrieved by studies on spontaneous resting state magnetic and electrical activity in people with tinnitus, evaluated for the specific aspect investigated and controlled for other factors. By combining these functional imaging studies with neuromodulation techniques some of the correlations are turned into causal relationships. Thereof, a heuristic pathophysiological framework is constructed, integrating the tinnitus perceptual core with the other tinnitus related aspects. This phenomenological unified percept of tinnitus can be considered an emergent property of multiple, parallel, dynamically changing and partially overlapping subnetworks, each with a specific spontaneous oscillatory pattern and functional connectivity signature. Communication between these different subnetworks is proposed to occur at hubs, brain areas that are involved in multiple subnetworks simultaneously. These hubs can take part in each separable subnetwork at different frequencies. Communication between the subnetworks is proposed to occur at discrete oscillatory frequencies. As such, the brain uses multiple nonspecific networks in parallel, each with their own oscillatory signature, that adapt to the context to construct a unified percept possibly by synchronized activation integrated at hubs at discrete oscillatory frequencies. Copyright © 2013 Elsevier Ltd. All rights reserved.
What makes a rhythm complex? The influence of musical training and accent type on beat perception
Burgoyne, J. Ashley; Odijk, Daan; Honing, Henkjan; Grahn, Jessica A.
2018-01-01
Perception of a regular beat in music is inferred from different types of accents. For example, increases in loudness cause intensity accents, and the grouping of time intervals in a rhythm creates temporal accents. Accents are expected to occur on the beat: when accents are “missing” on the beat, the beat is more difficult to find. However, it is unclear whether accents occurring off the beat alter beat perception similarly to missing accents on the beat. Moreover, no one has examined whether intensity accents influence beat perception more or less strongly than temporal accents, nor how musical expertise affects sensitivity to each type of accent. In two experiments, we obtained ratings of difficulty in finding the beat in rhythms with either temporal or intensity accents, and which varied in the number of accents on the beat as well as the number of accents off the beat. In both experiments, the occurrence of accents on the beat facilitated beat detection more in musical experts than in musical novices. In addition, the number of accents on the beat affected beat finding more in rhythms with temporal accents than in rhythms with intensity accents. The effect of accents off the beat was much weaker than the effect of accents on the beat and appeared to depend on musical expertise, as well as on the number of accents on the beat: when many accents on the beat are missing, beat perception is quite difficult, and adding accents off the beat may not reduce beat perception further. Overall, the different types of accents were processed qualitatively differently, depending on musical expertise. Therefore, these findings indicate the importance of designing ecologically valid stimuli when testing beat perception in musical novices, who may need different types of accent information than musical experts to be able to find a beat. Furthermore, our findings stress the importance of carefully designing rhythms for social and clinical applications of beat perception, as not all listeners treat all rhythms alike. PMID:29320533
What makes a rhythm complex? The influence of musical training and accent type on beat perception.
Bouwer, Fleur L; Burgoyne, J Ashley; Odijk, Daan; Honing, Henkjan; Grahn, Jessica A
2018-01-01
Perception of a regular beat in music is inferred from different types of accents. For example, increases in loudness cause intensity accents, and the grouping of time intervals in a rhythm creates temporal accents. Accents are expected to occur on the beat: when accents are "missing" on the beat, the beat is more difficult to find. However, it is unclear whether accents occurring off the beat alter beat perception similarly to missing accents on the beat. Moreover, no one has examined whether intensity accents influence beat perception more or less strongly than temporal accents, nor how musical expertise affects sensitivity to each type of accent. In two experiments, we obtained ratings of difficulty in finding the beat in rhythms with either temporal or intensity accents, and which varied in the number of accents on the beat as well as the number of accents off the beat. In both experiments, the occurrence of accents on the beat facilitated beat detection more in musical experts than in musical novices. In addition, the number of accents on the beat affected beat finding more in rhythms with temporal accents than in rhythms with intensity accents. The effect of accents off the beat was much weaker than the effect of accents on the beat and appeared to depend on musical expertise, as well as on the number of accents on the beat: when many accents on the beat are missing, beat perception is quite difficult, and adding accents off the beat may not reduce beat perception further. Overall, the different types of accents were processed qualitatively differently, depending on musical expertise. Therefore, these findings indicate the importance of designing ecologically valid stimuli when testing beat perception in musical novices, who may need different types of accent information than musical experts to be able to find a beat. Furthermore, our findings stress the importance of carefully designing rhythms for social and clinical applications of beat perception, as not all listeners treat all rhythms alike.
ERIC Educational Resources Information Center
Halpern, Angela E.; Ramig, Lorraine O.; Matos, Carlos E. C.; Petska-Cable, Jill A.; Spielman, Jennifer L.; Pogoda, Janice M.; Gilley, Phillip M.; Sapir, Shimon; Bennett, John K.; McFarland, David H.
2012-01-01
Purpose: To assess the feasibility and effectiveness of a newly developed assistive technology system, Lee Silverman Voice Treatment Companion (LSVT[R] Companion[TM], hereafter referred to as "Companion"), to support the delivery of LSVT[R]LOUD, an efficacious speech intervention for individuals with Parkinson disease (PD). Method: Sixteen…
ERIC Educational Resources Information Center
Darling, Meghan; Huber, Jessica E.
2011-01-01
Purpose: Individuals with Parkinson's disease (PD) exhibit differences in displacement and velocity of the articulators as compared with older adults. The purpose of the current study was to examine effects of 3 loudness cues on articulatory movement patterns in individuals with PD. Method: Nine individuals diagnosed with idiopathic PD and 9 age-…
ERIC Educational Resources Information Center
Tjaden, Kris; Wilding, Gregory E.
2005-01-01
The present study compared patterns of anticipatory coarticulation for utterances produced in habitual, loud, and slow conditions by 17 individuals with multiple sclerosis (MS), 12 individuals with Parkinson's disease (PD), and 15 healthy controls. Coarticulation was inferred from vowel F2 frequencies and consonant first-moment coefficients.…
Age-Related Changes to Speech Breathing with Increased Vocal Loudness
ERIC Educational Resources Information Center
Huber, Jessica E.; Spruill, John, III
2008-01-01
Purpose: The present study examines the effect of normal aging on respiratory support for speech when utterance length is controlled. Method: Fifteen women (M = 71 years of age) and 10 men (M = 73 years of age) produced 2 sentences of different lengths in 4 loudness conditions while respiratory kinematics were measured. Measures included those…
Intensive Voice Treatment (LSVT LOUD) for Children with Spastic Cerebral Palsy and Dysarthria
ERIC Educational Resources Information Center
Fox, Cynthia Marie; Boliek, Carol Ann
2012-01-01
Purpose: The purpose of this study was to examine the effects of an intensive voice treatment (Lee Silverman Voice Treatment, commonly known as LSVT LOUD) for children with spastic cerebral palsy (CP) and dysarthria. Method: A nonconcurrent multiple baseline single-subject design with replication across 5 children with spastic CP was used.…
NASA Astrophysics Data System (ADS)
West, Eva
2012-11-01
Researchers have highlighted the increasing problem of loud sounds among young people in leisure-time environments, recently even emphasizing portable music players, because of the risk of suffering from hearing impairments such as tinnitus. However, there is a lack of studies investigating compulsory-school students' standpoints and explanations in connection with teaching interventions integrating school subject content with auditory health. In addition, there are few health-related studies in the international science education literature. This paper explores students' standpoints on loud sounds including the use of hearing-protection devices in connection with a teaching intervention based on a teaching-learning sequence about sound, hearing and auditory health. Questionnaire data from 199 students, in grades 4, 7 and 8 (aged 10-14), from pre-, post- and delayed post-tests were analysed. Additionally, information on their experiences of tinnitus as well as their listening habits regarding portable music players was collected. The results show that more students make healthier choices in questions of loud sounds after the intervention, and especially among the older ones this result remains or is further improved one year later. There are also signs of positive behavioural change in relation to loud sounds. Significant gender differences are found; generally, the girls show more healthy standpoints and expressions than boys do. If this can be considered to be an outcome of students' improved and integrated knowledge about sound, hearing and health, then this emphasizes the importance of integrating health issues into regular school science.
Effect of Unpleasant Loud Noise on Hippocampal Activities during Picture Encoding: An fMRI Study
ERIC Educational Resources Information Center
Hirano, Yoshiyuki; Fujita, Masafumi; Watanabe, Kazuko; Niwa, Masami; Takahashi, Toru; Kanematsu, Masayuki; Ido, Yasushi; Tomida, Mihoko; Onozuka, Minoru
2006-01-01
The functional link between the amygdala and hippocampus in humans has not been well documented. We examined the effect of unpleasant loud noise on hippocampal and amygdaloid activities during picture encoding by means of fMRI, and on the correct response in humans. The noise reduced activity in the hippocampus during picture encoding, decreased…
ERIC Educational Resources Information Center
West, Eva
2012-01-01
Researchers have highlighted the increasing problem of loud sounds among young people in leisure-time environments, recently even emphasizing portable music players, because of the risk of suffering from hearing impairments such as tinnitus. However, there is a lack of studies investigating compulsory-school students' standpoints and explanations…
Voice Loudness and Gender Effects on Jitter and Shimmer in Healthy Adults
ERIC Educational Resources Information Center
Brockmann, Meike; Storck, Claudio; Carding, Paul N.; Drinnan, Michael J.
2008-01-01
Purpose: The aim of this study was to investigate voice loudness and gender effects on jitter and shimmer in healthy young adults because previous descriptions have been inconsistent. Method: Fifty-seven healthy adults (28 women, 29 men) aged 20-40 years were included in this cross-sectional single-cohort study. Three phonations of /a/ at soft,…
Q: How Does Loud Noise Affect Hearing?
ERIC Educational Resources Information Center
Robertson, William C.
2010-01-01
This is an appropriate question, especially in light of the recent news that the incidence of hearing loss in teens has been increased by a third. To understand how loud noise affects hearing, you need to know the basics of how your ear works. To understand how your ear works, it will help if you do the following activities and ignore that they…
"Look Out Below": Helping Children Who Are Loud and Aggressive in the Classroom
ERIC Educational Resources Information Center
Greenberg, Polly
2007-01-01
In this article, the author responds to a teacher's request for advice on how to handle students who are loud and aggressive in the classroom. The author provides some suggestions on how to establish a smooth-running classroom. She firmly believes in creating well-thought out policies and procedures and politely, but firmly, insisting that…
ERIC Educational Resources Information Center
Tjaden, Kris; Sussman, Joan E.; Wilding, Gregory E.
2014-01-01
Purpose: The perceptual consequences of rate reduction, increased vocal intensity, and clear speech were studied in speakers with multiple sclerosis (MS), Parkinson's disease (PD), and healthy controls. Method: Seventy-eight speakers read sentences in habitual, clear, loud, and slow conditions. Sentences were equated for peak amplitude and…
ERIC Educational Resources Information Center
Tjaden, Kris; Lam, Jennifer; Wilding, Greg
2013-01-01
Purpose: The impact of clear speech, increased vocal intensity, and rate reduction on acoustic characteristics of vowels was compared in speakers with Parkinson's disease (PD), speakers with multiple sclerosis (MS), and healthy controls. Method: Speakers read sentences in habitual, clear, loud, and slow conditions. Variations in clarity,…
ERIC Educational Resources Information Center
MOAKLEY, FRANCIS X.
EFFECTS OF PERIODIC VARIATIONS IN AN INSTRUCTIONAL FILM'S NORMAL LOUDNESS LEVEL FOR RELEVANT AND IRRELEVANT FILM SEQUENCES WERE MEASURED BY A MULTIPLE CHOICE TEST. RIGOROUS PILOT STUDIES, RANDOM GROUPING OF SEVENTH GRADERS FOR TREATMENTS, AND RATINGS OF RELEVANT AND IRRELEVANT PORTIONS OF THE FILM BY AN UNSPECIFIED NUMBER OF JUDGES PRECEDED THE…
Argonne OutLoud Public Lecture Series: Nuclear Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blomquist, Roger
2012-12-10
On November 15, 2012, Argonne National Laboratory opened its doors to the public for a presentation/discussion titled "Getting to Know Nuclear: Past, Present and Future." The speaker was Argonne researcher Roger Blomquist. The event was the latest in the Argonne OutLoud Public Lecture Series. For more information, visit the Argonne Nuclear Engineering Division website (http://www.ne.anl.gov/About/headlines...).
2005-12-01
such as LOL, for laughing out loud , should be reserved for personal communication (Mackiewicz, 2003). You need to know and understand who your...typing LOL as a shortcut for “ laughing out loud .” Older participants didn’t always know what the shorthand meant. Younger participants knew
Vestibular responses to loud dance music: a physiological basis of the "rock and roll threshold"?
Todd, N P; Cody, F W
2000-01-01
In this paper new evidence is provided to indicate that vestibular responses may be obtained from loud dance music for intensities above 90 dB(A) SPL (Impulse-weighted). In a sample of ten subjects acoustically evoked EMG were obtained from the sternocleidomastoid muscle in response to a sample of techno music typical of that which may be experienced in a dance club. Previous research has shown that this response is vestibularly mediated since it can be obtained in subjects with loss of cochlear function, but is absent in subjects with loss of vestibular function (Colebatch et al. [J. Neurol. Neurosurg. Psychiatr. 57, 190-197 (1994)]. Given that pleasurable sensations of self-motion are widely sought after by more normal means of vestibular stimulation, it is suggested that acoustically evoked sensations of self-motion may account for the compulsion to exposure to loud music. Given further the similarity between the thresholds found, and the intensities and frequency distributions that are typical in rock concerts and dance clubs, it is also suggested that this response may be a physiological basis for the minimum loudness necessary for rock and dance music to work-the "rock and roll threshold".
Influence of sleep deprivation and auditory intensity on reaction time and response force.
Włodarczyk, Dariusz; Jaśkowski, Piotr; Nowik, Agnieszka
2002-06-01
Arousal and activation are two variables supposed to underlie change in response force. This study was undertaken to explain these roles, specifically, for strong auditory stimuli and sleep deficit. Loud auditory stimuli can evoke phasic overarousal whereas sleep deficit leads to general underarousal. Moreover, Van der Molen and Keuss (1979, 1981) showed that paradoxically long reaction times occurred with extremely strong auditory stimuli when the task was difficult, e.g., choice reaction or Simon paradigm. It was argued that this paradoxical behavior related to reaction time is due to active disconnecting of the coupling between arousal and activation to prevent false responses. If so, we predicted that for extremely loud stimuli and for difficult tasks, the lengthening of reaction time should be associated with reduction of response force. The effects of loudness and sleep deficit on response time and force were investigated in three different tasks: simple response, choice response, and Simon paradigm. According to our expectation, we found a detrimental effect of sleep deficit on reaction time and on response force. In contrast to Van der Molen and Keuss, we found no increase in reaction time for loud stimuli (up to 110 dB) even on the Simon task.
Noise sensitivity and loudness derivative index for urban road traffic noise annoyance computation.
Gille, Laure-Anne; Marquis-Favre, Catherine; Weber, Reinhard
2016-12-01
Urban road traffic composed of powered-two-wheelers (PTWs), buses, heavy, and light vehicles is a major source of noise annoyance. In order to assess annoyance models considering different acoustical and non-acoustical factors, a laboratory experiment on short-term annoyance due to urban road traffic noise was conducted. At the end of the experiment, participants were asked to rate their noise sensitivity and to describe the noise sequences they heard. This verbalization task highlights that annoyance ratings are highly influenced by the presence of PTWs and by different acoustical features: noise intensity, irregular temporal amplitude variation, regular amplitude modulation, and spectral content. These features, except irregular temporal amplitude variation, are satisfactorily characterized by the loudness, the total energy of tonal components and the sputtering and nasal indices. Introduction of the temporal derivative of loudness allows successful modeling of perceived amplitude variations. Its contribution to the tested annoyance models is high and seems to be higher than the contribution of mean loudness index. A multilevel regression is performed to assess annoyance models using selected acoustical indices and noise sensitivity. Three models are found to be promising for further studies that aim to enhance current annoyance models.
Facon, Bruno; Sahiri, Safia; Rivière, Vinca
2008-12-01
The aim of the present study was to demonstrate the efficacy of combining two operant learning procedures--shaping and fading--for treating selective mutism. The participant was a 12-year-old boy with mental retardation presenting a severe long-term selective mutism. The treatment was aimed at increasing the loudness of his vocalizations in an increasingly social milieu. The treatment was conducted over the course of about 20 weeks, with four 15-minute sessions per week. A gradual increase in speech loudness was observed. Data indicated a close correspondence between the changes in speech loudness and the criteria for reinforcement successively applied by the therapist, thereby confirming the causal link between the child's progress and the changes in reinforcement contingencies. In addition, good generalization was noted during the stimulus fading phase. Six-month follow up showed that loudness of verbalizations was still satisfactory in the classroom despite a change of school and peer group. The impressive improvement of the child's verbal behavior shows that the implementation of a treatment package including both shaping and stimulus fading is a worthwhile therapeutic option, even in the case of severe long-term selective mutism associated with mental retardation.
NASA Technical Reports Server (NTRS)
Plotkin, Kenneth J.; Maglieri, Domenic J.; Sullivan, Brenda M.
2005-01-01
Turbulence has two distinctive effects on sonic booms: there is distortion in the form of random perturbations that appear behind the shock waves, and shock rise times are increased randomly. A first scattering theory by S.C. Crow in the late 1960s quantified the random distortions, and Crow's theory was shown to agree with available flight test data. A variety of theories for the shock thickness have been presented, all supporting the role of turbulence in increasing rise time above that of a basic molecular-relaxation structure. The net effect of these phenomena on the loudness of shaped minimized booms is of significant interest. Initial analysis suggests that there would be no change to average loudness, but this had not been experimentally investigated. The January 2004 flight test of the Shaped Sonic Boom Demonstrator (SSBD), together with a reference unmodified F-5E, included a 12500- foot linear ground sensor array with 28 digitally recorded sensor sites. This data set provides an opportunity to re-test Crow's theory for the post-shock perturbations, and to examine the net effect of turbulence on the loudness of shaped sonic booms.
Speech and swallowing disorders in Parkinson disease.
Sapir, Shimon; Ramig, Lorraine; Fox, Cynthia
2008-06-01
To review recent research and clinical studies pertaining to the nature, diagnosis, and treatment of speech and swallowing disorders in Parkinson disease. Although some studies indicate improvement in voice and speech with dopamine therapy and deep brain stimulation of the subthalamic nucleus, others show minimal or adverse effects. Repetitive transcranial magnetic stimulation of the mouth motor cortex and injection of collagen in the vocal folds have preliminary data supporting improvement in phonation in people with Parkinson disease. Treatments focusing on vocal loudness, specifically LSVT LOUD (Lee Silverman Voice Treatment), have been effective for the treatment of speech disorders in Parkinson disease. Changes in brain activity due to LSVT LOUD provide preliminary evidence for neural plasticity. Computer-based technology makes the Lee Silverman Voice Treatment available to a large number of users. A rat model for studying neuropharmacologic effects on vocalization in Parkinson disease has been developed. New diagnostic methods of speech and swallowing are also available as the result of recent studies. Speech rehabilitation with the LSVT LOUD is highly efficacious and scientifically tested. There is a need for more studies to improve understanding, diagnosis, prevention, and treatment of speech and swallowing disorders in Parkinson disease.
Wu, Yu-Hsiang; Stangl, Elizabeth; Pang, Carol; Zhang, Xuyang
2014-02-01
Little is known regarding the acoustic features of a stimulus used by listeners to determine the acceptable noise level (ANL). Features suggested by previous research include speech intelligibility (noise is unacceptable when it degrades speech intelligibility to a certain degree; the intelligibility hypothesis) and loudness (noise is unacceptable when the speech-to-noise loudness ratio is poorer than a certain level; the loudness hypothesis). The purpose of the study was to investigate if speech intelligibility or loudness is the criterion feature that determines ANL. To achieve this, test conditions were chosen so that the intelligibility and loudness hypotheses would predict different results. In Experiment 1, the effect of audiovisual (AV) and binaural listening on ANL was investigated; in Experiment 2, the effect of interaural correlation (ρ) on ANL was examined. A single-blinded, repeated-measures design was used. Thirty-two and twenty-five younger adults with normal hearing participated in Experiments 1 and 2, respectively. In Experiment 1, both ANL and speech recognition performance were measured using the AV version of the Connected Speech Test (CST) in three conditions: AV-binaural, auditory only (AO)-binaural, and AO-monaural. Lipreading skill was assessed using the Utley lipreading test. In Experiment 2, ANL and speech recognition performance were measured using the Hearing in Noise Test (HINT) in three binaural conditions, wherein the interaural correlation of noise was varied: ρ = 1 (N(o)S(o) [a listening condition wherein both speech and noise signals are identical across two ears]), -1 (NπS(o) [a listening condition wherein speech signals are identical across two ears whereas the noise signals of two ears are 180 degrees out of phase]), and 0 (N(u)S(o) [a listening condition wherein speech signals are identical across two ears whereas noise signals are uncorrelated across ears]). The results were compared to the predictions made based on the intelligibility and loudness hypotheses. The results of the AV and AO conditions appeared to support the intelligibility hypothesis due to the significant correlation between visual benefit in ANL (AV re: AO ANL) and (1) visual benefit in CST performance (AV re: AO CST) and (2) lipreading skill. The results of the N(o)S(o), NπS(o), and N(u)S(o) conditions negated the intelligibility hypothesis because binaural processing benefit (NπS(o) re: N(o)S(o), and N(u)S(o) re: N(o)S(o)) in ANL was not correlated to that in HINT performance. Instead, the results somewhat supported the loudness hypothesis because the pattern of ANL results across the three conditions (N(o)S(o) ≈ NπS(o) ≈ N(u)S(o) ANL) was more consistent with what was predicted by the loudness hypothesis (N(o)S(o) ≈ NπS(o) < N(u)S(o) ANL) than by the intelligibility hypothesis (NπS(o) < N(u)S(o) < N(o)S(o) ANL). The results of the binaural and monaural conditions supported neither hypothesis because (1) binaural benefit (binaural re: monaural) in ANL was not correlated to that in speech recognition performance, and (2) the pattern of ANL results across conditions (binaural < monaural ANL) was not consistent with the prediction made based on previous binaural loudness summation research (binaural ≥ monaural ANL). The study suggests that listeners may use multiple acoustic features to make ANL judgments. The binaural/monaural results showing that neither hypothesis was supported further indicate that factors other than speech intelligibility and loudness, such as psychological factors, may affect ANL. The weightings of different acoustic features in ANL judgments may vary widely across individuals and listening conditions. American Academy of Audiology.
An optical imaging study of 0.4 ≤ z ≤ 0.8 quasar host galaxies . II. Analysis and interpretation
NASA Astrophysics Data System (ADS)
Örndahl, E.; Rönnback, J.
2005-11-01
We performed optical imaging of 102 radio-loud and radio-quiet quasars at z=0.4{-}0.8, of which 91 fields were found suitable for host galaxy analysis after the deselection of saturated and otherwise flawed images. The data sets were obtained mainly in the R band, but also in the V and I or Gunn i band, and were presented in Rönnback et al.(1996, MNRAS, 283, 282) and Örndahl et al. (2003, A&A, 404, 883). In this paper we combine the two above-mentioned samples and also separately discuss additional hosts, extracted from data taken by Wold et al. (2000, MNRAS, 316, 267; 2001, MNRAS, 323, 231). The joint sample forms a sizeable fraction of the to-date total number of observed sources at intermediate redshifts and increases the number of resolved radio-quiet hosts at z>0.4 considerably. Equal numbers of radio-loud and radio-quiet objects were observed, resulting in a detection rate of 79% for the radio-loud hosts and 66% for the radio-quiet hosts. Profile fitting could only be carried out for a minority of the sample, but it results in predominantly elliptical morphologies. This is consistent with the mean values of the axial ratios, for which we find b/a⪆0.8 for both radio-quiet and radio-loud hosts, just as in the case of normal elliptical galaxies. The mean absolute magnitudes of the radio-loud and radio-quiet hosts is M_R=-23.5 in both cases. This similarity between the mean magnitudes of the two types of host galaxy is also seen in the other imaged bands. While the radio-loud host absolute R magnitudes are correlated with redshift, only a weak trend of the same sort is seen for the radio-quiet host magnitudes. Note, however, that the sample is not fully resolved and that the detection limit, in combination with the relationship between host and nuclear luminosity, may conspire in creating the illusion of an upturn in magnitude. The average nucleus-to-host galaxy luminosity ratios of the radio-loud and radio-quiet objects do not differ significantly in any band, nor is the difference between the average luminosity ratios of flat spectrum and steep spectrum radio-loud quasars larger than 1.5σ. Thus, no effect of beaming (as expected in the unifying scheme) is seen. The colours of both radio-loud and radio-quiet host galaxies are found to be as blue as present-day late-type spirals and starburst galaxies. These blue colours are most likely due neither to galaxy evolution over the range, which only gives rise to a colour shift of 0.2 mag, nor to scattered nuclear light, since colours determined from annular apertures yield very similar results. Since close companions in projection are not uncommon (and a few sources even exhibit tidal tail-like features and other signs of interaction), ongoing star formation is a reasonable explanation of the blue host colours. As multiple-band imaging primarily was carried out for quasars showing indications of the presence of a host galaxy, the colour analysis results are valid for host galaxies which are large, bright, have low nucleus-to-host luminosity ratios, and/or display large scale disturbances, but cannot however safely be generalised to hold for the quasar host galaxy population at intermediate redshift as a whole.
Joly, Charles-Alexandre; Péan, Vincent; Hermann, Ruben; Seldran, Fabien; Thai-Van, Hung; Truy, Eric
2017-10-01
The cochlear implant (CI) fitting level prediction accuracy of electrically-evoked compound action potential (ECAP) should be enhanced by the addition of demographic data in models. No accurate automated fitting of CI based on ECAP has yet been proposed. We recorded ECAP in 45 adults who had been using MED-EL CIs for more than 11 months and collected the most comfortable loudness level (MCL) used for CI fitting (prog-MCL), perception thresholds (meas-THR), and MCL (meas-MCL) measured with the stimulation used for ECAP recording. Linear mixed models taking into account cochlear site factors were computed to explain prog-MCL, meas-MCL, and meas-THR. Cochlear region and ECAP threshold were predictors of the three levels. In addition, significant predictors were the ECAP amplitude for the prog-MCL and the duration of deafness for the prog-MCL and the meas-THR. Estimations were more accurate for the meas-THR, then the meas-MCL, and finally the prog-MCL. These results show that 1) ECAP thresholds are more closely related to perception threshold than to comfort level, 2) predictions are more accurate when the inter-subject and cochlear regions variations are considered, and 3) differences between the stimulations used for ECAP recording and for CI fitting make it difficult to accurately predict the prog-MCL from the ECAP recording. Predicted prog-MCL could be used as bases for fitting but should be used with care to avoid any uncomfortable or painful stimulation.
NASA Astrophysics Data System (ADS)
Mulligan, B. E.; Goodman, L. S.; McBride, D. K.; Mitchell, T. M.; Crosby, T. N.
1984-08-01
This work reviews the areas of monaural and binaural signal detection, auditory discrimination and localization, and reaction times to acoustic signals. The review was written from the perspective of human engineering and focuses primarily on auditory processing of information contained in acoustic signals. The impetus for this effort was to establish a data base to be utilized in the design and evaluation of acoustic displays. Appendix 1 also contains citations of the scientific literature on which was based the answers to each question. There are nineteen questions and answers, and more than two hundred citations contained in the list of references given in Appendix 2. This is one of two related works, the other of which reviewed the literature in the areas of auditory attention, recognition memory, and auditory perception of patterns, pitch, and loudness.
Quetiapine for hypnogogic musical release hallucinations.
David, R R; Fernandez, H H
2000-01-01
Musical release hallucinations are complex auditory phenomena, affecting mostly the deaf geriatric population, in which individuals hear vocal or instrumental music. Progressive hearing loss from otosclerosis disrupts the usual external sensory stimuli necessary to inhibit the emergence of memory traces within the brain, thereby "releasing" previously recorded perceptions. Responses to conventional antipsychotic agents have been variable and extrapyramidal and other side effects have limited their use. We report the first case of hypnogogic release hallucinations successfully treated with the atypical antipsychotic quetiapine. The patient is an 88-year-old woman with progressive deafness who complained of hearing the piano, drums, or a full orchestra every time she was about to fall asleep. She accused her neighbor of hosting loud parties. Physical, neurologic, and psychiatric examination and work-up were unremarkable. She was treated with low-dose quetiapine affording near total resolution of hallucinations without adverse effects.
Perceived and actual noise levels in critical care units.
White, Brittany Lynn; Zomorodi, Meg
2017-02-01
To compare the noise levels perceived by critical care nurses in the Intensive Care Unit (ICU) to actual noise levels in the ICU. Following a pilot study (n=18) and revision of the survey tool, a random sample of nurses were surveyed twice in a 3-day period (n=108). Nurses perception of noise was compared to the actual sound pressure level using descriptive statistics. Nurses perceived the ICUs to be noisier than the actual values. The ICU was louder than the recommended noise level for resotrative sleep. This finding raises the question of how we can assist nurses to reduce what they perceive to be a loud environment. Future work is needed to develop interventions specifically for nurses to raise awareness of noise in the ICU and to provide them with skills to assist in noise reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.
The use of flupirtine in treatment of tinnitus.
Salembier, L; De Ridder, D; Van de Heyning, P H
2006-12-01
Flupirtine, a functional NMDA antagonist, does not seem to be efficacious in the treatment of tinnitus. The purpose of this study was to investigate whether flupirtine has any beneficial effect on tinnitus perception. Twenty-four patients were selected (6 female and 18 male patients) with continuous subjective tinnitus. Eight patients suffered left-sided tinnitus, 4 right-sided tinnitus and 12 bilateral tinnitus. We assessed the burden of the tinnitus by loudness visual analogue scale (VAS) and tinnitus questionnaire (TQ) according to Hallam et al., and Hiller and Goebel. All patients were treated with a 2 x 100 mg daily dosage of oral flupirtine for 3 weeks in an open prospective design. There was no statistical effect on VAS and TQ of the treatment with flupirtine. Only one patient (4.2%) experienced a positive effect on the tinnitus but discontinued the treatment because of amnesia and concentration disorders.
[Differential aspects of subjective burden of tinnitus aurium].
Perrig-Chiello, P; Gusset, S
1996-01-01
This study focuses on psychological variables, which could influence the subjectively perceived strain of tinnitus. They concern personality traits such as self-attentiveness, control beliefs and different dimensions of psychological health. Two groups of tinnitus patients were compared, one with low subjectively perceived strain (n = 20), the other with high subjectively perceived strain (n = 30). Results reveal that people with high subjectively perceived strain do not only perceive their tinnitus more often, but they are more self-centered and report significantly more general somatic complaints than people with low subjectively perceived strain. They obviously pay more attention to themselves and as a consequence also to their tinnitus. However, we didn't find any relationship between control beliefs and subjectively perceived tinnitus strain. Furthermore, duration of the noises, their loudness, their localisation and the knowledge of the cause of tinnitus also seem to affect the perception of the noises.
Sharpless, Brian A
2014-12-01
Exploding head syndrome is characterized by the perception of abrupt, loud noises when going to sleep or waking up. They are usually painless, but associated with fear and distress. In spite of the fact that its characteristic symptomatology was first described approximately 150 y ago, exploding head syndrome has received relatively little empirical and clinical attention. Therefore, a comprehensive review of the scientific literature using Medline, PsycINFO, Google Scholar, and PubMed was undertaken. After first discussing the history, prevalence, and associated features, the available polysomnography data and five main etiological theories for exploding head syndrome are summarized. None of these theories has yet reached dominance in the field. Next, the various methods used to assess and treat exploding head syndrome are discussed, as well as the limited outcome data. Finally, recommendations for future measure construction, treatment options, and differential diagnosis are provided. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multidimensional scaling of musical time estimations.
Cocenas-Silva, Raquel; Bueno, José Lino Oliveira; Molin, Paul; Bigand, Emmanuel
2011-06-01
The aim of this study was to identify the psycho-musical factors that govern time evaluation in Western music from baroque, classic, romantic, and modern repertoires. The excerpts were previously found to represent variability in musical properties and to induce four main categories of emotions. 48 participants (musicians and nonmusicians) freely listened to 16 musical excerpts (lasting 20 sec. each) and grouped those that seemed to have the same duration. Then, participants associated each group of excerpts to one of a set of sine wave tones varying in duration from 16 to 24 sec. Multidimensional scaling analysis generated a two-dimensional solution for these time judgments. Musical excerpts with high arousal produced an overestimation of time, and affective valence had little influence on time perception. The duration was also overestimated when tempo and loudness were higher, and to a lesser extent, timbre density. In contrast, musical tension had little influence.
An evaluation of methods for scaling aircraft noise perception
NASA Technical Reports Server (NTRS)
Ollerhead, J. B.
1971-01-01
One hundred and twenty recorded sounds, including jets, turboprops, piston engined aircraft and helicopters were rated by a panel of subjects in a paired comparison test. The results were analyzed to evaluate a number of noise rating procedures in terms of their ability to accurately estimate both relative and absolute perceived noise levels. It was found that the complex procedures developed by Stevens, Zwicker and Kryter are superior to other scales. The main advantage of these methods over the more convenient weighted sound pressure level scales lies in their ability to cope with signals over a wide range of bandwidth. However, Stevens' loudness level scale and the perceived noise level scale both overestimate the growth of perceived level with intensity because of an apparent deficiency in the band level summation rule. A simple correction is proposed which will enable these scales to properly account for the experimental observations.
Dimensions of vehicle sounds perception.
Wagner, Verena; Kallus, K Wolfgang; Foehl, Ulrich
2017-10-01
Vehicle sounds play an important role concerning customer satisfaction and can show another differentiating factor of brands. With an online survey of 1762 German and American customers, the requirement characteristics of high-quality vehicle sounds were determined. On the basis of these characteristics, a requirement profile was generated for every analyzed sound. These profiles were investigated in a second study with 78 customers using real vehicles. The assessment results of the vehicle sounds can be represented using the dimensions "timbre", "loudness", and "roughness/sharpness". The comparison of the requirement profiles and the assessment results show that the sounds which are perceived as pleasant and high-quality, more often correspond to the requirement profile. High-quality sounds are characterized by the fact that they are rather gentle, soft and reserved, rich, a bit dark and not too rough. For those sounds which are assessed worse by the customers, recommendations for improvements can be derived. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Exploration of Rhythmic Grouping of Speech Sequences by French- and German-Learning Infants
Abboub, Nawal; Boll-Avetisyan, Natalie; Bhatara, Anjali; Höhle, Barbara; Nazzi, Thierry
2016-01-01
Rhythm in music and speech can be characterized by a constellation of several acoustic cues. Individually, these cues have different effects on rhythmic perception: sequences of sounds alternating in duration are perceived as short-long pairs (weak-strong/iambic pattern), whereas sequences of sounds alternating in intensity or pitch are perceived as loud-soft, or high-low pairs (strong-weak/trochaic pattern). This perceptual bias—called the Iambic-Trochaic Law (ITL)–has been claimed to be an universal property of the auditory system applying in both the music and the language domains. Recent studies have shown that language experience can modulate the effects of the ITL on rhythmic perception of both speech and non-speech sequences in adults, and of non-speech sequences in 7.5-month-old infants. The goal of the present study was to explore whether language experience also modulates infants’ grouping of speech. To do so, we presented sequences of syllables to monolingual French- and German-learning 7.5-month-olds. Using the Headturn Preference Procedure (HPP), we examined whether they were able to perceive a rhythmic structure in sequences of syllables that alternated in duration, pitch, or intensity. Our findings show that both French- and German-learning infants perceived a rhythmic structure when it was cued by duration or pitch but not intensity. Our findings also show differences in how these infants use duration and pitch cues to group syllable sequences, suggesting that pitch cues were the easier ones to use. Moreover, performance did not differ across languages, failing to reveal early language effects on rhythmic perception. These results contribute to our understanding of the origin of rhythmic perception and perceptual mechanisms shared across music and speech, which may bootstrap language acquisition. PMID:27378887
Why Should Speech Rate (Tempo) Be Integrated into Pronunciation Teaching Curriculum
ERIC Educational Resources Information Center
Yurtbasi, Meti
2015-01-01
The pace of speech i.e. tempo can be varied to our mood of the moment. Fast speech can convey urgency, whereas slower speech can be used for emphasis. In public speaking, orators produce powerful effects by varying the loudness and pace of their speech. The juxtaposition of very loud and very quiet utterances is a device often used by those trying…
ERIC Educational Resources Information Center
Schlauch, Robert S.; Han, Heekyung J.; Yu, Tzu-Ling J.; Carney, Edward
2017-01-01
Purpose: The purpose of this article is to examine explanations for pure-tone average-spondee threshold differences in functional hearing loss. Method: Loudness magnitude estimation functions were obtained from 24 participants for pure tones (0.5 and 1.0 kHz), vowels, spondees, and speech-shaped noise as a function of level (20-90 dB SPL).…
Formby, Craig; Sherlock, LaGuinn P.; Hawley, Monica L.; Gold, Susan L.
2017-01-01
Case evidence is presented that highlights the clinical relevance and significance of a novel sound therapy-based treatment. This intervention has been shown to be efficacious in a randomized controlled trial for promoting expansion of the dynamic range for loudness and increased sound tolerance among persons with sensorineural hearing losses. Prior to treatment, these individuals were unable to use aided sound effectively because of their limited dynamic ranges. These promising treatment effects are shown in this article to be functionally significant, giving rise to improved speech understanding and enhanced hearing aid benefit and satisfaction, and, in turn, to enhanced quality of life posttreatment. These posttreatment sound therapy effects also are shown to be sustained, in whole or part, with aided environmental sound and to be dependent on specialized counseling to maximize treatment benefit. Importantly, the treatment appears to be efficacious for hearing-impaired persons with primary hyperacusis (i.e., abnormally reduced loudness discomfort levels [LDLs]) and for persons with loudness recruitment (i.e., LDLs within the typical range), which suggests the intervention should generalize across most individuals with reduced dynamic ranges owing to sensorineural hearing loss. An exception presented in this article is for a person describing the perceptual experience of pronounced loudness adaptation, which apparently rendered the sound therapy inaudible and ineffectual for this individual. Ultimately, these case examples showcase the enormous potential of a surprisingly simple sound therapy intervention, which has utility for virtually all audiologists to master and empower the adaptive plasticity of the auditory system to achieve remarkable treatment benefits for large numbers of individuals with sensorineural hearing losses. PMID:28286368
Küssner, Mats B.; Tidhar, Dan; Prior, Helen M.; Leech-Wilkinson, Daniel
2014-01-01
Cross-modal mappings of auditory stimuli reveal valuable insights into how humans make sense of sound and music. Whereas researchers have investigated cross-modal mappings of sound features varied in isolation within paradigms such as speeded classification and forced-choice matching tasks, investigations of representations of concurrently varied sound features (e.g., pitch, loudness and tempo) with overt gestures—accounting for the intrinsic link between movement and sound—are scant. To explore the role of bodily gestures in cross-modal mappings of auditory stimuli we asked 64 musically trained and untrained participants to represent pure tones—continually sounding and concurrently varied in pitch, loudness and tempo—with gestures while the sound stimuli were played. We hypothesized musical training to lead to more consistent mappings between pitch and height, loudness and distance/height, and tempo and speed of hand movement and muscular energy. Our results corroborate previously reported pitch vs. height (higher pitch leading to higher elevation in space) and tempo vs. speed (increasing tempo leading to increasing speed of hand movement) associations, but also reveal novel findings pertaining to musical training which influenced consistency of pitch mappings, annulling a commonly observed bias for convex (i.e., rising–falling) pitch contours. Moreover, we reveal effects of interactions between musical parameters on cross-modal mappings (e.g., pitch and loudness on speed of hand movement), highlighting the importance of studying auditory stimuli concurrently varied in different musical parameters. Results are discussed in light of cross-modal cognition, with particular emphasis on studies within (embodied) music cognition. Implications for theoretical refinements and potential clinical applications are provided. PMID:25120506
Kumar, Vivek; Nag, Tapas Chandra; Sharma, Uma; Mewar, Sujeet; Jagannathan, Naranamangalam R; Wadhwa, Shashi
2014-10-01
Proper functional development of the auditory cortex (ACx) critically depends on early relevant sensory experiences. Exposure to high intensity noise (industrial/traffic) and music, a current public health concern, may disrupt the proper development of the ACx and associated behavior. The biochemical mechanisms associated with such activity dependent changes during development are poorly understood. Here we report the effects of prenatal chronic (last 10 days of incubation), 110dB sound pressure level (SPL) music and noise exposure on metabolic profile of the auditory cortex analogue/field L (AuL) in domestic chicks. Perchloric acid extracts of AuL of post hatch day 1 chicks from control, music and noise groups were subjected to high resolution (700MHz) (1)H NMR spectroscopy. Multivariate regression analysis of the concentration data of 18 metabolites revealed a significant class separation between control and loud sound exposed groups, indicating a metabolic perturbation. Comparison of absolute concentration of metabolites showed that overstimulation with loud sound, independent of spectral characteristics (music or noise) led to extensive usage of major energy metabolites, e.g., glucose, β-hydroxybutyrate and ATP. On the other hand, high glutamine levels and sustained levels of neuromodulators and alternate energy sources, e.g., creatine, ascorbate and lactate indicated a systems restorative measure in a condition of neuronal hyperactivity. At the same time, decreased aspartate and taurine levels in the noise group suggested a differential impact of prenatal chronic loud noise over music exposure. Thus prenatal exposure to loud sound especially noise alters the metabolic activity in the AuL which in turn can affect the functional development and later auditory associated behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.
Meng, Qi; Kang, Jian
2013-01-01
A large-scale subjective survey was conducted in six shopping malls in Harbin City, China, to determine the influence of social and behavioural characteristics of users on their evaluation of subjective loudness and acoustic comfort. The analysis of social characteristics shows that evaluation of subjective loudness is influenced by income and occupation, with correlation coefficients or contingency coefficients of 0.10 to 0.40 (p<0.05 or p<0.01). Meanwhile, evaluation of acoustic comfort evaluation is influenced by income, education level, and occupation, with correlation coefficients or contingency coefficients of 0.10 to 0.60 (p<0.05 or p<0.01). The effect of gender and age on evaluation of subjective loudness and acoustic comfort is statistically insignificant. The effects of occupation are mainly caused by the differences in income and education level, in which the effects of income are greater than that of education level. In terms of behavioural characteristics, evaluation of subjective loudness is influenced by the reason for visit, frequency of visit, and length of stay, with correlation coefficients or contingency coefficients of 0.10 to 0.40 (p<0.05 or p<0.01). Evaluation of acoustic comfort is influenced by the reason for visit to the site, the frequency of visit, length of stay, and also season of visit, with correlation coefficients of 0.10 to 0.30 (p<0.05 or p<0.01). In particular, users who are waiting for someone show lower evaluation of acoustic comfort, whereas users who go to shopping malls more than once a month show higher evaluation of acoustic comfort. On the contrary, the influence of the period of visit and the accompanying persons are found insignificant. PMID:23336003
Glottal Adduction and Subglottal Pressure in Singing.
Herbst, Christian T; Hess, Markus; Müller, Frank; Švec, Jan G; Sundberg, Johan
2015-07-01
Previous research suggests that independent variation of vocal loudness and glottal configuration (type and degree of vocal fold adduction) does not occur in untrained speech production. This study investigated whether these factors can be varied independently in trained singing and how subglottal pressure is related to average glottal airflow, voice source properties, and sound level under these conditions. A classically trained baritone produced sustained phonations on the endoscopic vowel [i:] at pitch D4 (approximately 294 Hz), exclusively varying either (a) vocal register; (b) phonation type (from "breathy" to "pressed" via cartilaginous adduction); or (c) vocal loudness, while keeping the others constant. Phonation was documented by simultaneous recording of videokymographic, electroglottographic, airflow and voice source data, and by percutaneous measurement of relative subglottal pressure. Register shifts were clearly marked in the electroglottographic wavegram display. Compared with chest register, falsetto was produced with greater pulse amplitude of the glottal flow, H1-H2, mean airflow, and with lower maximum flow declination rate (MFDR), subglottal pressure, and sound pressure. Shifts of phonation type (breathy/flow/neutral/pressed) induced comparable systematic changes. Increase of vocal loudness resulted in increased subglottal pressure, average flow, sound pressure, MFDR, glottal flow pulse amplitude, and H1-H2. When changing either vocal register or phonation type, subglottal pressure and mean airflow showed an inverse relationship, that is, variation of glottal flow resistance. The direct relation between subglottal pressure and airflow when varying only vocal loudness demonstrated independent control of vocal loudness and glottal configuration. Achieving such independent control of phonatory control parameters would be an important target in vocal pedagogy and in voice therapy. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Radio-loudness in black hole transients: evidence for an inclination effect
NASA Astrophysics Data System (ADS)
Motta, S. E.; Casella, P.; Fender, R.
2018-06-01
Accreting stellar-mass black holes appear to populate two branches in a radio:X-ray luminosity plane. We have investigated the X-ray variability properties of a large number of black hole low-mass X-ray binaries, with the aim of unveiling the physical reasons underlying the radio-loud/radio-quiet nature of these sources, in the context of the known accretion-ejection connection. A reconsideration of the available radio and X-ray data from a sample of black hole X-ray binaries confirms that being radio-quiet is the more normal mode of behaviour for black hole binaries. In the light of this we chose to test, once more, the hypothesis that radio loudness could be a consequence of the inclination of the X-ray binary. We compared the slope of the `hard-line' (an approximately linear correlation between X-ray count rate and rms variability, visible in the hard states of active black holes), the orbital inclination, and the radio-nature of the sources of our sample. We found that high-inclination objects show steeper hard-lines than low-inclination objects, and tend to display a radio-quiet nature (with the only exception of V404 Cyg), as opposed to low-inclination objects, which appear to be radio-loud(er). While in need of further confirmation, our results suggest that - contrary to what has been believed for years - the radio-loud/quiet nature of black-hole low mass X-ray binaries might be an inclination effect, rather than an intrinsic source property. This would solve an important issue in the context of the inflow-outflow connection, thus providing significant constraints to the models for the launch of hard-state compact jets.
Graded behavioral responses and habituation to sound in the common cuttlefish Sepia officinalis.
Samson, Julia E; Mooney, T Aran; Gussekloo, Sander W S; Hanlon, Roger T
2014-12-15
Sound is a widely available and vital cue in aquatic environments, yet most bioacoustic research has focused on marine vertebrates, leaving sound detection in invertebrates poorly understood. Cephalopods are an ecologically key taxon that likely use sound and may be impacted by increasing anthropogenic ocean noise, but little is known regarding their behavioral responses or adaptations to sound stimuli. These experiments identify the acoustic range and levels that elicit a wide range of secondary defense behaviors such as inking, jetting and rapid coloration change. Secondarily, it was found that cuttlefish habituate to certain sound stimuli. The present study examined the behavioral responses of 22 cuttlefish (Sepia officinalis) to pure-tone pips ranging from 80 to 1000 Hz with sound pressure levels of 85-188 dB re. 1 μPa rms and particle accelerations of 0-17.1 m s(-2). Cuttlefish escape responses (inking, jetting) were observed between frequencies of 80 and 300 Hz and at sound levels above 140 dB re. 1 μPa rms and 0.01 m s(-2) (0.74 m s(-2) for inking responses). Body patterning changes and fin movements were observed at all frequencies and sound levels. Response intensity was dependent upon stimulus amplitude and frequency, suggesting that cuttlefish also possess loudness perception with a maximum sensitivity around 150 Hz. Cuttlefish habituated to repeated 200 Hz tone pips, at two sound intensities. Total response inhibition was not reached, however, and a basal response remained present in most animals. The graded responses provide a loudness sensitivity curve and suggest an ecological function for sound use in cephalopods. © 2014. Published by The Company of Biologists Ltd.
Chung, Hsiung-Kwang; Tsai, Chon-Haw; Lin, Yu-Chin; Chen, Jin-Ming; Tsou, Yung-An; Wang, Chin-Yuan; Lin, Chia-Der; Jeng, Fuh-Cherng; Chung, Jing-Gung; Tsai, Ming-Hsui
2012-01-01
Repetitive transcranial magnetic stimulation (rTMS), a noninvasive method for altering cortical excitability, is becoming a therapeutic strategy in auditory research institutions worldwide. Application of inhibiting rTMS on these overactive cortical regions can result in effective tinnitus suppression. The aim of this study is to investigate the efficacy of theta-burst rTMS in patients with chronic tinnitus. Parallel randomized control study. Tertiary referral center. We enrolled 2 female and 20 male patients in this study. The evaluative tools included tinnitus frequency- and loudness-matching, tinnitus questionnaires (TQ), and the Tinnitus Handicap Inventory (THI). The orthogonal projection of the auditory cortex on the scalp was focalized. A figure-eight coil was placed on the surface of the skull over the targeted region with the intensity setting at 80% of the resting motor threshold. We delivered 900 pulses of theta-burst rTMS daily for 10 business days. Nine of twelve patients (75%) in the active-stimulation group reported tinnitus suppression following treatment with rTMS. The treatment led to reductions of 8.58 and 8.33 in the mean TQ global and THI scores, respectively. Tinnitus loudness also decreased significantly after delivering rTMS. Descriptive analysis of the TQs revealed that patients experienced significant improvements in emotional distress levels and somatic symptoms. Our preliminary results demonstrate that theta-burst rTMS treatments offer a method of modulating tinnitus. Patients could benefit from emotional improvements, even more than auditory perceptive relief. Further studies are needed to establish a standard protocol and to clarify nervous propagation along the auditory and psychological projection following treatment with rTMS. Copyright © 2011 S. Karger AG, Basel.
Reif, Roberto; Zhi, Zhongwei; Dziennis, Suzan; Nuttall, Alfred L; Wang, Ruikang K
2013-10-01
In this work we determined the contributions of loud sound exposure (LSE) on cochlear blood flow (CoBF) in an in vivo anesthetized mouse model. A broadband noise system (20 kHz bandwidth) with an intensity of 119 dB SPL, was used for a period of one hour to produce a loud sound stimulus. Two techniques were used to study the changes in blood flow, a Doppler optical microangiography (DOMAG) system; which can measure the blood flow within individual cochlear vessels, and a laser Doppler flowmetry (LDF) system; which averages the blood flow within a volume (a hemisphere of ~1.5 mm radius) of tissue. Both systems determined that the blood flow within the cochlea is reduced due to the LSE stimulation.
Enhanced Auditory Arousal Increases Intake of Less Palatable and Healthier Foods
Privitera, Gregory J.; Diaz, Melissa; Haas, Meagan C.
2014-01-01
Two experiments were conducted to test a prediction of the arousal hypothesis that increased arousal will increase intake of less palatable and healthy foods. In both experiments, arousal was manipulated by adjusting the volume of a movie (soft, loud volume) while participants consumed foods. In Experiment 1, participants ate fresh (palatable) or stale (less palatable) popcorn during a 9-minute movie played at a soft or loud volume. Experiment 2 used the same procedures with healthier foods (carrot sticks and apple slices). Partial support for the arousal hypothesis in Experiment 1 showed that participants consumed more stale but not fresh popcorn in the loud (high arousal) versus soft (low arousal) volume group. These findings suggest that low but not high palatable foods are susceptible to manipulations of arousal. Consistent with this interpretation, Experiment 2 showed that high but not low environmental arousal increased intake of the fruits and vegetables, which are typically rated as lower in palatability compared to high fat foods. These results show that high arousal in an eating-typical environment increases intake of less palatable foods, and healthy foods (i.e., fruits and vegetables). Increasing the availability of healthier foods in a loud food environment can have a positive impact on increasing intake of fruits and vegetables in that environment. PMID:24762340
Interaction of tinnitus suppression and hearing ability after cochlear implantation.
Wang, Qian; Li, Jia-Nan; Lei, Guan-Xiong; Chen, Dai-Shi; Wang, Wei-Ze; Chen, Ai-Ting; Mong, Meng-Di; Li, Sun; Jiao, Qing-Shan; Yang, Shi-Ming
2017-10-01
To study the postoperative impact of cochlear implants (CIs) on tinnitus, as well as the impact of tinnitus on speech recognition with CI switched on. Fifty-two postlingual deafened CI recipients (21 males and 31 females) were assessed using an established Tinnitus Characteristics Questionnaire and Tinnitus Handicap Inventory (THI) before and after cochlear implantation. The tinnitus loudness was investigated when CI was switched on and off in CI recipients with persistent tinnitus. The relation between tinnitus loudness and recipients' satisfaction of cochlear implantation was analyzed by the visual analogue scale (VAS) score. With CI 'OFF', 42 CI recipients experienced tinnitus postimplant ipsilaterally and 44 contralaterally. Tinnitus was totally suppressed ipsilateral to the CI with CI 'ON' in 42.9%, partially suppressed in 42.9%, unchanged in 11.9% and aggravated in 2.4%. Tinnitus was totally suppressed contralaterally with CI 'ON' in 31.8% of CI recipients, partially suppressed in 47.7%, unchanged in 20.5%. Pearson correlation analysis showed that tinnitus loudness and the results of cochlear implant patients satisfaction was negatively correlated (r = .674, p < .001). The study suggests six-month CI activation can be effective for suppressing tinnitus. The tinnitus loudness may affect patients' satisfaction with the use of CI.
First direct comparison of high and low ionization line kinematics in active galactic nuclei
NASA Technical Reports Server (NTRS)
Sulentic, J. W.; Marziani, P.; Dultzin-Hacyan, D.; Calvani, M.; Moles, M.
1995-01-01
We present first results of a comparison of emission line shift properties for the high (HILs) and low (LILs) ionization lines in 43 low-reshift quasars. We identify a core sample of C IV lambda 1549 and hydrogen beta profiles with a wide distribution of red- and blueshifts (less than or equal to +/- 1000 km/sec). We also identify two tails in this distribution: one with large hydrogen beta redshifts (greater than or equal to 2000 km/sec) and another with large C IV blueshifts (greater than or equal to 1500 km/sec). The tails are mutually exclusive. All objects with extreme hydrogen beta redshift are radio loud, and all objects with extreme C IV blueshift are radio quiet. The core samples of smaller shifts can be most simply divided into: (1) hydrogen beta - a redshifted radio-loud population (related to the tail) and a radio-quiet population with mean shift near zero, and (2) C IV - a blueshifted radio-quiet population (related to the tail) and a radio-loud population with mean shift near zero. The results suggest fundamentally different kinematics for the HILs and LILs. They also suggest very different kinematics for radio-loud and radio-quiet active galactic nuclei. They also favor a predominance of radial motion in a large fraction of the sample.
Relative contributions of specific frequency bands to the loudness of broadband sounds.
Jesteadt, Walt; Walker, Sara M; Ogun, Oluwaseye A; Ohlrich, Brenda; Brunette, Katyarina E; Wróblewski, Marcin; Schmid, Kendra K
2017-09-01
Listeners with normal hearing (NH) and sensorineural hearing loss (SNHL) were asked to compare pairs of noise stimuli and choose the louder noise in each pair. Each noise was made up of 15, two-ERB N (equivalent rectangular bandwidth) wide frequency bands that varied independently over a 12-dB range from one presentation to the next. Mean levels of the bands followed the long-term average speech spectrum (LTASS) or were set to 43, 51, or 59 dB sound pressure level (SPL). The relative contribution of each band to the total loudness of the noise was determined by computing the correlation between the difference in levels for a given band on every trial and the listener's decision on that trial. Weights for SNHL listeners were governed by audibility and the spectrum of the noise stimuli, with bands near the spectral peak of the LTASS noise receiving greatest weight. NH listeners assigned greater weight to the lowest and highest bands, an effect that increased with overall level, but did not assign greater weight to bands near the LTASS peak. Additional loudness-matching and paired-comparison studies using stimuli missing one of the 15 bands showed a significant contribution by the highest band, but properties other than loudness may have contributed to the decisions.
Arpornchayanon, Warangkana; Canis, Martin; Ihler, Friedrich; Settevendemie, Claudia; Strieth, Sebastian
2013-08-01
Exposure to loud noise can impair cochlear microcirculation and cause noise-induced hearing loss (NIHL). TNF-α signaling has been shown to be activated in NIHL and to control spiral modiolar artery vasoconstriction that regulates cochlear microcirculation. It was the aim of this experimental study to analyse the effects of the TNF-α inhibitor etanercept on cochlear microcirculation and hearing threshold shift in NIHL in vivo. After assessment of normacusis using ABR, loud noise (106 dB SPL, 30 minutes) was applied on both ears in guinea pigs. Etanercept was administered systemically after loud noise exposure while control animals received a saline solution. In vivo fluorescence microscopy of strial capillaries was performed after surgical exposure of the cochlea for microcirculatory analysis. ABR measurements were derived from the contralateral ear. Guinea pigs (n = 6, per group). Compared to controls, cochlear blood flow in strial capillary segments was significantly increased in etanercept-treated animals. Additionally, hearing threshold was preserved in animals receiving the TNF-α inhibitor in contrast to a significant threshold raising in controls. TNF-α inhibition using etanercept improves cochlear microcirculation and protects hearing levels after loud noise exposure and appears as a promising treatment strategy for human NIHL.
Enhanced auditory arousal increases intake of less palatable and healthier foods.
Privitera, Gregory J; Diaz, Melissa; Haas, Meagan C
2014-01-23
Two experiments were conducted to test a prediction of the arousal hypothesis that increased arousal will increase intake of less palatable and healthy foods. In both experiments, arousal was manipulated by adjusting the volume of a movie (soft, loud volume) while participants consumed foods. In Experiment 1, participants ate fresh (palatable) or stale (less palatable) popcorn during a 9-minute movie played at a soft or loud volume. Experiment 2 used the same procedures with healthier foods (carrot sticks and apple slices). Partial support for the arousal hypothesis in Experiment 1 showed that participants consumed more stale but not fresh popcorn in the loud (high arousal) versus soft (low arousal) volume group. These findings suggest that low but not high palatable foods are susceptible to manipulations of arousal. Consistent with this interpretation, Experiment 2 showed that high but not low environmental arousal increased intake of the fruits and vegetables, which are typically rated as lower in palatability compared to high fat foods. These results show that high arousal in an eating-typical environment increases intake of less palatable foods, and healthy foods (i.e., fruits and vegetables). Increasing the availability of healthier foods in a loud food environment can have a positive impact on increasing intake of fruits and vegetables in that environment.
Ponsot, Emmanuel; Susini, Patrick; Meunier, Sabine
2017-07-01
The mechanisms underlying global loudness judgments of rising- or falling-intensity tones were further investigated in two magnitude estimation experiments. By manipulating the temporal characteristics of such stimuli, it was examined whether judgments could be accounted for by an integration of their loudest portion over a certain temporal window associated to a "decay mechanism" downsizing this integration over time for falling ramps. In experiment 1, 1-kHz intensity-ramps were stretched in time between 1 and 16 s keeping their dynamics (difference between maximum and minimum levels) unchanged. While global loudness of rising tones increased up to 6 s, evaluations of falling tones increased at a weaker rate and slightly decayed between 6 and 16 s, resulting in significant differences between the two patterns. In experiment 2, ramps were stretched in time between 2 and 12 s keeping their slopes (rate of change in dB/s) unchanged. In this context, the main effect of duration became non-significant and the interaction between the two profiles remained, although the decay of falling tones was not significant. These results qualitatively support the view that the global loudness computation of intensity-ramps involves an integration of their loudest portions; the presence of a decay mechanism could, however, not be attested.
NASA Astrophysics Data System (ADS)
Tanaka, Masaomi; Morokuma, Tomoki; Itoh, Ryosuke; Akitaya, Hiroshi; Tominaga, Nozomu; Saito, Yoshihiko; Stawarz, Łukasz; Tanaka, Yasuyuki T.; Gandhi, Poshak; Ali, Gamal; Aoki, Tsutomu; Contreras, Carlos; Doi, Mamoru; Essam, Ahmad; Hamed, Gamal; Hsiao, Eric Y.; Iwata, Ikuru; Kawabata, Koji S.; Kawai, Nobuyuki; Kikuchi, Yuki; Kobayashi, Naoto; Kuroda, Daisuke; Maehara, Hiroyuki; Matsumoto, Emiko; Mazzali, Paolo A.; Minezaki, Takeo; Mito, Hiroyuki; Miyata, Takashi; Miyazaki, Satoshi; Mori, Kensho; Moritani, Yuki; Morokuma-Matsui, Kana; Morrell, Nidia; Nagao, Tohru; Nakada, Yoshikazu; Nakata, Fumiaki; Noma, Chinami; Ohsuga, Ken; Okada, Norio; Phillips, Mark M.; Pian, Elena; Richmond, Michael W.; Sahu, Devendra; Sako, Shigeyuki; Sarugaku, Yuki; Shibata, Takumi; Soyano, Takao; Stritzinger, Maximilian D.; Tachibana, Yutaro; Taddia, Francesco; Takaki, Katsutoshi; Takey, Ali; Tarusawa, Ken'ichi; Ui, Takahiro; Ukita, Nobuharu; Urata, Yuji; Walker, Emma S.; Yoshii, Taketoshi
2014-10-01
We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ~107 M ⊙ implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ~= 4 × 102-3 × 103, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.
NASA Astrophysics Data System (ADS)
Lin, Yeong-Fen Emily
This thesis is the result of an investigation of the source-vowel interaction from the point of view of perception. Major objectives include the identification of the acoustic correlates of breathy voice and the disclosure of the interdependent relationship between the perception of vowel identity and breathiness. Two experiments were conducted to achieve these objectives. In the first experiment, voice samples from one control group and seven patient groups were compared. The control group consisted of five female and five male adults. The ten normals were recruited to perform a sustained vowel phonation task with constant pitch and loudness. The voice samples of seventy patients were retrieved from a hospital data base, with vowels extracted from sentences repeated by patients at their habitual pitch and loudness. The seven patient groups were divided, based on a unique combination of patients' measures on mean flow rate and glottal resistance. Eighteen acoustic variables were treated with a three-way (Gender x Group x Vowel) ANOVA. Parameters showing a significant female-male difference as well as group differences, especially those between the presumed breathy group and the other groups, were identified as relevant to the distinction of breathy voice. As a result, F1-F3 amplitude difference and slope were found to be most effective in distinguishing breathy voice. Other acoustic correlates of breathy voice included F1 bandwidth, RMS-H1 amplitude difference, and F1-F2 amplitude difference and slope. In the second experiment, a formant synthesizer was used to generate vowel stimuli with varying spectral tilt and F1 bandwidth. Thirteen native American English speakers made dissimilarity judgements on paired stimuli in terms of vowel identity and breathiness. Listeners' perceptual vowel spaces were found to be affected by changes in the acoustic correlates of breathy voice. The threshold of detecting a change of vocal quality in the breathiness domain was also found to be vowel-dependent.
Kaya, Emine Merve
2017-01-01
Sounds in everyday life seldom appear in isolation. Both humans and machines are constantly flooded with a cacophony of sounds that need to be sorted through and scoured for relevant information—a phenomenon referred to as the ‘cocktail party problem’. A key component in parsing acoustic scenes is the role of attention, which mediates perception and behaviour by focusing both sensory and cognitive resources on pertinent information in the stimulus space. The current article provides a review of modelling studies of auditory attention. The review highlights how the term attention refers to a multitude of behavioural and cognitive processes that can shape sensory processing. Attention can be modulated by ‘bottom-up’ sensory-driven factors, as well as ‘top-down’ task-specific goals, expectations and learned schemas. Essentially, it acts as a selection process or processes that focus both sensory and cognitive resources on the most relevant events in the soundscape; with relevance being dictated by the stimulus itself (e.g. a loud explosion) or by a task at hand (e.g. listen to announcements in a busy airport). Recent computational models of auditory attention provide key insights into its role in facilitating perception in cluttered auditory scenes. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044012
Dailey, Deena D; Braun, Christopher B
2011-08-01
Goldfish (Carassius auratus) were conditioned to suppress respiration to a 40-Hz vibratory source and subsequently tested for stimulus generalization to frequency, stimulus amplitude, and position (azimuth). Animals completely failed to generalize to frequencies separated by octave intervals both lesser and greater than the CS. However, they did appear to generalize weakly to an aerial loudspeaker stimulus of the same frequency (40 Hz) after conditioning with an underwater vibratory source. Animals had a gradually decreasing amount of generalization to amplitude changes, suggesting a perceptual dimension of loudness. Animals generalized largely or completely to the same underwater source presented at a range of source azimuths. When these azimuths were presented at a transect of 3 cm, some animals did show decrements in generalization, while others did not. This suggests that although azimuth may be perceived more saliently at distances closer to a dipole source, perception of position is not immediately salient in conditioned vibratory source detection. Differential responding to test stimuli located toward the head or tail suggests the presence of perceptual differences between sources that are rostral or caudal with respect to the position of the animal or perhaps the head. PsycINFO Database Record (c) 2011 APA, all rights reserved.
Sound Levels and Risk Perceptions of Music Students During Classes.
Rodrigues, Matilde A; Amorim, Marta; Silva, Manuela V; Neves, Paula; Sousa, Aida; Inácio, Octávio
2015-01-01
It is well recognized that professional musicians are at risk of hearing damage due to the exposure to high sound pressure levels during music playing. However, it is important to recognize that the musicians' exposure may start early in the course of their training as students in the classroom and at home. Studies regarding sound exposure of music students and their hearing disorders are scarce and do not take into account important influencing variables. Therefore, this study aimed to describe sound level exposures of music students at different music styles, classes, and according to the instrument played. Further, this investigation attempted to analyze the perceptions of students in relation to exposure to loud music and consequent health risks, as well as to characterize preventive behaviors. The results showed that music students are exposed to high sound levels in the course of their academic activity. This exposure is potentiated by practice outside the school and other external activities. Differences were found between music style, instruments, and classes. Tinnitus, hyperacusis, diplacusis, and sound distortion were reported by the students. However, students were not entirely aware of the health risks related to exposure to high sound pressure levels. These findings reflect the importance of starting intervention in relation to noise risk reduction at an early stage, when musicians are commencing their activity as students.
The Role of Soundscape in Nature-Based Rehabilitation: A Patient Perspective
Cerwén, Gunnar; Pedersen, Eja; Pálsdóttir, Anna María
2016-01-01
Nature-based rehabilitation (NBR) has convincing support in research, yet the underlying mechanisms are not fully understood. The present study sought to increase understanding of the role of soundscapes in NBR, an aspect paid little attention thus far. Transcribed interviews with 59 patients suffering from stress-related mental disorders and undergoing a 12-week therapy programme in the rehabilitation garden in Alnarp, Sweden, were analysed using Interpretative Phenomenology Analysis (IPA). Described sounds were categorised as natural, technological or human. The results showed that patients frequently referred to natural sounds as being part of a pleasant and “quiet” experience that supported recovery and induced “soft fascination”. Technological sounds were experienced as disturbing, while perception of human sounds varied depending on loudness and the social context. The study further uncovered how sound influenced patients’ behaviour and experiences in the garden, through examination of three cross-theme dimensions that materialised in the study; sound in relation to overall perception, sound in relation to garden usage, and increased susceptibility to sound. The findings are discussed in relation to NBR; the need for a more nuanced understanding of susceptibility to sound among people suffering from mental fatigue was identified and design considerations for future rehabilitation gardens were formulated. PMID:27973437
Perceptual assessment of quality of urban soundscapes with combined noise sources and water sounds.
Jeon, Jin Yong; Lee, Pyoung Jik; You, Jin; Kang, Jian
2010-03-01
In this study, urban soundscapes containing combined noise sources were evaluated through field surveys and laboratory experiments. The effect of water sounds on masking urban noises was then examined in order to enhance the soundscape perception. Field surveys in 16 urban spaces were conducted through soundwalking to evaluate the annoyance of combined noise sources. Synthesis curves were derived for the relationships between noise levels and the percentage of highly annoyed (%HA) and the percentage of annoyed (%A) for the combined noise sources. Qualitative analysis was also made using semantic scales for evaluating the quality of the soundscape, and it was shown that the perception of acoustic comfort and loudness was strongly related to the annoyance. A laboratory auditory experiment was then conducted in order to quantify the total annoyance caused by road traffic noise and four types of construction noise. It was shown that the annoyance ratings were related to the types of construction noise in combination with road traffic noise and the level of the road traffic noise. Finally, water sounds were determined to be the best sounds to use for enhancing the urban soundscape. The level of the water sounds should be similar to or not less than 3 dB below the level of the urban noises.
DIFFERENCES BETWEEN RADIO-LOUD AND RADIO-QUIET γ -RAY PULSARS AS REVEALED BY FERMI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, C. Y.; Lee, Jongsu; Takata, J.
By comparing the properties of non-recycled radio-loud γ -ray pulsars and radio-quiet γ -ray pulsars, we have searched for the differences between these two populations. We found that the γ -ray spectral curvature of radio-quiet pulsars can be larger than that of radio-loud pulsars. Based on the full sample of non-recycled γ -ray pulsars, their distributions of the magnetic field strength at the light cylinder are also found to be different. We note that this might result from an observational bias. By reexamining the previously reported difference of γ -ray-to-X-ray flux ratios, we found that the significance can be hamperedmore » by their statistical uncertainties. In the context of the outer gap model, we discuss the expected properties of these two populations and compare with the possible differences that are identified in our analysis.« less
A SOUND SOURCE LOCALIZATION TECHNIQUE TO SUPPORT SEARCH AND RESCUE IN LOUD NOISE ENVIRONMENTS
NASA Astrophysics Data System (ADS)
Yoshinaga, Hiroshi; Mizutani, Koichi; Wakatsuki, Naoto
At some sites of earthquakes and other disasters, rescuers search for people buried under rubble by listening for the sounds which they make. Thus developing a technique to localize sound sources amidst loud noise will support such search and rescue operations. In this paper, we discuss an experiment performed to test an array signal processing technique which searches for unperceivable sound in loud noise environments. Two speakers simultaneously played a noise of a generator and a voice decreased by 20 dB (= 1/100 of power) from the generator noise at an outdoor space where cicadas were making noise. The sound signal was received by a horizontally set linear microphone array 1.05 m in length and consisting of 15 microphones. The direction and the distance of the voice were computed and the sound of the voice was extracted and played back as an audible sound by array signal processing.
Dimensionality in voice quality.
Bele, Irene Velsvik
2007-05-01
This study concerns speaking voice quality in a group of male teachers (n = 35) and male actors (n = 36), as the purpose was to investigate normal and supranormal voices. The goal was the development of a method of valid perceptual evaluation for normal to supranormal and resonant voices. The voices (text reading at two loudness levels) had been evaluated by 10 listeners, for 15 vocal characteristics using VA scales. In this investigation, the results of an exploratory factor analysis of the vocal characteristics used in this method are presented, reflecting four dimensions of major importance for normal and supranormal voices. Special emphasis is placed on the effects on voice quality of a change in the loudness variable, as two loudness levels are studied. Furthermore, the vocal characteristics Sonority and Ringing voice quality are paid special attention, as the essence of the term "resonant voice" was a basic issue throughout a doctoral dissertation where this study was included.
[Clinical aspects of coping with tinnitus].
Nieschalk, M; Winter, B; Stoll, W
1995-10-01
Forty-two patients suffering form chronic tinnitus participated in our psychologically oriented treatment last year. The following study presents the results of the psychological management of chronic tinnitus combining counselling with relaxation training. Furthermore individual therapy is compared with group therapy. The therapeutical efficiency can be tested using visual analog scales. The individual estimated loudness and annoyance of tinnitus are registered. A quantitative assessment of complaints is made via questionnaires (adapted to Back Depression Inventory). In most cases a reduction of tinnitus loudness and annoyance after individual and group therapy is seen directly. But a constant therapeutical effect is only found is individual therapy. In group therapy, many of our patients reported an increase in the pretherapeutical estimation of tinnitus loudness and annoyance. We believe that permanent confrontation with the tinnitus problem may advance the psychological conflict in many cases. Therefore, psychological management of tinnitus should be concentrated on temporary limited support aimed at overcoming tinnitus sensation.
It's not what you play, it's how you play it: Timbre affects perception of emotion in music
Hailstone, Julia C.; Omar, Rohani; Henley, Susie M. D.; Frost, Chris; Kenward, Michael G.; Warren, Jason D.
2009-01-01
Salient sensory experiences often have a strong emotional tone, but the neuropsychological relations between perceptual characteristics of sensory objects and the affective information they convey remain poorly defined. Here we addressed the relationship between sound identity and emotional information using music. In two experiments, we investigated whether perception of emotions is influenced by altering the musical instrument on which the music is played, independently of other musical features. In the first experiment, 40 novel melodies each representing one of four emotions (happiness, sadness, fear, or anger) were each recorded on four different instruments (an electronic synthesizer, a piano, a violin, and a trumpet), controlling for melody, tempo, and loudness between instruments. Healthy participants (23 young adults aged 18–30 years, 24 older adults aged 58–75 years) were asked to select which emotion they thought each musical stimulus represented in a four-alternative forced-choice task. Using a generalized linear mixed model we found a significant interaction between instrument and emotion judgement with a similar pattern in young and older adults (p < .0001 for each age group). The effect was not attributable to musical expertise. In the second experiment using the same melodies and experimental design, the interaction between timbre and perceived emotion was replicated (p < .05) in another group of young adults for novel synthetic timbres designed to incorporate timbral cues to particular emotions. Our findings show that timbre (instrument identity) independently affects the perception of emotions in music after controlling for other acoustic, cognitive, and performance factors. PMID:19391047
Vocal Responses to Perturbations in Voice Auditory Feedback in Individuals with Parkinson's Disease
Liu, Hanjun; Wang, Emily Q.; Metman, Leo Verhagen; Larson, Charles R.
2012-01-01
Background One of the most common symptoms of speech deficits in individuals with Parkinson's disease (PD) is significantly reduced vocal loudness and pitch range. The present study investigated whether abnormal vocalizations in individuals with PD are related to sensory processing of voice auditory feedback. Perturbations in loudness or pitch of voice auditory feedback are known to elicit short latency, compensatory responses in voice amplitude or fundamental frequency. Methodology/Principal Findings Twelve individuals with Parkinson's disease and 13 age- and sex- matched healthy control subjects sustained a vowel sound (/α/) and received unexpected, brief (200 ms) perturbations in voice loudness (±3 or 6 dB) or pitch (±100 cents) auditory feedback. Results showed that, while all subjects produced compensatory responses in their voice amplitude or fundamental frequency, individuals with PD exhibited larger response magnitudes than the control subjects. Furthermore, for loudness-shifted feedback, upward stimuli resulted in shorter response latencies than downward stimuli in the control subjects but not in individuals with PD. Conclusions/Significance The larger response magnitudes in individuals with PD compared with the control subjects suggest that processing of voice auditory feedback is abnormal in PD. Although the precise mechanisms of the voice feedback processing are unknown, results of this study suggest that abnormal voice control in individuals with PD may be related to dysfunctional mechanisms of error detection or correction in sensory feedback processing. PMID:22448258
Emotion dynamics and tinnitus: Daily life data from the “TrackYourTinnitus” application
Probst, Thomas; Pryss, Rüdiger; Langguth, Berthold; Schlee, Winfried
2016-01-01
It is well established that emotions influence tinnitus, but the role of emotion dynamics remains unclear. The present study investigated emotion dynamics in N = 306 users of the “TrackYourTinnitus” application who completed the Mini-Tinnitus Questionnaire (Mini-TQ) at one assessment point and provided complete data on at least five assessment points for the following state variables: tinnitus loudness, tinnitus distress, arousal, valence. The repeated arousal and valence ratings were used for two operationalizations of emotion dynamics: intra-individual variability of affect intensity (pulse) as well as intra-individual variability of affect quality (spin). Pearson correlation coefficients showed that the Mini-TQ was positively correlated with pulse (r = 0.19; p < 0.05) as well as with spin (r = 0.12; p < 0.05). Multilevel models revealed the following results: increases in tinnitus loudness were more strongly associated with increases in tinnitus distress at higher levels of pulse as well as at higher levels of spin (both p < 0.05), whereby increases in tinnitus loudness correlated even stronger with increases in tinnitus distress when both pulse as well as spin were high (p < 0.05). Moreover, increases in spin were associated with a less favorable time course of tinnitus loudness (p < 0.05). To conclude, equilibrating emotion dynamics might be a potential target in the prevention and treatment of tinnitus. PMID:27488227
Misoprostol in the treatment of tinnitus: a double-blind study.
Yilmaz, Ismail; Akkuzu, Babür; Cakmak, Ozcan; Ozlüoglu, Levent N
2004-05-01
To test the efficacy of misoprostol as a treatment for tinnitus. A prospective, placebo-controlled, double-blind study. Başkent University Otolaryngology Clinic. Forty adult patients who had had tinnitus for a minimum of 6 months and were free of systemic or otolaryngologic disease. Twenty-eight patients were randomly assigned to the experimental group (group I) and 12 to the control group (group II). The respective groups received active drug and placebo in increasing doses for 4 months. The effect of medications on tinnitus were evaluated by determining improvement rates in tinnitus loudness and subjective tinnitus scoring. In the experimental group, 18 of 28 patients showed improvement in tinnitus loudness, representing an improvement rate of 64%. The improvement rate based on subjective tinnitus scoring was 36% (10 of 28 patients). In the control group, the improvement rate for tinnitus loudness was 33% (n = 4), and the rate for subjective tinnitus scoring was 17% (n = 2). The difference between improvement rate for tinnitus loudness of the experimental group and control group was found to be statistically significant (P = 0.039), but difference between improvement rate based on subjective tinnitus scoring was insignificant (P = 0.119). When results in the experimental group were analyzed according to etiological factors, the improvement rate was highest in the sudden-onset subgroup (77%). Misoprostol provided therapeutic relief for some patients with tinnitus we studied, but further investigation of larger groups is needed.
The influence of pitch and loudness changes on the acoustics of vocal tremor.
Dromey, Christopher; Warrick, Paul; Irish, Jonathan
2002-10-01
The effect of tremor on phonation is to modulate an otherwise steady sound source in its amplitude, fundamental frequency, or both. The severity of untreated vocal tremor has been reported to change under certain conditions that may be related to muscle tension. In order to better understand the phenomenon of vocal tremor, its acoustic properties were examined as individuals volitionally altered their pitch and loudness. These voice conditions were anticipated to alter the tension of the intrinsic laryngeal muscles. The voices of 10 individuals with a diagnosis of vocal tremor were recorded before participating in a longitudinal treatment study. They produced vowels at low and high pitch and loudness levels as well as in a comfortable voice condition. Acoustic analyses quantified the amplitude and frequency modulations of the speakers' voices across the various conditions. Individual speakers varied in the way the pitch and loudness changes affected their tremor, but the following statistically significant effects for the speakers as a group were observed: Higher pitch phonation was associated with a more rapid rate for both amplitude and frequency modulations. Amplitude modulation become faster for louder phonation. Low-pitched phonotion led to decreases in the extent of amplitude tremor. Varying pitch led to dramatic changes in the phase relationship between amplitude and frequency modulation in some of the speakers, whereas this effect was not apparent in other speakers.
NASA Astrophysics Data System (ADS)
Noirot, Gaël; Stern, Daniel; Mei, Simona; Wylezalek, Dominika; Cooke, Elizabeth A.; De Breuck, Carlos; Galametz, Audrey; Hatch, Nina A.; Vernet, Joël; Brodwin, Mark; Eisenhardt, Peter; Gonzalez, Anthony H.; Jarvis, Matt; Rettura, Alessandro; Seymour, Nick; Stanford, S. A.
2018-05-01
We report spectroscopic results from our 40-orbit Hubble Space Telescope slitless grism spectroscopy program observing the 20 densest Clusters Around Radio-Loud AGN (CARLA) candidate galaxy clusters at 1.4 < z < 2.8. These candidate rich structures, among the richest and most distant known, were identified on the basis of [3.6]–[4.5] color from a 408 hr multi-cycle Spitzer program targeting 420 distant radio-loud AGN. We report the spectroscopic confirmation of 16 distant structures at 1.4 < z < 2.8 associated with the targeted powerful high-redshift radio-loud AGN. We also report the serendipitous discovery and spectroscopic confirmation of seven additional structures at 0.87 < z < 2.12 not associated with the targeted radio-loud AGN. We find that 1010–1011 M ⊙ member galaxies of our confirmed CARLA structures form significantly fewer stars than their field counterparts at all redshifts within 1.4 ≤ z ≤ 2. We also observe higher star-forming activity in the structure cores up to z = 2, finding similar trends as cluster surveys at slightly lower redshifts (1.0 < z < 1.5). By design, our efficient strategy of obtaining just two grism orbits per field only obtains spectroscopic confirmation of emission line galaxies. Deeper spectroscopy will be required to study the population of evolved, massive galaxies in these (forming) clusters. Lacking multi-band coverage of the fields, we adopt a very conservative approach of calling all confirmations “structures,” although we note that a number of features are consistent with some of them being bona fide galaxy clusters. Together this survey represents a unique and large homogenous sample of spectroscopically confirmed structures at high redshifts, potentially more than doubling the census of confirmed, massive clusters at z > 1.4.
Subjective tinnitus and hearing problems in adolescents.
Bulbul, Selda Fatma; Muluk, Nuray Bayar; Cakir, Elif Pinar; Tufan, Erennur
2009-08-01
We investigated the hearing problems and tinnitus frequencies in adolescents at three public primary and two high schools. This study was carried out at three public primary and two high schools. 428 Turkish school children (244 girls, 184 boys) were asked to voluntarily answer a set of questionnaires in their classrooms at the beginning of the training program. There were 250 students (105 male, 145 female) in Primary School and 178 (79 male, 99 female) students in High School. We used questionnaire to evaluate subjective tinnitus and hearing problems. Walkman usage, listening loud and noisy music, intra-familial physical trauma, concentration difficulty in class and school success were also evaluated. In age-related groups (Group 1=11-13 years; Group 2=13-15 years; Group 3=16-18 years), hearing loss was present in 32.1% of Group 1, 19% of Group 2 and 28.3% of Group 3. Listening loud and noisy music was reported in 81.8% of Group 1, 95.4% of Group 2 and 87% of Group 3. Tinnitus was present 36.8% in Group 2, 33.5% in Group 1 and 31.5% in Group 3. Tinnitus after listening loud music was present in 42.7% of Group 2, 36.1% of Group 3 and 25.6% of Group 1. Among all students with tinnitus, 19.5% considered their school success as very good, 41.1% as good and 39.4% as bad. In students, using Walkman, tinnitus was seen both in the right and left ears. Tinnitus may be seen in adolescents at primary and high schools. Listening loud and noisy music and Walkman usage may cause an increase in the frequency of tinnitus manifestation. Adolescents should be educated about the hazardous effects of loud music. Education should include families, teachers, students, and whole community. These issues should be taken into public health policy of the countries.
The Gamma-Ray Emitting Radio-Loud Narrow-Line Seyfert 1 Galaxy PKS 2004-447 II. The Radio View
NASA Technical Reports Server (NTRS)
Schulz, R.; Kreikenbohm, A.; Kadler, M.; Ojha, R.; Ros, E.; Stevens, J.; Edwards, P. G.; Carpenter, B.; Elsaesser, D.; Gehrels, N.;
2016-01-01
Context. gamma-ray-detected radio-loud narrow-line Seyfert 1 (gamma-NLS1) galaxies constitute a small but interesting sample of the gamma-ray-loud AGN. The radio-loudest gamma-NLS1 known, PKS2004447, is located in the southern hemisphere and is monitored in the radio regime by the multiwavelength monitoring programme TANAMI. Aims. We aim for the first detailed study of the radio morphology and long-term radio spectral evolution of PKS2004447, which are essential for understanding the diversity of the radio properties of gamma-NLS1s. Methods. The TANAMI VLBI monitoring program uses the Australian Long Baseline Array (LBA) and telescopes in Antarctica, Chile, New Zealand, and South Africa to monitor the jets of radio-loud active galaxies in the southern hemisphere. Lower resolution radio flux density measurements at multiple radio frequencies over four years of observations were obtained with the Australia Telescope Compact Array (ATCA). Results. The TANAMI VLBI image at 8.4GHz shows an extended one-sided jet with a dominant compact VLBI core. Its brightness temperature is consistent with equipartition, but it is an order of magnitude below other gamma-NLS1s with the sample value varying over two orders of magnitude. We find a compact morphology with a projected large-scale size 11 kpc and a persistent steep radio spectrum with moderate flux-density variability. Conclusions. PKS2004447 appears to be a unique member of the gamma-NLS1 sample. It exhibits blazar-like features, such as a flat featureless X-ray spectrum and a core-dominated, one-sided parsec-scale jet with indications for relativistic beaming. However, the data also reveal properties atypical for blazars, such as a radio spectrum and large-scale size consistent with compact-steep-spectrum (CSS) objects, which are usually associated with young radio sources. These characteristics are unique among all gamma-NLS1s and extremely rare among gamma-ray-loud AGN.
Quantitative analysis of macrophages in wound healing of rat skin subjected to loud noise stress.
Rafi, Aisha; Khan, Muhammad Yunus; Minhas, Liaqat Ali
2014-01-01
Factors affecting skin wound healing have always been a central consideration in medical practice. Loud noise is biological stressor affecting the body systems at various levels. The present study was taken to study the effect of loud noise stress on the macrophages during wound healing process in male rat skin. One hundred and eighty male Sprague Dawley rats were randomly divided into control group-A and experimental group-B. Each group comprised 90 animals. Control and experimental groups were further subdivided into three subgroups of 30 animals each, corresponding to the day of sacrifice of animals, i.e., day 3, 5 and 7 after surgery. After induction of local anaesthesia a linear full thickness incision paravertebral to thoracic spine was made on the dorsum of rat. The experimental group B was exposed to loud noise stimulus (recorded noise of aero planes and gun fire) set at 97dBA to 102 dBA with a sound level meter. The animals were decapitated on day 3, 5 and 7 after surgery. Tissue was processed for paraffin embedding and stained by Hematoxylin and Eosin and Mallory's trichrome stain. Data was collected for the incisional space of the wound. Quantitative data of number of macrophages was analysed by Student's' test for the detection of any significant differences between the mean number in the experimental and control groups. All the quantitative data was expressed as means ± SE. A p-value of ≤ 0.05 was considered statistically significant. In this study macrophages were decreased statistically significantly at day 3 after surgery and thereafter increased significantly on day 5 and 7 after surgery in the experimental subgroups as compared to their match control subgroups. These results show that loud noise stress affects the cells (macrophages) involved in the healing of the wound therefore it is expected to have impact on the stages of wound healing.
The Role of Beam Geometry in Population Statistics and Pulse Profiles of Radio and Gamma-ray Pulsars
NASA Technical Reports Server (NTRS)
Gonthier, Peter L.; VanGuilder, Robert; Harding, Alice K.
2004-01-01
We present results of a pulsar population synthesis study that incorporates a number of recent developments and some significant improvements over our previous study. We have included the results of the Parkes multi-beam pulsar survey in our select group of nine radio surveys, doubling our sample of radio pulsars. More realistic geometries for the radio and gamma-ray beams are included in our Monte Carlo computer code that simulates the characteristics of the Galactic population of radio and gamma-ray pulsars. We adopted with some modifications the radio beam geometry of Arzoumanian, Chernoff & Cordes (2002). For the gamma-ray beam, we have assumed the slot gap geometry described in the work of Muslimov & Harding (2003). To account for the shape of the distribution of radio pulsars in the P(dot) - P diagram, we continue to find that decay of the magnetic field on a timescale of 2.8 Myr is needed. With all nine surveys, our model predicts that EGRET should have seen 7 radio-quiet (below the sensitivity of these radio surveys) and 19 radio-loud gamma-ray pulsars. AGILE (nominal sensitivity map) is expected to detect 13 radio-quiet and 37 radio-loud gamma-ray pulsars, while GLAST, with greater sensitivity is expected to detect 276 radio-quiet and 344 radio-loud gamma-ray pulsars. When the Parkes multi-beam pulsar survey is excluded, the ratio of radio-loud to radio-quiet gamma-ray pulsars decreases, especially for GLAST. The decrease for EGRET is 45%, implying that some fraction of EGRET unidentified sources are radio-loud gamma-ray pulsars. In the radio geometry adopted, short period pulsars are core dominated. Unlike the EGRET gamma-ray pulsars, our model predicts that when two gamma-ray peaks appear in the pulse profile, a dominant radio core peak appears in between the gamma-ray peaks. Our findings suggest that further improvements are required in describing both the radio and gamma-ray geometries.
Effect of loudness on reaction time and response force in different motor tasks.
Jaśkowski, Piotr; Włodarczyk, Dariusz
2005-12-01
Van der Molen and Keuss, in 1979 and 1981, showed that paradoxically long reaction times occur with extremely strong auditory stimuli when the task is difficult, e.g., choice-by-location or Simon paradigm. It was argued that this paradoxical behavior of RT is due to active inhibition of an arousal-dependent bypassing mechanism to prevent false responses. As the peak force, i.e., maximal force exerted by participants on a response key, is considered to be related to immediate arousal, we predicted that for extremely loud stimuli and for difficult tasks, lengthening of RT should be associated with reduction of peak force. Moreover, these effects should be enhanced when emphasis is on accuracy rather than speed. Although the relation between RT and intensity depended on task difficulty, no increase in RT was found for the loudest tones. Moreover, peak force increased monotonically with loudness, showing no tendency to be suppressed for loudest tones and difficult tasks.
NASA Astrophysics Data System (ADS)
Warren, Laura; Warren, Jean; Cheenne, Dominique
2004-05-01
Evidence suggests that children are damaging their hearing in substantial numbers [Niskar et al., J. Am. Med. Assoc. (1998)]. Conventional thinking would suggest that cultural norms and attitudes contribute to a desire in children to model what they have seen in the media, thus implying that they would be listening to music at levels that are considered harmful. Our study focused on a gender-balanced group of 316 elementary-age students and aimed at assessing a correlation between an attitudinal survey related to loud music and the children's own listening levels. The study was broader in scope and in sample size than previous work [Fucci, 138th ASA Meeting, 11/99]. Findings were both surprising and encouraging, citing that a majority of children who expressed favoritism towards loud music listened to the presented samples at lower levels than expected. The study also proposes a set of listening level distribution curves that may prove useful for future studies with older participants.
The Sound of Stigmatization: Sonic Habitus, Sonic Styles, and Boundary Work in an Urban Slum.
Schwarz, Ori
2015-07-01
Based on focus groups and interviews with student renters in an Israeli slum, the article explores the contributions of differences in sonic styles and sensibilities to boundary work, social categorization, and evaluation. Alongside visual cues such as broken windows, bad neighborhoods are characterized by sonic cues, such as shouts from windows. Students understand "being ghetto" as being loud in a particular way and use loudness as a central resource in their boundary work. Loudness is read as a performative index of class and ethnicity, and the performance of middle-class studentship entails being appalled by stigmatized sonic practices and participating in their exoticization. However, the sonic is not merely yet another resource of boundary work. Paying sociological attention to senses other than vision reveals complex interactions between structures anchored in the body, structures anchored in language, and actors' identification strategies, which may refine theorizations of the body and the senses in social theory.
Alards-Tomalin, Doug; Walker, Alexander C; Shaw, Joshua D M; Leboe-McGowan, Launa C
2015-09-01
The cross-modal impact of number magnitude (i.e. Arabic digits) on perceived sound loudness was examined. Participants compared a target sound's intensity level against a previously heard reference sound (which they judged as quieter or louder). Paired with each target sound was a task irrelevant Arabic digit that varied in magnitude, being either small (1, 2, 3) or large (7, 8, 9). The degree to which the sound and the digit were synchronized was manipulated, with the digit and sound occurring simultaneously in Experiment 1, and the digit preceding the sound in Experiment 2. Firstly, when target sounds and digits occurred simultaneously, sounds paired with large digits were categorized as loud more frequently than sounds paired with small digits. Secondly, when the events were separated, number magnitude ceased to bias sound intensity judgments. In Experiment 3, the events were still separated, however the participants held the number in short-term memory. In this instance the bias returned. Copyright © 2015 Elsevier B.V. All rights reserved.
Ground-recorded sonic boom signatures of F-18 aircraft formation flight
NASA Technical Reports Server (NTRS)
Bahm, Catherine M.; Haering, Edward A., Jr.
1995-01-01
Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft. An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.
Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakshit, Suvendu; Stalin, C. S., E-mail: suvenduat@gmail.com
We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z < 0.8 to investigate any differences in their OV properties. Using archival optical V -band light curves from the Catalina Real Time Transient Survey that span 5–9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found that NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude thanmore » radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe ii strength but correlated with the width of the H β line. The well-known anti-correlation of variability–luminosity and the variability–Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.« less
Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies
NASA Astrophysics Data System (ADS)
Rakshit, Suvendu; Stalin, C. S.
2017-06-01
We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z < 0.8 to investigate any differences in their OV properties. Using archival optical V-band light curves from the Catalina Real Time Transient Survey that span 5-9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found that NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude than radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe II strength but correlated with the width of the Hβ line. The well-known anti-correlation of variability-luminosity and the variability-Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.
Reducing interaction in simultaneous paired stimulation with CI.
Vellinga, Dirk; Bruijn, Saskia; Briaire, Jeroen J; Kalkman, Randy K; Frijns, Johan H M
2017-01-01
In this study simultaneous paired stimulation of electrodes in cochlear implants is investigated by psychophysical experiments in 8 post-lingually deaf subjects (and one extra subject who only participated in part of the experiments). Simultaneous and sequential monopolar stimulation modes are used as references and are compared to channel interaction compensation, partial tripolar stimulation and a novel sequential stimulation strategy named phased array compensation. Psychophysical experiments are performed to investigate both the loudness integration during paired stimulation at the main electrodes as well as the interaction with the electrode contact located halfway between the stimulating pair. The study shows that simultaneous monopolar stimulation has more loudness integration on the main electrodes and more interaction in between the electrodes than sequential stimulation. Channel interaction compensation works to reduce the loudness integration at the main electrodes, but does not reduce the interaction in between the electrodes caused by paired stimulation. Partial tripolar stimulation uses much more current to reach the needed loudness, but shows the same interaction in between the electrodes as sequential monopolar stimulation. In phased array compensation we have used the individual impedance matrix of each subject to calculate the current needed on each electrode to exactly match the stimulation voltage along the array to that of sequential stimulation. The results show that the interaction in between the electrodes is the same as monopolar stimulation. The strategy uses less current than partial tripolar stimulation, but more than monopolar stimulation. In conclusion, the paper shows that paired stimulation is possible if the interaction is compensated.
Bencsik, Beáta; Gáborján, Anita; Harnos, Andrea; László, Klára; Végső, Péter; Tamás Laszló
2015-05-30
Acoustic CR®-neuromodulation is a novel patented method for the therapy of chronic subjective tinnitus and has been tested in Hungary, as one of the first European countries introducing this procedure. It can be used for the treatment of monaural or binaural tonal tinnitus. Suitability of patients for this therapy was assessed by the help of an appropriate set of criteria. Aim of our study was to analyze 6-month therapy and related measurement data of patients first treated with this method in Hungary and evaluate the results. 27 outpatients (20 males, seven females) with a minimum of 6-month long history of subjective tinnitus were assessed (four detected on the right side, six on the left side, 17 on both sides) who were treated for six months by Acoustic CR®-neuromodulation. On 44 treated ears (21 right, 23 left), changes of tinnitus frequency and loudness were measured and analysed, using Visual Analogue Scale (VAS) loudness/annoyance/pitch scores and Tinnitus Handicap Inventory tests, which were performed at defined intervals during the treatment period. During this 6-month treatment period, significant decrease was detected in tinnitus frequency and loudness by tinnitometry (irrespective of the affected side), and an improvement in VAS annoyance/pitch scores and THI test results. VAS loudness did not show any significant changes. Acoustic CR®-neuromodulation therapy may be a useful treatment of subjective chronic tinnitus, but its efficacy should be proved in controlled clinical trials.
Summary of Propagation Cases of the Second AIAA Sonic Boom Prediction Workshop
NASA Technical Reports Server (NTRS)
Rallabhandi, Sriram; Loubeau, Alexandra
2017-01-01
A summary is provided for the propagation portion of the second AIAA Sonic Boom Workshop held January 8, 2017 in conjunction with the AIAA SciTech 2017 conference. Near-field pressure waveforms for two cases were supplied and ground signatures at multiple azimuthal angles as well as their corresponding loudness metrics were requested from 10 participants, representing 3 countries. Each case had some required runs, as well as some optional runs. The required cases included atmospheric profiles with measured data including winds, using Radiosonde balloon data at multiple geographically spread locations, while the optional cases included temperature and pressure profiles from the US Standard atmosphere. The humidity profiles provided for the optional cases were taken from ANSI guidance, as the authors were unaware of an accepted standard at the time the cases were released to the participants. Participants provided ground signatures along with the requested data, including some loudness metrics using their best practices, which included lossy as well as lossless schemes. All the participants' submissions, for each case, are compared and discussed. Noise or loudness measures are calculated and detailed comparisons and statistical analyses are performed and presented. It has been observed that the variation in the loudness measures and spread between participants' submissions increased as the computation proceeded from under-track locations towards the lateral cut-off. Lessons learned during this workshop are discussed and recommendations are made for potential improvements and possible subsequent workshops as we collectively attempt to refine our analysis methods.
Effect on LTAS of vocal loudness variation.
Nordenberg, Maria; Sundberg, Johan
2004-01-01
Long-term-average spectrum (LTAS) is an efficient method for voice analysis, revealing both voice source and formant characteristics. However, the LTAS contour is non-uniformly affected by vocal loudness. This variation was analyzed in 15 male and 16 female untrained voices reading a text 7 times at different degrees of vocal loudness, mean change in overall equivalent sound level (Leq) amounting to 27.9 dB and 28.4 dB for the female and male subjects. For all frequency values up to 4 kHz, spectrum level was strongly and linearly correlated with Leq for each subject. The gain factor, that is to say, the rate of level increase, varied with frequency, from about 0.5 at low frequencies to about 1.5 in the frequency range 1.5-3 kHz. Using the gain factors for a subject, LTAS contours could be predicted at any Leq within the measured range, with an average accuracy of 2-3 dB below 4 kHz. Mean LTAS calculated for an Leq of 70 dB for each subject showed considerable individual variation for both males and females, SD of the level varying between 7 dB and 4 dB depending on frequency. On the other hand, the results also suggest that meaningful comparisons of LTAS, recorded for example before and after voice therapy, can be made, provided that the documentation includes a set of recordings at different loudness levels from one recording session.
Verifying different-modality properties for concepts produces switching costs.
Pecher, Diane; Zeelenberg, René; Barsalou, Lawrence W
2003-03-01
According to perceptual symbol systems, sensorimotor simulations underlie the representation of concepts. It follows that sensorimotor phenomena should arise in conceptual processing. Previous studies have shown that switching from one modality to another during perceptual processing incurs a processing cost. If perceptual simulation underlies conceptual processing, then verifying the properties of concepts should exhibit a switching cost as well. For example, verifying a property in the auditory modality (e.g., BLENDER-loud) should be slower after verifying a property in a different modality (e.g., CRANBERRIES-tart) than after verifying a property in the same modality (e.g., LEAVES-rustling). Only words were presented to subjects, and there were no instructions to use imagery. Nevertheless, switching modalities incurred a cost, analogous to the cost of switching modalities in perception. A second experiment showed that this effect was not due to associative priming between properties in the same modality. These results support the hypothesis that perceptual simulation underlies conceptual processing.
Alteration of frequency range for binaural beats in acute low-tone hearing loss.
Karino, Shotaro; Yamasoba, Tatsuya; Ito, Ken; Kaga, Kimitaka
2005-01-01
The effect of acute low-tone sensorineural hearing loss (ALHL) on the interaural frequency difference (IFD) required for perception of binaural beats (BBs) was investigated in 12 patients with unilateral ALHL and 7 patients in whom ALHL had lessened. A continuous pure tone of 30 dB sensation level at 250 Hz was presented to the contralateral, normal-hearing ear. The presence of BBs was determined by a subjective yes-no procedure as the frequency of a loudness-balanced test tone was gradually adjusted around 250 Hz in the affected ear. The frequency range in which no BBs were perceived (FRNB) was significantly wider in the patients with ALHL than in the controls, and FRNBs became narrower in the recovered ALHL group. Specifically, detection of slow BBs with a small IFD was impaired in this limited (10 s) observation period. The significant correlation between the hearing level at 250 Hz and FRNBs suggests that FRNBs represent the degree of cochlear damage caused by ALHL.
An evaluation of musician earplugs with college music students.
Chesky, Kris; Pair, Marla; Yoshimura, Eri; Landford, Scott
2009-01-01
Musician earplugs are marketed and recommended for use in music settings but no studies have evaluated these products with musicians. This study evaluated the influences of earplugs on college students' perception and abilities to communicate in a musical environment, attitudes of earplugs, comfort over time, and the influence of earplugs on ability to play music. College students (N = 323) were provided with earplugs for use during and following an experimental condition designed to mimic a night club. Results underline the challenges of earplugs in environments that are both loud and require verbal interaction. Responses to comfort questions were variable and suggest a multi-factorial set of influences that may include intrinsic variables. Despite these limitations, subjects in this study generally liked the earplugs and believed that they are valuable. However, the earplugs were not viewed favorably by musicians willing to use the earplugs while playing music. This study supports the view that earplugs are subject to many problems and should be considered as a last resort.
Feasibility study of a game integrating assessment and therapy of tinnitus.
Wise, K; Kobayashi, K; Searchfield, G D
2015-07-15
Tinnitus, head and ear noise, is due to maladaptive plastic changes in auditory and associated neural networks. Tinnitus has been traditionally managed through the use of sound to passively mask or facilitate habituation to tinnitus, a process that may take 6-12 months. A game-based perceptual training method, requiring localisation and selective attention to sounds, was developed and customised to the individual's tinnitus perception. Eight participants tested the games usability at home. Each participant successfully completed 30 min of training, for 20 days, along with daily psychoacoustic assessment of tinnitus pitch and loudness. The training period and intensity of training appears sufficient to reduce tinnitus handicap. The training approach used may be a viable alternative to frequency discrimination based training for treating tinnitus (Hoare et al., 2014) and a useful tool in exploring learning mechanisms in the auditory system. Integration of tinnitus assessment with therapy in a game is feasible, and the method(s) warrant further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.
Audiologist-driven versus patient-driven fine tuning of hearing instruments.
Boymans, Monique; Dreschler, Wouter A
2012-03-01
Two methods of fine tuning the initial settings of hearing aids were compared: An audiologist-driven approach--using real ear measurements and a patient-driven fine-tuning approach--using feedback from real-life situations. The patient-driven fine tuning was conducted by employing the Amplifit(®) II system using audiovideo clips. The audiologist-driven fine tuning was based on the NAL-NL1 prescription rule. Both settings were compared using the same hearing aids in two 6-week trial periods following a randomized blinded cross-over design. After each trial period, the settings were evaluated by insertion-gain measurements. Performance was evaluated by speech tests in quiet, in noise, and in time-reversed speech, presented at 0° and with spatially separated sound sources. Subjective results were evaluated using extensive questionnaires and audiovisual video clips. A total of 73 participants were included. On average, higher gain values were found for the audiologist-driven settings than for the patient-driven settings, especially at 1000 and 2000 Hz. Better objective performance was obtained for the audiologist-driven settings for speech perception in quiet and in time-reversed speech. This was supported by better scores on a number of subjective judgments and in the subjective ratings of video clips. The perception of loud sounds scored higher than when patient-driven, but the overall preference was in favor of the audiologist-driven settings for 67% of the participants.
Different Vocal Parameters Predict Perceptions of Dominance and Attractiveness.
Hodges-Simeon, Carolyn R; Gaulin, Steven J C; Puts, David A
2010-12-01
Low mean fundamental frequency (F(0)) in men's voices has been found to positively influence perceptions of dominance by men and attractiveness by women using standardized speech. Using natural speech obtained during an ecologically valid social interaction, we examined relationships between multiple vocal parameters and dominance and attractiveness judgments. Male voices from an unscripted dating game were judged by men for physical and social dominance and by women in fertile and non-fertile menstrual cycle phases for desirability in short-term and long-term relationships. Five vocal parameters were analyzed: mean F(0) (an acoustic correlate of vocal fold size), F(0) variation, intensity (loudness), utterance duration, and formant dispersion (D(f), an acoustic correlate of vocal tract length). Parallel but separate ratings of speech transcripts served as controls for content. Multiple regression analyses were used to examine the independent contributions of each of the predictors. Physical dominance was predicted by low F(0) variation and physically dominant word content. Social dominance was predicted only by socially dominant word content. Ratings of attractiveness by women were predicted by low mean F(0), low D(f), high intensity, and attractive word content across cycle phase and mating context. Low D(f) was perceived as attractive by fertile-phase women only. We hypothesize that competitors and potential mates may attend more strongly to different components of men's voices because of the different types of information these vocal parameters provide.
Ultra-Fast Outflows in Radio-Loud AGN: New Constraints on Jet-Disk Connection
NASA Astrophysics Data System (ADS)
Sambruna, Rita
There is strong observational and theoretical evidence that outflows/jets are coupled to accretion disks in black hole accreting systems, from Galactic to extragalactic sizes. While in radio-quiet AGN there is ample evidence for the presence of Ultra-Fast Outflows (UFOs) from the presence of blue-shifted absorption features in their 4-10~keV spectra, sub-relativistic winds are expected on theoretical basis in radio-loud AGN but have not been observed until now. Our recent Suzaku observations of 5 bright Broad- Line Radio Galaxies (BLRGs, the radio-loud counterparts of Seyferts) has started to change this picture. We found strong evidence for UFOs in 3 out of 5 BLRGs, with ionization parameters, column densities, and velocities of the absorber similar to Seyferts. Moreover, the outflows in BLRGs are likely to be energetically very significant: from the Suzaku data of the three sources, outflow masses similar to the accretion masses and kinetic energies of the wind similar to the X-ray luminosity and radio power of the jet are inferred. Clearly, UFOs in radio-loud AGN represent a new key ingredient to understand their central engines and in particular, the jet-disk linkage. Our discovery of UFOs in a handful of BLRGs raises the questions of how common disk winds are in radio-loud AGN, what the absorber physical and dynamical characteristics are, and what is the outflow role in broader picture of galaxy-black hole connection for radio sources, i.e., for large-scale feedback models. To address these and other issues, we propose to use archival XMM-Newton and Suzaku spectra to search for Ultra-Fast Outflows in a large number of radio sources. Over a period of two years, we will conduct a systematic, uniform analysis of the archival X-ray data, building on our extensive experience with a similar previous project for Seyferts, and using robust analysis and statistical methodologies. As an important side product, we will also obtain accurate, self- consistent measurements of the broad-band X-ray spectra of radio-loud AGN for comparison to radio-quiet, addressing the origin of the division between the two classes. In addition, the upcoming Astro-H mission will greatly benefit from the outcomes of this project, which will provide templates for realistic simulations to define the scientific requirements of the calorimeter, and a list of targets to design a sample for the core AGN projects of the team.
Amundson, Courtney L.; Royle, J. Andrew; Handel, Colleen M.
2014-01-01
Imperfect detection during animal surveys biases estimates of abundance and can lead to improper conclusions regarding distribution and population trends. Farnsworth et al. (2005) developed a combined distance-sampling and time-removal model for point-transect surveys that addresses both availability (the probability that an animal is available for detection; e.g., that a bird sings) and perceptibility (the probability that an observer detects an animal, given that it is available for detection). We developed a hierarchical extension of the combined model that provides an integrated analysis framework for a collection of survey points at which both distance from the observer and time of initial detection are recorded. Implemented in a Bayesian framework, this extension facilitates evaluating covariates on abundance and detection probability, incorporating excess zero counts (i.e. zero-inflation), accounting for spatial autocorrelation, and estimating population density. Species-specific characteristics, such as behavioral displays and territorial dispersion, may lead to different patterns of availability and perceptibility, which may, in turn, influence the performance of such hierarchical models. Therefore, we first test our proposed model using simulated data under different scenarios of availability and perceptibility. We then illustrate its performance with empirical point-transect data for a songbird that consistently produces loud, frequent, primarily auditory signals, the Golden-crowned Sparrow (Zonotrichia atricapilla); and for 2 ptarmigan species (Lagopus spp.) that produce more intermittent, subtle, and primarily visual cues. Data were collected by multiple observers along point transects across a broad landscape in southwest Alaska, so we evaluated point-level covariates on perceptibility (observer and habitat), availability (date within season and time of day), and abundance (habitat, elevation, and slope), and included a nested point-within-transect and park-level effect. Our results suggest that this model can provide insight into the detection process during avian surveys and reduce bias in estimates of relative abundance but is best applied to surveys of species with greater availability (e.g., breeding songbirds).
Clinical applications of selected binaural effects.
Noffsinger, D
1982-01-01
Examination was made of the behaviors exhibited on selected binaural tasks by 556 persons with diagnosed peripheral hearing loss or central nervous system damage. The tasks used included loudness balancing (LB), intracranial midline imaging (MI), masking level differences (MLD), and binaural beats (BB). The methods used were chosen for their clinical utility. Loudness balancing and midline imaging were of the most diagnostic value when hearing loss was present. Masking level differences were best at detecting pathology which did not produce hearing loss. None of the techniques were sensitive to cortical damage.
Wood, Mark D; Dejong, William; Fairlie, Anne M; Lawson, Doreen; Lavigne, Andrea M; Cohen, Fran
2009-07-01
This article presents an evaluation of Common Ground, a media campaign-supported prevention program featuring increased enforcement, decreased alcohol access, and other environmental management initiatives targeting college student drinking. Phase 1 of the media campaign addressed student resistance to environmentally focused prevention by reporting majority student support for alcohol policy and enforcement initiatives. Phase 2 informed students about state laws, university policies, and environmental initiatives. We conducted student telephone surveys, with samples stratified by gender and year in school, for 4 consecutive years at the intervention campus and 3 years at a comparison campus. We did a series of one-way between-subjects analyses of variance and analyses of covariance, followed by tests of linear trend and planned comparisons. Targeted outcomes included perceptions of enforcement and alcohol availability, alcohol use, and alcohol-impaired driving. We examined archived police reports for student incidents, primarily those resulting from loud parties. There were increases at the intervention campus in students' awareness of formal alcohol-control efforts and perceptions of the alcohol environment, likelihood of apprehension for underage drinking, consequences for alcohol-impaired driving, and responsible alcohol service practices. There were decreases in the perceived likelihood of other students' negative behavior at off-campus parties. Police-reported incidents decreased over time; however, perceived consequences for off-campus parties decreased. No changes were observed for difficulty finding an off-campus party, self-reported alcohol use, or alcohol-impaired driving. The intervention successfully altered perceptions of alcohol enforcement, alcohol access, and the local alcohol environment. This study provides important preliminary information to researchers and practitioners engaged in collaborative prevention efforts in campus communities.
Wood, Mark D.; DeJong, William; Fairlie, Anne M.; Lawson, Doreen; Lavigne, Andrea M.; Cohen, Fran
2009-01-01
Objective: This article presents an evaluation of Common Ground, a media campaign-supported prevention program featuring increased enforcement, decreased alcohol access, and other environmental management initiatives targeting college student drinking. Method: Phase 1 of the media campaign addressed student resistance to environmentally focused prevention by reporting majority student support for alcohol policy and enforcement initiatives. Phase 2 informed students about state laws, university policies, and environmental initiatives. We conducted student telephone surveys, with samples stratified by gender and year in school, for 4 consecutive years at the intervention campus and 3 years at a comparison campus. We did a series of one-way between-subjects analyses of variance and analyses of covariance, followed by tests of linear trend and planned comparisons. Targeted outcomes included perceptions of enforcement and alcohol availability, alcohol use, and alcohol-impaired driving. We examined archived police reports for student incidents, primarily those resulting from loud parties. Results: There were increases at the intervention campus in students' awareness of formal alcohol-control efforts and perceptions of the alcohol environment, likelihood of apprehension for underage drinking, consequences for alcohol-impaired driving, and responsible alcohol service practices. There were decreases in the perceived likelihood of other students' negative behavior at off-campus parties. Police-reported incidents decreased over time; however, perceived consequences for off-campus parties decreased. No changes were observed for difficulty finding an off-campus party, self-reported alcohol use, or alcohol-impaired driving. Conclusions: The intervention successfully altered perceptions of alcohol enforcement, alcohol access, and the local alcohol environment. This study provides important preliminary information to researchers and practitioners engaged in collaborative prevention efforts in campus communities. PMID:19538917
Factors associated with singers' perceptions of choral singing well-being.
Kirsh, Elliana R; van Leer, Eva; Phero, Heidi J; Xie, Changchun; Khosla, Sid
2013-11-01
Choral singing is a popular vocational pastime across cultures. The potential health benefits associated with choral singing, including positive effect on well-being, are a topic of interest in health research. However, anecdotal reports from voice professionals suggest that the unique demands of choral singing may enforce unhealthy singing habits. This study explores suboptimal vocal behaviors that are sometimes associated with choral singing, which include singing outside comfortable pitch range, singing too loudly, and singing too softly for blend. The relationships between suboptimal choral singing habits, vocal warm-ups (WUs), vocal fatigue, and singing-related well-being were assessed via a 14-item Likert-based response format questionnaire. Participants consisted of 196 attendees of the international World Choir Games. The final study group consisted of 53 male and 143 female international amateur singers aged 10-70. Results indicated a positive correlation between vocal fatigue and suboptimal singing behaviors (r = 0.34, P < 0.0001). Participants who did not engage in suboptimal singing behavior experienced increased singing-related well-being (r = -0.32, P < 0.0001, N = 141). Vocal WUs were not related to vocal fatigue or singing well-being. Substantially, more participants from this demographic preferred choir over solo singing (X²[1, N = 196] = 22.93, P < 0.0001). Suboptimal choral singing behaviors may result in vocal fatigue and reduction of choral singing well-being and should therefore be considered when examining the effect of choral singing on singing-related well-being and health. Future research will compare the amateurs' perceptions of choral singing with perceptions from professional singers and will look at determinants of choral singing well-being. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Raz, Gal; Svanera, Michele; Singer, Neomi; Gilam, Gadi; Cohen, Maya Bleich; Lin, Tamar; Admon, Roee; Gonen, Tal; Thaler, Avner; Granot, Roni Y; Goebel, Rainer; Benini, Sergio; Valente, Giancarlo
2017-12-01
Major methodological advancements have been recently made in the field of neural decoding, which is concerned with the reconstruction of mental content from neuroimaging measures. However, in the absence of a large-scale examination of the validity of the decoding models across subjects and content, the extent to which these models can be generalized is not clear. This study addresses the challenge of producing generalizable decoding models, which allow the reconstruction of perceived audiovisual features from human magnetic resonance imaging (fMRI) data without prior training of the algorithm on the decoded content. We applied an adapted version of kernel ridge regression combined with temporal optimization on data acquired during film viewing (234 runs) to generate standardized brain models for sound loudness, speech presence, perceived motion, face-to-frame ratio, lightness, and color brightness. The prediction accuracies were tested on data collected from different subjects watching other movies mainly in another scanner. Substantial and significant (Q FDR <0.05) correlations between the reconstructed and the original descriptors were found for the first three features (loudness, speech, and motion) in all of the 9 test movies (R¯=0.62, R¯ = 0.60, R¯ = 0.60, respectively) with high reproducibility of the predictors across subjects. The face ratio model produced significant correlations in 7 out of 8 movies (R¯=0.56). The lightness and brightness models did not show robustness (R¯=0.23, R¯ = 0). Further analysis of additional data (95 runs) indicated that loudness reconstruction veridicality can consistently reveal relevant group differences in musical experience. The findings point to the validity and generalizability of our loudness, speech, motion, and face ratio models for complex cinematic stimuli (as well as for music in the case of loudness). While future research should further validate these models using controlled stimuli and explore the feasibility of extracting more complex models via this method, the reliability of our results indicates the potential usefulness of the approach and the resulting models in basic scientific and diagnostic contexts. Copyright © 2017 Elsevier Inc. All rights reserved.
Comparison of the Long-Term Effect of Positioning the Cathode in tDCS in Tinnitus Patients
Rabau, Sarah; Shekhawat, Giriraj S.; Aboseria, Mohamed; Griepp, Daniel; Van Rompaey, Vincent; Bikson, Marom; Van de Heyning, Paul
2017-01-01
Objective: Transcranial direct current stimulation (tDCS) is one of the methods described in the literature to decrease the perceived loudness and distress caused by tinnitus. However, the main effect is not clear and the number of responders to the treatment is variable. The objective of the present study was to investigate the effect of the placement of the cathode on the outcome measurements. Methods: Patients considered for the trial were chronic non-pulsatile tinnitus patients with complaints for more than 3 months and a Tinnitus Functional Index (TFI) score that exceeded 25. The anode was placed on the right dorsolateral prefrontal cortex (DLPFC). In the first group—“bifrontal”—the cathode was placed on the left DLPFC, while in the second group—“shoulder”—the cathode was placed on the shoulder. Each patient received two sessions of tDCS weekly and eight sessions in total. Evaluations took place on the first visit for an ENT consultation, at the start of therapy, after eight sessions of tDCS and at the follow-up visit, which took place 84 days after the start of the therapy. Subjective outcome measures such as TFI, Visual Analog Scales (VAS) for loudness and percentage of consciousness of tinnitus were administered in every patient. Results: There was no difference in the results for tinnitus loudness and the distress experienced between the placement of the cathode on the left DLPFC or on the shoulder. In addition, no statistically significant overall effect was found between the four test points. However, up to 39.1% of the patients experienced a decrease in loudness, measured by the VAS for loudness. Moreover, 72% of those in the bifrontal group, but only 46.2% of those in the shoulder group reported some improvement in distress. Conclusion: While some improvement was noted, this was not statistically significant. Both electrode placements stimulated the right side of the hippocampus, which could be responsible for the effect found in both groups. Further research should rule out the placebo effect and investigate alternative electrode positions. PMID:28804455
Murmur intensity in adult dogs with pulmonic and subaortic stenosis reflects disease severity.
Caivano, D; Dickson, D; Martin, M; Rishniw, M
2018-03-01
The aims of this study were to determine whether murmur intensity in adult dogs with pulmonic stenosis or subaortic stenosis reflects echocardiographic disease severity and to determine whether a six-level murmur grading scheme provides clinical advantages over a four-level scheme. In this retrospective multi-investigator study on adult dogs with pulmonic stenosis or subaortic stenosis, murmur intensity was compared to echocardiographically determined pressure gradient across the affected valve. Disease severity, based on pressure gradients, was assessed between sequential murmur grades to identify redundancy in classification. A simplified four-level murmur intensity classification scheme ('soft', 'moderate', 'loud', 'palpable') was evaluated. In total, 284 dogs (153 with pulmonic stenosis, 131 with subaortic stenosis) were included; 55 dogs had soft, 59 had moderate, 72 had loud and 98 had palpable murmurs. 95 dogs had mild stenosis, 46 had moderate stenosis, and 143 had severe stenosis. No dogs with soft murmurs of either pulmonic or subaortic stenosis had transvalvular pressure gradients greater than 50 mmHg. Dogs with loud or palpable murmurs mostly, but not always, had severe stenosis. Stenosis severity increased with increasing murmur intensity. The traditional six-level murmur grading scheme provided no additional clinical information than the four-level descriptive murmur grading scheme. A simplified descriptive four-level murmur grading scheme differentiated stenosis severity without loss of clinical information, compared to the traditional six-level scheme. Soft murmurs in dogs with pulmonic or subaortic stenosis are strongly indicative of mild lesions. Loud or palpable murmurs are strongly suggestive of severe stenosis. © 2017 British Small Animal Veterinary Association.
Music exposure and hearing disorders: an overview.
Zhao, Fei; Manchaiah, Vinaya K C; French, David; Price, Sharon M
2010-01-01
It has been generally accepted that excessive exposure to loud music causes various hearing symptoms (e.g. tinnitus) and consequently leads to a risk of permanent hearing damage, known as noise-induced hearing loss (NIHL). Such potential risk of NIHL due to loud music exposure has been widely investigated in musicians and people working in music venues. With advancements in sound technology and rapid developments in the music industry, increasing numbers of people, particularly adolescents and young adults, are exposing themselves to music on a voluntary basis at potentially harmful levels, and over a substantial period of time, which can also cause NIHL. However, because of insufficient audiometric evidence of hearing loss caused purely by music exposure, there is still disagreement and speculation about the risk of hearing loss from music exposure alone. Many studies have suggested using advanced audiological measurements as more sensitive and efficient tools to monitor hearing status as early indicators of cochlear dysfunction. The purpose of this review is to provide further insight into the potential risk of hearing loss caused by exposure to loud music, and thus contribute to further raising awareness of music induced hearing loss.
2Loud?: Community mapping of exposure to traffic noise with mobile phones.
Leao, Simone; Ong, Kok-Leong; Krezel, Adam
2014-10-01
Despite ample medical evidence of the adverse impacts of traffic noise on health, most policies for traffic noise management are arbitrary or incomplete, resulting in serious social and economic impacts. Surprisingly, there is limited information about citizen's exposure to traffic noise worldwide. This paper presents the 2Loud? mobile phone application, developed and tested as a methodology to monitor, assess and map the level of exposure to traffic noise of citizens with focus on the night period and indoor locations, since sleep disturbance is one of the major triggers for ill health related to traffic noise. Based on a community participation experiment using the 2Loud? mobile phone application in a region close to freeways in Australia, the results of this research indicates a good level of accuracy for the noise monitoring by mobile phones and also demonstrates significant levels of indoor night exposure to traffic noise in the study area. The proposed methodology, through the data produced and the participatory process involved, can potentially assist in planning and management towards healthier urban environments.
Reducing Current Spread using Current Focusing in Cochlear Implant Users
Landsberger, David M.; Padilla, Monica; Srinivasan, Arthi G.
2012-01-01
Cochlear implant performance in difficult listening situations is limited by channel interactions. It is known that partial tripolar (PTP) stimulation reduces the spread of excitation (SOE). However, the greater the degree of current focusing, the greater the absolute current required to maintain a fixed loudness. As current increases, so does SOE. In experiment 1, the SOE for equally loud stimuli with different degrees of current focusing is measured via a forward-masking procedure. Results suggest that at a fixed loudness, some but not all patients have a reduced SOE with PTP stimulation. Therefore, it seems likely that a PTP speech processing strategy could improve spectral resolution for only those patients with a reduced SOE. In experiment 2, the ability to discriminate different levels of current focusing was measured. In experiment 3, patients subjectively scaled verbal descriptors of stimuli of various levels of current focusing. Both discrimination and scaling of verbal descriptors correlated well with SOE reduction, suggesting that either technique have the potential to be used clinically to quickly predict which patients would receive benefit from a current focusing strategy. PMID:22230370
EVLA observations of radio-loud quasars selected to study radio orientation
NASA Astrophysics Data System (ADS)
Maithil, Jaya; Brotherton, Michael S.; Runnoe, Jessie; Wardle, John F. C.; DiPompeo, Michael; De Breuck, Carlos; Wills, Beverley J.
2018-06-01
We present preliminary work to develop an unbiased sample of radio-loud quasars to test orientation indicators. We have obtained radio data of 147 radio-loud quasars using EVLA at 10 GHz and with the A-array. With this high-resolution data we have measured the uncontaminated core flux density to determine orientation indicators based on radio core dominance. The radio cores of quasars have a flat spectrum over a broad range of frequencies, so we expect that the core flux density at the FIRST and the observed frequencies should be the same in the absence of variability. Jackson & Brown (2012) pointed out that the survey measurements of core flux density, like FIRST, often doesn't have the spatial resolution to distinguish cores from extended emission. Our measurements show that at FIRST spatial resolution, core flux measurements are indeed systematically high. Our results establish that orientation studies need high-resolution radio data as compared to survey data, and that the optical emission is a better normalization than the extended radio emission for a core dominance parameter to track orientation.
Adjoint-Based Mesh Adaptation for the Sonic Boom Signature Loudness
NASA Technical Reports Server (NTRS)
Rallabhandi, Sriram K.; Park, Michael A.
2017-01-01
The mesh adaptation functionality of FUN3D is utilized to obtain a mesh optimized to calculate sonic boom ground signature loudness. During this process, the coupling between the discrete-adjoints of the computational fluid dynamics tool FUN3D and the atmospheric propagation tool sBOOM is exploited to form the error estimate. This new mesh adaptation methodology will allow generation of suitable meshes adapted to reduce the estimated errors in the ground loudness, which is an optimization metric employed in supersonic aircraft design. This new output-based adaptation could allow new insights into meshing for sonic boom analysis and design, and complements existing output-based adaptation techniques such as adaptation to reduce estimated errors in off-body pressure functional. This effort could also have implications for other coupled multidisciplinary adjoint capabilities (e.g., aeroelasticity) as well as inclusion of propagation specific parameters such as prevailing winds or non-standard atmospheric conditions. Results are discussed in the context of existing methods and appropriate conclusions are drawn as to the efficacy and efficiency of the developed capability.
Inlet Trade Study for a Low-Boom Aircraft Demonstrator
NASA Technical Reports Server (NTRS)
Heath, Christopher M.; Slater, John W.; Rallabhandi, Sriram K.
2016-01-01
Propulsion integration for low-boom supersonic aircraft requires careful inlet selection, placement, and tailoring to achieve acceptable propulsive and aerodynamic performance, without compromising vehicle sonic boom loudness levels. In this investigation, an inward-turning streamline-traced and axisymmetric spike inlet are designed and independently installed on a conceptual low-boom supersonic demonstrator aircraft. The airframe was pre-shaped to achieve a target ground under-track loudness of 76.4 PLdB at cruise using an adjoint-based design optimization process. Aircraft and inlet performance characteristics were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Isolated cruise inlet performance including total pressure recovery and distortion were computed and compared against installed inlet performance metrics. Evaluation of vehicle near-field pressure signatures, along with under- and off-track propagated loudness levels is also reported. Results indicate the integrated axisymmetric spike design offers higher inlet pressure recovery, lower fan distortion, and reduced sonic boom. The vehicle with streamline-traced inlet exhibits lower external wave drag, which translates to a higher lift-to-drag ratio and increased range capability.
Estimating perceived phonatory pressedness in singing from flow glottograms.
Sundberg, Johan; Thalén, Margareta; Alku, Paavo; Vilkman, Erkki
2004-03-01
The normalized amplitude quotient (NAQ), defined as the ratio between the peak-to-peak amplitude of the flow pulse and the negative peak amplitude of the differentiated flow glottogram and normalized with respect to period time, has been shown to be related to glottal adduction. Glottal adduction, in turn, affects mode of phonation and hence perceived phonatory pressedness. The relationship between NAQ and perceived phonatory pressedness was analyzed in a material collected from a professional female singer and singing teacher who sang a triad pattern in breathy, flow, neutral, and pressed phonation in three different loudness conditions (soft, middle, loud). In addition, she also sang the same triad pattern in four different styles of singing, classical, pop, jazz, and blues, in the same three loudness conditions. A panel of experts rated the degree of perceived phonatory press along visual analogue scales. Comparing the obtained mean rated pressedness ratings with the mean NAQ values for the various triads showed that about 73% of the variation in perceived pressedness could be accounted for by variations of NAQ.
Formby, Craig; Hawley, Monica L; Sherlock, LaGuinn P; Gold, Susan; Payne, JoAnne; Brooks, Rebecca; Parton, Jason M; Juneau, Roger; Desporte, Edward J; Siegle, Gregory R
2015-05-01
The primary aim of this research was to evaluate the validity, efficacy, and generalization of principles underlying a sound therapy-based treatment for promoting expansion of the auditory dynamic range (DR) for loudness. The basic sound therapy principles, originally devised for treatment of hyperacusis among patients with tinnitus, were evaluated in this study in a target sample of unsuccessfully fit and/or problematic prospective hearing aid users with diminished DRs (owing to their elevated audiometric thresholds and reduced sound tolerance). Secondary aims included: (1) delineation of the treatment contributions from the counseling and sound therapy components to the full-treatment protocol and, in turn, the isolated treatment effects from each of these individual components to intervention success; and (2) characterization of the respective dynamics for full, partial, and control treatments. Thirty-six participants with bilateral sensorineural hearing losses and reduced DRs, which affected their actual or perceived ability to use hearing aids, were enrolled in and completed a placebo-controlled (for sound therapy) randomized clinical trial. The 2 × 2 factorial trial design was implemented with or without various assignments of counseling and sound therapy. Specifically, participants were assigned randomly to one of four treatment groups (nine participants per group), including: (1) group 1-full treatment achieved with scripted counseling plus sound therapy implemented with binaural sound generators; (2) group 2-partial treatment achieved with counseling and placebo sound generators (PSGs); (3) group 3-partial treatment achieved with binaural sound generators alone; and (4) group 4-a neutral control treatment implemented with the PSGs alone. Repeated measurements of categorical loudness judgments served as the primary outcome measure. The full-treatment categorical-loudness judgments for group 1, measured at treatment termination, were significantly greater than the corresponding pretreatment judgments measured at baseline at 500, 2,000, and 4,000 Hz. Moreover, increases in their "uncomfortably loud" judgments (∼12 dB over the range from 500 to 4,000 Hz) were superior to those measured for either of the partial-treatment groups 2 and 3 or for control group 4. Efficacy, assessed by treatment-related criterion increases ≥ 10 dB for judgments of uncomfortable loudness, was superior for full treatment (82% efficacy) compared with that for either of the partial treatments (25% and 40% for counseling combined with the placebo sound therapy and sound therapy alone, respectively) or for the control treatment (50%). The majority of the group 1 participants achieved their criterion improvements within 3 months of beginning treatment. The treatment effect from sound therapy was much greater than that for counseling, which was statistically indistinguishable in most of our analyses from the control treatment. The basic principles underlying the full-treatment protocol are valid and have general applicability for expanding the DR among individuals with sensorineural hearing losses, who may often report aided loudness problems. The positive full-treatment effects were superior to those achieved for either counseling or sound therapy in virtual or actual isolation, respectively; however, the delivery of both components in the full-treatment approach was essential for an optimum treatment outcome.
Srinivasan, Mahesh; Carey, Susan
2010-01-01
When we describe time, we often use the language of space (The movie was long; The deadline is approaching). Experiments 1–3 asked whether—as patterns in language suggest—a structural similarity between representations of spatial length and temporal duration is easier to access than one between length and other dimensions of experience, such as loudness. Adult participants were shown pairings of lines of different length with tones of different duration (Experiment 1) or tones of different loudness (Experiment 2). The length of the lines and duration or loudness of the tones was either positively or negatively correlated. Participants were better able to bind particular lengths and durations when they were positively correlated than when they were not, a pattern not observed for pairings of lengths and tone amplitudes, even after controlling for the presence of visual cues to duration in Experiment 1 (Experiment 3). This suggests that representations of length and duration may functionally overlap to a greater extent than representations of length and loudness. Experiments 4 and 5 asked whether experience with and mastery of words like long and short—which can flexibly refer to both space and time—itself creates this privileged relationship. Nine-month-old infants, like adults, were better able to bind representations of particular lengths and durations when these were positively correlated (Experiment 4), and failed to show this pattern for pairings of lengths and tone amplitudes (Experiment 5). We conclude that the functional overlap between representations of length and duration does not result from a metaphoric construction processes mediated by learning to flexibly use words such as long and short. We suggest instead that it may reflect an evolutionary recycling of spatial representations for more general purposes. PMID:20537324
Bauer, Carol A; Berry, Jennifer; Brozoski, Thomas J
2016-04-01
The Tinnitus Research Consortium funded three clinical trials investigating treatments for chronic bothersome tinnitus at Southern Illinois University School of Medicine. The trials were designed to measure the subjective changes in tinnitus distress using standardized questionnaires and objective changes in tinnitus loudness using psychophysical matching procedures. The results of the first two trials have been published and are summarized here. The first trial investigated the effect of gabapentin on the loudness and annoyance of tinnitus in adults with chronic bothersome tinnitus with and without a history of acoustic trauma. A small but significant number of subjects reported decreased tinnitus annoyance that corresponded with a decrease in objective measures of tinnitus loudness during active drug treatment with a washout effect during placebo treatment. The second trial compared the effect of tinnitus retraining therapy (TRT) on adults with normal to near-normal hearing and chronic bothersome tinnitus to treatment with general counseling without acoustic enrichment. Significant improvements in tinnitus severity, but not in objective psychometric measures of tinnitus loudness, occurred in both treatment groups, however a greater effect was observed in the TRT group compared with the control group. The third trial is nearing completion and investigates the long-term results of tinnitus retraining therapy on chronic bothersome tinnitus in adults with hearing loss. Significant lessons and observations on conducting tinnitus clinical trials were learned from these three trials. The challenges of recruiting and retaining study participants is discussed. More importantly, the reliability and stability of the Tinnitus Handicap Inventory (THI) over long intervals is presented. The implications of this variability for the design and interpretation of future tinnitus studies is discussed. This article is part of a Special Issue entitled
Changes in brain activity following intensive voice treatment in children with cerebral palsy.
Bakhtiari, Reyhaneh; Cummine, Jacqueline; Reed, Alesha; Fox, Cynthia M; Chouinard, Brea; Cribben, Ivor; Boliek, Carol A
2017-09-01
Eight children (3 females; 8-16 years) with motor speech disorders secondary to cerebral palsy underwent 4 weeks of an intensive neuroplasticity-principled voice treatment protocol, LSVT LOUD ® , followed by a structured 12-week maintenance program. Children were asked to overtly produce phonation (ah) at conversational loudness, cued-phonation at perceived twice-conversational loudness, a series of single words, and a prosodic imitation task while being scanned using fMRI, immediately pre- and post-treatment and 12 weeks following a maintenance program. Eight age- and sex-matched controls were scanned at each of the same three time points. Based on the speech and language literature, 16 bilateral regions of interest were selected a priori to detect potential neural changes following treatment. Reduced neural activity in the motor areas (decreased motor system effort) before and immediately after treatment, and increased activity in the anterior cingulate gyrus after treatment (increased contribution of decision making processes) were observed in the group with cerebral palsy compared to the control group. Using graphical models, post-treatment changes in connectivity were observed between the left supramarginal gyrus and the right supramarginal gyrus and the left precentral gyrus for the children with cerebral palsy, suggesting LSVT LOUD enhanced contributions of the feedback system in the speech production network instead of high reliance on feedforward control system and the somatosensory target map for regulating vocal effort. Network pruning indicates greater processing efficiency and the recruitment of the auditory and somatosensory feedback control systems following intensive treatment. Hum Brain Mapp 38:4413-4429, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Description and Validation of a Test to Evaluate Sustained Silent Reading
Ramulu, Pradeep Y.; Swenor, Bonnielin K.; Jefferys, Joan L.; Rubin, Gary S.
2013-01-01
Purpose. To construct and validate a test of sustained silent reading. Methods. Standardized 7300 and 7600 word passages were written to evaluate sustained silent reading. Two hundred forty subjects validated whether comprehension questions could discriminate subjects who did and did not read the passage. To evaluate test–retest properties, 49 subjects silently read the standardized passages on separate days. Sixty glaucoma suspect controls and 64 glaucoma subjects had their out loud reading evaluated with the MNRead card and an International Reading Speed Texts (IReST) passage, and their silent reading measured using the 7300 word passage. Sustained silent reading parameters included reading speed and reading speed slope over time. Results. Comprehension questions distinguished individuals who had and had not read passage materials. Bland-Altman analyses of intersession sustained reading speed and reading speed slope demonstrated 95% coefficients of repeatability of 57 words per minute (wpm) and 2.76 wpm/minute. Sustained silent reading speed was less correlated with MNRead (r = 0.59) or IReST passage (r = 0.68) reading speeds than the correlation of these two measures of out loud reading speed with each other (r = 0.72). Sustained silent reading speed was more likely to differ from IReST reading speed by more than 50% in rapid silent readers (odds ratio [OR] = 29, 95% confidence interval [CI] = 10–87), and comparisons of sustained and out loud reading speeds demonstrated proportional error in Bland-Altman analyses. Conclusions. Tests of out loud reading do not accurately reflect silent reading speed in individuals with normal vision or glaucoma. The described test offers a standardized way to evaluate the impact of eye disease and/or visual rehabilitation on sustained silent reading. PMID:23258146
Difficulty with Out-Loud and Silent Reading in Glaucoma
Ramulu, Pradeep Y.; Swenor, Bonnielin K.; Jefferys, Joan L.; Friedman, David S.; Rubin, Gary S.
2013-01-01
Purpose. We evaluated the impact of glaucoma on out-loud and silent reading. Methods. Glaucoma patients with bilateral visual field (VF) loss and normally-sighted controls had the following parameters measured: speed reading an International Reading Speed Text (IReST) passage out loud, maximum out-loud MNRead chart reading speed, sustained (30 minutes) silent reading speed, and change in reading speed during sustained silent reading. Results. Glaucoma subjects read slower than controls on the IReST (147 vs. 163 words per minute [wpm], P < 0.001), MNRead (172 vs. 186 wpm, P < 0.001), and sustained silent (179 vs. 218 wpm, P < 0.001) tests. In multivariable analyses adjusting for age, race, sex, education, employment, and cognition, IReST and MNRead reading speeds were 12 wpm (6%–7%) slower among glaucoma subjects compared to controls (P < 0.01 for both), while sustained silent reading speed was 16% slower (95% confidence interval [CI] = −24 to −6%, P = 0.002). Each 5 decibel (dB) decrement in better-eye VF mean deviation was associated with 6 wpm slower IReST reading (95% CI = −9 to −3%, P < 0.001), 5 wpm slower MNRead reading (95% CI = −7 to −2%, P < 0.001), and 9% slower sustained silent reading (95% CI = −13 to −6%, P < 0.001). A reading speed decline of 0.5 wpm/min or more over the sustained silent reading period was more common among glaucoma subjects than controls (odds ratio [OR] = 2.2, 95% CI = 1.0–4.9, P < 0.05). Conclusions. Reading speed is slower among glaucoma patients with bilateral VF loss, with the greatest impact present during sustained silent reading. Persons with glaucoma fatigue during silent reading, resulting in slower reading over time. PMID:23074207
Disk–Jet Connection in Active Supermassive Black Holes in the Standard Accretion Disk Regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Yoshiyuki; Doi, Akihiro; Tanaka, Yasuyuki T.
We study the disk–jet connection in supermassive black holes by investigating the properties of their optical and radio emissions utilizing the SDSS DR7 and the NVSS catalogs. Our sample contains 7017 radio-loud quasars with detection both at 1.4 GHz and SDSS optical spectra. Using this radio-loud quasar sample, we investigate the correlation among the jet power (more » $${P}_{\\mathrm{jet}}$$), the bolometric disk luminosity ($${L}_{\\mathrm{disk}}$$), and the black hole mass ($${M}_{\\mathrm{BH}}$$) in the standard accretion disk regime. We find that the jet powers correlate with the bolometric disk luminosities as $$\\mathrm{log}{P}_{\\mathrm{jet}}=(0.96\\pm 0.012)\\mathrm{log}{L}_{\\mathrm{disk}}+(0.79\\pm 0.55)$$. This suggests the jet production efficiency of $${\\eta }_{\\mathrm{jet}}\\simeq {1.1}_{-0.76}^{+2.6}\\,\\times {10}^{-2}$$ assuming the disk radiative efficiency of 0.1, implying low black hole spin parameters and/or low magnetic flux for radio-loud quasars. But it can be also due to the dependence of this efficiency on the geometrical thickness of the accretion flow, which is expected to be small for quasars accreting at the disk Eddington ratios $$0.01\\lesssim \\lambda \\lesssim 0.3$$. This low jet production efficiency does not significantly increase even if we set the disk radiative efficiency to be 0.3. We also investigate the fundamental plane in our samples among $${P}_{\\mathrm{jet}}$$, $${L}_{\\mathrm{disk}}$$, and $${M}_{\\mathrm{BH}}$$. In conclusion, we could not find a statistically significant fundamental plane for radio-loud quasars in the standard accretion regime.« less
Disk–Jet Connection in Active Supermassive Black Holes in the Standard Accretion Disk Regime
Inoue, Yoshiyuki; Doi, Akihiro; Tanaka, Yasuyuki T.; ...
2017-05-04
We study the disk–jet connection in supermassive black holes by investigating the properties of their optical and radio emissions utilizing the SDSS DR7 and the NVSS catalogs. Our sample contains 7017 radio-loud quasars with detection both at 1.4 GHz and SDSS optical spectra. Using this radio-loud quasar sample, we investigate the correlation among the jet power (more » $${P}_{\\mathrm{jet}}$$), the bolometric disk luminosity ($${L}_{\\mathrm{disk}}$$), and the black hole mass ($${M}_{\\mathrm{BH}}$$) in the standard accretion disk regime. We find that the jet powers correlate with the bolometric disk luminosities as $$\\mathrm{log}{P}_{\\mathrm{jet}}=(0.96\\pm 0.012)\\mathrm{log}{L}_{\\mathrm{disk}}+(0.79\\pm 0.55)$$. This suggests the jet production efficiency of $${\\eta }_{\\mathrm{jet}}\\simeq {1.1}_{-0.76}^{+2.6}\\,\\times {10}^{-2}$$ assuming the disk radiative efficiency of 0.1, implying low black hole spin parameters and/or low magnetic flux for radio-loud quasars. But it can be also due to the dependence of this efficiency on the geometrical thickness of the accretion flow, which is expected to be small for quasars accreting at the disk Eddington ratios $$0.01\\lesssim \\lambda \\lesssim 0.3$$. This low jet production efficiency does not significantly increase even if we set the disk radiative efficiency to be 0.3. We also investigate the fundamental plane in our samples among $${P}_{\\mathrm{jet}}$$, $${L}_{\\mathrm{disk}}$$, and $${M}_{\\mathrm{BH}}$$. In conclusion, we could not find a statistically significant fundamental plane for radio-loud quasars in the standard accretion regime.« less
General Physical Properties of CGRaBS Blazars
NASA Astrophysics Data System (ADS)
Paliya, Vaidehi S.; Marcotulli, L.; Ajello, M.; Joshi, M.; Sahayanathan, S.; Rao, A. R.; Hartmann, D.
2017-12-01
We present the results of a multi-frequency, time-averaged analysis of blazars included in the Candidate Gamma-ray Blazar Survey catalog. Our sample consists of 324 γ-ray detected (γ-ray loud) and 191 γ-ray undetected (γ-ray quiet) blazars; we consider all the data up to 2016 April 1. We find that both the γ-ray loud and γ-ray quiet blazar populations occupy similar regions in the WISE color-color diagram, and γ-ray loud sources are brighter in the radio and X-ray bands. A simple one-zone synchrotron inverse-Compton emission model is applied to derive the physical properties of both populations. We find that the central black hole mass and accretion disk luminosity ({L}{disk}) computed from the modeling of the optical-UV emission with a Shakura-Sunyaev disk reasonably matches that estimated from the optical spectroscopic emission-line information. A significantly larger Doppler boosting in the γ-ray loud blazars is noted, and their jets are more radiatively efficient. On the other hand, the γ-ray quiet objects are more MeV-peaked and thus could be potential targets for next-generation MeV missions. Our results confirm earlier findings about the accretion-jet connection in blazars; however, many of the γ-ray quiet blazars tend to deviate from the recent claim that the jet power exceeds {L}{disk} in blazars. A broadband study, considering a larger set of γ-ray quiet objects and also including BL Lacs, will be needed to confirm/reject this hypothesis as well as to verify the evolution of the powerful high-redshift blazars into their low-power nearby counterparts.
The perception of musical spontaneity in improvised and imitated jazz performances.
Engel, Annerose; Keller, Peter E
2011-01-01
The ability to evaluate spontaneity in human behavior is called upon in the esthetic appreciation of dramatic arts and music. The current study addresses the behavioral and brain mechanisms that mediate the perception of spontaneity in music performance. In a functional magnetic resonance imaging experiment, 22 jazz musicians listened to piano melodies and judged whether they were improvised or imitated. Judgment accuracy (mean 55%; range 44-65%), which was low but above chance, was positively correlated with musical experience and empathy. Analysis of listeners' hemodynamic responses revealed that amygdala activation was stronger for improvisations than imitations. This activation correlated with the variability of performance timing and intensity (loudness) in the melodies, suggesting that the amygdala is involved in the detection of behavioral uncertainty. An analysis based on the subjective classification of melodies according to listeners' judgments revealed that a network including the pre-supplementary motor area, frontal operculum, and anterior insula was most strongly activated for melodies judged to be improvised. This may reflect the increased engagement of an action simulation network when melodic predictions are rendered challenging due to perceived instability in the performer's actions. Taken together, our results suggest that, while certain brain regions in skilled individuals may be generally sensitive to objective cues to spontaneity in human behavior, the ability to evaluate spontaneity accurately depends upon whether an individual's action-related experience and perspective taking skills enable faithful internal simulation of the given behavior.
The Perception of Musical Spontaneity in Improvised and Imitated Jazz Performances
Engel, Annerose; Keller, Peter E.
2011-01-01
The ability to evaluate spontaneity in human behavior is called upon in the esthetic appreciation of dramatic arts and music. The current study addresses the behavioral and brain mechanisms that mediate the perception of spontaneity in music performance. In a functional magnetic resonance imaging experiment, 22 jazz musicians listened to piano melodies and judged whether they were improvised or imitated. Judgment accuracy (mean 55%; range 44–65%), which was low but above chance, was positively correlated with musical experience and empathy. Analysis of listeners’ hemodynamic responses revealed that amygdala activation was stronger for improvisations than imitations. This activation correlated with the variability of performance timing and intensity (loudness) in the melodies, suggesting that the amygdala is involved in the detection of behavioral uncertainty. An analysis based on the subjective classification of melodies according to listeners’ judgments revealed that a network including the pre-supplementary motor area, frontal operculum, and anterior insula was most strongly activated for melodies judged to be improvised. This may reflect the increased engagement of an action simulation network when melodic predictions are rendered challenging due to perceived instability in the performer's actions. Taken together, our results suggest that, while certain brain regions in skilled individuals may be generally sensitive to objective cues to spontaneity in human behavior, the ability to evaluate spontaneity accurately depends upon whether an individual's action-related experience and perspective taking skills enable faithful internal simulation of the given behavior. PMID:21738518
Davidson, Lisa S; Geers, Ann E; Nicholas, Johanna G
2014-07-01
A novel word learning (NWL) paradigm was used to explore underlying phonological and cognitive mechanisms responsible for delayed vocabulary level in children with cochlear implants (CIs). One hundred and one children using CIs, 6-12 years old, were tested along with 47 children with normal hearing (NH). Tests of NWL, receptive vocabulary, and speech perception at 2 loudness levels were administered to children with CIs. Those with NH completed the NWL task and a receptive vocabulary test. CI participants with good audibility (GA) versus poor audibility (PA) were compared on all measures. Analysis of variance was used to compare performance across the children with NH and the two groups of children with CIs. Multiple regression analysis was employed to identify independent predictors of vocabulary outcomes. Children with CIs in the GA group scored higher in receptive vocabulary and NWL than children in the PA group, although they did not reach NH levels. CI-aided pure tone threshold and performance on the NWL task predicted independent variance in vocabulary after accounting for other known predictors. Acquiring spoken vocabulary is facilitated by GA with a CI and phonological learning and memory skills. Children with CIs did not learn novel words at the same rate or achieve the same receptive vocabulary levels as their NH peers. Maximizing audibility for the perception of speech and direct instruction of new vocabulary may be necessary for children with CIs to reach levels seen in peers with NH.
Visual Enhancement of Illusory Phenomenal Accents in Non-Isochronous Auditory Rhythms
2016-01-01
Musical rhythms encompass temporal patterns that often yield regular metrical accents (e.g., a beat). There have been mixed results regarding perception as a function of metrical saliency, namely, whether sensitivity to a deviant was greater in metrically stronger or weaker positions. Besides, effects of metrical position have not been examined in non-isochronous rhythms, or with respect to multisensory influences. This study was concerned with two main issues: (1) In non-isochronous auditory rhythms with clear metrical accents, how would sensitivity to a deviant be modulated by metrical positions? (2) Would the effects be enhanced by multisensory information? Participants listened to strongly metrical rhythms with or without watching a point-light figure dance to the rhythm in the same meter, and detected a slight loudness increment. Both conditions were presented with or without an auditory interference that served to impair auditory metrical perception. Sensitivity to a deviant was found greater in weak beat than in strong beat positions, consistent with the Predictive Coding hypothesis and the idea of metrically induced illusory phenomenal accents. The visual rhythm of dance hindered auditory detection, but more so when the latter was itself less impaired. This pattern suggested that the visual and auditory rhythms were perceptually integrated to reinforce metrical accentuation, yielding more illusory phenomenal accents and thus lower sensitivity to deviants, in a manner consistent with the principle of inverse effectiveness. Results were discussed in the predictive framework for multisensory rhythms involving observed movements and possible mediation of the motor system. PMID:27880850
The influence of visual characteristics of barriers on railway noise perception.
Maffei, Luigi; Masullo, Massimiliano; Aletta, Francesco; Di Gabriele, Maria
2013-02-15
Noise annoyance is considered as the main effect of noise, it is a complex and multifaceted psychological concept dealing with immediate behavioral and evaluative aspects. In the last decades the research has intensely investigated the correlation between noise exposure and noise annoyance, nevertheless recent studies confirm that non-auditory factors influence the noise perception of individuals. In particular audio-video interaction can play a fundamental role. Today Immersive Virtual Reality (IVR) systems allow building laboratory test providing realistic experiences of the surrounding environment to detect more accurate information about the reactions of the local population. Regarding the interventions for environmental noise control the barriers represent the main solution; however some aspects related to their visual characteristic have to be further investigated. This paper presented a case study, where a sample of residents living close to a railway line assessed noise-related aspects for several barriers with different visual characteristics in an IVR laboratory test. In particular, three main factors were analyzed: the barrier type concerning the visibility of the noise source through the screen, the visual aspect of the barrier concerning some aesthetic issues and the noise level at the receiver concerning the acoustic performance of the barrier and the magnitude of the sound source. The main results of the ANOVA analysis showed that for transparent barriers Perceived Loudness and Noise Annoyance were judged lower than for opaque barriers; this difference increased as noise level increased. Copyright © 2012. Published by Elsevier B.V.
Cochlear compression: perceptual measures and implications for normal and impaired hearing.
Oxenham, Andrew J; Bacon, Sid P
2003-10-01
This article provides a review of recent developments in our understanding of how cochlear nonlinearity affects sound perception and how a loss of the nonlinearity associated with cochlear hearing impairment changes the way sounds are perceived. The response of the healthy mammalian basilar membrane (BM) to sound is sharply tuned, highly nonlinear, and compressive. Damage to the outer hair cells (OHCs) results in changes to all three attributes: in the case of total OHC loss, the response of the BM becomes broadly tuned and linear. Many of the differences in auditory perception and performance between normal-hearing and hearing-impaired listeners can be explained in terms of these changes in BM response. Effects that can be accounted for in this way include poorer audiometric thresholds, loudness recruitment, reduced frequency selectivity, and changes in apparent temporal processing. All these effects can influence the ability of hearing-impaired listeners to perceive speech, especially in complex acoustic backgrounds. A number of behavioral methods have been proposed to estimate cochlear nonlinearity in individual listeners. By separating the effects of cochlear nonlinearity from other aspects of hearing impairment, such methods may contribute towards identifying the different physiological mechanisms responsible for hearing loss in individual patients. This in turn may lead to more accurate diagnoses and more effective hearing-aid fitting for individual patients. A remaining challenge is to devise a behavioral measure that is sufficiently accurate and efficient to be used in a clinical setting.
Law, Lily N. C.; Zentner, Marcel
2012-01-01
A common approach for determining musical competence is to rely on information about individuals’ extent of musical training, but relying on musicianship status fails to identify musically untrained individuals with musical skill, as well as those who, despite extensive musical training, may not be as skilled. To counteract this limitation, we developed a new test battery (Profile of Music Perception Skills; PROMS) that measures perceptual musical skills across multiple domains: tonal (melody, pitch), qualitative (timbre, tuning), temporal (rhythm, rhythm-to-melody, accent, tempo), and dynamic (loudness). The PROMS has satisfactory psychometric properties for the composite score (internal consistency and test-retest r>.85) and fair to good coefficients for the individual subtests (.56 to.85). Convergent validity was established with the relevant dimensions of Gordon’s Advanced Measures of Music Audiation and Musical Aptitude Profile (melody, rhythm, tempo), the Musical Ear Test (rhythm), and sample instrumental sounds (timbre). Criterion validity was evidenced by consistently sizeable and significant relationships between test performance and external musical proficiency indicators in all three studies (.38 to.62, p<.05 to p<.01). An absence of correlations between test scores and a nonmusical auditory discrimination task supports the battery’s discriminant validity (−.05, ns). The interrelationships among the various subtests could be accounted for by two higher order factors, sequential and sensory music processing. A brief version of the full PROMS is introduced as a time-efficient approximation of the full version of the battery. PMID:23285071
Jet launching radius in low-power radio-loud AGNs in advection-dominated accretion flows
NASA Astrophysics Data System (ADS)
Le, Truong; Newman, William; Edge, Brinkley
2018-06-01
Using our theory for the production of relativistic outflows, we estimate the jet launching radius and the inferred mass accretion rate for 52 low-power radio-loud AGNs based on the observed jet powers. Our analysis indicates that (1) a significant fraction of the accreted energy is required to convert the accreted mass to relativistic energy particles for the production of the jets near the event horizon, (2) the jet's launching radius moves radially towards the horizon as the mass accretion rate or jet's power increases, and (3) no jet/outflow formation is possible beyond 44 gravitational radii.
The Disk-Jet Connection in Radio-Loud AGN: The X-Ray Perspective
NASA Technical Reports Server (NTRS)
Sambruna, Rita
2008-01-01
Unification schemes assume that radio-loud active galactic nuclei (AGN) contain an accretion disk and a relativistic jet perpendicular to the disk, and an obscuring molecular torus. The jet dominance decreases with larger viewing angles from blazars to Broad-Line and Narrow-Line Radio Galaxies. A fundamental question is how accretion and ejecta are related. The X-rays provide a convenient window to study these issues, as they originate in the innermost nuclear regions and penetrate large obscuring columns. I review the data, using observations by Chandra but also from other currently operating high-energy experiments. Synergy with the upcoming GLAST mission will also be highlighted.
Radio-Loud Narrow-Line Seyfert 1 as a New Class of Gamma-Ray Active Galactic Nuclei
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2009-12-04
In this work, we report the discovery with Fermi/LAT of γ-ray emission from three radio-loud narrow-line Seyfert 1 galaxies: PKS 1502+036 (z = 0.409), 1H 0323+342 (z = 0.061), and PKS 2004 – 447 (z = 0.24). In addition to PMN J0948+0022 (z = 0.585), the first source of this type to be detected in γ rays, they may form an emerging new class of γ-ray active galactic nuclei (AGNs). Lastly, these findings can have strong implications on our knowledge about relativistic jets and the unified model of the AGN.
What is a melody? On the relationship between pitch and brightness of timbre.
Cousineau, Marion; Carcagno, Samuele; Demany, Laurent; Pressnitzer, Daniel
2013-01-01
Previous studies showed that the perceptual processing of sound sequences is more efficient when the sounds vary in pitch than when they vary in loudness. We show here that sequences of sounds varying in brightness of timbre are processed with the same efficiency as pitch sequences. The sounds used consisted of two simultaneous pure tones one octave apart, and the listeners' task was to make same/different judgments on pairs of sequences varying in length (one, two, or four sounds). In one condition, brightness of timbre was varied within the sequences by changing the relative level of the two pure tones. In other conditions, pitch was varied by changing fundamental frequency, or loudness was varied by changing the overall level. In all conditions, only two possible sounds could be used in a given sequence, and these two sounds were equally discriminable. When sequence length increased from one to four, discrimination performance decreased substantially for loudness sequences, but to a smaller extent for brightness sequences and pitch sequences. In the latter two conditions, sequence length had a similar effect on performance. These results suggest that the processes dedicated to pitch and brightness analysis, when probed with a sequence-discrimination task, share unexpected similarities.
NASA Astrophysics Data System (ADS)
Dobre, Robert A.; Negrescu, Cristian; Stanomir, Dumitru
2016-12-01
In many situations audio recordings can decide the fate of a trial when accepted as evidence. But until they can be taken into account they must be authenticated at first, but also the quality of the targeted content (speech in most cases) must be good enough to remove any doubt. In this scope two main directions of multimedia forensics come into play: content authentication and noise reduction. This paper presents an application that is included in the latter. If someone would like to conceal their conversation, the easiest way to do it would be to turn loud the nearest audio system. In this situation, if a microphone was placed close by, the recorded signal would be apparently useless because the speech signal would be masked by the loud music signal. The paper proposes an adaptive filters based solution to remove the musical content from a previously described signal mixture in order to recover the masked vocal signal. Two adaptive filtering algorithms were tested in the proposed solution: the Normalised Least Mean Squares (NLMS) and Recursive Least Squares (RLS). Their performances in the described situation were evaluated using Simulink, compared and included in the paper.
Stability of individual loudness functions obtained by magnitude estimation and production
NASA Technical Reports Server (NTRS)
Hellman, R. P.
1981-01-01
A correlational analysis of individual magnitude estimation and production exponents at the same frequency is performed, as is an analysis of individual exponents produced in different sessions by the same procedure across frequency (250, 1000, and 3000 Hz). Taken as a whole, the results show that individual exponent differences do not decrease by counterbalancing magnitude estimation with magnitude production and that individual exponent differences remain stable over time despite changes in stimulus frequency. Further results show that although individual magnitude estimation and production exponents do not necessarily obey the .6 power law, it is possible to predict the slope of an equal-sensation function averaged for a group of listeners from individual magnitude estimation and production data. On the assumption that individual listeners with sensorineural hearing also produce stable and reliable magnitude functions, it is also shown that the slope of the loudness-recruitment function measured by magnitude estimation and production can be predicted for individuals with bilateral losses of long duration. Results obtained in normal and pathological ears thus suggest that individual listeners can produce loudness judgements that reveal, although indirectly, the input-output characteristic of the auditory system.
The X-Ray Reflection Spectrum of the Radio-Loud Quasar 4C 74.26
NASA Technical Reports Server (NTRS)
Lohfink, Ann M.; Fabian, Andrew C.; Ballantyne, David R.; Boggs, S. E.; Boorman, Peter; Christensen, F. E.; Craig, W. W.; Farrah, Duncan; Garcia, Javier; Hailey, C. J.;
2017-01-01
The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in the immediate vicinity of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Here, we present the hard X-ray NuSTAR observations of the radio-loud quasar 4C 74.26 in a joint analysis with quasi-simultaneous, soft X-ray Swift observations. Our spectral analysis reveals a high-energy cutoff of -183+3551 keV and confirms the presence of ionized reflection in the source. From the average spectrum we detect that the accretion disk is mildly recessed, with an inner radius of Rin4180 Rg. However, no significant evolution of the inner radius is seen during the three months covered by our NuSTAR campaign. This lack of variation could mean that the jet formation in this radio-loud quasar differs from what is observed in broad-line radio galaxies.
Wang, Tang-Chuan; Tyler, Richard S; Chang, Ta-Yuan; Chen, Jui-Cheng; Lin, Chia-Der; Chung, Hsiung-Kwang; Tsou, Yung-An
2018-02-01
Subjective tinnitus is a phantom sensation experienced without any external source of sound that profoundly impacts the quality of life. Some investigations have claimed that transcranial direct current stimulation (tDCS) reduces tinnitus, but studies on tDCS have demonstrated variable results. This meta-analysis aimed to examine the effect of tDCS on patients with tinnitus. We searched for articles published through January 5, 2016, in Medline, Cochrane, EMBASE, and Google Scholar using the following keywords: tinnitus, transcranial direct current stimulation, and tDCS. The study outcomes were change in magnitude estimates of loudness (loudness), tinnitus-related distress (distress), and Tinnitus Handicap Inventory (THI). Pooled results demonstrated that tDCS did not have a beneficial effect on loudness (pooled standardized difference in means = 0.674, 95% CI, -0.089 to 1.437, P = .083). Further, the pooled results demonstrated a greater reduction in distress for the tDCS group (pooled standardized difference in means = 0.634, 95% CI, 0.021-1.247, P = .043). We conclude that the pooled results demonstrated a greater reduction in distress for groups treated with tDCS as compared with those administered a sham treatment.
Use of loud phonation as a voice therapy technique for children with vocal nodules
NASA Astrophysics Data System (ADS)
Kobayashi, Noriko; Hirose, Hajime; Nishiyama, Koichiro
2003-10-01
For the treatment of vocal nodules, educational programs for vocal hygiene and voice training for acquisition of correct phonation are essential. In the case of children, special considerations are necessary as some of their vocal behaviors and reaction to voice disorders are different from those of adults. In this study, a voice therapy program for child vocal nodules were developed and good results were obtained for six children. They were four boys and two girls (Age: 4-11 yr) and bilateral nodules were found for all of them. In addition to a conventional vocal hygiene program for children, correct production of loud voice (so-called gBeltingh) was the major focus of the voice therapy as the visual inspection of the larynges and perceptual evaluations of the voice revealed inappropriate loud voice production with laryngeal constriction in all children. After 5-24 voice therapy sessions, disappearance of the nodules was found in five children and the reduction of the nodule sizes was found in one child. Improvement of the GRBAS scores, longer maximum phonation time, and extension of vocal ranges were found after the completion of the therapy programs.
Litvak, Leonid M; Spahr, Anthony J; Emadi, Gulam
2007-08-01
Most cochlear implant strategies utilize monopolar stimulation, likely inducing relatively broad activation of the auditory neurons. The spread of activity may be narrowed with a tripolar stimulation scheme, wherein compensating current of opposite polarity is simultaneously delivered to two adjacent electrodes. In this study, a model and cochlear implant subjects were used to examine loudness growth for varying amounts of tripolar compensation, parameterized by a coefficient sigma, ranging from 0 (monopolar) to 1 (full tripolar). In both the model and the subjects, current required for threshold activation could be approximated by I(sigma)=Ithr(0)(1-sigmaK), with fitted constants Ithr(0) and K. Three of the subjects had a "positioner," intended to place their electrode arrays closer to their neural tissue. The values of K were smaller for the positioner users and for a "close" electrode-to-tissue distance in the model. Above threshold, equal-loudness contours for some subjects deviated significantly from a linear scale-up of the threshold approximations. The patterns of deviation were similar to those observed in the model for conditions in which most of the neurons near the center electrode were excited.
Dynamically important magnetic fields near supermassive black holes in radio-loud AGN
NASA Astrophysics Data System (ADS)
Savolainen, Tuomas; Zamaninasab, Mohammad; Clausen-Brown, Eric; Tchekhovskoy, Alexander
The powerful radio jets ejected from the vicinity of accreting supermassive black holes in active galactic nuclei are thought to be formed by magnetic forces. However, there is little observational evidence of the actual strength of the magnetic fields in the jet-launching region, and in the accretion disks, of AGN. We have collected from the literature jet magnetic field estimates determined by very long baseline interferometry observations of the opacity-driven core-shift effect for 76 blazars and radio galaxies. We show that the jet magnetic flux of these radio-loud AGN tightly correlates with their accretion disk luminosity -- over seven orders of magnitude in accretion power. Moreover, the estimated magnetic flux threading the black hole quantitatively agrees with the saturation value expected in the magnetically arrested disk scenario. This implies that black holes in many, if not most, of the radio-loud AGN are surrounded by accretion disks that have dynamically important magnetic fields. Such disks behave very differently from the standard model disks with sub-equipartition magnetic fields, which may have important consequences for attempts to interpret disk spectral energy distributions or signatures of the possible black hole shadow in mm-VLBI images.
Shih, Ludy C; Piel, Jordan; Warren, Amanda; Kraics, Lauren; Silver, Althea; Vanderhorst, Veronique; Simon, David K; Tarsy, Daniel
2012-06-01
Parkinson's disease related speech and voice impairment have significant impact on quality of life measures. LSVT(®)LOUD voice and speech therapy (Lee Silverman Voice Therapy) has demonstrated scientific efficacy and clinical effectiveness, but musically based voice and speech therapy has been underexplored as a potentially useful method of rehabilitation. We undertook a pilot, open-label study of a group-based singing intervention, consisting of twelve 90-min weekly sessions led by a voice and speech therapist/singing instructor. The primary outcome measure of vocal loudness as measured by sound pressure level (SPL) at 50 cm during connected speech was not significantly different one week after the intervention or at 13 weeks after the intervention. A number of secondary measures reflecting pitch range, phonation time and maximum loudness also were unchanged. Voice related quality of life (VRQOL) and voice handicap index (VHI) also were unchanged. This study suggests that a group singing therapy intervention at this intensity and frequency does not result in significant improvement in objective and subject-rated measures of voice and speech impairment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Duration, Pitch, and Loudness in Kunqu Opera Stage Speech.
Han, Qichao; Sundberg, Johan
2017-03-01
Kunqu is a special type of opera within the Chinese tradition with 600 years of history. In it, stage speech is used for the spoken dialogue. It is performed in Ming Dynasty's mandarin language and is a much more dominant part of the play than singing. Stage speech deviates considerably from normal conversational speech with respect to duration, loudness and pitch. This paper compares these properties in stage speech conversational speech. A famous, highly experienced female singer's performed stage speech and reading of the same lyrics in a conversational speech mode. Clear differences are found. As compared with conversational speech, stage speech had longer word and sentence duration and word duration was less variable. Average sound level was 16 dB higher. Also mean fundamental frequency was considerably higher and more varied. Within sentences, both loudness and fundamental frequency tended to vary according to a low-high-low pattern. Some of the findings fail to support current opinions regarding the characteristics of stage speech, and in this sense the study demonstrates the relevance of objective measurements in descriptions of vocal styles. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
The X-Ray Reflection Spectrum of the Radio-loud Quasar 4C 74.26
NASA Astrophysics Data System (ADS)
Lohfink, Anne M.; Fabian, Andrew C.; Ballantyne, David R.; Boggs, S. E.; Boorman, Peter; Christensen, F. E.; Craig, W. W.; Farrah, Duncan; García, Javier; Hailey, C. J.; Harrison, F. A.; Ricci, Claudio; Stern, Daniel; Zhang, W. W.
2017-06-01
The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in the immediate vicinity of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Here, we present the hard X-ray NuSTAR observations of the radio-loud quasar 4C 74.26 in a joint analysis with quasi-simultaneous, soft X-ray Swift observations. Our spectral analysis reveals a high-energy cutoff of {183}-35+51 keV and confirms the presence of ionized reflection in the source. From the average spectrum we detect that the accretion disk is mildly recessed, with an inner radius of R in = 4-180 R g. However, no significant evolution of the inner radius is seen during the three months covered by our NuSTAR campaign. This lack of variation could mean that the jet formation in this radio-loud quasar differs from what is observed in broad-line radio galaxies.
Utility of the Physical Examination in Detecting Pulmonary Hypertension. A Mixed Methods Study
Colman, Rebecca; Whittingham, Heather; Tomlinson, George; Granton, John
2014-01-01
Introduction Patients with pulmonary hypertension (PH) often present with a variety of physical findings reflecting a volume or pressure overloaded right ventricle (RV). However, there is no consensus regarding the diagnostic utility of the physical examination in PH. Methods We conducted a systematic review of publications that evaluated the clinical examination and diagnosis of PH using MEDLINE (1946–2013) and EMBASE (1947–2013). We also prospectively evaluated the diagnostic utility of the physical examination findings. Patients who underwent right cardiac catheterization for any reason were recruited. After informed consent, participants were examined by 6 physicians (3 “specialists” and 3 “generalists”) who were unaware of the results of the patient's hemodynamics. Each examiner independently assessed patients for the presence of a RV lift, loud P2, jugular venous distension (JVD), tricuspid insufficiency murmur and right-sided 4th heart sound at rest and during a slow inspiration. A global rating (scale of 1–5) of the likelihood that the patient had pulmonary hypertension was provided by each examiner. Results 31 articles that assessed the physical examination in PH were included in the final analysis. There was heterogeneity amongst the studies and many did not include control data. The sign most associated with PH in the literature was a loud pulmonic component of the second heart sound (P2). In our prospective study physical examination was performed on 52 subjects (25 met criteria for PH; mPAP ≥25 mmHg). The physical sign with the highest likelihood ratio (LR) was a loud P2 on inspiration with a LR +ve 1.9, 95% CrI [1.2, 3.1] when data from all examiners was analyzed together. Results from the specialist examiners had higher diagnostic utility; a loud P2 on inspiration was associated with a positive LR of 3.2, 95% CrI [1.5, 6.2] and a right sided S4 on inspiration had a LR +ve 4.7, 95% CI [1.0, 15.6]. No aspect of the physical exam, could consistently rule out PH (negative LRs 0.7–1.3). Conclusions The presence of a loud P2 or audible right-sided 4th heart sound are associated with PH. However the physical examination is unreliable for determining the presence of PH. PMID:25343585
Utility of the physical examination in detecting pulmonary hypertension. A mixed methods study.
Colman, Rebecca; Whittingham, Heather; Tomlinson, George; Granton, John
2014-01-01
Patients with pulmonary hypertension (PH) often present with a variety of physical findings reflecting a volume or pressure overloaded right ventricle (RV). However, there is no consensus regarding the diagnostic utility of the physical examination in PH. We conducted a systematic review of publications that evaluated the clinical examination and diagnosis of PH using MEDLINE (1946-2013) and EMBASE (1947-2013). We also prospectively evaluated the diagnostic utility of the physical examination findings. Patients who underwent right cardiac catheterization for any reason were recruited. After informed consent, participants were examined by 6 physicians (3 "specialists" and 3 "generalists") who were unaware of the results of the patient's hemodynamics. Each examiner independently assessed patients for the presence of a RV lift, loud P2, jugular venous distension (JVD), tricuspid insufficiency murmur and right-sided 4th heart sound at rest and during a slow inspiration. A global rating (scale of 1-5) of the likelihood that the patient had pulmonary hypertension was provided by each examiner. 31 articles that assessed the physical examination in PH were included in the final analysis. There was heterogeneity amongst the studies and many did not include control data. The sign most associated with PH in the literature was a loud pulmonic component of the second heart sound (P2). In our prospective study physical examination was performed on 52 subjects (25 met criteria for PH; mPAP ≥ 25 mmHg). The physical sign with the highest likelihood ratio (LR) was a loud P2 on inspiration with a LR +ve 1.9, 95% CrI [1.2, 3.1] when data from all examiners was analyzed together. Results from the specialist examiners had higher diagnostic utility; a loud P2 on inspiration was associated with a positive LR of 3.2, 95% CrI [1.5, 6.2] and a right sided S4 on inspiration had a LR +ve 4.7, 95% CI [1.0, 15.6]. No aspect of the physical exam, could consistently rule out PH (negative LRs 0.7-1.3). The presence of a loud P2 or audible right-sided 4th heart sound are associated with PH. However the physical examination is unreliable for determining the presence of PH.
Do obesity and weight loss affect vocal function?
Solomon, Nancy Pearl; Helou, Leah B; Dietrich-Burns, Katie; Stojadinovic, Alexander
2011-02-01
Obesity may be associated with increased tissue bulk in the laryngeal airway, neck, and chest wall, and as such may affect vocal function. Eight obese and eight nonobese adults participated in this study; the obese participants underwent bariatric surgical procedures. This mixed-design study included cross-sectional analysis for group differences and longitudinal analysis for multidimensional changes in vocal function from four assessments collected over 6 months. No significant differences were detected between groups from the preoperative assessment. Further, no changes were detected over time for acoustic parameters, maximum phonation time, laryngeal airway resistance, and airflow during a sustained vowel for either group. Only minor differences were detected for strain, pitch, and loudness perceptions of voice over time, but not between groups. Phonation threshold pressure (PTP), at comfortable and high pitches (30% and 80% of the F0 range) changed significantly over time, but not between groups. Examination of individual data revealed a trend for PTP at 30% F0 to decrease as body mass index decreased. PTP may be informative for assessing vocal function in clients who present with obesity and voice symptoms. © Thieme Medical Publishers.
White Matter Changes in Tinnitus: Is It All Age and Hearing Loss?
Yoo, Hye Bin; De Ridder, Dirk; Vanneste, Sven
2016-02-01
Tinnitus is a condition characterized by the perception of auditory phantom sounds. It is known as the result of complex interactions between auditory and nonauditory regions. However, previous structural imaging studies on tinnitus patients showed evidence of significant white matter changes caused by hearing loss that are positively correlated with aging. Current study focused on which aspects of tinnitus pathologies affect the white matter integrity the most. We used the diffusion tensor imaging technique to acquire images that have higher contrast in brain white matter to analyze how white matter is influenced by tinnitus-related factors using voxel-based methods, region of interest analysis, and deterministic tractography. As a result, white matter integrity in chronic tinnitus patients was both directly affected by age and also mediated by the hearing loss. The most important changes in white matter regions were found bilaterally in the anterior corona radiata, anterior corpus callosum, and bilateral sagittal strata. In the tractography analysis, the white matter integrity values in tracts of right parahippocampus were correlated with the subjective tinnitus loudness.
Monstrey, Jolijn; Deeks, John M.; Macherey, Olivier
2014-01-01
Objective To evaluate a speech-processing strategy in which the lowest frequency channel is conveyed using an asymmetric pulse shape and “phantom stimulation”, where current is injected into one intra-cochlear electrode and where the return current is shared between an intra-cochlear and an extra-cochlear electrode. This strategy is expected to provide more selective excitation of the cochlear apex, compared to a standard strategy where the lowest-frequency channel is conveyed by symmetric pulses in monopolar mode. In both strategies all other channels were conveyed by monopolar stimulation. Design Within-subjects comparison between the two strategies. Four experiments: (1) discrimination between the strategies, controlling for loudness differences, (2) consonant identification, (3) recognition of lowpass-filtered sentences in quiet, (4) sentence recognition in the presence of a competing speaker. Study sample Eight users of the Advanced Bionics CII/Hi-Res 90k cochlear implant. Results Listeners could easily discriminate between the two strategies but no consistent differences in performance were observed. Conclusions The proposed method does not improve speech perception, at least in the short term. PMID:25358027
Carlyon, Robert P; Monstrey, Jolijn; Deeks, John M; Macherey, Olivier
2014-12-01
To evaluate a speech-processing strategy in which the lowest frequency channel is conveyed using an asymmetric pulse shape and "phantom stimulation", where current is injected into one intra-cochlear electrode and where the return current is shared between an intra-cochlear and an extra-cochlear electrode. This strategy is expected to provide more selective excitation of the cochlear apex, compared to a standard strategy where the lowest-frequency channel is conveyed by symmetric pulses in monopolar mode. In both strategies all other channels were conveyed by monopolar stimulation. Within-subjects comparison between the two strategies. Four experiments: (1) discrimination between the strategies, controlling for loudness differences, (2) consonant identification, (3) recognition of lowpass-filtered sentences in quiet, (4) sentence recognition in the presence of a competing speaker. Eight users of the Advanced Bionics CII/Hi-Res 90k cochlear implant. Listeners could easily discriminate between the two strategies but no consistent differences in performance were observed. The proposed method does not improve speech perception, at least in the short term.
Boyd, Paul J
2006-12-01
The principal task in the programming of a cochlear implant (CI) speech processor is the setting of the electrical dynamic range (output) for each electrode, to ensure that a comfortable loudness percept is obtained for a range of input levels. This typically involves separate psychophysical measurement of electrical threshold ([theta] e) and upper tolerance levels using short current bursts generated by the fitting software. Anecdotal clinical experience and some experimental studies suggest that the measurement of [theta]e is relatively unimportant and that the setting of upper tolerance limits is more critical for processor programming. The present study aims to test this hypothesis and examines in detail how acoustic thresholds and speech recognition are affected by setting of the lower limit of the output ("Programming threshold" or "PT") to understand better the influence of this parameter and how it interacts with certain other programming parameters. Test programs (maps) were generated with PT set to artificially high and low values and tested on users of the MED-EL COMBI 40+ CI system. Acoustic thresholds and speech recognition scores (sentence tests) were measured for each of the test maps. Acoustic thresholds were also measured using maps with a range of output compression functions ("maplaws"). In addition, subjective reports were recorded regarding the presence of "background threshold stimulation" which is occasionally reported by CI users if PT is set to relatively high values when using the CIS strategy. Manipulation of PT was found to have very little effect. Setting PT to minimum produced a mean 5 dB (S.D. = 6.25) increase in acoustic thresholds, relative to thresholds with PT set normally, and had no statistically significant effect on speech recognition scores on a sentence test. On the other hand, maplaw setting was found to have a significant effect on acoustic thresholds (raised as maplaw is made more linear), which provides some theoretical explanation as to why PT has little effect when using the default maplaw of c = 500. Subjective reports of background threshold stimulation showed that most users could perceive a relatively loud auditory percept, in the absence of microphone input, when PT was set to double the behaviorally measured electrical thresholds ([theta]e), but that this produced little intrusion when microphone input was present. The results of these investigations have direct clinical relevance, showing that setting of PT is indeed relatively unimportant in terms of speech discrimination, but that it is worth ensuring that PT is not set excessively high, as this can produce distracting background stimulation. Indeed, it may even be set to minimum values without deleterious effect.
X-ray studies of quasars with the Einstein Observatory. II
NASA Technical Reports Server (NTRS)
Zamorani, G.; Maccacaro, T.; Henry, J. P.; Tananbaum, H.; Soltan, A.; Liebert, J.; Stocke, J.; Strittmatter, P. A.; Weymann, R. J.; Smith, M. G.
1981-01-01
X-ray observations of 107 quasars have been carried out with the Einstein Observatory, and 79 have been detected. A correlation between optical emission and X-ray emission is found; and for radio-loud quasars, the data show a correlation between radio emission and X-ray emission. For a given optical luminosity, the average X-ray emission of radio-loud quasars is about three times higher than that of radio-quiet quasars. The data also suggest that the ratio of X-ray to optical luminosity is decreasing with increasing redshift and/or optical luminosity. The data support the picture in which luminosity evolution, rather than pure density evolution, describes the quasar behavior as a function of redshift.
Ototoxicity in preterm infants: effects of genetics, aminoglycosides, and loud environmental noise.
Zimmerman, E; Lahav, A
2013-01-01
Majority of hearing-loss cases with extremely preterm infants have no known etiology. There is a growing concern that the administration of aminoglycoside treatment in the noisy environment of the Neonatal Intensive Care Unit (NICU) may lead to hair-cell damage and subsequent auditory impairments. In addition, several mitochondrial DNA mutations are known to have been associated with aminoglycoside-induced hearing loss. This review provides a systematic analysis of the research in this area and elucidates the multifactorial mechanisms behind how mitochondrial DNA mutations, aminoglycosides and loud noise can potentiate ototoxicity in extremely preterm neonates. Recommended steps to minimize the risk of ototoxicity and improve clinical care for NICU infants are discussed.
What is a melody? On the relationship between pitch and brightness of timbre
Cousineau, Marion; Carcagno, Samuele; Demany, Laurent; Pressnitzer, Daniel
2014-01-01
Previous studies showed that the perceptual processing of sound sequences is more efficient when the sounds vary in pitch than when they vary in loudness. We show here that sequences of sounds varying in brightness of timbre are processed with the same efficiency as pitch sequences. The sounds used consisted of two simultaneous pure tones one octave apart, and the listeners’ task was to make same/different judgments on pairs of sequences varying in length (one, two, or four sounds). In one condition, brightness of timbre was varied within the sequences by changing the relative level of the two pure tones. In other conditions, pitch was varied by changing fundamental frequency, or loudness was varied by changing the overall level. In all conditions, only two possible sounds could be used in a given sequence, and these two sounds were equally discriminable. When sequence length increased from one to four, discrimination performance decreased substantially for loudness sequences, but to a smaller extent for brightness sequences and pitch sequences. In the latter two conditions, sequence length had a similar effect on performance. These results suggest that the processes dedicated to pitch and brightness analysis, when probed with a sequence-discrimination task, share unexpected similarities. PMID:24478638
Fox, Cynthia; Ebersbach, Georg; Ramig, Lorraine; Sapir, Shimon
2012-01-01
Recent advances in neuroscience have suggested that exercise-based behavioral treatments may improve function and possibly slow progression of motor symptoms in individuals with Parkinson disease (PD). The LSVT (Lee Silverman Voice Treatment) Programs for individuals with PD have been developed and researched over the past 20 years beginning with a focus on the speech motor system (LSVT LOUD) and more recently have been extended to address limb motor systems (LSVT BIG). The unique aspects of the LSVT Programs include the combination of (a) an exclusive target on increasing amplitude (loudness in the speech motor system; bigger movements in the limb motor system), (b) a focus on sensory recalibration to help patients recognize that movements with increased amplitude are within normal limits, even if they feel “too loud” or “too big,” and (c) training self-cueing and attention to action to facilitate long-term maintenance of treatment outcomes. In addition, the intensive mode of delivery is consistent with principles that drive activity-dependent neuroplasticity and motor learning. The purpose of this paper is to provide an integrative discussion of the LSVT Programs including the rationale for their fundamentals, a summary of efficacy data, and a discussion of limitations and future directions for research. PMID:22530161
Simon, Doerte; Becker, Michael; Mothes-Lasch, Martin; Miltner, Wolfgang H.R.
2017-01-01
Abstract Angry expressions of both voices and faces represent disorder-relevant stimuli in social anxiety disorder (SAD). Although individuals with SAD show greater amygdala activation to angry faces, previous work has failed to find comparable effects for angry voices. Here, we investigated whether voice sound-intensity, a modulator of a voice’s threat-relevance, affects brain responses to angry prosody in SAD. We used event-related functional magnetic resonance imaging to explore brain responses to voices varying in sound intensity and emotional prosody in SAD patients and healthy controls (HCs). Angry and neutral voices were presented either with normal or high sound amplitude, while participants had to decide upon the speaker’s gender. Loud vs normal voices induced greater insula activation, and angry vs neutral prosody greater orbitofrontal cortex activation in SAD as compared with HC subjects. Importantly, an interaction of sound intensity, prosody and group was found in the insula and the amygdala. In particular, the amygdala showed greater activation to loud angry voices in SAD as compared with HC subjects. This finding demonstrates a modulating role of voice sound-intensity on amygdalar hyperresponsivity to angry prosody in SAD and suggests that abnormal processing of interpersonal threat signals in amygdala extends beyond facial expressions in SAD. PMID:27651541
NASA Technical Reports Server (NTRS)
Teng, Stacy H.; Mushotzky, Richard F.; Sambruna, Rita M.; Davis, David S.; Reynolds, Christopher S.
2011-01-01
We present the analysis of 2.1 years of Fermi Large Area Telescope (LAT) data on 491 Seyfert galaxies detected by the Swift Burst Alert Telescope (BAT) survey. Only the two nearest objects, NGC 1068 and NGC 4945, which were identified in the Fermi first year catalog, are detected. Using Swift/BAT and radio 20 cm fluxes, we define a new radio-loudness parameter R(sub X,BAT) where radio-loud objects have logR(sub X,BAT) > -4.7. Based on this parameter, only radio-loud sources are detected by Fermi/LAT. An upper limit to the flux of the undetected sources is derived to be approx.2x10(exp -11) photons/sq cm/s, approximately seven times lower than the observed flux of NGC 1068. Assuming a median redshift of 0.031, this implies an upper limit to the gamma-ray (1-100 GeV) luminosity of < approx.3x10(exp 41) erg/s. In addition, we identified 120 new Fermi/LAT sources near the Swift/BAT Seyfert galaxies with significant Fermi/LAT detections. A majority of these objects do not have Swift/BAT counterparts, but their possible optical counterparts include blazars, flat-spectrum radio quasars, and quasars.
Robust recognition of loud and Lombard speech in the fighter cockpit environment
NASA Astrophysics Data System (ADS)
Stanton, Bill J., Jr.
1988-08-01
There are a number of challenges associated with incorporating speech recognition technology into the fighter cockpit. One of the major problems is the wide range of variability in the pilot's voice. That can result from changing levels of stress and workload. Increasing the training set to include abnormal speech is not an attractive option because of the innumerable conditions that would have to be represented and the inordinate amount of time to collect such a training set. A more promising approach is to study subsets of abnormal speech that have been produced under controlled cockpit conditions with the purpose of characterizing reliable shifts that occur relative to normal speech. Such was the initiative of this research. Analyses were conducted for 18 features on 17671 phoneme tokens across eight speakers for normal, loud, and Lombard speech. It was discovered that there was a consistent migration of energy in the sonorants. This discovery of reliable energy shifts led to the development of a method to reduce or eliminate these shifts in the Euclidean distances between LPC log magnitude spectra. This combination significantly improved recognition performance of loud and Lombard speech. Discrepancies in recognition error rates between normal and abnormal speech were reduced by approximately 50 percent for all eight speakers combined.
Velopharyngeal port status during classical singing.
Tanner, Kristine; Roy, Nelson; Merrill, Ray M; Power, David
2005-12-01
This investigation was undertaken to examine the status of the velopharyngeal (VP) port during classical singing. Using aeromechanical instrumentation, nasal airflow (mL/s), oral pressure (cm H2O), and VP orifice area estimates (cm2) were studied in 10 classically trained sopranos during singing and speaking. Each participant sang and spoke 3 nonsense words-/hampa/, /himpi/, and /humpu/-at 3 loudness levels (loud vs. comfortable vs. soft) and 3 pitches (high vs. comfortable vs. low), using a within-subject experimental design including all possible combinations. In general, nasal airflow, oral pressure, and VP area estimates were significantly greater for singing as compared to speech, and nasal airflow was observed during non-nasal sounds in all participants. Anticipatory nasal airflow was observed in 9 of 10 participants for singing and speaking and was significantly greater during the first vowel in /hampa/ versus /himpi/ and /humpu/. The effect of vowel height on nasal airflow was also significantly influenced by loudness and pitch. The results from this investigation indicate that at least some trained singers experience regular VP opening during classical singing. Vowel height seems to influence this effect. Future research should consider the effects of voice type, gender, experience level, performance ability, and singing style on VP valving in singers.
The difference between radio-loud and radio-quiet active galaxies
NASA Astrophysics Data System (ADS)
Wilson, A. S.; Colbert, E. J. M.
1995-01-01
The recent development of unified theories of active galactic nuclei (AGNs) has indicated that there are two physically distinct classes of these objects--radio-loud and radio-quiet. Despite differences, the (probable) thermal emissions from the AGNs (continua and lines from X-ray to infrared wavelengths) are quite similar to the two classes of object. We argue that this last result suggests that the black hole masses and mass accretion rates in the two classes are not greatly different, and that the difference between the classes is associated with the spin of the black hole. We assume that the normal process of accretion through a disk does not lead to rapidly spinning holes and propose that galaxies (e.g., spirals) which have not suffered a recent major merger event contain nonrotating or only slowly rotating black holes. When two such galaxies merge, the two black holes are known to form a binary and we assume that they eventually coalesce. The ratio of the number of radio-loud to radio-quiet AGNs at a given thermal (e.g., optical) luminosity is determined by the galaxy merger rate. Comparisons between the predicted and observed radio luminosity functions constrain the efficiencies with which jet power is extracted from the spinning hole and radio emission is produced by the jet.
Park, H K; Bradley, J S
2009-09-01
Subjective ratings of the audibility, annoyance, and loudness of music and speech sounds transmitted through 20 different simulated walls were used to identify better single number ratings of airborne sound insulation. The first part of this research considered standard measures such as the sound transmission class the weighted sound reduction index (R(w)) and variations of these measures [H. K. Park and J. S. Bradley, J. Acoust. Soc. Am. 126, 208-219 (2009)]. This paper considers a number of other measures including signal-to-noise ratios related to the intelligibility of speech and measures related to the loudness of sounds. An exploration of the importance of the included frequencies showed that the optimum ranges of included frequencies were different for speech and music sounds. Measures related to speech intelligibility were useful indicators of responses to speech sounds but were not as successful for music sounds. A-weighted level differences, signal-to-noise ratios and an A-weighted sound transmission loss measure were good predictors of responses when the included frequencies were optimized for each type of sound. The addition of new spectrum adaptation terms to R(w) values were found to be the most practical approach for achieving more accurate predictions of subjective ratings of transmitted speech and music sounds.
Durai, Mithila; Kobayashi, Kei; Searchfield, Grant D
2018-05-28
To evaluate the feasibility of predictable or unpredictable amplitude-modulated sounds for tinnitus therapy. The study consisted of two parts. (1) An adaptation experiment. Loudness level matches and rating scales (10-point) for loudness and distress were obtained at a silent baseline and at the end of three counterbalanced 30-min exposures (silence, predictable and unpredictable). (2) A qualitative 2-week sound therapy feasibility trial. Participants took home a personal music player (PMP). Part 1: 23 individuals with chronic tinnitus and part 2: seven individuals randomly selected from Part 1. Self-reported tinnitus loudness and annoyance were significantly lower than baseline ratings after acute unpredictable sound exposure. Tinnitus annoyance ratings were also significantly lower than the baseline but the effect was small. The feasibility trial identified that participant preferences for sounds varied. Three participants did not obtain any benefit from either sound. Three participants preferred unpredictable compared to predictable sounds. Some participants had difficulty using the PMP, the average self-report hours of use were low (less <1 h/day). Unpredictable surf-like sounds played using a PMP is a feasible tinnitus treatment. Further work is required to improve the acceptance of the sound and ease of PMP use.
The Far-Infrared Emission of Radio Loud and Radio Quiet Quasars
NASA Technical Reports Server (NTRS)
Polletta, M.; Courvoisier, T. J.-L.; Wilkes, B. J.; Hooper, E. J.
2000-01-01
Continuum observations at radio, millimeter, infrared and soft X-ray energies are presented for a sample of 22 quasars, consisting of flat and steep spectrum radio loud, radio intermediate and radio quiet objects. The primary observational distinctions, among the different kinds of quasars in the radio and IR energy domains are studied using large observational datasets provided by ISOPHOT on board the Infrared Space Observatory, by the IRAM interferometer, by the sub-millimetre array SCUBA on JCMT, and by the European Southern Observatory (ESO) facilities IRAC1 on the 2.2 m telescope and SEST. The spectral energy distributions of all quasars from radio to IR energies are analyzed and modeled with non-thermal and thermal spectral components. The dominant mechanism emitting in the far/mid-IR is thermal dust emission in all quasars, with the exception of flat spectrum radio loud quasars for which the presence of thermal IR emission remains rather uncertain, since it is difficult to separate it from the bright non-thermal component. The dust is predominantly heated by the optical/ultraviolet radiation emitted from the external components of the AGN. A starburst contributes to the IR emission at different levels, but always less than the AGN (<= 27%). The distribution of temperatures, sizes, masses, and luminosities of the emitting dust are independent of the quasar type.
Intentional exposure to loud music: the second MTV.com survey reveals an opportunity to educate.
Quintanilla-Dieck, Maria de Lourdes; Artunduaga, Maria Alexandra; Eavey, Roland D
2009-10-01
Music-induced hearing loss (MIHL), an unconsciously self-inflicted public health concern, could evolve into an epidemic because of the appeal of loud music. After media attention about a previous hearing-loss survey with Music Television (MTV.com), we hypothesized that a repeat survey could compare awareness and behavior trends. We incorporated the 2002 survey into the new 73-question instrument presented to random visitors on the MTV.com website in 2007. A P < .05 value was used for independent t and z- tests. A total of 2500 completed surveys were analyzed. Hearing loss was considered a problem by 32% of respondents compared with other health issues such as drug/alcohol use (62%). However, nearly half of the respondents admitted experiencing symptoms such as tinnitus or hearing loss after loud music exposure. Health care providers were the least likely source of MIHL awareness despite the respondents favoring provider education for hearing protection behavior modification. Most respondents still could not recall learning about prevention of potential hearing loss, although the media has become the most informative source. Most respondents indicated that they would adopt protective ear behavior if made aware of hearing loss risk, especially if informed by health care professionals, revealing an educational opportunity.
Effects of sleep bruxism related tinnitus on quality of life.
Saltürk, Ziya; Özçelik, Erdinç; Kumral, Tolgar Lütfi; Çakır, Ozan; Kasımoğlu, Şeref; Atar, Yavuz; Yıldırım, Güven; Berkiten, Güler; Göker, Ayşe Enise; Uyar, Yavuz
2015-01-01
This study aims to analyze the subjective and objective characteristics of tinnitus in sleep bruxism patients. The study included 57 patients (12 males; 45 females; mean age 33.89±12.50 years; range 19 to 55 years) with sleep bruxism and tinnitus (sleep bruxism group) and 24 patients (6 males, 18 females; mean age 43.75±16.19 years; range 21 to 58 years) only with tinnitus (control group). Sleep bruxism was diagnosed by the diagnostic criteria of American Academy of Sleep Medicine. Patients were performed pure tone audiometry to detect hearing thresholds at standard and high frequencies. Tinnitus frequency and loudness were assessed. Subjective aspects of tinnitus were identified by tinnitus handicap inventory. The statistical analysis revealed that the sleep bruxism group had significantly lower hearing thresholds except 1000 Hz and 2000 Hz. Tinnitus frequency was between 3000 Hz and 18000 Hz in sleep bruxism group while it was between 6000 and 16000 Hz in control group with no statistically significant difference (p=0.362). Sleep bruxism group had significantly lower tinnitus loudness and tinnitus handicap inventory scores in comparison to control group (p=0.024 and p=0.000, respectively). Tinnitus caused by sleep bruxism and temporomandibular joint issues has higher frequency and lower loudness compared to patients with only tinnitus.
Hurdles at work: perceptions of hospital food handlers
Bertin, Cilce Helena Figueiredo Preza; Rezende, Magda Andrade; Sigulem, Dirce Maria; Morais, Tania Beninga
2009-01-01
Background Food handlers have a very important role in preventing food contamination during its preparation and distribution. This responsibility is even greater in hospitals, since a large number of patients have low immunity and consequently food contamination by pathogenic bacteria could be particularly harmful. Therefore, a good working environment and periodic training should be provided to food handlers by upper management. Methods This study is qualitative research by means of focus group and thematic content analysis methodologies to examine, in detail, the statements by food handlers working in the milk and specific-diet kitchens in a hospital to understand the problems they face in the workplace. Results We found that food handlers are aware of the role they play in restoring patients' health; they consider it important to offer a good-quality diet. However, according to their perceptions, a number of difficulties prevent them from reaching this aim. These include: upper management not prioritizing human and material resources to the dietetic services when making resource allocation decisions; a perception that upper management considers their work to be of lesser importance; delayed overtime payments; lack of periodic training; managers lacking administrative skills; insufficient dietitian staff assistants, leading to overwork, at the same time as there is an excess of dietitians; unhealthy environmental working conditions – high temperature, high humidity, loud and constant noise level, poor ventilation; lack of food, and kitchen utensils and equipment; and relationship conflicts with chief dieticians and co-workers. Conclusion From these findings, improvement in staff motivation could be achieved by considering non-financial incentives, such as improvement in working conditions and showing appreciation and respect through supervision, training and performance appraisal. Management action, such as investments in intermediary management so that managers have the capacity to provide supportive supervision, as well as better use of performance appraisal and access to training, may help overcome the identified problems. PMID:19630982
An integrated system for dynamic control of auditory perspective in a multichannel sound field
NASA Astrophysics Data System (ADS)
Corey, Jason Andrew
An integrated system providing dynamic control of sound source azimuth, distance and proximity to a room boundary within a simulated acoustic space is proposed for use in multichannel music and film sound production. The system has been investigated, implemented, and psychoacoustically tested within the ITU-R BS.775 recommended five-channel (3/2) loudspeaker layout. The work brings together physical and perceptual models of room simulation to allow dynamic placement of virtual sound sources at any location of a simulated space within the horizontal plane. The control system incorporates a number of modules including simulated room modes, "fuzzy" sources, and tracking early reflections, whose parameters are dynamically changed according to sound source location within the simulated space. The control functions of the basic elements, derived from theories of perception of a source in a real room, have been carefully tuned to provide efficient, effective, and intuitive control of a sound source's perceived location. Seven formal listening tests were conducted to evaluate the effectiveness of the algorithm design choices. The tests evaluated: (1) loudness calibration of multichannel sound images; (2) the effectiveness of distance control; (3) the resolution of distance control provided by the system; (4) the effectiveness of the proposed system when compared to a commercially available multichannel room simulation system in terms of control of source distance and proximity to a room boundary; (5) the role of tracking early reflection patterns on the perception of sound source distance; (6) the role of tracking early reflection patterns on the perception of lateral phantom images. The listening tests confirm the effectiveness of the system for control of perceived sound source distance, proximity to room boundaries, and azimuth, through fine, dynamic adjustment of parameters according to source location. All of the parameters are grouped and controlled together to create a perceptually strong impression of source location and movement within a simulated space.
Jenkins, Herman A; Uhler, Kristin
2012-01-01
To compare the speech understanding abilities of cochlear implant listeners using 2 microphone technologies, the Otologics fully implantable Carina and the Cochlear Freedom microphones. Feasibility study using direct comparison of the 2 microphones, nonrandomized and nonblinded within case studies. Tertiary referral center hospital outpatient clinic. Four subjects with greater than 1 year of unilateral listening experience with the Freedom Cochlear Implant and a CNC word score higher than 40%. A Carina microphone coupled to a percutaneous plug was implanted on the ipsilateral side of the cochlear implant. Two months were allowed for healing before connecting to the Carina microphone. The percutaneous plug was connected to a body worn external processor with output leads inserted into the auxiliary port of the Freedom processor. Subjects were instructed to use each of the 2 microphones for half of their daily implant use. Aided pure tone thresholds, consonant-nucleus-consonant (CNC), Bamford-Kowel-Bench Speech in Noise test (BKN-SIN), and Abbreviated Profile of Hearing Aid Benefit. All subjects had sound perceptions using both microphones. The loudness and quality of the sound was judged to be poorer with the Carina in the first 2 subjects. The latter 2 demonstrated essential equivalence in the second two listeners, with the exception of the Abbreviated Profile of Hearing Aid Benefit reporting greater percentage of problems for the Carina in the background noise situation for subject 0011-003PP. CNC word scores were better with the Freedom than the Carina in all 4 subjects. The latter 2 showed improved speech perception abilities with the Carina, compared with the first 2. The BKB-SIN showed consistently better results with the Freedom in noise. Early observations indicate that it is potentially feasible to use the fully implanted Carina microphone with the Freedom Cochlear Implant. The authors would anticipate that outcomes would improve as more knowledge is gained in signal processing and with the fabrication of an integrated device.
Measurements of monopolar and bipolar current spreads using forward-masking with a fixed probe.
Bingabr, Mohamed G; Espinoza-Varas, Blas; Sigdel, Saroj
2014-05-01
This research employed a forward-masking paradigm to estimate the current spread of monopolar (MP) and bipolar (BP) maskers, with current amplitudes adjusted to elicit the same loudness. Since the spatial separation between active and return electrodes is smaller in BP than in MP configurations, the BP current spread is more localized and presumably superior in terms of speech intelligibility. Because matching the loudness requires higher current in BP than in MP stimulation, previous forward-masking studies show that BP current spread is not consistently narrower across subjects or electrodes within a subject. The present forward-masking measures of current spread differ from those of previous studies by using the same BP probe electrode configuration for both MP and BP masker configurations, and adjusting the current levels of the MP and BP maskers so as to match them in loudness. With this method, the estimate of masker current spread would not be contaminated by differences in probe current spread. Forward masking was studied in four cochlear implant patients, two females and two males, with speech recognition scores higher than 50%; that is, their auditory-nerve survival status was more than adequate to carry out the experiments. The data showed that MP and BP masker configurations produce equivalent masking patterns (and current spreads) in three participants. A fourth participant displayed asymmetrical patterns with enhancement rather than masking in some cases, especially when the probe and masker were at the same location. This study showed equivalent masking patterns for MP and BP maskers when the BP masker current amplitude was increased to match the loudness of the MP masker, and the same BP probe configuration is used with both maskers. This finding could help to explain why cochlear implant users often fail to accrue higher speech intelligibility benefit from BP stimulation.
Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift
NASA Astrophysics Data System (ADS)
Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.
2016-12-01
Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence that most of them (if not all) contain an active galactic nuclei (AGN). Still uncertain is the nature of the radio-faintest IFRSs (S1.4 GHz≲ 1 mJy). Aims: The scope of this paper is to assess the nature of the radio-faintest IFRSs, testing their classification and improving the knowledge of their IR properties by making use of the most sensitive IR survey available so far: the Spitzer Extragalactic Representative Volume Survey (SERVS). We also explore how the criteria of IFRSs can be fine-tuned to pinpoint radio-loud AGNs at very high redshift (z > 4). Methods: We analysed a number of IFRS samples identified in SERVS fields, including a new sample (21 sources) extracted from the Lockman Hole. 3.6 and 4.5 μm IR counterparts of the 64 sources located in the SERVS fields were searched for and, when detected, their IR properties were studied. Results: We compared the radio/IR properties of the IR-detected IFRSs with those expected for a number of known classes of objects. We found that IR-detected IFRSs are mostly consistent with a mixture of high-redshift (z ≳ 3) radio-loud AGNs. The faintest ones (S1.4 GHz 100 μJy), however, could be also associated with nearer (z 2) dust-enshrouded star-burst galaxies. We also argue that, while IFRSs with radio-to-IR ratios >500 can very efficiently pinpoint radio-loud AGNs at redshift 2 < z < 4, lower radio-to-IR ratios ( 100-200) are expected for higher redshift radio-loud AGNs.
Considerations in the Development of a Sound Tolerance Interview and Questionnaire Instrument
Sherlock, LaGuinn P.; Formby, Craig
2017-01-01
Most clinicians approach the objective fitting of hearing aids with three goals in mind: audibility, comfort, and tolerance. When these three amplification goals have been met, the hearing aid user is more likely to adapt to and perceive benefit from hearing aid use. However, problems related to the loudness of sounds and reduced sound tolerance, which may or may not be reported by the aided user, can adversely impact adaptation to amplification and the individual's quality of life. Although there are several standardized questionnaires available to evaluate hearing aid benefit and satisfaction, there is no standardized questionnaire or interview tool for evaluating reduced sound tolerance and the related impact on hearing aid use. We describe a 36-item tool, the Sound Tolerance Questionnaire (STQ), consisting of six sections, including experience with hearing aids, sound sensitivity/intolerance, medical and noise exposure histories, coexisting tinnitus problems, and a final question to differentiate the primary and secondary problems related to sound intolerance, tinnitus, and hearing loss. In its current format as a research tool, the STQ was sensitive in pinpointing vague sound tolerance complaints not reported by the study participants in eligibility screening by Formby et al. A refined version of the STQ, the Sound Tolerance Interview and Questionnaire Instrument (STIQI), structured as a two-part tool, is presented in the appendix for prospective clinical use. The STIQI has potential utility to delineate factors contributing to loudness complaints and/or reduced sound tolerance in individuals considering hearing aid use, as well as those who have been unsuccessful hearing aid users secondary to loudness complaints or sound intolerance. The STIQI, when validated and refined, also may hold promise for predicting hearing aid benefit and/or assessing treatment-related change over time of hearing aid use or interventions designed to remediate problems of loudness and/or sound intolerance among hearing aid candidates or users. PMID:28286364
ON THE RADIO AND OPTICAL LUMINOSITY EVOLUTION OF QUASARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singal, J.; Petrosian, V.; Lawrence, A.
2011-12-20
We calculate simultaneously the radio and optical luminosity evolutions of quasars, and the distribution in radio loudness R defined as the ratio of radio and optical luminosities, using a flux-limited data set containing 636 quasars with radio and optical fluxes from White et al. We first note that when dealing with multi-variate data it is imperative to first determine the true correlations among the variables, not those introduced by the observational selection effects, before obtaining the individual distributions of the variables. We use the methods developed by Efron and Petrosian which are designed to obtain unbiased correlations, distributions, and evolutionmore » with redshift from a data set truncated due to observational biases. It is found that the population of quasars exhibits strong positive correlation between the radio and optical luminosities. With this correlation, whether intrinsic or observationally induced accounted for, we find that there is a strong luminosity evolution with redshift in both wavebands, with significantly higher radio than optical evolution. We conclude that the luminosity evolution obtained by arbitrarily separating the sources into radio-loud (R > 10) and radio-quiet (R < 10) populations introduces significant biases that skew the result considerably. We also construct the local radio and optical luminosity functions and the density evolution. Finally, we consider the distribution of the radio-loudness parameter R obtained from careful treatment of the selection effects and luminosity evolutions with that obtained from the raw data without such considerations. We find a significant difference between the two distributions and no clear sign of bi-modality in the true distribution for the range of R values considered. Our results indicate therefore, somewhat surprisingly, that there is no critical switch in the efficiency of the production of disk outflows/jets between very radio-quiet and very radio-loud quasars, but rather a smooth transition. Also, this efficiency seems higher for the high-redshift and more luminous sources in the sample considered.« less
Effects of serum zinc level on tinnitus.
Berkiten, Güler; Kumral, Tolgar Lütfi; Yıldırım, Güven; Salturk, Ziya; Uyar, Yavuz; Atar, Yavuz
2015-01-01
The aim of this study was to assess zinc levels in tinnitus patients, and to evaluate the effects of zinc deficiency on tinnitus and hearing loss. One-hundred patients, who presented to an outpatient clinic with tinnitus between June 2009 and 2014, were included in the study. Patients were divided into three groups according to age: Group I (patients between 18 and 30years of age); Group II (patients between 31 and 60years of age); and Group III (patients between 61 and 78years of age). Following a complete ear, nose and throat examination, serum zinc levels were measured and the severity of tinnitus was quantified using the Tinnitus Severity Index Questionnaire (TSIQ). Patients were subsequently asked to provide a subjective judgment regarding the loudness of their tinnitus. The hearing status of patients was evaluated by audiometry and high-frequency audiometry. An average hearing sensitivity was calculated as the mean value of hearing thresholds between 250 and 20,000Hz. Serum zinc levels between 70 and 120μg/dl were considered normal. The severity and loudness of tinnitus, and the hearing thresholds of the normal zinc level and zinc-deficient groups, were compared. Twelve of 100 (12%) patients exhibited low zinc levels. The mean age of the zinc-deficient group was 65.41±12.77years. Serum zinc levels were significantly lower in group III (p<0.01). The severity and loudness of tinnitus were greater in zinc-deficient patients (p=0.011 and p=0.015, respectively). Moreover, the mean thresholds of air conduction were significantly higher in zinc-deficient patients (p=0.000). We observed that zinc levels decrease as age increases. In addition, there was a significant correlation between zinc level and the severity and loudness of tinnitus. Zinc deficiency was also associated with impairments in hearing thresholds. Copyright © 2015 Elsevier Inc. All rights reserved.
Ultrafast outflows in radio-loud active galactic nuclei
NASA Astrophysics Data System (ADS)
Tombesi, F.; Tazaki, F.; Mushotzky, R. F.; Ueda, Y.; Cappi, M.; Gofford, J.; Reeves, J. N.; Guainazzi, M.
2014-09-01
Recent X-ray observations show absorbing winds with velocities up to mildly relativistic values of the order of ˜0.1c in a limited sample of six broad-line radio galaxies. They are observed as blueshifted Fe XXV-XXVI K-shell absorption lines, similarly to the ultrafast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud active galactic nuclei (AGN) observed with XMM-Newton and Suzaku. The sample is drawn from the Swift Burst Alert Telescope 58-month catalogue and blazars are excluded. X-ray bright Fanaroff-Riley Class II radio galaxies constitute the majority of the sources. Combining the results of this analysis with those in the literature we find that UFOs are detected in >27 per cent of the sources. However, correcting for the number of spectra with insufficient signal-to-noise ratio, we can estimate that the incidence of UFOs is this sample of radio-loud AGN is likely in the range f ≃ (50 ± 20) per cent. A photoionization modelling of the absorption lines with XSTAR allows us to estimate the distribution of their main parameters. The observed outflow velocities are broadly distributed between vout ≲ 1000 km s-1 and vout ≃ 0.4c, with mean and median values of vout ≃ 0.133c and vout ≃ 0.117c, respectively. The material is highly ionized, with an average ionization parameter of logξ ≃ 4.5 erg s-1 cm, and the column densities are larger than NH > 1022 cm-2. Overall, these characteristics are consistent with the presence of complex accretion disc winds in a significant fraction of radio-loud AGN and demonstrate that the presence of relativistic jets does not preclude the existence of winds, in accordance with several theoretical models.
Imaging the host galaxies of high-redshift radio-quiet QSOs
NASA Technical Reports Server (NTRS)
Lowenthal, James D.; Heckman, Timothy M.; Lehnert, Matthew, D.; Elias, J. H.
1995-01-01
We present new deep K-band and optical images of four radio-quiet QSOs at z approximately = 1 and six radio-quiet QSOs at z approximately = 2.5, as well as optical images only of six more at z approximately = 2.5. We have examined the images carefully for evidence of extended 'fuzz' from any putative QSO host galaxy. None of the z approximately = 2.5 QSOs shows any extended emission, and only two of the z approximately = 1 QSOs show marginal evidence for extended emission. Our 3 sigma detection limits in the K images, m(sub K) approximately = 21 for an isolated source, would correspond approximately to an unevolved L(sup star) elliptical galaxy at z = 2.5 or 2-3 mag fainter than an L(sup star) elliptical at z = 1, although our limits on host galaxy light are weaker than this due to the difficulty of separating galaxy light from QSO light. We simulate simple models of disk and elliptical host galaxies, and find that the marginal emission around the two z approximately = 1 QSOs can be explained by disks or bulges that are approximately 1-2 mag brighter than an unevolved L(sup star) galaxy in one case and approximately 1.5-2.5 mag brighter than L(sub star) in the other. For two other z approximately = 1 QSOs, we have only upper limits (L approximately = L(sup star)). The hosts of the high-redshift sample must be no brighter than about 3 mag above an unevolved L(sup star) galaxy, and are at least 1 magnitude fainter than the hosts of radio-loud QSOs at the same redshift. If the easily detected K-band light surrounding a previous sample of otherwise similar but radio-loud QSOs is starlight, then it must evolve on timescales of greater than or approximately equal to 10(exp 8) yr (e.g., Chambers & Charlot 1990); therefore our non-detection of host galaxy fuzz around radio-quiet QSOs supports the view that high-redshift radio-quiet and radio-loud QSOs inhabit different host objects, rather than being single types of objects that turn their radio emission on and off over short timescales. This is consistent with the general trend at low redshifts that radio-loud QSOs are found in giant elliptical galaxies while radio-quiet QSOs are found in less luminous disk galaxies. It also suggests that the processes responsible for the spectacular properties of radio-loud AGNs at high redshifts might not be generally relevent to the (far more numerous) radio-quiet population.
Ross, Bernhard; Miyazaki, Takahiro; Thompson, Jessica; Jamali, Shahab; Fujioka, Takako
2014-10-15
When two tones with slightly different frequencies are presented to both ears, they interact in the central auditory system and induce the sensation of a beating sound. At low difference frequencies, we perceive a single sound, which is moving across the head between the left and right ears. The percept changes to loudness fluctuation, roughness, and pitch with increasing beat rate. To examine the neural representations underlying these different perceptions, we recorded neuromagnetic cortical responses while participants listened to binaural beats at a continuously varying rate between 3 Hz and 60 Hz. Binaural beat responses were analyzed as neuromagnetic oscillations following the trajectory of the stimulus rate. Responses were largest in the 40-Hz gamma range and at low frequencies. Binaural beat responses at 3 Hz showed opposite polarity in the left and right auditory cortices. We suggest that this difference in polarity reflects the opponent neural population code for representing sound location. Binaural beats at any rate induced gamma oscillations. However, the responses were largest at 40-Hz stimulation. We propose that the neuromagnetic gamma oscillations reflect postsynaptic modulation that allows for precise timing of cortical neural firing. Systematic phase differences between bilateral responses suggest that separate sound representations of a sound object exist in the left and right auditory cortices. We conclude that binaural processing at the cortical level occurs with the same temporal acuity as monaural processing whereas the identification of sound location requires further interpretation and is limited by the rate of object representations. Copyright © 2014 the American Physiological Society.
Fitting and verification of frequency modulation systems on children with normal hearing.
Schafer, Erin C; Bryant, Danielle; Sanders, Katie; Baldus, Nicole; Algier, Katherine; Lewis, Audrey; Traber, Jordan; Layden, Paige; Amin, Aneeqa
2014-06-01
Several recent investigations support the use of frequency modulation (FM) systems in children with normal hearing and auditory processing or listening disorders such as those diagnosed with auditory processing disorders, autism spectrum disorders, attention-deficit hyperactivity disorder, Friedreich ataxia, and dyslexia. The American Academy of Audiology (AAA) published suggested procedures, but these guidelines do not cite research evidence to support the validity of the recommended procedures for fitting and verifying nonoccluding open-ear FM systems on children with normal hearing. Documenting the validity of these fitting procedures is critical to maximize the potential FM-system benefit in the above-mentioned populations of children with normal hearing and those with auditory-listening problems. The primary goal of this investigation was to determine the validity of the AAA real-ear approach to fitting FM systems on children with normal hearing. The secondary goal of this study was to examine speech-recognition performance in noise and loudness ratings without and with FM systems in children with normal hearing sensitivity. A two-group, cross-sectional design was used in the present study. Twenty-six typically functioning children, ages 5-12 yr, with normal hearing sensitivity participated in the study. Participants used a nonoccluding open-ear FM receiver during laboratory-based testing. Participants completed three laboratory tests: (1) real-ear measures, (2) speech recognition performance in noise, and (3) loudness ratings. Four real-ear measures were conducted to (1) verify that measured output met prescribed-gain targets across the 1000-4000 Hz frequency range for speech stimuli, (2) confirm that the FM-receiver volume did not exceed predicted uncomfortable loudness levels, and (3 and 4) measure changes to the real-ear unaided response when placing the FM receiver in the child's ear. After completion of the fitting, speech recognition in noise at a -5 signal-to-noise ratio and loudness ratings at a +5 signal-to-noise ratio were measured in four conditions: (1) no FM system, (2) FM receiver on the right ear, (3) FM receiver on the left ear, and (4) bilateral FM system. The results of this study suggested that the slightly modified AAA real-ear measurement procedures resulted in a valid fitting of one FM system on children with normal hearing. On average, prescriptive targets were met for 1000, 2000, 3000, and 4000 Hz within 3 dB, and maximum output of the FM system never exceeded and was significantly lower than predicted uncomfortable loudness levels for the children. There was a minimal change in the real-ear unaided response when the open-ear FM receiver was placed into the ear. Use of the FM system on one or both ears resulted in significantly better speech recognition in noise relative to a no-FM condition, and the unilateral and bilateral FM receivers resulted in a comfortably loud signal when listening in background noise. Real-ear measures are critical for obtaining an appropriate fit of an FM system on children with normal hearing. American Academy of Audiology.
Ching, Teresa Y C; Quar, Tian Kar; Johnson, Earl E; Newall, Philip; Sharma, Mridula
2015-03-01
An important goal of providing amplification to children with hearing loss is to ensure that hearing aids are adjusted to match targets of prescriptive procedures as closely as possible. The Desired Sensation Level (DSL) v5 and the National Acoustic Laboratories' prescription for nonlinear hearing aids, version 1 (NAL-NL1) procedures are widely used in fitting hearing aids to children. Little is known about hearing aid fitting outcomes for children with severe or profound hearing loss. The purpose of this study was to investigate the prescribed and measured gain of hearing aids fit according to the NAL-NL1 and the DSL v5 procedure for children with moderately severe to profound hearing loss; and to examine the impact of choice of prescription on predicted speech intelligibility and loudness. Participants were fit with Phonak Naida V SP hearing aids according to the NAL-NL1 and DSL v5 procedures. The Speech Intelligibility Index (SII) and estimated loudness were calculated using published models. The sample consisted of 16 children (30 ears) aged between 7 and 17 yr old. The measured hearing aid gains were compared with the prescribed gains at 50 (low), 65 (medium), and 80 dB SPL (high) input levels. The goodness of fit-to-targets was quantified by calculating the average root-mean-square (RMS) error of the measured gain compared with prescriptive gain targets for 0.5, 1, 2, and 4 kHz. The significance of difference between prescriptions for hearing aid gains, SII, and loudness was examined by performing analyses of variance. Correlation analyses were used to examine the relationship between measures. The DSL v5 prescribed significantly higher overall gain than the NAL-NL1 procedure for the same audiograms. For low and medium input levels, the hearing aids of all children fit with NAL-NL1 were within 5 dB RMS of prescribed targets, but 33% (10 ears) deviated from the DSL v5 targets by more than 5 dB RMS on average. For high input level, the hearing aid fittings of 60% and 43% of ears deviated by more than 5 dB RMS from targets of NAL-NL1 and DSL v5, respectively. Greater deviations from targets were associated with more severe hearing loss. On average, the SII was higher for DSL v5 than for NAL-NL1 at low input level. No significant difference in SII was found between prescriptions at medium or high input level, despite greater loudness for DSL v5 than for NAL-NL1. Although targets between 0.25 and 2 kHz were well matched for both prescriptions in commercial hearing aids, gain targets at 4 kHz were matched for NAL-NL1 only. Although the two prescriptions differ markedly in estimated loudness, they resulted in comparable predicted speech intelligibility for medium and high input levels. American Academy of Audiology.
Weichenberger, Markus; Bauer, Martin; Kühler, Robert; Hensel, Johannes; Forlim, Caroline Garcia; Ihlenfeld, Albrecht; Ittermann, Bernd; Gallinat, Jürgen; Koch, Christian; Kühn, Simone
2017-01-01
In the present study, the brain’s response towards near- and supra-threshold infrasound (IS) stimulation (sound frequency < 20 Hz) was investigated under resting-state fMRI conditions. The study involved two consecutive sessions. In the first session, 14 healthy participants underwent a hearing threshold—as well as a categorical loudness scaling measurement in which the individual loudness perception for IS was assessed across different sound pressure levels (SPL). In the second session, these participants underwent three resting-state acquisitions, one without auditory stimulation (no-tone), one with a monaurally presented 12-Hz IS tone (near-threshold) and one with a similar tone above the individual hearing threshold corresponding to a ‘medium loud’ hearing sensation (supra-threshold). Data analysis mainly focused on local connectivity measures by means of regional homogeneity (ReHo), but also involved independent component analysis (ICA) to investigate inter-regional connectivity. ReHo analysis revealed significantly higher local connectivity in right superior temporal gyrus (STG) adjacent to primary auditory cortex, in anterior cingulate cortex (ACC) and, when allowing smaller cluster sizes, also in the right amygdala (rAmyg) during the near-threshold, compared to both the supra-threshold and the no-tone condition. Additional independent component analysis (ICA) revealed large-scale changes of functional connectivity, reflected in a stronger activation of the right amygdala (rAmyg) in the opposite contrast (no-tone > near-threshold) as well as the right superior frontal gyrus (rSFG) during the near-threshold condition. In summary, this study is the first to demonstrate that infrasound near the hearing threshold may induce changes of neural activity across several brain regions, some of which are known to be involved in auditory processing, while others are regarded as keyplayers in emotional and autonomic control. These findings thus allow us to speculate on how continuous exposure to (sub-)liminal IS could exert a pathogenic influence on the organism, yet further (especially longitudinal) studies are required in order to substantialize these findings. PMID:28403175
Adaptation and validation of Mandarin Chinese version of the pediatric Voice Handicap Index (pVHI).
Lu, Dan; Huang, Mengjie; Li, Zhen; Yiu, Edwin M-L; Cheng, Ivy K-Y; Yang, Hui; Ma, Estella P-M
2018-01-01
The aim of this study was to adapt and validate the English version of pediatric voice handicap index (pVHI) into Mandarin Chinese. METHODS: A cross-sectional study was performed from May 2016 to April 2017. A total of 367 parents participated in this study, and 338 parents completed the translated questionnaire without missing data, including 213 parents of children with voice disorders (patients group), and 125 parents of children without voice disorders (control group). The internal consistency, test-retest reliability, contents validity, construct validity, clinical validity, and cutoff point were calculated. The most common voice disorder in the patients group was vocal fold nodules (77.9%), followed by chronic laryngitis (18.8%), and vocal fold polyps (3.3%). The prevalence for voice disorders was higher in boys (67.1%) than girls (32.9%). The most common vocal misuse and abuse habit was shouting loudly (n = 186, 87.3%), followed by speaking for a long time (n = 158, 74.2%), and crying loudly (n = 99, 46.5%). The internal consistency for the Mandarin Chinese version of pVHI was excellent in patients group (Cronbach α = 0.95). The inter-class correlation coefficient indicated strong test-retest reliability (ICC = 0.99). The principal-component analysis demonstrated three-factor eigenvalues greater than 1, and the cumulative proportion was 66.23%. The mean total scores and mean subscales scores were significantly higher in the patients group than the control group (p < 0.05). The physical domain had the highest mean score among the three subscales (functional, physical and emotional) in the patients group. The optimal cutoff point of the Mandarin Chinese version of pVHI was 9.5 points with a sensitivity of 80.3% and a specificity of 84.8%. The Mandarin Chinese version of pVHI was a reliable and valid tool to assess the parents' perception about their children's voice disorders. It is recommended that it can be used as a screening tool for discriminating between children with and without dysphonia. Copyright © 2017 Elsevier B.V. All rights reserved.
[Rock music and hearing disorders].
Størmer, Carl Christian Lein; Stenklev, Niels Christian
2007-03-29
Continued exposition to loud noise is a well-known risk factor for development of various hearing disorders; rock musicians are especially vulnerable. The aim of this paper was to get an overview of hearing loss, tinnitus and hyperacusis among rock musicians. Medline was systematically searched, using combinations of the terms "hearing", "rock music", "tinnitus" and "hyperacusis". Seven publications concerning hearing of rock musicians were identified. Permanent hearing loss occurred in 20% (mean) of the rock musicians; the prevalence varied from 5 to 41%. Tinnitus and hyperacusis appear significantly more often in rock musicians than in non-musicians. Rock musicians have increased resistance against loud music and exposure over time is protective towards hearing loss. Further research is needed to assess rock music's impact on musicians' hearing.
[Loudness optimized registration of compound action potential in cochlear implant recipients].
Berger, Klaus; Hocke, Thomas; Hessel, Horst
2017-11-01
Background Postoperative measurements of compound action potentials are not always possible due to the insufficient acceptance of the CI-recipients. This study investigated the impact of different parameters on the acceptance of the measurements. Methods Compound action potentials of 16 CI recipients were measured with different pulse-widths. Recipients performed a loudness rating at the potential thresholds with the different sequences. Results Compound action potentials obtained with higher pulse-widths were rated softer than those obtained with smaller pulse-widths. Conclusions Compound action potentials measured with higher pulse-widths generate a gap between loudest acceptable presentation level and potential threshold. This gap contributes to a higher acceptance of postoperative measurements. Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanamori, Masashi, E-mail: kanamori.masashi@jaxa.jp; Takahashi, Takashi, E-mail: takahashi.takashi@jaxa.jp; Aoyama, Takashi, E-mail: aoyama.takashi@jaxa.jp
2015-10-28
Shown in this paper is an introduction of a prediction tool for the propagation of loud noise with the application to the aeronautics in mind. The tool, named SPnoise, is based on HOWARD approach, which can express almost exact multidimensionality of the diffraction effect at the cost of back scattering. This paper argues, in particular, the prediction of the effect of atmospheric turbulence on sonic boom as one of the important issues in aeronautics. Thanks to the simple and efficient modeling of the atmospheric turbulence, SPnoise successfully re-creates the feature of the effect, which often emerges in the region justmore » behind the front and rear shock waves in the sonic boom signature.« less
Zinc supplementation for tinnitus.
Person, Osmar C; Puga, Maria Es; da Silva, Edina Mk; Torloni, Maria R
2016-11-23
Tinnitus is the perception of sound without external acoustic stimuli. Patients with severe tinnitus may have physical and psychological complaints and their tinnitus can cause deterioration in their quality of life. At present no specific therapy for tinnitus has been found to be satisfactory in all patients. In recent decades, a number of reports have suggested that oral zinc supplementation may be effective in the management of tinnitus. Since zinc has a role in cochlear physiology and in the synapses of the auditory system, there is a plausible mechanism of action for this treatment. To evaluate the effectiveness and safety of oral zinc supplementation in the management of patients with tinnitus. The Cochrane ENT Information Specialist searched the ENT Trials Register; Central Register of Controlled Trials (CENTRAL 2016, Issue 6); PubMed; EMBASE; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 14 July 2016. Randomised controlled trials comparing zinc supplementation versus placebo in adults (18 years and over) with tinnitus. We used the standard methodological procedures recommended by Cochrane. Our primary outcome measures were improvement in tinnitus severity and disability, measured by a validated tinnitus-specific questionnaire, and adverse effects. Secondary outcomes were quality of life, change in socioeconomic impact associated with work, change in anxiety and depression disorders, change in psychoacoustic parameters, change in tinnitus loudness, change in overall severity of tinnitus and change in thresholds on pure tone audiometry. We used GRADE to assess the quality of the evidence for each outcome; this is indicated in italics. We included three trials involving a total of 209 participants. The studies were at moderate to high risk of bias. All included studies had differences in participant selection criteria, length of follow-up and outcome measurement, precluding a meta-analysis. The participants were all adults over 18 years with subjective tinnitus, but one study conducted in 2013 (n = 109) included only elderly patients. Improvement in tinnitus severity and disabilityOnly the study in elderly patients used a validated instrument (Tinnitus Handicap Questionnaire) for this primary outcome. The authors of this cross-over study did not report the results of the two phases separately and found no significant differences in the proportion of patients reporting tinnitus improvement at four months of follow-up: 5% (5/93) versus 2% (2/94) in the zinc and placebo groups, respectively (risk ratio (RR) 2.53, 95% confidence interval (CI) 0.50 to 12.70; very low-quality evidence).None of the included studies reported any significant adverse effects. Secondary outcomesFor the secondary outcome change in tinnitus loudness, one study reported no significant difference between the zinc and placebo groups after eight weeks: mean difference in tinnitus loudness -9.71 dB (95% CI -25.53 to 6.11; very low-quality evidence). Another study also measured tinnitus loudness but used a 0- to 100-point scale. The authors of this second study reported no significant difference between the zinc and placebo groups after four months: mean difference in tinnitus loudness rating scores 0.50 (95% CI -5.08 to 6.08; very low-quality evidence).Two studies used unvalidated instruments to assess tinnitus severity. One (with 50 participants) reported the severity of tinnitus using a non-validated scale (0 to 7 points) and found no significant difference in subjective tinnitus scores between the zinc and placebo groups at the end of eight weeks of follow-up (mean difference (MD) -1.41, 95% CI -2.97 to 0.15; very low-quality evidence). A third trial (n = 50) also evaluated the improvement of tinnitus using a non-validated instrument (a 0 to 10 scale: 10 = severe and unbearable tinnitus). In this study, after eight weeks there was no difference in the proportion of patients with improvement in their tinnitus, 8.7% (2/23) treated with zinc versus 8% (2/25) of those who received a placebo (RR 1.09, 95% CI 0.17 to 7.10, very low-quality evidence).None of the included studies reported any of our other secondary outcomes (quality of life, change in socioeconomic impact associated with work, change in anxiety and depression disorders, change in psychoacoustic parameters or change in thresholds on pure tone audiometry). We found no evidence that the use of oral zinc supplementation improves symptoms in adults with tinnitus.
Extreme gaseous outflows in radio-loud narrow-line Seyfert 1 galaxies
NASA Astrophysics Data System (ADS)
Komossa, S.; Xu, D. W.; Wagner, A. Y.
2018-07-01
We present four radio-loud narrow-line Seyfert 1 (NLS1) galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km s-1, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km s-1. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [O III] λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [Ne V] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.
Loudness and acoustic parameters of popular children's toys.
Ghavami, Yaser; Bhatt, Jay; Maducdoc, Marlon; Yau, Amy; Mahboubi, Hossein; Ziai, Kasra; Lin, Harrison W; Djalilian, Hamid R
2015-12-01
This project was conducted to evaluate the loudness and acoustic parameters of toys designed for children. In addition, we investigated whether occluding the toys' speaker with tape would result in a significant loudness reduction; thereby potentially reducing the risk of noise induced hearing loss. Twenty-six toys were selected after an initial screening at two national retailers. Noise amplitudes at 0.25, 0.5, 1, 2, 4, and 8kHz were measured using a digital sound level meter at a distance of 0 and 30cm. The toys' speakers were then occluded using adhesive tape and the same acoustic parameters were re-measured. Mean maximum noise amplitude of the toys at 0cm and 30cm was 104dBA (range, 97-125dBA) and 76dBA (range, 67-86dBA), respectively. Mean maximum noise amplitude after occlusion at 0cm and 30cm distances was 88dBA (range, 73-110dBA) and 66dBA (range, 55-82dBA), respectively, with a p-value <0.001. Proper use of the loudest toys at a distant of 30cm between the speaker and the child's ear will likely not pose a risk of noise-induced hearing loss. However, since most toys are used at closer distances, use of adhesive tape is recommended as an effective modification to decrease the risk of hearing loss. Published by Elsevier Ireland Ltd.
The effects of alprazolam on tinnitus: a cross-over randomized clinical trial.
Jalali, Mir Mohammad; Kousha, Abdorrahim; Naghavi, Sayed Ebrahim; Soleimani, Robabeh; Banan, Rozbeh
2009-11-01
Tinnitus remains a phenomenon with an unknown pathophysiology and for which few therapeutic measures are available. To date there has been insufficient evidence to support the use of alprazolam in the treatment of tinnitus. We sought to evaluate the efficacy of alprazolam for relief of tinnitus. Thirty-six tinnitus sufferers participated in this cross-over, randomized, triple-blind, placebo-controlled trial. Inclusion criteria included patients between ages 21 and 65, with a complaint of non-pulsatile tinnitus of more than 1 year duration. Patients with depressive or anxiety disorders were excluded, as were those using hearing aids. Participants received alprazolam 1.5 mg daily versus placebo in each period. Primary outcome variables included the Tinnitus Handicap Inventory (THI), a Visual Analog Scale (VAS), and tinnitus loudness. Thirty patients completed the study. The average age of patients was 47.58+/-7.65 years. Alprazolam in comparison with placebo did not result in statistically significantly greater relief in THI score and tinnitus loudness. There was a significant improvement in VAS score in the alprazolam group compared with the placebo group (p<0.001). These results suggest that although alprazolam did not improve the THI score or sensation level of loudness significantly, it has a desirable effect on VAS. Further work is needed to determine the beneficial effects of alprazolam in distressed or depressed patients.
Extreme Gaseous Outflows in Radio-Loud Narrow-Line Seyfert 1 Galaxies
NASA Astrophysics Data System (ADS)
Komossa, S.; Xu, D. W.; Wagner, A. Y.
2018-04-01
We present four radio-loud NLS1 galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km/s, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km/s. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [OIII]λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required, to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [NeV] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.
Mahboubi, Hossein; Haidar, Yarah M; Kiumehr, Saman; Ziai, Kasra; Djalilian, Hamid R
2017-10-01
To determine the effectiveness of a customized sound therapy and compare its effectiveness to that of masking with broadband noise. Subjects were randomized to receive either customized sound therapy or broadband noise for 2 hours per day for 3 months and then switched to the other treatment after a washout period. The outcome variables were tinnitus loudness (scored 0-10), Tinnitus Handicap Inventory (THI), Beck Anxiety Inventory (BAI), minimum masking levels (MML), and residual inhibition (RI). Eighteen subjects completed the study. Mean age was 53 ± 11 years, and mean tinnitus duration was 118 ± 99 months. With customized sound therapy, mean loudness decreased from 6.4 ± 2.0 to 4.9 ± 1.9 ( P = .001), mean THI decreased from 42.8 ± 21.6 to 31.5 ± 20.3 ( P < .001), mean BAI decreased from 10.6 ± 10.9 to 8.3 ± 9.9 ( P = .01), and MML decreased from 22.3 ± 11.6 dB SL to 17.2 ± 10.6 dB SL ( P = .005). After 3 months of broadband noise therapy, only BAI and, to a lesser degree, MML decreased ( P = .003 and .04, respectively). Customized sound therapy can decrease the loudness and THI scores of tinnitus patients, and the results may be superior to broadband noise.
Listen up! Processing of intensity change differs for vocal and nonvocal sounds.
Schirmer, Annett; Simpson, Elizabeth; Escoffier, Nicolas
2007-10-24
Changes in the intensity of both vocal and nonvocal sounds can be emotionally relevant. However, as only vocal sounds directly reflect communicative intent, intensity change of vocal but not nonvocal sounds is socially relevant. Here we investigated whether a change in sound intensity is processed differently depending on its social relevance. To this end, participants listened passively to a sequence of vocal or nonvocal sounds that contained rare deviants which differed from standards in sound intensity. Concurrently recorded event-related potentials (ERPs) revealed a mismatch negativity (MMN) and P300 effect for intensity change. Direction of intensity change was of little importance for vocal stimulus sequences, which recruited enhanced sensory and attentional resources for both loud and soft deviants. In contrast, intensity change in nonvocal sequences recruited more sensory and attentional resources for loud as compared to soft deviants. This was reflected in markedly larger MMN/P300 amplitudes and shorter P300 latencies for the loud as compared to soft nonvocal deviants. Furthermore, while the processing pattern observed for nonvocal sounds was largely comparable between men and women, sex differences for vocal sounds suggest that women were more sensitive to their social relevance. These findings extend previous evidence of sex differences in vocal processing and add to reports of voice specific processing mechanisms by demonstrating that simple acoustic change recruits more processing resources if it is socially relevant.
VLBI survey of compact broad absorption line quasars with balnicity index BI = 0
NASA Astrophysics Data System (ADS)
Cegłowski, M.; Kunert-Bajraszewska, M.; Roskowiński, C.
2015-06-01
We present high-resolution observations, using both the European VLBI Network (EVN) at 1.7 GHz and the Very Long Baseline Array (VLBA) at 5 and 8.4 GHz, to image radio structures of 14 compact sources classified as broad absorption line (BAL) quasars based on the absorption index (AI). All sources but one were resolved, with the majority showing core-jet morphology typical for radio-loud quasars. We discuss in detail the most interesting cases. The high radio luminosities and small linear sizes of the observed objects indicate they are strong young active galactic nuclei. Nevertheless, the distribution of the radio-loudness parameter, log RI, of a larger sample of AI quasars shows that the objects observed by us constitute the most luminous, small subgroup of the AI population. Additionally, we report that for the radio-loudness parameter, the distribution of AI quasars and that for those selected using the traditional balnicity index differ significantly. Strong absorption is connected with lower log RI and thus probably larger viewing angles. Since the AI quasars have on average larger log RI, the orientation can mean that we see them less absorbed. However, we suggest that the orientation is not the only parameter that affects the detected absorption. That the strong absorption is associated with the weak radio emission is equally important and worth exploring.
Hunter, Eric J; Svec, Jan G; Titze, Ingo R
2006-12-01
Frequency and intensity ranges (in true decibel sound pressure level, 20 microPa at 1 m) of voice production in trained and untrained vocalists were compared with the perceived dynamic range (phons) and units of loudness (sones) of the ear. Results were reported in terms of standard voice range profiles (VRPs), perceived VRPs (as predicted by accepted measures of auditory sensitivities), and a new metric labeled as an overall perceptual level construct. Trained classical singers made use of the most sensitive part of the hearing range (around 3-4 kHz) through the use of the singer's formant. When mapped onto the contours of equal loudness (depicting nonuniform spectral and dynamic sensitivities of the auditory system), the formant is perceived at an even higher sound level, as measured in phons, than a flat or A-weighted spectrum would indicate. The contributions of effects like the singer's formant and the sensitivities of the auditory system helped the trained singers produce 20% to 40% more units of loudness, as measured in sones, than the untrained singers. Trained male vocalists had a maximum overall perceptual level construct that was 40% higher than the untrained male vocalists. Although the A-weighted spectrum (commonly used in VRP measurement) is a reasonable first-order approximation of auditory sensitivities, it misrepresents the most salient part of the sensitivities (where the singer's formant is found) by nearly 10 dB.
RoboPol: the optical polarization of gamma-ray-loud and gamma-ray-quiet blazars
NASA Astrophysics Data System (ADS)
Angelakis, E.; Hovatta, T.; Blinov, D.; Pavlidou, V.; Kiehlmann, S.; Myserlis, I.; Böttcher, M.; Mao, P.; Panopoulou, G. V.; Liodakis, I.; King, O. G.; Baloković, M.; Kus, A.; Kylafis, N.; Mahabal, A.; Marecki, A.; Paleologou, E.; Papadakis, I.; Papamastorakis, I.; Pazderski, E.; Pearson, T. J.; Prabhudesai, S.; Ramaprakash, A. N.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Urry, M.; Zensus, J. A.
2016-12-01
We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma-ray-loud and gamma-ray-quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray-loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray-quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3σ level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band luminosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high-synchrotron-peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray-quiet sources show similar median polarization fractions although they are all low-synchrotron-peaked. We also find that the randomness of the polarization angle depends on the synchrotron peak frequency. For high-synchrotron-peaked sources, it tends to concentrate around preferred directions while for low-synchrotron-peaked sources, it is more variable and less likely to have a preferred direction. We propose a scenario which mediates efficient particle acceleration in shocks and increases the helical B-field component immediately downstream of the shock.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Stacy H.; Mushotzky, Richard F.; Reynolds, Christopher S.
2011-12-01
We present the analysis of 2.1 years of Fermi Large Area Telescope (LAT) data on 491 Seyfert galaxies detected by the Swift Burst Alert Telescope (BAT) survey. Only the two nearest objects, NGC 1068 and NGC 4945, which were identified in the Fermi first year catalog, are detected. Using Swift/BAT and radio 20 cm fluxes, we define a new radio-loudness parameter R{sub X,BAT} where radio-loud objects have log R{sub X,BAT} > -4.7. Based on this parameter, only radio-loud sources are detected by Fermi/LAT. An upper limit to the flux of the undetected sources is derived to be {approx}2 Multiplication-Sign 10{supmore » -11} photons cm{sup -2} s{sup -1}, approximately seven times lower than the observed flux of NGC 1068. Assuming a median redshift of 0.031, this implies an upper limit to the {gamma}-ray (1-100 GeV) luminosity of {approx}< 3 Multiplication-Sign 10{sup 41} erg s{sup -1}. In addition, we identified 120 new Fermi/LAT sources near the Swift/BAT Seyfert galaxies with significant Fermi/LAT detections. A majority of these objects do not have Swift/BAT counterparts, but their possible optical counterparts include blazars, flat-spectrum radio quasars, and quasars.« less
Reduction and analysis of VLA maps for 281 radio-loud quasars using the UNLV Cray Y-MP supercomputer
NASA Technical Reports Server (NTRS)
Ding, Ailian; Hintzen, Paul; Weistrop, Donna; Owen, Frazer
1993-01-01
The identification of distorted radio-loud quasars provides a potentially very powerful tool for basic cosmological studies. If large morphological distortions are correlated with membership of the quasars in rich clusters of galaxies, optical observations can be used to identify rich clusters of galaxies at large redshifts. Hintzen, Ulvestad, and Owen (1983, HUO) undertook a VLA A array snapshot survey at 20 cm of 123 radio-loud quasars, and they found that among triple sources in their sample, 17 percent had radio axes which were bent more than 20 deg and 5 percent were bent more than 40 deg. Their subsequent optical observations showed that excess galaxy densities within 30 arcsec of 6 low-redshift distorted quasars were on average 3 times as great as those around undistorted quasars (Hintzen 1984). At least one of the distorted quasars observed, 3C275.1, apparently lies in the first-ranked galaxy at the center of a rich cluster of galaxies (Hintzen and Romanishin, 1986). Although their sample was small, these results indicated that observations of distorted quasars could be used to identify clusters of galaxies at large redshifts. The purpose of this project is to increase the available sample of distorted quasars to allow optical detection of a significant sample of quasar-associated clusters of galaxies at large redshifts.
Schlieren imaging of loud sounds and weak shock waves in air near the limit of visibility
NASA Astrophysics Data System (ADS)
Hargather, Michael John; Settles, Gary S.; Madalis, Matthew J.
2010-02-01
A large schlieren system with exceptional sensitivity and a high-speed digital camera are used to visualize loud sounds and a variety of common phenomena that produce weak shock waves in the atmosphere. Frame rates varied from 10,000 to 30,000 frames/s with microsecond frame exposures. Sound waves become visible to this instrumentation at frequencies above 10 kHz and sound pressure levels in the 110 dB (6.3 Pa) range and above. The density gradient produced by a weak shock wave is examined and found to depend upon the profile and thickness of the shock as well as the density difference across it. Schlieren visualizations of weak shock waves from common phenomena include loud trumpet notes, various impact phenomena that compress a bubble of air, bursting a toy balloon, popping a champagne cork, snapping a wooden stick, and snapping a wet towel. The balloon burst, snapping a ruler on a table, and snapping the towel and a leather belt all produced readily visible shock-wave phenomena. In contrast, clapping the hands, snapping the stick, and the champagne cork all produced wave trains that were near the weak limit of visibility. Overall, with sensitive optics and a modern high-speed camera, many nonlinear acoustic phenomena in the air can be observed and studied.
Whitfield, Jason A; Dromey, Christopher; Palmer, Panika
2018-05-17
The purpose of this study was to examine the effect of speech intensity on acoustic and kinematic vowel space measures and conduct a preliminary examination of the relationship between kinematic and acoustic vowel space metrics calculated from continuously sampled lingual marker and formant traces. Young adult speakers produced 3 repetitions of 2 different sentences at 3 different loudness levels. Lingual kinematic and acoustic signals were collected and analyzed. Acoustic and kinematic variants of several vowel space metrics were calculated from the formant frequencies and the position of 2 lingual markers. Traditional metrics included triangular vowel space area and the vowel articulation index. Acoustic and kinematic variants of sentence-level metrics based on the articulatory-acoustic vowel space and the vowel space hull area were also calculated. Both acoustic and kinematic variants of the sentence-level metrics significantly increased with an increase in loudness, whereas no statistically significant differences in traditional vowel-point metrics were observed for either the kinematic or acoustic variants across the 3 loudness conditions. In addition, moderate-to-strong relationships between the acoustic and kinematic variants of the sentence-level vowel space metrics were observed for the majority of participants. These data suggest that both kinematic and acoustic vowel space metrics that reflect the dynamic contributions of both consonant and vowel segments are sensitive to within-speaker changes in articulation associated with manipulations of speech intensity.
The Origin of Powerful Radio Sources
NASA Astrophysics Data System (ADS)
Wilson, A. S.; Colbert, E. J. M.
1995-05-01
Radio-loud active galaxies are associated with elliptical or elliptical-like galaxies, many of which appear to be the result of a recent merger. In contrast, radio-quiet active galaxies prefer spiral hosts. Despite the very large difference in radio luminosities between the two classes, their continua and line spectra from infrared through X-ray frequencies are very similar. In this paper, we describe recent developments of our model (Ap. J. 438, 62 1995) in which the radio-loud phenomenon is the result of a merger of two galaxies, with each galaxy nucleus containing a slowly (or non-) rotating supermassive black hole. It is envisaged that the two black holes eventually coalesce. For the small fraction of mergers in which the two holes are both massive and of comparable mass, a rapidly-spinning, high-mass hole results. The spin energy of a rapidly rotating 10(8-9) solar mass hole suffices to provide the ~ 10(60) ergs in relativistic particles and magnetic fields in the most energetic radio sources. Luminous radio-quiet active galaxies contain high-mass, slowly-rotating holes, with the infrared through X-ray emission of both classes being fuelled by accretion as commonly assumed. We discuss constraints on the model from the luminosity functions of radio-loud and radio-quiet galaxies and from the known cosmological evolution of the radio source population; this evolution is assumed to reflect higher galaxy merger rates in the past.
[Suppression of tinnitus by band noise masker--a study of 600 cases].
Watanabe, K; Kamio, T; Ohkawara, D; Aoki, H; Baba, S; Yagi, T
1997-09-01
We performed Band Noise Masker (BNM) therapy for the suppression of tinnitus in 600 patients and measured the pitch, loudness and masking level of tinnitus and residual inhibition (RI). We examined the efficiency of BNM therapy. The purpose of this study was to investigate the mechanism of suppression of tinnitus by BNM. Tinnitus was suppressed in 394 patients (66%) after BNM therapy. In the group of patients in whom we suppressed tinnitus, the loudness of tinnitus was reduced from 7.7 +/- 5.7dBSL to 7.5 +/- 5.5dBSL (p < 0.05) and the pitch of tinnitus did not exhibit a marked change. In the group of patients in whom we did not suppress tinnitus, the loudness and pitch of tinnitus did not exhibit a marked change. The efficiency of BNM therapy was high in the cases of presbyacusis and low in the cases of sudden deafness. There was no significant relationship between RI and the efficiency of BNM therapy. We examined these data and discussed the mechanism of suppression of tinnitus by BNM therapy. In all cases, after BNM therapy, the auditory threshold did not become worse. In 4 cases tinnitus became worse temporarily. In conclusion, BNM therapy is an effective mode for tinnitus control, is easily performed in our outpatient clinic or at home, and has no serious complications.
Lifelong occupational exposures and hearing loss among elderly Latino Americans aged 65–75 years
Hong, OiSaeng; Chin, Dal Lae; Kerr, Madeleine J.
2015-01-01
Objective The purpose of this study is to determine the relationship between occupational exposures and hearing among elderly Latino Americans. Design A descriptive, correlational design used for this secondary analysis with the data from the Sacramento Area Latino Study of Aging (SALSA). Study sample A total of 547 older adults were included. Results A majority of participants (58%) reported occupational exposures to loud noise and/or ototoxic chemicals. About 65% and over 90% showed hearing loss at low and high frequencies, respectively. Participants with occupational exposure to loud noise and/or ototoxic chemicals were, significantly, two times more likely to have hearing loss at high frequencies compared to those without exposure (OR = 2.29; 95% CI: 1.17 – 4.51, p = .016), after controlling for other risk factors of hearing loss such as age, gender, household income, current smoking, and diabetes. However, lifelong occupational exposure was not significantly associated with hearing loss at low frequencies (OR = 1.43; 95% CI: 0.94 – 2.18, p = .094). Conclusion Lifelong occupational exposure to loud noise and/or ototoxic chemicals was significantly associated with hearing loss among elderly Latino Americans. Healthy work life through protection from harmful auditory effects of occupational exposures to noise and chemicals will have a positive impact on better hearing in later life. PMID:25549170
Simon, Doerte; Becker, Michael; Mothes-Lasch, Martin; Miltner, Wolfgang H R; Straube, Thomas
2017-03-01
Angry expressions of both voices and faces represent disorder-relevant stimuli in social anxiety disorder (SAD). Although individuals with SAD show greater amygdala activation to angry faces, previous work has failed to find comparable effects for angry voices. Here, we investigated whether voice sound-intensity, a modulator of a voice's threat-relevance, affects brain responses to angry prosody in SAD. We used event-related functional magnetic resonance imaging to explore brain responses to voices varying in sound intensity and emotional prosody in SAD patients and healthy controls (HCs). Angry and neutral voices were presented either with normal or high sound amplitude, while participants had to decide upon the speaker's gender. Loud vs normal voices induced greater insula activation, and angry vs neutral prosody greater orbitofrontal cortex activation in SAD as compared with HC subjects. Importantly, an interaction of sound intensity, prosody and group was found in the insula and the amygdala. In particular, the amygdala showed greater activation to loud angry voices in SAD as compared with HC subjects. This finding demonstrates a modulating role of voice sound-intensity on amygdalar hyperresponsivity to angry prosody in SAD and suggests that abnormal processing of interpersonal threat signals in amygdala extends beyond facial expressions in SAD. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Teichert, Tobias
2017-10-01
Amplitudes of auditory evoked potentials (AEP) increase with the intensity/loudness of sounds (loudness-dependence of AEP, LDAEP), and the time between adjacent sounds (time-dependence of AEP, TDAEP). Both, blunted LDAEP and blunted TDAEP are markers of altered auditory function in schizophrenia (SZ). However, while blunted LDAEP has been attributed to altered serotonergic function, blunted TDAEP has been linked to altered NMDA receptor function. Despite phenomenological similarities of the two effects, no common pharmacological underpinnings have been identified. To test whether LDAEP and TDAEP are both affected by NMDA receptor blockade, two rhesus macaques passively listened to auditory clicks of 5 different intensities presented with stimulus-onset asynchronies ranging between 0.2 and 6.4s. 8 AEP components were analyzed, including the N85, the presumed human N1 homolog. LDAEP and TDAEP were estimated as the slopes of AEP amplitude with intensity and the logarithm of stimulus-onset asynchrony, respectively. On different days, AEPs were collected after systemic injection of MK-801 or vehicle. Both TDAEP and LDAEP of the N85 were blunted by the NMDA blocker MK-801 and recapitulate the SZ phenotype. In summary, LDAEP and TDAEP share important pharmacological commonalities that may help identify a common pharmacological intervention to normalize both electrophysiological phenotypes in SZ. Copyright © 2017 Elsevier B.V. All rights reserved.
Pettersen, Viggo; Bjørkøy, Kåre; Torp, Hans; Westgaard, Rolf Harald
2005-12-01
The aim of this study was to examine respiratory phasing and loading levels of sternocleidomastoideus (STM), scalenus (SC), and upper trapezius (TR) muscles in vocalization tasks with variation in vocal loudness and pitch. Eight advanced singing students, aged 22 to 28 years, participated. Surface electromyographic (EMG) activity was recorded from STM, SC, and TR. Thorax movement was detected by two strain gauge sensors placed around the upper (upper TX) and lower (lower TX) thorax. A glissando and simplified singing and speaking tasks were performed. Sustained vowels /a:-i-ae-o:/ were sung in a glissando from lowest to highest pitch (mixed voice/falsetto) back to lowest pitch and in short singing sequences at comfortable, low, and high pitches. The same vowels were spoken softly and loudly for about the same length. The subjects inhaled between the vowels. It was concluded that the inspiratory phased STM and SC muscles produced a counterforce to compression of upper TX at high pitches in glissando. STM and SC were activated to higher levels during phonation than in inhalation. As breathing demands were reduced, STM and SC activity was lowered and the respiratory phasing of peak amplitude changed to inhalation. TR contributed to exhalation in demanding singing with long breathing cycles, but it was less active in singing tasks with short breathing cycles and was essentially inactive in simplified speaking tasks.
Brown, David; Macpherson, Tom; Ward, Jamie
2011-01-01
Sensory substitution devices convert live visual images into auditory signals, for example with a web camera (to record the images), a computer (to perform the conversion) and headphones (to listen to the sounds). In a series of three experiments, the performance of one such device ('The vOICe') was assessed under various conditions on blindfolded sighted participants. The main task that we used involved identifying and locating objects placed on a table by holding a webcam (like a flashlight) or wearing it on the head (like a miner's light). Identifying objects on a table was easier with a hand-held device, but locating the objects was easier with a head-mounted device. Brightness converted into loudness was less effective than the reverse contrast (dark being loud), suggesting that performance under these conditions (natural indoor lighting, novice users) is related more to the properties of the auditory signal (ie the amount of noise in it) than the cross-modal association between loudness and brightness. Individual differences in musical memory (detecting pitch changes in two sequences of notes) was related to the time taken to identify or recognise objects, but individual differences in self-reported vividness of visual imagery did not reliably predict performance across the experiments. In general, the results suggest that the auditory characteristics of the device may be more important for initial learning than visual associations.
Evaluation of the importance of time-frequency contributions to speech intelligibility in noise
Yu, Chengzhu; Wójcicki, Kamil K.; Loizou, Philipos C.; Hansen, John H. L.; Johnson, Michael T.
2014-01-01
Recent studies on binary masking techniques make the assumption that each time-frequency (T-F) unit contributes an equal amount to the overall intelligibility of speech. The present study demonstrated that the importance of each T-F unit to speech intelligibility varies in accordance with speech content. Specifically, T-F units are categorized into two classes, speech-present T-F units and speech-absent T-F units. Results indicate that the importance of each speech-present T-F unit to speech intelligibility is highly related to the loudness of its target component, while the importance of each speech-absent T-F unit varies according to the loudness of its masker component. Two types of mask errors are also considered, which include miss and false alarm errors. Consistent with previous work, false alarm errors are shown to be more harmful to speech intelligibility than miss errors when the mixture signal-to-noise ratio (SNR) is below 0 dB. However, the relative importance between the two types of error is conditioned on the SNR level of the input speech signal. Based on these observations, a mask-based objective measure, the loudness weighted hit-false, is proposed for predicting speech intelligibility. The proposed objective measure shows significantly higher correlation with intelligibility compared to two existing mask-based objective measures. PMID:24815280
English, Ruth; Plant, Kerrie; Maciejczyk, Michael; Cowan, Robert
2016-01-01
For a group of cochlear implant recipients, who use hearing aids in the contralateral ear, the benefit of NAL-NL2 relative to a recipients' own prescription was assessed. Whether there was a preferred frequency response and/or gain deviation from NAL-NL2 was then investigated. Speech recognition and self-reported ratings of benefit were examined for the recipients' own prescription compared to the NAL-NL2 prescription, in the bimodal and hearing-aid alone conditions. Paired-comparison of hearing-aid frequency response was conducted with default NAL-NL2 and two variants, a low frequency boost or cut. Using a loudness balancing procedure, the hearing-aid gain required to achieve equal loudness between the devices was measured. Sixteen adults with post-lingual hearing loss. A 22% increase in group median word score in quiet with use of NAL-NL2 in the hearing-aid alone condition. In the bimodal condition there was no improvement with NAL-NL2. Default NAL-NL2 frequency response was preferred by 67% of participants. For 56% of participants, the preferred gain to achieve loudness balance across bimodal devices was within 5-dB of prescribed values. The NAL-NL2 prescription provides a high level of clinical performance, and an acceptable frequency response and gain for most participants.
... following: Anxiety. Depression. Irritable bowel syndrome. Restless legs syndrome. Increased sensitivity to odors, bright lights, loud noises, or medicines. Headaches, migraines, or jaw pain. Dry eyes or mouth. Dizziness and problems with balance. Problems ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... use of loud, abusive, or otherwise improper language; unwarranted loitering, sleeping or assembly; the creation of any hazard to persons or things; improper disposal of rubbish; spitting; prurient prying; the...
Pop-rock musicians: assessment of their satisfaction provided by hearing protectors.
Santoni, Cristiane Bolzachini; Fiorini, Ana Claudia
2010-01-01
Pop-rock musicians are at risk of developing hearing loss and other symptoms related to amplified music. The aim of the present study was to assess the satisfaction provided by the use of hearing protection in pop-rock musicians. Contemporary cohort study. A study of 23 male pop-rock musicians, aged between 25 to 45 years. After audiological evaluation (pure tone audiometry, middle ear analysis, TEOAE and DPOAE) hearing protective devices were provided to be used for three months. After that musicians answered a satisfaction assessment questionnaire. The prevalence of hearing loss was of 21.7%. The most common complaints about the hearing protectors were: autophonia, pressure in the ears, interference in high frequencies perception and full time use of the hearing protector during concerts. There was a positive correlation between a reduction in tinnitus after the use of the HPD with the following complaints: tinnitus after beginning the career (p= 0.044), discomfort with the sound intensity in the work place (p= 0.009) and intolerance to loud sound (p= 0.029). There was a high prevalence of hearing loss and a positive tendency towards the use of the ear protector device among the sample population.
Identifying intrinsic constituents of focus through ``imitation via restoration.''
NASA Astrophysics Data System (ADS)
Xu, Yi; Xu, Ching X.; Sun, Xuejing
2003-04-01
In this study we test the hypothesis that although certain parts of an observed intonation may seem dispensable in perception tests, they nevertheless are consistently produced by speakers. We refer to all consistently produced parts of an intonation as its ``intrinsic constituents.'' To identify the intrinsic constituents, we developed an experimental paradigm called ``imitation via restoration.'' In this paradigm, the intonation under scrutiny is first recorded by a native speaker. Then words carrying a potential constituent of the intonation are replaced by a loud noise. During the experiment, the sentence containing the replacement noise is presented to the subjects together with the text. The subjects' task is to repeat the sentence in exactly the same way as they hear it. The consistency with which subjects restore the missing parts of the target intonation would therefore provide a reasonable indication as to which of them are truly intrinsic to the intonation. Our first such experiment was conducted on determining whether focus consists of only on-focus pitch range expansion or it also involves obligatory post-focus pitch range suppression. Eight native speakers of Beijing Mandarin participated as subjects. Preliminary results have provided supporting evidence for the dual-component hypothesis.
Maladaptive plasticity in tinnitus-triggers, mechanisms and treatment
Shore, Susan E; Roberts, Larry E.; Langguth, Berthold
2016-01-01
Tinnitus is a phantom auditory sensation that reduces quality of life for millions worldwide and for which there is no medical cure. Most cases are associated with hearing loss caused by the aging process or noise exposure. Because exposure to loud recreational sound is common among youthful populations, young persons are at increasing risk. Head or neck injuries can also trigger the development of tinnitus, as altered somatosensory input can affect auditory pathways and lead to tinnitus or modulate its intensity. Emotional and attentional state may play a role in tinnitus development and maintenance via top-down mechanisms. Thus, military in combat are particularly at risk due to combined hearing loss, somatosensory system disturbances and emotional stress. Neuroscience research has identified neural changes related to tinnitus that commence at the cochlear nucleus and extend to the auditory cortex and brain regions beyond. Maladaptive neural plasticity appears to underlie these neural changes, as it results in increased spontaneous firing rates and synchrony among neurons in central auditory structures that may generate the phantom percept. This review highlights the links between animal and human studies, including several therapeutic approaches that have been developed, which aim to target the neuroplastic changes underlying tinnitus. PMID:26868680
Does tinnitus distress depend on age of onset?
Schlee, Winfried; Kleinjung, Tobias; Hiller, Wolfgang; Goebel, Gerhard; Kolassa, Iris-Tatjana; Langguth, Berthold
2011-01-01
Tinnitus is the perception of a sound in the absence of any physical source of it. About 5-15% of the population report hearing such a tinnitus and about 1-2% suffer from their tinnitus leading to anxiety, sleep disorders or depression. It is currently not completely understood why some people feel distressed by their tinnitus, while others don't. Several studies indicate that the amount of tinnitus distress is associated with many factors including comorbid anxiety, comorbid depression, personality, the psychosocial situation, the amount of the related hearing loss and the loudness of the tinnitus. Furthermore, theoretical considerations suggest an impact of the age at tinnitus onset influencing tinnitus distress. Based on a sample of 755 normal hearing tinnitus patients we tested this assumption. All participants answered a questionnaire on the amount of tinnitus distress together with a large variety of clinical and demographic data. Patients with an earlier onset of tinnitus suffer significantly less than patients with an onset later in life. Furthermore, patients with a later onset of tinnitus describe their course of tinnitus distress as more abrupt and distressing right from the beginning. We argue that a decline of compensatory brain plasticity in older age accounts for this age-dependent tinnitus decompensation.
Attention modifies sound level detection in young children.
Sussman, Elyse S; Steinschneider, Mitchell
2011-07-01
Have you ever shouted your child's name from the kitchen while they were watching television in the living room to no avail, so you shout their name again, only louder? Yet, still no response. The current study provides evidence that young children process loudness changes differently than pitch changes when they are engaged in another task such as watching a video. Intensity level changes were physiologically detected only when they were behaviorally relevant, but frequency level changes were physiologically detected without task relevance in younger children. This suggests that changes in pitch rather than changes in volume may be more effective in evoking a response when sounds are unexpected. Further, even though behavioral ability may appear to be similar in younger and older children, attention-based physiologic responses differ from automatic physiologic processes in children. Results indicate that 1) the automatic auditory processes leading to more efficient higher-level skills continue to become refined through childhood; and 2) there are different time courses for the maturation of physiological processes encoding the distinct acoustic attributes of sound pitch and sound intensity. The relevance of these findings to sound perception in real-world environments is discussed.
A human-hearing-related prediction tool for soundscapes and community noise
NASA Astrophysics Data System (ADS)
Genuit, Klaus
2002-11-01
There are several methods of calculation available for the prediction of the A-weighted sound-pressure level of environmental noise, which are, however, not suitable for a qualified prediction of the residents' annoyance and physiological strain. The subjectively felt noise quality does not only depend on the A-weighted sound-pressure level, but also on other psychoacoustical parameters, such as loudness, roughness, sharpness, etc. In addition to these physical and psychoacoustical aspects of noise, the so-called psychological or cognitive aspects have to be considered, too, which means that the listeners' expectations, their mental attitude, as well as the information content of the noise finally influence the noise quality perceived by the individual persons. Within the scope of a research project SVEN (Sound Quality of Vehicle Exterior Noise), which is promoted by the EC, a new tool has been developed which allows a binaural simulation and prediction of the environmental noise to evaluate the influence of different contributions by the sound events with respect to the psychoacoustical parameters, the spatial distribution, movement, and frequency. By means of this tool it is now possible to consider completely new aspects regarding the audible perception of noise when establishing a soundscape or when planning community noise.
Effect of odour on multisensory environmental evaluations of road traffic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Like, E-mail: jianglike@yahoo.com; Masullo, Massimiliano, E-mail: Massimiliano.MASULLO@unina2.it; Maffei, Luigi, E-mail: luigi.maffei@unina2.it
This study investigated the effect of odour on multisensory environmental evaluations of road traffic. The study aimed to answer: (1) Does odour have any effect on evaluations on noise, landscape and the overall environment? (2) How different are participants' responses to odour stimuli and are these differences influential on the evaluations? Experimental scenarios varied in three Traffic levels, three Tree screening conditions and two Odour presence conditions were designed, and presented to participants in virtual reality. Perceived Loudness, Noise Annoyance, Landscape Quality and Overall Pleasantness of each scenario were evaluated and the results were analysed. It shows that Odour presencemore » did not have significant main effect on any of the evaluations, but has significant interactions with Traffic level on Noise Annoyance and with Tree screening on Landscape Quality, indicating the potential of odour to modulate noise and visual landscape perceptions in specific environmental content. Concerning participants' responses to odour stimuli, large differences were found in this study. However, the differences did not seem to be influential on environmental evaluations in this study. Larger samples of participants may benefit this study for more significant results of odour effect.« less
Patient-based outcomes in patients with primary tinnitus undergoing tinnitus retraining therapy.
Berry, Julie A; Gold, Susan L; Frederick, Ellen Alvarez; Gray, William C; Staecker, Hinrich
2002-10-01
To determine whether the Tinnitus Handicap Inventory (THI), a validated patient-based outcomes measure, may improve our ability to quantify impact and assess therapy for patients with tinnitus. Nonrandomized, prospective analysis of 32 patients undergoing tinnitus retraining therapy (TRT). Assessment tools included comprehensive audiology, a subjective self-assessment survey of tinnitus characteristics, and the THI. Tinnitus Handicap Inventory scores were assessed at baseline and 6 months following TRT. Baseline analysis revealed significant correlation between the subjective presence of hyperacusis and higher total, emotional, and catastrophic THI scores. Tinnitus Handicap Inventory scores correlated with subjective perception of overall tinnitus effect (P<.001). Mean pure-tone threshold average was 17.4 dB, and mean speech discrimination was 97.0%. There were no consistent correlations between baseline audiologic parameters and THI scores. Following 6 months of TRT, the total, emotional, functional, and catastrophic THI scores significantly improved (P<.001). Loudness discomfort levels also significantly improved (P< or =.02). There is significant improvement in self-perceived disability following TRT as measured by the THI. The results confirm the utility of the THI as a patient-based outcomes measure for quantifying treatment status in patients with primary tinnitus.
An animal model of tinnitus: a decade of development.
Jastreboff, P J; Sasaki, C T
1994-01-01
Although tinnitus affects approximately 9 million people in the United States, a cure remains elusive and the mechanisms of its origin are speculative. The crucial obstacle in tinnitus research has been the lack of an animal model. Over the last decade we have been creating such a model by combining a variety of methodologies, including a behavioral component, to allow for the detection of tinnitus perception. Initially, 2-deoxyglucose had been used to map changes in the metabolic activity after unilateral destruction of the cochlea. It has been found that the initial decrease of the metabolic rate in the auditory nuclei recovered to preoperative values, which could be attributable to the development of tinnitus. The spontaneous activity of single units recorded from the inferior colliculus before and after salicylate administration revealed an increase of discharges, which might reflect the presence of salicylate-induced tinnitus. Recent data have confirmed, and further elaborated this observation, including the discovery of abnormal, epileptic-like, neuronal activity. Finally, the authors have developed a behavioral model of tinnitus, tested it extensively, and used it to measure tinnitus pitch and loudness. The model is presently used for investigating the hypotheses for the mechanisms of tinnitus.
Assessment of rural soundscapes with high-speed train noise.
Lee, Pyoung Jik; Hong, Joo Young; Jeon, Jin Yong
2014-06-01
In the present study, rural soundscapes with high-speed train noise were assessed through laboratory experiments. A total of ten sites with varying landscape metrics were chosen for audio-visual recording. The acoustical characteristics of the high-speed train noise were analyzed using various noise level indices. Landscape metrics such as the percentage of natural features (NF) and Shannon's diversity index (SHDI) were adopted to evaluate the landscape features of the ten sites. Laboratory experiments were then performed with 20 well-trained listeners to investigate the perception of high-speed train noise in rural areas. The experiments consisted of three parts: 1) visual-only condition, 2) audio-only condition, and 3) combined audio-visual condition. The results showed that subjects' preference for visual images was significantly related to NF, the number of land types, and the A-weighted equivalent sound pressure level (LAeq). In addition, the visual images significantly influenced the noise annoyance, and LAeq and NF were the dominant factors affecting the annoyance from high-speed train noise in the combined audio-visual condition. In addition, Zwicker's loudness (N) was highly correlated with the annoyance from high-speed train noise in both the audio-only and audio-visual conditions. © 2013.
... or dizzy (more common with Meniere disease and acoustic neuromas ) Ringing or buzzing sound in the ears ( ... a long time Meniere disease Tumor, such as acoustic neuroma Use of certain medicines Working around loud ...
... caused by: Explosion near the ear Firing a gun near the ear Long-term exposure to loud ... to your hearing from activities such as shooting guns, using chain saws, or driving motorcycles and snowmobiles. ...
Argonne National Laboratory - Energy Sciences Building dedication Argonne OutLoud: "Climate Change : Chicago in the 21st Century and Beyond "Invisible Influence: A Bacterial Guide to Your Health"
High-Speed Research: Sonic Boom, Volume 1
NASA Technical Reports Server (NTRS)
Edwards, Thomas A. (Editor)
1994-01-01
The second High-Speed Research Program Sonic Boom Workshop was held at NASA Ames Research Center May 12-14, 1993. The workshop was organized into three sessions dealing with atmospheric propagation, acceptability, and configuration design. Volume 1 includes papers on atmospheric propagation and acceptability studies. Significant progress is noted in these areas in the time since the previous workshop a year earlier. In particular, several papers demonstrate an improved capability to model the effect of atmospheric turbulence on sonic booms. This is a key issue in determining the stability and acceptability of shaped sonic booms. In the area of acceptability, the PLdB metric has withstood considerable scrutiny and is validated as a loudness metric for a wide variety of sonic boom shapes. The differential loudness of asymmetric sonic booms is better understood, too.
Numerical model for the weakly nonlinear propagation of sound through turbulence
NASA Technical Reports Server (NTRS)
Lipkens, Bart; Blanc-Benon, Philippe
1994-01-01
When finite amplitude (or intense) sound, such as a sonic boom, propagates through a turbulent atmosphere, the propagation is strongly affected by the turbulence. The interaction between sound and turbulence has mostly been studied as a linear phenomenon, i.e., the nonlinear behavior of the intense sound has been neglected. It has been shown that turbulence has an effect on the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. Peak pressure and rise time are important factors that determine the loudness of the sonic boom when heard outdoors. However, the interaction between turbulence and nonlinear effects has mostly not been included in propagation studies of sonic booms. It is therefore important to investigate the influence of acoustical nonlinearity on the interaction of intense sound with turbulence.
Self-reported tinnitus and ototoxic exposures among deployed Australian Defence Force personnel.
Kirk, Katherine M; McGuire, Annabel; Nielsen, Lisa; Cosgrove, Tegan; McClintock, Christine; Nasveld, Peter E; Treloar, Susan A
2011-04-01
The objective of this study was to investigate the effect of chemical and environmental exposures during deployment on tinnitus among Australian Defence Force personnel previously deployed to Bougainville and East Timor. Participants were asked to self-report recent occurrence and severity of "ringing in the ears," and identify any chemical and environmental exposures during their deployment. Self-reported exposure to loud noises, heavy metals, intense smoke, engine exhaust, solvents and degreasing agents, and chemical spills increased the risk of self-assessed moderate or severe tinnitus. Daily exposure to 4 or more ototoxic factors was associated with 2- to 4-fold increase in the risk. In addition to loud noises, chemical exposures may also play a role in the development of tinnitus among Australian Defence Force personnel serving overseas.
Oates, J F; Trocco, T F
1983-01-01
Field recordings of male loud calls (or roars) from each major form of black-and-white colobus monkey have been analyzed spectrographically, and features of tempo and pitch measured. Considered together with data on cranial dimensions, coat pattern, and geographical distribution, the results of this analysis suggest that there are five species of black-and-white colobus: Colobus angolensis, C. guereza, C. polykomos, C. satanas, and C. vellerosus. C. guereza and C. vellerosus may have differentiated most recently during a major arid event prior to the last Pleistocene glacial maximum; they have an identical low-pitched roar which we consider to be a shared, derived character. The other species, of which C. satanas has the most distinct roar, may belong to older lineages.
X-ray studies of quasars with the Einstein Observatory. IV - X-ray dependence on radio emission
NASA Technical Reports Server (NTRS)
Worrall, D. M.; Tananbaum, H.; Giommi, P.; Zamorani, G.
1987-01-01
The X-ray properties of a sample of 114 radio-loud quasars observed with the Einstein Observatory are examined, and the results are compared with those obtained from a large sample of radio-quiet quasars. The results of statistical analysis of the dependence of X-ray luminosity on combined functions of optical and radio luminosity show that the dependence on both luminosities is important. However, statistically significant differences are found between subsamples of flat radio spectra quasars and steep radio spectra quasars with regard to dependence of X-ray luminosity on only radio luminosity. The data are consistent with radio-loud quasars having a physical component, not directly related to the optical luminosity, which produces the core radio luminosity plus 'extra' X-ray emission.
Formby, Craig; Hawley, Monica L.; Sherlock, LaGuinn P.; Gold, Susan; Payne, JoAnne; Brooks, Rebecca; Parton, Jason M.; Juneau, Roger; Desporte, Edward J.; Siegle, Gregory R.
2015-01-01
The primary aim of this research was to evaluate the validity, efficacy, and generalization of principles underlying a sound therapy–based treatment for promoting expansion of the auditory dynamic range (DR) for loudness. The basic sound therapy principles, originally devised for treatment of hyperacusis among patients with tinnitus, were evaluated in this study in a target sample of unsuccessfully fit and/or problematic prospective hearing aid users with diminished DRs (owing to their elevated audiometric thresholds and reduced sound tolerance). Secondary aims included: (1) delineation of the treatment contributions from the counseling and sound therapy components to the full-treatment protocol and, in turn, the isolated treatment effects from each of these individual components to intervention success; and (2) characterization of the respective dynamics for full, partial, and control treatments. Thirty-six participants with bilateral sensorineural hearing losses and reduced DRs, which affected their actual or perceived ability to use hearing aids, were enrolled in and completed a placebo-controlled (for sound therapy) randomized clinical trial. The 2 × 2 factorial trial design was implemented with or without various assignments of counseling and sound therapy. Specifically, participants were assigned randomly to one of four treatment groups (nine participants per group), including: (1) group 1—full treatment achieved with scripted counseling plus sound therapy implemented with binaural sound generators; (2) group 2—partial treatment achieved with counseling and placebo sound generators (PSGs); (3) group 3—partial treatment achieved with binaural sound generators alone; and (4) group 4—a neutral control treatment implemented with the PSGs alone. Repeated measurements of categorical loudness judgments served as the primary outcome measure. The full-treatment categorical-loudness judgments for group 1, measured at treatment termination, were significantly greater than the corresponding pretreatment judgments measured at baseline at 500, 2,000, and 4,000 Hz. Moreover, increases in their “uncomfortably loud” judgments (∼12 dB over the range from 500 to 4,000 Hz) were superior to those measured for either of the partial-treatment groups 2 and 3 or for control group 4. Efficacy, assessed by treatment-related criterion increases ≥ 10 dB for judgments of uncomfortable loudness, was superior for full treatment (82% efficacy) compared with that for either of the partial treatments (25% and 40% for counseling combined with the placebo sound therapy and sound therapy alone, respectively) or for the control treatment (50%). The majority of the group 1 participants achieved their criterion improvements within 3 months of beginning treatment. The treatment effect from sound therapy was much greater than that for counseling, which was statistically indistinguishable in most of our analyses from the control treatment. The basic principles underlying the full-treatment protocol are valid and have general applicability for expanding the DR among individuals with sensorineural hearing losses, who may often report aided loudness problems. The positive full-treatment effects were superior to those achieved for either counseling or sound therapy in virtual or actual isolation, respectively; however, the delivery of both components in the full-treatment approach was essential for an optimum treatment outcome. PMID:27516711
... risks connected with recreation such as shooting a gun, driving snowmobiles, or other similar activities. Learn how ... hearing from recreational activities such as shooting a gun or driving snowmobiles. DO NOT listen to loud ...
Teen Screen: Take a Walk on the Wild Side.
ERIC Educational Resources Information Center
Flowers, Sarah
2002-01-01
Reviews seven videos that involve some aspect of extreme sports, feature loud rock music, and are popular with teens. Includes snowboarding, Gravity Games, BMX bikes, skateboarding, and skydiving. (LRW)
... to treat at home. Safeguard Your Family from Fires, Scalding & Burns Install smoke detectors in hallways outside ... than alarms with loud beeping tones. Practice home fire drills . Make sure every family member and others ...
Estimating occupant satisfaction of HVAC system noise using quality assessment index.
Forouharmajd, Farhad; Nassiri, Parvin; Monazzam, Mohammad R; Yazdchi, Mohammadreza
2012-01-01
Noise may be defined as any unwanted sound. Sound becomes noise when it is too loud, unexpected, uncontrolled, happens at the wrong time, contains unwanted pure tones or unpleasant. In addition to being annoying, loud noise can cause hearing loss, and, depending on other factors, can affect stress level, sleep patterns and heart rate. The primary object for determining subjective estimations of loudness is to present sounds to a sample of listeners under controlled conditions. In heating, ventilation and air conditioning (HVAC) systems only the ventilation fan industry (e.g., bathroom exhaust and sidewall propeller fans) uses loudness ratings. In order to find satisfaction, percent of exposure to noise is the valuable issue for the personnel who are working in these areas. The room criterion (RC) method has been defined by ANSI standard S12.2, which is based on measured levels of in HVAC systems noise in spaces and is used primarily as a diagnostic tool. The RC method consists of a family of criteria curves and a rating procedure. RC measures background noise in the building over the frequency range of 16-4000 Hz. This rating system requires determination of the mid-frequency average level and determining the perceived balance between high-frequency (HF) sound and low-frequency (LF) sound. The arithmetic average of the sound levels in the 500, 1000 and 2000 Hz octave bands is 44.6 dB; therefore, the RC 45 curve is selected as the reference for spectrum quality evaluation. The spectral deviation factors in the LF, medium-frequency sound and HF regions are 2.9, 7.5 and -2.3, respectively, giving a Quality Assessment Index (QAI) of 9.8. This concludes the QAI is useful in estimating an occupant's probable reaction when the system design does not produce optimum sound quality. Thus, a QAI between 5 and 10 dB represents a marginal situation in which acceptance by an occupant is questionable. However, when sound pressure levels in the 16 or 31.5 Hz octave bands exceed 65 dB, vibration in lightweight office construction is possible.
... loss related to otitis media can be alleviated. Tinnitus Tinnitus is the medical name indicating ringing in the ... loud roaring to clicking, humming, or buzzing. Most tinnitus comes from damage to the microscopic endings of ...
... tech system – Paper and pencil High-tech system – Computer program that produces voice output at keystroke Oral ... for Aphasia Actions Speak as Loud as Words Computers & Language Rehab From Singing to Speaking When the ...
Tips for Socializing with Aphasia
... or a picture communication book, or even a computer communication system. Family members can facilitate communication with ... for Aphasia Actions Speak as Loud as Words Computers & Language Rehab From Singing to Speaking When the ...
Ototoxicity (Ear Poisoning) (For Parents)
... never change the dose or stop giving your child a medicine without talking to your doctor first. Reviewed by: Robert C. ... Hearing Loss? Can Loud Music Hurt My Ears? Going to the Audiologist Hearing ...
Argonne OutLoud: "Climate Change: Fact, Fiction and What You Can Do"
Sisterson, Douglas
2018-06-07
Research meteorologist Doug Sisterson discusses climate change and the cutting-edge research taking place at Argonne as well as collaborative research with other institutions, including the University of Chicago.
... Eardrum Taking Care of Your Ears Can Loud Music Hurt My Ears? Your Ears What's Earwax? How Do Pain Relievers Work? View more About Us Contact Us Partners Editorial Policy Permissions Guidelines Privacy Policy & Terms of Use Notice ...
... loud noise is a regular part of the working environment, such as farming, construction or factory work, can ... hearing tested. Consider regular hearing tests if you work in a noisy environment. Regular testing of your hearing can provide early ...
ERIC Educational Resources Information Center
Giorgis, Cyndi; Johnson, Nancy J.
1999-01-01
Offers brief descriptions of 34 children's books that are excellent for reading aloud: some of them for inviting interaction, for laughing out loud, for prompting discussion, for living vicariously, for lingering over language, and for making curricular connections. (SR)
[Methadone and sleep apnea syndrome].
Durst, Philippe; Palazzolo, Jérôme; Peyrelong, Jean-Pierre; Berger, Michel; Chalabreysse, Michel; Billiard, Michel; Vialle, André
2005-03-01
Sleep apnea syndrome occurs when, during sleep, breathing stops for 10 seconds or longer, with an index of 5 times or more an hour. It is clinically characterized by loud snoring at night, continuous or interrupted by pauses followed by loud breathing. Sleep is fitful, broken by arousals, and yields little rest. There is daytime excessive sleepiness with repeated involuntary falling asleep, often unknown by the subject. In this article, we describe an observation of central sleep apnea syndrome in a female patient receiving an opiate replacement therapy. An analysis of the before and after methadone withdrawal polysomnograhic tracing was done for this patient. This diagnosis etiology and physiopathology are critically approached. Clinicians should be careful in treating induced sleep disorders in such patients. Prescribing benzodiazepines during an opiate withdrawal of the methadone type is not recommended when central apnea occurs.
Habituation analysis of chirp vs. tone evoked auditory late responses.
Kern, Kevin; Royter, Vladislav; Corona-Strauss, Farah I; Mariam, Mai; Strauss, Daniel J
2010-01-01
We have recently shown that tone evoked auditory late responses are able to proof that habituation is occurring [1], [2]. The sweep to sweep analysis using time scale coherence method from [1] is used. Where clear results using tone evoked ALRs were obtained. Now it is of interest how does the results behave using chirp evoked ALRs compared to tone evoked ALRs so that basilar membrane dispersion is compensated. We presented three different tone bursts and three different band limited chirps to 10 subjects using two different loudness levels which the subjects determined themselves before as medium and uncomfortably loud. The 3 chirps are band limited within 3 different ranges, the chirp with the lowest center frequency has the smallest range (according to octave-band). Chirps and tone bursts are using the same center frequencies.
NASA Technical Reports Server (NTRS)
Elvis, Martin S.
1996-01-01
The report for this period includes three papers: 'Associated Absorption at Low and High Redshift'; 'Strong X-ray Absorption in a Broad Absorption Line Quasar: PHL5200'; and 'ASCA and ROSAT X-ray Spectra of High-Redshift Radio-Loud Quasars'. The first gives examples from both low and high redshift for combining information on absorbing material in active galactic nuclei from both x-ray and the UV. The second presents ASCA observations of the z = 1.98 prototype broad absorption line quasar (BALQSO): PHL 5200, detected with both the solid-state imaging spectrometers and the gas imaging spectometers. The third paper presents results on the x-ray properties of 9 high-redshift radio-loud quasars observed by ASCA and ROSAT, including ASCA observations of S5 0014+81 (z = 3.38) and S5 0836+71 (z = 2.17) and ROSAT observations of PKS 2126-158.
Evaluation and treatment of severe hyperacusis.
Valente, M; Goebel, J; Duddy, D; Sinks, B; Peterein, J
2000-06-01
A 52-year-old male was evaluated by the authors after initially reporting fullness in his left ear while traveling on an airplane. A unique feature of the patient's complaint was the development of severe bilateral hyperacusis (loudness discomfort levels of between 20-34 dB HL) in spite of the fact that the hearing loss was initially reported in the left ear. To achieve loudness comfort, the patient was initially fit with ER-25 musician earplugs that proved to be unsuccessful. The patient next purchased earplugs and earmuffs from a gun shop in order to obtain relief from the pain and discomfort caused by his exposure to everyday environmental sounds. This paper describes the use of hearing devices that proved to be effective in providing attenuation sufficient that the patient rarely needs to rely on earplugs and earmuffs for relief from his hyperacusis.
Aerosol emission during human speech
NASA Astrophysics Data System (ADS)
Asadi, Sima; Wexler, Anthony S.; Cappa, Christopher D.; Bouvier, Nicole M.; Barreda-Castanon, Santiago; Ristenpart, William D.
2017-11-01
We show that the rate of aerosol particle emission during healthy human speech is strongly correlated with the loudness (amplitude) of vocalization. Emission rates range from approximately 1 to 50 particles per second for quiet to loud amplitudes, regardless of language spoken (English, Spanish, Mandarin, or Arabic). Intriguingly, a small fraction of individuals behave as ``super emitters,'' consistently emitting an order of magnitude more aerosol particles than their peers. We interpret the results in terms of the eggressive flowrate during vocalization, which is known to vary significantly for different types of vocalization and for different individuals. The results suggest that individual speech patterns could affect the probability of airborne disease transmission. The results also provide a possible explanation for the existence of ``super spreaders'' who transmit pathogens much more readily than average and who play a key role in the spread of epidemics.