Sample records for low frequency

  1. The low-frequency encoding disadvantage: Word frequency affects processing demands.

    PubMed

    Diana, Rachel A; Reder, Lynne M

    2006-07-01

    Low-frequency words produce more hits and fewer false alarms than high-frequency words in a recognition task. The low-frequency hit rate advantage has sometimes been attributed to processes that operate during the recognition test (e.g., L. M. Reder et al., 2000). When tasks other than recognition, such as recall, cued recall, or associative recognition, are used, the effects seem to contradict a low-frequency advantage in memory. Four experiments are presented to support the claim that in addition to the advantage of low-frequency words at retrieval, there is a low-frequency disadvantage during encoding. That is, low-frequency words require more processing resources to be encoded episodically than high-frequency words. Under encoding conditions in which processing resources are limited, low-frequency words show a larger decrement in recognition than high-frequency words. Also, studying items (pictures and words of varying frequencies) along with low-frequency words reduces performance for those stimuli. Copyright 2006 APA, all rights reserved.

  2. Extracting Low-Frequency Information from Time Attenuation in Elastic Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong

    2017-03-01

    Low-frequency information is crucial for recovering background velocity, but the lack of low-frequency information in field data makes inversion impractical without accurate initial models. Laplace-Fourier domain waveform inversion can recover a smooth model from real data without low-frequency information, which can be used for subsequent inversion as an ideal starting model. In general, it also starts with low frequencies and includes higher frequencies at later inversion stages, while the difference is that its ultralow frequency information comes from the Laplace-Fourier domain. Meanwhile, a direct implementation of the Laplace-transformed wavefield using frequency domain inversion is also very convenient. However, because broad frequency bands are often used in the pure time domain waveform inversion, it is difficult to extract the wavefields dominated by low frequencies in this case. In this paper, low-frequency components are constructed by introducing time attenuation into the recorded residuals, and the rest of the method is identical to the traditional time domain inversion. Time windowing and frequency filtering are also applied to mitigate the ambiguity of the inverse problem. Therefore, we can start at low frequencies and to move to higher frequencies. The experiment shows that the proposed method can achieve a good inversion result in the presence of a linear initial model and records without low-frequency information.

  3. Scheme for efficient extraction of low-frequency signal beyond the quantum limit by frequency-shift detection.

    PubMed

    Yang, R G; Zhang, J; Zhai, Z H; Zhai, S Q; Liu, K; Gao, J R

    2015-08-10

    Low-frequency (Hz~kHz) squeezing is very important in many schemes of quantum precision measurement. But it is more difficult than that at megahertz-frequency because of the introduction of laser low-frequency technical noise. In this paper, we propose a scheme to obtain a low-frequency signal beyond the quantum limit from the frequency comb in a non-degenerate frequency and degenerate polarization optical parametric amplifier (NOPA) operating below threshold with type I phase matching by frequency-shift detection. Low-frequency squeezing immune to laser technical noise is obtained by a detection system with a local beam of two-frequency intense laser. Furthermore, the low-frequency squeezing can be used for phase measurement in Mach-Zehnder interferometer, and the signal-to-noise ratio (SNR) can be enhanced greatly.

  4. Comparison of electroacupuncture frequency-related effects on heart rate variability in healthy volunteers: a randomized clinical trial.

    PubMed

    Lee, Jong-Ho; Kim, Kyu-Hyeong; Hong, Jin-Woo; Lee, Won-Chul; Koo, Sungtae

    2011-06-01

    This study aimed to compare the effects of high frequency electroacupuncture (EA) and low-frequency EA on the autonomic nervous system by using a heart rate variability measuring device in normal individuals. Fourteen participants were recruited and each participated in the high-frequency and low-frequency sessions (crossover design). The order of sessions was randomized and the interval between the two sessions was over 2 weeks. Participants received needle insertion with 120-Hz stimulation during the high-frequency session (high-frequency EA group), and with 2-Hz stimulation during the low-frequency session (low-frequency EA group). Acupuncture needles were directly inserted perpendicularly to LI 4 and LI 11 acupoints followed by delivery of electric pulses to these points for 15 minutes. Heart rate variability was measured 5 minutes before and after EA stimulation by a heart rate variability measuring system. We found a significant increase in the standard deviation of the normal-to-normal interval in the high-frequency EA group, with no change in the low-frequency EA group. Both the high-frequency and low-frequency EA groups showed no significant differences in other parameters including high-frequency power, low-frequency power, and the ratio of low-frequency power to high-frequency power. Based on these findings, we concluded that high-frequency EA stimulation is more effective than low-frequency EA stimulation in increasing autonomic nervous activity and there is no difference between the two EA frequencies in enhancing sympathovagal balance. Copyright © 2011 Korean Pharmacopuncture Institute. Published by .. All rights reserved.

  5. Parametric Effects of Word Frequency in Memory for Mixed Frequency Lists

    ERIC Educational Resources Information Center

    Lohnas, Lynn J.; Kahana, Michael J.

    2013-01-01

    The "word frequency paradox" refers to the finding that low frequency words are better recognized than high frequency words yet high frequency words are better recalled than low frequency words. Rather than comparing separate groups of low and high frequency words, we sought to quantify the functional relation between word frequency and…

  6. Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liqiu, Wei, E-mail: weiliqiu@gmail.com, E-mail: weiliqiu@hit.edu.cn; Liang, Han; Ziyi, Yang

    2015-02-07

    It is found that the low frequency oscillations have modulating action on high frequency instabilities in Hall thrusters. The physical mechanism of this modulation is discussed and verified by numerical simulations. Theoretical analyses indicate that the wide-range fluctuations of plasma density and electric field associated with the low frequency oscillations affect the electron drift velocity and anomalous electron transport across the magnetic field. The amplitude and frequency of high frequency oscillations are modulated by low frequency oscillations, which show the periodic variation in the time scale of low frequency oscillations.

  7. Building a good initial model for full-waveform inversion using frequency shift filter

    NASA Astrophysics Data System (ADS)

    Wang, Guanchao; Wang, Shangxu; Yuan, Sanyi; Lian, Shijie

    2018-05-01

    Accurate initial model or available low-frequency data is an important factor in the success of full waveform inversion (FWI). The low-frequency helps determine the kinematical relevant components, low-wavenumber of the velocity model, which are in turn needed to avoid FWI trap in local minima or cycle-skipping. However, in the field, acquiring data that <5 Hz is a challenging and expensive task. We attempt to find the common point of low- and high-frequency signal, then utilize the high-frequency data to obtain the low-wavenumber velocity model. It is well known that the instantaneous amplitude envelope of a wavelet is invariant under frequency shift. This means that resolution is constant for a given frequency bandwidth, and independent of the actual values of the frequencies. Based on this property, we develop a frequency shift filter (FSF) to build the relationship between low- and high-frequency information with a constant frequency bandwidth. After that, we can use the high-frequency information to get a plausible recovery of the low-wavenumber velocity model. Numerical results using synthetic data from the Marmousi and layer model demonstrate that our proposed envelope misfit function based on the frequency shift filter can build an initial model with more accurate long-wavelength components, when low-frequency signals are absent in recorded data.

  8. Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns.

    PubMed

    McConnell, George C; So, Rosa Q; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M

    2012-11-07

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson's disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90 Hz) improve motor symptoms, while low frequencies (<50 Hz) are either ineffective or exacerbate symptoms. The neuronal basis for these frequency-dependent effects of DBS is unclear. The effects of different frequencies of STN-DBS on behavior and single-unit neuronal activity in the basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high-frequency DBS reversed motor symptoms, and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high-frequency DBS, but not low-frequency DBS, reduced pathological low-frequency oscillations (∼9 Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low-frequency band to the stimulation frequency during high-frequency DBS, but not during low-frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high-frequency DBS is more effective than low-frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low-frequency network oscillations with a regularized pattern of neuronal firing.

  9. Effective deep brain stimulation suppresses low frequency network oscillations in the basal ganglia by regularizing neural firing patterns

    PubMed Central

    McConnell, George C.; So, Rosa Q.; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M.

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson’s disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90Hz) improve motor symptoms, while low frequencies (<50Hz) are either ineffective or exacerbate symptoms. The neuronal basis for these frequency-dependent effects of DBS is unclear. The effects of different frequencies of STN-DBS on behavior and single-unit neuronal activity in the basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high frequency DBS reversed motor symptoms and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high frequency DBS, but not low frequency DBS, reduced pathological low frequency oscillations (~9Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low frequency band to the stimulation frequency during high frequency DBS, but not during low frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high frequency DBS is more effective than low frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low frequency network oscillations with a regularized pattern of neuronal firing. PMID:23136407

  10. Stimulus-dependent modulation of spontaneous low-frequency oscillations in the rat visual cortex.

    PubMed

    Huang, Liangming; Liu, Yadong; Gui, Jianjun; Li, Ming; Hu, Dewen

    2014-08-06

    Research on spontaneous low-frequency oscillations is important to reveal underlying regulatory mechanisms in the brain. The mechanism for the stimulus modulation of low-frequency oscillations is not known. Here, we used the intrinsic optical imaging technique to examine stimulus-modulated low-frequency oscillation signals in the rat visual cortex. The stimulation was presented monocularly as a flashing light with different frequencies and intensities. The phases of low-frequency oscillations in different regions tended to be synchronized and the rhythms typically accelerated within a 30-s period after stimulation. These phenomena were confined to visual stimuli with specific flashing frequencies (12.5-17.5 Hz) and intensities (5-10 mA). The acceleration and synchronization induced by the flashing frequency were more marked than those induced by the intensity. These results show that spontaneous low-frequency oscillations can be modulated by parameter-dependent flashing lights and indicate the potential utility of the visual stimulus paradigm in exploring the origin and function of low-frequency oscillations.

  11. Global Model for Asymmetric, Diode-Type Dual Frequency Capacitive Discharge

    NASA Astrophysics Data System (ADS)

    Kim, Jisoo; Lieberman, M. A.; Lichtenberg, A. J.

    2003-10-01

    Dual frequency capacitive reactors can have desirable properties for dielectric etch: low cost, robust uniformity over large areas, and control of dissociation. In the ideal case, the high frequency power controls the plasma density (ion flux) and the low frequency voltage controls the ion bombarding energy. Typical operating conditions are: discharge radius 15-30 cm, length 1-3 cm, pressure 30-200 mTorr, high frequency 27.1-160 MHz, low frequency 2-13.6 MHz, and powers of 500-3000 W for both high and low frequencies. The decoupling of the high and low frequencies is an important feature of dual frequency capacitive discharges. In this work, we describe a global (volume-averaged) model having different top and bottom plate areas that incorporates particle balance, and ohmic and stochastic heating for high and low frequencies. The model is used to obtain the decoupling of high and low frequencies and to investigate limitations to ideal decoupling. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.

  12. A multiscale interaction model for the origin of the tropospheric QBO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goswami, B.N.

    1995-03-01

    A conceptual model for the origin of the tropospheric quasi-biennial oscillation (QBO) is presented. It is argued that the tropospheric QBO may not be a fundamental mode of oscillation of the tropical coupled system. It is proposed that it may arise due to multiscale interactions between high-frequency synoptic and intraseasonal oscillations of the atmosphere and a low-frequency oscillation of the couple system in the presence of the annual cycle. This is demonstrated using a conceptual low-order system consisting of three variables representing the nonlinear atmospheric oscillations and a linear oscillator representing the low-frequency coupled mode. The annual cycle and couplingmore » to the low-frequency linear oscillator provide slowly varying forcings for the atmospheric high-frequency oscillations. The atmospheric oscillations go through a chaotic regime during a certain part of the slowly varying forcing. Such variable forcing introduces a low-frequency tail in the spectrum of the atmospheric high-frequency oscillations. The low-frequency tail resonantly interacts with the low-frequency oscillation and produces the QBO in addition to broadening the spectrum of the low-frequency oscillator. The conceptual model simulates features similar to many observed features of the tropospheric QBO but depends on the assumption that there is an inherent low-frequency El Nino-Southern Oscillation oscillation with a four-year period that occurs independently of the high-frequency forcing or the QBO.« less

  13. Mechanisms underlying very-low-frequency RR-interval oscillations in humans

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Carr, D. L.; Myers, C. W.; Eckberg, D. L.

    1998-01-01

    BACKGROUND: Survival of post-myocardial infarction patients is related inversely to their levels of very-low-frequency (0.003 to 0.03 Hz) RR-interval variability. The physiological basis for such oscillations is unclear. In our study, we used blocking drugs to evaluate potential contributions of sympathetic and vagal mechanisms and the renin-angiotensin-aldosterone system to very-low-frequency RR-interval variability in 10 young healthy subjects. METHODS AND RESULTS: We recorded RR intervals and arterial pressures during three separate sessions, with the patient in supine and 40 degree upright tilt positions, during 20-minute frequency (0.25 Hz) and tidal volume-controlled breathing after intravenous injections: saline (control), atenolol (0.2 mg/kg, beta-adrenergic blockade), atropine sulfate (0.04 mg/kg, parasympathetic blockade), atenolol and atropine (complete autonomic blockade), and enalaprilat (0.02 mg/kg, ACE blockade). We integrated fast Fourier transform RR-interval spectral power at very low (0.003 to 0.03 Hz), low (0.05 to 0. 15 Hz), and respiratory (0.2 to 0.3 Hz) frequencies. Beta-adrenergic blockade had no significant effect on very-low- or low-frequency RR-interval power but increased respiratory frequency power 2-fold. ACE blockade had no significant effect on low or respiratory frequency RR-interval power but modestly (approximately 21%) increased very-low-frequency power in the supine (but not upright tilt) position (P<0.05). The most profound effects were exerted by parasympathetic blockade: Atropine, given alone or with atenolol, abolished nearly all RR-interval variability and decreased very-low-frequency variability by 92%. CONCLUSIONS: Although very-low-frequency heart period rhythms are influenced by the renin-angiotensin-aldosterone system, as low and respiratory frequency RR-interval rhythms, they depend primarily on the presence of parasympathetic outflow. Therefore the prognostic value of very-low-frequency heart period oscillations may derive from the fundamental importance of parasympathetic mechanisms in cardiovascular health.

  14. Multifaceted roles for low-frequency oscillations in bottom-up and top-down processing during navigation and memory.

    PubMed

    Ekstrom, Arne D; Watrous, Andrew J

    2014-01-15

    A prominent and replicated finding is the correlation between running speed and increases in low-frequency oscillatory activity in the hippocampal local field potential. A more recent finding concerns low-frequency oscillations that increase in coherence between the hippocampus and neocortical brain areas such as prefrontal cortex during memory-related behaviors (i.e., remembering the correct location to visit). In this review, we tie together movement-related and memory-related low-frequency oscillations in the rodent with similar findings in humans. We argue that although movement-related low-frequency oscillations, in particular, may have slightly different characteristics in humans than rodents, placing important constraints on our thinking about this issue, both phenomena have similar functional foundations. We review four prominent theoretical models that provide partially conflicting accounts of movement-related low-frequency oscillations. We attempt to tie together these theoretical proposals, and existing data in rodents and humans, with memory-related low-frequency oscillations. We propose that movement-related low-frequency oscillations and memory-related low-frequency oscillatory activity, both of which show significant coherence with oscillations in other brain regions, represent different facets of "spectral fingerprints," or different resonant frequencies within the same brain networks underlying different cognitive processes. Together, movement-related and memory-related low-frequency oscillatory coupling may be linked by their distinct contributions to bottom-up, sensorimotor driven processing and top-down, controlled processing characterizing aspects of memory encoding and retrieval. Copyright © 2013. Published by Elsevier Inc.

  15. Multifaceted roles for low-frequency oscillations in bottom-up and top-down processing during navigation and memory

    PubMed Central

    Ekstrom, Arne D.; Watrous, Andrew J.

    2014-01-01

    A prominent and replicated finding is the correlation between running speed and increases in low-frequency oscillatory activity in the hippocampal local field potential. A more recent finding concerns low-frequency oscillations that increase in coherence between the hippocampus and neocortical brain areas such as prefrontal cortex during memory-related behaviors (i.e., remembering the correct arm to explore). In this review, we tie together movement-related and memory-related low-frequency oscillations in the rodent with similar findings in humans. We argue that although movement-related low-frequency oscillations, in particular, may have slightly different characteristics in humans than rodents, placing important constraints on our thinking about this issue, both phenomena have similar functional foundations. We review four prominent theoretical models that provide partially conflicting accounts of movement-related low-frequency oscillations. We attempt to tie together these theoretical proposals, and existing data in rodents and humans, with memory-related low-frequency oscillations. We propose that movement-related low-frequency oscillations and memory-related low-frequency oscillatory activity, both of which show significant coherence with oscillations in other brain regions, represent different facets of “spectral fingerprints,” or different resonant frequencies within the same brain networks underlying different cognitive processes. Together, movement-related and memory-related low-frequency oscillatory coupling may be linked by their distinct contributions to bottom-up, sensorimotor driven processing and top-down, controlled processing characterizing aspects of memory encoding and retrieval. PMID:23792985

  16. Decreased frequency and duration of tooth brushing is a risk factor for endothelial dysfunction.

    PubMed

    Matsui, Shogo; Kajikawa, Masato; Maruhashi, Tatsuya; Iwamoto, Yumiko; Iwamoto, Akimichi; Oda, Nozomu; Kishimoto, Shinji; Hidaka, Takayuki; Kihara, Yasuki; Chayama, Kazuaki; Goto, Chikara; Aibara, Yoshiki; Nakashima, Ayumu; Noma, Kensuke; Taguchi, Akira; Higashi, Yukihito

    2017-08-15

    Periodontal disease is associated with endothelial dysfunction, leading to cardiovascular disease. The effect of detailed tooth brushing behavior, not only frequency but also duration of tooth brushing, on endothelial function is unclear. The purpose of this study was to evaluate the relationships of detailed methods of tooth brushing with vascular function. We evaluated flow-mediated vasodilation (FMD), nitroglycerine-induced vasodilation, and frequency and duration of tooth brushing in 896 subjects. We divided the subjects into three groups according to the frequency and duration of tooth brushing: low frequency and short duration group (

  17. 77 FR 49412 - Takes of Marine Mammals Incidental to Specified Activities; Navy Research, Development, Test and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ...; high-pitched sounds contain high frequencies and low-pitched sounds contain low frequencies. Natural... estimated to occur between approximately 150 Hz and 160 kHz. High-frequency cetaceans (eight species of true... masking by high frequency sound. Human data indicate low-frequency sound can mask high-frequency sounds (i...

  18. Relationship between low and high frequencies in the \\delta Scuti star KIC 9764965

    NASA Astrophysics Data System (ADS)

    Rostopchina, A.; Breger, M.

    2014-10-01

    Two years of Kepler spacecraft data of the \\delta Sct/\\gamma Dor star KIC 9764965 revealed 67 statistically significant frequencies from 0.45 to 59.17 c d-1 (0.005 to 0.685 mHz). The 19 low frequencies do not show equidistant period spacing predicted for gravity modes of successive radial order. We note a favored frequency spacing of 2.053 c d-1 that appears in both the low-frequency (gravity mode) region and high-frequency (pressure mode) regions. The value of this frequency spacing also occurs as a dominant low frequency and in a high-frequency triplet. A peak at exactly twice the value of the 2.053 c d-1 mode is shown not to be a Fourier harmonic of the low-frequency peak due to a different amplitude variability. This behavior is also seen in other \\delta Sct stars. The test for resonant mode coupling between low and high frequencies could not be carried out due to the small amplitudes of the peaks, making it difficult to separate the parent and child modes.

  19. RELATIONSHIP BETWEEN LOW AND HIGH FREQUENCIES IN {delta} SCUTI STARS: PHOTOMETRIC KEPLER AND SPECTROSCOPIC ANALYSES OF THE RAPID ROTATOR KIC 8054146

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breger, M.; Robertson, P.; Fossati, L.

    2012-11-01

    Two years of Kepler data of KIC 8054146 ({delta} Sct/{gamma} Dor hybrid) revealed 349 statistically significant frequencies between 0.54 and 191.36 cycles day{sup -1} (6.3 {mu}Hz to 2.21 mHz). The 117 low frequencies cluster in specific frequency bands, but do not show the equidistant period spacings predicted for gravity modes of successive radial order, n, and reported for at least one other hybrid pulsator. The four dominant low frequencies in the 2.8-3.0 cycles day{sup -1} (32-35 {mu}Hz) range show strong amplitude variability with timescales of months and years. These four low frequencies also determine the spacing of the higher frequenciesmore » in and beyond the {delta} Sct pressure-mode frequency domain. In fact, most of the higher frequencies belong to one of three families with spacings linked to a specific dominant low frequency. In the Fourier spectrum, these family regularities show up as triplets, high-frequency sequences with absolutely equidistant frequency spacings, side lobes (amplitude modulations), and other regularities in frequency spacings. Furthermore, within two families the amplitude variations between the low and high frequencies are related. We conclude that the low frequencies (gravity modes, rotation) and observed high frequencies (mostly pressure modes) are physically connected. This unusual behavior may be related to the very rapid rotation of the star: from a combination of high- and low-resolution spectroscopy we determined that KIC 8054146 is a very fast rotator ({upsilon} sin i = 300 {+-} 20 km s{sup -1}) with an effective temperature of 7600 {+-} 200 K and a surface gravity log g of 3.9 {+-} 0.3. Several astrophysical ideas explaining the origin of the relationship between the low and high frequencies are explored.« less

  20. Word frequency effects in immediate serial recall of pure and mixed lists: tests of the associative link hypothesis.

    PubMed

    Saint-Aubin, Jean; LeBlanc, Jacinthe

    2005-12-01

    In immediate serial recall, high-frequency words are better recalled than low-frequency words. Recently, it has been suggested that high-frequency words are better recalled because of their better long-term associative links, and not because of the intrinsic properties of their long-term representations. In the experiment reported here, recall performance was compared for pure lists of high- and low-frequency words, and for mixed lists composed of either one low- and five high-frequency words or the reverse. The usual advantage of high-frequency words was found with pure lists and this advantage was reduced, but still significant with mixed lists composed of five low-frequency words. However, the low-frequency word included in a high-frequency list was recalled just as well as high-frequency words. Results are challenging for the associative link hypothesis and are best interpreted within an item-based reconstruction hypothesis, along with a distinctiveness account.

  1. The role of first formant information in simulated electro-acoustic hearing.

    PubMed

    Verschuur, Carl; Boland, Conor; Frost, Emily; Constable, Jack

    2013-06-01

    Cochlear implant (CI) recipients with residual hearing show improved performance with the addition of low-frequency acoustic stimulation (electro-acoustic stimulation, EAS). The present study sought to determine whether a synthesized first formant (F1) signal provided benefit to speech recognition in simulated EAS hearing and to compare such benefit with that from other low-frequency signals. A further aim was to determine if F1 amplitude or frequency was more important in determining benefit and if F1 benefit varied with formant bandwidth. In two experiments, sentence recordings from a male speaker were processed via a simulation of a partial insertion CI, and presented to normal hearing listeners in combination with various low-frequency signals, including a tone tracking fundamental frequency (F0), low-pass filtered speech, and signals based on F1 estimation. A simulated EAS benefit was found with F1 signals, and was similar to the benefit from F0 or low-pass filtered speech. The benefit did not differ significantly with the narrowing or widening of the F1 bandwidth. The benefit from low-frequency envelope signals was significantly less than the benefit from any low-frequency signal containing fine frequency information. Results indicate that F1 provides a benefit in simulated EAS hearing but low frequency envelope information is less important than low frequency fine structure in determining such benefit.

  2. Interaural Phase and Level Difference Sensitivity in Low-Frequency Neurons in the Lateral Superior Olive

    PubMed Central

    Tollin, Daniel J.; Yin, Tom C. T.

    2006-01-01

    The lateral superior olive (LSO) is believed to encode differences in sound level at the two ears, a cue for azimuthal sound location. Most high-frequency-sensitive LSO neurons are binaural, receiving inputs from both ears. An inhibitory input from the contralateral ear, via the medial nucleus of the trapezoid body (MNTB), and excitatory input from the ipsilateral ear enable level differences to be encoded. However, the classical descriptions of low-frequency-sensitive neurons report primarily monaural cells with no contralateral inhibition. Anatomical and physiological evidence, however, shows that low-frequency LSO neurons receive low-frequency inhibitory input from ipsilateral MNTB, which in turn receives excitatory input from the contralateral cochlear nucleus and low-frequency excitatory input from the ipsilateral cochlear nucleus. Therefore, these neurons would be expected to be binaural with contralateral inhibition. Here, we re-examined binaural interaction in low-frequency (less than ~3 kHz) LSO neurons and phase locking in the MNTB. Phase locking to low-frequency tones in MNTB and ipsilaterally driven LSO neurons with frequency sensitivities < 1.2 kHz was enhanced relative to the auditory nerve. Moreover, most low-frequency LSO neurons exhibited contralateral inhibition: ipsilaterally driven responses were suppressed by raising the level of the contralateral stimulus; most neurons were sensitive to interaural time delays in pure tone and noise stimuli such that inhibition was nearly maximal when the stimuli were presented to the ears in-phase. The data demonstrate that low-frequency LSO neurons of cat are not monaural and can exhibit contralateral inhibition like their high-frequency counterparts. PMID:16291937

  3. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    DOE PAGES

    Giroletti, M.; Massaro, F.; D’Abrusco, R.; ...

    2016-04-01

    Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less

  4. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giroletti, M.; Massaro, F.; D’Abrusco, R.

    Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less

  5. Correlated evolution between hearing sensitivity and social calls in bats

    PubMed Central

    Bohn, Kirsten M; Moss, Cynthia F; Wilkinson, Gerald S

    2006-01-01

    Echolocating bats are auditory specialists, with exquisite hearing that spans several octaves. In the ultrasonic range, bat audiograms typically show highest sensitivity in the spectral region of their species-specific echolocation calls. Well-developed hearing in the audible range has been commonly attributed to a need to detect sounds produced by prey. However, bat pups often emit isolation calls with low-frequency components that facilitate mother–young reunions. In this study, we examine whether low-frequency hearing in bats exhibits correlated evolution with (i) body size; (ii) high-frequency hearing sensitivity or (iii) pup isolation call frequency. Using published audiograms, we found that low-frequency hearing sensitivity is not dependent on body size but is related to high-frequency hearing. After controlling for high-frequency hearing, we found that low-frequency hearing exhibits correlated evolution with isolation call frequency. We infer that detection and discrimination of isolation calls have favoured enhanced low-frequency hearing because accurate parental investment is critical: bats have low reproductive rates, non-volant altricial young and must often identify their pups within large crèches. PMID:17148288

  6. Sex-dependent alterations in resting-state cerebral blood flow, amplitude of low-frequency fluctuations and their coupling relationship in schizophrenia.

    PubMed

    Ma, Xiaomei; Wang, Di; Zhou, Yujing; Zhuo, Chuanjun; Qin, Wen; Zhu, Jiajia; Yu, Chunshui

    2016-04-01

    We aimed to investigate sex-dependent alterations in resting-state relative cerebral blood flow, amplitude of low-frequency fluctuations and relative cerebral blood flow-amplitude of low-frequency fluctuations coupling in patients with schizophrenia. Resting-state functional magnetic resonance imaging and three-dimensional pseudo-continuous arterial spin labeling imaging were performed to obtain resting-state amplitude of low-frequency fluctuations and relative cerebral blood flow in 95 schizophrenia patients and 99 healthy controls. Sex differences in relative cerebral blood flow and amplitude of low-frequency fluctuations were compared in both groups. Diagnostic group differences in relative cerebral blood flow, amplitude of low-frequency fluctuations and relative cerebral blood flow-amplitude of low-frequency fluctuations coupling were compared in male and female subjects, respectively. In both healthy controls and schizophrenia patients, the males had higher relative cerebral blood flow in anterior brain regions and lower relative cerebral blood flow in posterior brain regions than did the females. Compared with multiple regions exhibiting sex differences in relative cerebral blood flow, only the left middle frontal gyrus had a significant sex difference in amplitude of low-frequency fluctuations. In the females, schizophrenia patients exhibited increased relative cerebral blood flow and amplitude of low-frequency fluctuations in the basal ganglia, thalamus and hippocampus and reduced relative cerebral blood flow and amplitude of low-frequency fluctuations in the frontal, parietal and occipital regions compared with those of healthy controls. However, there were fewer brain regions with diagnostic group differences in the males than in the females. Brain regions with diagnostic group differences in relative cerebral blood flow and amplitude of low-frequency fluctuations only partially overlapped. Only the female patients exhibited increased relative cerebral blood flow-amplitude of low-frequency fluctuations couplings compared with those of healthy females. The alterations in the relative cerebral blood flow and amplitude of low-frequency fluctuations in schizophrenia are sex-specific, which should be considered in future neuroimaging studies. The relative cerebral blood flow and amplitude of low-frequency fluctuations have different sensitivity in detecting changes in neuronal activity in schizophrenia and can provide complementary information. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  7. System for transmitting low frequency analog signals over AC power lines

    DOEpatents

    Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

    1989-01-01

    A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

  8. System for transmitting low frequency analog signals over AC power lines

    DOEpatents

    Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

    1989-09-05

    A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

  9. A system for tranmitting low frequency analog signals over ac power lines

    DOEpatents

    Baker, S.P.; Durall, R.L.; Haynes, H.D.

    1987-07-30

    A system for transmitting low frequency analog signals over ac power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an ac power line. The modulation signal frequency range is selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the ac power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal. 4 figs.

  10. The Low-Frequency Encoding Disadvantage: Word Frequency Affects Processing Demands

    ERIC Educational Resources Information Center

    Diana, Rachel A.; Reder, Lynne M.

    2006-01-01

    Low-frequency words produce more hits and fewer false alarms than high-frequency words in a recognition task. The low-frequency hit rate advantage has sometimes been attributed to processes that operate during the recognition test (e.g., L. M. Reder et al., 2000). When tasks other than recognition, such as recall, cued recall, or associative…

  11. Low Frequency Variants, Collapsed Based on Biological Knowledge, Uncover Complexity of Population Stratification in 1000 Genomes Project Data

    PubMed Central

    Moore, Carrie B.; Wallace, John R.; Wolfe, Daniel J.; Frase, Alex T.; Pendergrass, Sarah A.; Weiss, Kenneth M.; Ritchie, Marylyn D.

    2013-01-01

    Analyses investigating low frequency variants have the potential for explaining additional genetic heritability of many complex human traits. However, the natural frequencies of rare variation between human populations strongly confound genetic analyses. We have applied a novel collapsing method to identify biological features with low frequency variant burden differences in thirteen populations sequenced by the 1000 Genomes Project. Our flexible collapsing tool utilizes expert biological knowledge from multiple publicly available database sources to direct feature selection. Variants were collapsed according to genetically driven features, such as evolutionary conserved regions, regulatory regions genes, and pathways. We have conducted an extensive comparison of low frequency variant burden differences (MAF<0.03) between populations from 1000 Genomes Project Phase I data. We found that on average 26.87% of gene bins, 35.47% of intergenic bins, 42.85% of pathway bins, 14.86% of ORegAnno regulatory bins, and 5.97% of evolutionary conserved regions show statistically significant differences in low frequency variant burden across populations from the 1000 Genomes Project. The proportion of bins with significant differences in low frequency burden depends on the ancestral similarity of the two populations compared and types of features tested. Even closely related populations had notable differences in low frequency burden, but fewer differences than populations from different continents. Furthermore, conserved or functionally relevant regions had fewer significant differences in low frequency burden than regions under less evolutionary constraint. This degree of low frequency variant differentiation across diverse populations and feature elements highlights the critical importance of considering population stratification in the new era of DNA sequencing and low frequency variant genomic analyses. PMID:24385916

  12. Low-frequency vocalizations in the Florida manatee (Trichechus manatus latirostris)

    NASA Astrophysics Data System (ADS)

    Frisch, Katherine; Frisch, Stefan

    2003-10-01

    Vocalizations produced by Florida manatees (Trichechus manatus latirostris) have been characterized as being of relatively high frequency, with fundamental tones ranging from 2500-5000 Hz. These sounds have been variously described as squeaks, squeals, and chirps. Vocalizations below 500 Hz have not been previously reported. Two captive-born Florida manatees were recorded at Mote Marine Laboratory in Sarasota, Florida. The analysis of these vocalizations provides evidence of a new category of low-frequency sounds produced by manatees. These sounds are often heard in conjunction with higher-frequency vocalizations. The low-frequency vocalizations are relatively brief and of low amplitude. These vocalizations are perceived as a series of impulses rather than a low-frequency periodic tone. Knowledge of these low-frequency vocalizations could be useful to those developing future management strategies. Interest has recently increased in the development of acoustic detection and deterrence devices to reduce the number of manatee watercraft interactions. The design of appropriate devices must take into account the apparent ability of manatees to perceive and produce sounds of both high and low frequency. It is also important to consider the possibility that acoustic deterrence devices may disrupt the potentially communicative frequencies of manatee vocalizations.

  13. Low frequency events on Montserrat

    NASA Astrophysics Data System (ADS)

    Visser, K.; Neuberg, J.

    2003-04-01

    Earthquake swarms observed on volcanoes consist generally of low frequency events. The low frequency content of these events indicates the presence of interface waves at the boundary of the magma filled conduit and the surrounding country rock. The observed seismic signal at the surface shows therefore a complicated interference pattern of waves originating at various parts of the magma filled conduit, interacting with the free surface and interfaces in the volcanic edifice. This research investigates the applicability of conventional seismic tools on these low frequency events, focusing on hypocenter location analysis using arrival times and particle motion analysis for the Soufrière Hills Volcano on Montserrat. Both single low frequency events and swarms are observed on this volcano. Synthetic low frequency events are used for comparison. Results show that reliable hypocenter locations and particle motions can only be obtained if the low frequency events are single events with an identifiable P wave onset, for example the single events preceding swarms on Montserrat or the first low frequency event of a swarm. Consecutive events of the same swarm are dominated by interface waves which are converted at the top of the conduit into weak secondary P waves and surface waves. Conventional seismic tools fail to correctly analyse these events.

  14. Numerical study on the instabilities in H2-air rotating detonation engines

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Zhou, Weijiang; Yang, Yunjun; Liu, Zhou; Wang, Jianping

    2018-04-01

    Numerical simulations of rotating detonation engines (RDEs) are performed using two-dimensional Euler equations and a detailed chemistry model of H2-air. Two propagation modes, the one-wave mode and the two-wave mode, are observed in the RDEs. The instabilities of the RDEs are studied and analyzed specifically. A low frequency instability and a high frequency instability are found from the pressure-time trace measured at a fixed location and the average density-time trace of the RDEs. For the low frequency instability, the pressure peak of the pressure-time trace oscillates with a low frequency while the average density is stable. The deviation between the measurement location and the location of the detonation wave results in the low frequency instability. For the high frequency instability, the average density of the RDEs oscillates regularly with a single frequency while the pressure oscillates irregularly with several frequencies. The oscillation of the detonation wave height results in the high frequency instability. Furthermore, the low frequency instability and the high frequency instability both occur in the one-wave and two-wave mode RDEs.

  15. Effects of degree and configuration of hearing loss on the contribution of high- and low-frequency speech information to bilateral speech understanding

    PubMed Central

    Hornsby, Benjamin W. Y.; Johnson, Earl E.; Picou, Erin

    2011-01-01

    Objectives The purpose of this study was to examine the effects of degree and configuration of hearing loss on the use of, and benefit from, information in amplified high- and low-frequency speech presented in background noise. Design Sixty-two adults with a wide range of high- and low-frequency sensorineural hearing loss (5–115+ dB HL) participated. To examine the contribution of speech information in different frequency regions, speech understanding in noise was assessed in multiple low- and high-pass filter conditions, as well as a band-pass (713–3534 Hz) and wideband (143–8976 Hz) condition. To increase audibility over a wide frequency range, speech and noise were amplified based on each individual’s hearing loss. A stepwise multiple linear regression approach was used to examine the contribution of several factors to 1) absolute performance in each filter condition and 2) the change in performance with the addition of amplified high- and low-frequency speech components. Results Results from the regression analysis showed that degree of hearing loss was the strongest predictor of absolute performance for low- and high-pass filtered speech materials. In addition, configuration of hearing loss affected both absolute performance for severely low-pass filtered speech and benefit from extending high-frequency (3534–8976 Hz) bandwidth. Specifically, individuals with steeply sloping high-frequency losses made better use of low-pass filtered speech information than individuals with similar low-frequency thresholds but less high-frequency loss. In contrast, given similar high-frequency thresholds, individuals with flat hearing losses received more benefit from extending high-frequency bandwidth than individuals with more sloping losses. Conclusions Consistent with previous work, benefit from speech information in a given frequency region generally decreases as degree of hearing loss in that frequency region increases. However, given a similar degree of loss, the configuration of hearing loss also affects the ability to use speech information in different frequency regions. Except for individuals with steeply sloping high-frequency losses, providing high-frequency amplification (3534–8976 Hz) had either a beneficial effect on, or did not significantly degrade, speech understanding. These findings highlight the importance of extended high-frequency amplification for listeners with a wide range of high-frequency hearing losses, when seeking to maximize intelligibility. PMID:21336138

  16. A low noise and ultra-narrow bandwidth frequency-locked loop based on the beat method.

    PubMed

    Gao, Wei; Sui, Jianping; Chen, Zhiyong; Yu, Fang; Sheng, Rongwu

    2011-06-01

    A novel frequency-locked loop (FLL) based on the beat method is proposed in this paper. Compared with other frequency feedback loops, this FLL is a digital loop with simple structure and very low noise. As shown in the experimental results, this FLL can be used to reduce close-in phase noise on atomic frequency standards, through which a composite frequency standard with ultra-low phase noise and low cost can be easily realized.

  17. Word frequency influences on the list length effect and associative memory in young and older adults.

    PubMed

    Badham, Stephen P; Whitney, Cora; Sanghera, Sumeet; Maylor, Elizabeth A

    2017-07-01

    Many studies show that age deficits in memory are smaller for information supported by pre-experimental experience. Many studies also find dissociations in memory tasks between words that occur with high and low frequencies in language, but the literature is mixed regarding the extent of word frequency effects in normal ageing. We examined whether age deficits in episodic memory could be influenced by manipulations of word frequency. In Experiment 1, young and older adults studied short and long lists of high- and low-frequency words for free recall. The list length effect (the drop in proportion recalled for longer lists) was larger in young compared to older adults and for high- compared to low-frequency words. In Experiment 2, young and older adults completed item and associative recognition memory tests with high- and low-frequency words. Age deficits were greater for associative memory than for item memory, demonstrating an age-related associative deficit. High-frequency words led to better associative memory performance whilst low-frequency words resulted in better item memory performance. In neither experiment was there any evidence for age deficits to be smaller for high- relative to low-frequency words, suggesting that word frequency effects on memory operate independently from effects due to cognitive ageing.

  18. 47 CFR 90.267 - Assignment and use of frequencies in the 450-470 MHz band for low power use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... operation determine whether a station is within an “80 km circle.” (i) The maximum ERP for low power... ERP for low power operation on these frequencies is as follows: Operation Low side of frequency pair.... (2) Operation on these frequencies is limited to 6 watts ERP for base, mobile or operational fixed...

  19. Low-sensitivity, frequency-selective amplifier circuits for hybrid and bipolar fabrication.

    NASA Technical Reports Server (NTRS)

    Pi, C.; Dunn, W. R., Jr.

    1972-01-01

    A network is described which is suitable for realizing a low-sensitivity high-Q second-order frequency-selective amplifier for high-frequency operation. Circuits are obtained from this network which are well suited for realizing monolithic integrated circuits and which do not require any process steps more critical than those used for conventional monolithic operational and video amplifiers. A single chip version using compatible thin-film techniques for the frequency determination elements is then feasible. Center frequency and bandwidth can be set independently by trimming two resistors. The frequency selective circuits have a low sensitivity to the process variables, and the sensitivity of the center frequency and bandwidth to changes in temperature is very low.

  20. Eddy-driven low-frequency variability: physics and observability through altimetry

    NASA Astrophysics Data System (ADS)

    Penduff, Thierry; Sérazin, Guillaume; Arbic, Brian; Mueller, Malte; Richman, James G.; Shriver, Jay F.; Morten, Andrew J.; Scott, Robert B.

    2015-04-01

    Model studies have revealed the propensity of the eddying ocean circulation to generate strong low-frequency variability (LFV) intrinsically, i.e. without low-frequency atmospheric variability. In the present study, gridded satellite altimeter products, idealized quasi-geostrophic (QG) turbulent simulations, and realistic high-resolution global ocean simulations are used to study the spontaneous tendency of mesoscale (relatively high frequency and high wavenumber) kinetic energy to non-linearly cascade towards larger time and space scales. The QG model reveals that large-scale variability, arising from the well-known spatial inverse cascade, is associated with low frequencies. Low-frequency, low-wavenumber energy is maintained primarily by nonlinearities in the QG model, with forcing (by large-scale shear) and friction playing secondary roles. In realistic simulations, nonlinearities also generally drive kinetic energy to low frequencies and low wavenumbers. In some, but not all, regions of the gridded altimeter product, surface kinetic energy is also found to cascade toward low frequencies. Exercises conducted with the realistic model suggest that the spatial and temporal filtering inherent in the construction of gridded satellite altimeter maps may contribute to the discrepancies seen in some regions between the direction of frequency cascade in models versus gridded altimeter maps. Finally, the range of frequencies that are highly energized and engaged these cascades appears much greater than the range of highly energized and engaged wavenumbers. Global eddying simulations, performed in the context of the CHAOCEAN project in collaboration with the CAREER project, provide estimates of the range of timescales that these oceanic nonlinearities are likely to feed without external variability.

  1. TRI-SERVICE ELF COMMUNICATIONS - VOL. II, BIBLIOGRAPHY.

    DTIC Science & Technology

    BIBLIOGRAPHIES, UNDERGROUND ANTENNAS , ELECTRICAL RESISTANCE, UNDERGROUND , COSTS, VERY LOW FREQUENCY, LOW FREQUENCY, PROPAGATION, NOISE(RADIO)....EXTREMELY LOW FREQUENCY), (*COMMAND AND CONTROL SYSTEMS, COMMUNICATION AND RADIO SYSTEMS), (* COMMUNICATION AND RADIO SYSTEMS, MILITARY RESEARCH

  2. Chirping response of weakly electric knife fish (Apteronotus leptorhynchus) to low-frequency electric signals and to heterospecific electric fish.

    PubMed

    Dunlap, K D; DiBenedictis, B T; Banever, S R

    2010-07-01

    Brown ghost knife fish (Apteronotus leptorhynchus) can briefly increase their electric organ discharge (EOD) frequency to produce electrocommunication signals termed chirps. The chirp rate increases when fish are presented with conspecific fish or high-frequency (700-1100 Hz) electric signals that mimic conspecific fish. We examined whether A. leptorhynchus also chirps in response to artificial low-frequency electric signals and to heterospecific electric fish whose EOD contains low-frequency components. Fish chirped at rates above background when presented with low-frequency (10-300 Hz) sine-wave stimuli; at 30 and 150 Hz, the threshold amplitude for response was 1 mV cm(-1). Low-frequency (30 Hz) stimuli also potentiated the chirp response to high-frequency ( approximately 900 Hz) stimuli. Fish increased their chirp rate when presented with two heterospecific electric fish, Sternopygus macrurus and Brachyhypopomus gauderio, but did not respond to the presence of the non-electric fish Carassius auratus. Fish chirped to low-frequency (150 Hz) signals that mimic those of S. macrurus and to EOD playbacks of B. gauderio. The response to the B. gauderio playback was reduced when the low-frequency component (<150 Hz) was experimentally filtered out. Thus, A. leptorhynchus appears to chirp specifically to the electric signals of heterospecific electric fish, and the low-frequency components of heterospecific EODs significantly influence chirp rate. These results raise the possibility that chirps function to communicate to conspecifics about the presence of a heterospecific fish or to communicate directly to heterospecific fish.

  3. A further examination of word frequency and age-of-acquisition effects in English lexical decision task performance: The role of frequency trajectory.

    PubMed

    Juhasz, Barbara J; Yap, Melvin J; Raoul, Akila; Kaye, Micaela

    2018-04-23

    Word frequency is an important predictor of lexical-decision task performance. The current study further examined the role of this variable by exploring the influence of frequency trajectory. Frequency trajectory is measured by how often a word occurs in childhood relative to adulthood. Past research on the role of this variable in word recognition has produced equivocal results. In the current study, words were selected based on their frequencies in Grade 1 (child frequency) and Grade 13 (college frequency). In Experiment 1, four frequency trajectory conditions were factorially examined in a lexical-decision task with English words: high-to-high (world), high-to-low (uncle), low-to-high (brain) and low-to-low (opera). an interaction between Grade 1 and college frequency demonstrated that words in the low-to-high condition were processed significantly faster and more accurately than words in the low-to-low condition, whereas the high-to-high and high-to-low conditions did not differ significantly. In Experiment 2, an advantage for words with an increasing frequency trajectory was also supported in regression analyses on both lexical decision and naming times for 3,039 items selected from the English Lexicon Project (Balota et al., 2007). This was replicated in Experiment 3, based on a regression analysis of 2,680 words from the British Lexicon Project (BLP; Keuleers, Lacey, Rastle, & Brysbaert, 2012). In all analyses, rated age-of-acquisition also significantly impacted word recognition. Together, the results suggest that the age at which a word is initially learned as well as its frequency trajectory across childhood impact performance in the lexical-decision task. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. The mechanism of growth of the low-frequency East Asia-Pacific teleconnection and the triggering role of tropical intraseasonal oscillation

    NASA Astrophysics Data System (ADS)

    Wang, Jiabao; Wen, Zhiping; Wu, Renguang; Guo, Yuanyuan; Chen, Zesheng

    2016-06-01

    The East Asia-Pacific (EAP) pattern is a well-known meridional teleconnection over East Asia during boreal summer. In this study, the mechanism for growth of the EAP on intraseasonal timescale is investigated through a vorticity budget. It is found that the beta-effect and high-frequency transient eddies have primary contributions to the growth of the low-frequency EAP. The former leads to a westward shift of disturbances associated with the low-frequency EAP and the latter favors an amplification of disturbances, respectively. The interaction between low-frequency disturbances and zonal flow has a damping effect by dragging disturbances eastward. The impact of boreal summer intraseasonal oscillation (BSISO) on the triggering of the low-frequency EAP is also examined in this study based on observational analysis and a linear model experiment. It is shown that an elongated anomalous convection band located in the vicinity of Philippines associated with the dominant mode of BSISO has a significant impact on the initiation of low-frequency EAP via Rossby wave propagation, whereas anomalous convection located over the North Indian Ocean has a limited impact. Based on the results of present study, the low-frequency EAP could be a self-sustained mode, and the BSISO plays a substantial role in triggering the low-frequency EAP.

  5. Direct comparison of low- and mid-frequency Raman spectroscopy for quantitative solid-state pharmaceutical analysis.

    PubMed

    Lipiäinen, Tiina; Fraser-Miller, Sara J; Gordon, Keith C; Strachan, Clare J

    2018-02-05

    This study considers the potential of low-frequency (terahertz) Raman spectroscopy in the quantitative analysis of ternary mixtures of solid-state forms. Direct comparison between low-frequency and mid-frequency spectral regions for quantitative analysis of crystal form mixtures, without confounding sampling and instrumental variations, is reported for the first time. Piroxicam was used as a model drug, and the low-frequency spectra of piroxicam forms β, α2 and monohydrate are presented for the first time. These forms show clear spectral differences in both the low- and mid-frequency regions. Both spectral regions provided quantitative models suitable for predicting the mixture compositions using partial least squares regression (PLSR), but the low-frequency data gave better models, based on lower errors of prediction (2.7, 3.1 and 3.2% root-mean-square errors of prediction [RMSEP] values for the β, α2 and monohydrate forms, respectively) than the mid-frequency data (6.3, 5.4 and 4.8%, for the β, α2 and monohydrate forms, respectively). The better performance of low-frequency Raman analysis was attributed to larger spectral differences between the solid-state forms, combined with a higher signal-to-noise ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Discrete-time nonlinear damping backstepping control with observers for rejection of low and high frequency disturbances

    NASA Astrophysics Data System (ADS)

    Kim, Wonhee; Chen, Xu; Lee, Youngwoo; Chung, Chung Choo; Tomizuka, Masayoshi

    2018-05-01

    A discrete-time backstepping control algorithm is proposed for reference tracking of systems affected by both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. A discrete time DOB, which is constructed based on infinite impulse response filters is applied to compensate for narrow band disturbances at high frequencies. A discrete-time nonlinear damping backstepping controller with an augmented observer is proposed to track the desired output and to compensate for low frequency broadband disturbances along with a disturbance observer, for rejecting narrow band high frequency disturbances. This combination has the merit of simultaneously compensating both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. The performance of the proposed method is validated via experiments.

  7. Effect of radar frequency on the detection of shaped (low RCS) targets

    NASA Astrophysics Data System (ADS)

    Moraitis, D.; Alland, S.

    The use of shaping to reduce the radar cross-section (RCS) of aircraft and missiles can result in the RCS varying significantly with radar operating frequency. This RCS sensitivity to frequency should be considered when selecting radar frequency and should be accounted for when evaluating radar performance. A detection range increase for shaped (low RCS) targets of a factor of two or greater can be realized for lower frequency radar (e.g., UHF-Band or L-Band) when compared to higher frequency radar (C-Band or X-Band). For low flying (sea skimming) targets, the RCS variation with frequency for shaped (low RCS) targets neutralizes the advantage that higher radar frequencies realize in multipath propagation resulting in approximately the same detection range across the radar bands from UHF to X-Band.

  8. Meal frequencies in early adolescence predict meal frequencies in late adolescence and early adulthood.

    PubMed

    Pedersen, Trine Pagh; Holstein, Bjørn E; Flachs, Esben Meulengracht; Rasmussen, Mette

    2013-05-04

    Health and risk behaviours tend to be maintained from adolescence into adulthood. There is little knowledge on whether meal frequencies in adolescence are maintained into adulthood. We investigated whether breakfast, lunch and evening meal frequencies in early adolescence predicted meal frequencies in late adolescence and in early adulthood. Further, the modifying effect of gender and adolescent family structure were investigated. National representative sample of 15-year-olds in Denmark with 4 and 12 year follow-up studies with measurement of breakfast, lunch and evening meal frequencies. A total of 561 persons completed questionnaires at age 15 years (baseline 1990, n=847, response rate 84.6%), age 19 years (n=729, response rate 73.2%) and age 27 years (n=614, response rate 61.6%). Low meal frequencies at age 15 years was a significant predictor for having low meal frequencies at age 19 years (odds ratio (OR, 95% CI)) varying between 2.11, 1.33-3.34 and 7.48, 3.64-15.41). Also, low meal frequencies at age 19 years predicted low meal frequencies at age 27 years (OR varying between 2.26, 1.30-3.91 and 4.38, 2.36-8.13). Significant predictions over the full study period were seen for low breakfast frequency and low lunch frequency (OR varying between 1.78, 1.13-2.81 and 2.58, 1.31-5.07). Analyses stratified by gender showed the same patterns (OR varying between 1.88, 1.13-3.14 and 8.30, 2.85-24.16). However, the observed predictions were not statistical significant among men between age 15 and 27 years. Analyses stratified by adolescent family structure revealed different lunch predictions in strata. Having low meal frequencies in early adolescence predicted low meal frequencies in late adolescence and early adulthood. We propose that promotion of regular meals become a prioritised issue within health education.

  9. Enhanced detection of a low-frequency signal by using broad squeezed light and a bichromatic local oscillator

    NASA Astrophysics Data System (ADS)

    Li, Wei; Jin, Yuanbin; Yu, Xudong; Zhang, Jing

    2017-08-01

    We experimentally study a protocol of using the broadband high-frequency squeezed vacuum to detect the low-frequency signal. In this scheme, the lower sideband field of the squeezed light carries the low-frequency modulation signal, and the two strong coherent light fields are applied as the bichromatic local oscillator in the homodyne detection to measure the quantum entanglement of the upper and lower sideband for the broadband squeezed light. The power of one of the local oscillators for detecting the upper sideband can be adjusted to optimize the conditional variance in the low-frequency regime by subtracting the photocurrent of the upper sideband field of the squeezed light from that of the lower sideband field. By means of the quantum correlation of the upper and lower sideband for the broadband squeezed light, the low-frequency signal beyond the standard quantum limit is measured. This scheme is appropriate for enhancing the sensitivity of the low-frequency signal by the aid of the broad squeezed light, such as gravitational waves detection, and does not need to directly produce the low-frequency squeezing in an optical parametric process.

  10. The isolation of low frequency impact sounds in hotel construction

    NASA Astrophysics Data System (ADS)

    LoVerde, John J.; Dong, David W.

    2002-11-01

    One of the design challenges in the acoustical design of hotels is reducing low frequency sounds from footfalls occurring on both carpeted and hard-surfaced floors. Research on low frequency impact noise [W. Blazier and R. DuPree, J. Acoust. Soc. Am. 96, 1521-1532 (1994)] resulted in a conclusion that in wood construction low frequency impact sounds were clearly audible and that feasible control methods were not available. The results of numerous FIIC (Field Impact Insulation Class) measurements performed in accordance with ASTM E1007 indicate the lack of correlation between FIIC ratings and the reaction of occupants in the room below. The measurements presented include FIIC ratings and sound pressure level measurements below the ASTM E1007 low frequency limit of 100 Hertz, and reveal that excessive sound levels in the frequency range of 63 to 100 Hertz correlate with occupant complaints. Based upon this history, a tentative criterion for maximum impact sound level in the low frequency range is presented. The results presented of modifying existing constructions to reduce the transmission of impact sounds at low frequencies indicate that there may be practical solutions to this longstanding problem.

  11. Modelling low-frequency volcanic earthquakes in a viscoelastic medium with topography

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Neuberg, Jürgen; Jolly, Arthur

    2004-11-01

    Magma properties are fundamental to explain the volcanic eruption style as well as the generation and propagation of seismic waves. This study focusses on magma properties and rheology and their impact on low-frequency volcanic earthquakes. We investigate the effects of anelasticity and topography on the amplitudes and spectra of synthetic low-frequency earthquakes. Using a 2-D finite-difference scheme, we model the propagation of seismic energy initiated in a fluid-filled conduit embedded in a homogeneous viscoelastic medium with topography. We model intrinsic attenuation by linear viscoelastic theory and we show that volcanic media can be approximated by a standard linear solid (SLS) for seismic frequencies above 2 Hz. Results demonstrate that attenuation modifies both amplitudes and dispersive characteristics of low-frequency earthquakes. Low frequency volcanic earthquakes are dispersive by nature; however, if attenuation is introduced, their dispersion characteristics will be altered. The topography modifies the amplitudes, depending on the position of the seismographs at the surface. This study shows that we need to take into account attenuation and topography to interpret correctly observed low-frequency volcanic earthquakes. It also suggests that the rheological properties of magmas may be constrained by the analysis of low-frequency seismograms.

  12. Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013)

    DTIC Science & Technology

    2014-06-01

    Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013) by Andrew Drysdale...Proving Ground, MD 21005-5068 ARL-TR-6977 June 2014 Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results...4. TITLE AND SUBTITLE Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013) 5a

  13. Low Frequency Error Analysis and Calibration for High-Resolution Optical Satellite's Uncontrolled Geometric Positioning

    NASA Astrophysics Data System (ADS)

    Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng

    2016-06-01

    The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.

  14. Low frequency noise study.

    DOT National Transportation Integrated Search

    2007-04-01

    This report documents a study to investigate human response to the low-frequency : content of aviation noise, or low-frequency noise (LFN). The study comprised field : measurements and laboratory studies. The major findings were: : 1. Start-of-takeof...

  15. Hybrid simulation of fishbone instabilities in the EAST tokamak

    DOE PAGES

    Shen, Wei; Wang, Feng; Fu, G. Y.; ...

    2017-08-11

    Hybrid simulations with the global kinetic-magnetohydrodynamic (MHD) code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven fishbone in the experimental advanced superconducting tokamak (EAST) experiment. Linear simulations show that a low frequency fishbone instability is excited at experimental value of beam ion pressure. The mode is mainly driven by low energy beam ions via precessional resonance. Our results are consistent with the experimental measurement with respect to mode frequency and mode structure. When the beam ion pressure is increased to exceed a critical value, the low frequency mode transits to a beta-induced Alfvenmore » eigenmode (BAE) with much higher frequency. This BAE is driven by higher energy beam ions. Nonlinear simulations show that the frequency of the low frequency fishbone chirps up and down with corresponding hole-clump structures in phase space, consistent with the Berk-Breizman theory. In addition to the low frequency mode, the high frequency BAE is excited during the nonlinear evolution. Furthermore, for the transient case of beam pressure fraction where the low and high frequency modes are simultaneously excited in the linear phase, only one dominant mode appears in the nonlinear phase with frequency jumps up and down during nonlinear evolution.« less

  16. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Lu, Kuan; Wu, Jiu Hui; Guan, Dong; Gao, Nansha; Jing, Li

    2016-02-01

    A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL) at low frequencies (⩽500Hz) was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial's structure is like a sandwich with a thin (thickness=0.25mm) lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method (FEM). The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cell film shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  17. Repeating Deep Very Low Frequency Earthquakes: An Evidence of Transition Zone between Brittle and Ductile Zone along Plate Boundary

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.; Yamamoto, Y.; Arai, R.

    2017-12-01

    Recently slow or low frequency seismic and geodetic events are focused under recognition of important role in tectonic process. The most western region of Ryukyu trench, Yaeyama Islands, is very active area of these type events. It has semiannual-like slow slip (Heki et.al., 2008; Nishimura et.al.,2014) and very frequent shallow very low frequency earthquakes near trench zone (Ando et.al.,2012; Nakamura et.al.,2014). Arai et.al.(2016) identified clear reverse phase discontinuity along plate boundary by air-gun survey, suggesting existence of low velocity layer including fluid. The subducting fluid layer is considered to control slip characteristics. On the other hand, deep low frequency earthquake and tremor observed at south-western Honshu and Shikoku of Japan are not identified well due to lack of high-quality seismic network. A broadband seismic station(ISG/PS) of Pacific21 network is operating in last 20 years that locates on occurrence potential area of low frequency earthquake. We tried to review continuous broadband record, searching low frequency earthquakes. In pilot survey, we found three very low frequency seismic events which are dominant in less than 0.1Hz component and are not listed in earthquake catalogue. Source locates about 50km depth and at transition area between slow slip event and active area of general earthquake along plate boundary. To detect small and/or hidden very low frequency earthquake, we applied matched filter analysis to continuous three components waveform data using pre-reviewed seismogram as template signal. 12 events with high correlation are picked up in last 10 years. Most events have very similar waveform, which means characteristics of repeating deep very low frequency earthquake. The event history of very low frequency earthquake is not related with one of slow slip event in this region. In Yaeyama region, low frequency earthquake, general earthquake and slow slip event occur dividing in space and have apparent independent activity. Further 3D survey around plate boundary may take us important understanding of controlling feature of seismic and geodetic slip.

  18. The relative immunity of high-frequency transposed stimuli to low-frequency binaural interference

    NASA Astrophysics Data System (ADS)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2004-05-01

    We have recently demonstrated that high-frequency transposed stimuli, having envelopes designed to provide high-frequency channels with information similar to that normally available in only low-frequency channels, yield threshold-ITDs and extents of laterality comparable to those obtained with conventional low-frequency stimuli. This enhanced potency of ITDs conveyed by high-frequency transposed stimuli, as compared to conventional high-frequency stimuli, suggested to us that ITDs conveyed by transposed stimuli might be relatively immune to the presence of low-frequency binaural interferers. To investigate this issue, threshold-ITDs and extents of laterality were measured with a variety of conventional and transposed targets centered at 4 kHz. The targets were presented either in the presence or absence of a simultaneously gated diotic noise centered at 500 Hz, the interferer. As expected, the presence of the low-frequency interferer resulted in substantially elevated threshold-ITDs and reduced extents of laterality for the conventional high-frequency stimuli. In contrast, these interference effects were either greatly attenuated or absent for ITDs conveyed by the high-frequency transposed targets. The results will be discussed in the context of current models of binaural interference. [Work supported by NIH DC 04147, NIH DC04073, NIH DC 002304.

  19. An experimental system for the study of active vibration control - Development and modeling

    NASA Astrophysics Data System (ADS)

    Batta, George R.; Chen, Anning

    A modular rotational vibration system designed to facilitate the study of active control of vibrating systems is discussed. The model error associated with four common types of identification problems has been studied. The general multiplicative uncertainty shape for a vibration system is small in low frequencies, large at high frequencies. The frequency-domain error function has sharp peaks near the frequency of each mode. The inability to identify a high-frequency mode causes an increase of uncertainties at all frequencies. Missing a low-frequency mode causes the uncertainties to be much larger at all frequencies than missing a high-frequency mode. Hysteresis causes a small increase of uncertainty at low frequencies, but its overall effect is relatively small.

  20. Carrier Envelope Phase Effect of a Long Duration Pulse in the Low Frequency Region

    NASA Astrophysics Data System (ADS)

    Zhao, Xi; Yang, Yu-Jun; Liu, Xue-Shen; Wang, Bing-Bing

    2014-04-01

    Using the characteristic of small energy difference between two high Rydberg states, we theoretically investigate the carrier envelope phase (CEP) effect in a bound-bound transition of an atom in a low-frequency long laser pulse with tens of optical cycles. Particularly, we first prepare a Rydberg state of a hydrogen-like atom by a laser field with the resonant frequency between this state and the ground state. Then by using a low-frequency long laser pulse interacting with this Rydberg atom, we calculate the population of another Rydberg state nearby this Rydberg state at the end of the laser pulse and find that the population changes dramatically with the CEP of the low-frequency pulse. This CEP effect is attributed to the interference between the positive-frequency and negative-frequency components in one-photon transition. These results may provide a method to measure the CEP value of a long laser pulse with low frequency.

  1. Correcting low-frequency noise with continuous measurement.

    PubMed

    Tian, L

    2007-04-13

    Low-frequency noise presents a serious source of decoherence in solid-state qubits. When combined with a continuous weak measurement of the eigenstates, low-frequency noise induces a second-order relaxation between the qubit states. Here, we show that the relaxation provides a unique approach to calibrate the low-frequency noise in the time domain. By encoding one qubit with two physical qubits that are alternatively calibrated, quantum-logic gates with high fidelity can be performed.

  2. Dynamic Cerebral Autoregulation is Preserved During Acute Head-down Tilt

    DTIC Science & Technology

    2003-06-27

    relationship of mean arterial pressure to mean cerebral blood flow velocity transfer function gain at the high and low frequencies, respectively; TCD-PHASE...HF and TCD-PHASE-LF, phase angle between mean arterial pressure and mean cerebral blood flow veloc- ity at high and low frequencies, respectively...arterial pressure and mean ce- rebral blood flow oscillations decrease from low- to high -frequency ranges. Average phase angles were 68° at low frequencies

  3. Low-frequency oscillations in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Wei, Li-Qiu; Han, Liang; Yu, Da-Ren; Guo, Ning

    2015-05-01

    In this paper, we summarize the research development of low-frequency oscillations in the last few decades. The findings of physical mechanism, characteristics and stabilizing methods of low-frequency oscillations are discussed. It shows that it is unreasonable and incomplete to model an ionization region separately to analyze the physical mechanism of low-frequency oscillations. Electro-dynamics as well as the formation conditions of ionization distribution play an important role in characteristics and stabilizing of low-frequency oscillations. Understanding the physical mechanism and characteristics of low- frequency oscillations thoroughly and developing a feasible method stabilizing this instability are still important research subjects. Project supported by the National Natural Science Foundation of China (Grant No. 51477035), the Fundamental Research Funds for the Central Universities, China (Grant No. HIT.NSRIF 2015064), and the Open Research Fund Program of State Key Laboratory of Cryogenic Vacuum Technology and Physics, China (Grant No. ZDK201304).

  4. Characterization and comprehension of corona partial discharge in air under power frequency to very low frequency voltage

    NASA Astrophysics Data System (ADS)

    Yuanxiang, ZHOU; Zhongliu, ZHOU; Ling, ZHANG; Yunxiao, ZHANG; Yajun, MO; Jiantao, SUN

    2018-05-01

    For the partial discharge test of electrical equipment with large capacitance, the use of low-frequency voltage instead of power frequency voltage can effectively reduce the capacity requirements of test power supply. However, the validity of PD test under low frequency voltage needs to be evaluated. In order to investigate the influence of voltage frequency on corona discharge in the air, the discharge test of the tip-plate electrode under the frequency from 50 to 0.1 Hz is carried out based on the impulse current method. The results show that some of the main features of corona under low frequency do not change. The magnitude of discharge in a positive half cycle is obviously larger than that in a negative cycle. The magnitude of discharge and interval in positive cycle are random, while that in negative cycle are regular. With the decrease of frequency, the inception voltage increases. The variation trend of maximum and average magnitude and repetition rate of the discharge in positive and negative half cycle with the variation of voltage frequency and magnitude is demonstrated, with discussion and interpretation from the aspects of space charge transportation, effective discharge time and transition of discharge modes. There is an obvious difference in the phase resolved pattern of partial discharge and characteristic parameters of discharge patterns between power and low frequency. The experimental results can be the reference for mode identification of partial discharge under low frequency tests. The trend of the measured parameters with the variation of frequency provides more information about the insulation defect than traditional measurements under a single frequency (usually 50 Hz). Also it helps to understand the mechanism of corona discharge with an explanation of the characteristics under different frequencies.

  5. Air-Leak Effects on Ear-Canal Acoustic Absorbance

    PubMed Central

    Rasetshwane, Daniel M.; Kopun, Judy G.; Gorga, Michael P.; Neely, Stephen T.

    2015-01-01

    Objective: Accurate ear-canal acoustic measurements, such as wideband acoustic admittance, absorbance, and otoacoustic emissions, require that the measurement probe be tightly sealed in the ear canal. Air leaks can compromise the validity of the measurements, interfere with calibrations, and increase variability. There are no established procedures for determining the presence of air leaks or criteria for what size leak would affect the accuracy of ear-canal acoustic measurements. The purpose of this study was to determine ways to quantify the effects of air leaks and to develop objective criteria to detect their presence. Design: Air leaks were simulated by modifying the foam tips that are used with the measurement probe through insertion of thin plastic tubing. To analyze the effect of air leaks, acoustic measurements were taken with both modified and unmodified foam tips in brass-tube cavities and human ear canals. Measurements were initially made in cavities to determine the range of critical leaks. Subsequently, data were collected in ears of 21 adults with normal hearing and normal middle-ear function. Four acoustic metrics were used for predicting the presence of air leaks and for quantifying these leaks: (1) low-frequency admittance phase (averaged over 0.1–0.2 kHz), (2) low-frequency absorbance, (3) the ratio of compliance volume to physical volume (CV/PV), and (4) the air-leak resonance frequency. The outcome variable in this analysis was the absorbance change (Δabsorbance), which was calculated in eight frequency bands. Results: The trends were similar for both the brass cavities and the ear canals. ΔAbsorbance generally increased with air-leak size and was largest for the lower frequency bands (0.1–0.2 and 0.2–0.5 kHz). Air-leak effects were observed in frequencies up to 10 kHz, but their effects above 1 kHz were unpredictable. These high-frequency air leaks were larger in brass cavities than in ear canals. Each of the four predictor variables exhibited consistent dependence on air-leak size. Low-frequency admittance phase and CV/PV decreased, while low-frequency absorbance and the air-leak resonance frequency increased. Conclusion: The effect of air leaks can be significant when their equivalent diameter exceeds 0.01 in. The observed effects were greatest at low frequencies where air leaks caused absorbance to increase. Recommended criteria for detecting air leaks include the following: when the frequency range of interest extends as low as 0.1 kHz, low-frequency absorbance should be ≤0.20 and low-frequency admittance phase ≥61 degrees. For frequency ranges as low as 0.2 kHz, low-frequency absorbance should be ≤0.29 and low-frequency admittance phase ≥44 degrees. PMID:25170779

  6. Air-leak effects on ear-canal acoustic absorbance.

    PubMed

    Groon, Katherine A; Rasetshwane, Daniel M; Kopun, Judy G; Gorga, Michael P; Neely, Stephen T

    2015-01-01

    Accurate ear-canal acoustic measurements, such as wideband acoustic admittance, absorbance, and otoacoustic emissions, require that the measurement probe be tightly sealed in the ear canal. Air leaks can compromise the validity of the measurements, interfere with calibrations, and increase variability. There are no established procedures for determining the presence of air leaks or criteria for what size leak would affect the accuracy of ear-canal acoustic measurements. The purpose of this study was to determine ways to quantify the effects of air leaks and to develop objective criteria to detect their presence. Air leaks were simulated by modifying the foam tips that are used with the measurement probe through insertion of thin plastic tubing. To analyze the effect of air leaks, acoustic measurements were taken with both modified and unmodified foam tips in brass-tube cavities and human ear canals. Measurements were initially made in cavities to determine the range of critical leaks. Subsequently, data were collected in ears of 21 adults with normal hearing and normal middle-ear function. Four acoustic metrics were used for predicting the presence of air leaks and for quantifying these leaks: (1) low-frequency admittance phase (averaged over 0.1-0.2 kHz), (2) low-frequency absorbance, (3) the ratio of compliance volume to physical volume (CV/PV), and (4) the air-leak resonance frequency. The outcome variable in this analysis was the absorbance change (Δabsorbance), which was calculated in eight frequency bands. The trends were similar for both the brass cavities and the ear canals. ΔAbsorbance generally increased with air-leak size and was largest for the lower frequency bands (0.1-0.2 and 0.2-0.5 kHz). Air-leak effects were observed in frequencies up to 10 kHz, but their effects above 1 kHz were unpredictable. These high-frequency air leaks were larger in brass cavities than in ear canals. Each of the four predictor variables exhibited consistent dependence on air-leak size. Low-frequency admittance phase and CV/PV decreased, while low-frequency absorbance and the air-leak resonance frequency increased. The effect of air leaks can be significant when their equivalent diameter exceeds 0.01 in. The observed effects were greatest at low frequencies where air leaks caused absorbance to increase. Recommended criteria for detecting air leaks include the following: when the frequency range of interest extends as low as 0.1 kHz, low-frequency absorbance should be ≤0.20 and low-frequency admittance phase ≥61 degrees. For frequency ranges as low as 0.2 kHz, low-frequency absorbance should be ≤0.29 and low-frequency admittance phase ≥44 degrees.

  7. A power scalable PLL frequency synthesizer for high-speed Δ—Σ ADC

    NASA Astrophysics Data System (ADS)

    Siyang, Han; Baoyong, Chi; Xinwang, Zhang; Zhihua, Wang

    2014-08-01

    A 35-130 MHz/300-360 MHz phase-locked loop frequency synthesizer for Δ—Σ analog-to-digital converter (ADC) in 65 nm CMOS is presented. The frequency synthesizer can work in low phase-noise mode (300-360 MHz) or in low-power mode (35-130 MHz) to satisfy the ADC's requirements. To switch between these two modes, a high frequency GHz LC VCO followed by a divided-by-four frequency divider and a low frequency ring VCO followed by a divided-by-two frequency divider are integrated on-chip. The measured results show that the frequency synthesizer achieves a phase-noise of -132 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 1.12 ps with 1.74 mW power consumption from a 1.2 V power supply in low phase-noise mode. In low-power mode, the frequency synthesizer achieves a phase-noise of -112 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 7.23 ps with 0.92 mW power consumption from a 1.2 V power supply.

  8. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise

    PubMed Central

    2016-01-01

    Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4–8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception. PMID:26730702

  9. High-frequency filtering of strong-motion records

    USGS Publications Warehouse

    Douglas, J.; Boore, D.M.

    2011-01-01

    The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high-frequency noise is only necessary in certain situations and that PSAs can often be used up to 100 Hz even if much lower high-cut corner frequencies are required to remove the noise. This apparent contradiction can be explained by the fact that PSAs are often controlled by ground accelerations associated with much lower frequencies than the natural frequency of the oscillator because path and site attenuation (often modelled by Q and κ, respectively) have removed the highest frequencies. We demonstrate that if high-cut filters are to be used, then their corner frequencies should be selected on an individual basis, as has been done in a few recent studies.

  10. Effect of chronic and acute low-frequency repetitive transcranial magnetic stimulation on spatial memory in rats.

    PubMed

    Li, Wei; Yang, Yuye; Ye, Qing; Yang, Bo; Wang, Zhengrong

    2007-03-15

    Repetitive transcranial magnetic stimulation (rTMS) is a novel, non-invasive neurological and psychiatric tool. The low-frequency (1 Hz or less) rTMS is likely to play a particular role in its mechanism of action with different effects in comparison with high-frequency (>1 Hz) rTMS. There is limited information regarding the effect of low-frequency rTMS on spatial memory. In our study, each male Wistar rat was daily given 300 stimuli (1.0 T, 200 micros) at a rate of 0.5 Hz or sham stimulation. We investigated the effects of chronic and acute rTMS on reference/working memory process in Morris water maze test with the hypothesis that the effect would differ by chronic or acute condition. Chronic low-frequency rTMS impaired the retrieval of spatial short- and long-term spatial reference memory but not acquisition process and working memory, whereas acute low-frequency rTMS predominantly induced no deficits in acquisition or short-term spatial reference memory as well as working memory except for long-term reference memory. In summary, chronic 0.5 Hz rTMS disrupts spatial short- and long-term reference memory function, but acute rTMS differently affects reference memory. Chronic low-frequency rTMS may be used to modulate reference memory. Treatment protocols using low-frequency rTMS in neurological and psychiatric disorders need to take into account the potential effect of chronic low-frequency rTMS on memory and other cognitive functions.

  11. Exploring the Role of Spatial Frequency Information during Neural Emotion Processing in Human Infants.

    PubMed

    Jessen, Sarah; Grossmann, Tobias

    2017-01-01

    Enhanced attention to fear expressions in adults is primarily driven by information from low as opposed to high spatial frequencies contained in faces. However, little is known about the role of spatial frequency information in emotion processing during infancy. In the present study, we examined the role of low compared to high spatial frequencies in the processing of happy and fearful facial expressions by using filtered face stimuli and measuring event-related brain potentials (ERPs) in 7-month-old infants ( N = 26). Our results revealed that infants' brains discriminated between emotional facial expressions containing high but not between expressions containing low spatial frequencies. Specifically, happy faces containing high spatial frequencies elicited a smaller Nc amplitude than fearful faces containing high spatial frequencies and happy and fearful faces containing low spatial frequencies. Our results demonstrate that already in infancy spatial frequency content influences the processing of facial emotions. Furthermore, we observed that fearful facial expressions elicited a comparable Nc response for high and low spatial frequencies, suggesting a robust detection of fearful faces irrespective of spatial frequency content, whereas the detection of happy facial expressions was contingent upon frequency content. In summary, these data provide new insights into the neural processing of facial emotions in early development by highlighting the differential role played by spatial frequencies in the detection of fear and happiness.

  12. Breakfast frequency among adolescents: associations with measures of family functioning.

    PubMed

    Pedersen, Trine Pagh; Holstein, Bjørn E; Damsgaard, Mogens Trab; Rasmussen, Mette

    2016-06-01

    To investigate (i) associations between adolescents' frequency of breakfast and family functioning (close relations to parents, quality of family communication and family support) and (ii) if any observed associations between breakfast frequency and family functioning vary by sociodemographic factors. School-based cross-sectional study. Students completed a web-based questionnaire. Associations were estimated by multilevel multivariate logistic regression. Danish arm of the Health Behaviour in School-aged Children study, 2014. Adolescents aged 13 and 15 years (n 3054) from a random sample of forty-one schools. Nearly one-quarter of the adolescents had low breakfast frequency. Low breakfast frequency was associated with low family functioning measured by three dimensions. The OR (95 % CI) of low breakfast frequency was 1·81 (1·40, 2·33) for adolescents who reported no close relations to parents, 2·28 (1·61, 3·22) for adolescents who reported low level of quality of family communication and 2·09 (1·39, 3·15) for adolescents who reported low level of family support. Joint effect analyses suggested that the odds of low breakfast frequency among adolescents with low family functioning compared with high family functioning were highest among adolescents being girls, immigrants and living in other than a traditional family structure. Low breakfast frequency was associated with low family functioning measured by close relations to parents, quality of family communication and family support. Further, analyses suggested that the associations were more pronounced among girls, immigrants and adolescents from other family structure than traditional. The study highlights the importance of the family setting in promoting regular breakfast frequency among adolescents.

  13. Enhancing interaural-delay-based extents of laterality at high frequencies by using ``transposed stimuli''

    NASA Astrophysics Data System (ADS)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2003-06-01

    An acoustic pointing task was used to determine whether interaural temporal disparities (ITDs) conveyed by high-frequency ``transposed'' stimuli would produce larger extents of laterality than ITDs conveyed by bands of high-frequency Gaussian noise. The envelopes of transposed stimuli are designed to provide high-frequency channels with information similar to that conveyed by the waveforms of low-frequency stimuli. Lateralization was measured for low-frequency Gaussian noises, the same noises transposed to 4 kHz, and high-frequency Gaussian bands of noise centered at 4 kHz. Extents of laterality obtained with the transposed stimuli were greater than those obtained with bands of Gaussian noise centered at 4 kHz and, in some cases, were equivalent to those obtained with low-frequency stimuli. In a second experiment, the general effects on lateral position produced by imposed combinations of bandwidth, ITD, and interaural phase disparities (IPDs) on low-frequency stimuli remained when those stimuli were transposed to 4 kHz. Overall, the data were fairly well accounted for by a model that computes the cross-correlation subsequent to known stages of peripheral auditory processing augmented by low-pass filtering of the envelopes within the high-frequency channels of each ear.

  14. Human responses to upright tilt: a window on central autonomic integration

    NASA Technical Reports Server (NTRS)

    Cooke, W. H.; Hoag, J. B.; Crossman, A. A.; Kuusela, T. A.; Tahvanainen, K. U.; Eckberg, D. L.

    1999-01-01

    1. We examined interactions between haemodynamic and autonomic neural oscillations during passive upright tilt, to gain better insight into human autonomic regulatory mechanisms. 2. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in nine healthy young adults. Subjects breathed in time with a metronome at 12 breaths min-1 (0.2 Hz) for 5 min each, in supine, and 20, 40, 60, 70 and 80 deg head-up positions. We performed fast Fourier transform (and autoregressive) power spectral analyses and integrated low-frequency (0.05-0.15 Hz) and respiratory-frequency (0. 15-0.5 Hz) spectral powers. 3. Integrated areas of muscle sympathetic bursts and their low- and respiratory-frequency spectral powers increased directly and significantly with the tilt angle. The centre frequency of low-frequency sympathetic oscillations was constant before and during tilt. Sympathetic bursts occurred more commonly during expiration than inspiration at low tilt angles, but occurred equally in expiration and inspiration at high tilt angles. 4. Systolic and diastolic pressures and their low- and respiratory-frequency spectral powers increased, and R-R intervals and their respiratory-frequency spectral power decreased progressively with the tilt angle. Low-frequency R-R interval spectral power did not change. 5. The cross-spectral phase angle between systolic pressures and R-R intervals remained constant and consistently negative at the low frequency, but shifted progressively from positive to negative at the respiratory frequency during tilt. The arterial baroreflex modulus, calculated from low-frequency cross-spectra, decreased at high tilt angles. 6. Our results document changes of baroreflex responses during upright tilt, which may reflect leftward movement of subjects on their arterial pressure sympathetic and vagal response relations. The intensity, but not the centre frequency of low-frequency cardiovascular rhythms, is modulated by the level of arterial baroreceptor input. Tilt reduces respiratory gating of sympathetic and vagal motoneurone responsiveness to stimulatory inputs for different reasons; during tilt, sympathetic stimulation increases to a level that overwhelms the respiratory gate, and vagal stimulation decreases to a level below that necessary for maximal respiratory gating to occur.

  15. Human responses to upright tilt: a window on central autonomic integration.

    PubMed

    Cooke, W H; Hoag, J B; Crossman, A A; Kuusela, T A; Tahvanainen, K U; Eckberg, D L

    1999-06-01

    1. We examined interactions between haemodynamic and autonomic neural oscillations during passive upright tilt, to gain better insight into human autonomic regulatory mechanisms. 2. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in nine healthy young adults. Subjects breathed in time with a metronome at 12 breaths min-1 (0.2 Hz) for 5 min each, in supine, and 20, 40, 60, 70 and 80 deg head-up positions. We performed fast Fourier transform (and autoregressive) power spectral analyses and integrated low-frequency (0.05-0.15 Hz) and respiratory-frequency (0. 15-0.5 Hz) spectral powers. 3. Integrated areas of muscle sympathetic bursts and their low- and respiratory-frequency spectral powers increased directly and significantly with the tilt angle. The centre frequency of low-frequency sympathetic oscillations was constant before and during tilt. Sympathetic bursts occurred more commonly during expiration than inspiration at low tilt angles, but occurred equally in expiration and inspiration at high tilt angles. 4. Systolic and diastolic pressures and their low- and respiratory-frequency spectral powers increased, and R-R intervals and their respiratory-frequency spectral power decreased progressively with the tilt angle. Low-frequency R-R interval spectral power did not change. 5. The cross-spectral phase angle between systolic pressures and R-R intervals remained constant and consistently negative at the low frequency, but shifted progressively from positive to negative at the respiratory frequency during tilt. The arterial baroreflex modulus, calculated from low-frequency cross-spectra, decreased at high tilt angles. 6. Our results document changes of baroreflex responses during upright tilt, which may reflect leftward movement of subjects on their arterial pressure sympathetic and vagal response relations. The intensity, but not the centre frequency of low-frequency cardiovascular rhythms, is modulated by the level of arterial baroreceptor input. Tilt reduces respiratory gating of sympathetic and vagal motoneurone responsiveness to stimulatory inputs for different reasons; during tilt, sympathetic stimulation increases to a level that overwhelms the respiratory gate, and vagal stimulation decreases to a level below that necessary for maximal respiratory gating to occur.

  16. Distinct spatial frequency sensitivities for processing faces and emotional expressions.

    PubMed

    Vuilleumier, Patrik; Armony, Jorge L; Driver, Jon; Dolan, Raymond J

    2003-06-01

    High and low spatial frequency information in visual images is processed by distinct neural channels. Using event-related functional magnetic resonance imaging (fMRI) in humans, we show dissociable roles of such visual channels for processing faces and emotional fearful expressions. Neural responses in fusiform cortex, and effects of repeating the same face identity upon fusiform activity, were greater with intact or high-spatial-frequency face stimuli than with low-frequency faces, regardless of emotional expression. In contrast, amygdala responses to fearful expressions were greater for intact or low-frequency faces than for high-frequency faces. An activation of pulvinar and superior colliculus by fearful expressions occurred specifically with low-frequency faces, suggesting that these subcortical pathways may provide coarse fear-related inputs to the amygdala.

  17. The Neuroprotective Mechanism of Low-Frequency rTMS on Nigral Dopaminergic Neurons of Parkinson's Disease Model Mice

    PubMed Central

    Dong, Qiaoyun; Wang, Yanyong; Gu, Ping; Shao, Rusheng; Zhao, Li; Liu, Xiqi; Wang, Zhanqiang; Wang, Mingwei

    2015-01-01

    Background. Parkinson's disease is a neurodegenerative disease in elder people, pathophysiologic basis of which is the severe deficiency of dopamine in the striatum. The purpose of the present study was to evaluate the neuroprotective effect of low-frequency rTMS on Parkinson's disease in model mice. Methods. The effects of low-frequency rTMS on the motor function, cortex excitability, neurochemistry, and neurohistopathology of MPTP-induced Parkinson's disease mice were investigated through behavioral detection, electrophysiologic technique, high performance liquid chromatography-electrochemical detection, immunohistochemical staining, and western blot. Results. Low-frequency rTMS could improve the motor coordination impairment of Parkinson's disease mice: the resting motor threshold significantly decreased in the Parkinson's disease mice; the degeneration of nigral dopaminergic neuron and the expression of tyrosine hydroxylase were significantly improved by low-frequency rTMS; moreover, the expressions of brain derived neurotrophic factor and glial cell line derived neurotrophic factor were also improved by low-frequency rTMS. Conclusions. Low-frequency rTMS had a neuroprotective effect on the nigral dopaminergic neuron which might be due to the improved expressions of brain derived neurotrophic factor and glial cell line-derived neurotrophic factor. The present study provided a theoretical basis for the application of low-frequency rTMS in the clinical treatment and recovery of Parkinson's disease. PMID:25883828

  18. Experimental evidence for real-time song frequency shift in response to urban noise in a passerine bird.

    PubMed

    Bermúdez-Cuamatzin, Eira; Ríos-Chelén, Alejandro A; Gil, Diego; Garcia, Constantino Macías

    2011-02-23

    Research has shown that bird songs are modified in different ways to deal with urban noise and promote signal transmission through noisy environments. Urban noise is composed of low frequencies, thus the observation that songs have a higher minimum frequency in noisy places suggests this is a way of avoiding noise masking. Most studies are correlative and there is as yet little experimental evidence that this is a short-term mechanism owing to individual plasticity. Here we experimentally test if house finches (Carpodacus mexicanus) can modulate the minimum frequency of their songs in response to different noise levels. We exposed singing males to three continuous treatments: low-high-low noise levels. We found a significant increase in minimum frequency from low to high and a decrement from high to low treatments. We also found that this was mostly achieved by modifying the frequency of the same low-frequency syllable types used in the different treatments. When different low-frequency syllables were used, those sung during the noisy condition were longer than the ones sang during the quiet condition. We conclude that house finches modify their songs in several ways in response to urban noise, thus providing evidence of a short-term acoustic adaptation.

  19. Modelling low-frequency volcanic earthquakes in a viscoelastic medium with topography

    NASA Astrophysics Data System (ADS)

    Jousset, P.; Neuberg, J.

    2003-04-01

    Magma properties are fundamental to explain the volcanic eruption style as well as the generation and propagation of seismic waves. This study focusses on rheological magma properties and their impact on low-frequency volcanic earthquakes. We investigate the effects of anelasticity and topography on the amplitudes and spectra of synthetic low-frequency earthquakes. Using a 2D finite difference scheme, we model the propagation of seismic energy initiated in a fluid-filled conduit embedded in a 2D homogeneous viscoelastic medium with topography. Topography is introduced by using a mapping procedure that stretches the computational rectangular grid into a grid which follows the topography. We model intrinsic attenuation by linear viscoelastic theory and we show that volcanic media can be approximated by a standard linear solid for seismic frequencies (i.e., above 2 Hz). Results demonstrate that attenuation modifies both amplitude and dispersive characteristics of low-frequency earthquakes. Low-frequency events are dispersive by nature; however, if attenuation is introduced, their dispersion characteristics will be altered. The topography modifies the amplitudes, depending on the position of seismographs at the surface. This study shows that we need to take into account attenuation and topography to interpret correctly observed low-frequency volcanic earthquakes. It also suggests that the rheological properties of magmas may be constrained by the analysis of low-frequency seismograms.

  20. The Prevalence of Annoyance and Effects after Long-Term Exposure to Low-Frequency Noise

    NASA Astrophysics Data System (ADS)

    PERSSON WAYE, K.; RYLANDER, R.

    2001-02-01

    A cross-sectional questionnaire and noise measurement survey was undertaken among 279 randomly chosen persons exposed to noise from heat pump/ventilation installations in their homes. The aim was to evaluate the prevalence of annoyance, disturbance of rest and concentration and the presence of psycho-social and medical symptoms in relation to noise exposure. Of the sample, 108 persons were exposed to a noise classified as of a low-frequency character (low-frequency noise exposed). As controls were chosen 171 persons living in similar residential areas, but exposed to a noise classified as of a mid-frequency character. The results showed that the prevalence of annoyance and disturbed concentration and rest was significantly higher among the persons exposed to low-frequency noise as compared to controls. Annoyance was suggested to be related to the sound pressure levels of the dominant low frequencies. The dB (A) noise levels did not predict annoyance. No significant differences in medical or psycho-social symptoms were found between the low-frequency noise exposed persons and controls. Among persons reporting themselves to be “rather” or “very” annoyed by low-frequency noise due to the heat pump/ventilation installations, a higher extent of psycho-social symptoms, sleep disturbance and headaches was found.

  1. Nonequilibrium atmospheric pressure plasma jet using a combination of 50 kHz/2 MHz dual-frequency power sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yong-Jie; Yuan, Qiang-Hua; Li, Fei

    2013-11-15

    An atmospheric pressure plasma jet is generated by dual sinusoidal wave (50 kHz and 2 MHz). The dual-frequency plasma jet exhibits the advantages of both low frequency and radio frequency plasmas, namely, the long plasma plume and the high electron density. The radio frequency ignition voltage can be reduced significantly by using dual-frequency excitation compared to the conventional radio frequency without the aid of the low frequency excitation source. A larger operating range of α mode discharge can be obtained using dual-frequency excitation which is important to obtain homogeneous and low-temperature plasma. A larger controllable range of the gas temperaturemore » of atmospheric pressure plasma could also be obtained using dual-frequency excitation.« less

  2. Hybrid simulation of fishbone instabilities in the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Fu, Guoyong; Wang, Feng; Xu, Liqing; Li, Guoqiang; Liu, Chengyue; EAST Team

    2017-10-01

    Hybrid simulations with the global kinetic- MHD code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven fishbone in EAST experiment. Linear simulations show that a low frequency fishbone instability is excited at experimental value of beam ion pressure. The mode is mainly driven by low energy beam ions via precessional resonance. The results are consistent with the experimental measurement with respect to mode frequency and mode structure. When the beam ion pressure is increased to exceed a critical value, the low frequency mode transits to a BAE with much higher frequency. Nonlinear simulations show that the frequency of the low frequency fishbone chirps up and down with corresponding hole-clump structures in phase space, consistent with the Berk-Breizman theory. In addition to the low frequency mode, the high frequency BAE is excited during the nonlinear evolution. For the transient case of beam pressure fraction where the low and high frequency modes are simultaneously excited in the linear phase, only one dominant mode appears in the nonlinear phase with frequency jumps up and down during nonlinear evolution. This work is supported by the National Natural Science Foundation of China under Grant Nos. 11605245 and 11505022, and the CASHIPS Director's Fund under Grant No. YZJJ201510, and the Department of Energy Scientific Discovery through Advanced Computing (SciDAC) under Grant No. DE-AC02-09CH11466.

  3. Characterization of Low-Frequency Combustion Stability of the Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Jones, Preston (Technical Monitor)

    2002-01-01

    A series of tests were conducted to measure the combustion performance of the Fastrac engine thrust chamber. During mainstage, the thrust chamber exhibited no large-amplitude chamber pressure oscillations that could be identified as low-frequency combustion instability or 'chug'. However, during start-up and shutdown, the thrust chamber very briefly exhibited large-amplitude chamber pressure oscillations that were identified as chug. These instabilities during start-up and shutdown were regarded as benign due to their brevity. Linear models of the thrust chamber and the propellant feed systems were formulated for both the thrust chamber component tests and the flight engine tests. These linear models determined the frequency and decay rate of chamber pressure oscillations given the design and operating conditions of the thrust chamber and feed system. The frequency of chamber pressure oscillations determined from the model closely matched the frequency of low-amplitude, low-frequency chamber pressure oscillations exhibited in some of the later thrust chamber mainstage tests. The decay rate of the chamber pressure oscillations determined from the models indicated that these low-frequency oscillations were stable. Likewise, the decay rate, determined from the model of the flight engine tests indicated that the low-frequency chamber pressure oscillations would be stable.

  4. The frequency dependence of the discharge properties in a capacitively coupled oxygen discharge

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Snorrason, D. I.; Hannesdottir, H.

    2018-02-01

    We use the one-dimensional object-oriented particle-in-cell Monte Carlo collision code oopd1 to explore the evolution of the charged particle density profiles, electron heating mechanism, the electron energy probability function (EEPF), and the ion energy distribution in a single frequency capacitively coupled oxygen discharge, with driving frequency in the range 12-100 MHz. At a low driving frequency and low pressure (5 and 10 mTorr), a combination of stochastic (α-mode) and drift ambipolar (DA) heating in the bulk plasma (the electronegative core) is observed and the DA-mode dominates the time averaged electron heating. As the driving frequency or pressure are increased, the heating mode transitions into a pure α-mode, where electron heating in the sheath region dominates. At low pressure (5 and 10 mTorr), this transition coincides with a sharp decrease in electronegativity. At low pressure and low driving frequency, the EEPF is concave. As the driving frequency is increased, the number of low energy electrons increases and the relative number of higher energy electrons (>10 eV) increases. At high driving frequency, the EEPF develops a convex shape or becomes bi-Maxwellian.

  5. 47 CFR 74.761 - Frequency tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Booster Stations § 74.761 Frequency tolerance. The licensee of a low power TV, TV translator, or TV booster station shall maintain the transmitter output frequencies as set forth below. The frequency... channel carrier frequency if the low power TV, TV translator, or TV booster station is authorized with a...

  6. 47 CFR 74.761 - Frequency tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Booster Stations § 74.761 Frequency tolerance. The licensee of a low power TV, TV translator, or TV booster station shall maintain the transmitter output frequencies as set forth below. The frequency... channel carrier frequency if the low power TV, TV translator, or TV booster station is authorized with a...

  7. 47 CFR 74.761 - Frequency tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Booster Stations § 74.761 Frequency tolerance. The licensee of a low power TV, TV translator, or TV booster station shall maintain the transmitter output frequencies as set forth below. The frequency... channel carrier frequency if the low power TV, TV translator, or TV booster station is authorized with a...

  8. 47 CFR 74.761 - Frequency tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Booster Stations § 74.761 Frequency tolerance. The licensee of a low power TV, TV translator, or TV booster station shall maintain the transmitter output frequencies as set forth below. The frequency... channel carrier frequency if the low power TV, TV translator, or TV booster station is authorized with a...

  9. Predictors of seizure occurrence in children undergoing pre-surgical monitoring.

    PubMed

    Harini, Chellamani; Singh, Kanwaljit; Takeoka, Masanori; Parulkar, Isha; Bergin, Ann Marie; Loddenkemper, Tobias; Kothare, Sanjeev V

    2013-10-01

    Long-Term-Monitoring (LTM) is a valuable tool for seizure localization/lateralization among children with refractory-epilepsy undergoing pre-surgical-monitoring. The aim of this study was to examine the factors predicting occurrence of single/multiple seizures in children undergoing pre-surgical monitoring in the LTM unit. Chart review was done on 95 consecutive admissions on 92 children (40 females) admitted to the LTM-unit for pre-surgical workup. Relationship between occurrence of multiple (≥ 3) seizures and factors such as home seizure-frequency, demographics, MRI-lesions/seizure-type and localization/AED usage/neurological-exam/epilepsy-duration was evaluated by logistic-regression and survival-analysis. Home seizure-frequency was further categorized into low (up-to 1/month), medium (up-to 1/week) and high (>1/week) and relationship of these categories to the occurrence of multiple seizures was evaluated. Mean length of stay was 5.24 days in all 3 groups. Home seizure frequency was the only factor predicting the occurrence of single/multiple seizures in children undergoing presurgical workup. Other factors (age/sex/MRI-lesions/seizure-type and localization/AED-usage/neurological-exam/epilepsy-duration) did not affect occurrence of single/multiple seizures or time-to-occurrence of first/second seizure. Analysis of the home-seizure frequency categories revealed that 98% admissions in high-frequency, 94% in the medium, and 77% in low-frequency group had at-least 1 seizure recorded during the monitoring. Odds of first-seizure increased in high vs. low-frequency group (p=0.01). Eighty-nine percent admissions in high-frequency, 78% in medium frequency, versus 50% in low-frequency group had ≥ 3 seizures. The odds of having ≥ 3 seizures increased in high-frequency (p=0.0005) and in medium-frequency (p=0.007), compared to low-frequency group. Mean time-to-first-seizure was 2.7 days in low-frequency, 2.1 days in medium, and 2 days in high-frequency group. Time-to-first-seizure in high and medium-frequency was less than in low-frequency group (p<0.0014 and p=0.038). Majority of the admissions (92%) admitted to the LTM-unit for pre-surgical workup had at-least one seizure during a mean length of stay of 5.24 days. Home seizure-frequency was the only predictor influencing occurrence of single/multiple seizures in the LTM unit. Patients with low seizure-frequency are at risk for completing the monitoring with less than the optimum number (<3) of seizures captured. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  10. Inactivation of Enterobacter aerogenes in reconstituted skim milk by high- and low-frequency ultrasound.

    PubMed

    Gao, Shengpu; Hemar, Yacine; Lewis, Gillian D; Ashokkumar, Muthupandian

    2014-11-01

    The inactivation of Enterobacter aerogenes in skim milk using low-frequency (20kHz) and high-frequency (850kHz) ultrasonication was investigated. It was found that low-frequency acoustic cavitation resulted in lethal damage to E. aerogenes. The bacteria were more sensitive to ultrasound in water than in reconstituted skim milk having different protein concentrations. However, high-frequency ultrasound was not able to inactivate E. aerogenes in milk even when powers as high as 50W for 60min were used. This study also showed that high-frequency ultrasonication had no influence on the viscosity and particle size of skim milk, whereas low-frequency ultrasonication resulted in the decrease in viscosity and particle size of milk. The decrease in particle size is believed to be due to the breakup of the fat globules, and possibly to the cleavage of the κ-casein present at the surface of the casein micelles. Whey proteins were also found to be slightly affected by low-frequency ultrasound, with the amounts of α-lactalbumin and β-lactoglobulin slightly decreasing. Copyright © 2013. Published by Elsevier B.V.

  11. High-Frequency Subband Compressed Sensing MRI Using Quadruplet Sampling

    PubMed Central

    Sung, Kyunghyun; Hargreaves, Brian A

    2013-01-01

    Purpose To presents and validates a new method that formalizes a direct link between k-space and wavelet domains to apply separate undersampling and reconstruction for high- and low-spatial-frequency k-space data. Theory and Methods High- and low-spatial-frequency regions are defined in k-space based on the separation of wavelet subbands, and the conventional compressed sensing (CS) problem is transformed into one of localized k-space estimation. To better exploit wavelet-domain sparsity, CS can be used for high-spatial-frequency regions while parallel imaging can be used for low-spatial-frequency regions. Fourier undersampling is also customized to better accommodate each reconstruction method: random undersampling for CS and regular undersampling for parallel imaging. Results Examples using the proposed method demonstrate successful reconstruction of both low-spatial-frequency content and fine structures in high-resolution 3D breast imaging with a net acceleration of 11 to 12. Conclusion The proposed method improves the reconstruction accuracy of high-spatial-frequency signal content and avoids incoherent artifacts in low-spatial-frequency regions. This new formulation also reduces the reconstruction time due to the smaller problem size. PMID:23280540

  12. Efficacy of low-frequency low-intensity electrotherapy in the treatment of breast cancer-related lymphoedema: a cross-over randomized trial.

    PubMed

    Belmonte, Roser; Tejero, Marta; Ferrer, Montse; Muniesa, Josep Maria; Duarte, Esther; Cunillera, Oriol; Escalada, Ferran

    2012-07-01

    To compare the efficacy of low-frequency low-intensity electrotherapy and manual lymphatic drainage in the treatment of chronic upper limb breast cancer-related lymphoedema. Cross-over single-blind random clinical trial. Rehabilitation service. Thirty-six women with chronic upper limb breast cancer-related lymphoedema. Patients were randomized to undergo 10 sessions of manual lymphatic drainage followed by 10 sessions of low-frequency low-intensity electrotherapy or to undergo first low-frequency low-intensity electrotherapy followed by manual lymphatic drainage. There was a month of washout time between treatments. Each patient was examined just before and after each treatment. Researchers and outcome assessors were blinded for assigned treatment. Outcomes were lymphoedema volume, pain, heaviness and tightness, and health-related quality of life measured with the Functional Assessment of Cancer Therapy Questionnaire for Breast Cancer version 4 (FACT-B+4). Carry-over, period and treatment effects were analysed. Treatment effect was assessed using paired t-test. Thirty patients finalized treatment. Comparing the changes in low-frequency low-intensity electrotherapy with manual lymphatic drainage changes, there were no significant differences. Low-frequency low-intensity electrotherapy did not reduce lymphoedema volume (mean of change = 19.77 mL, P = 0.36), but significant reductions were observed in pain, heaviness and tightness (mean of change = 13.1, 16.2 and 6.4 mm, respectively), and FACT-B+4 summaries improved significantly (Trial Outcome Index mean of change = 5.4, P = 0.015). Manual lymphatic drainage showed no significant changes in any of the outcomes Although there are no significant differences between treatment changes, the observed trend towards a better health-related quality of life is remarkable in low-frequency low-intensity electrotherapy.

  13. Efficacy of low-frequency low-intensity electrotherapy in the treatment of breast cancer-related lymphoedema: a cross-over randomized trial

    PubMed Central

    Tejero, Marta; Ferrer, Montse; Muniesa, Josep M; Duarte, Esther; Cunillera, Oriol; Escalada, Ferran

    2012-01-01

    Objective: To compare the efficacy of low-frequency low-intensity electrotherapy and manual lymphatic drainage in the treatment of chronic upper limb breast cancer-related lymphoedema. Design: Cross-over single-blind random clinical trial. Setting: Rehabilitation service. Participants: Thirty-six women with chronic upper limb breast cancer-related lymphoedema. Methods: Patients were randomized to undergo 10 sessions of manual lymphatic drainage followed by 10 sessions of low-frequency low-intensity electrotherapy or to undergo first low-frequency low-intensity electrotherapy followed by manual lymphatic drainage. There was a month of washout time between treatments. Each patient was examined just before and after each treatment. Researchers and outcome assessors were blinded for assigned treatment. Measures: Outcomes were lymphoedema volume, pain, heaviness and tightness, and health-related quality of life measured with the Functional Assessment of Cancer Therapy Questionnaire for Breast Cancer version 4 (FACT-B+4). Carry-over, period and treatment effects were analysed. Treatment effect was assessed using paired t-test. Results: Thirty patients finalized treatment. Comparing the changes in low-frequency low-intensity electrotherapy with manual lymphatic drainage changes, there were no significant differences. Low-frequency low-intensity electrotherapy did not reduce lymphoedema volume (mean of change = 19.77 mL, P = 0.36), but significant reductions were observed in pain, heaviness and tightness (mean of change = 13.1, 16.2 and 6.4 mm, respectively), and FACT-B+4 summaries improved significantly (Trial Outcome Index mean of change = 5.4, P = 0.015). Manual lymphatic drainage showed no significant changes in any of the outcomes Conclusion: Although there are no significant differences between treatment changes, the observed trend towards a better health-related quality of life is remarkable in low-frequency low-intensity electrotherapy. PMID:22172923

  14. Low-frequency stimulation of the external globus palladium produces anti-epileptogenic and anti-ictogenic actions in rats.

    PubMed

    Cheng, Hui; Kuang, Yi-fang; Liu, Yang; Wang, Yi; Xu, Zheng-hao; Gao, Feng; Zhang, Shi-hong; Ding, Mei-ping; Chen, Zhong

    2015-08-01

    To investigate the anti-epileptic effects of deep brain stimulation targeting the external globus palladium (GPe) in rats. For inducing amygdala kindling and deep brain stimulation, bipolar stainless-steel electrodes were implanted in SD rats into right basolateral amygdala and right GPe, respectively. The effects of deep brain stimulation were evaluated in the amygdala kindling model, maximal electroshock model (MES) and pentylenetetrazole (PTZ) model. Moreover, the background EEGs in the amygdala and GPe were recorded. Low-frequency stimulation (0.1 ms, 1 Hz, 15 min) at the GPe slowed the progression of seizure stages and shortened the after-discharge duration (ADD) during kindling acquisition. Furthermore, low-frequency stimulation significantly decreased the incidence of generalized seizures, suppressed the average stage, and shortened the cumulative ADD and generalized seizure duration in fully kindled rats. In addition, low-frequency stimulation significantly suppressed the average stage of MES-induced seizures and increased the latency to generalized seizures in the PTZ model. High-frequency stimulation (0.1 ms, 130 Hz, 5 min) at the GPe had no anti-epileptic effect and even aggravated epileptogenesis induced by amygdala kindling. EEG analysis showed that low-frequency stimulation at the GPe reversed the increase in delta power, whereas high-frequency stimulation at the GPe had no such effect. Low-frequency stimulation, but not high-frequency stimulation, at the GPe exerts therapeutic effect on temporal lobe epilepsy and tonic-colonic generalized seizures, which may be due to interference with delta rhythms. The results suggest that modulation of GPe activity using low-frequency stimulation or drugs may be a promising epilepsy treatment.

  15. Analysis of multiple time scales in a transistor amplifier.

    PubMed

    Armstead, Douglas N; Carroll, Thomas L

    2005-03-01

    It was shown previously in an experiment that when high frequency signals (on the order of 1 MHz) were injected into this low frequency amplifier, the nonlinearities of the pn junctions caused period doubling, chaos, and very low frequency oscillations (on the order of 1 Hz). In this paper we present theory and simulations to explain the existence of the low frequency oscillations.

  16. Stability of Low-Frequency Residual Hearing in Patients Who Are Candidates for Combined Acoustic Plus Electric Hearing

    ERIC Educational Resources Information Center

    Yao, Wai Na; Turner, Christopher W.; Gantz, Bruce J.

    2006-01-01

    The purpose of this study was to investigate the stability over time of low-frequency auditory thresholds to better determine if the new technique of using a short-electrode cochlear implant that preserves residual low-frequency acoustic hearing can be a long-term solution for those with severe-to-profound hearing loss at high frequencies. The…

  17. Consumer clusters in Denmark based on coarse vegetable intake frequency, explained by hedonics, socio-demographic, health and food lifestyle factors. A cross-sectional national survey.

    PubMed

    Beck, Tove K; Jensen, Sidsel; Simmelsgaard, Sonni Hansen; Kjeldsen, Chris; Kidmose, Ulla

    2015-08-01

    Vegetable intake seems to play a protective role against major lifestyle diseases. Despite this, the Danish population usually eats far less than the recommended daily intake. The present study focused on the intake of 17 coarse vegetables and the potential barriers limiting their intake. The present study drew upon a large Danish survey (n = 1079) to study the intake of coarse vegetables among Danish consumers. Four population clusters were identified based on their intake of 17 different coarse vegetables, and profiled according to hedonics, socio-demographic, health, and food lifestyle factors. The four clusters were characterized by a very low intake frequency of coarse vegetables ('low frequency'), a low intake frequency of coarse vegetables; but high intake frequency of carrots ('carrot eaters'), a moderate coarse vegetable intake frequency and high intake frequency of beetroot ('beetroot eaters'), and a high intake frequency of all coarse vegetables ('high frequency'). There was a relationship between reported liking and reported intake frequency for all tested vegetables. Preference for foods with a sweet, salty or bitter taste, in general, was also identified to be decisive for the reported vegetable intake, as these differed across the clusters. Each cluster had distinct socio-demographic, health and food lifestyle profiles. 'Low frequency' was characterized by uninvolved consumers with lack of interest in food, 'carrot eaters' vegetable intake was driven by health aspects, 'beetroot eaters' were characterized as traditional food consumers, and 'high frequency' were individuals with a strong food engagement and high vegetable liking. 'Low frequency' identified more barriers than other consumer clusters and specifically regarded low availability of pre-cut/prepared coarse vegetables on the market as a barrier. Across all clusters a low culinary knowledge was identified as the main barrier. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Underestimated AMOC Variability and Implications for AMV and Predictability in CMIP Models

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoqin; Zhang, Rong; Knutson, Thomas R.

    2018-05-01

    The Atlantic Meridional Overturning Circulation (AMOC) has profound impacts on various climate phenomena. Using both observations and simulations from the Coupled Model Intercomparison Project Phase 3 and 5, here we show that most models underestimate the amplitude of low-frequency AMOC variability. We further show that stronger low-frequency AMOC variability leads to stronger linkages between the AMOC and key variables associated with the Atlantic multidecadal variability (AMV), and between the subpolar AMV signal and northern hemisphere surface air temperature. Low-frequency extratropical northern hemisphere surface air temperature variability might increase with the amplitude of low-frequency AMOC variability. Atlantic decadal predictability is much higher in models with stronger low-frequency AMOC variability and much lower in models with weaker or without AMOC variability. Our results suggest that simulating realistic low-frequency AMOC variability is very important, both for simulating realistic linkages between AMOC and AMV-related variables and for achieving substantially higher Atlantic decadal predictability.

  19. What is infrasound?

    PubMed

    Leventhall, Geoff

    2007-01-01

    Definitions of infrasound and low-frequency noise are discussed and the fuzzy boundary between them described. Infrasound, in its popular definition as sound below a frequency of 20 Hz, is clearly audible, the hearing threshold having been measured down to 1.5 Hz. The popular concept that sound below 20 Hz is inaudible is not correct. Sources of infrasound are in the range from very low-frequency atmospheric fluctuations up into the lower audio frequencies. These sources include natural occurrences, industrial installations, low-speed machinery, etc. Investigations of complaints of low-frequency noise often fail to measure any significant noise. This has led some complainants to conjecture that their perception arises from non-acoustic sources, such as electromagnetic radiation. Over the past 40 years, infrasound and low-frequency noise have attracted a great deal of adverse publicity on their effects on health, based mainly on media exaggerations and misunderstandings. A result of this has been that the public takes a one-dimensional view of infrasound, concerned only by its presence, whilst ignoring its low levels.

  20. Evaluations of effects due to low-frequency noise in a low demanding work situation

    NASA Astrophysics Data System (ADS)

    Bengtsson, J.; Persson Waye, K.; Kjellberg, A.

    2004-11-01

    Noise sources with a dominating content of low frequencies (20-200 Hz) are found in many occupational environments. This study aimed to evaluate effects of moderate levels of low-frequency noise on attention, tiredness and motivation in a low demanding work situation. Two ventilation noises at the same A-weighted sound pressure level of 45 dB were used: one of a low-frequency character and one of a flat frequency character (reference noise). Thirty-eight female subjects worked with six performance tasks for 4 h in the noises in a between-subject design. Most of the tasks were monotonous and routine in character. Subjective reports were collected using questionnaires and cortisol levels were measured in saliva. The major finding in this study was that low-frequency noise negatively influenced performance on two tasks sensitive to reduced attention and on a proof-reading task. Performances of tasks aimed at evaluating motivation were not significantly affected. The difference in work performance was not reflected by the subjective reports. No effect of noise was found on subjective stress or cortisol levels.

  1. Postural response to predictable and nonpredictable visual flow in children and adults.

    PubMed

    Schmuckler, Mark A

    2017-11-01

    Children's (3-5years) and adults' postural reactions to different conditions of visual flow information varying in its frequency content was examined using a moving room apparatus. Both groups experienced four conditions of visual input: low-frequency (0.20Hz) visual oscillations, high-frequency (0.60Hz) oscillations, multifrequency nonpredictable visual input, and no imposed visual information. Analyses of the frequency content of anterior-posterior (AP) sway revealed that postural reactions to the single-frequency conditions replicated previous findings; children were responsive to low- and high-frequency oscillations, whereas adults were responsive to low-frequency information. Extending previous work, AP sway in response to the nonpredictable condition revealed that both groups were responsive to the different components contained in the multifrequency visual information, although adults retained their frequency selectivity to low-frequency versus high-frequency content. These findings are discussed in relation to work examining feedback versus feedforward control of posture, and the reweighting of sensory inputs for postural control, as a function of development and task context. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Novel solutions to low-frequency problems with geometrically designed beam-waveguide systems

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Esquivel, M. S.; Manshadi, F.

    1995-01-01

    The poor low-frequency performance of geometrically designed beam-waveguide (BWG) antennas is shown to be caused by the diffraction phase centers being far from the geometrical optics mirror focus, resulting in substantial spillover and defocusing loss. Two novel solutions are proposed: (1) reposition the mirrors to focus low frequencies and redesign the high frequencies to utilize the new mirror positions, and (2) redesign the input feed system to provide an optimum solution for the low frequency. A novel use of the conjugate phase-matching technique is utilized to design the optimum low-frequency feed system, and the new feed system has been implemented in the JPL research and development BWG as part of a dual S-/X-band (2.3 GHz/8.45 GHz) feed system. The new S-band feed system is shown to perform significantly better than the original geometrically designed system.

  3. Low-Frequency Oscillations and Control of the Motor Output

    PubMed Central

    Lodha, Neha; Christou, Evangelos A.

    2017-01-01

    A less precise force output impairs our ability to perform movements, learn new motor tasks, and use tools. Here we show that low-frequency oscillations in force are detrimental to force precision. We summarize the recent evidence that low-frequency oscillations in force output represent oscillations of the spinal motor neuron pool from the voluntary drive, and can be modulated by shifting power to higher frequencies. Further, force oscillations below 0.5 Hz impair force precision with increased voluntary drive, aging, and neurological disease. We argue that the low-frequency oscillations are (1) embedded in the descending drive as shown by the activation of multiple spinal motor neurons, (2) are altered with force intensity and brain pathology, and (3) can be modulated by visual feedback and motor training to enhance force precision. Thus, low-frequency oscillations in force provide insight into how the human brain regulates force precision. PMID:28261107

  4. The Detection of Very Low Frequency Earthquake using Broadband Seismic Array Data in South-Western Japan

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.; Yamanaka, Y.; Kikuchi, M.

    2002-12-01

    The existences of variety of low-frequency seismic sources are obvious by the dense and equalized equipment_fs seismic network. Kikuchi(2000) and Kumagai et.al. (2001) analyzed about 50sec period ground motion excited by the volcanic activities Miyake-jima, Izu Islands. JMA is listing the low frequency earthquakes routinely in their hypocenter determination. Obara (2002) detected the low frequency, 2-4 Hz, tremor that occurred along subducting Philippine Sea plate by envelope analysis of high dense and short period seismic network (Hi-net). The monitoring of continuos long period waveform show us the existence of many unknown sources. Recently, the broadband seismic network of Japan (F-net, previous name is FREESIA) is developed and extends to linear array about 3,000 km. We reviewed the long period seismic data and earthquake catalogues. Many candidates, which are excited by unknown sources, are picked up manually. The candidates are reconfirmed in detail by the original seismograms and their rough frequency characteristics are evaluated. Most events have the very low frequency seismograms that is dominated period of 20 _E30 sec and smaller amplitude than ground noise level in shorter period range. We developed the hypocenter determination technique applied the grid search method. Moreover for the major events moment tensor inversion was performed. The most source locates at subducting plate and their depth is greater than 30km. However the location don_ft overlap the low frequency tremor source region. Major event_fs moment magnitude is 4 or greater and estimated source time is around 20 sec. We concluded that low frequency seismic event series exist in wide period range in subduction area. The very low frequency earthquakes occurred along Nankai and Ryukyu trough at southwestern Japan. We are planing to survey the very low frequency event systematically in wider western Pacific region.

  5. Low nutation-rate dampers

    NASA Technical Reports Server (NTRS)

    Tossman, B. E.

    1971-01-01

    Mission requirements plus spacecraft weight and power constraints often reduce the excitation frequency of a nutation damper below 1 cpm. Since attitude stability is determined by damper performance, maximum effectiveness at low rates is demanded. Presented are design considerations that low-frequency dampers require, along with descriptions of two low-frequency systems: the Direct Measurement Explorer 1 and the Small Astronomy Satellite A (SAS-A).

  6. Effects of aromaticity in cations and their functional groups on the temperature dependence of low-frequency spectrum

    DOE PAGES

    Kakinuma, Shohei; Ramati, Sharon; Wishart, James F.; ...

    2018-05-21

    We investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3–200 cm -1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf 2]– salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr] +, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm] +, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr] +, 1-benzyl-3-methylimidazolium [BzMIm] +, and N-benzylpyridinium [BzPy] + cations. The aim of this study is to better understand the effects of aromaticity in the cations’ constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but themore » temperature-dependent spectrum of [CHxmMPyrr][NTf 2] is different from that of other ILs. While [CHxmMPyrr][NTf 2] shows spectral changes with temperature in the low-frequency region below 50 cm -1, the other ILs also show spectral changes in the high-frequency region above 80 cm -1 (above 50 cm -1 in the case of [BzMPyrr][NTf 2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.« less

  7. Effects of aromaticity in cations and their functional groups on the temperature dependence of low-frequency spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakinuma, Shohei; Ramati, Sharon; Wishart, James F.

    We investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3–200 cm -1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf 2]– salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr] +, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm] +, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr] +, 1-benzyl-3-methylimidazolium [BzMIm] +, and N-benzylpyridinium [BzPy] + cations. The aim of this study is to better understand the effects of aromaticity in the cations’ constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but themore » temperature-dependent spectrum of [CHxmMPyrr][NTf 2] is different from that of other ILs. While [CHxmMPyrr][NTf 2] shows spectral changes with temperature in the low-frequency region below 50 cm -1, the other ILs also show spectral changes in the high-frequency region above 80 cm -1 (above 50 cm -1 in the case of [BzMPyrr][NTf 2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.« less

  8. Effects of aromaticity in cations and their functional groups on the temperature dependence of low-frequency spectrum

    NASA Astrophysics Data System (ADS)

    Kakinuma, Shohei; Ramati, Sharon; Wishart, James F.; Shirota, Hideaki

    2018-05-01

    In this study, we investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3-200 cm-1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf2]- salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr]+, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm]+, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr]+, 1-benzyl-3-methylimidazolium [BzMIm]+, and N-benzylpyridinium [BzPy]+ cations. The aim of this study is to better understand the effects of aromaticity in the cations' constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but the temperature-dependent spectrum of [CHxmMPyrr][NTf2] is different from that of other ILs. While [CHxmMPyrr][NTf2] shows spectral changes with temperature in the low-frequency region below 50 cm-1, the other ILs also show spectral changes in the high-frequency region above 80 cm-1 (above 50 cm-1 in the case of [BzMPyrr][NTf2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.

  9. Atomic Oxygen Energy in Low Frequency Hyperthermal Plasma Ashers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K R.; Kneubel, Christian A.

    2014-01-01

    Experimental and analytical analysis of the atomic oxygen erosion of pyrolytic graphite as well as Monte Carlo computational modeling of the erosion of Kapton H (DuPont, Wilmington, DE) polyimide was performed to determine the hyperthermal energy of low frequency (30 to 35 kHz) plasma ashers operating on air. It was concluded that hyperthermal energies in the range of 0.3 to 0.9 eV are produced in the low frequency air plasmas which results in texturing similar to that in low Earth orbit (LEO). Monte Carlo computational modeling also indicated that such low energy directed ions are fully capable of producing the experimentally observed textured surfaces in low frequency plasmas.

  10. Harvesting Low-Frequency (<5 Hz) Irregular Mechanical Energy: A Possible Killer Application of Triboelectric Nanogenerator.

    PubMed

    Zi, Yunlong; Guo, Hengyu; Wen, Zhen; Yeh, Min-Hsin; Hu, Chenguo; Wang, Zhong Lin

    2016-04-26

    Electromagnetic generators (EMGs) and triboelectric nanogenerators (TENGs) are the two most powerful approaches for harvesting ambient mechanical energy, but the effectiveness of each depends on the triggering frequency. Here, after systematically comparing the performances of EMGs and TENGs under low-frequency motion (<5 Hz), we demonstrated that the output performance of EMGs is proportional to the square of the frequency, while that of TENGs is approximately in proportion to the frequency. Therefore, the TENG has a much better performance than that of the EMG at low frequency (typically 0.1-3 Hz). Importantly, the extremely small output voltage of the EMG at low frequency makes it almost inapplicable to drive any electronic unit that requires a certain threshold voltage (∼0.2-4 V), so that most of the harvested energy is wasted. In contrast, a TENG has an output voltage that is usually high enough (>10-100 V) and independent of frequency so that most of the generated power can be effectively used to power the devices. Furthermore, a TENG also has advantages of light weight, low cost, and easy scale up through advanced structure designs. All these merits verify the possible killer application of a TENG for harvesting energy at low frequency from motions such as human motions for powering small electronics and possibly ocean waves for large-scale blue energy.

  11. Low-frequency interaural cross correlation discrimination in stereophonic reproduction of musical tones

    NASA Astrophysics Data System (ADS)

    Kim, Sungyoung; Martens, William L.

    2005-04-01

    By industry standard (ITU-R. Recommendation BS.775-1), multichannel stereophonic signals within the frequency range of up to 80 or 120 Hz may be mixed and delivered via a single driver (e.g., a subwoofer) without significant impairment of stereophonic sound quality. The assumption that stereophonic information within such low-frequency content is not significant was tested by measuring discrimination thresholds for changes in interaural cross-correlation (IACC) within spectral bands containing the lowest frequency components of low-pitch musical tones. Performances were recorded for three different musical instruments playing single notes ranging in fundamental frequency from 41 Hz to 110 Hz. The recordings, made using a multichannel microphone array composed of five DPA 4006 pressure microphones, were processed to produce a set of stimuli that varied in interaural cross-correlation (IACC) within a low-frequency band, but were otherwise identical in a higher-frequency band. This correlation processing was designed to have minimal effect upon other psychoacoustic variables such as loudness and timbre. The results show that changes in interaural cross correlation (IACC) within low-frequency bands of low-pitch musical tones are most easily discriminated when decorrelated signals are presented via subwoofers positioned at extreme lateral angles (far from the median plane). [Work supported by VRQ.

  12. Minimal basilar membrane motion in low-frequency hearing

    PubMed Central

    Warren, Rebecca L.; Ramamoorthy, Sripriya; Ciganović, Nikola; Zhang, Yuan; Wilson, Teresa M.; Petrie, Tracy; Wang, Ruikang K.; Jacques, Steven L.; Reichenbach, Tobias; Nuttall, Alfred L.; Fridberger, Anders

    2016-01-01

    Low-frequency hearing is critically important for speech and music perception, but no mechanical measurements have previously been available from inner ears with intact low-frequency parts. These regions of the cochlea may function in ways different from the extensively studied high-frequency regions, where the sensory outer hair cells produce force that greatly increases the sound-evoked vibrations of the basilar membrane. We used laser interferometry in vitro and optical coherence tomography in vivo to study the low-frequency part of the guinea pig cochlea, and found that sound stimulation caused motion of a minimal portion of the basilar membrane. Outside the region of peak movement, an exponential decline in motion amplitude occurred across the basilar membrane. The moving region had different dependence on stimulus frequency than the vibrations measured near the mechanosensitive stereocilia. This behavior differs substantially from the behavior found in the extensively studied high-frequency regions of the cochlea. PMID:27407145

  13. 77 FR 5724 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... proposed AD would require repetitive low frequency eddy current inspections of the forward fuselage butt... repetitive [low frequency eddy current] inspections of the forward fuselage butt joints for cracks and, when... effective date of this AD, whichever occurs later, do a low frequency eddy current inspection of the forward...

  14. 47 CFR 74.761 - Frequency tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.761 Frequency tolerance. The licensee of a low power TV, TV translator, or TV... channel carrier frequency if the low power TV, TV translator, or TV booster station is authorized with a...

  15. Improving liquid chromatography-tandem mass spectrometry determinations by modifying noise frequency spectrum between two consecutive wavelet-based low-pass filtering procedures.

    PubMed

    Chen, Hsiao-Ping; Liao, Hui-Ju; Huang, Chih-Min; Wang, Shau-Chun; Yu, Sung-Nien

    2010-04-23

    This paper employs one chemometric technique to modify the noise spectrum of liquid chromatography-tandem mass spectrometry (LC-MS/MS) chromatogram between two consecutive wavelet-based low-pass filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. Although similar techniques of using other sets of low-pass procedures such as matched filters have been published, the procedures developed in this work are able to avoid peak broadening disadvantages inherent in matched filters. In addition, unlike Fourier transform-based low-pass filters, wavelet-based filters efficiently reject noises in the chromatograms directly in the time domain without distorting the original signals. In this work, the low-pass filtering procedures sequentially convolve the original chromatograms against each set of low pass filters to result in approximation coefficients, representing the low-frequency wavelets, of the first five resolution levels. The tedious trials of setting threshold values to properly shrink each wavelet are therefore no longer required. This noise modification technique is to multiply one wavelet-based low-pass filtered LC-MS/MS chromatogram with another artificial chromatogram added with thermal noises prior to the other wavelet-based low-pass filter. Because low-pass filter cannot eliminate frequency components below its cut-off frequency, more efficient peak S/N ratio improvement cannot be accomplished using consecutive low-pass filter procedures to process LC-MS/MS chromatograms. In contrast, when the low-pass filtered LC-MS/MS chromatogram is conditioned with the multiplication alteration prior to the other low-pass filter, much better ratio improvement is achieved. The noise frequency spectrum of low-pass filtered chromatogram, which originally contains frequency components below the filter cut-off frequency, is altered to span a broader range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward the high frequency regimes, the other low-pass filter is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS/MS chromatograms, of which typically less than 6-fold peak S/N ratio improvement achieved with two consecutive wavelet-based low-pass filters remains the same S/N ratio improvement using one-step wavelet-based low-pass filter, are improved to accomplish much better ratio enhancement 25-folds to 40-folds typically when the noise frequency spectrum is modified between two low-pass filters. The linear standard curves using the filtered LC-MS/MS signals are validated. The filtered LC-MS/MS signals are also reproducible. The more accurate determinations of very low concentration samples (S/N ratio about 7-9) are obtained using the filtered signals than the determinations using the original signals. Copyright 2010 Elsevier B.V. All rights reserved.

  16. A Review of the Low-Frequency Waves in the Giant Magnetospheres

    NASA Astrophysics Data System (ADS)

    Delamere, P. A.

    2016-02-01

    The giant magnetospheres harbor a plethora of low-frequency waves with both internal (i.e., moons) and external (i.e., solar wind) source mechanisms. This chapter summarizes the observation of low-frequency waves at Jupiter and Saturn and postulates the underlying physics based on our understanding of magnetodisc generation mechanisms. The source mechanisms of ULF pulsations at the giant magnetospheres are numerous. The satellite-magnetosphere interactions and mass loading of corotational flows generate many low-frequency waves. Observations of low-frequency bursts of radio emissions serve as an excellent diagnostic for understanding satellite-magnetosphere interactions. The outward radial transport of plasma through the magnetodisc and related magnetic flux circulation is a significant source of ULF pulsations; however, it is uncertain how the radial transport mechanism compares with solar wind induced perturbations.

  17. Analysis of Power System Low Frequency Oscillation Based on Energy Shift Theory

    NASA Astrophysics Data System (ADS)

    Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing

    2018-01-01

    In this paper, a new method for analyzing low-frequency oscillation between analytic areas based on energy coefficient is proposed. The concept of energy coefficient is proposed by constructing the energy function, and the low-frequency oscillation is analyzed according to the energy coefficient under the current operating conditions; meanwhile, the concept of model energy is proposed to analyze the energy exchange behavior between two generators. Not only does this method provide an explanation of low-frequency oscillation from the energy point of view, but also it helps further reveal the dynamic behavior of complex power systems. The case analysis of four-machine two-area and the power system of Jilin Power Grid proves the correctness and effectiveness of the proposed method in low-frequency oscillation analysis of power system.

  18. Feasibility of frequency-modulated wireless transmission for a multi-purpose MEMS-based accelerometer.

    PubMed

    Sabato, Alessandro; Feng, Maria Q

    2014-09-05

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy--especially at very low frequencies--have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.

  19. Very low-frequency signals support perceptual organization of implant-simulated speech for adults and children

    PubMed Central

    Nittrouer, Susan; Tarr, Eric; Bolster, Virginia; Caldwell-Tarr, Amanda; Moberly, Aaron C.; Lowenstein, Joanna H.

    2014-01-01

    Objective Using signals processed to simulate speech received through cochlear implants and low-frequency extended hearing aids, this study examined the proposal that low-frequency signals facilitate the perceptual organization of broader, spectrally degraded signals. Design In two experiments, words and sentences were presented in diotic and dichotic configurations as four-channel noise-vocoded signals (VOC-only), and as those signals combined with the acoustic signal below 250 Hz (LOW-plus). Dependent measures were percent correct recognition scores, and the difference between scores for the two processing conditions given as proportions of recognition scores for VOC-only. The influence of linguistic context was also examined. Study Sample Participants had normal hearing. In all, 40 adults, 40 7-year-olds, and 20 5-year-olds participated. Results Participants of all ages showed benefits of adding the low-frequency signal. The effect was greater for sentences than words, but no effect of configuration was found. The influence of linguistic context was similar across age groups, and did not contribute to the low-frequency effect. Listeners who scored more poorly with VOC-only stimuli showed greater low-frequency effects. Conclusion The benefit of adding a very low-frequency signal to a broader, spectrally degraded signal seems to derive from its facilitative influence on perceptual organization of the sensory input. PMID:24456179

  20. Effects of broad frequency vibration on cultured osteoblasts

    NASA Technical Reports Server (NTRS)

    Tanaka, Shigeo M.; Li, Jiliang; Duncan, Randall L.; Yokota, Hiroki; Burr, David B.; Turner, Charles H.

    2003-01-01

    Bone is subjected in vivo to both high amplitude, low frequency strain, incurred by locomotion, and to low amplitude, broad frequency strain. The biological effects of low amplitude, broad frequency strain are poorly understood. To evaluate the effects of low amplitude strains ranging in frequency from 0 to 50 Hz on osteoblastic function, we seeded MC3T3-E1 cells into collagen gels and applied the following loading protocols for 3 min per day for either 3 or 7 days: (1) sinusoidal strain at 3 Hz, with 0-3000 microstrain peak-to-peak followed by 0.33 s resting time, (2) "broad frequency vibration" of low amplitude strain (standard deviation of 300 microstrain) including frequency components from 0 to 50 Hz, and (3) sinusoidal strain combined with broad frequency vibration (S + V). The cells were harvested on day 4 or 8. We found that the S + V stimulation significantly repressed cell proliferation by day 8. Osteocalcin mRNA was up-regulated 2.6-fold after 7 days of S + V stimulation, and MMP-9 mRNA was elevated 1.3-fold after 3 days of vibration alone. Sinusoidal stimulation alone did not affect the cell responses. No differences due to loading were observed in alkaline phosphatase activity and in mRNA levels of type I collagen, osteopontin, connexin 43, MMPs-1A, -3, -13. These results suggest that osteoblasts are more sensitive to low amplitude, broad frequency strain, and this kind of strain could sensitize osteoblasts to high amplitude, low frequency strain. This suggestion implies a potential contribution of stochastic resonance to the mechanical sensitivity of osteoblasts. Copyright 2002 Elsevier Science Ltd.

  1. Low-frequency stimulation of the external globus palladium produces anti-epileptogenic and anti-ictogenic actions in rats

    PubMed Central

    Cheng, Hui; Kuang, Yi-fang; Liu, Yang; Wang, Yi; Xu, Zheng-hao; Gao, Feng; Zhang, Shi-hong; Ding, Mei-ping; Chen, Zhong

    2015-01-01

    Aim: To investigate the anti-epileptic effects of deep brain stimulation targeting the external globus palladium (GPe) in rats. Methods: For inducing amygdala kindling and deep brain stimulation, bipolar stainless-steel electrodes were implanted in SD rats into right basolateral amygdala and right GPe, respectively. The effects of deep brain stimulation were evaluated in the amygdala kindling model, maximal electroshock model (MES) and pentylenetetrazole (PTZ) model. Moreover, the background EEGs in the amygdala and GPe were recorded. Results: Low-frequency stimulation (0.1 ms, 1 Hz, 15 min) at the GPe slowed the progression of seizure stages and shortened the after-discharge duration (ADD) during kindling acquisition. Furthermore, low-frequency stimulation significantly decreased the incidence of generalized seizures, suppressed the average stage, and shortened the cumulative ADD and generalized seizure duration in fully kindled rats. In addition, low-frequency stimulation significantly suppressed the average stage of MES-induced seizures and increased the latency to generalized seizures in the PTZ model. High-frequency stimulation (0.1 ms, 130 Hz, 5 min) at the GPe had no anti-epileptic effect and even aggravated epileptogenesis induced by amygdala kindling. EEG analysis showed that low-frequency stimulation at the GPe reversed the increase in delta power, whereas high-frequency stimulation at the GPe had no such effect. Conclusion: Low-frequency stimulation, but not high-frequency stimulation, at the GPe exerts therapeutic effect on temporal lobe epilepsy and tonic-colonic generalized seizures, which may be due to interference with delta rhythms. The results suggest that modulation of GPe activity using low-frequency stimulation or drugs may be a promising epilepsy treatment. PMID:26095038

  2. Testing the high turbulence level breakdown of low-frequency gyrokinetics against high-frequency cyclokinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhao, E-mail: zhao.deng@foxmail.com; Waltz, R. E.

    2015-05-15

    This paper presents numerical simulations of the nonlinear cyclokinetic equations in the cyclotron harmonic representation [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Simulations are done with a local flux-tube geometry and with the parallel motion and variation suppressed using a newly developed rCYCLO code. Cyclokinetic simulations dynamically follow the high-frequency ion gyro-phase motion which is nonlinearly coupled into the low-frequency drift-waves possibly interrupting and suppressing gyro-averaging and increasing the transport over gyrokinetic levels. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the breakdown of gyrokinetics at high turbulence levels is quantitatively testedmore » over a range of relative ion cyclotron frequency 10 < Ω*{sup  }< 100 where Ω*{sup  }= 1/ρ*, and ρ* is the relative ion gyroradius. The gyrokinetic linear mode rates closely match the cyclokinetic low-frequency rates for Ω*{sup  }> 5. Gyrokinetic transport recovers cyclokinetic transport at high relative ion cyclotron frequency (Ω*{sup  }≥ 50) and low turbulence level as required. Cyclokinetic transport is found to be lower than gyrokinetic transport at high turbulence levels and low-Ω* values with stable ion cyclotron (IC) modes. The gyrokinetic approximation is found to break down when the density perturbations exceed 20%. For cyclokinetic simulations with sufficiently unstable IC modes and sufficiently low Ω*{sup  }∼ 10, the high-frequency component of cyclokinetic transport level can exceed the gyrokinetic transport level. However, the low-frequency component of the cyclokinetic transport and turbulence level does not exceed that of gyrokinetics. At higher and more physically relevant Ω*{sup  }≥ 50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport and turbulence level is still smaller than that of gyrokinetics. Thus, the cyclokinetic simulations do not account for the so-called “L-mode near edge short fall” seen in some low-frequency gyrokinetic transport and turbulence simulations.« less

  3. Computational Electromagnetic Studies for Low-Frequency Compensation of the Reflector Impulse-radiating Antenna

    DTIC Science & Technology

    2015-03-26

    COMPUTATIONAL ELECTROMAGNETIC STUDIES FOR LOW-FREQUENCY COMPENSATION OF THE REFLECTOR IMPULSE-RADIATING ANTENNA THESIS Casey E. Fillmore, Capt, USAF... ELECTROMAGNETIC STUDIES FOR LOW-FREQUENCY COMPENSATION OF THE REFLECTOR IMPULSE-RADIATING ANTENNA THESIS Presented to the Faculty Department of Electrical and...2015 DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-011 COMPUTATIONAL ELECTROMAGNETIC STUDIES FOR LOW

  4. Laser Raman spectroscopy of the effect of solvent on the low-frequency oscillations of organic molecules

    NASA Astrophysics Data System (ADS)

    Brandt, N. N.; Chikishev, A. Yu.; Dolgovskii, V. I.; Lebedenko, S. I.

    2007-09-01

    The effect of solvent on low-frequency oscillations is studied using an example of the 1,1,2,2-tetrachloroethane (TCE) and 1,1,2,2-tetrabromoethane (TBE) molecules, which exhibit torsional oscillations in the terahertz range. Dimethylsulfoxide (DMSO) and carbon tetrachloride (CTC) are used as solvents. It is demonstrated that a decrease in the concentration of the substance under study in the TBE/CTC, TCE/DMSO, and TCE/CTC mixtures leads to a frequency shift of the low-frequency oscillation. The shift is not observed in the TBE/DMSO mixture but a decrease in the TBE concentration causes significant broadening of the low-frequency line.

  5. Mechanical logic switches based on DNA-inspired acoustic metamaterials with ultrabroad low-frequency band gaps

    NASA Astrophysics Data System (ADS)

    Zheng, Bowen; Xu, Jun

    2017-11-01

    Mechanical information processing and control has attracted great attention in recent years. A challenging pursuit is to achieve broad functioning frequency ranges, especially at low-frequency domain. Here, we propose a design of mechanical logic switches based on DNA-inspired chiral acoustic metamaterials, which are capable of having ultrabroad band gaps at low-frequency domain. Logic operations can be easily performed by applying constraints at different locations and the functioning frequency ranges are able to be low, broad and tunable. This work may have an impact on the development of mechanical information processing, programmable materials, stress wave manipulation, as well as the isolation of noise and harmful vibration.

  6. An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Fan, Li; Chen, Zhe; Zhang, Shu-yi; Ding, Jin; Li, Xiao-juan; Zhang, Hui

    2015-04-01

    Insulating against low-frequency sound (below 500 Hz ) remains challenging despite the progress that has been achieved in sound insulation and absorption. In this work, an acoustic metamaterial based on membrane-coated perforated plates is presented for achieving sound insulation in a low-frequency range, even covering the lower audio frequency limit, 20 Hz . Theoretical analysis and finite element simulations demonstrate that this metamaterial can effectively block acoustic waves over a wide low-frequency band regardless of incident angles. Two mechanisms, non-resonance and monopolar resonance, operate in the metamaterial, resulting in a more powerful sound insulation ability than that achieved using periodically arranged multi-layer solid plates.

  7. Low-frequency hearing preceded the evolution of giant body size and filter feeding in baleen whales.

    PubMed

    Park, Travis; Evans, Alistair R; Gallagher, Stephen J; Fitzgerald, Erich M G

    2017-02-08

    Living baleen whales (mysticetes) produce and hear the lowest-frequency (infrasonic) sounds among mammals. There is currently debate over whether the ancestor of crown cetaceans (Neoceti) was able to detect low frequencies. However, the lack of information on the most archaic fossil mysticetes has prevented us from determining the earliest evolution of their extreme acoustic biology. Here, we report the first anatomical analyses and frequency range estimation of the inner ear in Oligocene (34-23 Ma) fossils of archaic toothed mysticetes from Australia and the USA. The cochlear anatomy of these small fossil mysticetes resembles basilosaurid archaeocetes, but is also similar to that of today's baleen whales, indicating that even the earliest mysticetes detected low-frequency sounds, and lacked ultrasonic hearing and echolocation. This suggests that, in contrast to recent research, the plesiomorphic hearing condition for Neoceti was low frequency, which was retained by toothed mysticetes, and the high-frequency hearing of odontocetes is derived. Therefore, the low-frequency hearing of baleen whales has remained relatively unchanged over the last approximately 34 Myr, being present before the evolution of other signature mysticete traits, including filter feeding, baleen and giant body size. © 2017 The Author(s).

  8. Low-frequency hearing preceded the evolution of giant body size and filter feeding in baleen whales

    PubMed Central

    Evans, Alistair R.; Fitzgerald, Erich M. G.

    2017-01-01

    Living baleen whales (mysticetes) produce and hear the lowest-frequency (infrasonic) sounds among mammals. There is currently debate over whether the ancestor of crown cetaceans (Neoceti) was able to detect low frequencies. However, the lack of information on the most archaic fossil mysticetes has prevented us from determining the earliest evolution of their extreme acoustic biology. Here, we report the first anatomical analyses and frequency range estimation of the inner ear in Oligocene (34–23 Ma) fossils of archaic toothed mysticetes from Australia and the USA. The cochlear anatomy of these small fossil mysticetes resembles basilosaurid archaeocetes, but is also similar to that of today's baleen whales, indicating that even the earliest mysticetes detected low-frequency sounds, and lacked ultrasonic hearing and echolocation. This suggests that, in contrast to recent research, the plesiomorphic hearing condition for Neoceti was low frequency, which was retained by toothed mysticetes, and the high-frequency hearing of odontocetes is derived. Therefore, the low-frequency hearing of baleen whales has remained relatively unchanged over the last approximately 34 Myr, being present before the evolution of other signature mysticete traits, including filter feeding, baleen and giant body size. PMID:28179519

  9. Design, Fabrication and Characterization of A Bi-Frequency Co-Linear Array

    PubMed Central

    Wang, Zhuochen; Li, Sibo; Czernuszewicz, Tomasz J; Gallippi, Caterina M.; Liu, Ruibin; Geng, Xuecang

    2016-01-01

    Ultrasound imaging with high resolution and large penetration depth has been increasingly adopted in medical diagnosis, surgery guidance, and treatment assessment. Conventional ultrasound works at a particular frequency, with a −6 dB fractional bandwidth of ~70 %, limiting the imaging resolution or depth of field. In this paper, a bi-frequency co-linear array with resonant frequencies of 8 MHz and 20 MHz was investigated to meet the requirements of resolution and penetration depth for a broad range of ultrasound imaging applications. Specifically, a 32-element bi-frequency co-linear array was designed and fabricated, followed by element characterization and real-time sectorial scan (S-scan) phantom imaging using a Verasonics system. The bi-frequency co-linear array was tested in four different modes by switching between low and high frequencies on transmit and receive. The four modes included the following: (1) transmit low, receive low, (2) transmit low, receive high, (3) transmit high, receive low, (4) transmit high, receive high. After testing, the axial and lateral resolutions of all modes were calculated and compared. The results of this study suggest that bi-frequency co-linear arrays are potential aids for wideband fundamental imaging and harmonic/sub-harmonic imaging. PMID:26661069

  10. Respiratory modulation of human autonomic rhythms

    NASA Technical Reports Server (NTRS)

    Badra, L. J.; Cooke, W. H.; Hoag, J. B.; Crossman, A. A.; Kuusela, T. A.; Tahvanainen, K. U.; Eckberg, D. L.

    2001-01-01

    We studied the influence of three types of breathing [spontaneous, frequency controlled (0.25 Hz), and hyperventilation with 100% oxygen] and apnea on R-R interval, photoplethysmographic arterial pressure, and muscle sympathetic rhythms in nine healthy young adults. We integrated fast Fourier transform power spectra over low (0.05-0.15 Hz) and respiratory (0.15-0.3 Hz) frequencies; estimated vagal baroreceptor-cardiac reflex gain at low frequencies with cross-spectral techniques; and used partial coherence analysis to remove the influence of breathing from the R-R interval, systolic pressure, and muscle sympathetic nerve spectra. Coherence among signals varied as functions of both frequency and time. Partialization abolished the coherence among these signals at respiratory but not at low frequencies. The mode of breathing did not influence low-frequency oscillations, and they persisted during apnea. Our study documents the independence of low-frequency rhythms from respiratory activity and suggests that the close correlations that may exist among arterial pressures, R-R intervals, and muscle sympathetic nerve activity at respiratory frequencies result from the influence of respiration on these measures rather than from arterial baroreflex physiology. Most importantly, our results indicate that correlations among autonomic and hemodynamic rhythms vary over time and frequency, and, thus, are facultative rather than fixed.

  11. I. S. Shklovsky and Low-Frequency Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.

    2017-03-01

    Purpose: Proving of the high astrophysical significance of the low-frequency radio astronomy (decameter and adjacent hectometer and meter wavelengths), demonstration of the priority results of the Ukrainian low-frequency radio astronomy as well as significant contribution of I. S. Shklovsky to its development. Design/methodology/approach: The requirements to characteristics of high efficiency radio telescopes UTR-2, URAN, GURT and to sensitive and interference immune observational methods at low frequencies are formulated by using the theoretical analysis and astrophysical predictions including those I. S. Shklovsky’s. Findings: New generation radio telescopes UTR-2, URAN, GURT are created and modernized. New observational methods at low frequencies are introduced. Large-scale investigations of the Solar system, Galaxy and Methagalaxy are carried out. They have allowed to detect new objects and phenomena for the continuum, monochromatic, pulse and sporadic cosmic radio emission. The role of I. S. Shklovsky in the development of many low-frequency radio astronomy directions is noted, too. Conclusions: The unique possibilities of the low-frequency radio astronomy which gives new information about the Universe, inaccessible with the other astrophysical methods, are shown. The progress of the low-frequency radio astronomy opens the impressive possibilities for the future. It includes modernization of the largest radio telescopes UTR-2, URAN, NDA and creation of new instruments GURT, NenuFAR, LOFAR, LWA, MWA, SKA as well as making multi-antenna and ground-space experiments. The contribution of outstanding astrophysicist of the XX century I. S. Shklovsky to this part of actual astronomical science is evident, claiming for attention and will never be forgotten.

  12. Effects of the intensity of masking noise on ear canal recorded low-frequency cochlear microphonic waveforms in normal hearing subjects.

    PubMed

    Zhang, Ming

    2014-07-01

    Compared to auditory brainstem responses (ABRs), cochlear microphonics (CMs) may be more appropriate to serve as a supplement to the test of otoacoustic emissions (OAEs). Researchers have shown that low-frequency CMs from the apical cochlea are measurable at the tympanic membrane using high-pass masking noise. Our objective is to study the effect of such noise at different intensities on low-frequency CMs recorded at the ear canal, which is not completely known. Six components were involved in this CM measurement including an ear canal electrode (1), a relatively long and low-frequency toneburst (2), and high-pass masking noise at different intensities (3). The rest components include statistical analysis based on multiple human subjects (4), curve modeling based on amplitudes of CM waveforms (CMWs) and noise intensity (5), and a technique based on electrocochleography (ECochG or ECoG) (6). Results show that low-frequency CMWs appeared clearly. The CMW amplitude decreased with an increase in noise level. It decreased first slowly, then faster, and finally slowly again. In conclusion, when masked with high-pass noise, the low-frequency CMs are measurable at the human ear canal. Such noise reduces the low-frequency CM amplitude. The reduction is noise-intensity dependent but not completely linear. The reduction may be caused by the excited basal cochlea which the low-frequency has to travel and pass through. Although not completely clear, six mechanisms related to such reduction are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A Modified Normalization Technique for Frequency-Domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Jeong, G.; Min, D. J.; KIM, S.; Heo, J. Y.

    2016-12-01

    Full waveform inversion (FWI) is a technique to estimate subsurface material properties minimizing the misfit function built with residuals between field and modeled data. To achieve computational efficiency, FWI has been performed in the frequency domain by carrying out modeling in the frequency domain, whereas observed data (time-series data) are Fourier-transformed.One of the main drawbacks of seismic FWI is that it easily gets stuck in local minima because of lacking of low-frequency data. To compensate for this limitation, damped wavefields are used, as in the Laplace-domain waveform inversion. Using damped wavefield in FWI plays a role in generating low-frequency components and help recover long-wavelength structures. With these newly generated low-frequency components, we propose a modified frequency-normalization technique, which has an effect of boosting contribution of low-frequency components to model parameter update.In this study, we introduce the modified frequency-normalization technique which effectively amplifies low-frequency components of damped wavefields. Our method is demonstrated for synthetic data for the SEG/EAGE salt model. AcknowledgementsThis work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20168510030830) and by the Dual Use Technology Program, granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea.

  14. Controlling plasma properties under differing degrees of electronegativity using odd harmonic dual frequency excitation

    NASA Astrophysics Data System (ADS)

    Gibson, Andrew R.; Gans, Timo

    2017-11-01

    The charged particle dynamics in low-pressure oxygen plasmas excited by odd harmonic dual frequency waveforms (low frequency of 13.56 MHz and high frequency of 40.68 MHz) are investigated using a one-dimensional numerical simulation in regimes of both low and high electronegativity. In the low electronegativity regime, the time and space averaged electron and negative ion densities are approximately equal and plasma sustainment is dominated by ionisation at the sheath expansion for all combinations of low and high frequency and the phase shift between them. In the high electronegativity regime, the negative ion density is a factor of 15-20 greater than the low electronegativity cases. In these cases, plasma sustainment is dominated by ionisation inside the bulk plasma and at the collapsing sheath edge when the contribution of the high frequency to the overall voltage waveform is low. As the high frequency component contribution to the waveform increases, sheath expansion ionisation begins to dominate. It is found that the control of the average voltage drop across the plasma sheath and the average ion flux to the powered electrode are similar in both regimes of electronegativity, despite the differing electron dynamics using the considered dual frequency approach. This offers potential for similar control of ion dynamics under a range of process conditions, independent of the electronegativity. This is in contrast to ion control offered by electrically asymmetric waveforms where the relationship between the ion flux and ion bombardment energy is dependent upon the electronegativity.

  15. 77 FR 52317 - Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... DEPARTMENT OF DEFENSE Department of the Navy Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar AGENCY: Department of the Navy, DoD. ACTION: Notice of decision... to employ up to four Surveillance Towed Array Sensor System Low Frequency Active (SURTASS LFA) sonar...

  16. The Role of Low-Spatial Frequencies in Lexical Decision and Masked Priming

    ERIC Educational Resources Information Center

    Boden, C.; Giaschi, D.

    2009-01-01

    Spatial frequency filtering was used to test the hypotheses that low-spatial frequency information in printed text can: (1) lead to a rapid lexical decision or (2) facilitate word recognition. Adult proficient readers made lexical decisions in unprimed and masked repetition priming experiments with unfiltered, low-pass, high-pass and notch…

  17. High-frequency hearing impairment assessed with cochlear microphonics.

    PubMed

    Zhang, Ming

    2012-09-01

    Cochlear microphonic (CM) measurements may potentially become a supplementary approach to otoacoustic emission (OAE) measurements for assessing low-frequency cochlear functions in the clinic. The objective of this study was to investigate the measurement of CMs in subjects with high-frequency hearing loss. Currently, CMs can be measured using electrocochleography (ECochG or ECoG) techniques. Both CMs and OAEs are cochlear responses, while auditory brainstem responses (ABRs) are not. However, there are inherent limitations associated with OAE measurements such as acoustic noise, which can conceal low-frequency OAEs measured in the clinic. However, CM measurements may not have these limitations. CMs were measured in human subjects using an ear canal electrode. The CMs were compared between the high-frequency hearing loss group and the normal-hearing control group. Distortion product OAEs (DPOAEs) and audiogram were also measured. The DPOAE and audiogram measurements indicate that the subjects were correctly selected for the two groups. Low-frequency CM waveforms (CMWs) can be measured using ear canal electrodes in high-frequency hearing loss subjects. The difference in amplitudes of CMWs between the high-frequency hearing loss group and the normal-hearing group is insignificant at low frequencies but significant at high frequencies.

  18. Territorial black-capped chickadee males respond faster to high- than to low-frequency songs in experimentally elevated noise conditions

    PubMed Central

    Slabbekoorn, Hans; Otter, Ken A.

    2017-01-01

    Low-frequency urban noise can interfere with avian communication through masking. Some species are able to shift the frequency of their vocalizations upwards in noisy conditions, which may reduce the effects of masking. However, results from playback studies investigating whether or not such vocal changes improve audibility in noisy conditions are not clear; the responses of free-ranging individuals to shifted signals are potentially confounded by functional trade-offs between masking-related audibility and frequency-dependent signal quality. Black-capped chickadees (Poecile atricapillus) naturally sing their songs at several different frequencies as they pitch-shift to match conspecifics during song-matching contests. They are also known to switch to higher song frequencies in response to experimental noise exposure. Each male produces both high- and low-frequency songs and absolute frequency is not a signal of aggression or dominance, making this an interesting species in which to test whether higher-frequency songs are more audible than lower-frequency songs in noisy conditions. We conducted playback studies across southern and central British Columbia, Canada, using paired song stimuli (high- vs low-frequency songs, n = 24 pairs) embedded in synthetic background noise created to match typical urban sound profiles. Over the course of each playback, the signal-to-noise ratio of the song stimuli was gradually increased by raising the amplitude of the song stimuli while maintaining background noise at a constant amplitude. We evaluated variation in how quickly and aggressively territorial males reacted to each of the paired stimuli. We found that males responded more quickly to playbacks of high- than low-frequency songs when high-frequency songs were presented first, but not when low-frequency songs were first. This difference may be explained by high-frequency songs being more audible combined with a carry-over effect resulting in slower responses to the second stimulus due to habituation. We observed no difference in overall aggression between stimuli. These results suggest that high-frequency songs may be more audible under noisy conditions. PMID:28462051

  19. Synchronous Oscillations in Van Der Pol Generator with Modulated Natural Frequency

    NASA Astrophysics Data System (ADS)

    Nimets, A. Yu.; Vavriv, D. M.

    2015-12-01

    The synchronous operation of Van Der Pole generator with the low-frequency modulated natural frequency has been investigated. The presence of low-frequency modulation is shown to lead to formation of additional synchronization regions. The appearance of such regions is found to be caused by threefrequency resonances resulted from the interaction between oscillations of the generator natural frequency, modulation frequency and synchronized signal frequency. Characteristics of synchronous oscillations due to the below mentioned three-frequency interaction are obtained and comparison with the case of synchronization of oscillator on the main mode made.

  20. A low-frequency noise model with carrier generation-recombination process for pentacene organic thin-film transistor

    NASA Astrophysics Data System (ADS)

    Han, C. Y.; Qian, L. X.; Leung, C. H.; Che, C. M.; Lai, P. T.

    2013-07-01

    By including the generation-recombination process of charge carriers in conduction channel, a model for low-frequency noise in pentacene organic thin-film transistors (OTFTs) is proposed. In this model, the slope and magnitude of power spectral density for low-frequency noise are related to the traps in the gate dielectric and accumulation layer of the OTFT for the first time. The model can well fit the measured low-frequency noise data of pentacene OTFTs with HfO2 or HfLaO gate dielectric, which validates this model, thus providing an estimate on the densities of traps in the gate dielectric and accumulation layer. It is revealed that the traps in the accumulation layer are much more than those in the gate dielectric, and so dominate the low-frequency noise of pentacene OTFTs.

  1. Enhanced dual-frequency pattern scheme based on spatial-temporal fringes method

    NASA Astrophysics Data System (ADS)

    Wang, Minmin; Zhou, Canlin; Si, Shuchun; Lei, Zhenkun; Li, Xiaolei; Li, Hui; Li, YanJie

    2018-07-01

    One of the major challenges of employing a dual-frequency phase-shifting algorithm for phase retrieval is its sensitivity to noise. Yun et al proposed a dual-frequency method based on the Fourier transform profilometry, yet the low-frequency lobes are close to each other for accurate band-pass filtering. In the light of this problem, a novel dual-frequency pattern based on the spatial-temporal fringes (STF) method is developed in this paper. Three fringe patterns with two different frequencies are required. The low-frequency phase is obtained from two low-frequency fringe patterns by the STF method, so the signal lobes can be extracted accurately as they are far away from each other. The high-frequency phase is retrieved from another fringe pattern without the impact of the DC component. Simulations and experiments are conducted to demonstrate the excellent precision of the proposed method.

  2. Auditory word recognition: extrinsic and intrinsic effects of word frequency.

    PubMed

    Connine, C M; Titone, D; Wang, J

    1993-01-01

    Two experiments investigated the influence of word frequency in a phoneme identification task. Speech voicing continua were constructed so that one endpoint was a high-frequency word and the other endpoint was a low-frequency word (e.g., best-pest). Experiment 1 demonstrated that ambiguous tokens were labeled such that a high-frequency word was formed (intrinsic frequency effect). Experiment 2 manipulated the frequency composition of the list (extrinsic frequency effect). A high-frequency list bias produced an exaggerated influence of frequency; a low-frequency list bias showed a reverse frequency effect. Reaction time effects were discussed in terms of activation and postaccess decision models of frequency coding. The results support a late use of frequency in auditory word recognition.

  3. Dual-sensitivity profilometry with defocused projection of binary fringes.

    PubMed

    Garnica, G; Padilla, M; Servin, M

    2017-10-01

    A dual-sensitivity profilometry technique based on defocused projection of binary fringes is presented. Here, two sets of fringe patterns with a sinusoidal profile are produced by applying the same analog low-pass filter (projector defocusing) to binary fringes with a high- and low-frequency spatial carrier. The high-frequency fringes have a binary square-wave profile, while the low-frequency binary fringes are produced with error-diffusion dithering. The binary nature of the binary fringes removes the need for calibration of the projector's nonlinear gamma. Working with high-frequency carrier fringes, we obtain a high-quality wrapped phase. On the other hand, working with low-frequency carrier fringes we found a lower-quality, nonwrapped phase map. The nonwrapped estimation is used as stepping stone for dual-sensitivity temporal phase unwrapping, extending the applicability of the technique to discontinuous (piecewise continuous) surfaces. We are proposing a single defocusing level for faster high- and low-frequency fringe data acquisition. The proposed technique is validated with experimental results.

  4. Consideration of some factors affecting low-frequency fuselage noise transmission for propeller aircraft

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Roussos, L. A.

    1986-01-01

    Possible reasons for disagreement between measured and predicted trends of sidewall noise transmission at low frequency are investigated using simplified analysis methods. An analytical model combining incident plane acoustic waves with an infinite flat panel is used to study the effects of sound incidence angle, plate structural properties, frequency, absorption, and the difference between noise reduction and transmission loss. Analysis shows that these factors have significant effects on noise transmission but they do not account for the differences between measured and predicted trends at low frequencies. An analytical model combining an infinite flat plate with a normally incident acoustic wave having exponentially decaying magnitude along one coordinate is used to study the effect of a localized source distribution such as is associated with propeller noise. Results show that the localization brings the predicted low-frequency trend of noise transmission into better agreement with measured propeller results. This effect is independent of low-frequency stiffness effects that have been previously reported to be associated with boundary conditions.

  5. Increased Release of Serotonin in the Spinal Cord During Low, But Not High, Frequency Transcutaneous Electric Nerve Stimulation in Rats With Joint Inflammation

    PubMed Central

    Sluka, Kathleen A.; Lisi, Tammy L.; Westlund, Karin N.

    2009-01-01

    Objective To determine the release pattern of serotonin and noradrenaline in the spinal cord in response to transcutaneous electric nerve stimulation (TENS) delivered at low or high frequency. Design Prospective randomized allocation of 3 treatments. Setting Research laboratory. Animals Male Sprague-Dawley rats (weight range, 250–350g). Intervention Knee joints of rats were inflamed with a mixture of 3% carrageenan and 3% kaolin for 24 hours prior to placement of push-pull cannulae into the dorsal horn of the spinal cord. Push-pull samples were collected in 10-minute intervals before, during, and after treatment with low-frequency TENS (4Hz), high-frequency TENS (100Hz), or sham TENS. TENS was applied to the inflamed knee joint for 20 minutes at sensory intensity and 100-μs pulse duration. Push-pull samples were analyzed for serotonin and noradrenaline by high performance liquid chromatography with coulemetric detection. Main Outcome Measures Spinal concentrations of serotonin and noradrenaline. Results Low-frequency TENS significantly increased serotonin concentrations during and immediately after treatment. There was no change in serotonin with high-frequency TENS, nor was there a change in noradrenaline with low- or high-frequency TENS. Conclusions Low-frequency TENS releases serotonin in the spinal cord to produce antihyperalgesia by activation of serotonin receptors. PMID:16876561

  6. Membrane Electrical Noise in Chara corallina1

    PubMed Central

    Ross, Stephen; Dainty, Jack

    1986-01-01

    Certain inhibitors have been found to affect the low frequency spectral component of the electrical noise power spectrum in Chara corallina. Application of the ATPase inhibitor N,N′-dicyclohexylcarbodiimide removed the low frequency spectral component, strengthening the case that the component is produced by active proton pumping. Cytocholasin B, which inhibits cyclosis in internodes of C. corallina, removed the low frequency spectral component in a time-dependent fashion which was correlated with the cessation of streaming. The protonophore carbonyl cyanide m-chlorophenylhydrazone did not produce consistent effects on the low frequency spectral component in these cells. PMID:16664898

  7. Development of a low-frequency physiotherapeutic device for diabetes manipulated by microcontroller.

    PubMed

    Guo, Jin-Song; Gong, Jian

    2001-01-01

    OBJECTIVE: To develop a physiotherapeutic device for diabetes that generates special low-frequency waveform manipulated by a microcontroller. METHODS: A microcontoller and a digital-to-analog converter were utilized along with a keyboard and LED display circuit, to generate desired low-frequecy waveform with the assistance of a software. RESULTS: The complex waveform generated by this device met the demands for diabetes physiotherapy, and the frequency and amplitude could be freely adjusted. CONCLUSIONS: The utilization of a digital-to-analog converter controlled by a microcontroller can very well serve the purpose of a low-frequency physiotherapy for diabetes.

  8. Effects of Low-frequency Current Sacral Dermatome Stimulation on Idiopathic Slow Transit Constipation

    PubMed Central

    Kim, Jin-Seop; Yi, Seung-Ju

    2014-01-01

    [Purpose] This study aimed to determine whether low-frequency current therapy can be used to reduce the symptoms of idiopathic slow transit constipation (ISTC). [Subjects] Fifteen patients (ten male and five female) with idiopathic slow transit constipation were enrolled in the present study. [Results] Bowel movements per day, bowel movements per week, and constipation assessment scale scores significantly improved after low-frequency current simulation of S2-S3. [Conclusion] Our results show that stimulation with low-frequency current of the sacral dermatomes may offer therapeutic benefits for a subject of patients with ISTC. PMID:25013277

  9. Effects of Low-frequency Current Sacral Dermatome Stimulation on Idiopathic Slow Transit Constipation.

    PubMed

    Kim, Jin-Seop; Yi, Seung-Ju

    2014-06-01

    [Purpose] This study aimed to determine whether low-frequency current therapy can be used to reduce the symptoms of idiopathic slow transit constipation (ISTC). [Subjects] Fifteen patients (ten male and five female) with idiopathic slow transit constipation were enrolled in the present study. [Results] Bowel movements per day, bowel movements per week, and constipation assessment scale scores significantly improved after low-frequency current simulation of S2-S3. [Conclusion] Our results show that stimulation with low-frequency current of the sacral dermatomes may offer therapeutic benefits for a subject of patients with ISTC.

  10. Generating ultra wide low-frequency gap for transverse wave isolation via inertial amplification effects

    NASA Astrophysics Data System (ADS)

    Li, Jingru; Li, Sheng

    2018-02-01

    Low-frequency transverse wave propagation plays a significant role in the out-of-plane vibration control. To efficiently attenuate the propagation of transverse waves at low-frequency range, this letter proposed a new type phononic beam by attaching inertial amplification mechanisms on it. The wave propagation of the beam with enhanced effective inertia is analyzed using the transfer matrix method. It is demonstrated that the low-frequency gap within inertial amplification effects can possess much wider bandwidth than using the local resonance method, thus is more suitable for designing applications to suppress transverse wave propagation.

  11. When ottoman is easier than chair: an inverse frequency effect in jargon aphasia.

    PubMed

    Marshall, J; Pring, T; Chiat, S; Robson, J

    2001-02-01

    This paper presents evidence of an inverse frequency effect in jargon aphasia. The subject (JP) showed a pre-disposition for low frequency word production on a range of tasks, including picture naming, sentence completion and naming in categories. Her real word errors were also striking, in that these tended to be lower in frequency than the target. Reading data suggested that the inverse frequency effect was present only when production was semantically mediated. It was therefore hypothesised that the effect was at least partly due to the semantic characteristics of low frequency items. Some support for this was obtained from a comprehension task showing that JP's understanding of low frequency terms, which she often produced as errors, was superior to her understanding of high frequency terms. Possible explanations for these findings are considered.

  12. Normal forms for reduced stochastic climate models

    PubMed Central

    Majda, Andrew J.; Franzke, Christian; Crommelin, Daan

    2009-01-01

    The systematic development of reduced low-dimensional stochastic climate models from observations or comprehensive high-dimensional climate models is an important topic for atmospheric low-frequency variability, climate sensitivity, and improved extended range forecasting. Here techniques from applied mathematics are utilized to systematically derive normal forms for reduced stochastic climate models for low-frequency variables. The use of a few Empirical Orthogonal Functions (EOFs) (also known as Principal Component Analysis, Karhunen–Loéve and Proper Orthogonal Decomposition) depending on observational data to span the low-frequency subspace requires the assessment of dyad interactions besides the more familiar triads in the interaction between the low- and high-frequency subspaces of the dynamics. It is shown below that the dyad and multiplicative triad interactions combine with the climatological linear operator interactions to simultaneously produce both strong nonlinear dissipation and Correlated Additive and Multiplicative (CAM) stochastic noise. For a single low-frequency variable the dyad interactions and climatological linear operator alone produce a normal form with CAM noise from advection of the large scales by the small scales and simultaneously strong cubic damping. These normal forms should prove useful for developing systematic strategies for the estimation of stochastic models from climate data. As an illustrative example the one-dimensional normal form is applied below to low-frequency patterns such as the North Atlantic Oscillation (NAO) in a climate model. The results here also illustrate the short comings of a recent linear scalar CAM noise model proposed elsewhere for low-frequency variability. PMID:19228943

  13. Spatially-Heterodyned Holography

    DOEpatents

    Thomas, Clarence E [Knoxville, TN; Hanson, Gregory R [Clinton, TN

    2006-02-21

    A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.

  14. The effect of low-frequency oscillations on cardio-respiratory synchronization. Observations during rest and exercise

    NASA Astrophysics Data System (ADS)

    Kenwright, D. A.; Bahraminasab, A.; Stefanovska, A.; McClintock, P. V. E.

    2008-10-01

    We show that the transitions which occur between close orders of synchronization in the cardiorespiratory system are mainly due to modulation of the cardiac and respiratory processes by low-frequency components. The experimental evidence is derived from recordings on healthy subjects at rest and during exercise. Exercise acts as a perturbation of the system that alters the mean cardiac and respiratory frequencies and changes the amount of their modulation by low-frequency oscillations. The conclusion is supported by numerical evidence based on a model of phase-coupled oscillators, with white noise and lowfrequency noise. Both the experimental and numerical approaches confirm that low-frequency oscillations play a significant role in the transitional behavior between close orders of synchronization.

  15. The Design and Implementation of Instruments for Low-Frequency Electromagnetic Sounding of the Martian Subsurface

    NASA Technical Reports Server (NTRS)

    Delory, G. T.; Grimm, R. E.

    2003-01-01

    Low-frequency electromagnetic soundings of the subsurface can identify liquid water at depths ranging from hundreds of meters to approx. 10 km in an environment such as Mars. Among the tools necessary to perform these soundings are low-frequency electric and magnetic field sensors capable of being deployed from a lander or rover such that horizontal and vertical components of the fields can be measured free of structural or electrical interference. Under a NASA Planetary Instrument Definition and Development Program (PIDDP), we are currently engaged in the prototype stages of low frequency sensor implementations that will enable this technique to be performed autonomously within the constraints of a lander platform. Once developed, this technique will represent both a complementary and alternative method to orbital radar sounding investigations, as the latter may not be able to identify subsurface water without significant ambiguities. Low frequency EM methods can play a crucial role as a ground truth measurement, performing deep soundings at sites identified as high priority areas by orbital radars. Alternatively, the penetration depth and conductivity discrimination of low-frequency methods may enable detection of subsurface water in areas that render radar methods ineffective. In either case, the sensitivity and depth of penetration inherent in low frequency EM exploration makes this tool a compelling candidate method to identify subsurface liquid water from a landed platform on Mars or other targets of interest.

  16. Low frequency acoustic and electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Maccamy, R. C.

    1986-01-01

    This paper deals with two classes of problems arising from acoustics and electromagnetics scattering in the low frequency stations. The first class of problem is solving Helmholtz equation with Dirichlet boundary conditions on an arbitrary two dimensional body while the second one is an interior-exterior interface problem with Helmholtz equation in the exterior. Low frequency analysis show that there are two intermediate problems which solve the above problems accurate to 0(k/2/ log k) where k is the frequency. These solutions greatly differ from the zero frequency approximations. For the Dirichlet problem numerical examples are shown to verify the theoretical estimates.

  17. Low Offset AC Correlator.

    DTIC Science & Technology

    This patent describes a low offset AC correlator avoids DC offset and low frequency noise by frequency operating the correlation signal so that low...noise, low level AC amplification can be substituted for DC amplification. Subsequently, the high level AC signal is demodulated to a DC level. (Author)

  18. Serial Recall, Word Frequency, and Mixed Lists: The Influence of Item Arrangement

    ERIC Educational Resources Information Center

    Miller, Leonie M.; Roodenrys, Steven

    2012-01-01

    Studies of the effect of word frequency in the serial recall task show that lists of high-frequency words are better recalled than lists of low-frequency words; however, when high- and low-frequency words are alternated within a list, there is no difference in the level of recall for the two types of words, and recall is intermediate between lists…

  19. High-resolution low-frequency fluctuation map of a multimode laser diode subject to filtered optical feedback via a fiber Bragg grating.

    PubMed

    Baladi, Fadwa; Lee, Min Won; Burie, Jean-René; Bettiati, Mauro A; Boudrioua, Azzedine; Fischer, Alexis P A

    2016-07-01

    A highly detailed and extended map of low-frequency fluctuations is established for a high-power multi-mode 980 nm laser diode subject to filtered optical feedback from a fiber Bragg grating. The low-frequency fluctuations limits and substructures exhibit substantial differences with previous works.

  20. Low-frequency noise from large wind turbines.

    PubMed

    Møller, Henrik; Pedersen, Christian Sejer

    2011-06-01

    As wind turbines get larger, worries have emerged that the turbine noise would move down in frequency and that the low-frequency noise would cause annoyance for the neighbors. The noise emission from 48 wind turbines with nominal electric power up to 3.6 MW is analyzed and discussed. The relative amount of low-frequency noise is higher for large turbines (2.3-3.6 MW) than for small turbines (≤ 2 MW), and the difference is statistically significant. The difference can also be expressed as a downward shift of the spectrum of approximately one-third of an octave. A further shift of similar size is suggested for future turbines in the 10-MW range. Due to the air absorption, the higher low-frequency content becomes even more pronounced, when sound pressure levels in relevant neighbor distances are considered. Even when A-weighted levels are considered, a substantial part of the noise is at low frequencies, and for several of the investigated large turbines, the one-third-octave band with the highest level is at or below 250 Hz. It is thus beyond any doubt that the low-frequency part of the spectrum plays an important role in the noise at the neighbors. © 2011 Acoustical Society of America

  1. High Temperature Superconductivity Applications for Electronic Warfare and Microwave Systems

    DTIC Science & Technology

    1990-05-01

    instantaneous frequency measurement (IFM), as well as, switched delay lines for EW radar range deception and low loss, high resolution MMIC phase...Junction (JJ). This device has been demonstrated in LTSC and is used in very stable ( low noise ), frequency selective, oscillators and very low noise ...following HTSC components: 1) MMIC Filters 2) MMIC Delay Lines/Phase Shifters 3) Microwave Resonators 4) Antenna Feed Networks 5) Low Frequency Antennas 1

  2. The effect of low frequency stimulation of the pedunculopontine tegmental nucleus on basal ganglia in a rat model of Parkinson's disease.

    PubMed

    Park, Eunkyoung; Song, Inho; Jang, Dong Pyo; Kim, In Young

    2014-08-08

    The pedunculopontine nucleus (PPN) has recently been introduced as an alternative target to the subthalamic nucleus (STN) or globus pallidus internus (GPi) for the treatment of advanced Parkinson's disease with severe and medically intractable axial symptoms such as gait and postural impairment. However, it is little known about how electrical stimulation of the PPN affects control of neuronal activities between the PPN and basal ganglia. We examined how low frequency stimulation of the pedunculopontine tegmental nucleus (PPTg) affects control of neuronal activities between the PPN and basal ganglia in 6-OHDA lesioned rats. In order to identify the effect of low frequency stimulation on the PPTg, neuronal activity in both the STN and substantia nigra par reticulata (SNr) were recorded and subjected to quantitative analysis, including analysis of firing rates and firing patterns. In this study, we found that the firing rates of the STN and SNr were suppressed during low frequency stimulation of the PPTg. However, the firing pattern, in contrast to the firing rate, did not exhibit significant changes in either the STN or SNr of 6-OHDA lesioned rats during low frequency stimulation of the PPTg. In addition, we also found that the firing rate of STN and SNr neurons displaying burst and random pattern were decreased by low frequency stimulation of PPTg, while the neurons displaying regular pattern were not affected. These results indicate that low frequency stimulation of the PPTg affects neuronal activity in both the STN and SNr, and may represent electrophysiological efficacy of low frequency PPN stimulation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Structural Stability Assessment of the High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth Orbit

    DTIC Science & Technology

    2014-05-01

    UNCLASSIFIED UNCLASSIFIED Structural Stability Assessment of the High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth...DSTO-TN-1295 ABSTRACT The Buccaneer CubeSat will be fitted with a high frequency antenna made from spring steel measuring tape. The geometry...High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth Orbit Executive Summary The Buccaneer CubeSat will be fitted with a

  4. Toward canonical ensemble distribution from self-guided Langevin dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wu, Xiongwu; Brooks, Bernard R.

    2011-04-01

    This work derives a quantitative description of the conformational distribution in self-guided Langevin dynamics (SGLD) simulations. SGLD simulations employ guiding forces calculated from local average momentums to enhance low-frequency motion. This enhancement in low-frequency motion dramatically accelerates conformational search efficiency, but also induces certain perturbations in conformational distribution. Through the local averaging, we separate properties of molecular systems into low-frequency and high-frequency portions. The guiding force effect on the conformational distribution is quantitatively described using these low-frequency and high-frequency properties. This quantitative relation provides a way to convert between a canonical ensemble and a self-guided ensemble. Using example systems, we demonstrated how to utilize the relation to obtain canonical ensemble properties and conformational distributions from SGLD simulations. This development makes SGLD not only an efficient approach for conformational searching, but also an accurate means for conformational sampling.

  5. Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles

    NASA Astrophysics Data System (ADS)

    Touber, Emile; Sandham, Neil D.

    2009-12-01

    Three different large-eddy simulation investigations of the interaction between an impinging oblique shock and a supersonic turbulent boundary layer are presented. All simulations made use of the same inflow technique, specifically aimed at avoiding possible low-frequency interferences with the shock/boundary-layer interaction system. All simulations were run on relatively wide computational domains and integrated over times greater than twenty five times the period of the most commonly reported low-frequency shock-oscillation, making comparisons at both time-averaged and low-frequency-dynamic levels possible. The results confirm previous experimental results which suggested a simple linear relation between the interaction length and the oblique-shock strength if scaled using the boundary-layer thickness and wall-shear stress. All the tested cases show evidences of significant low-frequency shock motions. At the wall, energetic low-frequency pressure fluctuations are observed, mainly in the initial part of interaction.

  6. Common medial frontal mechanisms of adaptive control in humans and rodents

    PubMed Central

    Frank, Michael J.; Laubach, Mark

    2013-01-01

    In this report, we describe how common brain networks within the medial frontal cortex facilitate adaptive behavioral control in rodents and humans. We demonstrate that low frequency oscillations below 12 Hz are dramatically modulated after errors in humans over mid-frontal cortex and in rats within prelimbic and anterior cingulate regions of medial frontal cortex. These oscillations were phase-locked between medial frontal cortex and motor areas in both rats and humans. In rats, single neurons that encoded prior behavioral outcomes were phase-coherent with low-frequency field oscillations particularly after errors. Inactivating medial frontal regions in rats led to impaired behavioral adjustments after errors, eliminated the differential expression of low frequency oscillations after errors, and increased low-frequency spike-field coupling within motor cortex. Our results describe a novel mechanism for behavioral adaptation via low-frequency oscillations and elucidate how medial frontal networks synchronize brain activity to guide performance. PMID:24141310

  7. Low-frequency dielectric spectra of low-resistivity GaSe crystals (in Ukrainian)

    NASA Astrophysics Data System (ADS)

    Stakhira, J.; Fl'Unt, O.; Fiyala, Ya.

    The low-frequency dielectric response of low-resistivity GaSe layered crystal along the c-axis has been investigated at liquid nitrogen temperatures. The normalized spectra (activation energies from frequency shift is 0.19 eV) have been treated analytically employing equivalent circuits. It is shown that experimental data cannot be obtained with the circuit containing only ideal capacitors and resistors. At the same time, the equivalent circuit containing dispersive capacitors characterized by the power law dependence on frequency C^*=B(jω)^{n-1}, where ω is radian frequency, 0< n< 1, gives a good agreement with experimental data. This means that measured response of low-resistivity GaSe crystals follows the ``universal" power law of dielectric response χ^*˜(jω)^{n-1}, but not the Debye one. The nature of the ``universal" power law is explained by many-body interactions between localized charge carriers.

  8. Effects of low-frequency magnetic fields on embryonic development and pregnancy.

    PubMed

    Juutilainen, J

    1991-06-01

    Experimental and epidemiologic studies on the effects of low-frequency magnetic fields on pregnancy are reviewed. The literature suggests that these fields have adverse effects on chick embryo development. The interaction mechanism is not known. The results of experiments with mammals are inconsistent. There is more evidence of effects on mice than on rats, and the data suggest that fetal loss might be increased rather than malformations. Most of the epidemiologic studies related to pregnancy and low-frequency magnetic fields have concerned operators of a video display terminal (VDT). The results do not provide evidence for an association between adverse pregnancy outcome and use of a VDT. Other (stronger) sources of low-frequency magnetic fields have been addressed in only a few studies. It is not yet possible to conclude whether occupational or residential exposure to low-frequency magnetic fields affects human prenatal development. There is an apparent need for further investigation.

  9. Rock physics model-based prediction of shear wave velocity in the Barnett Shale formation

    NASA Astrophysics Data System (ADS)

    Guo, Zhiqi; Li, Xiang-Yang

    2015-06-01

    Predicting S-wave velocity is important for reservoir characterization and fluid identification in unconventional resources. A rock physics model-based method is developed for estimating pore aspect ratio and predicting shear wave velocity Vs from the information of P-wave velocity, porosity and mineralogy in a borehole. Statistical distribution of pore geometry is considered in the rock physics models. In the application to the Barnett formation, we compare the high frequency self-consistent approximation (SCA) method that corresponds to isolated pore spaces, and the low frequency SCA-Gassmann method that describes well-connected pore spaces. Inversion results indicate that compared to the surroundings, the Barnett Shale shows less fluctuation in the pore aspect ratio in spite of complex constituents in the shale. The high frequency method provides a more robust and accurate prediction of Vs for all the three intervals in the Barnett formation, while the low frequency method collapses for the Barnett Shale interval. Possible causes for this discrepancy can be explained by the fact that poor in situ pore connectivity and low permeability make well-log sonic frequencies act as high frequencies and thus invalidate the low frequency assumption of the Gassmann theory. In comparison, for the overlying Marble Falls and underlying Ellenburger carbonates, both the high and low frequency methods predict Vs with reasonable accuracy, which may reveal that sonic frequencies are within the transition frequencies zone due to higher pore connectivity in the surroundings.

  10. Spectrum study on unsteadiness of shock wave-vortex ring interaction

    NASA Astrophysics Data System (ADS)

    Dong, Xiangrui; Yan, Yonghua; Yang, Yong; Dong, Gang; Liu, Chaoqun

    2018-05-01

    Shock oscillation with low-frequency unsteadiness commonly occurs in supersonic flows and is a top priority for the control of flow separation caused by shock wave and boundary layer interaction. In this paper, the interaction of the shock caused by the compression ramp and the vortex rings generated by a micro-vortex generator (MVG) in a supersonic flow at Ma = 2.5 is simulated by the implicit large eddy simulation method. The analysis of observation and the frequency of both the vortex ring motion and the shock oscillation is carried out. The results show that the shock produced by a compression ramp flow at Ma = 2.5 has a dominant non-dimensional low frequency, which is around St = 0.002, while the vortex rings behind the MVG have a dominant high frequency which is around St = 0.038. The dominant low frequency of the shock, which is harmful, can be removed or weakened through the shock-vortex ring interaction by the vortex rings which generate high frequency fluctuations. In the shock and vortex ring interaction region, a dominant high frequency St = 0.037-0.038 has been detected rather than the low frequency St = 0.002, which indicates that the vortex ring is stiff enough to break or weaken the shock. This analysis could provide an effective tool to remove or weaken the low frequency pressure fluctuation below 500 Hz, which has a negative effect on the flight vehicle structures and the environmental protection, through the high frequency vortex generation.

  11. A comprehensive prediction and evaluation method of pilot workload

    PubMed Central

    Feng, Chuanyan; Wanyan, Xiaoru; Yang, Kun; Zhuang, Damin; Wu, Xu

    2018-01-01

    BACKGROUND: The prediction and evaluation of pilot workload is a key problem in human factor airworthiness of cockpit. OBJECTIVE: A pilot traffic pattern task was designed in a flight simulation environment in order to carry out the pilot workload prediction and improve the evaluation method. METHODS: The prediction of typical flight subtasks and dynamic workloads (cruise, approach, and landing) were built up based on multiple resource theory, and a favorable validity was achieved by the correlation analysis verification between sensitive physiological data and the predicted value. RESULTS: Statistical analysis indicated that eye movement indices (fixation frequency, mean fixation time, saccade frequency, mean saccade time, and mean pupil diameter), Electrocardiogram indices (mean normal-to-normal interval and the ratio between low frequency and sum of low frequency and high frequency), and Electrodermal Activity indices (mean tonic and mean phasic) were all sensitive to typical workloads of subjects. CONCLUSION: A multinominal logistic regression model based on combination of physiological indices (fixation frequency, mean normal-to-normal interval, the ratio between low frequency and sum of low frequency and high frequency, and mean tonic) was constructed, and the discriminate accuracy was comparatively ideal with a rate of 84.85%. PMID:29710742

  12. A comprehensive prediction and evaluation method of pilot workload.

    PubMed

    Feng, Chuanyan; Wanyan, Xiaoru; Yang, Kun; Zhuang, Damin; Wu, Xu

    2018-01-01

    The prediction and evaluation of pilot workload is a key problem in human factor airworthiness of cockpit. A pilot traffic pattern task was designed in a flight simulation environment in order to carry out the pilot workload prediction and improve the evaluation method. The prediction of typical flight subtasks and dynamic workloads (cruise, approach, and landing) were built up based on multiple resource theory, and a favorable validity was achieved by the correlation analysis verification between sensitive physiological data and the predicted value. Statistical analysis indicated that eye movement indices (fixation frequency, mean fixation time, saccade frequency, mean saccade time, and mean pupil diameter), Electrocardiogram indices (mean normal-to-normal interval and the ratio between low frequency and sum of low frequency and high frequency), and Electrodermal Activity indices (mean tonic and mean phasic) were all sensitive to typical workloads of subjects. A multinominal logistic regression model based on combination of physiological indices (fixation frequency, mean normal-to-normal interval, the ratio between low frequency and sum of low frequency and high frequency, and mean tonic) was constructed, and the discriminate accuracy was comparatively ideal with a rate of 84.85%.

  13. Processing of simple and complex acoustic signals in a tonotopically organized ear

    PubMed Central

    Hummel, Jennifer; Wolf, Konstantin; Kössl, Manfred; Nowotny, Manuela

    2014-01-01

    Processing of complex signals in the hearing organ remains poorly understood. This paper aims to contribute to this topic by presenting investigations on the mechanical and neuronal response of the hearing organ of the tropical bushcricket species Mecopoda elongata to simple pure tone signals as well as to the conspecific song as a complex acoustic signal. The high-frequency hearing organ of bushcrickets, the crista acustica (CA), is tonotopically tuned to frequencies between about 4 and 70 kHz. Laser Doppler vibrometer measurements revealed a strong and dominant low-frequency-induced motion of the CA when stimulated with either pure tone or complex stimuli. Consequently, the high-frequency distal area of the CA is more strongly deflected by low-frequency-induced waves than by high-frequency-induced waves. This low-frequency dominance will have strong effects on the processing of complex signals. Therefore, we additionally studied the neuronal response of the CA to native and frequency-manipulated chirps. Again, we found a dominant influence of low-frequency components within the conspecific song, indicating that the mechanical vibration pattern highly determines the neuronal response of the sensory cells. Thus, we conclude that the encoding of communication signals is modulated by ear mechanics. PMID:25339727

  14. Sensitivity to Envelope Interaural Time Differences at High Modulation Rates

    PubMed Central

    Bleeck, Stefan; McAlpine, David

    2015-01-01

    Sensitivity to interaural time differences (ITDs) conveyed in the temporal fine structure of low-frequency tones and the modulated envelopes of high-frequency sounds are considered comparable, particularly for envelopes shaped to transmit similar fidelity of temporal information normally present for low-frequency sounds. Nevertheless, discrimination performance for envelope modulation rates above a few hundred Hertz is reported to be poor—to the point of discrimination thresholds being unattainable—compared with the much higher (>1,000 Hz) limit for low-frequency ITD sensitivity, suggesting the presence of a low-pass filter in the envelope domain. Further, performance for identical modulation rates appears to decline with increasing carrier frequency, supporting the view that the low-pass characteristics observed for envelope ITD processing is carrier-frequency dependent. Here, we assessed listeners’ sensitivity to ITDs conveyed in pure tones and in the modulated envelopes of high-frequency tones. ITD discrimination for the modulated high-frequency tones was measured as a function of both modulation rate and carrier frequency. Some well-trained listeners appear able to discriminate ITDs extremely well, even at modulation rates well beyond 500 Hz, for 4-kHz carriers. For one listener, thresholds were even obtained for a modulation rate of 800 Hz. The highest modulation rate for which thresholds could be obtained declined with increasing carrier frequency for all listeners. At 10 kHz, the highest modulation rate at which thresholds could be obtained was 600 Hz. The upper limit of sensitivity to ITDs conveyed in the envelope of high-frequency modulated sounds appears to be higher than previously considered. PMID:26721926

  15. Noise Trauma Induced Plastic Changes in Brain Regions outside the Classical Auditory Pathway

    PubMed Central

    Chen, Guang-Di; Sheppard, Adam; Salvi, Richard

    2017-01-01

    The effects of intense noise exposure on the classical auditory pathway have been extensively investigated; however, little is known about the effects of noise-induced hearing loss on non-classical auditory areas in the brain such as the lateral amygdala (LA) and striatum (Str). To address this issue, we compared the noise-induced changes in spontaneous and tone-evoked responses from multiunit clusters (MUC) in the LA and Str with those seen in auditory cortex (AC). High-frequency octave band noise (10–20 kHz) and narrow band noise (16–20 kHz) induced permanent thresho ld shifts (PTS) at high-frequencies within and above the noise band but not at low frequencies. While the noise trauma significantly elevated spontaneous discharge rate (SR) in the AC, SRs in the LA and Str were only slightly increased across all frequencies. The high-frequency noise trauma affected tone-evoked firing rates in frequency and time dependent manner and the changes appeared to be related to severity of noise trauma. In the LA, tone-evoked firing rates were reduced at the high-frequencies (trauma area) whereas firing rates were enhanced at the low-frequencies or at the edge-frequency dependent on severity of hearing loss at the high frequencies. The firing rate temporal profile changed from a broad plateau to one sharp, delayed peak. In the AC, tone-evoked firing rates were depressed at high frequencies and enhanced at the low frequencies while the firing rate temporal profiles became substantially broader. In contrast, firing rates in the Str were generally decreased and firing rate temporal profiles become more phasic and less prolonged. The altered firing rate and pattern at low frequencies induced by high frequency hearing loss could have perceptual consequences. The tone-evoked hyperactivity in low-frequency MUC could manifest as hyperacusis whereas the discharge pattern changes could affect temporal resolution and integration. PMID:26701290

  16. Separate channels for the analysis of the shape and the movement of moving visual stimulus.

    PubMed

    Tolhurst, D J

    1973-06-01

    1. The effects of temporal modulation on the properties of spatial frequency channels have been investigated using adaptation.2. Adapting to drifting sinusoidal gratings caused threshold elevation that was both spatial frequency and direction specific. Little systematic difference was found between the band widths of the elevation curves for drifting and stationary gratings.3. It was confirmed that adaptation fails to reveal channels at low spatial frequencies when stationary gratings are used. However, channels were revealed at frequencies at least as low as 0.66 c/deg when the test gratings were made to move. These channels are adapted only a little by stationary gratings, confirming their dependence on movement.4. The existence of movement-sensitive channels at low spatial frequencies explains the well known observation that temporal modulation greatly increases the sensitivity of the visual system to low spatial frequencies.5. Temporal modulation was effective at revealing these channels only when the flicker or movement of the test patterns was apparent to the observer; only at low spatial frequencies did patterns, modulated at low rates, actually appear to be temporarily modulated at threshold. At higher spatial frequencies, they were indistinguishable from stationary patterns until the contrast was some way above the detection threshold.6. It is suggested, therefore, that the movement-sensitive channels are responsible for signalling the occurrence of movement; the channels at higher spatial frequencies give no information about temporal changes. These two systems of channels are compared to the Y- and X-cells respectively of the cat.

  17. On the Performance of the Martin Digital Filter for High- and Low-pass Applications

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.

    1979-01-01

    A nonrecursive numerical filter is described in which the weighting sequence is optimized by minimizing the excursion from the ideal rectangular filter in a least squares sense over the entire domain of normalized frequency. Additional corrections to the weights in order to reduce overshoot oscillations (Gibbs phenomenon) and to insure unity gain at zero frequency for the low pass filter are incorporated. The filter is characterized by a zero phase shift for all frequencies (due to a symmetric weighting sequence), a finite memory and stability, and it may readily be transformed to a high pass filter. Equations for the filter weights and the frequency response function are presented, and applications to high and low pass filtering are examined. A discussion of optimization of high pass filter parameters for a rather stringent response requirement is given in an application to the removal of aircraft low frequency oscillations superimposed on remotely sensed ocean surface profiles. Several frequency response functions are displayed, both in normalized frequency space and in period space. A comparison of the performance of the Martin filter with some other commonly used low pass digital filters is provided in an application to oceanographic data.

  18. The impact of variation in low-frequency interaural cross correlation on auditory spatial imagery in stereophonic loudspeaker reproduction

    NASA Astrophysics Data System (ADS)

    Martens, William

    2005-04-01

    Several attributes of auditory spatial imagery associated with stereophonic sound reproduction are strongly modulated by variation in interaural cross correlation (IACC) within low frequency bands. Nonetheless, a standard practice in bass management for two-channel and multichannel loudspeaker reproduction is to mix low-frequency musical content to a single channel for reproduction via a single driver (e.g., a subwoofer). This paper reviews the results of psychoacoustic studies which support the conclusion that reproduction via multiple drivers of decorrelated low-frequency signals significantly affects such important spatial attributes as auditory source width (ASW), auditory source distance (ASD), and listener envelopment (LEV). A variety of methods have been employed in these tests, including forced choice discrimination and identification, and direct ratings of both global dissimilarity and distinct attributes. Contrary to assumptions that underlie industrial standards established in 1994 by ITU-R. Recommendation BS.775-1, these findings imply that substantial stereophonic spatial information exists within audio signals at frequencies below the 80 to 120 Hz range of prescribed subwoofer cutoff frequencies, and that loudspeaker reproduction of decorrelated signals at frequencies as low as 50 Hz can have an impact upon auditory spatial imagery. [Work supported by VRQ.

  19. High-frequency tone-pip-evoked otoacoustic emissions in chinchillas

    NASA Astrophysics Data System (ADS)

    Siegel, Jonathan H.; Charaziak, Karolina K.

    2015-12-01

    We measured otoacoustic emissions in anesthetized chinchillas evoked by short (1 ms) high-frequency (4 kHz) tone-pips (TEOAE) using either a compression or suppression method to separate the stimulus from the emission. Both methods revealed consistent features of the TEOAEs. The main spectral band of the emission generally corresponded to the spectrum of the stimulus, exhibiting a group delay similar to that of SFOAEs [9]. However, a second spectral band below 1.5 kHz, clearly separated from the low-frequency cut-off frequency of the stimulus spectrum, corresponded to an amplitude modulation of the waveform of the TEOAE. The group delay of this low-frequency band was similar to that of the main band near the probe frequency. The average level and group delay of the main band declined monotonically when revealed as the suppressor frequency was raised above the probe. The low-frequency band was more sensitive than the main band to shifts in compound action potential thresholds near the probe frequency induced by acute exposure to intense tones. Taken together, the experiments indicate that both the main and low-frequency bands of the TEOAE are generated primarily near the cochlear region maximally stimulated by the probe, but that significant contributions arise over a large region even more basal.

  20. Alcohol Effects on Simulated Driving in Frequent and Infrequent Binge Drinkers

    PubMed Central

    Bernosky-Smith, Kimberly A.; Shannon, Erin E.; Roth, Alicia J.; Liguori, Anthony

    2011-01-01

    Objective Compared to non-bingers, binge drinkers are more likely to drive while intoxicated. The extent to which binge frequency impacts confidence in driving and subsequent driving impairment is unknown. This study compared the effects of an experimenter-delivered alcohol binge on subjective impairment and simulated driving ability in female High and Low Frequency bingers. Methods Female drinkers were assigned to High Frequency (n=30) or Low Frequency (n=30) binge groups based on their Alcohol Use Questionnaire responses. At 30-minute intervals within a two-hour period, participants received either a placebo drink (n=15 per group) or a 0.2 g/kg dose of alcohol (n=15 per group; cumulative dose 0.8 g/kg). Self-reported impairment, driving confidence, and simulated driving were then measured. Results Self-reported confidence in driving was significantly lower after alcohol than after placebo in Low Frequency but not High Frequency bingers. Self-reported impairment and collisions during simulated driving were significantly greater after alcohol than after placebo in both Low Frequency and High Frequency bingers. Conclusions The impairing effects of a single alcohol binge on driving ability in females are not influenced by binge frequency. However, high binge frequency may be associated with a less cautious approach to post-binge driving. PMID:21542027

  1. Feasibility of Frequency-Modulated Wireless Transmission for a Multi-Purpose MEMS-Based Accelerometer

    PubMed Central

    Sabato, Alessandro; Feng, Maria Q.

    2014-01-01

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy—especially at very low frequencies—have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline. PMID:25198003

  2. Research of hydroelectric generating set low-frequency vibration monitoring system based on optical fiber sensing

    NASA Astrophysics Data System (ADS)

    Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang

    2017-10-01

    In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.

  3. Low Power Near Field Communication Methods for RFID Applications of SIM Cards.

    PubMed

    Chen, Yicheng; Zheng, Zhaoxia; Gong, Mingyang; Yu, Fengqi

    2017-04-14

    Power consumption and communication distance have become crucial challenges for SIM card RFID (radio frequency identification) applications. The combination of long distance 2.45 GHz radio frequency (RF) technology and low power 2 kHz near distance communication is a workable scheme. In this paper, an ultra-low frequency 2 kHz near field communication (NFC) method suitable for SIM cards is proposed and verified in silicon. The low frequency transmission model based on electromagnetic induction is discussed. Different transmission modes are introduced and compared, which show that the baseband transmit mode has a better performance. The low-pass filter circuit and programmable gain amplifiers are applied for noise reduction and signal amplitude amplification. Digital-to-analog converters and comparators are used to judge the card approach and departure. A novel differential Manchester decoder is proposed to deal with the internal clock drift in range-controlled communication applications. The chip has been fully implemented in 0.18 µm complementary metal-oxide-semiconductor (CMOS) technology, with a 330 µA work current and a 45 µA idle current. The low frequency chip can be integrated into a radio frequency SIM card for near field RFID applications.

  4. Low-frequency Raman scattering in a Xe hydrate.

    PubMed

    Adichtchev, S V; Belosludov, V R; Ildyakov, A V; Malinovsky, V K; Manakov, A Yu; Subbotin, O S; Surovtsev, N V

    2013-09-12

    The physics of gas hydrates are rich in interesting phenomena such as anomalies for thermal conductivity, self-preservation effects for decomposition, and others. Some of these phenomena are presumably attributed to the resonance interaction of the rattling motions of guest molecules or atoms with the lattice modes. This can be expected to induce some specific features in the low-frequency (THz) vibrational response. Here we present results for low-frequency Raman scattering in a Xe hydrate, supported by numerical calculations of vibrational density of states. A number of narrow lines, located in the range from 18 to 90 cm(-1), were found in the Raman spectrum. Numerical calculations confirm that these lines correspond to resonance modes of the Xe hydrate. Also, low-frequency Raman scattering was studied during gas hydrate decomposition, and two scenarios were observed. The first one is the direct decomposition of the Xe hydrate to water and gas. The second one is the hydrate decomposition to ice and gas with subsequent melting of ice. In the latter case, a transient low-frequency Raman band is observed, which is associated with low-frequency bands (e.g., boson peak) of disordered solids.

  5. Decadal Variation's Offset of Global Warming in Recent Tropical Pacific Climate

    NASA Astrophysics Data System (ADS)

    Yeo, S. R.; Yeh, S. W.; Kim, K. Y.; Kim, W.

    2015-12-01

    Despite the increasing greenhouse gas concentration, there is no significant warming in the sea surface temperature (SST) over the tropical eastern Pacific since about 2000. This counterintuitive observation has generated substantial interest in the role of low-frequency variation over the Pacific Ocean such as Pacific Decadal Oscillation (PDO) or Interdecadal Pacific Oscillation (IPO). Therefore, it is necessary to appropriately separate low-frequency variability and global warming from SST records. Here we present three primary modes of global SST as a secular warming trend, a low-frequency variability, and a biennial oscillation through the use of novel statistical method. By analyzing temporal behavior of the three-mode, it is found that the opposite contributions of secular warming trend and cold phase of low-frequency variability since 1999 account for the warming hiatus in the tropical eastern Pacific. This result implies that the low-frequency variability modulates the manifestation of global warming signal in the tropical Pacific SST. Furthermore, if the low-frequency variability turns to a positive phase, warming in the tropical eastern Pacific will be amplified and also strong El Niño events will occur more frequently in the near future.

  6. The Group Delay and Suppression Pattern of the Cochlear Microphonic Potential Recorded at the Round Window

    PubMed Central

    He, Wenxuan; Porsov, Edward; Kemp, David; Nuttall, Alfred L.; Ren, Tianying

    2012-01-01

    Background It is commonly assumed that the cochlear microphonic potential (CM) recorded from the round window (RW) is generated at the cochlear base. Based on this assumption, the low-frequency RW CM has been measured for evaluating the integrity of mechanoelectrical transduction of outer hair cells at the cochlear base and for studying sound propagation inside the cochlea. However, the group delay and the origin of the low-frequency RW CM have not been demonstrated experimentally. Methodology/Principal Findings This study quantified the intra-cochlear group delay of the RW CM by measuring RW CM and vibrations at the stapes and basilar membrane in gerbils. At low sound levels, the RW CM showed a significant group delay and a nonlinear growth at frequencies below 2 kHz. However, at high sound levels or at frequencies above 2 kHz, the RW CM magnitude increased proportionally with sound pressure, and the CM phase in respect to the stapes showed no significant group delay. After the local application of tetrodotoxin the RW CM below 2 kHz became linear and showed a negligible group delay. In contrast to RW CM phase, the BM vibration measured at location ∼2.5 mm from the base showed high sensitivity, sharp tuning, and nonlinearity with a frequency-dependent group delay. At low or intermediate sound levels, low-frequency RW CMs were suppressed by an additional tone near the probe-tone frequency while, at high sound levels, they were partially suppressed only at high frequencies. Conclusions/Significance We conclude that the group delay of the RW CM provides no temporal information on the wave propagation inside the cochlea, and that significant group delay of low-frequency CMs results from the auditory nerve neurophonic potential. Suppression data demonstrate that the generation site of the low-frequency RW CM shifts from apex to base as the probe-tone level increases. PMID:22470560

  7. Dynamic conductivity from audio to optical frequencies of semiconducting manganites approaching the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Lunkenheimer, P.; Mayr, F.; Loidl, A.

    2006-07-01

    We report the frequency-dependent conductivity of the manganite system La1-xSrxMnO3 (x0.2) when approaching the metal-insulator transition from the insulating side. Results from low-frequency dielectric measurements are combined with spectra in the infrared region. For low doping levels the behavior is dominated by hopping transport of localized charge carriers at low frequencies and by phononic and electronic excitations in the infrared region. For the higher Sr contents the approach of the metallic state is accompanied by the successive suppression of the hopping contribution at low frequencies and by the development of polaronic excitations in the infrared region, which finally become superimposed by a strong Drude contribution in the fully metallic state.

  8. Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells - A review

    NASA Astrophysics Data System (ADS)

    Pivac, Ivan; Barbir, Frano

    2016-09-01

    The results of electrochemical impedance spectroscopy of proton exchange membrane (PEM) fuel cells may exhibit inductive phenomena at low frequencies. The occurrence of inductive features at high frequencies is explained by the cables and wires of the test system. However, explanation of inductive loop at low frequencies requires a more detailed study. This review paper discusses several possible causes of such inductive behavior in PEM fuel cells, such as side reactions with intermediate species, carbon monoxide poisoning, and water transport, also as their equivalent circuit representations. It may be concluded that interpretation of impedance spectra at low frequencies is still ambiguous, and that better equivalent circuit models are needed with clearly defined physical meaning of each of the circuit elements.

  9. The detection error of thermal test low-frequency cable based on M sequence correlation algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Dongliang; Ge, Zheyang; Tong, Xin; Du, Chunlin

    2018-04-01

    The problem of low accuracy and low efficiency of off-line detecting on thermal test low-frequency cable faults could be solved by designing a cable fault detection system, based on FPGA export M sequence code(Linear feedback shift register sequence) as pulse signal source. The design principle of SSTDR (Spread spectrum time-domain reflectometry) reflection method and hardware on-line monitoring setup figure is discussed in this paper. Testing data show that, this detection error increases with fault location of thermal test low-frequency cable.

  10. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jing; Peter Grünberg Institute; Zhang, Yi

    2014-05-15

    We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mAmore » to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.« less

  11. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Zhang, Yi; Lee, Yong-Ho; Krause, Hans-Joachim

    2014-05-01

    We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.

  12. Experimental study of the influence of low frequency flow modulation on the whistling behavior of a corrugated pipe.

    PubMed

    Kristiansen, Ulf R; Mattei, Pierre-Olivier; Pinhede, Cedric; Amielh, Muriel

    2011-10-01

    It is well known that airflow in a corrugated pipe can excite whistling at the frequencies of the pipe's longitudinal acoustic modes. This short contribution reports on the results of experiments where a low frequency, oscillating flow with velocity magnitudes of the same order as the airflow has been added. Depending on the oscillation strength, it has been found that this flow may silence the pipe or move the whistling to higher harmonics. It is also shown that the low frequency oscillation itself may excite higher frequency whistling sounds in the pipe. © 2011 Acoustical Society of America

  13. Multi-year climate variability in the Southwestern United States within a context of a dynamically downscaled twentieth century reanalysis

    NASA Astrophysics Data System (ADS)

    Carrillo, Carlos M.; Castro, Christopher L.; Chang, Hsin-I.; Luong, Thang M.

    2017-12-01

    This investigation evaluates whether there is coherency in warm and cool season precipitation at the low-frequency scale that may be responsible for multi-year droughts in the US Southwest. This low-frequency climate variability at the decadal scale and longer is studied within the context of a twentieth-century reanalysis (20CR) and its dynamically-downscaled version (DD-20CR). A spectral domain matrix methods technique (Multiple-Taper-Method Singular Value Decomposition) is applied to these datasets to identify statistically significant spatiotemporal precipitation patterns for the cool (November-April) and warm (July-August) seasons. The low-frequency variability in the 20CR is evaluated by exploring global to continental-scale spatiotemporal variability in moisture flux convergence (MFC) to the occurrence of multiyear droughts and pluvials in Central America, as this region has a demonstrated anti-phase relationship in low-frequency climate variability with northern Mexico and the southwestern US By using the MFC in lieu of precipitation, this study reveals that the 20CR is able to resolve well the low-frequency, multiyear climate variability. In the context of the DD-20CR, multiyear droughts and pluvials in the southwestern US (in the early twentieth century) are significantly related to this low-frequency climate variability. The precipitation anomalies at these low-frequency timescales are in phase between the cool and warm seasons, consistent with the concept of dual-season drought as has been suggested in tree ring studies.

  14. The assessment and evaluation of low-frequency noise near the region of infrasound.

    PubMed

    Ziaran, Stanislav

    2014-01-01

    The main aim of this paper is to present recent knowledge about the assessment and evaluation of low-frequency sounds (noise) and infrasound, close to the threshold of hearing, and identify their potential effect on human health and annoyance. Low-frequency noise generated by air flowing over a moving car with an open window was chosen as a typical scenario which can be subjectively assessed by people traveling by automobile. The principle of noise generated within the interior of the car and its effects on the comfort of the driver and passengers are analyzed at different velocities. An open window of a car at high velocity behaves as a source of specifically strong tonal low-frequency noise which is generally perceived as annoying. The interior noise generated by an open window of a passenger car was measured under different conditions: Driving on a highway and driving on a typical roadway. First, an octave-band analysis was used to assess the noise level and its impact on the driver's comfort. Second, a fast Fourier transform (FFT) analysis and one-third octave-band analysis were used for the detection of tonal low-frequency noise. Comparison between two different car makers was also done. Finally, the paper suggests some possibilities for scientifically assessing and evaluating low-frequency sounds in general, and some recommendations are introduced for scientific discussion, since sounds with strong low-frequency content (but not only strong) engender greater annoyance than is predicted by an A-weighted sound pressure level.

  15. Multi-focus image fusion algorithm using NSCT and MPCNN

    NASA Astrophysics Data System (ADS)

    Liu, Kang; Wang, Lianli

    2018-04-01

    Based on nonsubsampled contourlet transform (NSCT) and modified pulse coupled neural network (MPCNN), the paper proposes an effective method of image fusion. Firstly, the paper decomposes the source image into the low-frequency components and high-frequency components using NSCT, and then processes the low-frequency components by regional statistical fusion rules. For high-frequency components, the paper calculates the spatial frequency (SF), which is input into MPCNN model to get relevant coefficients according to the fire-mapping image of MPCNN. At last, the paper restructures the final image by inverse transformation of low-frequency and high-frequency components. Compared with the wavelet transformation (WT) and the traditional NSCT algorithm, experimental results indicate that the method proposed in this paper achieves an improvement both in human visual perception and objective evaluation. It indicates that the method is effective, practical and good performance.

  16. Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhang, Qichang; Wang, Wei

    2017-07-01

    This work presents models and experiments of an impact-driven and frequency up-converted wideband piezoelectric-based vibration energy harvester with a quintuple-well potential induced by the combination effect of magnetic nonlinearity and mechanical piecewise-linearity. Analysis shows that the interwell motions during coupled vibration period enable to increase electrical power output in comparison to conventional frequency up-conversion technology. Besides, the quintuple-well potential with shallower potential wells could extend the harvester's operating bandwidth to lower frequencies. Experiments demonstrate our proposed approach can dramatically boost the measured power of the energy harvester as much as 35 times while its lower cut-off frequency is two times lower than that of a conventional counterpart. These results reveal our proposed approach shows promise for powering portable wireless smart devices from low-intensity, low-frequency vibration sources.

  17. Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity.

    PubMed

    Li, Jielin; Hassebrook, Laurence G; Guan, Chun

    2003-01-01

    Temporal frame-to-frame noise in multipattern structured light projection can significantly corrupt depth measurement repeatability. We present a rigorous stochastic analysis of phase-measuring-profilometry temporal noise as a function of the pattern parameters and the reconstruction coefficients. The analysis is used to optimize the two-frequency phase measurement technique. In phase-measuring profilometry, a sequence of phase-shifted sine-wave patterns is projected onto a surface. In two-frequency phase measurement, two sets of pattern sequences are used. The first, low-frequency set establishes a nonambiguous depth estimate, and the second, high-frequency set is unwrapped, based on the low-frequency estimate, to obtain an accurate depth estimate. If the second frequency is too low, then depth error is caused directly by temporal noise in the phase measurement. If the second frequency is too high, temporal noise triggers ambiguous unwrapping, resulting in depth measurement error. We present a solution for finding the second frequency, where intensity noise variance is at its minimum.

  18. Flexural wave suppression by an elastic metamaterial beam with zero bending stiffness

    NASA Astrophysics Data System (ADS)

    Zhang, Yong Yan; Wu, Jiu Hui; Hu, Guang Zhong; Wang, Yu Chun

    2017-04-01

    In this paper, different from Bragg scattering or local resonance mechanisms, a novel mechanism of an ultra-low-frequency broadband for flexural waves propagating in a one-dimensional elastic metamaterial beam with zero bending stiffness is proposed, which consists of periodic hinge-linked blocks. The dispersion relationship of this kind of metamaterial beam is derived and analyzed, from which we find that these hinge-linked blocks can produce the zero bending stiffness. Thus, the flexural waves within the metamaterial beam can be suppressed, and an ultra-low-frequency wide band-gap is formed in which the first branch is generated by the zero bending spring and the second branch by the negative velocity of the metamaterial beam. Numerical results show that the elastic metamaterial beams with zero bending stiffness can indeed generate an ultra-low-frequency wide band gap even starting from almost zero frequency, such as from 0 Hz to 525 Hz in our structure. Therefore, the puzzle of realizing an ultra-low-frequency broadband of flexural waves may have been better solved, which could be applied in controlling ultra-low-frequency elastic waves in engineering.

  19. Regionalisation of low flow frequency curves for the Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Mamun, Abdullah A.; Hashim, Alias; Daoud, Jamal I.

    2010-02-01

    SUMMARYRegional maps and equations for the magnitude and frequency of 1, 7 and 30-day low flows were derived and are presented in this paper. The river gauging stations of neighbouring catchments that produced similar low flow frequency curves were grouped together. As such, the Peninsular Malaysia was divided into seven low flow regions. Regional equations were developed using the multivariate regression technique. An empirical relationship was developed for mean annual minimum flow as a function of catchment area, mean annual rainfall and mean annual evaporation. The regional equations exhibited good coefficient of determination ( R2 > 0.90). Three low flow frequency curves showing the low, mean and high limits for each region were proposed based on a graphical best-fit technique. Knowing the catchment area, mean annual rainfall and evaporation in the region, design low flows of different durations can be easily estimated for the ungauged catchments. This procedure is expected to overcome the problem of data unavailability in estimating low flows in the Peninsular Malaysia.

  20. The Effects of Sediment Properties on Low Frequency Acoustic Propagation

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. The Effects of Sediment Properties on Low Frequency...investigations have indicated that water-borne acoustic arrival properties such as their Airy Phase are sensitive to sediment shear properties. Our major...goals of our research are to: • Improve inversion schemes for the estimation of sediment geoacoustic properties using low frequency broadband

  1. Stimulated low-frequency Raman scattering in aqueous suspension of nanoparticles

    NASA Astrophysics Data System (ADS)

    Averyushkin, Anatolii S.; Baranov, Anatoly N.; Bulychev, Nikolay A.; Kazaryan, Mishik A.; Kudryavtseva, Anna D.; Shevchenko, Mikhail A.; Strokov, Maxim A.; Tcherniega, Nikolay V.; Zemskov, Konstantin I.

    2018-04-01

    The low-frequency acoustic mode in nanoparticles of different nature in aqueous suspension has been studied by stimulated low-frequency Raman scattering (SLFRS). Nanoparticles investigated (CuO, Ag, Au, ZnS) had different dimensions and different vibrational properties. Synthesis of cupric oxide nanoparticles in acoustoplasma discharge is described in details. SLFRS has been excited by nanosecond pulses of ruby laser. Spectra of the scattered light had been registered with the help of Fabry-Perot interferometer. SLFRS conversion efficiency, threshold and frequency shift of the scattered light are measured.

  2. Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon.

    PubMed

    Thompson, William R; Keller, Benjamin V; Davis, Matthew L; Dahners, Laurence E; Weinhold, Paul S

    2015-05-01

    Low-magnitude, high-frequency vibration accelerates fracture and wound healing and prevents disuse atrophy in musculoskeletal tissues. To investigate the role of low-magnitude, high-frequency vibration as a treatment to accelerate healing of an acute ligament injury and to examine gene expression in the intact Achilles tendon of the injured limb after low-magnitude, high-frequency vibration. Controlled laboratory study. Complete surgical transection of the medial collateral ligament (MCL) was performed in 32 Sprague-Dawley rats, divided into control and low-magnitude, high-frequency vibration groups. Low-magnitude, high-frequency vibration started on postoperative day 2, and rats received vibration for 30 minutes a day for 12 days. All rats were sacrificed 2 weeks after the operation, and their intact and injured MCLs were biomechanically tested or used for histological analysis. Intact Achilles tendons from the injured limb were evaluated for differences in gene expression. Mechanical testing revealed no differences in the ultimate tensile load or the structural stiffness between the control and vibration groups for either the injured or intact MCL. Vibration exposure increased gene expression of collagen 1 alpha (3-fold), interleukin 6 (7-fold), cyclooxygenase 2 (5-fold), and bone morphogenetic protein 12 (4-fold) in the intact Achilles tendon when compared with control tendons ( P < .05). While no differences were observed in the mechanical or histological properties of the fully transected MCL after low-magnitude, high-frequency vibration treatment, significant enhancements in gene expression were observed in the intact Achilles tendon. These included collagen, several inflammatory cytokines, and growth factors critical for tendons. As low-magnitude, high-frequency vibration had no negative effects on ligament healing, vibration therapy may be a useful tool to accelerate healing of other tissues (bone) in multitrauma injuries without inhibiting ligament healing. Additionally, the enhanced gene expression in response to low-magnitude, high-frequency vibration in the intact Achilles tendon suggests the need to further study its potential to accelerate tendon healing in partial injury or repair models.

  3. Progressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing.

    PubMed

    Zong, Liang; Chen, Jin; Zhu, Yan; Zhao, Hong-Bo

    2017-07-22

    Mutations of Connexin 26 (Cx26, GJB2), which is a predominant gap junction isoform in the cochlea, can induce high incidence of nonsyndromic hearing loss. We previously found that targeted-deletion of Cx26 in supporting Deiters cells and outer pillar cells in the cochlea can influence outer hair cell (OHC) electromotility and reduce active cochlear amplification leading to hearing loss, even though there are no gap junction connexin expressions in the auditory sensory hair cells. Here, we further report that hearing loss and the reduction of active amplification in the Cx26 targeted-deletion mice are progressive and different at high and low frequency regions, first occurring in the high frequency region and then progressively extending to the middle and low frequency regions with mouse age increased. The speed of hearing loss extending was fast in the basal high frequency region and slow in the apical low frequency region, showing a logarithmic function with mouse age. Before postnatal day 25, there were no significant hearing loss and the reduction of active cochlear amplification in the low frequency region. Hearing loss and the reduction of active cochlear amplification also had frequency difference, severe and large in the high frequency regions. These new data indicate that the effect of gap junction on active cochlear amplification is progressive, but, consistent with our previous report, exists in both high and low frequency regions in adulthood. These new data also suggest that cochlear gap junctions may have an important role in age-related hearing loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Vibro-Shock Dynamics Analysis of a Tandem Low Frequency Resonator-High Frequency Piezoelectric Energy Harvester.

    PubMed

    Žižys, Darius; Gaidys, Rimvydas; Ostaševičius, Vytautas; Narijauskaitė, Birutė

    2017-04-27

    Frequency up-conversion is a promising technique for energy harvesting in low frequency environments. In this approach, abundantly available environmental motion energy is absorbed by a Low Frequency Resonator (LFR) which transfers it to a high frequency Piezoelectric Vibration Energy Harvester (PVEH) via impact or magnetic coupling. As a result, a decaying alternating output signal is produced, that can later be collected using a battery or be transferred directly to the electric load. The paper reports an impact-coupled frequency up-converting tandem setup with different LFR to PVEH natural frequency ratios and varying contact point location along the length of the harvester. RMS power output of different frequency up-converting tandems with optimal resistive values was found from the transient analysis revealing a strong relation between power output and LFR-PVEH natural frequency ratio as well as impact point location. Simulations revealed that higher power output is obtained from a higher natural frequency ratio between LFR and PVEH, an increase of power output by one order of magnitude for a doubled natural frequency ratio and up to 150% difference in power output from different impact point locations. The theoretical results were experimentally verified.

  5. Effects of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper limb motor dysfunction in patients with subacute cerebral infarction.

    PubMed

    Li, Jiang; Meng, Xiang-Min; Li, Ru-Yi; Zhang, Ru; Zhang, Zheng; Du, Yi-Feng

    2016-10-01

    Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the excitability of cortical neurons. However, there are few studies concerning the use of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper-limb motor function after cerebral infarction. We hypothesized that different frequencies of repetitive transcranial magnetic stimulation in patients with cerebral infarction would produce different effects on the recovery of upper-limb motor function. This study enrolled 127 patients with upper-limb dysfunction during the subacute phase of cerebral infarction. These patients were randomly assigned to three groups. The low-frequency group comprised 42 patients who were treated with 1 Hz repetitive transcranial magnetic stimulation on the contralateral hemisphere primary motor cortex (M1). The high-frequency group comprised 43 patients who were treated with 10 Hz repetitive transcranial magnetic stimulation on ipsilateral M1. Finally, the sham group comprised 42 patients who were treated with 10 Hz of false stimulation on ipsilateral M1. A total of 135 seconds of stimulation was applied in the sham group and high-frequency group. At 2 weeks after treatment, cortical latency of motor-evoked potentials and central motor conduction time were significantly lower compared with before treatment. Moreover, motor function scores were significantly improved. The above indices for the low- and high-frequency groups were significantly different compared with the sham group. However, there was no significant difference between the low- and high-frequency groups. The results show that low- and high-frequency repetitive transcranial magnetic stimulation can similarly improve upper-limb motor function in patients with cerebral infarction.

  6. Analysis of dispersion and attenuation of surface waves in poroelastic media in the exploration-seismic frequency band

    USGS Publications Warehouse

    Zhang, Y.; Xu, Y.; Xia, J.

    2011-01-01

    We analyse dispersion and attenuation of surface waves at free surfaces of possible vacuum/poroelastic media: permeable-'open pore', impermeable-'closed pore' and partially permeable boundaries, which have not been previously reported in detail by researchers, under different surface-permeable, viscous-damping, elastic and fluid-flowing conditions. Our discussion is focused on their characteristics in the exploration-seismic frequency band (a few through 200 Hz) for near-surface applications. We find two surface-wave modes exist, R1 waves for all conditions, and R2 waves for closed-pore and partially permeable conditions. For R1 waves, velocities disperse most under partially permeable conditions and least under the open-pore condition. High-coupling damping coefficients move the main dispersion frequency range to high frequencies. There is an f1 frequency dependence as a constant-Q model for attenuation at high frequencies. R1 waves for the open pore are most sensitive to elastic modulus variation, but least sensitive to tortuosities variation. R1 waves for partially permeable surface radiate as non-physical waves (Im(k) < 0) at low frequencies. For R2 waves, velocities are slightly lower than the bulk slow P2 waves. At low frequencies, both velocity and attenuation are diffusive of f1/2 frequency dependence, as P2 waves. It is found that for partially permeable surfaces, the attenuation displays -f1 frequency dependence as frequency increasing. High surface permeability, low-coupling damping coefficients, low Poisson's ratios, and low tortuosities increase the slope of the -f1 dependence. When the attenuation coefficients reach 0, R2 waves for partially permeable surface begin to radiate as non-physical waves. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.

  7. Voluntary reduction of force variability via modulation of low-frequency oscillations.

    PubMed

    Park, Seoung Hoon; Casamento-Moran, Agostina; Yacoubi, Basma; Christou, Evangelos A

    2017-09-01

    Visual feedback can influence the force output by changing the power in frequencies below 1 Hz. However, it remains unknown whether visual guidance can help an individual reduce force variability voluntarily. The purpose of this study, therefore, was to determine whether an individual can voluntarily reduce force variability during constant contractions with visual guidance, and whether this reduction is associated with a decrease in the power of low-frequency oscillations (0-1 Hz) in force and muscle activity. Twenty young adults (27.6 ± 3.4 years) matched a force target of 15% MVC (maximal voluntary contraction) with ankle dorsiflexion. Participants performed six visually unrestricted contractions, from which we selected the trial with the least variability. Following, participants performed six visually guided contractions and were encouraged to reduce their force variability within two guidelines (±1 SD of the least variable unrestricted trial). Participants decreased the SD of force by 45% (P < 0.001) during the guided condition, without changing mean force (P > 0.2). The decrease in force variability was associated with decreased low-frequency oscillations (0-1 Hz) in force (R 2  = 0.59), which was associated with decreased low-frequency oscillations in EMG bursts (R 2  = 0.35). The reduction in low-frequency oscillations in EMG burst was positively associated with power in the interference EMG from 35 to 60 Hz (R 2  = 0.47). In conclusion, voluntary reduction of force variability is associated with decreased low-frequency oscillations in EMG bursts and consequently force output. We provide novel evidence that visual guidance allows healthy young adults to reduce force variability voluntarily likely by adjusting the low-frequency oscillations in the neural drive.

  8. 47 CFR 90.267 - Assignment and use of frequencies in the 450-470 MHz band for low power use.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-470 MHz band for low power use. 90.267 Section 90.267 Telecommunication FEDERAL COMMUNICATIONS... Special Frequencies or Frequency Bands § 90.267 Assignment and use of frequencies in the 450-470 MHz band... medical radio telemetry device with an output power not to exceed 20 milliwatts without specific...

  9. Fire frequency effects on fuel loadings in pine-oak forests of the Madrean Province

    Treesearch

    Francisco J. Escobedo; Peter F. Ffolliott; Gerald J. Gottfried; Florentino Garza

    2001-01-01

    Loadings of downed woody fuels in pine-oak forests of the Madrean Province are heavier on sites in southeastern Arizona with low fire frequencies and lower on sites in northeastern Sonora, Mexico, with high fire frequencies. Low fire frequencies in southeastern Arizona are attributed largely to past land uses and the fire suppression policies of land management...

  10. Dissociating the influence of familiarity and meaningfulness from word frequency in naming and lexical decision performance.

    PubMed

    Colombo, Lucia; Pasini, Margherita; Balota, David A

    2006-09-01

    Performance in two experiments was compared on a list of words of high and low frequency in which familiarity/meaningfulness (FM) was balanced and on a list of high- and low-frequency words in which FM was confounded with frequency (i.e., high frequency--high familiarity vs. low frequency--low familiarity). Both repetition and task (lexical decision and naming) were investigated. In the lexical decision task of Experiment 1, both frequency and repetition effects were larger in the list with FM confounded than in the list with FM matched. In the naming task, frequency and repetition effects and their interaction were significant, but there was no influence of FM list context. In Experiment 2, in which the repetitions occurred across blocks, as opposed to randomly intermixed within a list, similar results were found; however, there was no interaction between list and repetition. The results suggest that an evaluation of items in terms of their meaning and familiarity explains a large part of the variance, only in lexical decision. These dimensions may be cued both by subjective feelings of familiarity and the extent to which semantic information is available and by episodic traces due to recent encounters with the item.

  11. The spatial unmasking of speech: evidence for within-channel processing of interaural time delay.

    PubMed

    Edmonds, Barrie A; Culling, John F

    2005-05-01

    Across-frequency processing by common interaural time delay (ITD) in spatial unmasking was investigated by measuring speech reception thresholds (SRTs) for high- and low-frequency bands of target speech presented against concurrent speech or a noise masker. Experiment 1 indicated that presenting one of these target bands with an ITD of +500 micros and the other with zero ITD (like the masker) provided some release from masking, but full binaural advantage was only measured when both target bands were given an ITD of + 500 micros. Experiment 2 showed that full binaural advantage could also be achieved when the high- and low-frequency bands were presented with ITDs of equal but opposite magnitude (+/- 500 micros). In experiment 3, the masker was also split into high- and low-frequency bands with ITDs of equal but opposite magnitude (+/-500 micros). The ITD of the low-frequency target band matched that of the high-frequency masking band and vice versa. SRTs indicated that, as long as the target and masker differed in ITD within each frequency band, full binaural advantage could be achieved. These results suggest that the mechanism underlying spatial unmasking exploits differences in ITD independently within each frequency channel.

  12. Low frequency noise elimination technique for 24-bit Σ-Δ data acquisition systems.

    PubMed

    Qu, Shao-Bo; Robert, Olivier; Lognonné, Philippe; Zhou, Ze-Bing; Yang, Shan-Qing

    2015-03-01

    Low frequency 1/f noise is one of the key limiting factors of high precision measurement instruments. In this paper, digital correlated double sampling is implemented to reduce the offset and low frequency 1/f noise of a data acquisition system with 24-bit sigma delta (Σ-Δ) analog to digital converter (ADC). The input voltage is modulated by cross-coupled switches, which are synchronized to the sampling clock, and converted into digital signal by ADC. By using a proper switch frequency, the unwanted parasitic signal frequencies generated by the switches are avoided. The noise elimination processing is made through the principle of digital correlated double sampling, which is equivalent to a time shifted subtraction for the sampled voltage. The low frequency 1/f noise spectrum density of the data acquisition system is reduced to be flat down to the measurement frequency lower limit, which is about 0.0001 Hz in this paper. The noise spectrum density is eliminated by more than 60 dB at 0.0001 Hz, with a residual noise floor of (9 ± 2) nV/Hz(1/2) which is limited by the intrinsic white noise floor of the ADC above its corner frequency.

  13. Particle-In-Cell Simulations of Asymmetric Dual Frequency Capacitive Discharge Physics

    NASA Astrophysics Data System (ADS)

    Wu, Alan; Lichtenberg, A. J.; Lieberman, M. A.; Verboncoeur, J. P.

    2003-10-01

    Dual frequency capacitive discharges are finding increasing use for etching in the microelectronics industry. In the ideal case, the high frequency power (typically 27.1-160 MHz) controls the plasma density and the low frequency power (typically 2-13.56 MHz) controls the ion energy. The electron power deposition and the dynamics of dual frequency rf sheaths are not well understood. We report on particle-in-cell computer simulations of an asymmetric dual frequency argon discharge. The simulations are performed in 1D (radial) geometry using the bounded electrostatic code XPDP1. Operating parameters are 27.1/2 MHz high/low frequencies, 10/13 cm inner/outer radii, 3-200 mTorr pressures, and 10^9-10^11 cm-3 densities. We determine the power deposition and sheath dynamics for the high frequency power alone, and with various added low frequency powers. We compare the simulation results to simple global models of dual frequency discharges. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.

  14. Calculations of low-frequency radio emission by cosmic-ray-induced particle showers

    NASA Astrophysics Data System (ADS)

    García-Fernández, Daniel; Revenu, Benoît; Charrier, Didier; Dallier, Richard; Escudie, Antony; Martin, Lilian

    2018-05-01

    The radio technique for the detection of high-energy cosmic rays consists in measuring the electric field created by the particle showers created inside a medium by the primary cosmic ray. The electric field is then used to infer the properties of the primary particle. Nowadays, the radio technique is a standard, well-established technique. While most current experiments measure the field at frequencies above 20 MHz, several experiments have reported a large emission at low frequencies, below 10 MHz. The EXTASIS experiment aims at measuring again and understanding this low-frequency electric field. Since at low frequencies the standard far-field approximation for the calculation of the electric field does not necessarily hold, in order to comprehend the low-frequency emission we need to go beyond the far-field approximation. We present in this work a formula for the electric field created by a particle track inside a dielectric medium that is valid for all frequencies. We then implement this formula in the SELFAS Monte Carlo code and calculate the low-frequency electric field of the extensive air shower (EAS). We also study the electric field of a special case of the transition radiation mechanism when the EAS particles cross the air-soil boundary. We introduce the sudden death pulse, the direct emission caused by the coherent deceleration of the shower front at the boundary, as a first approximation to the whole electric field for the air-soil transition, and study its properties. We show that at frequencies larger than 20 MHz and distances larger than 100 m, the standard far-field approximation for the horizontal polarizations of the field is always accurate at the 1% level.

  15. A neuroimaging study of conflict during word recognition.

    PubMed

    Riba, Jordi; Heldmann, Marcus; Carreiras, Manuel; Münte, Thomas F

    2010-08-04

    Using functional magnetic resonance imaging the neural activity associated with error commission and conflict monitoring in a lexical decision task was assessed. In a cohort of 20 native speakers of Spanish conflict was introduced by presenting words with high and low lexical frequency and pseudo-words with high and low syllabic frequency for the first syllable. Erroneous versus correct responses showed activation in the frontomedial and left inferior frontal cortex. A similar pattern was found for correctly classified words of low versus high lexical frequency and for correctly classified pseudo-words of high versus low syllabic frequency. Conflict-related activations for language materials largely overlapped with error-induced activations. The effect of syllabic frequency underscores the role of sublexical processing in visual word recognition and supports the view that the initial syllable mediates between the letter and word level.

  16. An all digital low data rate communication system

    NASA Technical Reports Server (NTRS)

    Chen, C.-H.; Fan, M.

    1973-01-01

    The advent of digital hardwares has made it feasible to implement many communication system components digitally. With the exception of frequency down conversion, the proposed low data rate communication system uses digital hardware completely. Although the system is designed primarily for deep space communications with large frequency uncertainty and low signal-to-noise ratio, it is also suitable for other low data rate applications with time-shared operation among a number of channels. Emphasis is placed on the fast Fourier transform receiver and the automatic frequency control via digital filtering. The speed available from the digital system allows sophisticated signal processing to reduce frequency uncertainty and to increase the signal-to-noise ratio.

  17. Seismic low-frequency-based calculation of reservoir fluid mobility and its applications

    NASA Astrophysics Data System (ADS)

    Chen, Xue-Hua; He, Zhen-Hua; Zhu, Si-Xin; Liu, Wei; Zhong, Wen-Li

    2012-06-01

    Low frequency content of seismic signals contains information related to the reservoir fluid mobility. Based on the asymptotic analysis theory of frequency-dependent reflectivity from a fluid-saturated poroelastic medium, we derive the computational implementation of reservoir fluid mobility and present the determination of optimal frequency in the implementation. We then calculate the reservoir fluid mobility using the optimal frequency instantaneous spectra at the low-frequency end of the seismic spectrum. The methodology is applied to synthetic seismic data from a permeable gas-bearing reservoir model and real land and marine seismic data. The results demonstrate that the fluid mobility shows excellent quality in imaging the gas reservoirs. It is feasible to detect the location and spatial distribution of gas reservoirs and reduce the non-uniqueness and uncertainty in fluid identification.

  18. A low jitter PLL clock used for phase change memory

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Houpeng, Chen; Zhitang, Song; Daolin, Cai; Xi, Li

    2013-02-01

    A fully integrated low-jitter, precise frequency CMOS phase-locked loop (PLL) clock for the phase change memory (PCM) drive circuit is presented. The design consists of a dynamic dual-reset phase frequency detector (PFD) with high frequency acquisition, a novel low jitter charge pump, a CMOS ring oscillator based voltage-controlled oscillator (VCO), a 2nd order passive loop filter, and a digital frequency divider. The design is fabricated in 0.35 μm CMOS technology and consumes 20 mW from a supply voltage of 5 V. In terms of the PCM's program operation requirement, the output frequency range is from 1 to 140 MHz. For the 140 MHz output frequency, the circuit features a cycle-to-cycle jitter of 28 ps RMS and 250 ps peak-to-peak.

  19. Spatial frequency filtered images reveal differences between masked and unmasked processing of emotional information.

    PubMed

    Rohr, Michaela; Wentura, Dirk

    2014-10-01

    High and low spatial frequency information has been shown to contribute differently to the processing of emotional information. In three priming studies using spatial frequency filtered emotional face primes, emotional face targets, and an emotion categorization task, we investigated this issue further. Differences in the pattern of results between short and masked, and short and long unmasked presentation conditions emerged. Given long and unmasked prime presentation, high and low frequency primes triggered emotion-specific priming effects. Given brief and masked prime presentation in Experiment 2, we found a dissociation: High frequency primes caused a valence priming effect, whereas low frequency primes yielded a differentiation between low and high arousing information within the negative domain. Brief and unmasked prime presentation in Experiment 3 revealed that subliminal processing of primes was responsible for the pattern observed in Experiment 2. The implications of these findings for theories of early emotional information processing are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Terahertz conductivity of MnSi thin films

    NASA Astrophysics Data System (ADS)

    Dodge, J.; Mohtashemi, Laleh; Farahani, Amir; Karhu, Eric; Monchesky, Theodore

    2013-03-01

    We present measurements of the low-frequency optical conductivity of MnSi thin films, using time-domain terahertz spectroscopy. At low temperatures and low frequencies, we extract the DC resistivity, scattering life time and plasma frequency from a Drude fit. We obtain a value of ωp ~= 1 . 0 eV, which can be used to estimate the renormalization coefficient through comparison with band theory. At higher temperatures, deviations from Drude behavior are observed, suggesting a loss of quasi-particle coherence. In the region of low temperatures and high frequencies, we see evidence for a crossover to the anomalous power law dependence observed by Mena et al. As the temperature increases, the anomalous frequency dependence becomes more pronounced, and the plasma frequency inferred from a Drude fit decreases dramatically. Above T ~ 50 K, σ2 (ω) develops a negative slope that is inconsistent with both a Drude model and the anomalous power law observed earlier, indicating a sharp pseudogap in the conductivity spectrum.

  1. A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging.

    PubMed

    van Dongen, Koen W A; Wright, William M D

    2006-10-01

    Emerging methods of hyperthermia cancer treatment require noninvasive temperature monitoring, and ultrasonic techniques show promise in this regard. Various tomographic algorithms are available that reconstruct sound speed or contrast profiles, which can be related to temperature distribution. The requirement of a high enough frequency for adequate spatial resolution and a low enough frequency for adequate tissue penetration is a difficult compromise. In this study, the feasibility of using low frequency ultrasound for imaging and temperature monitoring was investigated. The transient probing wave field had a bandwidth spanning the frequency range 2.5-320.5 kHz. The results from a forward model which computed the propagation and scattering of low-frequency acoustic pressure and velocity wave fields were used to compare three imaging methods formulated within the Born approximation, representing two main types of reconstruction. The first uses Fourier techniques to reconstruct sound-speed profiles from projection or Radon data based on optical ray theory, seen as an asymptotical limit for comparison. The second uses backpropagation and conjugate gradient inversion methods based on acoustical wave theory. The results show that the accuracy in localization was 2.5 mm or better when using low frequencies and the conjugate gradient inversion scheme, which could be used for temperature monitoring.

  2. Comparison of low-frequency noise levels of the Concorde supersonic transport with other commercial service airplanes

    NASA Technical Reports Server (NTRS)

    Powell, C. A.; Mccurdy, D. A.

    1978-01-01

    Fifty-two airplane noise recordings, made at several locations around Dulles International Airport, were analyzed to compare the low-frequency noise levels of the Concorde supersonic transport with those of other commercial jet airplanes. Comparisons of the relative low-frequency noise levels which were produced at close and distant locations for departures and arrivals were made for three noise measures: the sound pressure level in the 1/3 octave band centered at 20 Hz, the total sound pressure level in the 1/3 octave bands with center frequencies less than or equal to 125 Hz, and the total sound pressure level in the 1/3 octave bands with center frequencies less than or equal to 500 Hz. Although the absolute noise levels for Concorde were found, in general, to be higher than those for the other airplane types, the level of low-frequency noise of the Concorde relative to the perceived noise level (PNL), effective perceived noise level (EPNL), and overall sound pressure level (OASPL) was within the range established by the other airplane types, except for the arrival operations of four-engine, narrow-body airplanes. The measure OASPL was found to be a significantly better predictor of low-frequency noise level than PNL or EPNL.

  3. Low-frequency signals produced by Northeast Atlantic killer whales (Orcinus orca).

    PubMed

    Samarra, Filipa I P; Deecke, Volker B; Miller, Patrick J O

    2016-03-01

    Killer whale acoustic behavior has been extensively investigated; however, most studies have focused on pulsed calls and whistles. This study reports the production of low-frequency signals by killer whales at frequencies below 300 Hz. Recordings were made in Iceland and Norway when killer whales were observed feeding on herring and no other marine mammal species were nearby. Low-frequency sounds were identified in Iceland and ranged in duration between 0.14 and 2.77 s and in frequency between 50 and 270 Hz, well below the previously reported lower limit for killer whale tonal sounds of 500 Hz. Low-frequency sounds appeared to be produced close in time to tail slaps, which are indicative of feeding attempts, suggesting that these sounds may be related to a feeding context. However, their precise function is unknown, and they could be the by-product of a non-vocal behavior rather than a vocal signal deliberately produced by the whales. Although killer whales in Norway exhibit similar feeding behavior, this sound has not been detected in recordings from Norway to date. This study suggests that, like other delphinids, killer whales produce low-frequency sounds, but further studies will be required to understand whether similar sounds exist in other killer whale populations.

  4. High-frequency solitons in media with induced scattering from damped low-frequency waves with nonuniform dispersion and nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aseeva, N. V., E-mail: vtyutin@hse.ru; Gromov, E. M.; Tyutin, V. V.

    2015-12-15

    The dynamics of high-frequency field solitons is considered using the extended nonhomogeneous nonlinear Schrödinger equation with induced scattering from damped low-frequency waves (pseudoinduced scattering). This scattering is a 3D analog of the stimulated Raman scattering from temporal spatially homogeneous damped low-frequency modes, which is well known in optics. Spatial inhomogeneities of secondorder linear dispersion and cubic nonlinearity are also taken into account. It is shown that the shift in the 3D spectrum of soliton wavenumbers toward the short-wavelength region is due to nonlinearity increasing in coordinate and to decreasing dispersion. Analytic results are confirmed by numerical calculations.

  5. Low-frequency oscillations in default mode subnetworks are associated with episodic memory impairments in Alzheimer's disease.

    PubMed

    Veldsman, Michele; Egorova, Natalia; Singh, Baljeet; Mungas, Dan; DeCarli, Charles; Brodtmann, Amy

    2017-11-01

    Disruptions to functional connectivity in subsystems of the default mode network are evident in Alzheimer's disease (AD). Functional connectivity estimates correlations in the time course of low-frequency activity. Much less is known about other potential perturbations to this activity, such as changes in the amplitude of oscillations and how this relates to cognition. We examined the amplitude of low-frequency fluctuations in 44 AD patients and 128 cognitively normal participants and related this to episodic memory, the core deficit in AD. We show higher amplitudes of low-frequency oscillations in AD patients. Rather than being compensatory, this appears to be maladaptive, with greater amplitude in the ventral default mode subnetwork associated with poorer episodic memory. Perturbations to default mode subnetworks in AD are evident in the amplitude of low-frequency oscillations in the resting brain. These disruptions are associated with episodic memory demonstrating their behavioral and clinical relevance in AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Mechanism of blood pressure and R-R variability: insights from ganglion blockade in humans

    NASA Technical Reports Server (NTRS)

    Zhang, Rong; Iwasaki, Kenichi; Zuckerman, Julie H.; Behbehani, Khosrow; Crandall, Craig G.; Levine, Benjamin D.; Blomqvist, C. G. (Principal Investigator)

    2002-01-01

    Spontaneous blood pressure (BP) and R-R variability are used frequently as 'windows' into cardiovascular control mechanisms. However, the origin of these rhythmic fluctuations is not completely understood. In this study, with ganglion blockade, we evaluated the role of autonomic neural activity versus other 'non-neural' factors in the origin of BP and R-R variability in humans. Beat-to-beat BP, R-R interval and respiratory excursions were recorded in ten healthy subjects (aged 30 +/- 6 years) before and after ganglion blockade with trimethaphan. The spectral power of these variables was calculated in the very low (0.0078-0.05 Hz), low (0.05-0.15 Hz) and high (0.15-0.35 Hz) frequency ranges. The relationship between systolic BP and R-R variability was examined by cross-spectral analysis. After blockade, R-R variability was virtually abolished at all frequencies; however, respiration and high frequency BP variability remained unchanged. Very low and low frequency BP variability was reduced substantially by 84 and 69 %, respectively, but still persisted. Transfer function gain between systolic BP and R-R interval variability decreased by 92 and 88 % at low and high frequencies, respectively, while the phase changed from negative to positive values at the high frequencies. These data suggest that under supine resting conditions with spontaneous breathing: (1) R-R variability at all measured frequencies is predominantly controlled by autonomic neural activity; (2) BP variability at high frequencies (> 0.15 Hz) is mediated largely, if not exclusively, by mechanical effects of respiration on intrathoracic pressure and/or cardiac filling; (3) BP variability at very low and low frequencies (< 0.15 Hz) is probably mediated by both sympathetic nerve activity and intrinsic vasomotor rhythmicity; and (4) the dynamic relationship between BP and R-R variability as quantified by transfer function analysis is determined predominantly by autonomic neural activity rather than other, non-neural factors.

  7. Frequency analysis of heart rate variability: a useful assessment tool of linearly polarized near-infrared irradiation to stellate ganglion area for burning mouth syndrome.

    PubMed

    Momota, Yukihiro; Takano, Hideyuki; Kani, Koichi; Matsumoto, Fumihiro; Motegi, Katsumi; Aota, Keiko; Yamamura, Yoshiko; Omori, Mayuko; Tomioka, Shigemasa; Azuma, Masayuki

    2013-03-01

    Burning mouth syndrome (BMS) is characterized by the following subjective complaints without distinct organic changes: burning sensation in mouth or chronic pain of tongue. BMS is also known as glossodynia; both terms are used equivalently in Japan. Although the real cause of BMS is still unknown, it has been pointed out that BMS is related to some autonomic abnormality, and that stellate ganglion near-infrared irradiation (SGR) corrects the autonomic abnormality. Frequency analysis of heart rate variability (HRV) is expected to be useful for assessing autonomic abnormality. This study investigated whether frequency analysis of HRV could reveal autonomic abnormality associated with BMS, and whether autonomic changes were corrected after SGR. Eight subjects received SGR; the response to SGR was assessed by frequency analysis of HRV. No significant difference of autonomic activity concerning low-frequency (LF) norm, high-frequency (HF) norm, and low-frequency/high-frequency (LF/HF) was found between SGR effective and ineffective groups. Therefore, we proposed new parameters: differential normalized low frequency (D LF norm), differential normalized high frequency (D HF norm), and differential low-frequency/high-frequency (D LF/HF), which were defined as differentials between original parameters just before and after SGR. These parameters as indexes of responsiveness of autonomic nervous system (ANS) revealed autonomic changes in BMS, and BMS seems to be related to autonomic instability rather than autonomic imbalance. Frequency analysis of HRV revealed the autonomic instability associated with BMS and enabled tracing of autonomic changes corrected with SGR. It is suggested that frequency analysis of HRV is very useful in follow up of BMS and for determination of the therapeutic efficacy of SGR. Wiley Periodicals, Inc.

  8. Low-Frequency Surface Backscattering Strengths Measured in the Critical Sea Test Experiments

    DTIC Science & Technology

    2017-01-19

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/7160--17-9702 Low-Frequency Surface Backscattering Strengths Measured in the Critical Sea ...LIMITATION OF ABSTRACT Low-Frequency Surface Backscattering Strengths Measured in the Critical Sea Test Experiments Roger C. Gauss1 and Joseph M...significantly- updated results from 55 broadband SUS SSS measurements in 6 Critical Sea Test (CST) experiments. Since the time of the previously

  9. Seafloor Pressure Array Studies at Ultra-Low Frequencies

    DTIC Science & Technology

    1991-01-01

    broadband instrument design and deployment. In order to measure broadband noise routinely, a low frequency pressure gauge designed for deep ocean...below the microseism band (Moore et al, 1981). A differential pressure gauge , developed for low frequency recordings by Cox et al (1984) and sensitive to...design differential pressure gauge (Cox et al, 1984) with a sensitivity -3- ULF Seafloor Pressure Array Studies range of 0.01-5 Hz. The high

  10. [Effects of therapeutic complexes including balneoradonokinesitherapy, electromyostimulation and low-frequency magnetotherapy on regional blood flow in patients with postrraumatic gonarthritis].

    PubMed

    Raspopova, E A; Udartsev, E Iu

    2006-01-01

    Balneoradonokinesitherapy alone and its combination with electrostimulation and low-frequency magnetotherapy were used for the treatment of regional blood flow disorders in 76 patients with posttraumatic gonarthritis. Balneoradonokinesitherapy in combination with electromyostimulation improved blood circulation. When low-frequency magnetotherapy was added to the latter complex, the regress of regional blood flow disorders of a damaged extremity was most significant.

  11. How Far Is Quasar UV/Optical Variability from a Damped Random Walk at Low Frequency?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Hengxiao; Wang Junxian; Cai Zhenyi

    Studies have shown that UV/optical light curves of quasars can be described using the prevalent damped random walk (DRW) model, also known as the Ornstein–Uhlenbeck process. A white noise power spectral density (PSD) is expected at low frequency in this model; however, a direct observational constraint to the low-frequency PSD slope is difficult due to the limited lengths of the light curves available. Meanwhile, quasars show scatter in their DRW parameters that is too large to be attributed to uncertainties in the measurements and dependence on the variation of known physical factors. In this work we present simulations showing that,more » if the low-frequency PSD deviates from the DRW, the red noise leakage can naturally produce large scatter in the variation parameters measured from simulated light curves. The steeper the low-frequency PSD slope, the larger scatter we expect. Based on observations of SDSS Stripe 82 quasars, we find that the low-frequency PSD slope should be no steeper than −1.3. The actual slope could be flatter, which consequently requires that the quasar variabilities should be influenced by other unknown factors. We speculate that the magnetic field and/or metallicity could be such additional factors.« less

  12. Spatial Release From Masking in Simulated Cochlear Implant Users With and Without Access to Low-Frequency Acoustic Hearing

    PubMed Central

    Dietz, Mathias; Hohmann, Volker; Jürgens, Tim

    2015-01-01

    For normal-hearing listeners, speech intelligibility improves if speech and noise are spatially separated. While this spatial release from masking has already been quantified in normal-hearing listeners in many studies, it is less clear how spatial release from masking changes in cochlear implant listeners with and without access to low-frequency acoustic hearing. Spatial release from masking depends on differences in access to speech cues due to hearing status and hearing device. To investigate the influence of these factors on speech intelligibility, the present study measured speech reception thresholds in spatially separated speech and noise for 10 different listener types. A vocoder was used to simulate cochlear implant processing and low-frequency filtering was used to simulate residual low-frequency hearing. These forms of processing were combined to simulate cochlear implant listening, listening based on low-frequency residual hearing, and combinations thereof. Simulated cochlear implant users with additional low-frequency acoustic hearing showed better speech intelligibility in noise than simulated cochlear implant users without acoustic hearing and had access to more spatial speech cues (e.g., higher binaural squelch). Cochlear implant listener types showed higher spatial release from masking with bilateral access to low-frequency acoustic hearing than without. A binaural speech intelligibility model with normal binaural processing showed overall good agreement with measured speech reception thresholds, spatial release from masking, and spatial speech cues. This indicates that differences in speech cues available to listener types are sufficient to explain the changes of spatial release from masking across these simulated listener types. PMID:26721918

  13. ISUAL-Observed Blue Luminous Events: The Associated Sferics

    NASA Astrophysics Data System (ADS)

    Chou, Jung-Kuang; Hsu, Rue-Ron; Su, Han-Tzong; Chen, Alfred Bing-Chih; Kuo, Cheng-Ling; Huang, Sung-Ming; Chang, Shu-Chun; Peng, Kang-Ming; Wu, Yen-Jung

    2018-04-01

    The blue luminous events (BLEs) recorded by ISUAL (Imager of Sprites and Upper Atmospheric Lightning) radiate unambiguous middle ultraviolet to blue emissions (230-450 nm) but contain dim red emissions (623-754 nm). The BLE appears to be dot-like on one ISUAL image with an integration time of 29 ms. A few BLEs develop upward into blue jets/starters or type II gigantic jets (GJs). The associated sferics of the BLEs in the extremely low frequency to very low frequency band and in the low-frequency band exhibit similar patterns to the narrow bipolar events (NBEs) identified in the very low frequency and low-frequency band. The ISUAL BLEs are conjectured to be the accompanied light emissions of the NBEs. Both upward and downward propagating current obtained from the associated sferics of the BLEs have been found. The source heights of the six BLEs related to negative NBEs are estimated in the range of 16.2-17.8 km. These six events are suggested to occur between the upper positive charge layer and the negative screen charge layer on the top of the normally electrified thunderstorm. The six blue starters, one blue jet, and one type II GJ are inferred to be positive upward discharges from their associated sferics in the extremely low frequency to very low frequency band. Based on the simultaneous radio and optical observations, a NBE is conjectured to be the initiation discharge with rapidly flowing current within the thunderstorm, while a blue jet/starter or a type II GJ is suggested to be the ensuing discharge with slowly varying current propagating upward from the thunderstorm.

  14. Effects of large pressure amplitude low frequency noise in the parotid gland perivasculo-ductal connective tissue.

    PubMed

    Oliveira, Pedro; Brito, José; Mendes, João; da Fonseca, Jorge; Águas, Artur; Martins dos Santos, José

    2013-01-01

    In tissues and organs exposed to large pressure amplitude low frequency noise fibrosis occurs in the absence of inflammatory signs, which is thought to be a protective response. In the parotid gland the perivasculo-ductal connective tissue surrounds arteries, veins and the ductal tree. Perivasculo-ductal connective tissue is believed to function as a mechanical stabilizer of the glandular tissue. In order to quantify the proliferation of perivasculo-ductal connective tissue in large pressure amplitude low frequency noise-exposed rats we used sixty Wistar rats which were equally divided into 6 groups. One group kept in silence, and the remaining five exposed to continuous large pressure amplitude low frequency noise: g1-168h (1 week); g2-504h (3 weeks); g3-840h (5 weeks); g4-1512h (9 weeks); and g5-2184h (13 weeks). After exposure, parotid glands were removed and the perivasculo-ductal connective tissue area was measured in all groups. We applied ANOVA statistical analysis, using SPSS 13.0. The global trend is an increase in the average perivasculo-ductal connective tissue areas, that develops linearly and significantly with large pressure amplitude low frequency noise exposure time (p < 0.001). It has been suggested that the biological response to large pressure amplitude low frequency noise exposure is associated with the need to maintain structural integrity. The structural reinforcement would be achieved by increased perivasculo-ductal connective tissue. Hence, these results show that in response to large pressure amplitude low frequency noise exposure, rat parotid glands increase their perivasculo-ductal connective tissue.

  15. Pupillary responses during lexical decisions vary with word frequency but not emotional valence.

    PubMed

    Kuchinke, Lars; Võ, Melissa L-H; Hofmann, Markus; Jacobs, Arthur M

    2007-08-01

    Pupillary responses were examined during a lexical decision task (LDT). Word frequency (high and low frequency words) and emotional valence (positive, neutral and negative words) were varied as experimental factors incidental to the subjects. Both variables significantly affected lexical decision performance and an interaction effect was observed. The behavioral results suggest that manipulating word frequency may partly account for the heterogeneous literature findings regarding emotional valence effects in the LDT. In addition, a difference between high and low frequency words was observed in the pupil data as reflected by higher peak pupil dilations for low frequency words, whereas pupillary responses to emotionally valenced words did not differ. This result was further supported by means of a principal component analysis on the pupil data, in which a late component was shown only to be affected by word frequency. Consistent with previous findings, word frequency was found to affect the resource allocation towards processing of the letter string, while emotionally valenced words tend to facilitate processing.

  16. Derivation of low flow frequency distributions under human activities and its implications

    NASA Astrophysics Data System (ADS)

    Gao, Shida; Liu, Pan; Pan, Zhengke; Ming, Bo; Guo, Shenglian; Xiong, Lihua

    2017-06-01

    Low flow, refers to a minimum streamflow in dry seasons, is crucial to water supply, agricultural irrigation and navigation. Human activities, such as groundwater pumping, influence low flow severely. In order to derive the low flow frequency distribution functions under human activities, this study incorporates groundwater pumping and return flow as variables in the recession process. Steps are as follows: (1) the original low flow without human activities is assumed to follow a Pearson type three distribution, (2) the probability distribution of climatic dry spell periods is derived based on a base flow recession model, (3) the base flow recession model is updated under human activities, and (4) the low flow distribution under human activities is obtained based on the derived probability distribution of dry spell periods and the updated base flow recession model. Linear and nonlinear reservoir models are used to describe the base flow recession, respectively. The Wudinghe basin is chosen for the case study, with daily streamflow observations during 1958-2000. Results show that human activities change the location parameter of the low flow frequency curve for the linear reservoir model, while alter the frequency distribution function for the nonlinear one. It is indicated that alter the parameters of the low flow frequency distribution is not always feasible to tackle the changing environment.

  17. Vortices in Long Josephson Junctions.

    DTIC Science & Technology

    1987-11-01

    of the very low impedance vortex flow transistor and toward determination of its potential for high frequency applications. Capability for higher...version. New progress was made toward solution of the problems of high frequency testing of the very low impedance vortex flow transistor and towards... measurable transresistance ’". out to frequencies of about 10% of the theoretical transit time cutoff fre- quency. Capability for higher frequency testing

  18. Semantic Priming from Letter-Searched Primes Occurs for Low- but Not High-Frequency Targets: Automatic Semantic Access May Not Be a Myth

    ERIC Educational Resources Information Center

    Tse, Chi-Shing; Neely, James H.

    2007-01-01

    Letter-search (LS) within a prime often eliminates semantic priming. In 2 lexical decision experiments, the authors found that priming from LS primes occurred for low-frequency (LF) but not high-frequency (HF) targets whether the target's word frequency was manipulated between or within participants and whether the prime-target pairs were…

  19. Low-frequency high-definition power Doppler in visualizing and defining fetal pulmonary venous connections.

    PubMed

    Liu, Lin; He, Yihua; Li, Zhian; Gu, Xiaoyan; Zhang, Ye; Zhang, Lianzhong

    2014-07-01

    The use of low-frequency high-definition power Doppler in assessing and defining pulmonary venous connections was investigated. Study A included 260 fetuses at gestational ages ranging from 18 to 36 weeks. Pulmonary veins were assessed by performing two-dimensional B-mode imaging, color Doppler flow imaging (CDFI), and low-frequency high-definition power Doppler. A score of 1 was assigned if one pulmonary vein was visualized, 2 if two pulmonary veins were visualized, 3 if three pulmonary veins were visualized, and 4 if four pulmonary veins were visualized. The detection rate between Exam-1 and Exam-2 (intra-observer variability) and between Exam-1 and Exam-3 (inter-observer variability) was compared. In study B, five cases with abnormal pulmonary venous connection were diagnosed and compared to their anatomical examination. In study A, there was a significant difference between CDFI and low-frequency high-definition power Doppler for the four pulmonary veins observed (P < 0.05). The detection rate of each pulmonary vein when employing low-frequency high-definition power Doppler was higher than that when employing two-dimensional B-mode imaging or CDFI. There was no significant difference between the intra- and inter-observer variabilities using low-frequency high-definition power Doppler display of pulmonary veins (P > 0.05). The coefficient correlation between Exam-1 and Exam-2 was 0.844, and the coefficient correlation between Exam-1 and Exam-3 was 0.821. In study B, one case of total anomalous pulmonary venous return and four cases of partial anomalous pulmonary venous return were diagnosed by low-frequency high-definition power Doppler and confirmed by autopsy. The assessment of pulmonary venous connections by low-frequency high-definition power Doppler is advantageous. Pulmonary venous anatomy can and should be monitored during fetal heart examination.

  20. Fine structure of the low-frequency spectra of heart rate and blood pressure

    PubMed Central

    Kuusela, Tom A; Kaila, Timo J; Kähönen, Mika

    2003-01-01

    Background The aim of this study was to explore the principal frequency components of the heart rate and blood pressure variability in the low frequency (LF) and very low frequency (VLF) band. The spectral composition of the R–R interval (RRI) and systolic arterial blood pressure (SAP) in the frequency range below 0.15 Hz were carefully analyzed using three different spectral methods: Fast Fourier transform (FFT), Wigner-Ville distribution (WVD), and autoregression (AR). All spectral methods were used to create time–frequency plots to uncover the principal spectral components that are least dependent on time. The accurate frequencies of these components were calculated from the pole decomposition of the AR spectral density after determining the optimal model order – the most crucial factor when using this method – with the help of FFT and WVD methods. Results Spectral analysis of the RRI and SAP of 12 healthy subjects revealed that there are always at least three spectral components below 0.15 Hz. The three principal frequency components are 0.026 ± 0.003 (mean ± SD) Hz, 0.076 ± 0.012 Hz, and 0.117 ± 0.016 Hz. These principal components vary only slightly over time. FFT-based coherence and phase-function analysis suggests that the second and third components are related to the baroreflex control of blood pressure, since the phase difference between SAP and RRI was negative and almost constant, whereas the origin of the first component is different since no clear SAP–RRI phase relationship was found. Conclusion The above data indicate that spontaneous fluctuations in heart rate and blood pressure within the standard low-frequency range of 0.04–0.15 Hz typically occur at two frequency components rather than only at one as widely believed, and these components are not harmonically related. This new observation in humans can help explain divergent results in the literature concerning spontaneous low-frequency oscillations. It also raises methodological and computational questions regarding the usability and validity of the low-frequency spectral band when estimating sympathetic activity and baroreflex gain. PMID:14552660

  1. Fine structure of the low-frequency spectra of heart rate and blood pressure.

    PubMed

    Kuusela, Tom A; Kaila, Timo J; Kähönen, Mika

    2003-10-13

    The aim of this study was to explore the principal frequency components of the heart rate and blood pressure variability in the low frequency (LF) and very low frequency (VLF) band. The spectral composition of the R-R interval (RRI) and systolic arterial blood pressure (SAP) in the frequency range below 0.15 Hz were carefully analyzed using three different spectral methods: Fast Fourier transform (FFT), Wigner-Ville distribution (WVD), and autoregression (AR). All spectral methods were used to create time-frequency plots to uncover the principal spectral components that are least dependent on time. The accurate frequencies of these components were calculated from the pole decomposition of the AR spectral density after determining the optimal model order--the most crucial factor when using this method--with the help of FFT and WVD methods. Spectral analysis of the RRI and SAP of 12 healthy subjects revealed that there are always at least three spectral components below 0.15 Hz. The three principal frequency components are 0.026 +/- 0.003 (mean +/- SD) Hz, 0.076 +/- 0.012 Hz, and 0.117 +/- 0.016 Hz. These principal components vary only slightly over time. FFT-based coherence and phase-function analysis suggests that the second and third components are related to the baroreflex control of blood pressure, since the phase difference between SAP and RRI was negative and almost constant, whereas the origin of the first component is different since no clear SAP-RRI phase relationship was found. The above data indicate that spontaneous fluctuations in heart rate and blood pressure within the standard low-frequency range of 0.04-0.15 Hz typically occur at two frequency components rather than only at one as widely believed, and these components are not harmonically related. This new observation in humans can help explain divergent results in the literature concerning spontaneous low-frequency oscillations. It also raises methodological and computational questions regarding the usability and validity of the low-frequency spectral band when estimating sympathetic activity and baroreflex gain.

  2. Low frequency radio synthesis imaging of the galactic center region

    NASA Astrophysics Data System (ADS)

    Nord, Michael Evans

    2005-11-01

    The Very Large Array radio interferometer has been equipped with new receivers to allow observations at 330 and 74 MHz, frequencies much lower than were previously possible with this instrument. Though the VLA dishes are not optimal for working at these frequencies, the system is successful and regular observations are now taken at these frequencies. However, new data analysis techniques are required to work at these frequencies. The technique of self- calibration, used to remove small atmospheric effects at higher frequencies, has been adapted to compensate for ionospheric turbulence in much the same way that adaptive optics is used in the optical regime. Faceted imaging techniques are required to compensate for the noncoplanar image distortion that affects the system due to the wide fields of view at these frequencies (~2.3° at 330 MHz and ~11° at 74 MHz). Furthermore, radio frequency interference is a much larger problem at these frequencies than in higher frequencies and novel approaches to its mitigation are required. These new techniques and new system are allowing for imaging of the radio sky at sensitivities and resolutions orders of magnitude higher than were possible with the low frequency systems of decades past. In this work I discuss the advancements in low frequency data techniques required to make high resolution, high sensitivity, large field of view measurements with the new Very Large Array low frequency system and then detail the results of turning this new system and techniques on the center of our Milky Way Galaxy. At 330 MHz I image the Galactic center region with roughly 10 inches resolution and 1.6 mJy beam -1 sensitivity. New Galactic center nonthermal filaments, new pulsar candidates, and the lowest frequency detection to date of the radio source associated with our Galaxy's central massive black hole result. At 74 MHz I image a region of the sky roughly 40° x 6° with, ~10 feet resolution. I use the high opacity of H II regions at 74 MHz to extract three-dimensional data on the distribution of Galactic cosmic ray emissivity, a measurement possible only at low radio frequencies.

  3. Ion channel mechanisms underlying frequency-firing patterns of the avian nucleus magnocellularis: A computational model

    PubMed Central

    Lu, Ting; Wade, Kirstie; Sanchez, Jason Tait

    2017-01-01

    ABSTRACT We have previously shown that late-developing avian nucleus magnocellularis (NM) neurons (embryonic [E] days 19–21) fire action potentials (APs) that resembles a band-pass filter in response to sinusoidal current injections of varying frequencies. NM neurons located in the mid- to high-frequency regions of the nucleus fire preferentially at 75 Hz, but only fire a single onset AP to frequency inputs greater than 200 Hz. Surprisingly, NM neurons do not fire APs to sinusoidal inputs less than 20 Hz regardless of the strength of the current injection. In the present study we evaluated intrinsic mechanisms that prevent AP generation to low frequency inputs. We constructed a computational model to simulate the frequency-firing patterns of NM neurons based on experimental data at both room and near physiologic temperatures. The results from our model confirm that the interaction among low- and high-voltage activated potassium channels (KLVA and KHVA, respectively) and voltage dependent sodium channels (NaV) give rise to the frequency-firing patterns observed in vitro. In particular, we evaluated the regulatory role of KLVA during low frequency sinusoidal stimulation. The model shows that, in response to low frequency stimuli, activation of large KLVA current counterbalances the slow-depolarizing current injection, likely permitting NaV closed-state inactivation and preventing the generation of APs. When the KLVA current density was reduced, the model neuron fired multiple APs per sinusoidal cycle, indicating that KLVA channels regulate low frequency AP firing of NM neurons. This intrinsic property of NM neurons may assist in optimizing response to different rates of synaptic inputs. PMID:28481659

  4. Scaling of echolocation call parameters in bats.

    PubMed

    Jones, G

    1999-12-01

    I investigated the scaling of echolocation call parameters (frequency, duration and repetition rate) in bats in a functional context. Low-duty-cycle bats operate with search phase cycles of usually less than 20 %. They process echoes in the time domain and are therefore intolerant of pulse-echo overlap. High-duty-cycle (>30 %) species use Doppler shift compensation, and they separate pulse and echo in the frequency domain. Call frequency scales negatively with body mass in at least five bat families. Pulse duration scales positively with mass in low-duty-cycle quasi-constant-frequency (QCF) species because the large aerial-hawking species that emit these signals fly fast in open habitats. They therefore detect distant targets and experience pulse-echo overlap later than do smaller bats. Pulse duration also scales positively with mass in the Hipposideridae, which show at least partial Doppler shift compensation. Pulse repetition rate corresponds closely with wingbeat frequency in QCF bat species that fly relatively slowly. Larger, fast-flying species often skip pulses when detecting distant targets. There is probably a trade-off between call intensity and repetition rate because 'whispering' bats (and hipposiderids) produce several calls per predicted wingbeat and because batches of calls are emitted per wingbeat during terminal buzzes. Severe atmospheric attenuation at high frequencies limits the range of high-frequency calls. Low-duty-cycle bats that call at high frequencies must therefore use short pulses to avoid pulse-echo overlap. Rhinolophids escape this constraint by Doppler shift compensation and, importantly, can exploit advantages associated with the emission of both high-frequency and long-duration calls. Low frequencies are unsuited for the detection of small prey, and low repetition rates may limit prey detection rates. Echolocation parameters may therefore constrain maximum body size in aerial-hawking bats.

  5. Frequency pulling in a low-voltage medium-power gyrotron

    NASA Astrophysics Data System (ADS)

    Luo, Li; Du, Chao-Hai; Huang, Ming-Guang; Liu, Pu-Kun

    2018-04-01

    Many recent biomedical applications use medium-power frequency-tunable terahertz (THz) sources, such as sensitivity-enhanced nuclear magnetic resonance, THz imaging, and biomedical treatment. As a promising candidate, a low-voltage gyrotron can generate watt-level, continuous THz-wave radiation. In particular, the frequency-pulling effect in a gyrotron, namely, the effect of the electron beam parameters on the oscillation frequency, can be used to tune the operating frequency. Most previous investigations used complicated and time-consuming gyrotron nonlinear theory to study the influence of many beam parameters on the interaction performance. While gyrotron linear theory investigation demonstrates the advantages of rapidly and clearly revealing the physical influence of individual key beam parameters on the overall system performance, this paper demonstrates systematically the use of gyrotron linear theory to study the frequency-pulling effect in a low-voltage gyrotron with either a Gaussian or a sinusoidal axial-field profile. Furthermore, simulations of a gyrotron operating in the first axial mode are carried out in the framework of nonlinear theory as a contrast. Close agreement is achieved between the two theories. Besides, some interesting results are obtained. In a low-current sinusoidal-profile cavity, the ranges of frequency variation for different axial modes are isolated from each other, and the frequency tuning bandwidth for each axial mode increases by increasing either the beam voltage or pitch factor. Lowering the voltage, the total tuning ranges are squeezed and become concentrated. However, the isolated frequency regions of each axial mode cannot be linked up unless the beam current is increased, meaning that higher current operation is the key to achieving a wider and continuous tuning frequency range. The results presented in this paper can provide a reference for designing a broadband low-voltage gyrotron.

  6. Sequence and facies architecture of the upper Blackhawk Formation and the Lower Castlegate Sandstone (Upper Cretaceous), Book Cliffs, Utah, USA

    NASA Astrophysics Data System (ADS)

    Yoshida, S.

    2000-11-01

    High-frequency stratigraphic sequences that comprise the Desert Member of the Blackhawk Formation, the Lower Castlegate Sandstone, and the Buck Tongue in the Green River area of Utah display changes in sequence architecture from marine deposits to marginal marine deposits to an entirely nonmarine section. Facies and sequence architecture differ above and below the regionally extensive Castlegate sequence boundary, which separates two low-frequency (106-year cyclicity) sequences. Below this surface, high-frequency sequences are identified and interpreted as comprising the highstand systems tract of the low-frequency Blackhawk sequence. Each high-frequency sequence has a local incised valley system on top of the wave-dominated delta, and coastal plain to shallow marine deposits are preserved. Above the Castlegate sequence boundary, in contrast, a regionally extensive sheet sandstone of fluvial to estuarine origin with laterally continuous internal erosional surfaces occurs. These deposits above the Castlegate sequence boundary are interpreted as the late lowstand to early transgressive systems tracts of the low-frequency Castlegate sequence. The base-level changes that generated both the low- and high-frequency sequences are attributed to crustal response to fluctuations in compressive intraplate stress on two different time scales. The low-frequency stratigraphic sequences are attributed to changes in the long-term regional subsidence rate and regional tilting of foreland basin fill. High-frequency sequences probably reflect the response of anisotropic basement to tectonism. Sequence architecture changes rapidly across the faulted margin of the underlying Paleozoic Paradox Basin. The high-frequency sequences are deeply eroded and stack above the Paradox Basin, but display less relief and become conformable updip. These features indicate that the area above the Paradox Basin was more prone to vertical structural movements during formation of the Blackhawk-Lower Castlegate succession.

  7. Broadband unidirectional ultrasound propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Dipen N.; Pantea, Cristian

    A passive, linear arrangement of a sonic crystal-based apparatus and method including a 1D sonic crystal, a nonlinear medium, and an acoustic low-pass filter, for permitting unidirectional broadband ultrasound propagation as a collimated beam for underwater, air or other fluid communication, are described. The signal to be transmitted is first used to modulate a high-frequency ultrasonic carrier wave which is directed into the sonic crystal side of the apparatus. The apparatus processes the modulated signal, whereby the original low-frequency signal exits the apparatus as a collimated beam on the side of the apparatus opposite the sonic crystal. The sonic crystalmore » provides a bandpass acoustic filter through which the modulated high-frequency ultrasonic signal passes, and the nonlinear medium demodulates the modulated signal and recovers the low-frequency sound beam. The low-pass filter removes remaining high-frequency components, and contributes to the unidirectional property of the apparatus.« less

  8. Design of magneto-rheological mount for a cabin of heavy equipment vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Soon-Yong; Do, Xuan Phu; Choi, Seung-Bok

    2016-04-01

    In this paper, magneto-rheological (MR) mount for a cabin of heavy equipment vehicles is designed for improving vibration isolation in both low and high frequency domains. The proposed mount consists of two principal parts of mount, rubber part and MR fluid path. The rubber part of existed mount and spring are used to change the stiffness and frequency characteristics for low vibration frequency range. The MR fluid path is a valve type structure using flow mode. In order to control the external magnetic field, a solenoid coil is placed in MR mount. Magnetic intensity analysis is then conducted to optimize dimensions using computer simulation. Experimental results show that magnetic field can reduce low frequency vibration. The results presented in this work indicate that proper application of MR fluid and rubber characteristic to devise MR mount can lead to the improvement of vibration control performance in both low and high frequency ranges.

  9. Experimental determination of the viscous flow permeability of porous materials by measuring reflected low frequency acoustic waves

    NASA Astrophysics Data System (ADS)

    Berbiche, A.; Sadouki, M.; Fellah, Z. E. A.; Ogam, E.; Fellah, M.; Mitri, F. G.; Depollier, C.

    2016-01-01

    An acoustic reflectivity method is proposed for measuring the permeability or flow resistivity of air-saturated porous materials. In this method, a simplified expression of the reflection coefficient is derived in the Darcy's regime (low frequency range), which does not depend on frequency and porosity. Numerical simulations show that the reflection coefficient of a porous material can be approximated by its simplified expression obtained from its Taylor development to the first order. This approximation is good especially for resistive materials (of low permeability) and for the lower frequencies. The permeability is reconstructed by solving the inverse problem using waves reflected by plastic foam samples, at different frequency bandwidths in the Darcy regime. The proposed method has the advantage of being simple compared to the conventional methods that use experimental reflected data, and is complementary to the transmissivity method, which is more adapted to low resistive materials (high permeability).

  10. Opposite effects of high- and low-frequency transcranial random noise stimulation probed with visual motion adaptation

    PubMed Central

    Campana, Gianluca; Camilleri, Rebecca; Moret, Beatrice; Ghin, Filippo; Pavan, Andrea

    2016-01-01

    Transcranial random noise stimulation (tRNS) is a recent neuro-modulation technique whose effects at both behavioural and neural level are still debated. Here we employed the well-known phenomenon of motion after-effect (MAE) in order to investigate the effects of high- vs. low-frequency tRNS on motion adaptation and recovery. Participants were asked to estimate the MAE duration following prolonged adaptation (20 s) to a complex moving pattern, while being stimulated with either sham or tRNS across different blocks. Different groups were administered with either high- or low-frequency tRNS. Stimulation sites were either bilateral human MT complex (hMT+) or frontal areas. The results showed that, whereas no effects on MAE duration were induced by stimulating frontal areas, when applied to the bilateral hMT+, high-frequency tRNS caused a significant decrease in MAE duration whereas low-frequency tRNS caused a significant corresponding increase in MAE duration. These findings indicate that high- and low-frequency tRNS have opposed effects on the adaptation-dependent unbalance between neurons tuned to opposite motion directions, and thus on neuronal excitability. PMID:27934947

  11. Impact of low-frequency sound on historic structures

    NASA Astrophysics Data System (ADS)

    Sutherland, Louis C.; Horonjeff, Richard D.

    2005-09-01

    In common usage, the term soundscape usually refers to portions of the sound spectrum audible to human observers, and perhaps more broadly other members of the animal kingdom. There is, however, a soundscape regime at the low end of the frequency spectrum (e.g., 10-25 Hz), which is inaudible to humans, where nonindigenous sound energy may cause noise-induced vibrations in structures. Such low frequency components may be of sufficient magnitude to pose damage risk potential to historic structures and cultural resources. Examples include Anasazi cliff and cave dwellings, and pueblo structures of vega type roof construction. Both are susceptible to noise induced vibration from low-frequency sound pressures that excite resonant frequencies in these structures. The initial damage mechanism is usually fatigue cracking. Many mechanisms are subtle, temporally multiphased, and not initially evident to the naked eye. This paper reviews the types of sources posing the greatest potential threat, their low-frequency spectral characteristics, typical structural responses, and the damage risk mechanisms involved. Measured sound and vibration levels, case history studies, and conditions favorable to damage risk are presented. The paper concludes with recommendations for increasing the damage risk knowledge base to better protect these resources.

  12. The Power Spectrum of Ionic Nanopore Currents: The Role of Ion Correlations.

    PubMed

    Zorkot, Mira; Golestanian, Ramin; Bonthuis, Douwe Jan

    2016-04-13

    We calculate the power spectrum of electric-field-driven ion transport through nanometer-scale membrane pores using both linearized mean-field theory and Langevin dynamics simulations. Remarkably, the linearized mean-field theory predicts a plateau in the power spectral density at low frequency ω, which is confirmed by the simulations at low ion concentration. At high ion concentration, however, the power spectral density follows a power law that is reminiscent of the 1/ω(α) dependence found experimentally at low frequency. On the basis of simulations with and without ion-ion interactions, we attribute the low-frequency power-law dependence to ion-ion correlations. We show that neither a static surface charge density, nor an increased pore length, nor an increased ion valency have a significant effect on the shape of the power spectral density at low frequency.

  13. A Spatial and Temporal Frequency Based Figure-Ground Processor

    NASA Astrophysics Data System (ADS)

    Weisstein, Namoi; Wong, Eva

    1990-03-01

    Recent findings in visual psychophysics have shown that figure-ground perception can be specified by the spatial and temporal response characteristics of the visual system. Higher spatial frequency regions of the visual field are perceived as figure and lower spatial frequency regions are perceived as background/ (Klymenko and Weisstein, 1986, Wong and Weisstein, 1989). Higher temporal frequency regions are seen as background and lower temporal frequency regions are seen as figure (Wong and Weisstein, 1987, Klymenko, Weisstein, Topolski, and Hsieh, 1988). Thus, high spatial and low temporal frequencies appear to be associated with figure and low spatial and high temporal frequencies appear to be associated with background.

  14. A machine learning approach for automated wide-range frequency tagging analysis in embedded neuromonitoring systems.

    PubMed

    Montagna, Fabio; Buiatti, Marco; Benatti, Simone; Rossi, Davide; Farella, Elisabetta; Benini, Luca

    2017-10-01

    EEG is a standard non-invasive technique used in neural disease diagnostics and neurosciences. Frequency-tagging is an increasingly popular experimental paradigm that efficiently tests brain function by measuring EEG responses to periodic stimulation. Recently, frequency-tagging paradigms have proven successful with low stimulation frequencies (0.5-6Hz), but the EEG signal is intrinsically noisy in this frequency range, requiring heavy signal processing and significant human intervention for response estimation. This limits the possibility to process the EEG on resource-constrained systems and to design smart EEG based devices for automated diagnostic. We propose an algorithm for artifact removal and automated detection of frequency tagging responses in a wide range of stimulation frequencies, which we test on a visual stimulation protocol. The algorithm is rooted on machine learning based pattern recognition techniques and it is tailored for a new generation parallel ultra low power processing platform (PULP), reaching performance of more that 90% accuracy in the frequency detection even for very low stimulation frequencies (<1Hz) with a power budget of 56mW. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Modeling sound transmission of human middle ear and its clinical applications using finite element analysis.

    PubMed

    Chen, Shou-I; Lee, Ming-Hsiao; Yao, Chih-Min; Chen, Peir-Rong; Chou, Yuan-Fang; Liu, Tien-Chen; Song, Yu-Lin; Lee, Chia-Fone

    2013-03-01

    We have developed a new finite element (FE) model of human right ear, including the accurate geometry of middle ear ossicles, external ear canal, tympanic cavity, and mastoid cavity. The FE model would be suitable to study the dynamic behaviors of pathological middle ear conditions, including changes of stapedial ligament stiffness, tensor tympani ligament (TTL), and tympanic membrane (TM) stiffness and thickness. Increasing stiffness of stapedial ligament has substantial effect on stapes footplate movement, especially at low frequencies, but less effect on umbo movement. Softer TTL will result in increasing umbo and stapes footplate displacement, especially at low frequencies (f<1000Hz). When the TTL was detached, the vibration amplitude of umbo increased by 6dB at 600Hz and two peaks (300 and 600Hz) were found in the vibration amplitude of stapes footplate. Increasing the stiffness of tensor tympani resulted in a slightly decreased umbo amplitude at very low frequencies (f<500Hz) and significantly decreased displacement up to 12dB at middle frequencies (1000Hz1500Hz. As (TM) thickness was increased, the umbo displacement was reduced, especially at very low frequencies (f<600Hz). Otherwise, the stapes displacement was reduced at all frequencies. Copyright © 2013. Published by Elsevier B.V.

  16. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease.

    PubMed

    Kumaravelu, Karthik; Brocker, David T; Grill, Warren M

    2016-04-01

    Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson's disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.

  17. Low-frequency vibrations of a cylindrical shell rotating on rollers

    NASA Astrophysics Data System (ADS)

    Filippov, S. B.

    2018-05-01

    Small free low-frequency vibrations of a rotating closed cylindrical shell which is in a contact with rigid cylindrical rollers are considered. Assumptions of semi-momentless shell theory are used. By means of the expansion of solutions in truncated Fourier series in circumference coordinate the system of the algebraic equations for the approximate calculation of the vibration frequencies and the mode shapes is obtained. The algorithm for the evaluation of frequencies and vibration modes based on analytical solution is developed. In particular, the lowest frequencies of thin cylindrical shell, representing greatest interest for applications, were found. Approximate results are compared with results of numerical calculations carried out by the Finite Elements Analysis. It is shown that the semi-momentless theory can be used for the evaluation of the low frequencies of a cylindrical shell rotating on rollers.

  18. Multi-sensor image fusion algorithm based on multi-objective particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Xie, Xia-zhu; Xu, Ya-wei

    2017-11-01

    On the basis of DT-CWT (Dual-Tree Complex Wavelet Transform - DT-CWT) theory, an approach based on MOPSO (Multi-objective Particle Swarm Optimization Algorithm) was proposed to objectively choose the fused weights of low frequency sub-bands. High and low frequency sub-bands were produced by DT-CWT. Absolute value of coefficients was adopted as fusion rule to fuse high frequency sub-bands. Fusion weights in low frequency sub-bands were used as particles in MOPSO. Spatial Frequency and Average Gradient were adopted as two kinds of fitness functions in MOPSO. The experimental result shows that the proposed approach performances better than Average Fusion and fusion methods based on local variance and local energy respectively in brightness, clarity and quantitative evaluation which includes Entropy, Spatial Frequency, Average Gradient and QAB/F.

  19. Phase-amplitude coupling and infraslow (<1 Hz) frequencies in the rat brain: relationship to resting state fMRI

    PubMed Central

    Thompson, Garth J.; Pan, Wen-Ju; Billings, Jacob C. W.; Grooms, Joshua K.; Shakil, Sadia; Jaeger, Dieter; Keilholz, Shella D.

    2014-01-01

    Resting state functional magnetic resonance imaging (fMRI) can identify network alterations that occur in complex psychiatric diseases and behaviors, but its interpretation is difficult because the neural basis of the infraslow BOLD fluctuations is poorly understood. Previous results link dynamic activity during the resting state to both infraslow frequencies in local field potentials (LFP) (<1 Hz) and band-limited power in higher frequency LFP (>1 Hz). To investigate the relationship between these frequencies, LFPs were recorded from rats under two anesthetics: isoflurane and dexmedetomidine. Signal phases were calculated from low-frequency LFP and compared to signal amplitudes from high-frequency LFP to determine if modulation existed between the two frequency bands (phase-amplitude coupling). Isoflurane showed significant, consistent phase-amplitude coupling at nearly all pairs of frequencies, likely due to the burst-suppression pattern of activity that it induces. However, no consistent phase-amplitude coupling was observed in rats that were anesthetized with dexmedetomidine. fMRI-LFP correlations under isoflurane using high frequency LFP were reduced when the low frequency LFP's influence was accounted for, but not vice-versa, or in any condition under dexmedetomidine. The lack of consistent phase-amplitude coupling under dexmedetomidine and lack of shared variance between high frequency and low frequency LFP as it relates to fMRI suggests that high and low frequency neural electrical signals may contribute differently, possibly even independently, to resting state fMRI. This finding suggests that researchers take care in interpreting the neural basis of resting state fMRI, as multiple dynamic factors in the underlying electrophysiology could be driving any particular observation. PMID:24904325

  20. Influence of Spectral Transfer Processes in Compressible Low Frequency Plasma Turbulence on Scattering and Refraction of Electromagnetic Signals

    DTIC Science & Technology

    2015-01-01

    AFRL-RY-WP-TR-2014-0230 INFLUENCE OF SPECTRAL TRANSFER PROCESSES IN COMPRESSIBLE LOW FREQUENCY PLASMA TURBULENCE ON SCATTERING AND...INFLUENCE OF SPECTRAL TRANSFER PROCESSES IN COMPRESSIBLE LOW FREQUENCY PLASMA TURBULENCE ON SCATTERING AND REFRACTION OF ELECTROMAGNETIC SIGNALS 5a...research is to analyze influence of plasma turbulence on hypersonic sensor systems and NGOTHR applications and to meet the Air Force’s ever-increasing

  1. The transmission of low frequency medical data using delta modulation techniques.

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Dawson, C. T.

    1972-01-01

    The transmission of low-frequency medical data using delta modulation techniques is described. The delta modulators are used to distribute the low-frequency data into the passband of the telephone lines. Both adaptive and linear delta modulators are considered. Optimum bit rates to minimize distortion and intersymbol interference are discussed. Vibrocardiographic waves are analyzed as a function of bit rate and delta modulator configuration to determine their reproducibility for medical evaluation.

  2. Differential roles of low and high spatial frequency content in abnormal facial emotion perception in schizophrenia.

    PubMed

    McBain, Ryan; Norton, Daniel; Chen, Yue

    2010-09-01

    While schizophrenia patients are impaired at facial emotion perception, the role of basic visual processing in this deficit remains relatively unclear. We examined emotion perception when spatial frequency content of facial images was manipulated via high-pass and low-pass filtering. Unlike controls (n=29), patients (n=30) perceived images with low spatial frequencies as more fearful than those without this information, across emotional salience levels. Patients also perceived images with high spatial frequencies as happier. In controls, this effect was found only at low emotional salience. These results indicate that basic visual processing has an amplified modulatory effect on emotion perception in schizophrenia. (c) 2010 Elsevier B.V. All rights reserved.

  3. Synchronization of low-frequency oscillations in the cardiovascular system: Application to medical diagnostics and treatment

    NASA Astrophysics Data System (ADS)

    Ponomarenko, V. I.; Prokhorov, M. D.; Karavaev, A. S.; Kiselev, A. R.; Gridnev, V. I.; Bezruchko, B. P.

    2013-10-01

    We investigate synchronization between the low-frequency oscillations of heart rate and blood pressure having in humans a basic frequency close to 0.1 Hz. A quantitative estimation of this synchronization based on calculation of relative time of phase synchronization of oscillations is proposed. We show that assessment of synchronization between the considered oscillations can be useful for selecting an optimal dose of beta-blocker treatment in patients after acute myocardial infarction. It is found out that low value of synchronization between the low-frequency rhythms in heart rate and blood pressure at the first week after acute myocardial infarction is a sensitive marker of high risk of mortality during the subsequent 5 years.

  4. Reduction of low frequency error for SED36 and APS based HYDRA star trackers

    NASA Astrophysics Data System (ADS)

    Ouaknine, Julien; Blarre, Ludovic; Oddos-Marcel, Lionel; Montel, Johan; Julio, Jean-Marc

    2017-11-01

    In the frame of the CNES Pleiades satellite, a reduction of the star tracker low frequency error, which is the most penalizing error for the satellite attitude control, was performed. For that purpose, the SED36 star tracker was developed, with a design based on the flight qualified SED16/26. In this paper, the SED36 main features will be first presented. Then, the reduction process of the low frequency error will be developed, particularly the optimization of the optical distortion calibration. The result is an attitude low frequency error of 1.1" at 3 sigma along transverse axes. The implementation of these improvements to HYDRA, the new multi-head APS star tracker developed by SODERN, will finally be presented.

  5. Male songbird indicates body size with low-pitched advertising songs.

    PubMed

    Hall, Michelle L; Kingma, Sjouke A; Peters, Anne

    2013-01-01

    Body size is a key sexually selected trait in many animal species. If size imposes a physical limit on the production of loud low-frequency sounds, then low-pitched vocalisations could act as reliable signals of body size. However, the central prediction of this hypothesis--that the pitch of vocalisations decreases with size among competing individuals--has limited support in songbirds. One reason could be that only the lowest-frequency components of vocalisations are constrained, and this may go unnoticed when vocal ranges are large. Additionally, the constraint may only be apparent in contexts when individuals are indeed advertising their size. Here we explicitly consider signal diversity and performance limits to demonstrate that body size limits song frequency in an advertising context in a songbird. We show that in purple-crowned fairy-wrens, Malurus coronatus coronatus, larger males sing lower-pitched low-frequency advertising songs. The lower frequency bound of all advertising song types also has a significant negative relationship with body size. However, the average frequency of all their advertising songs is unrelated to body size. This comparison of different approaches to the analysis demonstrates how a negative relationship between body size and song frequency can be obscured by failing to consider signal design and the concept of performance limits. Since these considerations will be important in any complex communication system, our results imply that body size constraints on low-frequency vocalisations could be more widespread than is currently recognised.

  6. The dynamics of integrate-and-fire: mean versus variance modulations and dependence on baseline parameters.

    PubMed

    Pressley, Joanna; Troyer, Todd W

    2011-05-01

    The leaky integrate-and-fire (LIF) is the simplest neuron model that captures the essential properties of neuronal signaling. Yet common intuitions are inadequate to explain basic properties of LIF responses to sinusoidal modulations of the input. Here we examine responses to low and moderate frequency modulations of both the mean and variance of the input current and quantify how these responses depend on baseline parameters. Across parameters, responses to modulations in the mean current are low pass, approaching zero in the limit of high frequencies. For very low baseline firing rates, the response cutoff frequency matches that expected from membrane integration. However, the cutoff shows a rapid, supralinear increase with firing rate, with a steeper increase in the case of lower noise. For modulations of the input variance, the gain at high frequency remains finite. Here, we show that the low-frequency responses depend strongly on baseline parameters and derive an analytic condition specifying the parameters at which responses switch from being dominated by low versus high frequencies. Additionally, we show that the resonant responses for variance modulations have properties not expected for common oscillatory resonances: they peak at frequencies higher than the baseline firing rate and persist when oscillatory spiking is disrupted by high noise. Finally, the responses to mean and variance modulations are shown to have a complementary dependence on baseline parameters at higher frequencies, resulting in responses to modulations of Poisson input rates that are independent of baseline input statistics.

  7. Male Songbird Indicates Body Size with Low-Pitched Advertising Songs

    PubMed Central

    Hall, Michelle L.; Kingma, Sjouke A.; Peters, Anne

    2013-01-01

    Body size is a key sexually selected trait in many animal species. If size imposes a physical limit on the production of loud low-frequency sounds, then low-pitched vocalisations could act as reliable signals of body size. However, the central prediction of this hypothesis – that the pitch of vocalisations decreases with size among competing individuals – has limited support in songbirds. One reason could be that only the lowest-frequency components of vocalisations are constrained, and this may go unnoticed when vocal ranges are large. Additionally, the constraint may only be apparent in contexts when individuals are indeed advertising their size. Here we explicitly consider signal diversity and performance limits to demonstrate that body size limits song frequency in an advertising context in a songbird. We show that in purple-crowned fairy-wrens, Malurus coronatus coronatus, larger males sing lower-pitched low-frequency advertising songs. The lower frequency bound of all advertising song types also has a significant negative relationship with body size. However, the average frequency of all their advertising songs is unrelated to body size. This comparison of different approaches to the analysis demonstrates how a negative relationship between body size and song frequency can be obscured by failing to consider signal design and the concept of performance limits. Since these considerations will be important in any complex communication system, our results imply that body size constraints on low-frequency vocalisations could be more widespread than is currently recognised. PMID:23437221

  8. Low-flow characteristics for selected streams in Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.; Wilson, John T.

    2015-01-01

    The management and availability of Indiana’s water resources increase in importance every year. Specifically, information on low-flow characteristics of streams is essential to State water-management agencies. These agencies need low-flow information when working with issues related to irrigation, municipal and industrial water supplies, fish and wildlife protection, and the dilution of waste. Industrial, municipal, and other facilities must obtain National Pollutant Discharge Elimination System (NPDES) permits if their discharges go directly to surface waters. The Indiana Department of Environmental Management (IDEM) requires low-flow statistics in order to administer the NPDES permit program. Low-flow-frequency characteristics were computed for 272 continuous-record stations. The information includes low-flow-frequency analysis, flow-duration analysis, and harmonic mean for the continuous-record stations. For those stations affected by some form of regulation, low-flow frequency curves are based on the longest period of homogeneous record under current conditions. Low-flow-frequency values and harmonic mean flow (if sufficient data were available) were estimated for the 166 partial-record stations. Partial-record stations are ungaged sites where streamflow measurements were made at base flow.

  9. Low-flow frequency analyses for streams in west-central Florida

    USGS Publications Warehouse

    Hammett, K.M.

    1985-01-01

    The log-Pearson type III distribution was used for defining low-flow frequency at 116 continuous-record streamflow stations in west-central Florida. Frequency distributions were calculated for 1, 3, 7, 14, 30, 60, 90, 120, and 183 consecutive-day periods for recurrence intervals of 2, 5, 10, and 20 years. Discharge measurements at more than 100 low-flow partial-record stations and miscellaneous discharge-measurement stations were correlated with concurrent daily mean discharge at continuous-record stations. Estimates of the 7-day, 2-year; 7-day, 10-year; 30-day, 2-year; and 30-day, 10-year discharges were made for most of the low-flow partial-record and miscellaneous discharge-measurement stations based on those correlations. Multiple linear-regression analysis was used in an attempt to mathematically relate low-flow frequency data to basin characteristics. The resulting equations showed an apparent bias and were considered unsatisfactory for use in estimating low-flow characteristics. Maps of the 7-day, 10-year and 30-day, 10-year low flows are presented. Techniques that can be used to estimate low-flow characteristics at an ungaged site are also provided. (USGS)

  10. Chaos in a chemical system

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Srivastava, P. K.; Chattopadhyay, J.

    2013-07-01

    Chaotic oscillations have been observed experimentally in dual-frequency oscillator OAP - Ce+4-BrO- 3-H2SO4 in CSTR. The system shows variation of oscillating potential and frequencies when it moves from low frequency to high frequency region and vice-versa. It was observed that system bifurcate from low frequency to chaotic regime through periode-2 and period-3 on the other hand system bifurcate from chaotic regime to high frequency oscillation through period-2. It was established that the observed oscillations are chaotic in nature on the basis of next amplitude map and bifurcation sequences.

  11. Low frequency dove coos vary across noise gradients in an urbanized environment.

    PubMed

    Guo, Fengyi; Bonebrake, Timothy C; Dingle, Caroline

    2016-08-01

    Urbanization poses a challenge to bird communication due to signal masking by ambient noise and reflective surfaces that lead to signal degradation. Bird species (especially oscines) have been shown to alter their singing behaviour to increase signal efficiency in highly urbanized environments. However, few studies on the effects of noise on song structure have included birds with low frequency vocal signals which may be especially vulnerable to noise pollution due to significant frequency overlap of their signals with traffic noise. We compared the perch coos of spotted doves (Streptopelia chinensis), a species with very low frequency vocalizations, in different background noise levels across urban and peri-urban areas in Hong Kong. We documented a 10% upward shift in the minimum frequency of coos of spotted doves across the noise gradient (a relatively small but significant shift), and a reduced maximum frequency in urban habitats with a higher density of built up area. Hong Kong doves had significantly higher minimum and maximum frequencies than doves from throughout their range (from mostly rural sites). Our results indicate that urban species with extremely low sound frequencies such as doves can alter their vocalizations in response to variable urban acoustic environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. High vs. Low Frequency Stimulation Effects on Fine Motor Control in Chronic Hemiplegia: A Pilot Study

    PubMed Central

    Doucet, Barbara M.; Griffin, Lisa

    2014-01-01

    Introduction The optimal parameters of neuromuscular electrical stimulation (NMES) for recovery of hand function following stroke are not known. This clinical pilot study examined whether higher or lower frequencies are more effective for improving fine motor control of the hand in a chronic post-stroke population. Methods A one-month, 4x/week in-home regimen of either a high frequency (40Hz) or low frequency (20Hz) NMES program was applied to the hemiplegic thenar muscles of 16 persons with chronic stroke. Participants were identified a priori as having a low level of function (LF) or a high level of function (HF). Outcome measures of strength, dexterity, and endurance were measured before and after participation in the regimen. Results LF subjects showed no significant changes with either the high or the low frequency NMES regimen. HF subjects showed significant changes in strength, dexterity and endurance. Within this group, higher frequencies of stimulation yielded strength gains and increased motor activation; lower frequencies impacted dexterity and endurance. Conclusions The results suggest that higher frequencies of stimulation could be more effective in improving strength and motor activation properties and that lower frequencies may impact coordination and endurance changes; results also indicate that persons with a higher functional level of recovery may respond more favorably to NMES regimens, but further study with larger patient groups is warranted. PMID:23893829

  13. Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy.

    PubMed

    Zhu, Zhuozhuo; Guo, Wenchuan

    2017-08-24

    To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b.), and temperatures between 25 and 75 °C. The results showed that both dielectric constant (ε') and loss factor (ε″) were dependent on frequency, moisture content, and temperature. ε' decreased with increasing frequency at a given moisture content or temperature. At low moisture contents (≤25.4% w.b.) or low temperatures (≤45 °C), ε″ increased with increasing frequency. However, ε″ changed from decrease to increase with increasing frequency at high moisture contents or temperatures. At low temperatures (25-35 °C), both ε' and ε″ increased with increasing moisture content. At low moisture contents (15.1-19.5% w.b.), they increased with increasing temperature. The change trends of ε' and ε″ were different and dependent on temperature and moisture content at their high levels. The penetration depth (d p ) decreased with increasing frequency. RF treatments may provide potential large-scale industrial drying application for potato starch. This research offers useful information on dielectric properties of potato starch related to drying with electromagnetic energy.

  14. Very low frequency radio events with a reduced intensity observed by the low-altitude DEMETER spacecraft

    NASA Astrophysics Data System (ADS)

    Záhlava, J.; Němec, F.; Santolík, O.; Kolmašová, I.; Parrot, M.; Rodger, C. J.

    2015-11-01

    We present results of a systematic study of unusual very low frequency (VLF) radio events with a reduced intensity observed in the frequency-time spectrograms measured by the low-orbiting Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) spacecraft. They occur exclusively on the nightside. During these events, the intensity of fractional hop whistlers at specific frequencies is significantly reduced. These frequencies are usually above about 3.4 kHz (second Earth-ionosphere waveguide cutoff frequency), but about 20% of events extend down to about 1.7 kHz (first Earth-ionosphere waveguide cutoff frequency). The frequencies of a reduced intensity vary smoothly with time. We have inspected 6.5 years of DEMETER data, and we identified in total 1601 such events. We present a simple model of the event formation based on the wave propagation in the Earth-ionosphere waveguide. We apply the model to two selected events, and we demonstrate that the model is able to reproduce both the minimum frequencies of the events and their approximate frequency-time shapes. The overall geographic distribution of the events is shifted by about 3000 km westward and slightly southward with respect to the areas with high long-term average lightning activity. We demonstrate that this shift is related to the specific DEMETER orbit, and we suggest its qualitative explanation by the east-west asymmetry of the wave propagation in the Earth-ionosphere waveguide.

  15. Motion mechanisms with different spatiotemporal characteristics identified by an MAE technique with superimposed gratings.

    PubMed

    Shioiri, Satoshi; Matsumiya, Kazumichi

    2009-05-29

    We investigated spatiotemporal characteristics of motion mechanisms using a new type of motion aftereffect (MAE) we found. Our stimulus comprised two superimposed sinusoidal gratings with different spatial frequencies. After exposure to the moving stimulus, observers perceived the MAE in the static test in the direction opposite to that of the high spatial frequency grating even when low spatial frequency motion was perceived during adaptation. In contrast, in the flicker test, the MAE was perceived in the direction opposite to that of the low spatial frequency grating. These MAEs indicate that two different motion systems contribute to motion perception and can be isolated by using different test stimuli. Using a psychophysical technique based on the MAE, we investigated the differences between the two motion mechanisms. The results showed that the static MAE is the aftereffect of the motion system with a high spatial and low temporal frequency tuning (slow motion detector) and the flicker MAE is the aftereffect of the motion system with a low spatial and high temporal frequency tuning (fast motion detector). We also revealed that the two motion detectors differ in orientation tuning, temporal frequency tuning, and sensitivity to relative motion.

  16. Partial null astigmatism-compensated interferometry for a concave freeform Zernike mirror

    NASA Astrophysics Data System (ADS)

    Dou, Yimeng; Yuan, Qun; Gao, Zhishan; Yin, Huimin; Chen, Lu; Yao, Yanxia; Cheng, Jinlong

    2018-06-01

    Partial null interferometry without using any null optics is proposed to measure a concave freeform Zernike mirror. Oblique incidence on the freeform mirror is used to compensate for astigmatism as the main component in its figure, and to constrain the divergence of the test beam as well. The phase demodulated from the partial nulled interferograms is divided into low-frequency phase and high-frequency phase by Zernike polynomial fitting. The low-frequency surface figure error of the freeform mirror represented by the coefficients of Zernike polynomials is reconstructed from the low-frequency phase, applying the reverse optimization reconstruction technology in the accurate model of the interferometric system. The high-frequency surface figure error of the freeform mirror is retrieved from the high-frequency phase adopting back propagating technology, according to the updated model in which the low-frequency surface figure error has been superimposed on the sag of the freeform mirror. Simulations verified that this method is capable of testing a wide variety of astigmatism-dominated freeform mirrors due to the high dynamic range. The experimental result using our proposed method for a concave freeform Zernike mirror is consistent with the null test result employing the computer-generated hologram.

  17. Is attention based on spatial contextual memory preferentially guided by low spatial frequency signals?

    PubMed

    Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina

    2013-01-01

    A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception.

  18. Neural synchrony examined with magnetoencephalography (MEG) during eye gaze processing in autism spectrum disorders: preliminary findings

    PubMed Central

    2014-01-01

    Background Gaze processing deficits are a seminal, early, and enduring behavioral deficit in autism spectrum disorder (ASD); however, a comprehensive characterization of the neural processes mediating abnormal gaze processing in ASD has yet to be conducted. Methods This study investigated whole-brain patterns of neural synchrony during passive viewing of direct and averted eye gaze in ASD adolescents and young adults (M Age  = 16.6) compared to neurotypicals (NT) (M Age  = 17.5) while undergoing magnetoencephalography. Coherence between each pair of 54 brain regions within each of three frequency bands (low frequency (0 to 15 Hz), beta (15 to 30 Hz), and low gamma (30 to 45 Hz)) was calculated. Results Significantly higher coherence and synchronization in posterior brain regions (temporo-parietal-occipital) across all frequencies was evident in ASD, particularly within the low 0 to 15 Hz frequency range. Higher coherence in fronto-temporo-parietal regions was noted in NT. A significantly higher number of low frequency cross-hemispheric synchronous connections and a near absence of right intra-hemispheric coherence in the beta frequency band were noted in ASD. Significantly higher low frequency coherent activity in bilateral temporo-parieto-occipital cortical regions and higher gamma band coherence in right temporo-parieto-occipital brain regions during averted gaze was related to more severe symptomology as reported on the Autism Diagnostic Interview-Revised (ADI-R). Conclusions The preliminary results suggest a pattern of aberrant connectivity that includes higher low frequency synchronization in posterior cortical regions, lack of long-range right hemispheric beta and gamma coherence, and decreased coherence in fronto-temporo-parietal regions necessary for orienting to shifts in eye gaze in ASD; a critical behavior essential for social communication. PMID:24976870

  19. Is Attention Based on Spatial Contextual Memory Preferentially Guided by Low Spatial Frequency Signals?

    PubMed Central

    Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina

    2013-01-01

    A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception. PMID:23776509

  20. Climate Informed Low Flow Frequency Analysis Using Nonstationary Modeling

    NASA Astrophysics Data System (ADS)

    Liu, D.; Guo, S.; Lian, Y.

    2014-12-01

    Stationarity is often assumed for frequency analysis of low flows in water resources management and planning. However, many studies have shown that flow characteristics, particularly the frequency spectrum of extreme hydrologic events,were modified by climate change and human activities and the conventional frequency analysis without considering the non-stationary characteristics may lead to costly design. The analysis presented in this paper was based on the more than 100 years of daily flow data from the Yichang gaging station 44 kilometers downstream of the Three Gorges Dam. The Mann-Kendall trend test under the scaling hypothesis showed that the annual low flows had significant monotonic trend, whereas an abrupt change point was identified in 1936 by the Pettitt test. The climate informed low flow frequency analysis and the divided and combined method are employed to account for the impacts from related climate variables and the nonstationarities in annual low flows. Without prior knowledge of the probability density function for the gaging station, six distribution functions including the Generalized Extreme Values (GEV), Pearson Type III, Gumbel, Gamma, Lognormal, and Weibull distributions have been tested to find the best fit, in which the local likelihood method is used to estimate the parameters. Analyses show that GEV had the best fit for the observed low flows. This study has also shown that the climate informed low flow frequency analysis is able to exploit the link between climate indices and low flows, which would account for the dynamic feature for reservoir management and provide more accurate and reliable designs for infrastructure and water supply.

  1. Performance Analysis of Low-Cost Single-Frequency GPS Receivers in Hydrographic Surveying

    NASA Astrophysics Data System (ADS)

    Elsobeiey, M.

    2017-10-01

    The International Hydrographic Organization (IHO) has issued standards that provide the minimum requirements for different types of hydrographic surveys execution to collect data to be used to compile navigational charts. Such standards are usually updated from time to time to reflect new survey techniques and practices and must be achieved to assure both surface navigation safety and marine environment protection. Hydrographic surveys can be classified to four orders namely, special order, order 1a, order 1b, and order 2. The order of hydrographic surveys to use should be determined in accordance with the importance to the safety of navigation in the surveyed area. Typically, geodetic-grade dual-frequency GPS receivers are utilized for position determination during data collection in hydrographic surveys. However, with the evolution of high-sensitivity low-cost single-frequency receivers, it is very important to evaluate the performance of such receivers. This paper investigates the performance of low-cost single-frequency GPS receivers in hydrographic surveying applications. The main objective is to examine whether low-cost single-frequency receivers fulfil the IHO standards for hydrographic surveys. It is shown that the low-cost single-frequency receivers meet the IHO horizontal accuracy for all hydrographic surveys orders at any depth. However, the single-frequency receivers meet only order 2 requirements for vertical accuracy at depth more than or equal 100 m.

  2. High-fidelity numerical simulation of the flow field around a NACA-0012 aerofoil from the laminar separation bubble to a full stall

    NASA Astrophysics Data System (ADS)

    ElJack, Eltayeb

    2017-05-01

    In the present work, large eddy simulations of the flow field around a NACA-0012 aerofoil near stall conditions are performed at a Reynolds number of 5 × 104, Mach number of 0.4, and at various angles of attack. The results show the following: at relatively low angles of attack, the bubble is present and intact; at moderate angles of attack, the laminar separation bubble bursts and generates a global low-frequency flow oscillation; and at relatively high angles of attack, the laminar separation bubble becomes an open bubble that leads the aerofoil into a full stall. Time histories of the aerodynamic coefficients showed that the low-frequency oscillation phenomenon and its associated physics are indeed captured in the simulations. The aerodynamic coefficients compared to previous and recent experimental data with acceptable accuracy. Spectral analysis identified a dominant low-frequency mode featuring the periodic separation and reattachment of the flow field. At angles of attack α ≤ 9.3°, the low-frequency mode featured bubble shedding rather than bubble bursting and reformation. The underlying mechanism behind the quasi-periodic self-sustained low-frequency flow oscillation is discussed in detail.

  3. Gel performance in rheology and profile control under low-frequency vibration: coupling application of physical and chemical EOR techniques.

    PubMed

    Zheng, Li Ming; Pu, Chun Sheng; Liu, Jing; Ma, Bo; Khan, Nasir

    2017-01-01

    Flowing gel plugging and low-frequency vibration oil extraction technology have been widely applied in low-permeability formation. High probability of overlapping in action spheres of two technologies might lead to poor operating efficiency during gel injection. Study on flowing gel rheological properties under low-frequency vibration was essential, which was carried out indoor with viscosity measurement. Potential dynamic mechanisms were analyzed for the rheological variation. Under low-frequency vibration, gel rheological properties were found to be obviously influenced, with vibration delaying gel cross-linking in induction period, causing a two-stage gel viscosity change in acceleration period, and decreasing gel strength in stable period. Surface of gel system under vibration presented different fluctuating phenomenon from initial harmonic vibrating to heterogeneous fluctuating (droplet separation might appear) to final harmonic vibrating again. Dynamic displacement in unconsolidated sand pack revealed that low-frequency vibration during gel injection might be a measure to achieve deep profile control, with the gel injection depth increased by 65.8 % compared with the vibration-free sample. At last, suggestions for field test were given in the paper to achieve lower injection friction and better gel plugging efficiency.

  4. Spinal 5-HT2 and 5-HT3 receptors mediate low, but not high, frequency TENS-induced antihyperalgesia in rats

    PubMed Central

    Radhakrishnan, Rajan; King, Ellen W.; Dickman, Janelle K.; Herold, Carli A.; Johnston, Natalie F.; Spurgin, Megan L.; Sluka, Kathleen A.

    2009-01-01

    Transcutaneous electrical nerve stimulation (TENS) is a form of non-pharmacological treatment for pain. Involvement of descending inhibitory systems is implicated in TENS-induced analgesia. In the present study, the roles of spinal 5-HT and α2-adrenoceptors in TENS analgesia were investigated in rats. Hyperalgesia was induced by inflaming the knee joint with 3% kaolin—carrageenan mixture and assessed by measuring paw withdrawal latency (PWL) to heat before and 4 h after injection. The (1) α2-adrenergic antagonist yohimbine (30 μg), (2) 5-HT antagonist methysergide (5-HT1 and 5-HT2,30 μg), one of the 5-HT receptor subtype antagonists, (3) NAN-190 (5-HT1A, 15 μg), (4) ketanserin (5-HT2A, 30 μg), (5) MDL-72222 (5-HT3, 12 μg), or (6) vehicle was administered intrathecally prior to TENS treatment. Low (4 Hz) or high (100 Hz) frequency TENS at sensory intensity was then applied to the inflamed knee for 20 min and PWL was determined. Selectivity of the antagonists used was confirmed using respective agonists administered intrathecally. Yohimbine had no effect on the antihyperalgesia produced by low or high frequency TENS. Methysergide and MDL-72222 prevented the antihyperalgesia produced by low, but not high, frequency TENS. Ketanserin attenuated the antihyperalgesic effects of low frequency TENS whereas NAN-190 had no effect. The results from the present study show that spinal 5-HT receptors mediate low, but not high, frequency TENS-induced antihyperalgesia through activation of 5-HT2A and 5-HT3 receptors in rats. Furthermore, spinal noradrenergic receptors are not involved in either low or high frequency TENS antihyperalgesia. PMID:14499437

  5. Low Frequency Acoustic Detection Research in Support of Human Detection Range Prediction

    DTIC Science & Technology

    1979-10-01

    beat at narrow separations and hence made estimates of bandwidth difficult. In addition, Zwicker’s and Green’s data show large discrepancies, the...already known that this spurious low frequency noise can profoundly influence psychoacoustic results. For some years a binaural phenomenon known as the...tend to be uncorrelated in the two ears) and thus preserved the binaural advantage for the low frequency signals. Green et al. (Reference 21) used a

  6. Searching for Effective Training Solutions for Firefighting: The Analysis of Emergency Responses and Line of Duty Death Reports for Low Frequency, High Risk Events

    DTIC Science & Technology

    2017-09-01

    whether emergency incidents connected to low frequency and high risk events contain sufficient warning signs or indicators of imminent catastrophic... high risk events contain sufficient warning signs or indicators of imminent catastrophic events, if firefighters could identify them, and if there...EFFECTIVE TRAINING SOLUTIONS FOR FIREFIGHTING: THE ANALYSIS OF EMERGENCY RESPONSES AND LINE OF DUTY DEATH REPORTS FOR LOW FREQUENCY, HIGH RISK EVENTS

  7. Probing Pharmaceutical Mixtures during Milling: The Potency of Low-Frequency Raman Spectroscopy in Identifying Disorder.

    PubMed

    Walker, Greg; Römann, Philipp; Poller, Bettina; Löbmann, Korbinian; Grohganz, Holger; Rooney, Jeremy S; Huff, Gregory S; Smith, Geoffrey P S; Rades, Thomas; Gordon, Keith C; Strachan, Clare J; Fraser-Miller, Sara J

    2017-12-04

    This study uses a multimodal analytical approach to evaluate the rates of (co)amorphization of milled drug and excipient and the effectiveness of different analytical methods in detecting these changes. Indomethacin and tryptophan were the model substances, and the analytical methods included low-frequency Raman spectroscopy (785 nm excitation and capable of measuring both low- (10 to 250 cm -1 ) and midfrequency (450 to 1800 cm -1 ) regimes, and a 830 nm system (5 to 250 cm -1 )), conventional (200-3000 cm -1 ) Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray powder diffraction (XRPD). The kinetics of amorphization were found to be faster for the mixture, and indeed, for indomethacin, only partial amorphization occurred (after 360 min of milling). Each technique was capable of identifying the transformations, but some, such as low-frequency Raman spectroscopy and XRPD, provided less ambiguous signatures than the midvibrational frequency techniques (conventional Raman and FTIR). The low-frequency Raman spectra showed intense phonon mode bands for the crystalline and cocrystalline samples that could be used as a sensitive probe of order. Multivariate analysis has been used to further interpret the spectral changes. Overall, this study demonstrates the potential of low-frequency Raman spectroscopy, which has several practical advantages over XRPD, for probing (dis-)order during pharmaceutical processing, showcasing its potential for future development, and implementation as an in-line process monitoring method.

  8. Do our reconstructions of ENSO have too much low-frequency variability?

    NASA Astrophysics Data System (ADS)

    Loope, G. R.; Overpeck, J. T.

    2017-12-01

    Reconstructing the spectrum of Pacific SST variability has proven to be difficult both because of complications with proxy systems such as tree rings and the relatively small number of records from the tropical Pacific. We show that the small number of long coral δ18O and Sr/Ca records has caused a bias towards having too much low-frequency variability in PCR, CPS, and RegEM reconstructions of Pacific variability. This occurs because the individual coral records used in the reconstructions have redder spectra than the shared signal (e.g. ENSO). This causes some of the unshared, low-frequency signal from local climate, salinity and possibly coral biology to bleed into the reconstruction. With enough chronologies in a reconstruction, this unshared noise cancels out but the problem is exacerbated in our longest reconstructions where fewer records are available. Coral proxies tend to have more low-frequency variability than SST observations so this problem is smaller but can still be seen in pseudoproxy experiments using observations and reanalysis data. The identification of this low-frequency bias in coral reconstructions helps bring the spectra of ENSO reconstructions back into line with both models and observations. Although our analysis is mostly constrained to the 20th century due to lack of sufficient data, we expect that as more long chronologies are developed, the low-frequency signal in ENSO reconstructions will be greatly reduced.

  9. A generalized Grubbs-Beck test statistic for detecting multiple potentially influential low outliers in flood series

    USGS Publications Warehouse

    Cohn, T.A.; England, J.F.; Berenbrock, C.E.; Mason, R.R.; Stedinger, J.R.; Lamontagne, J.R.

    2013-01-01

    he Grubbs-Beck test is recommended by the federal guidelines for detection of low outliers in flood flow frequency computation in the United States. This paper presents a generalization of the Grubbs-Beck test for normal data (similar to the Rosner (1983) test; see also Spencer and McCuen (1996)) that can provide a consistent standard for identifying multiple potentially influential low flows. In cases where low outliers have been identified, they can be represented as “less-than” values, and a frequency distribution can be developed using censored-data statistical techniques, such as the Expected Moments Algorithm. This approach can improve the fit of the right-hand tail of a frequency distribution and provide protection from lack-of-fit due to unimportant but potentially influential low flows (PILFs) in a flood series, thus making the flood frequency analysis procedure more robust.

  10. Lactase persistence and dairy intake in Mapuche and Mestizo populations from southern Chile.

    PubMed

    Fernández, Catalina I; Flores, Sergio V

    2014-11-01

    Lactase persistence (LP) occurs at a very low frequency in indigenous populations from Latin America, offering an opportunity to understand the relationship between this genetic trait and patterns of dairy consumption. Here, the frequency of LP is analyzed from Mapuche and -an adjacent- mestizo population inhabiting the Araucanía region. In addition to genotyping for LP, participants were surveyed in relation to general perception and consumption habits of dairy products. Low LP frequency (10%) and very low dairy intake was found among the Mapuche population as compared with Mestizo populations inhabiting Chile. The survey reported that the main reasons for avoidance of dairy were the gastrointestinal symptoms after dairy intake and cultural dietary habits. The interaction between low LP genotype frequency, low dairy intake, and sociocultural determinants is here discussed in the light of their potential health outcomes. © 2014 Wiley Periodicals, Inc.

  11. A generalized Grubbs-Beck test statistic for detecting multiple potentially influential low outliers in flood series

    NASA Astrophysics Data System (ADS)

    Cohn, T. A.; England, J. F.; Berenbrock, C. E.; Mason, R. R.; Stedinger, J. R.; Lamontagne, J. R.

    2013-08-01

    The Grubbs-Beck test is recommended by the federal guidelines for detection of low outliers in flood flow frequency computation in the United States. This paper presents a generalization of the Grubbs-Beck test for normal data (similar to the Rosner (1983) test; see also Spencer and McCuen (1996)) that can provide a consistent standard for identifying multiple potentially influential low flows. In cases where low outliers have been identified, they can be represented as "less-than" values, and a frequency distribution can be developed using censored-data statistical techniques, such as the Expected Moments Algorithm. This approach can improve the fit of the right-hand tail of a frequency distribution and provide protection from lack-of-fit due to unimportant but potentially influential low flows (PILFs) in a flood series, thus making the flood frequency analysis procedure more robust.

  12. 47 CFR 74.762 - Frequency measurements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Booster Stations § 74.762 Frequency measurements. (a) The licensee of a low power TV station, a TV translator, or a TV booster station must measure the carrier frequencies of its output channel as often as... intervals not exceeding 14 months. (b) In the event that a low power TV, TV translator, or TV booster...

  13. 47 CFR 74.762 - Frequency measurements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Booster Stations § 74.762 Frequency measurements. (a) The licensee of a low power TV station, a TV translator, or a TV booster station must measure the carrier frequencies of its output channel as often as... intervals not exceeding 14 months. (b) In the event that a low power TV, TV translator, or TV booster...

  14. 47 CFR 74.762 - Frequency measurements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Booster Stations § 74.762 Frequency measurements. (a) The licensee of a low power TV station, a TV translator, or a TV booster station must measure the carrier frequencies of its output channel as often as... intervals not exceeding 14 months. (b) In the event that a low power TV, TV translator, or TV booster...

  15. 47 CFR 74.762 - Frequency measurements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Booster Stations § 74.762 Frequency measurements. (a) The licensee of a low power TV station, a TV translator, or a TV booster station must measure the carrier frequencies of its output channel as often as... intervals not exceeding 14 months. (b) In the event that a low power TV, TV translator, or TV booster...

  16. Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers.

    PubMed

    Ameer, Shahid; Gul, Iftikhar Hussain

    2016-01-01

    The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands). Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO) sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands). The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30-58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands (< -10 dB from 1 MHz to 3 GHz). This excellent microwave absorbing property induced by graphene sheet coupling shows application of these materials with absorption bandwidth which is tailored such that these could be used for low frequency. Previously, these were used for high frequency absorptions (typically > 4 GHz) with limited selective bandwidth.

  17. Complexity of low-frequency blood oxygen level-dependent fluctuations covaries with local connectivity.

    PubMed

    Anderson, Jeffrey S; Zielinski, Brandon A; Nielsen, Jared A; Ferguson, Michael A

    2014-04-01

    Very low-frequency blood oxygen level-dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generating such fluctuations are poorly understood. Using publicly available data from 1,019 subjects of age 7-30, we show that BOLD fluctuations exhibit temporal complexity that is linearly related to local connectivity (regional homogeneity), consistently and significantly covarying across subjects and across gray matter regions. This relationship persisted independently of covariance with gray matter density or standard deviation of BOLD signal. During late neurodevelopment, BOLD fluctuations were unchanged with age in association cortex while becoming more random throughout the rest of the brain. These data suggest that local interconnectivity may play a key role in establishing the complexity of low-frequency BOLD fluctuations underlying functional magnetic resonance imaging connectivity. Stable low-frequency power dynamics may emerge through segmentation and integration of connectivity during development of distributed large-scale brain networks. Copyright © 2013 Wiley Periodicals, Inc.

  18. Atomistic modeling of the low-frequency mechanical modes and Raman spectra of icosahedral virus capsids

    NASA Astrophysics Data System (ADS)

    Dykeman, Eric C.; Sankey, Otto F.

    2010-02-01

    We describe a technique for calculating the low-frequency mechanical modes and frequencies of a large symmetric biological molecule where the eigenvectors of the Hessian matrix are determined with full atomic detail. The method, which follows order N methods used in electronic structure theory, determines the subset of lowest-frequency modes while using group theory to reduce the complexity of the problem. We apply the method to three icosahedral viruses of various T numbers and sizes; the human viruses polio and hepatitis B, and the cowpea chlorotic mottle virus, a plant virus. From the normal-mode eigenvectors, we use a bond polarizability model to predict a low-frequency Raman scattering profile for the viruses. The full atomic detail in the displacement patterns combined with an empirical potential-energy model allows a comparison of the fully atomic normal modes with elastic network models and normal-mode analysis with only dihedral degrees of freedom. We find that coarse-graining normal-mode analysis (particularly the elastic network model) can predict the displacement patterns for the first few (˜10) low-frequency modes that are global and cooperative.

  19. Study on ion energy distribution in low-frequency oscillation time scale of Hall thrusters

    NASA Astrophysics Data System (ADS)

    Wei, Liqiu; Li, Wenbo; Ding, Yongjie; Han, Liang; Yu, Daren; Cao, Yong

    2017-11-01

    This paper reports on the dynamic characteristics of the distribution of ion energy during Hall thruster discharge in the low-frequency oscillation time scale through experimental studies, and a statistical analysis of the time-varying peak and width of ion energy and the ratio of high-energy ions during the low-frequency oscillation. The results show that the ion energy distribution exhibits a periodic change during the low-frequency oscillation. Moreover, the variation in the ion energy peak is opposite to that of the discharge current, and the variations in width of the ion energy distribution and the ratio of high-energy ions are consistent with that of the discharge current. The variation characteristics of the ion density and discharge potential were simulated by one-dimensional hybrid-direct kinetic simulations; the simulation results and analysis indicate that the periodic change in the distribution of ion energy during the low-frequency oscillation depends on the relationship between the ionization source term and discharge potential distribution during ionization in the discharge channel.

  20. Models of tremor and low-frequency earthquake swarms on Montserrat

    NASA Astrophysics Data System (ADS)

    Neuberg, J.; Luckett, R.; Baptie, B.; Olsen, K.

    2000-08-01

    Recent observations from Soufrière Hills volcano in Montserrat reveal a wide variety of low-frequency seismic signals. We discuss similarities and differences between hybrid earthquakes and long-period events, and their role in explosions and rockfall events. These events occur usually in swarms, and occasionally merge into tremor, an observation that can shed further light on the generation and composition of harmonic tremor. We use a 2D finite difference method to model major features of low-frequency seismic signatures and compare them with the observations. A depth-dependent velocity model for a fluid-filled conduit is introduced which accounts for the varying gas-content in the magma, and the impact on the seismic signals is discussed. We carefully analyse episodes of tremor that show shifting spectral lines and model those in terms of changes in the gas content of the magma as well as in terms of a time-dependent triggering mechanism of low-frequency resonances. In this way we explain the simultaneous occurrence of low-frequency events and tremor with a spectral content comprising integer harmonics.

  1. Cortisol response and subjective sleep disturbance after low-frequency noise exposure

    NASA Astrophysics Data System (ADS)

    Persson Waye, K.; Agge, A.; Clow, A.; Hucklebridge, F.

    2004-10-01

    A previous experimental study showed that the cortisol response upon awakening was reduced following nights with low-frequency noise exposure. This study comprised a larger number of subjects and an extended period of acclimatisation nights. In total, 26 male subjects slept during five consecutive nights in a sleep laboratory. Half of the subjects were exposed to low-frequency noise (40 dBA) on the 4th night and had their reference night (24 dBA) on the 5th night, while the reverse conditions were present for the other half of the group. Subjective sleep disturbances were recorded by questionnaires and cortisol response upon awakening was measured in saliva. The results showed that subjects were more tired and felt less socially orientated in the morning after nights with low-frequency noise. Mood was negatively affected in the evening after nights with low-frequency noise. No effect of noise condition was found on the cortisol secretion. There was a significant effect of group and weekday, indicating that further methodological developments are necessary before saliva cortisol secretion can be reliably used as an indicator of noise-disturbed sleep.

  2. Tuned Chamber Core Panel Acoustic Test Results

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  3. Examination of the neighborhood activation theory in normal and hearing-impaired listeners.

    PubMed

    Dirks, D D; Takayanagi, S; Moshfegh, A; Noffsinger, P D; Fausti, S A

    2001-02-01

    Experiments were conducted to examine the effects of lexical information on word recognition among normal hearing listeners and individuals with sensorineural hearing loss. The lexical factors of interest were incorporated in the Neighborhood Activation Model (NAM). Central to this model is the concept that words are recognized relationally in the context of other phonemically similar words. NAM suggests that words in the mental lexicon are organized into similarity neighborhoods and the listener is required to select the target word from competing lexical items. Two structural characteristics of similarity neighborhoods that influence word recognition have been identified; "neighborhood density" or the number of phonemically similar words (neighbors) for a particular target item and "neighborhood frequency" or the average frequency of occurrence of all the items within a neighborhood. A third lexical factor, "word frequency" or the frequency of occurrence of a target word in the language, is assumed to optimize the word recognition process by biasing the system toward choosing a high frequency over a low frequency word. Three experiments were performed. In the initial experiments, word recognition for consonant-vowel-consonant (CVC) monosyllables was assessed in young normal hearing listeners by systematically partitioning the items into the eight possible lexical conditions that could be created by two levels of the three lexical factors, word frequency (high and low), neighborhood density (high and low), and average neighborhood frequency (high and low). Neighborhood structure and word frequency were estimated computationally using a large, on-line lexicon-based Webster's Pocket Dictionary. From this program 400 highly familiar, monosyllables were selected and partitioned into eight orthogonal lexical groups (50 words/group). The 400 words were presented randomly to normal hearing listeners in speech-shaped noise (Experiment 1) and "in quiet" (Experiment 2) as well as to an elderly group of listeners with sensorineural hearing loss in the speech-shaped noise (Experiment 3). The results of three experiments verified predictions of NAM in both normal hearing and hearing-impaired listeners. In each experiment, words from low density neighborhoods were recognized more accurately than those from high density neighborhoods. The presence of high frequency neighbors (average neighborhood frequency) produced poorer recognition performance than comparable conditions with low frequency neighbors. Word frequency was found to have a highly significant effect on word recognition. Lexical conditions with high word frequencies produced higher performance scores than conditions with low frequency words. The results supported the basic tenets of NAM theory and identified both neighborhood structural properties and word frequency as significant lexical factors affecting word recognition when listening in noise and "in quiet." The results of the third experiment permit extension of NAM theory to individuals with sensorineural hearing loss. Future development of speech recognition tests should allow for the effects of higher level cognitive (lexical) factors on lower level phonemic processing.

  4. The role of low-spatial frequencies in lexical decision and masked priming.

    PubMed

    Boden, C; Giaschi, D

    2009-04-01

    Spatial frequency filtering was used to test the hypotheses that low-spatial frequency information in printed text can: (1) lead to a rapid lexical decision or (2) facilitate word recognition. Adult proficient readers made lexical decisions in unprimed and masked repetition priming experiments with unfiltered, low-pass, high-pass and notch filtered letter strings. In the unprimed experiments, a filtered target was presented for 105 or 400 ms followed by a pattern mask. Sensitivity (d') was lowest for the low-pass filtered targets at both durations with a bias towards a 'non-word' response. Sensitivity was higher in the high-pass and notch filter conditions. In the priming experiments, a forward mask was followed by a filtered prime then an unfiltered target. Primed words, but not non-words, were identified faster than unprimed words in both the low-pass and high-pass filtered conditions. These results do not support a unique role for low-spatial frequency information in either facilitating or making rapid lexical decisions.

  5. Fiber optic vibration sensor using bifurcated plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Abdullah, M.; Bidin, N.; Yasin, M.

    2016-11-01

    An extrinsic fiber optic vibration sensor is demonstrated for a fiber optic displacement sensor based on a bundled multimode fiber to measure a vibration frequency ranging from 100 until 3000 Hz. The front slope has a sensitivity of 0.1938mV/mm and linearity of 99.7% within a measurement range between 0.15-3.00 mm. By placing the diaphragm of the concave load-speaker within the linear range from the probe, the frequency of the vibration can be measured with error percentage of less than 1.54%. The graph of input against output frequency for low, medium and high frequency range show very high linearity up to 99%. Slope for low, medium, and high frequency range are calculated as 1.0026, 0.9934, and 1.0007 respectively. Simplicity, long term stability, low power consumption, wide dynamic and frequency ranges, noise reduction, ruggedness, linearity and light weight make it promising alternative to other well-establish methods for vibration frequency measurement.

  6. Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission

    NASA Astrophysics Data System (ADS)

    Yang, Jieun; Lee, Joong Seok; Lee, Hyeong Rae; Kang, Yeon June; Kim, Yoon Young

    2018-02-01

    Sound transmission reduction is typically governed by the mass law, requiring thicker panels to handle lower frequencies. When open holes must be inserted in panels for heat transfer, ventilation, or other purposes, the efficient reduction of sound transmission through holey panels becomes difficult, especially in the low-frequency ranges. Here, we propose slow-wave metamaterial open panels that can dramatically lower the working frequencies of sound transmission loss. Global resonances originating from slow waves realized by multiply inserted, elaborately designed subwavelength rigid partitions between two thin holey plates contribute to sound transmission reductions at lower frequencies. Owing to the dispersive characteristics of the present metamaterial panels, local resonances that trap sound in the partitions also occur at higher frequencies, exhibiting negative effective bulk moduli and zero effective velocities. As a result, low-frequency broadened sound transmission reduction is realized efficiently in the present metamaterial panels. The theoretical model of the proposed metamaterial open panels is derived using an effective medium approach and verified by numerical and experimental investigations.

  7. Analysis of fast and slow responses in AC conductance curves for p-type SiC MOS capacitors

    NASA Astrophysics Data System (ADS)

    Karamoto, Yuki; Zhang, Xufang; Okamoto, Dai; Sometani, Mitsuru; Hatakeyama, Tetsuo; Harada, Shinsuke; Iwamuro, Noriyuki; Yano, Hiroshi

    2018-06-01

    We used a conductance method to investigate the interface characteristics of a SiO2/p-type 4H-SiC MOS structure fabricated by dry oxidation. It was found that the measured equivalent parallel conductance–frequency (G p/ω–f) curves were not symmetric, showing that there existed both high- and low-frequency signals. We attributed high-frequency responses to fast interface states and low-frequency responses to near-interface oxide traps. To analyze the fast interface states, Nicollian’s standard conductance method was applied in the high-frequency range. By extracting the high-frequency responses from the measured G p/ω–f curves, the characteristics of the low-frequency responses were reproduced by Cooper’s model, which considers the effect of near-interface traps on the G p/ω–f curves. The corresponding density distribution of slow traps as a function of energy level was estimated.

  8. More use almost always a means a smaller frequency effect: Aging, bilingualism, and the weaker links hypothesis

    PubMed Central

    Gollan, Tamar H.; Montoya, Rosa I.; Cera, Cynthia; Sandoval, Tiffany C.

    2008-01-01

    The “weaker links” hypothesis proposes that bilinguals are disadvantaged relative to monolinguals on speaking tasks because they divide frequency-of-use between two languages. To test this proposal we contrasted the effects of increased word use associated with monolingualism, language dominance, and increased age on picture naming times. In two experiments, younger and older bilinguals and monolinguals named pictures with high- or low-frequency names in English and (if bilingual) also in Spanish. In Experiment 1, slowing related to bilingualism and language dominance was greater for producing low- than high-frequency names. In Experiment 2, slowing related to aging was greater for producing low-frequency names in the dominant language, but when speaking the nondominant language, increased age attenuated frequency effects and age-related slowing was limited exclusively to high-frequency names. These results challenge competition based accounts of bilingual disadvantages in language production, and illustrate how between-group processing differences may emerge from cognitive mechanisms general to all speakers. PMID:19343088

  9. Device and method for imaging of non-linear and linear properties of formations surrounding a borehole

    DOEpatents

    Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher

    2013-11-05

    In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating a first low frequency acoustic wave within the borehole, wherein the first low frequency acoustic wave induces a linear and a nonlinear response in one or more features in the material that are substantially perpendicular to a radius of the borehole; directing a first sequence of high frequency pulses in a direction perpendicularly with respect to the longitudinal axis of the borehole into the material contemporaneously with the first acoustic wave; and receiving one or more second high frequency pulses at one or more receivers positionable in the borehole produced by an interaction between the first sequence of high frequency pulses and the one or more features undergoing linear and nonlinear elastic distortion due to the first low frequency acoustic wave to investigate the material surrounding the borehole.

  10. Low-frequency switching voltage regulators for terrestrial photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1984-01-01

    The photovoltaic technology project and the stand alone applications project are discussed. Two types of low frequency switching type regulators were investigated. The design, operating characteristics and field application of these regulators is described. The regulators are small in size, low in cost, very low in power dissipation, reliable and allow considerable flexibility in system design.

  11. Detached rock evaluation device

    DOEpatents

    Hanson, David R.

    1986-01-01

    A rock detachment evaluation device (10) having an energy transducer unit 1) for sensing vibrations imparted to a subject rock (172) for converting the sensed vibrations into electrical signals, a low band pass filter unit (12) for receiving the electrical signal and transmitting only a low frequency segment thereof, a high band pass filter unit (13) for receiving the electrical signals and for transmitting only a high frequency segment thereof, a comparison unit (14) for receiving the low frequency and high frequency signals and for determining the difference in power between the signals, and a display unit (16) for displaying indicia of the difference, which provides a quantitative measure of rock detachment.

  12. Van Allen Probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: Statistical study.

    PubMed

    Cattell, C A; Breneman, A W; Thaller, S A; Wygant, J R; Kletzing, C A; Kurth, W S

    2015-09-28

    We show the first evidence for locally excited chorus at frequencies below 0.1  f ce (electron cyclotron frequency) in the outer radiation belt. A statistical study of chorus during geomagnetic storms observed by the Van Allen Probes found that frequencies are often dramatically lower than expected. The frequency at peak power suddenly stops tracking the equatorial 0.5  f ce and f / f ce decreases rapidly, often to frequencies well below 0.1  f ce (in situ and mapped to equator). These very low frequency waves are observed both when the satellites are close to the equatorial plane and at higher magnetic latitudes. Poynting flux is consistent with generation at the equator. Wave amplitudes can be up to 20 to 40 mV/m and 2 to 4 nT. We conclude that conditions during moderate to large storms can excite unusually low frequency chorus, which is resonant with more energetic electrons than typical chorus, with critical implications for understanding radiation belt evolution.

  13. Tuning In to Sound: Frequency-Selective Attentional Filter in Human Primary Auditory Cortex

    PubMed Central

    Da Costa, Sandra; van der Zwaag, Wietske; Miller, Lee M.; Clarke, Stephanie

    2013-01-01

    Cocktail parties, busy streets, and other noisy environments pose a difficult challenge to the auditory system: how to focus attention on selected sounds while ignoring others? Neurons of primary auditory cortex, many of which are sharply tuned to sound frequency, could help solve this problem by filtering selected sound information based on frequency-content. To investigate whether this occurs, we used high-resolution fMRI at 7 tesla to map the fine-scale frequency-tuning (1.5 mm isotropic resolution) of primary auditory areas A1 and R in six human participants. Then, in a selective attention experiment, participants heard low (250 Hz)- and high (4000 Hz)-frequency streams of tones presented at the same time (dual-stream) and were instructed to focus attention onto one stream versus the other, switching back and forth every 30 s. Attention to low-frequency tones enhanced neural responses within low-frequency-tuned voxels relative to high, and when attention switched the pattern quickly reversed. Thus, like a radio, human primary auditory cortex is able to tune into attended frequency channels and can switch channels on demand. PMID:23365225

  14. Low frequency rTMS over posterior parietal cortex impairs smooth pursuit eye tracking.

    PubMed

    Hutton, Samuel B; Weekes, Brendan S

    2007-11-01

    The role of the posterior parietal cortex in smooth pursuit eye movements remains unclear. We used low frequency repetitive transcranial magnetic stimulation (rTMS) to study the cognitive and neural systems involved in the control of smooth pursuit eye movements. Eighteen participants were tested on two separate occasions. On each occasion we measured smooth pursuit eye tracking before and after 6 min of 1 Hz rTMS delivered at 90% of motor threshold. Low frequency rTMS over the posterior parietal cortex led to a significant reduction in smooth pursuit velocity gain, whereas rTMS over the motor cortex had no effect on gain. We conclude that low frequency offline rTMS is a potentially useful tool with which to explore the cortical systems involved in oculomotor control.

  15. Dual-lasing channel quantum cascade laser based on scattering-assisted injection design.

    PubMed

    Wen, Boyu; Xu, Chao; Wang, Siyi; Wang, Kaixi; Tam, Man Chun; Wasilewski, Zbig; Ban, Dayan

    2018-04-02

    A dual lasing channel Terahertz Quantum Cascade laser (THz QCL) based on GaAs/Al 0.17 Ga 0.83 As material system is demonstrated. The device shows the lowest reported threshold current density (550A/cm 2 at 50K) of GaAs/Al x Ga 1-x As material system based scattering-assisted (SA) structures and operates up to a maximum lasing temperature of 144K. Dual lasing channel operation is investigated theoretically and experimentally. The combination of low frequency emission, dual lasing channel operation, low lasing threshold current density and high temperature performance make such devices ideal candidates for low frequency applications, and initiates the design strategy for achieving high-temperature performance terahertz quantum cascade laser with wide frequency coverage at low frequency.

  16. Image enhancement filters significantly improve reading performance for low vision observers

    NASA Technical Reports Server (NTRS)

    Lawton, T. B.

    1992-01-01

    As people age, so do their photoreceptors; many photoreceptors in central vision stop functioning when a person reaches their late sixties or early seventies. Low vision observers with losses in central vision, those with age-related maculopathies, were studied. Low vision observers no longer see high spatial frequencies, being unable to resolve fine edge detail. We developed image enhancement filters to compensate for the low vision observer's losses in contrast sensitivity to intermediate and high spatial frequencies. The filters work by boosting the amplitude of the less visible intermediate spatial frequencies. The lower spatial frequencies. These image enhancement filters not only reduce the magnification needed for reading by up to 70 percent, but they also increase the observer's reading speed by 2-4 times. A summary of this research is presented.

  17. Note: An approach to measurement of low frequency oscillation amplitude of discharge current of in-orbit Hall thruster.

    PubMed

    Han, Liang; Ding, Yongjie; Wei, Liqiu; Yu, Daren

    2014-06-01

    This paper provides a method to measure the amplitude of low frequency oscillation under the on-track working condition, and realizes the sampling by means of adding the circuit design of sampling, low pass filtering by 3 dB at 48.2 kHz, detection and integrating in the filtering unit. The experimental results prove that the measuring device of merely 0.8 g can quantitatively reflect the amplitude of low frequency oscillation in Hall thruster and the maximum deviation of experiment data and theory data is 10% FS.

  18. The LOFAR Multifrequency Snapshot Sky Survey (MSSS): Status and Results

    NASA Astrophysics Data System (ADS)

    Heald, George; LOFAR Collaboration

    2014-01-01

    The Multifrequency Snapshot Sky Survey (MSSS) is the first large-area survey of the northern sky with the Low Frequency Array (LOFAR). By producing images of the sky at 16 frequencies from 30 to 160 MHz, MSSS probes the low-frequency sky at a sensitivity of order 10 mJy/beam, and angular resolution of 1-2 arcmin or better. It thus dramatically expands the frequency range sampled in high-resolution radio surveys, and, crucially, provides low-frequency spectral information about the detected sources. Using LOFAR's unique multi-beaming mode, the survey requires only a rather modest investment in observing time. MSSS began observations in late 2011, and has nearly completed observations in both frequency components (8 frequencies spanning the 30 to 74 MHz range, and another 8 spanning 120 to 160 MHz). MSSS has driven the initial development of the first production version of LOFAR's automatic Imaging Pipeline and spearheaded efforts aimed at solving some of the ongoing low-frequency calibration challenges. In this contribution, I will briefly review the survey design, including an overview of MSSS science topics. I will also present a status update, highlighting early results from the survey such as an in-depth look at the 100 square degree “MSSS Verification Field,” new sources discovered in MSSS images, and a sneak peek at the full survey area. I will conclude by describing plans for the future of MSSS, including the possibility of reprocessing the data to obtain enhanced data products such as higher resolution imaging and polarization. LOFAR, the Low Frequency Array designed and constructed by ASTRON, has facilities in several countries, that are owned by various parties (each with their own funding sources), and that are collectively operated by the International LOFAR Telescope (ILT) foundation under a joint scientific policy.

  19. Directions for Space-Based Low-Frequency Radio Astronomy 2. Telescopes

    NASA Astrophysics Data System (ADS)

    Basart, J. P.; Burns, J. O.; Dennison, B. K.; Weiler, K. W.; Kassim, N. E.; Castillo, S. P.; McCune, B. M.

    Astronomical studies of celestial sources at low radio frequencies (0.3 to 30 MHz) lag far behind the investigations of celestial sources at high radio frequencies. In a companion paper [Basart et al., this issue] we discussed the need for low-frequency investigations, and in this paper we discuss the telescopes required to make the observations. Radio telescopes for use in the low-frequency range can be built principally from ``off-the-shelf'' components. For relatively little cost for a space mission, great strides can be made in deploying arrays of antennas and receivers in space that would produce data contributing significantly to our understanding of galaxies and galactic nebulae. In this paper we discuss an evolutionary sequence of telescopes, antenna systems, receivers, and (u,v) plane coverage. The telescopes are space-based because of the disruptive aspects of the Earth's ionosphere on low-frequency celestial signals traveling to the Earth's surface. Orbiting antennas consisting of array elements deposited on a Kevlar balloon have strong advantages of nearly identical multiple beams over 4π steradians and few mechanical aspects in deployment and operation. The relatively narrow beam width of these antennas can significantly help reduce the ``confusion'' problem. The evolutionary sequence of telescopes starts with an Earth-orbiting spectrometer to measure the low-frequency radio environment in space, proceeds to a two-element interferometer, then to an orbiting array, and ends with a telescope on the lunar farside. The sequence is in the order of increasing capability which is also the order of increasing complexity and cost. All the missions can be accomplished with current technology.

  20. Low frequency ultrasonic nondestructive inspection of aluminum/adhesive fuselage lap splices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Thadd

    1994-01-04

    This thesis is a collection of research efforts in ultrasonics, conducted at the Center for Aviation Systems Reliability located at Iowa State University, as part of the Federal Aviation Administration`s ``Aging Aircraft Program.`` The research was directed toward the development of an ultrasonic prototype to inspect the aluminum/adhesive fuselage lap splices found on 1970`s vintage Boeing passenger aircraft. The ultrasonic prototype consists of a normal incidence, low frequency inspection technique, and a scanning adapter that allows focused immersion transducers to be operated in a direct contact manner in any inspection orientation, including upside-down. The inspection technique uses a computer-controlled datamore » acquisition system to produce a C-scan image of a radio frequency (RF) waveform created by a low frequency, broadband, focused beam transducer, driven with a spike voltage pulser. C-scans produced by this technique are color representations of the received signal`s peak-to-peak amplitude (voltage) taken over an (x, y) grid. Low frequency, in this context, refers to a wavelength that is greater than the lap splice`s layer thicknesses. With the low frequency technique, interface echoes of the lap splice are not resolved and gating of the signal is unnecessary; this in itself makes the technique simple to implement and saves considerable time in data acquisition. Along with the advantages in data acquisition, the low frequency technique is relatively insensitive to minor surface curvature and to ultrasonic interference effects caused by adhesive bondline thickness variations in the lap splice.« less

  1. High-precision and low-cost vibration generator for low-frequency calibration system

    NASA Astrophysics Data System (ADS)

    Li, Rui-Jun; Lei, Ying-Jun; Zhang, Lian-Sheng; Chang, Zhen-Xin; Fan, Kuang-Chao; Cheng, Zhen-Ying; Hu, Peng-Hao

    2018-03-01

    Low-frequency vibration is one of the harmful factors that affect the accuracy of micro-/nano-measuring machines because its amplitude is significantly small and it is very difficult to avoid. In this paper, a low-cost and high-precision vibration generator was developed to calibrate an optical accelerometer, which is self-designed to detect low-frequency vibration. A piezoelectric actuator is used as vibration exciter, a leaf spring made of beryllium copper is used as an elastic component, and a high-resolution, low-thermal-drift eddy current sensor is applied to investigate the vibrator’s performance. Experimental results demonstrate that the vibration generator can achieve steady output displacement with frequency range from 0.6 Hz to 50 Hz, an analytical displacement resolution of 3.1 nm and an acceleration range from 3.72 mm s-2 to 1935.41 mm s-2 with a relative standard deviation less than 1.79%. The effectiveness of the high-precision and low-cost vibration generator was verified by calibrating our optical accelerometer.

  2. Development of low-frequency kernel-function aerodynamics for comparison with time-dependent finite-difference methods

    NASA Technical Reports Server (NTRS)

    Bland, S. R.

    1982-01-01

    Finite difference methods for unsteady transonic flow frequency use simplified equations in which certain of the time dependent terms are omitted from the governing equations. Kernel functions are derived for two dimensional subsonic flow, and provide accurate solutions of the linearized potential equation with the same time dependent terms omitted. These solutions make possible a direct evaluation of the finite difference codes for the linear problem. Calculations with two of these low frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite difference codes. Comparisons of the low frequency kernel function results with the Possio kernel function solution of the complete linear equations indicate the adequacy of the HYTRAN approximation for frequencies in the range of interest for flutter calculations.

  3. Sound Generation by Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.; Wang, Frank Y.

    2003-01-01

    This report provides an extensive analysis of potential wake vortex noise sources that might be utilized to aid in their tracking. Several possible mechanisms of aircraft vortex sound generation are examined on the basis of discrete vortex dynamic models and characteristic acoustic signatures calculated by application of vortex sound theory. It is shown that the most robust mechanisms result in very low frequency infrasound. An instability of the vortex core structure is discussed and shown to be a possible mechanism for generating higher frequency sound bordering the audible frequency range. However, the frequencies produced are still low and cannot explain the reasonably high-pitched sound that has occasionally been observed experimentally. Since the robust mechanisms appear to generate only very low frequency sound, infrasonic tracking of the vortices may be warranted.

  4. Development of Acceleration Sensor and Acceleration Evaluation System for Super-Low-Range Frequencies

    NASA Astrophysics Data System (ADS)

    Asano, Shogo; Matsumoto, Hideki

    2001-05-01

    This paper describes the development process for acceleration sensors used on automobiles and an acceleration evaluation system designed specifically for acceleration at super-low-range frequencies. The features of the newly developed sensor are as follows. 1) Original piezo-bimorph design based on a disc-center-fixed structure achieves pyroeffect cancelling and stabilization of sensor characteristics and enables the detection of the acceleration of 0.0009 G at the super-low-range-frequency of 0.03 Hz. 2) The addition of a self-diagnostic function utilizing the characteristics of piezoceramics enables constant monitoring of sensor failure. The frequency range of acceleration for accurate vehicle motion control is considered to be from DC to about 50 Hz. However, the measurement of acceleration in the super-low-range frequency near DC has been difficult because of mechanical and electrical noise interruption. This has delayed the development of the acceleration sensor for automotive use. We have succeeded in the development of an acceleration evaluation system for super-low-range frequencies from 0.015 Hz to 2 Hz with detection of the acceleration range from 0.0002 G (0.2 gal) to 1 G, as well as the development of a piezoelectric-type acceleration sensor for automotive use.

  5. Investigation of rare and low-frequency variants using high-throughput sequencing with pooled DNA samples

    PubMed Central

    Wang, Jingwen; Skoog, Tiina; Einarsdottir, Elisabet; Kaartokallio, Tea; Laivuori, Hannele; Grauers, Anna; Gerdhem, Paul; Hytönen, Marjo; Lohi, Hannes; Kere, Juha; Jiao, Hong

    2016-01-01

    High-throughput sequencing using pooled DNA samples can facilitate genome-wide studies on rare and low-frequency variants in a large population. Some major questions concerning the pooling sequencing strategy are whether rare and low-frequency variants can be detected reliably, and whether estimated minor allele frequencies (MAFs) can represent the actual values obtained from individually genotyped samples. In this study, we evaluated MAF estimates using three variant detection tools with two sets of pooled whole exome sequencing (WES) and one set of pooled whole genome sequencing (WGS) data. Both GATK and Freebayes displayed high sensitivity, specificity and accuracy when detecting rare or low-frequency variants. For the WGS study, 56% of the low-frequency variants in Illumina array have identical MAFs and 26% have one allele difference between sequencing and individual genotyping data. The MAF estimates from WGS correlated well (r = 0.94) with those from Illumina arrays. The MAFs from the pooled WES data also showed high concordance (r = 0.88) with those from the individual genotyping data. In conclusion, the MAFs estimated from pooled DNA sequencing data reflect the MAFs in individually genotyped samples well. The pooling strategy can thus be a rapid and cost-effective approach for the initial screening in large-scale association studies. PMID:27633116

  6. Role of processing speed and depressed mood on encoding, storage, and retrieval memory functions in patients diagnosed with schizophrenia.

    PubMed

    Brébion, Gildas; David, Anthony S; Bressan, Rodrigo A; Pilowsky, Lyn S

    2007-01-01

    The role of various types of slowing of processing speed, as well as the role of depressed mood, on each stage of verbal memory functioning in patients diagnosed with schizophrenia was investigated. Mixed lists of high- and low-frequency words were presented, and immediate and delayed free recall and recognition were required. Two levels of encoding were studied by contrasting the relatively automatic encoding of the high-frequency words and the more effortful encoding of the low-frequency words. Storage was studied by contrasting immediate and delayed recall. Retrieval was studied by contrasting free recall and recognition. Three tests of motor and cognitive processing speed were administered as well. Regression analyses involving the three processing speed measures revealed that cognitive speed was the only predictor of the recall and recognition of the low-frequency words. Furthermore, slowing in cognitive speed accounted for the deficit in recall and recognition of the low-frequency words relative to a healthy control group. Depressed mood was significantly associated with recognition of the low-frequency words. Neither processing speed nor depressed mood was associated with storage efficiency. It is concluded that both cognitive speed slowing and depressed mood impact on effortful encoding processes.

  7. Parametric Flutter Analysis of the TCA Configuration and Recommendation for FFM Design and Scaling

    NASA Technical Reports Server (NTRS)

    Baker, Myles; Lenkey, Peter

    1997-01-01

    The current HSR Aeroelasticity plan to design, build, and test a full span, free flying transonic flutter model in the TDT has many technical obstacles that must be overcome for a successful program. One technical obstacle is the determination of a suitable configuration and point in the sky to use in setting the scaling point for the ASE models program. Determining this configuration and point in the sky requires balancing several conflicting requirements, including model buildability, tunnel test safety, and the ability of the model to represent the flutter mechanisms of interest. As will be discussed in detail in subsequent sections, the current TCA design exhibits several flutter mechanisms of interest. It has been decided that the ASE models program will focus on the low frequency symmetric flutter mechanism, and will make no attempt to investigate high frequency flutter mechanisms. There are several reasons for this choice. First, it is believed that the high frequency flutter mechanisms are similar in nature to classical wing bending/torsion flutter, and therefore there is more confidence that this mechanism can be predicted using current techniques. The low frequency mode, on the other hand, is a highly coupled mechanism involving wing, body, tail, and engine motion which may be very difficult to predict. Second, the high frequency flutter modes result in very small weight penalties (several hundred pounds), while suppression of the low frequency mechanism inside the flight envelope causes thousands of pounds to be added to the structure. In order to successfully test the low frequency flutter mode of interest, a suitable starting configuration and point in the sky must be identified. The configuration and point in the sky must result in a wind tunnel model that (1) represents the low-frequency wing/body/engine/empennage flutter mechanisms that are unique to HSCT configurations, (2) flutters at an acceptably low frequency in the tunnel, (3) flutters at an acceptably low dynamic pressure in the tunnel, (4) allows sufficient weight for model buildability without inordinately high cost, and (5) has significant separation between the target flutter mechanism and other, potentially catastrophic, flutter mechanisms.

  8. Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies.

    PubMed

    Littler, Ian C M; Gray, Malcolm B; Chow, Jong H; Shaddock, Daniel A; McClelland, David E

    2009-06-22

    An integrated sensor system is presented which displays passive long range operation to 100 km at pico-strain (pepsilon) sensitivity to low frequencies (4 Hz) in wavelength division multiplexed operation with negligible cross-talk (better than -75 dB). This has been achieved by pre-stabilizing and multiplexing all interrogation lasers for the sensor array to a single optical frequency reference. This single frequency reference allows each laser to be locked to an arbitrary wavelength and independently tuned, while maintaining suppression of laser frequency noise. With appropriate packaging, such a multiplexed strain sensing system can form the core of a low frequency accelerometer or hydrophone array.

  9. Low frequency electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1989-01-01

    Following preliminary investigations of the low frequency electric and magnetic fields that may exists in the Earth-ionospheric cavity, measurements were taken with state-of-the art spectrum analyzers. As a follow up to this activity, an investigation was initiated to determine sources and values for possible low frequency signal that would appear in the cavity. The lowest cavity resonance is estimated at about 8 Hz, but lower frequencies may be an important component of our electromagnetic environment. The potential field frequencies produced by the electron were investigated by a classical model that included possible cross coupling of the electric and gravitation fields. During this work, an interesting relationship was found that related the high frequency charge field with the extremely low frequency of the gravitation field. The results of numerical calculations were surprisingly accurate and this area of investigation is continuing. The work toward continued development of a standardized monitoring facility is continuing with the potential of installing the prototype at West Virginia State College early in 1990. This installation would be capable of real time monitoring of ELF signals in the Earth-ionoshpere cavity and would provide some directional information. A high gain, low noise, 1/f frequency corrected preamplifier was designed and tested for the ferrite core magnetic sensor. The potential application of a super conducting sensor for the ELF magnetic field detection is under investigation. It is hoped that a fully operational monitoring network could pinpoint the location of ELF signal sources and provide new information on where these signals originate and what causes them, assuming that they are natural in origin.

  10. Novel missense mutations in MYO7A underlying postlingual high- or low-frequency non-syndromic hearing impairment in two large families from China.

    PubMed

    Sun, Yi; Chen, Jing; Sun, Hanjun; Cheng, Jing; Li, Jianzhong; Lu, Yu; Lu, Yanping; Jin, Zhanguo; Zhu, Yuhua; Ouyang, Xiaomei; Yan, Denise; Dai, Pu; Han, Dongyi; Yang, Weiyan; Wang, Rongguang; Liu, Xuezhong; Yuan, Huijun

    2011-01-01

    The myosin VIIA (MYO7A) gene encodes a protein classified as an unconventional myosin. Mutations within MYO7A can lead to both syndromic and non-syndromic hearing impairment in humans. Among different mutations reported in MYO7A, only five led to non-syndromic sensorineural deafness autosomal dominant type 11 (DFNA11). Here, we present the clinical, genetic and molecular characteristics of two large Chinese DFNA11 families with either high- or low-frequency hearing loss. Affected individuals of family DX-J033 have a sloping audiogram at young ages with high frequency are most affected. With increasing age, all test frequencies are affected. Affected members of family HB-S037 present with an ascending audiogram affecting low frequencies at young ages, and then all frequencies are involved with increasing age. Genome-wide linkage analysis mapped the disease loci within the DFNA11 interval in both families. DNA sequencing of MYO7A revealed two novel nucleotide variations, c.652G > A (p.D218N) and c.2011G > A (p.G671S), in the two families. It is for the first time that the mutations identified in MYO7A in the present study are being implicated in DFNA11 in a Chinese population. For the first time, we tested electrocochleography (ECochG) in a DFNA11 family with low-frequency hearing loss. We speculate that the low-frequency sensorineural hearing loss in this DFNA11 family was not associated with endolymphatic hydrops.

  11. 100 nm AlSb/InAs HEMT for ultra-low-power consumption, low-noise applications.

    PubMed

    Gardès, Cyrille; Bagumako, Sonia; Desplanque, Ludovic; Wichmann, Nicolas; Bollaert, Sylvain; Danneville, François; Wallart, Xavier; Roelens, Yannick

    2014-01-01

    We report on high frequency (HF) and noise performances of AlSb/InAs high electron mobility transistor (HEMT) with 100 nm gate length at room temperature in low-power regime. Extrinsic cut-off frequencies fT/f max of 100/125 GHz together with minimum noise figure NF(min) = 0.5 dB and associated gain G(ass) = 12 dB at 12 GHz have been obtained at drain bias of only 80 mV, corresponding to 4 mW/mm DC power dissipation. This demonstrates the great ability of AlSb/InAs HEMT for high-frequency operation combined with low-noise performances in ultra-low-power regime.

  12. Low-Loss Waveguides for Terahertz Frequencies

    NASA Technical Reports Server (NTRS)

    Siegel, Peter; Yeh, Cavour; Shimabukuro, Fred; Fraser, Scott

    2008-01-01

    Hollow-core, periodic bandgap (HCPBG) flexible waveguides have been proposed as a means of low-loss transmission of electromagnetic signals in the frequency range from about 300 GHz to 30 THz. This frequency range has been called the "terahertz gap" because it has been little utilized: Heretofore, there has been no way of low-loss guiding of terahertz beams other than by use of fixed-path optical beam guides with lenses and mirrors or multimode waveguides that cannot maintain mode purity around bends or modest discontinuities.

  13. A programmable ultra-low noise X-band exciter.

    PubMed

    MacMullen, A; Hoover, L R; Justice, R D; Callahan, B S

    2001-07-01

    A programmable ultra-low noise X-band exciter has been developed using commercial off-the-shelf components. Its phase noise is more than 10 dB below the best available microwave synthesizers. It covers a 7% frequency band with 0.1-Hz resolution. The X-band output at +23 dBm is a combination of signals from an X-band sapphire-loaded cavity oscillator (SLCO), a low noise UHF frequency synthesizer, and special-purpose frequency translation and up-conversion circuitry.

  14. Perception of force and stiffness in the presence of low-frequency haptic noise

    PubMed Central

    Gurari, Netta; Okamura, Allison M.; Kuchenbecker, Katherine J.

    2017-01-01

    Objective This work lays the foundation for future research on quantitative modeling of human stiffness perception. Our goal was to develop a method by which a human’s ability to perceive suprathreshold haptic force stimuli and haptic stiffness stimuli can be affected by adding haptic noise. Methods Five human participants performed a same-different task with a one-degree-of-freedom force-feedback device. Participants used the right index finger to actively interact with variations of force (∼5 and ∼8 N) and stiffness (∼290 N/m) stimuli that included one of four scaled amounts of haptically rendered noise (None, Low, Medium, High). The haptic noise was zero-mean Gaussian white noise that was low-pass filtered with a 2 Hz cut-off frequency; the resulting low-frequency signal was added to the force rendered while the participant interacted with the force and stiffness stimuli. Results We found that the precision with which participants could identify the magnitude of both the force and stiffness stimuli was affected by the magnitude of the low-frequency haptically rendered noise added to the haptic stimulus, as well as the magnitude of the haptic stimulus itself. The Weber fraction strongly correlated with the standard deviation of the low-frequency haptic noise with a Pearson product-moment correlation coefficient of ρ > 0.83. The mean standard deviation of the low-frequency haptic noise in the haptic stimuli ranged from 0.184 N to 1.111 N across the four haptically rendered noise levels, and the corresponding mean Weber fractions spanned between 0.042 and 0.101. Conclusions The human ability to perceive both suprathreshold haptic force and stiffness stimuli degrades in the presence of added low-frequency haptic noise. Future work can use the reported methods to investigate how force perception and stiffness perception may relate, with possible applications in haptic watermarking and in the assessment of the functionality of peripheral pathways in individuals with haptic impairments. PMID:28575068

  15. Adolescent Alcohol-Drinking Frequency and Problem-Gambling Severity: Adolescent Perceptions Regarding Problem-Gambling Prevention and Parental/Adult Behaviors and Attitudes

    PubMed Central

    Rahman, Ardeshir S.; Balodis, Iris M.; Pilver, Corey E.; Leeman, Robert F.; Hoff, Rani A.; Steinberg, Marvin A.; Rugle, Loreen; Krishnan-Sarin, Suchitra; Potenza, Marc N.

    2014-01-01

    Background To examine in adolescents how alcohol-drinking frequency relates to gambling-related attitudes and behaviors and their perceptions of both problem-gambling prevention strategies and adult (including parental) behaviors/attitudes. Methods A survey assessing alcohol, gambling and health and functioning measures in 1609 high-school students. Students were stratified into low-frequency/non-drinking and high-frequency drinking groups, and into low-risk and at-risk/problematic gambling groups. Results High-frequency drinking was associated with at-risk/problematic gambling (χ2(1, N=1842)=49.22, p<.0001). High-frequency-drinking versus low-frequency/non-drinking adolescents exhibited more permissive attitudes towards gambling (e.g., less likely to report multiple problem-gambling prevention efforts to be important). At-risk problematic gamblers exhibited more severe drinking patterns and greater likelihood of acknowledging parental approval of drinking (χ2(1, N=1842)=31.58, p<.0001). Problem-gambling severity was more strongly related to gambling with adults among high-frequency-drinking adolescents (odds ratio [OR]=3.17, 95% confidence interval [95%CI]=[1.97, 5.09]) versus low-frequency/non-drinking (OR=1.86, 95%CI=[0.61, 2.68]) adolescents (Interaction OR=1.78, 95%CI=[1.05, 3.02]). Conclusions Inter-relationships between problematic drinking and gambling in youth may relate to more permissive attitudes across these domains. Stronger links between at-risk/problem gambling and gambling with adults in the high-frequency-drinking group raises the possibility that interventions targeting adults may help mitigate youth gambling and drinking. PMID:25147928

  16. Marinesco bodies and substantia nigra neuron density in Parkinson's disease.

    PubMed

    Abbott, R D; Nelson, J S; Ross, G W; Uyehara-Lock, J H; Tanner, C M; Masaki, K H; Launer, L J; White, L R; Petrovitch, H

    2017-12-01

    Marinesco bodies (MB) are intranuclear inclusions in pigmented neurons of the substantia nigra (SN). While rare in children, frequency increases with normal ageing and is high in Alzheimer's disease, dementia with Lewy bodies and other neurodegenerative disorders. Coinciding with the age-related rise in MB frequency is initiation of cell death among SN neurons. Whether MB have a role in this process is unknown. Our aim is to examine the association of MB with SN neuron density in Parkinson's disease (PD) in the Honolulu-Asia Aging Study. Data on MB and neuron density were measured in SN transverse sections in 131 autopsied men aged 73-99 years at the time of death from 1992 to 2007. Marinesco body frequency was low in the presence vs. absence of PD (2.3% vs. 6.6%, P < 0.001). After PD onset, MB frequency declined as duration of PD increased (P = 0.006). Similar patterns were observed for SN neuron density. When MB frequency was low, neuron density was noticeably reduced in the SN ventrolateral quadrant, the region most vulnerable to PD neurodegeneration. Low MB frequency was unique to PD as its high frequency in non-PD cases was unrelated to parkinsonian signs and incidental Lewy bodies. Frequency was high in the presence of Alzheimer's disease and apolipoprotein ε4 alleles. While findings confirm that MB frequency is low in PD, declines in MB frequency continue with PD duration. The extent to which MB have a distinct relationship with PD warrants clarification. Further studies of MB could be important in understanding PD processes. © 2017 British Neuropathological Society.

  17. The analysis of soil characteristics near the animal feed and fertiliser mill using the Bartington

    NASA Astrophysics Data System (ADS)

    Azhari, Adinda Syifa; Agustine, Eleonora; Fitriani, Dini

    2017-07-01

    Industrial activities have the potential to make pollution in agricultural land, the waste contains poisonous material and it is dangerous for the environment. In general, waste from factory is dumped directly into the river, but in the current study an object that is going to be conscientious is soil on around mill. There are three sampling sites are around fertilizer plants, feed mills and original uncontaminated soil. This research has been conducted to assess the impact of pollution resulting from the two mills for the environment. Physical parameter that used is magnetic susceptibility. Sampling was conducted using the method of magnetic susceptibility of rock to see the value of low frequency (lf) and shows Frequency Dependent (fd%) using the MS2B Bartington. The results from this study is at a location close to the fertilizer plant at a depth of 0-5 cm has a value susceptibility low frequency ( lf)=187.1 - 494.8, fd (%)=1.37 - 2:46, at a depth of 6-10 cm susceptibility value of low frequency (lf)=211 - 832.7,fd (%)=1.04 - 5.37. Results in the area of animal feed mill at a depth of 0-5 cm value susceptibility low frequency (lf)=111.9 - 325.7, fd (%)=0.8 - 3.57, at a depth of 6-10 cm value susceptibility low frequency (lf)=189.2 to 386.8,fd (%)=0.33 - 3.7. Results in the original soil at a depth of 0-5 cm susceptibility value of low frequency (lf)=1188.7 - 2237.8,fd (%)=2.75 - 4.65, at a depth of 6-10 cm value susceptibility low frequency (lf)=977.7 - 2134.7,fd (%)=3.06 - 6.21. The highest value was in the arealf original, shows the area has a high mineral content andlf lows were in the area near the factory fodder it is caused by high pollution, resulting in lower mineral content in the soil.

  18. Low-frequency pulsed electromagnetic field pretreated bone marrow-derived mesenchymal stem cells promote the regeneration of crush-injured rat mental nerve.

    PubMed

    Seo, NaRi; Lee, Sung-Ho; Ju, Kyung Won; Woo, JaeMan; Kim, BongJu; Kim, SoungMin; Jahng, Jeong Won; Lee, Jong-Ho

    2018-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to promote the regeneration of injured peripheral nerves. Pulsed electromagnetic field (PEMF) reportedly promotes the proliferation and neuronal differentiation of BMSCs. Low-frequency PEMF can induce the neuronal differentiation of BMSCs in the absence of nerve growth factors. This study was designed to investigate the effects of low-frequency PEMF pretreatment on the proliferation and function of BMSCs and the effects of low-frequency PEMF pre-treated BMSCs on the regeneration of injured peripheral nerve using in vitro and in vivo experiments. In in vitro experiments, quantitative DNA analysis was performed to determine the proliferation of BMSCs, and reverse transcription-polymerase chain reaction was performed to detect S100 (Schwann cell marker), glial fibrillary acidic protein (astrocyte marker), and brain-derived neurotrophic factor and nerve growth factor (neurotrophic factors) mRNA expression. In the in vivo experiments, rat models of crush-injured mental nerve established using clamp method were randomly injected with low-frequency PEMF pretreated BMSCs, unpretreated BMSCs or PBS at the injury site (1 × 10 6 cells). DiI-labeled BMSCs injected at the injury site were counted under the fluorescence microscope to determine cell survival. One or two weeks after cell injection, functional recovery of the injured nerve was assessed using the sensory test with von Frey filaments. Two weeks after cell injection, axonal regeneration was evaluated using histomorphometric analysis and retrograde labeling of trigeminal ganglion neurons. In vitro experiment results revealed that low-frequency PEMF pretreated BMSCs proliferated faster and had greater mRNA expression of growth factors than unpretreated BMSCs. In vivo experiment results revealed that compared with injection of unpretreated BMSCs, injection of low-frequency PEMF pretreated BMSCs led to higher myelinated axon count and axon density and more DiI-labeled neurons in the trigeminal ganglia, contributing to rapider functional recovery of injured mental nerve. These findings suggest that low-frequency PEMF pretreatment is a promising approach to enhance the efficacy of cell therapy for peripheral nerve injury repair.

  19. Effects of Lexicality and Word Frequency on Brain Activation in Dyslexic Readers

    ERIC Educational Resources Information Center

    Heim, Stefan; Wehnelt, Anke; Grande, Marion; Huber, Walter; Amunts, Katrin

    2013-01-01

    We investigated the neural basis of lexical access to written stimuli in adult dyslexics and normal readers via the Lexicality effect (pseudowords greater than words) and the Frequency effect (low greater than high frequent words). The participants read aloud German words (with low or high lexical frequency) or pseudowords while being scanned. In…

  20. Superconducting Technology Assessment

    DTIC Science & Technology

    2005-08-01

    designing a single compressor pulse tube between the high pump frequency which produces good efficiency at the higher...noise models must be extended to sub-micron JJs. Transmission line models must be extended to the high frequency regime. VHDL models and methods ...temperatures and the low frequencies needed at low temperatures. Hybrid Sterling- pulse tube coolers allow the higher efficiency of a Sterling high

  1. 77 FR 21395 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... would require performing a low frequency eddy current inspection for cracks of the lap joint of the rear...-frequency eddy current inspection of the lap joint for cracks and, depending on findings, repair of the lap... AD: Do a low frequency eddy current (LFEC) inspection for cracks of the lap joint of the rear...

  2. Frequency-Domain Characterization of Optic Flow and Vision-Based Ocellar Sensing for Rotational Motion

    DTIC Science & Technology

    2017-04-01

    complementary fusion: Fourth-order Butterworth filter was used to high -pass ocelli and low-pass optic flow. The normalized cutoff frequency had to be kept...information introduced by luminance change. The high - frequency cutoff was added to reject the flickering noise for indoor usage. The filtered signals from the...function of the low- pass filter is to attenuate high - frequency noise. The final band-pass filter transfer function is in Eq. 2. (()

  3. [Comparative assessment of MR-semiotics of acutest intracerebral hematomas in low- and extra high-field frequency magnetic resonance tomography].

    PubMed

    Skvortsova, V I; Burenchev, D V; Tvorogova, T V; Guseva, O I; Prokhorov, A V; Smirnov, A M; Kupriianov, D A; Pirogov, Iu A

    2009-01-01

    An objective of the study was to compare sensitivity of low- and extra high-field frequency magnetic resonance (MR) tomography of acutest intracerebral hematomas (ICH) and to assess differences between symptoms in obtained images. A study was conducted using experimental ICH in rats (n=6). Hematomas were formed by two injections of autologic blood into the brain. MR-devices "Bio Spec 70/30" with magnetic field strength of 7 T and "Ellipse-150" with magnetic field strength of 0,15 T were used in the study. MR-tomography was carried out 3-5 h after the injections. Both MR-devices revealed the presence of pathological lesion in all animals. Extra highfield frequency MR-tomography showed the specific signs of ICH caused by the paramagnetic effect of deoxyhemoglobin in T2 and T2*-weighted images (WI) and low frequency MR-tomography - in T2*-WI only. The comparable sensitivity of low- and extra high-field frequency MR-devices in acutest ICH was established.

  4. Light weight polarized polypropylene foam for noise shielding

    NASA Astrophysics Data System (ADS)

    Zelfer, Travis J.; Warne, Derik S.; Korde, Umesh A.

    2009-03-01

    The high levels of noise generated during launch can destroy sensitive equipment on space craft. Passive damping systems, like acoustic blankets, work to reduce the high frequency noise but do little to the low frequency noise (<400 Hz). While wall mounted transducers can reduce the low frequency noise during a launch, they also can create areas of higher increased sound pressure in the payload fairings. Ferroelectret cellular polymer foams with high piezoelectric coupling constants are being used as new types of actuators and sensors. Further impedance control through the inverse piezoelectric effect will lead to a new "semi-active" approach that will reduce low frequency noise levels. Combining layers of conventional nonpiezoelectric foam and ferroelectret materials with a multiple loop feedback system will give a total damping effect that is adaptable over a wide band of low frequencies. This paper covers the manufacturing methods that were used to make polarized polypropylene foam, to test the foam for its polarized response and its noise shielding ability.

  5. Increasing low frequency sound attenuation using compounded single layer of sonic crystal

    NASA Astrophysics Data System (ADS)

    Gulia, Preeti; Gupta, Arpan

    2018-05-01

    Sonic crystals (SC) are man-made periodic structures where sound hard scatterers are arranged in a crystalline manner. SC reduces noise in a particular range of frequencies called as band gap. Sonic crystals have a promising application in noise shielding; however, the application is limited due to the size of structure. Particularly for low frequencies, the structure becomes quite bulky, restricting its practical application. This paper presents a compounded model of SC, which has the same overall area and filling fraction but with increased low frequency sound attenuation. Two cases have been considered, a three layer SC and a compounded single layer SC. Both models have been analyzed using finite element simulation and plane wave expansion method. Band gaps for periodic structures have been obtained using both methods which are in good agreement. Further, sound transmission loss has been evaluated using finite element method. The results demonstrate the use of compounded model of Sonic Crystal for low frequency sound attenuation.

  6. The history of early low frequency radio astronomy in Australia. 9: the University of Tasmania's Llanherne (Hobart Airport) Field Station during the 1960s-1980s

    NASA Astrophysics Data System (ADS)

    George, Martin; Orchiston, Wayne; Wielebinski, Richard

    2018-04-01

    Beginning in the early 1960s, the University of Tasmania became very involved in low frequency radio astronomical studies, which was to continue into the 1980s. Although important low frequency arrays were set up at Penna and Richmond, the main location for this activity by the University was in the vicinity of Hobart Airport, known as Llanherne. This paper describes the work performed there at frequencies of 30 MHz and below, mainly for studying radio emission from Jupiter and the Galaxy. The largest of the installations was the Llanherne Low Frequency Array, a 640 × 640 m antenna array adjacent to Holyman Avenue; it was well known to the public because of its high visibility to airport patrons. Other installations were set up closer to the airport runway. Various researchers, including Graeme Ellis, Hilary Cane and others, made observations at Llanherne.

  7. Effect of Impedance Relaxation in Conductance Mechanisms in TiO2/ITO/ZnO:Al/p-Si Heterostructure

    NASA Astrophysics Data System (ADS)

    Nouiri, M.; El Mir, L.

    2018-03-01

    The electrical conduction of a TiO2/ITO/ZnO:Al/p-Si structure under alternating-current excitation was investigated in the temperature range of 80 K to 300 K. The frequency dependence of the capacitance and conductance revealed the response of a thermally activated trap characterized by activation energy of about 140 meV. The frequency dependence of the conductance obeyed the universal dynamic response according to the common relation G = Aωs . The temperature dependence of the frequency exponent s illustrates that, in the low frequency range, conduction is governed by the correlated barrier hopping (CBH) mechanism involving two distinct energy levels for all investigated temperatures. For the high frequency region, conduction takes place according to the overlapping large-polaron tunneling mechanism at low temperatures but the CBH mechanism becomes dominant in the high temperature region. This difference in electrical behavior between low and high temperatures can be attributed to the dominance of dielectric relaxation at low compared with high temperatures.

  8. Auditory sensitivity to local stimulation of the head surface in a beluga whale (Delphinapterus leucas).

    PubMed

    Popov, Vladimir V; Sysueva, Evgeniya V; Nechaev, Dmitry I; Lemazina, Alena A; Supin, Alexander Ya

    2016-08-01

    Using the auditory evoked response technique, sensitivity to local acoustic stimulation of the ventro-lateral head surface was investigated in a beluga whale (Delphinapterus leucas). The stimuli were tone pip trains of carrier frequencies ranging from 16 to 128 kHz with a pip rate of 1 kHz. For higher frequencies (90-128 kHz), the low-threshold point was located next to the medial side of the middle portion of the lower jaw. For middle (32-64 kHz) and lower (16-22.5 kHz) frequencies, the low-threshold point was located at the lateral side of the middle portion of the lower jaw. For lower frequencies, there was an additional low-threshold point next to the bulla-meatus complex. Based on these data, several frequency-specific paths of sound conduction to the auditory bulla are suggested: (i) through an area on the lateral surface of the lower jaw and further through the intra-jaw fat-body channel (for a wide frequency range); (ii) through an area on the ventro-lateral head surface and further through the medial opening of the lower jaw and intra-jaw fat-body channel (for a high-frequency range); and (iii) through an area on the lateral (near meatus) head surface and further through the lateral fat-body channel (for a low-frequency range).

  9. Variable frequency matching to a radiofrequency source immersed in vacuum

    NASA Astrophysics Data System (ADS)

    Charles, C.; Boswell, R. W.; Bish, A.

    2013-09-01

    A low-weight (0.12 kg) low-volume fixed ceramic capacitor impedance matching system is developed for frequency agile tuning of a radiofrequency (rf) Helicon plasma thruster. Three fixed groups of capacitors are directly mounted onto a two loop rf antenna with the thruster immersed in a vacuum chamber. Optimum plasma tuning at the resonance frequency is demonstrated via measurements of the load impedance, power transfer efficiency and plasma density versus driving frequency in the 12.882-14.238 MHz range. The resonance frequency with the plasma on is higher than the resonance frequency in vacuum. The minimum rf power necessary for ignition decreases when the ignition frequency is shifted downwards from the resonance frequency. This development has direct applications in space qualification and space use of rf plasma thrusters.

  10. Gender Identification Using High-Frequency Speech Energy: Effects of Increasing the Low-Frequency Limit.

    PubMed

    Donai, Jeremy J; Halbritter, Rachel M

    The purpose of this study was to investigate the ability of normal-hearing listeners to use high-frequency energy for gender identification from naturally produced speech signals. Two experiments were conducted using a repeated-measures design. Experiment 1 investigated the effects of increasing high-pass filter cutoff (i.e., increasing the low-frequency spectral limit) on gender identification from naturally produced vowel segments. Experiment 2 studied the effects of increasing high-pass filter cutoff on gender identification from naturally produced sentences. Confidence ratings for the gender identification task were also obtained for both experiments. Listeners in experiment 1 were capable of extracting talker gender information at levels significantly above chance from vowel segments high-pass filtered up to 8.5 kHz. Listeners in experiment 2 also performed above chance on the gender identification task from sentences high-pass filtered up to 12 kHz. Cumulatively, the results of both experiments provide evidence that normal-hearing listeners can utilize information from the very high-frequency region (above 4 to 5 kHz) of the speech signal for talker gender identification. These findings are at variance with current assumptions regarding the perceptual information regarding talker gender within this frequency region. The current results also corroborate and extend previous studies of the use of high-frequency speech energy for perceptual tasks. These findings have potential implications for the study of information contained within the high-frequency region of the speech spectrum and the role this region may play in navigating the auditory scene, particularly when the low-frequency portion of the spectrum is masked by environmental noise sources or for listeners with substantial hearing loss in the low-frequency region and better hearing sensitivity in the high-frequency region (i.e., reverse slope hearing loss).

  11. Is there a first night effect on sleep bruxism? A sleep laboratory study.

    PubMed

    Hasegawa, Yoko; Lavigne, Gilles; Rompré, Pierre; Kato, Takafumi; Urade, Masahiro; Huynh, Nelly

    2013-11-15

    Sleep bruxism (SB) is reported to vary in frequency over time. The aim of this study was to assess the first night effect on SB. A retrospective polysomnographic (PSG) analysis was performed of data from a sample of SB patients (12 females, 4 males; age range: 17-39 years) recorded in a sleep laboratory over 2 consecutive nights. Sleep parameters and jaw muscle activity variables (i.e., rhythmic masticatory muscle activity [RMMA]) for SB were quantified and compared between the 2 nights. Subjects were classified into groups according to severity of RMMA frequency, such as low frequency (2-4 episodes/h and/or < 25 bursts/h) and moderate-high frequency (≥ 4 episodes/h and ≥ 25 bursts/h). Overall, no first night effects were found for most sleep variables. However, total sleep time, sleep efficiency, and stage transitions showed significant time and group interactions (repeated measures ANOVAs, p ≤ 0.05). The RMMA episode index did not differ between the 2 nights, whereas the second night showed significantly higher burst index, bruxism time index, and mean burst duration (repeated measure ANOVAs, p ≤ 0.05). Five patients of 8 in the low frequency group were classified into the moderate-high frequency group on the second night, whereas only one patient in the moderate-high frequency group moved to the low frequency group. The results showed no overall first night effect on severity of RMMA frequency in young and healthy patients with SB. In clinical practice, one-night sleep recording may be sufficient for moderate-high frequency SB patients. However, low RMMA frequency in the first night could be confirmed by a second night based on the patient's medical and dental history.

  12. Contribution of low-frequency harmonics to Mandarin Chinese tone identification in quiet and six-talker babble background.

    PubMed

    Liu, Chang; Azimi, Behnam; Bhandary, Moulesh; Hu, Yi

    2014-01-01

    The goal of this study was to investigate Mandarin Chinese tone identification in quiet and multi-talker babble conditions for normal-hearing listeners. Tone identification was measured with speech stimuli and stimuli with low and/or high harmonics that were embedded in three Mandarin vowels with two fundamental frequencies. There were six types of stimuli: all harmonics (All), low harmonics (Low), high harmonics (High), and the first (H1), second (H2), and third (H3) harmonic. Results showed that, for quiet conditions, individual harmonics carried frequency contour information well enough for tone identification with high accuracy; however, in noisy conditions, tone identification with individual low harmonics (e.g., H1, H2, and H3) was significantly lower than that with the Low, High, and All harmonics. Moreover, tone identification with individual harmonics in noise was lower for a low F0 than for a high F0, and was also dependent on vowel category. Tone identification with individual low-frequency harmonics was accounted for by local signal-to-noise ratios, indicating that audibility of harmonics in noise may play a primary role in tone identification.

  13. Sound Spectrum Influences Auditory Distance Perception of Sound Sources Located in a Room Environment

    PubMed Central

    Spiousas, Ignacio; Etchemendy, Pablo E.; Eguia, Manuel C.; Calcagno, Esteban R.; Abregú, Ezequiel; Vergara, Ramiro O.

    2017-01-01

    Previous studies on the effect of spectral content on auditory distance perception (ADP) focused on the physically measurable cues occurring either in the near field (low-pass filtering due to head diffraction) or when the sound travels distances >15 m (high-frequency energy losses due to air absorption). Here, we study how the spectrum of a sound arriving from a source located in a reverberant room at intermediate distances (1–6 m) influences the perception of the distance to the source. First, we conducted an ADP experiment using pure tones (the simplest possible spectrum) of frequencies 0.5, 1, 2, and 4 kHz. Then, we performed a second ADP experiment with stimuli consisting of continuous broadband and bandpass-filtered (with center frequencies of 0.5, 1.5, and 4 kHz and bandwidths of 1/12, 1/3, and 1.5 octave) pink-noise clips. Our results showed an effect of the stimulus frequency on the perceived distance both for pure tones and filtered noise bands: ADP was less accurate for stimuli containing energy only in the low-frequency range. Analysis of the frequency response of the room showed that the low accuracy observed for low-frequency stimuli can be explained by the presence of sparse modal resonances in the low-frequency region of the spectrum, which induced a non-monotonic relationship between binaural intensity and source distance. The results obtained in the second experiment suggest that ADP can also be affected by stimulus bandwidth but in a less straightforward way (i.e., depending on the center frequency, increasing stimulus bandwidth could have different effects). Finally, the analysis of the acoustical cues suggests that listeners judged source distance using mainly changes in the overall intensity of the auditory stimulus with distance rather than the direct-to-reverberant energy ratio, even for low-frequency noise bands (which typically induce high amount of reverberation). The results obtained in this study show that, depending on the spectrum of the auditory stimulus, reverberation can degrade ADP rather than improve it. PMID:28690556

  14. Sound Spectrum Influences Auditory Distance Perception of Sound Sources Located in a Room Environment.

    PubMed

    Spiousas, Ignacio; Etchemendy, Pablo E; Eguia, Manuel C; Calcagno, Esteban R; Abregú, Ezequiel; Vergara, Ramiro O

    2017-01-01

    Previous studies on the effect of spectral content on auditory distance perception (ADP) focused on the physically measurable cues occurring either in the near field (low-pass filtering due to head diffraction) or when the sound travels distances >15 m (high-frequency energy losses due to air absorption). Here, we study how the spectrum of a sound arriving from a source located in a reverberant room at intermediate distances (1-6 m) influences the perception of the distance to the source. First, we conducted an ADP experiment using pure tones (the simplest possible spectrum) of frequencies 0.5, 1, 2, and 4 kHz. Then, we performed a second ADP experiment with stimuli consisting of continuous broadband and bandpass-filtered (with center frequencies of 0.5, 1.5, and 4 kHz and bandwidths of 1/12, 1/3, and 1.5 octave) pink-noise clips. Our results showed an effect of the stimulus frequency on the perceived distance both for pure tones and filtered noise bands: ADP was less accurate for stimuli containing energy only in the low-frequency range. Analysis of the frequency response of the room showed that the low accuracy observed for low-frequency stimuli can be explained by the presence of sparse modal resonances in the low-frequency region of the spectrum, which induced a non-monotonic relationship between binaural intensity and source distance. The results obtained in the second experiment suggest that ADP can also be affected by stimulus bandwidth but in a less straightforward way (i.e., depending on the center frequency, increasing stimulus bandwidth could have different effects). Finally, the analysis of the acoustical cues suggests that listeners judged source distance using mainly changes in the overall intensity of the auditory stimulus with distance rather than the direct-to-reverberant energy ratio, even for low-frequency noise bands (which typically induce high amount of reverberation). The results obtained in this study show that, depending on the spectrum of the auditory stimulus, reverberation can degrade ADP rather than improve it.

  15. Development of Lightweight, Compact, Structurally-Integrated Acoustic Liners for Broadband Low-Frequency Noise Mitigation

    NASA Astrophysics Data System (ADS)

    Chambers, Andrew T.

    Airborne noise with a low dominant frequency content (< 500 Hz) has detrimental effects in many applications, but is as yet beyond the scope of conventional acoustic noise mitigation techniques using liners, foams or claddings owing to mass and volume considerations. Its low evanescence contributes significantly to environmental noise pollution, and unwanted structural vibrations causing diminished efficiency, comfort, payload integrity and mission capabilities. An alternative approach using liner configurations with realistic mass and volume constraints having innovative 'folded' core geometries is investigated to ascertain its low-frequency noise absorption characteristics. In contrast to mass-driven approaches, the folded core approach relies on tailoring interactions between acoustic resonances to tune the liner's impedance to suit the dominant low-frequency content of the source. This allows to keep non-structural mass-addition to a minimum, while retaining an overall thickness comparable to conventional liners for these low-frequency liner designs. The relative acoustic performance of various candidate folded core designs is evaluated by means of a new composite metric termed the Low-Frequency Performance (LFP) factor, which is educed from the absorption coefficient spectrum obtained using Zwikker-Kosten Transmission Line (ZKTL) theory-based numerical studies. An LFP-based software tool is developed to determine optimal 3D cavity packing for a prescribed liner volume and target frequency range. ZKTL-based parametric studies on core dimensions and face sheet porosity are utilized for detailed design of test articles. Experimental verification of absorption coefficient spectra conducted using 3D printed test articles in a normal incidence acoustic impedance tube yield good correlation with simulations. More than 100 Hz of continuous bandwidth with an absorption coefficient greater than 0.6 is shown to be possible in the 300 to 400 Hz range with a 38.1-mm (1.5-inch) thick liner. Further, the influence of face sheet type, Mach number, and sound pressure level on the attenuation across folded core liners is evaluated using grazing flow impedance tube tests. Up to 20 dB of attenuation is observed in the targeted frequency range in these tests indicating potential for performance retention in an operational scenario. With current additive and hybrid manufacturing techniques attaining critical commercial maturity, lightweight and compact acoustic liners employing folded cores could provide a promising practical solution to mitigate low-frequency airborne noise, especially in aerospace applications.

  16. MASER: A Tool Box for Solar System Low Frequency Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Le Sidaner, P.; Savalle, R.; Bonnin, X.; Zarka, P.; Louis, C.; Coffre, A.; Lamy, L.; Denis, L.; Griessmeier, J.-M.; Faden, J.; Piker, C.; André, N.; Génot, V.; Erard, S.; King, T. A.; Mafi, J. N.; Sharlow, M.; Sky, J.; Demleitner, M.

    2018-04-01

    MASER (Measuring, Analysing, and Simulating Radio Emissions) is a toolbox for solar system radio astronomy. It provides tools for reading, displaying, finding, and modeling low frequency radio datasets.

  17. Low-frequency blood pressure oscillations and inotrope treatment failure in premature infants.

    PubMed

    Vesoulis, Zachary A; Hao, Jessica; McPherson, Christopher; El Ters, Nathalie M; Mathur, Amit M

    2017-07-01

    The underlying mechanism as to why some hypotensive preterm infants do not respond to inotropic medications remains unclear. For these infants, we hypothesize that impaired vasomotor function is a significant factor and is manifested through a decrease in low-frequency blood pressure variability across regulatory components of vascular tone. Infants born ≤28 wk estimated gestational age underwent prospective recording of mean arterial blood pressure for 72 h after birth. After error correction, root-mean-square spectral power was calculated for each valid 10-min data frame across each of four frequency bands ( B1 , 0.005-0.0095 Hz; B2 , 0.0095-0.02 Hz; B3 , 0.02-0.06 Hz; and B4 , 0.06-0.16) corresponding to different components of vasomotion control. Forty infants (twenty-nine normotensive control and eleven inotrope-exposed) were included with a mean ± SD estimated gestational age of 25.2 ± 1.6 wk and birth weight 790 ± 211 g. 9.7/11.8 Million (82%) data points were error-free and used for analysis. Spectral power across all frequency bands increased with time, although the magnitude was 20% less in the inotrope-exposed infants. A statistically significant increase in spectral power in response to inotrope initiation was noted across all frequency bands. Infants with robust blood pressure response to inotropes had a greater increase compared with those who had limited or no blood pressure response. In this study, hypotensive infants who require inotropes have decreased low-frequency variability at baseline compared with normotensive infants, which increases after inotrope initiation. Low-frequency spectral power does not change for those with inotrope treatment failure, suggesting dysfunctional regulation of vascular tone as a potential mechanism of treatment failure. NEW & NOTEWORTHY In this study, we examine patterns of low-frequency oscillations in blood pressure variability across regulatory components of vascular tone in normotensive and hypotensive infants exposed to inotropic medications. We found that hypotensive infants who require inotropes have decreased low-frequency variability at baseline, which increases after inotrope initiation. Low-frequency spectral power does not change for those with inotrope treatment failure, suggesting dysfunctional regulation of vascular tone as a potential mechanism of treatment failure. Copyright © 2017 the American Physiological Society.

  18. Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics.

    PubMed

    Zhou, Hong; Melloni, Lucia; Poeppel, David; Ding, Nai

    2016-01-01

    Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid.

  19. A theoretical study on directivity control of multiple-loudspeaker system with a quadrupole radiation pattern in low frequency range

    NASA Astrophysics Data System (ADS)

    Irwansyah, Kuse, Naoyuki; Usagawa, Tsuyoshi

    2017-08-01

    Directivity pattern of an ordinary loudspeaker becomes more directive at higher frequencies. However, because a single loudspeaker tends to radiate uniformly in all directions at low frequencies, reverberation from surrounding building walls may affect speech intelligibility when installing a multiple-loudspeaker system at crossroads. As an alternative, a sharply directive sound source is recommended to be used, but in many cases the directivity of an ordinary loudspeaker is less sharp at lower frequencies. Therefore, in order to overcome such a limitation, this paper discusses the possibility of using four loudspeakers under active control to realize a quadrupole radiation pattern in low frequency range. In this study, the radiation pattern of a primary loudspeaker and three secondary loudspeakers has been modelled. By placing the loudspeakers close together in the direction of 0°, 90°, 180°, and 270°, it was theoretically demonstrated that a quadrupole radiation pattern can be shaped in the target frequency range up to 600 Hz by simply controlling the directivity in three of four directions which are 45°, 135°, 225°, and 315°. Although, the radiation pattern model is far from realistic configurations and conditions, it is possible to realize a quadrupole radiation pattern in the low frequency range.

  20. Tailoring noise frequency spectrum to improve NIR determinations.

    PubMed

    Xie, Shaofei; Xiang, Bingren; Yu, Liyan; Deng, Haishan

    2009-12-15

    Near infrared spectroscopy (NIR) contains excessive background noise and weak analytical signals caused by near infrared overtones and combinations. That makes it difficult to achieve quantitative determinations of low concentration samples by NIR. A simple chemometric approach has been established to modify the noise frequency spectrum to improve NIR determinations. The proposed method is to multiply one Savitzky-Golay filtered NIR spectrum with another reference spectrum added with thermal noises before the other Savitzky-Golay filter. Since Savitzky-Golay filter is a kind of low-pass filter and cannot eliminate low frequency components of NIR spectrum, using one step or two consecutive Savitzky-Golay filter procedures cannot improve the determination of NIR greatly. Meanwhile, significant improvement is achieved via the Savitzky-Golay filtered NIR spectrum processed with the multiplication alteration before the other Savitzky-Golay filter. The frequency range of the modified noise spectrum shifts toward higher frequency regime via multiplication operation. So the second Savitzky-Golay filter is able to provide better filtering efficiency to obtain satisfied result. The improvement of NIR determination with tailoring noise frequency spectrum technique was demonstrated by both simulated dataset and two measured NIR spectral datasets. It is expected that noise frequency spectrum technique will be adopted mostly in applications where quantitative determination of low concentration sample is crucial.

  1. Power spectral analysis of R-R interval variability before and during the sinusoidal heart rate pattern in fetal lambs.

    PubMed

    Suzuki, T; Okamura, K; Kimura, Y; Watanabe, T; Yaegashi, N; Murotsuki, J; Uehara, S; Yajima, A

    2000-05-01

    The appearance of the sinusoidal heart rate pattern found on fetal cardiotocograms has not been fully explained, either physiologically or clinically. In this study we performed power spectral analysis on the sinusoidal heart rate pattern obtained by administration of arginine vasopressin and atropine sulfate to investigate its frequency components in fetal lambs with long-term instrument implantation. Eleven tests were performed in 4 fetal lambs at 120 to 130 days' gestation. An artificial sinusoidal heart rate pattern was obtained by administration of atropine sulfate and arginine vasopressin in 9 tests. An autoregression model was used to compare the spectral patterns before and during the sinusoidal heart rate pattern. Marked decreases in low-frequency (0.025-0.125 cycles/beat) and high-frequency (0.2-0.5 cycles/beat) areas were observed in the presence of the sinusoidal heart rate pattern. However, there were no significant changes in the very-low-frequency area (0.01-0.025 cycles/beat), which corresponds to the frequency of the sinusoidal heart rate pattern. The sinusoidal heart rate pattern may represent a very low-frequency component inherent in fetal heart rate variability that appears when low- and high-frequency components are reduced as a result of strongly suppressed autonomic nervous activity.

  2. Physiological and content considerations for a second low frequency channel for bass management, subwoofers, and low frequency enhancement (LFE)

    NASA Astrophysics Data System (ADS)

    Miller, Robert E. (Robin)

    2005-04-01

    Perception of very low frequencies (VLF) below 125 Hz reproduced by large woofers and subwoofers (SW), encompassing 3 octaves of the 10 regarded as audible, has physiological and content aspects. Large room acoustics and vibrato add VLF fluctuations, modulating audible carrier frequencies to >1 Hz. By convention, sounds below 90 Hz produce no interaural cues useful for spatial perception or localization, therefore bass management redirects the VLF range from main channels to a single (monaural) subwoofer channel, even if to more than one subwoofer. Yet subjects claim they hear a difference between a single subwoofer channel and two (stereo bass). If recordings contain spatial VLF content, is it possible physiologically to perceive interaural time/phase difference (ITD/IPD) between 16 and 125 Hz? To what extent does this perception have a lifelike quality; to what extent is it localization? If a first approximation of localization, would binaural SWs allow a higher crossover frequency (smaller satellite speakers)? Reported research supports the Jeffress model of ITD determination in brain structures, and extending the accepted lower frequency limit of IPD. Meanwhile, uncorrelated very low frequencies exist in all tested multi-channel music and movie content. The audibility, recording, and reproduction of uncorrelated VLF are explored in theory and experiments.

  3. Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means.

    PubMed

    Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu

    2016-01-01

    Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (<1 Hz). However, it is difficult to determine the frequency characteristics of brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities. © 2015 Wiley Periodicals, Inc.

  4. Morpheme-based Reading and Spelling in Italian Children with Developmental Dyslexia and Dysorthography.

    PubMed

    Angelelli, Paola; Marinelli, Chiara Valeria; De Salvatore, Marinella; Burani, Cristina

    2017-11-01

    Italian sixth graders, with and without dyslexia, read pseudowords and low-frequency words that include high-frequency morphemes better than stimuli not including any morpheme. The present study assessed whether morphemes affect (1) younger children, with and without dyslexia; (2) spelling as well as reading; and (3) words with low-frequency morphemes. Two groups of third graders (16 children with dyslexia and dysorthography and 16 age-matched typically developing children) read aloud and spelt to dictation pseudowords and words. Pseudowords included (1) root + suffix in not existing combinations (e.g. lampadista, formed by lampad-, 'lamp', and -ista, '-ist') and (2) orthographic sequences not corresponding to any Italian root or suffix (e.g. livonosto). Words had low frequency and included: (1) root + suffix, both of high frequency (e.g. bestiale, 'beastly'); (2) root + suffix, both of low frequency (e.g. asprigno, 'rather sour'); and (3) simple words (e.g. insulso, 'vapid'). Children with dyslexia and dysorthography were less accurate than typically developing children. Root + suffix pseudowords were read and spelt more accurately than non-morphological pseudowords by both groups. Morphologically complex (root + suffix) words were read and spelt better than simple words. However, task interacted with morphology: reading was not facilitated by low-frequency morphemes. We conclude that children acquiring a transparent orthography exploit morpheme-based reading and spelling to face difficulties in processing long unfamiliar stimuli. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Interplay between morphology and frequency in lexical access: The case of the base frequency effect

    PubMed Central

    Vannest, Jennifer; Newport, Elissa L.; Newman, Aaron J.; Bavelier, Daphne

    2011-01-01

    A major issue in lexical processing concerns storage and access of lexical items. Here we make use of the base frequency effect to examine this. Specifically, reaction time to morphologically complex words (words made up of base and suffix, e.g., agree+able) typically reflects frequency of the base element (i.e., total frequency of all words in which agree appears) rather than surface word frequency (i.e., frequency of agreeable itself). We term these complex words decomposable. However, a class of words termed whole-word do not show such sensitivity to base frequency (e.g., serenity). Using an event-related MRI design, we exploited the fact that processing low-frequency words increases BOLD activity relative to high frequency ones, and examined effects of base frequency on brain activity for decomposable and whole-word items. Morphologically complex words, half high and half low base frequency, were compared to matched high and low frequency simple monomorphemic words using a lexical decision task. Morphologically complex words increased activation in left inferior frontal and left superior temporal cortices versus simple words. The only area to mirror the behavioral distinction between decomposable and whole-word types was the thalamus. Surprisingly, most frequency-sensitive areas failed to show base frequency effects. This variety of responses to frequency and word type across brain areas supports an integrative view of multiple variables during lexical access, rather than a dichotomy between memory-based access and on-line computation. Lexical access appears best captured as interplay of several neural processes with different sensitivities to various linguistic factors including frequency and morphological complexity. PMID:21167136

  6. Spontaneous fluctuations in cerebral blood flow: insights from extended-duration recordings in humans

    NASA Technical Reports Server (NTRS)

    Zhang, R.; Zuckerman, J. H.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    2000-01-01

    To determine the dependence of cerebral blood flow (CBF) on arterial pressure over prolonged time periods, we measured beat-to-beat changes in mean CBF velocity in the middle cerebral artery (transcranial Doppler) and mean arterial pressure (Finapres) continuously for 2 h in six healthy subjects (5 men and 1 woman, 18-40 yr old) during supine rest. Fluctuations in velocity and pressure were quantified by the range [(peak - trough)/mean] and coefficients of variation (SD/mean) in the time domain and by spectral analysis in the frequency domain. Mean velocity and pressure over the 2-h recordings were 60 +/- 7 cm/s and 83 +/- 8 mmHg, associated with ranges of 77 +/- 8 and 89 +/- 10% and coefficients of variation of 9.3 +/- 2.2 and 7.9 +/- 2.3%, respectively. Spectral power of the velocity and pressure was predominantly distributed in the frequency range of 0.00014-0.1 Hz and increased inversely with frequency, indicating characteristics of an inverse power law (1/f(alpha)). However, linear regression on a log-log scale revealed that the slope of spectral power of pressure and velocity was steeper in the high-frequency (0.02-0.5 Hz) than in the low-frequency range (0.002-0.02 Hz), suggesting different regulatory mechanisms in these two frequency ranges. Furthermore, the spectral slope of pressure was significantly steeper than that of velocity in the low-frequency range, consistent with the low transfer function gain and low coherence estimated at these frequencies. We conclude that 1) long-term fluctuations in CBF velocity are prominent and similar to those observed in arterial pressure, 2) spectral power of CBF velocity reveals characteristics of 1/f(alpha), and 3) cerebral attenuation of oscillations in CBF velocity in response to changes in pressure may be more effective at low than that at high frequencies, emphasizing the frequency dependence of cerebral autoregulation.

  7. Frequency-dependent baroreflex control of blood pressure and heart rate during physical exercise.

    PubMed

    Spadacini, Giammario; Passino, Claudio; Leuzzi, Stefano; Valle, Felice; Piepoli, Massimo; Calciati, Alessandro; Sleight, Peter; Bernardi, Luciano

    2006-02-15

    It is widely recognised that during exercise vagal heart rate control is markedly impaired but blood pressure control may or may not be retained. We hypothesised that this uncertainty arose from the differing responses of the vagus (fast) and sympathetic (slow) arms of the autonomic effectors, and to differing sympatho-vagal balance at different exercise intensities. We studied 12 normals at rest, during moderate (50% maximal heart rate) and submaximal (80% maximal heart rate) exercise. The carotid baroreceptors were stimulated by sinusoidal neck suction at the frequency of the spontaneous high- (during moderate exercise) and low-frequency (during submaximal) fluctuations in heart period and blood pressure. The increases in these oscillations induced by neck suction were measured by autoregressive spectral analysis. At rest neck stimulation increased variability at low frequency (RR: from 6.99+/-0.24 to 8.87+/-0.18 ln-ms2; systolic pressure: from 3.05+/-1.7 to 4.09+/-0.17 ln-mm Hg2) and high frequency (RR: from 4.67+/-0.25 to 6.79+/-0.31 ln-ms2; systolic pressure: from 1.93+/-0.2 to 2.67+/-0.125 ln-mm Hg2) (all p<0.001). During submaximal exercise RR variability decreased but systolic pressure variability rose (p<0.01 vs rest); during submaximal exercise low-frequency neck stimulation increased the low-frequency fluctuations in blood pressure (2.35+/-0.51 to 4.25+/-0.38 ln-mm Hg2, p<0.05) and RR. Conversely, neck suction at high frequency was ineffective on systolic pressure, and had only minor effects on RR interval during moderate exercise. During exercise baroreflex control is active on blood pressure, but the efferent response on blood pressure and heart rate is only detected during low frequency stimulation, indicating a frequency-dependent effect.

  8. 7. Survivable low frequency communication system pathway, looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Survivable low frequency communication system pathway, looking east - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  9. Varactor diode assembly with low parasitic reactances

    NASA Technical Reports Server (NTRS)

    Dickens, L. E.

    1975-01-01

    Development of varactor diode assembly overcomes parasitic reactances of conventional varactor packages. In specially constructed assembly very high idler-frequency to signal-frequency ratios are used to obtain low-noise operation over maximum bandwidth.

  10. Effect of low-frequency oscillation on performance of Hall thrusters

    NASA Astrophysics Data System (ADS)

    Liqiu, WEI; Wenbo, LI; Yongjie, DING; Daren, YU

    2018-07-01

    In this paper, a direct connection between the discharge current amplitude and the thruster performance is established by varying solely the capacitance of the filter unit of the Hall thrusters. To be precise, the variation characteristics of ion current, propellant utilization efficiency, and divergence angle of plume at different low-frequency oscillation amplitudes are measured. The findings demonstrate that in the case of the propellant in the discharge channel just meets or falls below the full ionization condition, the increase of low-frequency oscillation amplitude can significantly enhance the ionization degree of the neutral gas in the channel and increase the thrust and anode efficiency of thruster. On the contrary, the increase in the amplitude of low-frequency oscillation will lead to increase the loss of plume divergence, therefore the thrust and anode efficiency of thruster decrease.

  11. Application of a finite-element model to low-frequency sound insulation in dwellings.

    PubMed

    Maluski, S P; Gibbs, B M

    2000-10-01

    The sound transmission between adjacent rooms has been modeled using a finite-element method. Predicted sound-level difference gave good agreement with experimental data using a full-scale and a quarter-scale model. Results show that the sound insulation characteristics of a party wall at low frequencies strongly depend on the modal characteristics of the sound field of both rooms and of the partition. The effect of three edge conditions of the separating wall on the sound-level difference at low frequencies was examined: simply supported, clamped, and a combination of clamped and simply supported. It is demonstrated that a clamped partition provides greater sound-level difference at low frequencies than a simply supported. It also is confirmed that the sound-pressure level difference is lower in equal room than in unequal room configurations.

  12. Living in a ``stethoscope'': burrow-acoustics promote auditory specializations in subterranean rodents

    NASA Astrophysics Data System (ADS)

    Lange, Simone; Burda, Hynek; Wegner, Regina E.; Dammann, Philip; Begall, Sabine; Kawalika, Mathias

    2007-02-01

    Subterranean mammals rely to a great extent on audition for communication and to be alerted to danger. The only hitherto published report on burrow acoustics revealed that in tunnels of blind mole-rats ( Spalax ehrenbergi), airborne sounds of 440 Hz propagated best whereas lower and higher frequencies were effectively attenuated. Morpho-functional analyses classify the ear of subterranean mammals as a low-sensitivity and low-frequency device. Concordantly, hearing is characterized by low sensitivity and a restricted frequency range tuned to low frequencies (0.5-4 kHz). Some authors considered the restricted hearing in subterranean mammals vestigial and degenerate due to under-stimulation. In contrast to this view stand a rich (mostly low-frequency) vocal repertoire and progressive structural specializations of the middle and inner ear. Thus, other authors considered these hearing characteristics adaptive. To test the hypothesis that acoustical environment in burrows of different species of subterranean mammals is similar, we measured sound attenuation in burrows of Fukomys mole-rats (formerly known as Cryptomys, cf. Kock et al. 2006) of two differently sized species at different locations in Zambia. We show that in these burrows, low-frequency sounds (200-800 Hz) are not only least attenuated but also their amplitude may be amplified like in a stethoscope (up to two times over 1 m). We suggest that hearing sensitivity has decreased during evolution of subterranean mammals to avoid over-stimulation of the ear in their natural environment.

  13. Is low frequency ocean sound increasing globally?

    PubMed

    Miksis-Olds, Jennifer L; Nichols, Stephen M

    2016-01-01

    Low frequency sound has increased in the Northeast Pacific Ocean over the past 60 yr [Ross (1993) Acoust. Bull. 18, 5-8; (2005) IEEE J. Ocean. Eng. 30, 257-261; Andrew, Howe, Mercer, and Dzieciuch (2002) J. Acoust. Soc. Am. 129, 642-651; McDonald, Hildebrand, and Wiggins (2006) J. Acoust. Soc. Am. 120, 711-717; Chapman and Price (2011) J. Acoust. Soc. Am. 129, EL161-EL165] and in the Indian Ocean over the past decade, [Miksis-Olds, Bradley, and Niu (2013) J. Acoust. Soc. Am. 134, 3464-3475]. More recently, Andrew, Howe, and Mercer's [(2011) J. Acoust. Soc. Am. 129, 642-651] observations in the Northeast Pacific show a level or slightly decreasing trend in low frequency noise. It remains unclear what the low frequency trends are in other regions of the world. In this work, data from the Comprehensive Nuclear-Test Ban Treaty Organization International Monitoring System was used to examine the rate and magnitude of change in low frequency sound (5-115 Hz) over the past decade in the South Atlantic and Equatorial Pacific Oceans. The dominant source observed in the South Atlantic was seismic air gun signals, while shipping and biologic sources contributed more to the acoustic environment at the Equatorial Pacific location. Sound levels over the past 5-6 yr in the Equatorial Pacific have decreased. Decreases were also observed in the ambient sound floor in the South Atlantic Ocean. Based on these observations, it does not appear that low frequency sound levels are increasing globally.

  14. Development of ground-based ELF/VLF receiver system in Wuhan and its first results

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Yang, Guobin; Ni, Binbin; Zhao, Zhengyu; Gu, Xudong; Zhou, Chen; Wang, Feng

    2016-05-01

    A new digital low-frequency receiver system has been developed at Wuhan University for sensitive reception of low-latitude broadband Extremely Low Frequency (ELF) and Very Low Frequency (VLF) radio waves originating from either natural or artificial sources. These low-frequency radio waves are useful for ionospheric remote sensing, geospace environment monitoring, and submarine communications. This paper presents the principle and architecture of the system framework, including magnetic loop antenna design, low-noise analog front-end and digital receiver with data sampling and transmission. A new structure is adopted in the analog front end to provide high common-mode rejection and to reduce interference. On basis of field programmable gate array (FPGA) device and Universal Serial Bus (USB) architecture, the digital receiver is developed along with time keeping and synchronization module. The validity and feasibility of the self-developed ground-based ELF/VLF receiver system is evaluated by first results of experimental data that show the temporal variation of broadband ELF/VLF wave spectral intensity in Wuhan (30.54 °N, 114.37 °E). In addition to the acquisition of VLF transmitter signals at various frequencies, tweek atmospherics are also clearly captured to occur at multiple modes up to n = 6.

  15. Improved near-field characteristics of phased arrays for assessing concrete and cementitious materials

    NASA Astrophysics Data System (ADS)

    Wooh, Shi-Chang; Azar, Lawrence

    1999-01-01

    The degradation of civil infrastructure has placed a focus on effective nondestructive evaluation techniques to correctly assess the condition of existing concrete structures. Conventional high frequency ultrasonic response are severely affected by scattering and material attenuation, resulting in weak and confusing signal returns. Therefore, low frequency ultrasonic transducers, which avoid this problem of wave attenuation, are commonly used for concrete with limited capabilities. The focus of this research is to ascertain some benefits and limitations of a low frequency ultrasonic phased array transducer. In this paper, we investigate a novel low-frequency ultrasonic phased array and the results of experimental feasibility test for practical condition assessment of concrete structures are reported.

  16. Report of geomagnetic pulsation indices for space weather applications

    USGS Publications Warehouse

    Xu, Z.; Gannon, Jennifer L.; Rigler, Erin J.

    2013-01-01

    The phenomenon of ultra-low frequency geomagnetic pulsations was first observed in the ground-based measurements of the 1859 Carrington Event and has been studied for over 100 years. Pulsation frequency is considered to be “ultra” low when it is lower than the natural frequencies of the plasma, such as the ion gyrofrequency. Ultra-low frequency pulsations are considered a source of noise in some geophysical analysis techniques, such as aeromagnetic surveys and transient electromagnetics, so it is critical to develop near real-time space weather products to monitor these geomagnetic pulsations. The proper spectral analysis of magnetometer data, such as using wavelet analysis techniques, can also be important to Geomagnetically Induced Current risk assessment.

  17. Low-frequency noise reduction of lightweight airframe structures

    NASA Technical Reports Server (NTRS)

    Getline, G. L.

    1976-01-01

    The results of an experimental study to determine the noise attenuation characteristics of aircraft type fuselage structural panels were presented. Of particular interest was noise attenuation at low frequencies, below the fundamental resonances of the panels. All panels were flightweight structures for transport type aircraft in the 34,050 to 45,400 kg (75,000 to 100,000 pounds) gross weight range. Test data include the results of vibration and acoustic transmission loss tests on seven types of isotropic and orthotropically stiffened, flat and curved panels. The results show that stiffness controlled acoustically integrated structures can provide very high noise reductions at low frequencies without significantly affecting their high frequency noise reduction capabilities.

  18. Electromyography tension and frequency spectrum analysis of some masticatory muscles at rest, isotonic and isometric contractions.

    PubMed

    Bazzotti, L

    1999-01-01

    On a population of 52 subjects surface electromyographic recordings of temporals and masseters, simultaneously with mandible dynamic of closure and clenching, were performed, in order to study tension and frequency behaviour in three postural conditions: rest, isotonic and isometric contractions. Frequency was studied using the median resulting from FFT calculation, and a new computing method, which presents the proportion of frequencies making up the whole EMG signal, by steps of 50 Hz. Tension was calculated as well. The results permit us to draw the following conclusions: 1. a period of EMG silence was present in 51 of 52 subjects at mandible closure (SPA--Silent Period Area); 2. SPA onset was before teeth contact (22.5 msec., during the motion of the mandible), while its end was after closure (10.2 msec., during motionless phase of clenching). This allowed to use the SPA as a tool to clearly distinguish isotonic from isometric contraction; 3. the comparison of tension and frequency, expressed as median, showed that at rest a muscle presents low frequency and low tension. In active contraction both increase their values. Nevertheless, in active contraction, while no differences were found in frequency behaviour, tension showed a difference: although higher than at rest, isotonic contraction presented lower values than during isometric contraction; 4. the study performed by the new program showed that the low frequency at rest was due to the high proportion (30-40%) of frequencies of less than 50 Hz, while the increase at function was due to the parallel increase of frequencies comprised between 100 and 250 Hz. Because it is known that muscles are composed of fibers at low frequency and at high frequency of discharge, which play different functional roles, the last finding suggests that the mathematical analysis of the spectrum of frequencies, could provide a functional-histological image of the muscle.

  19. The Radio Frequency Environment at 240-270 MHz with Application to Signal-of-Opportunity Remote Sensing

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Vega, Manuel; Fritts, Matthew; Du Toit, Cornelis; Knuble, Joseph; Lin, Yao-Cheng; Nold, Benjamin; Garrison, James

    2017-01-01

    Low frequency observations are desired for soil moisture and biomass remote sensing. Long wavelengths are needed to penetrate vegetation and Earths land surface. In addition to the technical challenges of developing Earth observing spaceflight instruments operating at low frequencies, the radio frequency spectrum allocated to remote sensing is limited. Signal-of-opportunity remote sensing offers the chance to use existing signals exploiting their allocated spectrum to make Earth science measurements. We have made observations of the radio frequency environment around 240-270 MHz and discuss properties of desired and undesired signals.

  20. An acoustic filter based on layered structure

    PubMed Central

    Steer, Michael B.

    2015-01-01

    Acoustic filters (AFs) are key components to control wave propagation in multi-frequency systems. We present a design which selectively achieves acoustic filtering with a stop band and passive amplification at the high- and low-frequencies, respectively. Measurement results from the prototypes closely match the design predictions. The AF suppresses the high frequency aliasing echo by 14.5 dB and amplifies the low frequency transmission by 8.0 dB, increasing an axial resolution from 416 to 86 μm in imaging. The AF design approach is proved to be effective in multi-frequency systems. PMID:25829548

  1. A CMOS power-efficient low-noise current-mode front-end amplifier for neural signal recording.

    PubMed

    Wu, Chung-Yu; Chen, Wei-Ming; Kuo, Liang-Ting

    2013-04-01

    In this paper, a new current-mode front-end amplifier (CMFEA) for neural signal recording systems is proposed. In the proposed CMFEA, a current-mode preamplifier with an active feedback loop operated at very low frequency is designed as the first gain stage to bypass any dc offset current generated by the electrode-tissue interface and to achieve a low high-pass cutoff frequency below 0.5 Hz. No reset signal or ultra-large pseudo resistor is required. The current-mode preamplifier has low dc operation current to enhance low-noise performance and decrease power consumption. A programmable current gain stage is adopted to provide adjustable gain for adaptive signal scaling. A following current-mode filter is designed to adjust the low-pass cutoff frequency for different neural signals. The proposed CMFEA is designed and fabricated in 0.18-μm CMOS technology and the area of the core circuit is 0.076 mm(2). The measured high-pass cutoff frequency is as low as 0.3 Hz and the low-pass cutoff frequency is adjustable from 1 kHz to 10 kHz. The measured maximum current gain is 55.9 dB. The measured input-referred current noise density is 153 fA /√Hz , and the power consumption is 13 μW at 1-V power supply. The fabricated CMFEA has been successfully applied to the animal test for recording the seizure ECoG of Long-Evan rats.

  2. A new method for predicting response in complex linear systems. II. [under random or deterministic steady state excitation

    NASA Technical Reports Server (NTRS)

    Bogdanoff, J. L.; Kayser, K.; Krieger, W.

    1977-01-01

    The paper describes convergence and response studies in the low frequency range of complex systems, particularly with low values of damping of different distributions, and reports on the modification of the relaxation procedure required under these conditions. A new method is presented for response estimation in complex lumped parameter linear systems under random or deterministic steady state excitation. The essence of the method is the use of relaxation procedures with a suitable error function to find the estimated response; natural frequencies and normal modes are not computed. For a 45 degree of freedom system, and two relaxation procedures, convergence studies and frequency response estimates were performed. The low frequency studies are considered in the framework of earlier studies (Kayser and Bogdanoff, 1975) involving the mid to high frequency range.

  3. Device and method for imaging of non-linear and linear properties of formations surrounding a borehole

    DOEpatents

    Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher

    2013-10-08

    In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating within a borehole an intermittent low frequency vibration that propagates as a tube wave longitudinally to the borehole and induces a nonlinear response in one or more features in the material that are substantially perpendicular to a longitudinal axis of the borehole; generating within the borehole a sequence of high frequency pulses directed such that they travel longitudinally to the borehole within the surrounding material; and receiving, at one or more receivers positionable in the borehole, a signal that includes components from the low frequency vibration and the sequence of high frequency pulses during intermittent generation of the low frequency vibration, to investigate the material surrounding the borehole.

  4. On low-frequency errors of uniformly modulated filtered white-noise models for ground motions

    USGS Publications Warehouse

    Safak, Erdal; Boore, David M.

    1988-01-01

    Low-frequency errors of a commonly used non-stationary stochastic model (uniformly modulated filtered white-noise model) for earthquake ground motions are investigated. It is shown both analytically and by numerical simulation that uniformly modulated filter white-noise-type models systematically overestimate the spectral response for periods longer than the effective duration of the earthquake, because of the built-in low-frequency errors in the model. The errors, which are significant for low-magnitude short-duration earthquakes, can be eliminated by using the filtered shot-noise-type models (i. e. white noise, modulated by the envelope first, and then filtered).

  5. A Source Term for Wave Attenuation by Sea Ice in WAVEWATCH III(registered trademark): IC4

    DTIC Science & Technology

    2017-06-07

    energy in the high frequency face of the spectrum, which highlights the fact that frequency dependent attenuation in necessary to replicate the low-pass... frequency space ; M6) and an expanded version of M5 with up to 10 steps. The remainder of this report is structured as follows: a note about the...function period, T = 1/f. Measurements have shown that ice preferentially damps high frequency waves and in this way ice acts as a low pass filter

  6. The influence of low frequency sound on the changes of EEG signal morphology

    NASA Astrophysics Data System (ADS)

    Damijan, Z.; Wiciak, J.

    2006-11-01

    The effects of low frequency sound on the changes of morphology of the spectral power density function of EEG signals were studied as a part of the research program f = 40 Hz, Lp = 110 dB HP. The research program involved 33 experiments. A quantitative analysis was conducted of the driving response effect for the fundamental frequency and its harmonics to find the frequency of the driving response effect occurrence depending on the sex of participants.

  7. Direct CFD Predictions of Low Frequency Sounds Generated by a Helicopter Main Rotor

    DTIC Science & Technology

    2010-05-01

    modeling and grid constraints. NOTATION α Shaft tilt (corrected) or tip-path-plane angle BPF Blade passing frequency CT/σ Thrust coefficient to rotor...cyclic pitch angle, deg. LFSPL Low frequency sound metric (1st-6th BPF ), dB MFSPL Mid frequency sound metric (> 6th BPF ), dB OASPL Overall sound metric...Tunnel of the National Full- Scale Aerodynamic Complex (NFAC) at NASA Ames Research Center in 2008 (Fig. 2a), as a guide for prediction validation. The

  8. Basic Technical Data on Transmission Systems and Equipment Using Communications Lines. Part 1.

    DTIC Science & Technology

    1978-08-01

    without noticeable degradation of the speech quality. - 219 - The maximum number of repeater sections: For the KNK-6s For the KNK-6t for multiquad...power circuit 1]; 15. Low frequency amplifier for direction B - Aj 16. Low frequency amplifier; 17. KNN [initial slope network]; 18. LVN-2...frequency Voice frequency ringing at 3,800 Hz with a level 0.4 - 0.8 Np lower than the speech channel level. The system for service

  9. Low-frequency sound affects active micromechanics in the human inner ear

    PubMed Central

    Kugler, Kathrin; Wiegrebe, Lutz; Grothe, Benedikt; Kössl, Manfred; Gürkov, Robert; Krause, Eike; Drexl, Markus

    2014-01-01

    Noise-induced hearing loss is one of the most common auditory pathologies, resulting from overstimulation of the human cochlea, an exquisitely sensitive micromechanical device. At very low frequencies (less than 250 Hz), however, the sensitivity of human hearing, and therefore the perceived loudness is poor. The perceived loudness is mediated by the inner hair cells of the cochlea which are driven very inadequately at low frequencies. To assess the impact of low-frequency (LF) sound, we exploited a by-product of the active amplification of sound outer hair cells (OHCs) perform, so-called spontaneous otoacoustic emissions. These are faint sounds produced by the inner ear that can be used to detect changes of cochlear physiology. We show that a short exposure to perceptually unobtrusive, LF sounds significantly affects OHCs: a 90 s, 80 dB(A) LF sound induced slow, concordant and positively correlated frequency and level oscillations of spontaneous otoacoustic emissions that lasted for about 2 min after LF sound offset. LF sounds, contrary to their unobtrusive perception, strongly stimulate the human cochlea and affect amplification processes in the most sensitive and important frequency range of human hearing. PMID:26064536

  10. A variable passive low-frequency absorber

    NASA Astrophysics Data System (ADS)

    Larsen, Niels Werner; Thompson, Eric R.; Gade, Anders Christian

    2005-04-01

    Multi-purpose concert halls face a dilemma. They can host classical music concerts, rock concerts and spoken word performances in a matter of a short period. These different performance types require significantly different acoustic conditions in order to provide the best sound quality to both the performers and the audience. A recommended reverberation time for classical music may be in the range of 1.5-2 s for empty halls, where rock music sounds best with a reverberation time around 0.8-1 s. Modern rhythmic music often contains high levels of sound energy in the low frequency bands but still requires a high definition for good sound quality. Ideally, the absorption of the hall should be adjustable in all frequency bands in order to provide good sound quality for all types of performances. The mid and high frequency absorption is easily regulated, but adjusting the low-frequency absorption has typically been too expensive or requires too much space to be practical for multi-purpose halls. Measurements were made on a variable low-frequency absorber to develop a practical solution to the dilemma. The paper will present the results of the measurements as well as a possible design.

  11. Low Frequency Vibrations Induce Malformations in Two Aquatic Species in a Frequency-, Waveform-, and Direction-Specific Manner

    PubMed Central

    Vandenberg, Laura N.; Stevenson, Claire; Levin, Michael

    2012-01-01

    Environmental toxicants such as industrial wastes, air particulates from machinery and transportation vehicles, and pesticide run-offs, as well as many chemicals, have been widely studied for their effects on human and wildlife populations. Yet other potentially harmful environmental pollutants such as electromagnetic pulses, noise and vibrations have remained incompletely understood. Because developing embryos undergo complex morphological changes that can be affected detrimentally by alterations in physical forces, they may be particularly susceptible to exposure to these types of pollutants. We investigated the effects of low frequency vibrations on early embryonic development of two aquatic species, Xenopus laevis (frogs) and Danio rerio (zebrafish), specifically focusing on the effects of varying frequencies, waveforms, and applied direction. We observed treatment-specific effects on the incidence of neural tube defects, left-right patterning defects and abnormal tail morphogenesis in Xenopus tadpoles. Additionally, we found that low frequency vibrations altered left-right patterning and tail morphogenesis, but did not induce neural tube defects, in zebrafish. The results of this study support the conclusion that low frequency vibrations are toxic to aquatic vertebrates, with detrimental effects observed in two important model species with very different embryonic architectures. PMID:23251546

  12. Comparison of weighting techniques for acoustic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Jeong, Gangwon; Hwang, Jongha; Min, Dong-Joo

    2017-12-01

    To reconstruct long-wavelength structures in full waveform inversion (FWI), the wavefield-damping and weighting techniques have been used to synthesize and emphasize low-frequency data components in frequency-domain FWI. However, these methods have some weak points. The application of wavefield-damping method on filtered data fails to synthesize reliable low-frequency data; the optimization formula obtained introducing the weighting technique is not theoretically complete, because it is not directly derived from the objective function. In this study, we address these weak points and present how to overcome them. We demonstrate that the source estimation in FWI using damped wavefields fails when the data used in the FWI process does not satisfy the causality condition. This phenomenon occurs when a non-causal filter is applied to data. We overcome this limitation by designing a causal filter. Also we modify the conventional weighting technique so that its optimization formula is directly derived from the objective function, retaining its original characteristic of emphasizing the low-frequency data components. Numerical results show that the newly designed causal filter enables to recover long-wavelength structures using low-frequency data components synthesized by damping wavefields in frequency-domain FWI, and the proposed weighting technique enhances the inversion results.

  13. Performance enhancement in a semi-autonomous confined microsociety

    NASA Technical Reports Server (NTRS)

    Brady, J. V.; Bernstein, D. J.; Foltin, R. W.; Nellis, M. J.

    1988-01-01

    Research in a continuously programmed human experimental laboratory has been directed toward identifying, defining, and expanding generalized knowledge concerning motivational factors within the structure of human behavioral repertoires that maintain and enhance performance. Participants (in groups of three) engaged in a series of repetitive work activities (e.g., word sorting and rug-hooking) for extended periods each day, while living continuously in a residential laboratory. Other parts of the day were spent either interacting socially with other participants or engaging in individual recreational activities. The percentage of time devoted to the various work tasks provided the basis for selecting one activity that occurred with high frequency and one with low frequency. Performance of the low-frequency activity was then required in order to gain access to the high-frequency activity. Under such contingencies, time devoted to the original low-frequency activity increased greatly, and the participants consistently did more than the required amount of the low-frequency work than was necessary to restore access to the restricted work activity. The theoretical significance of these findings resides in the clear demonstration that a time-based model of value applies as well to the enhancement of work-like performance as it does to voluntarily selected or preferred recreational activities.

  14. Differences between mechanical and neural tuning at the apex of the intact guinea pig cochlea

    NASA Astrophysics Data System (ADS)

    Recio-Spinoso, Alberto; Oghalai, John S.

    2018-05-01

    While most of human speech information is contained within frequencies < 3-4 kHz, only a few mechanical measurements have been made in cochlear regions responsive to such low frequencies. Furthermore, the data that do exist are difficult to interpret given the technical difficulties in performing the experiments and/or the artifacts that result from opening the otic capsule bone to visualize the organ of Corti. Here, we overcame historical technical limitations and non-invasively measured sound-induced vibrations within the apex of the guinea pig cochlea using volumetric optical coherence tomography vibrometry (VOCTV). We found that vibrations within apical cochlear regions, with neural tuning below 2 kHz, demonstrate low-pass filter characteristics. There was evidence of a low-level of broad-band cochlear amplification that did not sharpen frequency selectivity. We compared the vibratory responses we measured to previously-measured single-unit auditory nerve tuning curves in the same frequency range, and found that mechanical responses do not match neural responses. These data suggest that, for low frequency cochlear regions, inner hair cells not only transduce vibrations of the organ of Corti but also sharpen frequency tuning.

  15. Low-frequency meandering piezoelectric vibration energy harvester.

    PubMed

    Berdy, David F; Srisungsitthisunti, Pornsak; Jung, Byunghoo; Xu, Xianfan; Rhoads, Jeffrey F; Peroulis, Dimitrios

    2012-05-01

    The design, fabrication, and characterization of a novel low-frequency meandering piezoelectric vibration energy harvester is presented. The energy harvester is designed for sensor node applications where the node targets a width-to-length aspect ratio close to 1:1 while simultaneously achieving a low resonant frequency. The measured power output and normalized power density are 118 μW and 5.02 μW/mm(3)/g(2), respectively, when excited by an acceleration magnitude of 0.2 g at 49.7 Hz. The energy harvester consists of a laser-machined meandering PZT bimorph. Two methods, strain-matched electrode (SME) and strain-matched polarization (SMP), are utilized to mitigate the voltage cancellation caused by having both positive and negative strains in the piezoelectric layer during operation at the meander's first resonant frequency. We have performed finite element analysis and experimentally demonstrated a prototype harvester with a footprint of 27 x 23 mm and a height of 6.5 mm including the tip mass. The device achieves a low resonant frequency while maintaining a form factor suitable for sensor node applications. The meandering design enables energy harvesters to harvest energy from vibration sources with frequencies less than 100 Hz within a compact footprint.

  16. Energy transfer in mesoscopic vibrational systems enabled by eigenfrequency fluctuations

    NASA Astrophysics Data System (ADS)

    Atalaya, Juan

    Energy transfer between low-frequency vibrational modes can be achieved by means of nonlinear coupling if their eigenfrequencies fulfill certain nonlinear resonance conditions. Because of the discreteness of the vibrational spectrum at low frequencies, such conditions may be difficult to satisfy for most low-frequency modes in typical mesoscopic vibrational systems. Fluctuations of the vibrational eigenfrequencies can also be relatively strong in such systems. We show that energy transfer between modes can occur in the absence of nonlinear resonance if frequency fluctuations are allowed. The case of three modes with cubic nonlinear coupling and no damping is particularly interesting. It is found that the system has a non-thermal equilibrium state which depends only on the initial conditions. The rate at which the system approaches to such state is determined by the parameters such as the noise strength and correlation time, the nonlinearity strength and the detuning from exact nonlinear resonance. We also discuss the case of many weakly coupled modes. Our results shed light on the problem of energy relaxation of low-frequency vibrational modes into the continuum of high-frequency vibrational modes. The results have been obtained with Mark Dykman. Alternative email: jatalaya2012@gmail.com.

  17. Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz–1GHz

    PubMed Central

    Revil, A

    2013-01-01

    A model combining low-frequency complex conductivity and high-frequency permittivity is developed in the frequency range from 1 mHz to 1 GHz. The low-frequency conductivity depends on pore water and surface conductivities. Surface conductivity is controlled by the electrical diffuse layer, the outer component of the electrical double layer coating the surface of the minerals. The frequency dependence of the effective quadrature conductivity shows three domains. Below a critical frequency fp, which depends on the dynamic pore throat size Λ, the quadrature conductivity is frequency dependent. Between fp and a second critical frequency fd, the quadrature conductivity is generally well described by a plateau when clay minerals are present in the material. Clay-free porous materials with a narrow grain size distribution are described by a Cole-Cole model. The characteristic frequency fd controls the transition between double layer polarization and the effect of the high-frequency permittivity of the material. The Maxwell-Wagner polarization is found to be relatively negligible. For a broad range of frequencies below 1 MHz, the effective permittivity exhibits a strong dependence with the cation exchange capacity and the specific surface area. At high frequency, above the critical frequency fd, the effective permittivity reaches a high-frequency asymptotic limit that is controlled by the two Archie's exponents m and n like the low-frequency electrical conductivity. The unified model is compared with various data sets from the literature and is able to explain fairly well a broad number of observations with a very small number of textural and electrochemical parameters. It could be therefore used to interpret induced polarization, induction-based electromagnetic methods, and ground penetrating radar data to characterize the vadose zone. PMID:23576823

  18. Recognition memory and awareness: A high-frequency advantage in the accuracy of knowing.

    PubMed

    Gregg, Vernon H; Gardiner, John M; Karayianni, Irene; Konstantinou, Ira

    2006-04-01

    The well-established advantage of low-frequency words over high-frequency words in recognition memory has been found to occur in remembering and not knowing. Two experiments employed remember and know judgements, and divided attention to investigate the possibility of an effect of word frequency on know responses given appropriate study conditions. With undivided attention at study, the usual low-frequency advantage in the accuracy of remember responses, but no effect on know responses, was obtained. Under a demanding divided attention task at encoding, a high-frequency advantage in the accuracy of know responses was obtained. The results are discussed in relation to theories of knowing, particularly those incorporating perceptual and conceptual fluency.

  19. Digitally synthesized beat frequency-multiplexed fluorescence lifetime spectroscopy

    PubMed Central

    Chan, Jacky C. K.; Diebold, Eric D.; Buckley, Brandon W.; Mao, Sien; Akbari, Najva; Jalali, Bahram

    2014-01-01

    Frequency domain fluorescence lifetime imaging is a powerful technique that enables the observation of subtle changes in the molecular environment of a fluorescent probe. This technique works by measuring the phase delay between the optical emission and excitation of fluorophores as a function of modulation frequency. However, high-resolution measurements are time consuming, as the excitation modulation frequency must be swept, and faster low-resolution measurements at a single frequency are prone to large errors. Here, we present a low cost optical system for applications in real-time confocal lifetime imaging, which measures the phase vs. frequency spectrum without sweeping. Deemed Lifetime Imaging using Frequency-multiplexed Excitation (LIFE), this technique uses a digitally-synthesized radio frequency comb to drive an acousto-optic deflector, operated in a cat’s-eye configuration, to produce a single laser excitation beam modulated at multiple beat frequencies. We demonstrate simultaneous fluorescence lifetime measurements at 10 frequencies over a bandwidth of 48 MHz, enabling high speed frequency domain lifetime analysis of single- and multi-component sample mixtures. PMID:25574449

  20. Harbour porpoises react to low levels of high frequency vessel noise

    PubMed Central

    Dyndo, Monika; Wiśniewska, Danuta Maria; Rojano-Doñate, Laia; Madsen, Peter Teglberg

    2015-01-01

    Cetaceans rely critically on sound for navigation, foraging and communication and are therefore potentially affected by increasing noise levels from human activities at sea. Shipping is the main contributor of anthropogenic noise underwater, but studies of shipping noise effects have primarily considered baleen whales due to their good hearing at low frequencies, where ships produce most noise power. Conversely, the possible effects of vessel noise on small toothed whales have been largely ignored due to their poor low-frequency hearing. Prompted by recent findings of energy at medium- to high-frequencies in vessel noise, we conducted an exposure study where the behaviour of four porpoises (Phocoena phocoena) in a net-pen was logged while they were exposed to 133 vessel passages. Using a multivariate generalised linear mixed-effects model, we show that low levels of high frequency components in vessel noise elicit strong, stereotyped behavioural responses in porpoises. Such low levels will routinely be experienced by porpoises in the wild at ranges of more than 1000 meters from vessels, suggesting that vessel noise is a, so far, largely overlooked, but substantial source of disturbance in shallow water areas with high densities of both porpoises and vessels. PMID:26095689

  1. 100 nm AlSb/InAs HEMT for Ultra-Low-Power Consumption, Low-Noise Applications

    PubMed Central

    Bagumako, Sonia; Desplanque, Ludovic; Wichmann, Nicolas; Bollaert, Sylvain; Danneville, François; Wallart, Xavier

    2014-01-01

    We report on high frequency (HF) and noise performances of AlSb/InAs high electron mobility transistor (HEMT) with 100 nm gate length at room temperature in low-power regime. Extrinsic cut-off frequencies f T/f max of 100/125 GHz together with minimum noise figure NFmin = 0.5 dB and associated gain G ass = 12 dB at 12 GHz have been obtained at drain bias of only 80 mV, corresponding to 4 mW/mm DC power dissipation. This demonstrates the great ability of AlSb/InAs HEMT for high-frequency operation combined with low-noise performances in ultra-low-power regime. PMID:24707193

  2. Frequency Drives Lexical Access in Reading but not in Speaking: The Frequency-Lag Hypothesis

    PubMed Central

    Gollan, Tamar H.; Slattery, Timothy J.; Goldenberg, Diane; van Assche, Eva; Duyck, Wouter; Rayner, Keith

    2010-01-01

    To contrast mechanisms of lexical access in production versus comprehension we compared the effects of word-frequency (high, low), context (none, low-constraining, high-constraining), and level of English proficiency (monolinguals, Spanish-English bilinguals, Dutch-English bilinguals), on picture naming, lexical decision, and eye fixation times. Semantic constraint effects were larger in production than in reading. Frequency effects were larger in production than in reading without constraining context, but larger in reading than in production with constraining context. Bilingual disadvantages were modulated by frequency in production but not in eye fixation times, were not smaller in low-constraining context, and were reduced by high-constraining context only in production and only at the lowest level of English proficiency. These results challenge existing accounts of bilingual disadvantages, and reveal fundamentally different processes during lexical access across modalities, entailing a primarily semantically driven search in production, but a frequency driven search in comprehension. The apparently more interactive process in production than comprehension could simply reflect a greater number of frequency-sensitive processing stages in production. PMID:21219080

  3. Unusual phonon behavior and ultra-low thermal conductance of monolayer InSe.

    PubMed

    Zhou, Hangbo; Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei

    2017-12-21

    Monolayer indium selenide (InSe) possesses numerous fascinating properties, such as high electron mobility, quantum Hall effect and anomalous optical response. However, its phonon properties, thermal transport properties and the origin of its structural stability remain unexplored. Using first-principles calculations, we show that the atoms in InSe are highly polarized and such polarization causes strong long-range dipole-dipole interaction (DDI). For acoustic modes, DDI is essential for maintaining its structural stability. For optical modes, DDI causes a significant frequency shift of its out-of-phase vibrations. Surprisingly, we observed that there were two isolated frequency regimes, which were completely separated from other frequency regimes with large frequency gaps. Within each frequency regime, only a single phonon mode exists. We further reveal that InSe possesses the lowest thermal conductance among the known two-dimensional materials due to the low cut-off frequency, low phonon group velocities and the presence of large frequency gaps. These unique behaviors of monolayer InSe can enable the fabrication of novel devices, such as thermoelectric module, single-mode phonon channel and phononic laser.

  4. The interaction between vocabulary size and phonotactic probability effects on children's production accuracy and fluency in nonword repetition.

    PubMed

    Edwards, Jan; Beckman, Mary E; Munson, Benjamin

    2004-04-01

    Adults' performance on a variety of tasks suggests that phonological processing of nonwords is grounded in generalizations about sublexical patterns over all known words. A small body of research suggests that children's phonological acquisition is similarly based on generalizations over the lexicon. To test this account, production accuracy and fluency were examined in nonword repetitions by 104 children and 22 adults. Stimuli were 22 pairs of nonwords, in which one nonword contained a low-frequency or unattested two-phoneme sequence and the other contained a high-frequency sequence. For a subset of these nonword pairs, segment durations were measured. The same sound was produced with a longer duration (less fluently) when it appeared in a low-frequency sequence, as compared to a high-frequency sequence. Low-frequency sequences were also repeated with lower accuracy than high-frequency sequences. Moreover, children with smaller vocabularies showed a larger influence of frequency on accuracy than children with larger vocabularies. Taken together, these results provide support for a model of phonological acquisition in which knowledge of sublexical units emerges from generalizations made over lexical items.

  5. Low-flow characteristics of streams on the Kitsap Peninsula and selected adjacent islands, Washington

    USGS Publications Warehouse

    Cummans, J.E.

    1976-01-01

    Low-flow-frequency data are tabulated for 90 streamflow sites on the Kitsap Peninsula and adjacent islands, Washington. Also listed are data for 56 additional sites which have insufficient measurements for frequency analysis but which have been observed having no flow at least once during the low-flow period. The streams drain relatively small basins; only three streams have drainage areas greater than 20.0 square miles, and only nine other streams have drainage areas greater than 10.0 square miles. Mean annual precipitation during the period 1931-60 ranged from about 25 inches near Hansville to about 70 inches near Tahuya. Low-flow-frequency curves plotted from records of streamflow at eight long-term gaging stations were used to determine data for low-flow durations of 7, 30, 60, 90, and 183 days. Regression techniques then were used to estimate low flows with frequencies up to 20 years for stations with less than 10 years of record and for miscellaneous sites where discharge measurements have been made. (Woodard-USGS)

  6. Illumination Modulation for Improved Propagation-Based Phase Imaging

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tonmoy

    Propagation-based phase imaging enables the quantitative reconstruction of a light beam's phase from measurements of its intensity. Because the intensity depends on the time-averaged square of the field the relationship between intensity and phase is, in general, nonlinear. The transport of intensity equation (TIE), is a linear equation relating phase and propagated intensity that arises from restricting the propagation distance to be small. However, the TIE limits the spatial frequencies that can be reliably reconstructed to those below some cutoff, which limits the accuracy of reconstruction of fine features in phase. On the other hand, the low frequency components suffer from poor signal to noise ratio (SNR) unless the propagation distance is sufficiently large, which leads to low frequency artifacts that obscure the reconstruction. In this research, I will consider the use of incoherent primary sources of illumination, in a Kohler illumination setup, to enhance the low-frequency performance of the TIE. The necessary steps required to design and build a table-top imaging setup which is capable of capturing intensity at any defocused position while modulating the source will be explained. In addition, it will be shown how by employing such illumination, the steps required for computationally recovering the phase, i.e. Fourier transforms and frequency-domain filtering, may be performed in the optical system. While these methods can address the low-frequency performance of the TIE, they do not extend its high-frequency cutoff. To avoid this cutoff, for objects with slowly varying phase, the contrast transfer function (CTF) model, an alternative to the TIE, can be used to recover phase. By allowing the combination of longer propagation distances and incoherent sources, it will be shown how CTF can improve performance at both high and low frequencies.

  7. Recognition memory for low- and high-frequency-filtered emotional faces: Low spatial frequencies drive emotional memory enhancement, whereas high spatial frequencies drive the emotion-induced recognition bias.

    PubMed

    Rohr, Michaela; Tröger, Johannes; Michely, Nils; Uhde, Alarith; Wentura, Dirk

    2017-07-01

    This article deals with two well-documented phenomena regarding emotional stimuli: emotional memory enhancement-that is, better long-term memory for emotional than for neutral stimuli-and the emotion-induced recognition bias-that is, a more liberal response criterion for emotional than for neutral stimuli. Studies on visual emotion perception and attention suggest that emotion-related processes can be modulated by means of spatial-frequency filtering of the presented emotional stimuli. Specifically, low spatial frequencies are assumed to play a primary role for the influence of emotion on attention and judgment. Given this theoretical background, we investigated whether spatial-frequency filtering also impacts (1) the memory advantage for emotional faces and (2) the emotion-induced recognition bias, in a series of old/new recognition experiments. Participants completed incidental-learning tasks with high- (HSF) and low- (LSF) spatial-frequency-filtered emotional and neutral faces. The results of the surprise recognition tests showed a clear memory advantage for emotional stimuli. Most importantly, the emotional memory enhancement was significantly larger for face images containing only low-frequency information (LSF faces) than for HSF faces across all experiments, suggesting that LSF information plays a critical role in this effect, whereas the emotion-induced recognition bias was found only for HSF stimuli. We discuss our findings in terms of both the traditional account of different processing pathways for HSF and LSF information and a stimulus features account. The double dissociation in the results favors the latter account-that is, an explanation in terms of differences in the characteristics of HSF and LSF stimuli.

  8. Low frequency complex dielectric (conductivity) response of dilute clay suspensions: Modeling and experiments.

    PubMed

    Hou, Chang-Yu; Feng, Ling; Seleznev, Nikita; Freed, Denise E

    2018-09-01

    In this work, we establish an effective medium model to describe the low-frequency complex dielectric (conductivity) dispersion of dilute clay suspensions. We use previously obtained low-frequency polarization coefficients for a charged oblate spheroidal particle immersed in an electrolyte as the building block for the Maxwell Garnett mixing formula to model the dilute clay suspension. The complex conductivity phase dispersion exhibits a near-resonance peak when the clay grains have a narrow size distribution. The peak frequency is associated with the size distribution as well as the shape of clay grains and is often referred to as the characteristic frequency. In contrast, if the size of the clay grains has a broad distribution, the phase peak is broadened and can disappear into the background of the canonical phase response of the brine. To benchmark our model, the low-frequency dispersion of the complex conductivity of dilute clay suspensions is measured using a four-point impedance measurement, which can be reliably calibrated in the frequency range between 0.1 Hz and 10 kHz. By using a minimal number of fitting parameters when reliable information is available as input for the model and carefully examining the issue of potential over-fitting, we found that our model can be used to fit the measured dispersion of the complex conductivity with reasonable parameters. The good match between the modeled and experimental complex conductivity dispersion allows us to argue that our simplified model captures the essential physics for describing the low-frequency dispersion of the complex conductivity of dilute clay suspensions. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Low Density ITB Studies Using the Upgraded C-Mod Reflectometry System

    NASA Astrophysics Data System (ADS)

    Dominguez, A.; Edlund, E.; Fiore, C. L.; Lin, L.; Marmar, E. S.; Snipes, J. A.; Porkolab, M.; Kramer, G. J.; Rowan, W. L.

    2007-11-01

    The Alcator C-Mod reflectometry system was recently upgraded in two ways: The low frequency channels were changed from amplitude modulation - in which two microwave signals, slightly separated in frequency, are injected into the plasma - to baseband, where a single frequency is used, in order to improve density fluctuation measurements. The second change, a variable frequency channel operating over the range from 122GHz to 140GHz (with corresponding density cutoffs of 1.84-2.43x10^20m-3) has been installed in collaboration with PPPL. Initial results from the upgraded system are presented, including the study of low density Internal Transport Barriers. Using O-mode waves, the reflectometry system is able to radially localize density fluctuations on the low field side along the tokamak midplane. It can, therefore, be used to probe the foot of low density ITBs. The corresponding reflectometry data will be compared to those of other fluctuation diagnostics, including Phase Contrast Imaging and magnetic pick-up coils.

  10. Analysis of Flame Extinguishment and Height in Low Frequency Acoustically Excited Methane Jet Diffusion Flame

    NASA Astrophysics Data System (ADS)

    Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran

    2018-01-01

    The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.

  11. Analysis of Flame Extinguishment and Height in Low Frequency Acoustically Excited Methane Jet Diffusion Flame

    NASA Astrophysics Data System (ADS)

    Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran

    2018-05-01

    The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.

  12. The word-frequency paradox for recall/recognition occurs for pictures.

    PubMed

    Karlsen, Paul Johan; Snodgrass, Joan Gay

    2004-08-01

    A yes-no recognition task and two recall tasks were conducted using pictures of high and low familiarity ratings. Picture familiarity had analogous effects to word frequency, and replicated the word-frequency paradox in recall and recognition. Low-familiarity pictures were more recognizable than high-familiarity pictures, pure lists of high-familiarity pictures were more recallable than pure lists of low-familiarity pictures, and there was no effect of familiarity for mixed lists. These results are consistent with the predictions of the Search of Associative Memory (SAM) model.

  13. Improvement of Space Shuttle Main Engine Low Frequency Acceleration Measurements

    NASA Technical Reports Server (NTRS)

    Stec, Robert C.

    1999-01-01

    The noise floor of low frequency acceleration data acquired on the Space Shuttle Main Engines is higher than desirable. Difficulties of acquiring high quality acceleration data on this engine are discussed. The approach presented in this paper for reducing the acceleration noise floor focuses on a search for an accelerometer more capable of measuring low frequency accelerations. An overview is given of the current measurement system used to acquire engine vibratory data. The severity of vibration, temperature, and moisture environments are considered. Vibratory measurements from both laboratory and rocket engine tests are presented.

  14. Fiber optic sensing system

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor)

    1991-01-01

    A fiber optic interferometer utilizes a low coherence light emitting diode (LED) laser as a light source which is filtered and driven at two RF frequencies, high and low, that are specific to the initial length of the resonator chamber. A displacement of a reflecting mirror changes the length traveled by the nonreferencing signal. The low frequency light undergoes destructive interference which reduces the average intensity of the wave while the high frequency light undergoes constructive interference which increases the average intensity of the wave. The ratio of these two intensity measurements is proportional to the displacement incurred.

  15. Analytic model for low-frequency noise in nanorod devices.

    PubMed

    Lee, Jungil; Yu, Byung Yong; Han, Ilki; Choi, Kyoung Jin; Ghibaudo, Gerard

    2008-10-01

    In this work analytic model for generation of excess low-frequency noise in nanorod devices such as field-effect transistors are developed. In back-gate field-effect transistors where most of the surface area of the nanorod is exposed to the ambient, the surface states could be the major noise source via random walk of electrons for the low-frequency or 1/f noise. In dual gate transistors, the interface states and oxide traps can compete with each other as the main noise source via random walk and tunneling, respectively.

  16. A Low-Frequency Survey of the Galactic Plane Near l = 11 degs: Discovery of Three New Supernova Remnants

    DTIC Science & Technology

    2004-01-01

    A LOW-FREQUENCY SURVEY OF THE GALACTIC PLANE NEAR l = 11: DISCOVERY OF THREE NEW SUPERNOVA REMNANTS C. L. Brogan,1,2 K. E. Devine,3,4 T. J. Lazio,5...230; Green 2002). This paucity is likely due in part to selection effects acting against the discovery of the more mature, faint, extended remnants...00-00-2004 to 00-00-2004 4. TITLE AND SUBTITLE A Low-Frequency Survey of the Galactic Plane Near l=11degrees: Discovery of Three New Supernova

  17. Study of noise reduction characteristics of double-wall panels

    NASA Technical Reports Server (NTRS)

    Navaneethan, R.; Quayle, B.; Stevenson, S.; Graham, M.

    1983-01-01

    The noise reduction characteristics of general aviation type, flat, double-wall structures were investigated. The experimental study was carried out on 20-by-20 inch panels with an exposed area of 18 by 18 inches. A frequency range from 20 to 5000 Hz was covered. The experimental results, in general, follow the expected trends. At low frequencies the double-wall structures are no better than the single-wall structures. However, for depths normally used in the general aviation industry, the double-wall panels are very attractive. The graphite-spoxy skin panels have higher noise reduction at very low frequencies ( 100 Hz) than the Kevlar skin panels. But the aluminum panels have higher noise reduction in the high frequency region, due to their greater mass. Use of fiberglass insulation is not effective in the low frequency region, and at times it is even negative. But the insulation is effective in the high-frequency region. The theoretical model for predicting the transmission loss of these multilayered panels is also discussed.

  18. Study of noise reduction characteristics of double-wall panels

    NASA Astrophysics Data System (ADS)

    Navaneethan, R.; Quayle, B.; Stevenson, S.; Graham, M.

    1983-05-01

    The noise reduction characteristics of general aviation type, flat, double-wall structures were investigated. The experimental study was carried out on 20-by-20 inch panels with an exposed area of 18 by 18 inches. A frequency range from 20 to 5000 Hz was covered. The experimental results, in general, follow the expected trends. At low frequencies the double-wall structures are no better than the single-wall structures. However, for depths normally used in the general aviation industry, the double-wall panels are very attractive. The graphite-spoxy skin panels have higher noise reduction at very low frequencies ( 100 Hz) than the Kevlar skin panels. But the aluminum panels have higher noise reduction in the high frequency region, due to their greater mass. Use of fiberglass insulation is not effective in the low frequency region, and at times it is even negative. But the insulation is effective in the high-frequency region. The theoretical model for predicting the transmission loss of these multilayered panels is also discussed.

  19. Lost in the Forest, Stuck in the Trees: Dispositional Global/Local Bias Is Resistant to Exposure to High and Low Spatial Frequencies

    PubMed Central

    Dale, Gillian; Arnell, Karen M.

    2014-01-01

    Visual stimuli can be perceived at a broad, “global” level, or at a more focused, “local” level. While research has shown that many individuals demonstrate a preference for global information, there are large individual differences in the degree of global/local bias, such that some individuals show a large global bias, some show a large local bias, and others show no bias. The main purpose of the current study was to examine whether these dispositional differences in global/local bias could be altered through various manipulations of high/low spatial frequency. Through 5 experiments, we examined various measures of dispositional global/local bias and whether performance on these measures could be altered by manipulating previous exposure to high or low spatial frequency information (with high/low spatial frequency faces, gratings, and Navon letters). Ultimately, there was little evidence of change from pre-to-post manipulation on the dispositional measures, and dispositional global/local bias was highly reliable pre- to post-manipulation. The results provide evidence that individual differences in global/local bias or preference are relatively resistant to exposure to spatial frequency information, and suggest that the processing mechanisms underlying high/low spatial frequency use and global/local bias may be more independent than previously thought. PMID:24992321

  20. Heart rate variability is differentially altered in multiple sclerosis: implications for acute, worsening and progressive disability.

    PubMed

    Studer, Valeria; Rocchi, Camilla; Motta, Caterina; Lauretti, Benedetta; Perugini, Jacopo; Brambilla, Laura; Pareja-Gutierrez, Lorena; Camera, Giorgia; Barbieri, Francesca Romana; Marfia, Girolama A; Centonze, Diego; Rossi, Silvia

    2017-01-01

    Sympathovagal imbalance has been associated with poor prognosis in chronic diseases, but there is conflicting evidence in multiple sclerosis. The objective of this study was to investigate the autonomic nervous system dysfunction correlation with inflammation and progression in multiple sclerosis. Heart rate variability was analysed in 120 multiple sclerosis patients and 60 healthy controls during supine rest and head-up tilt test; the normalised units of low frequency and high frequency power were considered to assess sympathetic and vagal components, respectively. Correlation analyses with clinical and radiological markers of disease activity and progression were performed. Sympathetic dysfunction was closely related to the progression of disability in multiple sclerosis: progressive patients showed altered heart rate variability with respect to healthy controls and relapsing-remitting patients, with higher rest low frequency power and lacking the expected low frequency power increase during the head-up tilt test. In relapsing-remitting patients, disease activity, even subclinical, was associated with lower rest low frequency power, whereas stable relapsing-remitting patients did not differ from healthy controls. Less sympathetic reactivity and higher low frequency power at rest were associated with incomplete recovery from relapse. Autonomic balance appears to be intimately linked with both the inflammatory activity of multiple sclerosis, which is featured by an overall hypoactivity of the sympathetic nervous system, and its compensatory plastic processes, which appear inefficient in case of worsening and progressive multiple sclerosis.

  1. Late administration of high-frequency electrical stimulation increases nerve regeneration without aggravating neuropathic pain in a nerve crush injury.

    PubMed

    Su, Hong-Lin; Chiang, Chien-Yi; Lu, Zong-Han; Cheng, Fu-Chou; Chen, Chun-Jung; Sheu, Meei-Ling; Sheehan, Jason; Pan, Hung-Chuan

    2018-06-25

    High-frequency transcutaneous neuromuscular electrical nerve stimulation (TENS) is currently used for the administration of electrical current in denervated muscle to alleviate muscle atrophy and enhance motor function; however, the time window (i.e. either immediate or delayed) for achieving benefit is still undetermined. In this study, we conducted an intervention of sciatic nerve crush injury using high-frequency TENS at different time points to assess the effect of motor and sensory functional recovery. Animals with left sciatic nerve crush injury received TENS treatment starting immediately after injury or 1 week later at a high frequency(100 Hz) or at a low frequency (2 Hz) as a control. In SFI gait analysis, either immediate or late admission of high-frequency electrical stimulation exerted significant improvement compared to either immediate or late administration of low-frequency electrical stimulation. In an assessment of allodynia, immediate high frequency electrical stimulation caused a significantly decreased pain threshold compared to late high-frequency or low-frequency stimulation at immediate or late time points. Immunohistochemistry staining and western blot analysis of S-100 and NF-200 demonstrated that both immediate and late high frequency electrical stimulation showed a similar effect; however the effect was superior to that achieved with low frequency stimulation. Immediate high frequency electrical stimulation resulted in significant expression of TNF-α and synaptophysin in the dorsal root ganglion, somatosensory cortex, and hippocampus compared to late electrical stimulation, and this trend paralleled the observed effect on somatosensory evoked potential. The CatWalk gait analysis also showed that immediate electrical stimulation led to a significantly high regularity index. In primary dorsal root ganglion cells culture, high-frequency electrical stimulation also exerted a significant increase in expression of TNF-α, synaptophysin, and NGF in accordance with the in vivo results. Immediate or late transcutaneous high-frequency electrical stimulation exhibited the potential to stimulate the motor nerve regeneration. However, immediate electrical stimulation had a predilection to develop neuropathic pain. A delay in TENS initiation appears to be a reasonable approach for nerve repair and provides the appropriate time profile for its clinical application.

  2. High sensitivity of p-modes near the acoustic cutoff frequency to solar model parameters

    NASA Technical Reports Server (NTRS)

    Guenther, D. B.

    1991-01-01

    The p-mode frequencies of low l have been calculated for solar models with initial helium mass fraction varying from Y = 0.2753-0.2875. The differences in frequency of the p-modes in the frequency range, 2500-4500 microHz, do not exceed 1-5 microHz among the models. But in the vicinity of the acoustic cutoff frequency, near 5000 microHz the p-mode frequency differences are enhanced by a factor of 4. The enhanced sensitivity of p-modes near the acoustic cutoff frequency was further tested by calculating and comparing p-mode frequencies of low l for two solar models one incorporating the Eddington T-tau relation and the other the Krishna Swamy T-tau relation. Again, it is found that p-modes with frequencies near the acoustic cutoff frequency show a significant increase in sensitivity to the different T-tau relations, compared to lower frequency p-modes. It is noted that frequencies above the acoustic cutoff frequency are complex, hence, cannot be modeled by the adiabatic pulsation code (assumes real eigenfrequencies) used in these calculations.

  3. Evidence from Quasi-Periodic Oscillations for a Millisecond Pulsar in the Low Mass X-Ray Binary 4U 0614+091

    NASA Technical Reports Server (NTRS)

    Ford, E.; Kaaret, P.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.

    1997-01-01

    We have detected quasi-periodic oscillations (QPOs) near 1 kHz from the low mass X-ray binary 4U 0614+091 in observations with RXTE. The observations span several months and sample the source over a large range of X-ray luminosity. In every interval QPOs are present above 400 Hz with fractional RMS amplitudes from 3 to 12% over the full PCA band. At high count rates, two high frequency QPOs are detected simultaneously. The difference of their frequency centroids is consistent with a constant value of 323 Hz in all observations. During one interval a third signal is detected at 328 +/- 2 Hz. This suggests the system has a stable 'clock' which is most likely the neutron star with spin period 3.1 msec. Thus, our observations of 4U 0614+091 and those of 4U 1728-34 provide the first evidence for millisecond pulsars within low-mass X-ray binary systems and reveal the 'missing-link' between millisecond radiopulsars and the late stages of binary evolution in low mass X-ray binaries. The constant difference of the high frequency QPOs sug,,ests a beat-frequency interpretation. In this model, the high frequency QPO is associated with the Keplerian frequency of the inner accretion disk and the lower frequency QPO is a 'beat' between the differential rotation frequency of the inner disk and the spinning neutron star. Assuming the high frequency QPO is a Keplerian orbital frequency for the accretion disk, we find a maximum mass of 1.9 solar mass and a maximum radius of 17 km for the neutron star.

  4. Tailored Waveform of Dielectric Barrier Discharge to Control Composite Thin Film Morphology.

    PubMed

    Brunet, Paul; Rincón, Rocío; Matouk, Zineb; Chaker, Mohamed; Massines, Françoise

    2018-02-06

    Nanocomposite thin films of TiO 2 in a polymer-like matrix are grown in a filamentary argon (Ar) dielectric barrier discharge (DBD) from a suspension of TiO 2 nanoparticles in isopropanol (IPA). The sinusoidal voltage producing the plasma is designed to independently control the matrix growth rate and the transport of nanoparticle (NP) aggregates to the surface. The useful FSK (frequency shift keying) modulation mode is chosen to successively generate two sinusoidal voltages: a high frequency of 15 kHz and a low frequency ranging from 0.5 to 3 kHz. The coating surface coverage by the NPs and the thickness of the matrix are measured as a function of the FSK parameters. The duty cycle between these two signals is varied from 0 to 100%. It is observed that the matrix thickness is mainly controlled by the power of the discharge, which largely depends on the high-frequency value. The quantity of NPs deposited in the composite thin film is proportional to the duration of the low frequency applied. The FSK waveform has a double modulation effect, allowing us to obtain a uniform coating as the NPs are not affected by the high frequency and the matrix growth rate is limited when the low frequency is applied. When it is close to a frequency limit, the low frequency acts like a filter for the NP aggregates. The higher the frequency, the smaller the size of the aggregates transferred to the surface. By changing only the FSK modulation parameters, the thin film can be switched from superhydrophobic to superhydrophilic, and under suitable conditions, a nanocomposite thin film is obtained.

  5. Advanced Seismic While Drilling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Radtke; John Fontenot; David Glowka

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology ofmore » a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a variety of applications. Risks will be minimized since Drill Bit SWD will not interfere with the drilling operation, and can be performed in a relatively quiet environment when the pumps are turned off. The new source must be integrated with other Measurement While Drilling (MWD) tools. To date, each of the oil companies and service companies contacted have shown interest in participating in the commercialization of the low-frequency SeismicPULSER{trademark} source. A technical paper has been accepted for presentation at the 2009 Offshore Technology Conference (OTC) in a Society of Exploration Geologists/American Association of Petroleum Geophysicists (SEG/AAPG) technical session.« less

  6. From MAD to SAD: The Italian experience for the low-frequency aperture array of SKA1-LOW

    NASA Astrophysics Data System (ADS)

    Bolli, P.; Pupillo, G.; Virone, G.; Farooqui, M. Z.; Lingua, A.; Mattana, A.; Monari, J.; Murgia, M.; Naldi, G.; Paonessa, F.; Perini, F.; Pluchino, S.; Rusticelli, S.; Schiaffino, M.; Schillirò, F.; Tartarini, G.; Tibaldi, A.

    2016-03-01

    This paper describes two small aperture array demonstrators called Medicina and Sardinia Array Demonstrators (MAD and SAD, respectively). The objectives of these instruments are to acquire experience and test new technologies for a possible application to the low-frequency aperture array of the low-frequency telescope of the Square Kilometer Array phase 1 (SKA1-LOW). The MAD experience was concluded in 2014, and it turned out to be an important test bench for implementing calibration techniques based on an artificial source mounted in an aerial vehicle. SAD is based on 128 dual-polarized Vivaldi antennas and is 1 order of magnitude larger than MAD. The architecture and the station size of SAD, which is along the construction phase, are more similar to those under evaluation for SKA1-LOW, and therefore, SAD is expected to provide useful hints for SKA1-LOW.

  7. Effects of different frequencies of transcutaneous electrical nerve stimulation on venous vascular reactivity

    PubMed Central

    Franco, O.S.; Paulitsch, F.S.; Pereira, A.P.C.; Teixeira, A.O.; Martins, C.N.; Silva, A.M.V.; Plentz, R.D.M.; Irigoyen, M.C.; Signori, L.U.

    2014-01-01

    Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia. PMID:24820225

  8. Orthographic Consistency and Word-Frequency Effects in Auditory Word Recognition: New Evidence from Lexical Decision and Rime Detection

    PubMed Central

    Petrova, Ana; Gaskell, M. Gareth; Ferrand, Ludovic

    2011-01-01

    Many studies have repeatedly shown an orthographic consistency effect in the auditory lexical decision task. Words with phonological rimes that could be spelled in multiple ways (i.e., inconsistent words) typically produce longer auditory lexical decision latencies and more errors than do words with rimes that could be spelled in only one way (i.e., consistent words). These results have been extended to different languages and tasks, suggesting that the effect is quite general and robust. Despite this growing body of evidence, some psycholinguists believe that orthographic effects on spoken language are exclusively strategic, post-lexical, or restricted to peculiar (low-frequency) words. In the present study, we manipulated consistency and word-frequency orthogonally in order to explore whether the orthographic consistency effect extends to high-frequency words. Two different tasks were used: lexical decision and rime detection. Both tasks produced reliable consistency effects for both low- and high-frequency words. Furthermore, in Experiment 1 (lexical decision), an interaction revealed a stronger consistency effect for low-frequency words than for high-frequency words, as initially predicted by Ziegler and Ferrand (1998), whereas no interaction was found in Experiment 2 (rime detection). Our results extend previous findings by showing that the orthographic consistency effect is obtained not only for low-frequency words but also for high-frequency words. Furthermore, these effects were also obtained in a rime detection task, which does not require the explicit processing of orthographic structure. Globally, our results suggest that literacy changes the way people process spoken words, even for frequent words. PMID:22025916

  9. 50 CFR 218.74 - Mitigation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Surface ships or aircraft conducting high-frequency or non-hull-mounted mid-frequency active sonar...) When marine mammals are visually detected, the Navy shall ensure that high-frequency and non-hull... using low-frequency or hull-mounted mid-frequency active sonar sources associated with anti-submarine...

  10. Role of autonomic nervous activity, as measured by heart rate variability, on the effect of mortality in disabled older adults with low blood pressure in long-term care.

    PubMed

    Shibasaki, Koji; Ogawa, Sumito; Yamada, Shizuru; Ouchi, Yasuyoshi; Akishita, Masahiro

    2018-04-11

    Previous studies have shown the relationship between low blood pressure and high mortality in frail, disabled older adults in long-term care. However, the mechanism of this relationship is still unclear. We hypothesized that autonomic nervous activity decline is involved in the relationship between low blood pressure and high mortality. The present prospective cohort study recruited 61 participants aged ≥75 years. The data from 24-h Holter monitoring and blood pressure recorded by ambulatory blood pressure monitoring were collected. Measured data were divided into three categories: 24-h, daytime and night-time. From power spectral density in the electrocardiogram, low frequency, high frequency and low frequency/high frequency ratio were calculated. The primary end-point was death. High blood pressure was connected to both high daytime low frequency and high frequency (partial correlation coefficients: 0.42, P < 0.05 and 0.35, P < 0.05, respectively). In addition, the low blood pressure group had higher mortality than the high blood pressure group, and disabled older adults in long-term care and those with elevated daytime systolic and diastolic blood pressure had less risk of mortality compared with those without (systolic: hazard ratio 0.89, 95% confidence interval 0.83-0.96, P = 0.003; diastolic: hazard ratio 0.98, 95% confidence interval 0.79-1.00, P = 0.049). The average blood pressures in the high blood pressure groups were approximately 140/80 mmHg and were connected to low mortality. Attenuated autonomic nervous activity might lead to low blood pressure in the daytime and high mortality in disabled older adults in long-term care. Geriatr Gerontol Int 2018; ••: ••-••. © 2018 Japan Geriatrics Society.

  11. Evidence for initiation of frictional partial slip as the mechanism behind nonlinear stress-strain hysteresis in rock fractures under seismic-frequency torsion

    NASA Astrophysics Data System (ADS)

    Saltiel, S.; Bonner, B. P.; Delbridge, B. G.; Ajo Franklin, J. B.

    2016-12-01

    We have adapted a low-frequency (0.1 - 64 Hz) torsional apparatus to explore the pure shear behavior of rock fractures under low normal stresses, simulating low effective stress environments - shallow depths and/or under high pore pressures. The instrument is unique in this ability to measure under very low confinement as well as to probe partial slip on the outside of asperities, before full slip nucleation occurs. Using a sinusoidal oscillation around this condition, we can probe the stress-strain constitutive relation at a range of strain amplitudes and the rate-dependence of the initiation of asperity slip. We find different, nonlinear, stress-strain constitutive relations for dolomite, rhyolite, and granite fractured samples, but all show softening at high strain amplitudes (above microstrain or micron-scale displacement). All measured samples exhibit qualitatively similar time-series hysteresis loops and frequency-dependence. The low frequency stress-strain loops stiffen at the high strain static end of the sinusoidal oscillation. This shape is determined by harmonic generation in the strain, while the stress signal has low power in harmonics, confirming that the driver and electronics are not the source of this nonlinearity. We also observe that this stiffening cusp does not occur as frequency increases above 8 Hz (opposite to normal dispersion seen at higher normal stresses). We monitor the fracture surface wear with repeated cycles to show the extent of slip on mapped asperities. These observations suggest that a rate dependent, healing, process causes the nonlinear responce of fracture faces under low normal stress to periodic shear. We propose that static friction at the low strain-rate part of the cycle, when given enough time at low oscillation frequencies, causes this stiffening cusp shape in the hysteretic stress-strain curve. An analytic model with idealized contact area is used to constrain the rate-state friction constitutive model parameters needed to provide this dynamic behavior.

  12. Effects of noise frequency on performance and annoyance for women and men

    NASA Technical Reports Server (NTRS)

    Key, K. F.; Payne, M. C., Jr.

    1981-01-01

    Effects of noise frequencies on both performance on a complex psychomotor task and annoyance were investigated for men (n = 30) and women (n = 30). Each subject performed a complex psychomotor task for 50 min in the presence of low-frequency noise, high-frequency noise, or ambient noise. Women and men learned the task at different rates. Little effect of noise was shown. Annoyance ratings were subsequently obtained from each subject for noises of various frequencies by the method of magnitude estimation. High-frequency noises were more annoying than low-frequency noises regardless of sex and immediate prior exposure to noise. Sex differences in annoyance did not occur. No direct relationship between learning to perform a complex task while exposed to noise and annoyance by that noise was demonstrated.

  13. Carotid dual-energy CT angiography: Evaluation of low keV calculated monoenergetic datasets by means of a frequency-split approach for noise reduction at low keV levels.

    PubMed

    Riffel, Philipp; Haubenreisser, Holger; Meyer, Mathias; Sudarski, Sonja; Morelli, John N; Schmidt, Bernhard; Schoenberg, Stefan O; Henzler, Thomas

    2016-04-01

    Calculated monoenergetic ultra-low keV datasets did not lead to improved contrast-to-noise ratio (CNR) due to the dramatic increase in image noise. The aim of the present study was to evaluate the objective image quality of ultra-low keV monoenergetic images (MEIs) calculated from carotid DECT angiography data with a new monoenergetic imaging algorithm using a frequency-split technique. 20 patients (12 male; mean age 53±17 years) were retrospectively analyzed. MEIs from 40 to 120 keV were reconstructed using the monoenergetic split frequency approach (MFSA). Additionally MEIs were reconstructed for 40 and 50 keV using a conventional monoenergetic (CM) software application. Signal intensity, noise, signal-to-noise ratio (SNR) and CNR were assessed in the basilar, common, internal carotid arteries. Ultra-low keV MEIs at 40 keV and 50 keV demonstrated highest vessel attenuation, significantly greater than those of the polyenergetic images (PEI) (all p-values <0.05). The highest SNR level and CNR level was found at 40 keV and 50 keV (all p-values <0.05). MEIs with MFSA showed significantly lower noise levels than those processed with CM (all p-values <0.05) and no significant differences in vessel attenuation (p>0.05). Thus MEIs with MFSA showed significantly higher SNR and CNR compared to MEIs with CM. Combining the lower spatial frequency stack for contrast at low keV levels with the high spatial frequency stack for noise at high keV levels (frequency-split technique) leads to improved image quality of ultra-low keV monoenergetic DECT datasets when compared to previous monoenergetic reconstruction techniques without the frequency-split technique. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Low-frequency magnetic sensing by magnetoelectric metglas/bidomain LiNbO3 long bars

    NASA Astrophysics Data System (ADS)

    Turutin, Andrei V.; Vidal, João V.; Kubasov, Ilya V.; Kislyuk, Alexander M.; Malinkovich, Mikhail D.; Parkhomenko, Yurii N.; Kobeleva, Svetlana P.; Kholkin, Andrei L.; Sobolev, Nikolai A.

    2018-05-01

    We present an investigation into the magnetic sensing performance of magnetoelectric bilayered metglas/bidomain LiNbO3 long thin bars operating in a cantilever or free vibrating regime and under quasi-static and low-frequency resonant conditions. Bidomain single crystals of Y  +  128°-cut LiNbO3 were engineered by an improved diffusion annealing technique with a polarization macrodomain structure of the ‘head-to-head’ and ‘tail-to-tail’ type. Long composite bars with lengths of 30, 40 and 45 mm, as well as with and without attached small tip proof masses, were studied. ME coefficients as large as 550 V (cm · Oe)‑1, corresponding to a conversion ratio of 27.5 V Oe‑1, were obtained under resonance conditions at frequencies of the order of 100 Hz in magnetic bias fields as low as 2 Oe. Equivalent magnetic noise spectral densities down to 120 pT Hz‑1/2 at 10 Hz and to 68 pT Hz‑1/2 at a resonance frequency as low as 81 Hz were obtained for the 45 mm long cantilever bar with a tip proof mass of 1.2 g. In the same composite without any added mass the magnetic noise was shown to be as low as 37 pT Hz‑1/2 at a resonance frequency of 244 Hz and 1.2 pT Hz‑1/2 at 1335 Hz in a fixed cantilever and free vibrating regimes, respectively. A simple unidimensional dynamic model predicted the possibility to drop the low-frequency magnetic noise by more than one order of magnitude in case all the extrinsic noise sources are suppressed, especially those related to external vibrations, and the thickness ratio of the magnetic-to-piezoelectric phases is optimized. Thus, we have shown that such systems might find use in simple and sensitive room-temperature low-frequency magnetic sensors, e.g. for biomedical applications.

  15. Prediction of broadband ground-motion time histories: Hybrid low/high-frequency method with correlated random source parameters

    USGS Publications Warehouse

    Liu, P.; Archuleta, R.J.; Hartzell, S.H.

    2006-01-01

    We present a new method for calculating broadband time histories of ground motion based on a hybrid low-frequency/high-frequency approach with correlated source parameters. Using a finite-difference method we calculate low- frequency synthetics (< ∼1 Hz) in a 3D velocity structure. We also compute broadband synthetics in a 1D velocity model using a frequency-wavenumber method. The low frequencies from the 3D calculation are combined with the high frequencies from the 1D calculation by using matched filtering at a crossover frequency of 1 Hz. The source description, common to both the 1D and 3D synthetics, is based on correlated random distributions for the slip amplitude, rupture velocity, and rise time on the fault. This source description allows for the specification of source parameters independent of any a priori inversion results. In our broadband modeling we include correlation between slip amplitude, rupture velocity, and rise time, as suggested by dynamic fault modeling. The method of using correlated random source parameters is flexible and can be easily modified to adjust to our changing understanding of earthquake ruptures. A realistic attenuation model is common to both the 3D and 1D calculations that form the low- and high-frequency components of the broadband synthetics. The value of Q is a function of the local shear-wave velocity. To produce more accurate high-frequency amplitudes and durations, the 1D synthetics are corrected with a randomized, frequency-dependent radiation pattern. The 1D synthetics are further corrected for local site and nonlinear soil effects by using a 1D nonlinear propagation code and generic velocity structure appropriate for the site’s National Earthquake Hazards Reduction Program (NEHRP) site classification. The entire procedure is validated by comparison with the 1994 Northridge, California, strong ground motion data set. The bias and error found here for response spectral acceleration are similar to the best results that have been published by others for the Northridge rupture.

  16. LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinley, B.; Briggs, F.; Kaplan, D. L.

    2013-01-01

    A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of themore » Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system.« less

  17. Wave generation by contaminant ions near a large spacecraft

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1993-01-01

    Measurements from the space shuttle flights have revealed that a large spacecraft in a low earth orbit is accompanied by an extensive gas cloud which is primarily made up of water. The charge exchange between the water molecule and the ionospheric O(+) ions produces a water ion beam traversing downstream of the spacecraft. In this report we present results from a study on the generation of plasma waves by the interaction of the water ion beams with the ionospheric plasma. Since velocity distribution function is key to the understanding of the wave generation process, we have performed a test particle simulation to determine the nature of H2O(+) ions velocity distribution function. The simulations show that at the time scales shorter than the ion cyclotron period tau(sub c), the distribution function can be described by a beam. On the other hand, when the time scales are larger than tau(sub c), a ring distribution forms. A brief description of the linear instabilities driven by an ion beam streaming across a magnetic field in a plasma is presented. We have identified two types of instabilities occurring in low and high frequency bands; the low-frequency instability occurs over the frequency band from zero to about the lower hybrid frequency for a sufficiently low beam density. As the beam density increases, the linear instability occurs at decreasing frequencies below the lower-hybrid frequency. The high frequency instability occurs near the electron cyclotron frequency and its harmonics.

  18. Ictal high frequency oscillations distinguish two types of seizure territories in humans

    PubMed Central

    Weiss, Shennan A.; Banks, Garrett P.; McKhann, Guy M.; Goodman, Robert R.; Emerson, Ronald G.; Trevelyan, Andrew J.

    2013-01-01

    High frequency oscillations have been proposed as a clinically useful biomarker of seizure generating sites. We used a unique set of human microelectrode array recordings (four patients, 10 seizures), in which propagating seizure wavefronts could be readily identified, to investigate the basis of ictal high frequency activity at the cortical (subdural) surface. Sustained, repetitive transient increases in high gamma (80–150 Hz) amplitude, phase-locked to the low-frequency (1–25 Hz) ictal rhythm, correlated with strong multi-unit firing bursts synchronized across the core territory of the seizure. These repetitive high frequency oscillations were seen in recordings from subdural electrodes adjacent to the microelectrode array several seconds after seizure onset, following ictal wavefront passage. Conversely, microelectrode recordings demonstrating only low-level, heterogeneous neural firing correlated with a lack of high frequency oscillations in adjacent subdural recording sites, despite the presence of a strong low-frequency signature. Previously, we reported that this pattern indicates a failure of the seizure to invade the area, because of a feedforward inhibitory veto mechanism. Because multi-unit firing rate and high gamma amplitude are closely related, high frequency oscillations can be used as a surrogate marker to distinguish the core seizure territory from the surrounding penumbra. We developed an efficient measure to detect delayed-onset, sustained ictal high frequency oscillations based on cross-frequency coupling between high gamma amplitude and the low-frequency (1–25 Hz) ictal rhythm. When applied to the broader subdural recording, this measure consistently predicted the timing or failure of ictal invasion, and revealed a surprisingly small and slowly spreading seizure core surrounded by a far larger penumbral territory. Our findings thus establish an underlying neural mechanism for delayed-onset, sustained ictal high frequency oscillations, and provide a practical, efficient method for using them to identify the small ictal core regions. Our observations suggest that it may be possible to reduce substantially the extent of cortical resections in epilepsy surgery procedures without compromising seizure control. PMID:24176977

  19. Testing the relativistic precession model using low-frequency and kHz quasi-periodic oscillations in neutron star low-mass X-ray binaries with known spin

    NASA Astrophysics Data System (ADS)

    van Doesburgh, Marieke; van der Klis, Michiel

    2017-03-01

    We analyse all available RXTE data on a sample of 13 low-mass X-ray binaries with known neutron star spin that are not persistent pulsars. We carefully measure the correlations between the centroid frequencies of the quasi-periodic oscillations (QPOs). We compare these correlations to the prediction of the relativistic precession model that, due to frame dragging, a QPO will occur at the Lense-Thirring precession frequency νLT of a test-particle orbit whose orbital frequency is the upper kHz QPO frequency νu. Contrary to the most prominent previous studies, we find two different oscillations in the range predicted for νLT that are simultaneously present over a wide range of νu. Additionally, one of the low-frequency noise components evolves into a (third) QPO in the νLT range when νu exceeds 600 Hz. The frequencies of these QPOs all correlate to νu following power laws with indices between 0.4 and 3.3, significantly exceeding the predicted value of 2.0 in 80 per cent of the cases (at 3 to >20σ). Also, there is no evidence that the neutron star spin frequency affects any of these three QPO frequencies, as would be expected for frame dragging. Finally, the observed QPO frequencies tend to be higher than the νLT predicted for reasonable neutron star specific moment of inertia. In the light of recent successes of precession models in black holes, we briefly discuss ways in which such precession can occur in neutron stars at frequencies different from test-particle values and consistent with those observed. A precessing torus geometry and other torques than frame dragging may allow precession to produce the observed frequency correlations, but can only explain one of the three QPOs in the νLT range.

  20. Predictability and Prediction of Low-Frequency Rainfall Over the Lower Reaches of the Yangtze River Valley on the Time Scale of 20 to 30 days

    NASA Astrophysics Data System (ADS)

    Yang, Qiuming

    2018-01-01

    This paper presents a predictability study of the 20-30-day low-frequency rainfall over the lower reaches of the Yangtze River valley (LYRV). This study relies on an extended complex autoregressive (ECAR) model method, which is based on the principal components of the global 850 hPa low-frequency meridional wind. ECAR is a recently advanced climate forecast method, based on data-driven models. It not only reflects the lagged variations information between the leading low-frequency components of the global circulation and rainfall in a complex space, but also displays the ability to describe the synergy variations of low-frequency components of a climate system in a low dimensional space. A 6-year forecast experiment is conducted on the low-frequency rainfall over the LYRV for the extended-range daily forecasts during 2009-2014, based on the time-varying high-order ECAR. These experimental results demonstrate that the useful skills of the real-time forecasts are achieved for an extended lead-time up to 28 days with a fifth-order model, and are also shown to be 27-day lead for forecasts which are initiated from weak intraseasonal oscillation (ISO). This high-order ECAR displays the ability to significantly improve the predictions of the ISO. The analysis of the 20-30-day ISO predictability reveals a predictability limit of about 28-40 days. Therefore, the forecast framework used in this study is determined to have the potential to assist in improving the real-time forecasts for the 20-30-day oscillations related to the heavy rainfall over the LYRV in summer.

  1. Oscillations in motor unit discharge are reflected in the low-frequency component of rectified surface EMG and the rate of change in force.

    PubMed

    Yoshitake, Yasuhide; Shinohara, Minoru

    2013-11-01

    Common drive to a motor unit (MU) pool manifests as low-frequency oscillations in MU discharge rate, producing fluctuations in muscle force. The aim of the study was to examine the temporal correlation between instantaneous MU discharge rate and rectified EMG in low frequencies. Additionally, we attempted to examine whether there is a temporal correlation between the low-frequency oscillations in MU discharge rate and the first derivative of force (dF/dt). Healthy young subjects produced steady submaximal force with their right finger as a single task or while maintaining a pinch-grip force with the left hand as a dual task. Surface EMG and fine-wire MU potentials were recorded from the first dorsal interosseous muscle in the right hand. Surface EMG was band-pass filtered (5-1,000 Hz) and full-wave rectified. Rectified surface EMG and the instantaneous discharge rate of MUs were smoothed by a Hann-window of 400 ms duration (equivalent to 2 Hz low-pass filtering). In each of the identified MUs, the smoothed MU discharge rate was positively correlated with the rectified-and-smoothed EMG as confirmed by the distinct peak in cross-correlation function with greater values in the dual task compared with the single task. Additionally, the smoothed MU discharge rate was temporally correlated with dF/dt more than with force and with rectified-and-smoothed EMG. The results indicated that the low-frequency component of rectified surface EMG and the first derivative of force provide temporal information on the low-frequency oscillations in the MU discharge rate.

  2. [The ultrastructure of Sertoli cells and spermatogonia in the rats exposed to radiation under conditions of therapeutic and prophylactic application of low-intensity electromagnetic emission].

    PubMed

    Korolev, Y N; Bobrovnitskii, I P; Geniatulina, M S; Nikulina, L A; Mikhailik, L V

    2018-04-09

    it has been demonstrated in various experimental studies that radiation exposure produces a negative impact on the processes of spermatogenesis associated with the disturbances of the microcirculation processes in the testes and the development of cellular and intracellular disintegration expressed as destructive changes in the cells leading to their death. The objective of the present study was to detect the ultrastructural abnormalities in the cells of Sertoli and spermatogonia under conditions of their exposure to radiation and to identify the peculiarities of their regeneration under the influence of the therapeutic and prophylactic application of low-intensity ultra-high frequency (UHF) electromagnetic radiation (EMR) and low-intensity low-frequency magnetic field (MF). The experiments were carried out on 28 non-pedigree mature male rats with the body weight 180-220 g that were divided into four groups. The first study group was comprised of the animals exposed to radiation followed by the application of low-intensity ultra-high frequency UHF electromagnetic radiation EMR. The rats in the second study group experienced effects of radiation and low-intensity low-frequency MF. The animals of the third (control) group were exposed to radiation alone, and those comprising the fourth group 1 (only radiation exposure) were considered to be intact. The studies with the use of electron microscopy showed that the therapeutic and prophylactic application of low-intensity ultra-high frequency (UHF) electromagnetic radiation and low-intensity low-frequency magnetic field caused the decrease in the number and the severity of post-radiation defects in the treated cells together with the increase of the number and size of mitochondria as well as hyperplasia of ribosomes; moreover, it promoted cellular and intracellular regeneration. UHF electromagnetic radiation had a more pronounced stimulating effect on the regeneration processes as compared with low-frequency MF. Particularly active processes of intracellular regeneration evolved in Sertoli cells; they were manifested as the increase in the number and size of mitochondria, enhanced hyperplasia of ribosomes, and formation of polysomes and new membranes of the granular endoplasmic reticulum. In spermatogonia, intracellular regeneration was less pronounced than in the Sertoli cells but was accompanied by enhanced cell regeneration and a greater number of reserve stem/progenitor cells. The results of the present study provide a rationale for the possibility of the application of a low-frequency magnetic field and especially UHF electromagnetic radiation for the further development of the promising therapeutic and preventive technologies with a view to their introduction into routine clinical practice dealing with radiation-induced pathology.

  3. 77 FR 51969 - Taking and Importing Marine Mammals: Taking Marine Mammals Incidental to Navy Operations of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... Sensor System Low Frequency Active Sonar AGENCY: National Marine Fisheries Service (NMFS), National... Sensor System Low Frequency Active (SURTASS LFA) sonar operations to the Chief of Naval Operations...

  4. 76 FR 53884 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to U.S. Navy Operations of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... Array Sensor System Low Frequency Active Sonar AGENCY: National Marine Fisheries Service (NMFS... conducting operations of Surveillance Towed Array Sensor System (SURTASS) Low Frequency Active (LFA) sonar...

  5. 75 FR 51443 - Taking and Importing Marine Mammals: Taking Marine Mammals Incidental to Navy Operations of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... Sensor System Low Frequency Active Sonar AGENCY: National Marine Fisheries Service (NMFS), National... Array Sensor System Low Frequency Active (SURTASS LFA) sonar operations to the Chief of Naval Operations...

  6. 76 FR 51352 - Taking and Importing Marine Mammals: Taking Marine Mammals Incidental to Navy Operations of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... Sensor System Low Frequency Active Sonar AGENCY: National Marine Fisheries Service (NMFS), National... Array Sensor System Low Frequency Active (SURTASS LFA) sonar operations to the Chief of Naval Operations...

  7. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.

    2015-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 900 observation angle, the low-frequency noise could be as much as 10dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite de-correlation region. Numerical predictions, based on three-dimensional RANS solutions for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region increases the low-frequency algebraic decay (the low frequency "rolloff") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal numbers less than 0.1. Secondly, the large-aspectratio theory is able to predict the low-frequency amplification due to the jet-edge interaction reasonably well, even for moderate aspect ratio nozzles. We show also that the noise predictions for smaller aspect ratio jets can be fine-tuned using the appropriate RANS-based mean flow and turbulence properties.

  8. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    NASA Astrophysics Data System (ADS)

    O'Toole, A.; Peña Arellano, F. E.; Rodionov, A. V.; Shaner, M.; Sobacchi, E.; Dergachev, V.; DeSalvo, R.; Asadoor, M.; Bhawal, A.; Gong, P.; Kim, C.; Lottarini, A.; Minenkov, Y.; Murphy, C.

    2014-07-01

    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.

  9. Shear-flow trapped-ion-mode interaction revisited. II. Intermittent transport associated with low-frequency zonal flow dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghizzo, A., E-mail: alain.ghizzo@univ-lorraine.fr; Palermo, F.

    We address the mechanisms underlying low-frequency zonal flow generation in turbulent system and the associated intermittent regime of ion-temperature-gradient (ITG) turbulence. This model is in connection with the recent observation of quasi periodic zonal flow oscillation at a frequency close to 2 kHz, at the low-high transition, observed in the ASDEX Upgrade [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)] and EAST tokamak [Xu et al., Phys. Rev. Lett 107, 125001 (2011)]. Turbulent bursts caused by the coupling of Kelvin-Helmholtz (KH) driven shear flows with trapped ion modes (TIMs) were investigated by means of reduced gyrokinetic simulations. It was foundmore » that ITG turbulence can be regulated by low-frequency meso-scale zonal flows driven by resonant collisionless trapped ion modes (CTIMs), through parametric-type scattering, a process in competition with the usual KH instability.« less

  10. The effect of the flexibility of hydrogen bonding network on low-frequency motions of amino acids. Evidence from Terahertz spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Li, Yin; Lukács, András; Bordács, Sándor; Móczár, János; Nyitrai, Miklós; Hebling, János

    2018-02-01

    Low-frequency modes of L-Asp and L-Asn were studied in the range from 0.1 to 3.0 THz using time-domain Terahertz spectroscopy and density functional theory calculation. The results show that PBE-D2 shows more success than BLYP-D2 in prediction of THz absorption spectra. To compare their low-frequency modes, we adopted ;vibrational character ID strips; proposed by Schmuttenmaer and coworkers [Journal of Physical Chemistry B, 117, 10444(2013)]. We found that the most intense THz absorption peaks of two compounds both involve severe distortion of their hydrogen bonding networks. Due to less rigid hydrogen bonding network in L-Asp, the side chain (carboxyl group) of L-Asp exhibits larger motions than that (carboxamide group) of L-Asn in low-frequency modes.

  11. Simple programmable voltage reference for low frequency noise measurements

    NASA Astrophysics Data System (ADS)

    Ivanov, V. E.; Chye, En Un

    2018-05-01

    The paper presents a circuit design of a low-noise voltage reference based on an electric double-layer capacitor, a microcontroller and a general purpose DAC. A large capacitance value (1F and more) makes it possible to create low-pass filter with a large time constant, effectively reducing low-frequency noise beyond its bandwidth. Choosing the optimum value of the resistor in the RC filter, one can achieve the best ratio between the transient time, the deviation of the output voltage from the set point and the minimum noise cut-off frequency. As experiments have shown, the spectral density of the voltage at a frequency of 1 kHz does not exceed 1.2 nV/√Hz the maximum deviation of the output voltage from the predetermined does not exceed 1.4 % and depends on the holding time of the previous value. Subsequently, this error is reduced to a constant value and can be compensated.

  12. A comparison of the far-infrared and low-frequency Raman spectra of glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Perova, T. S.; Vij, J. K.; Christensen, D. H.; Nielsen, O. F.

    1999-04-01

    Far-infrared and low-frequency Raman spectra in the wavenumber range from 15 to 500 cm -1 were recorded for glycerol, triacetin (glycerol triacetate) and o-terphenyl at temperatures from 253 to 355 K. The far-infrared spectra of glycerol appear complex compared with the spectra of triacetin owing to the presence of hydrogen bonding in glycerol. The experimental results obtained for o-terphenyl are in good agreement with normal mode analyses carried out for crystalline o-terphenyl (A. Criado, F.J. Bermejo, A. de Andres, Mol. Phys. 82 (1994) 787). The far-infrared results are compared with the low-frequency Raman spectra of these three glass-forming liquids. The difference in temperature dependences found from these spectra is explained on the basis of different temperature contributions of the relaxational and vibrational processes to the low-frequency vibrational spectra.

  13. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Toole, A., E-mail: amandajotoole@gmail.com, E-mail: riccardo.desalvo@gmail.com; Peña Arellano, F. E.; Rodionov, A. V.

    2014-07-15

    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organizedmore » Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.« less

  14. The impact of low-frequency and rare variants on lipid levels

    PubMed Central

    Surakka, Ida; Horikoshi, Momoko; Mägi, Reedik; Sarin, Antti-Pekka; Mahajan, Anubha; Lagou, Vasiliki; Marullo, Letizia; Ferreira, Teresa; Miraglio, Benjamin; Timonen, Sanna; Kettunen, Johannes; Pirinen, Matti; Karjalainen, Juha; Thorleifsson, Gudmar; Hägg, Sara; Hottenga, Jouke-Jan; Isaacs, Aaron; Ladenvall, Claes; Beekman, Marian; Esko, Tõnu; Ried, Janina S; Nelson, Christopher P; Willenborg, Christina; Gustafsson, Stefan; Westra, Harm-Jan; Blades, Matthew; de Craen, Anton JM; de Geus, Eco J; Deelen, Joris; Grallert, Harald; Hamsten, Anders; Havulinna, Aki S.; Hengstenberg, Christian; Houwing-Duistermaat, Jeanine J; Hyppönen, Elina; Karssen, Lennart C; Lehtimäki, Terho; Lyssenko, Valeriya; Magnusson, Patrik KE; Mihailov, Evelin; Müller-Nurasyid, Martina; Mpindi, John-Patrick; Pedersen, Nancy L; Penninx, Brenda WJH; Perola, Markus; Pers, Tune H; Peters, Annette; Rung, Johan; Smit, Johannes H; Steinthorsdottir, Valgerdur; Tobin, Martin D; Tsernikova, Natalia; van Leeuwen, Elisabeth M; Viikari, Jorma S; Willems, Sara M; Willemsen, Gonneke; Schunkert, Heribert; Erdmann, Jeanette; Samani, Nilesh J; Kaprio, Jaakko; Lind, Lars; Gieger, Christian; Metspalu, Andres; Slagboom, P Eline; Groop, Leif; van Duijn, Cornelia M; Eriksson, Johan G; Jula, Antti; Salomaa, Veikko; Boomsma, Dorret I; Power, Christine; Raitakari, Olli T; Ingelsson, Erik; Järvelin, Marjo-Riitta; Stefansson, Kari; Franke, Lude; Ikonen, Elina; Kallioniemi, Olli; Pietiäinen, Vilja; Lindgren, Cecilia M; Thorsteinsdottir, Unnur; Palotie, Aarno; McCarthy, Mark I; Morris, Andrew P; Prokopenko, Inga; Ripatti, Samuli

    2016-01-01

    Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes imputation in 62,166 samples, we identify association to lipids in 93 loci including 79 previously identified loci with new lead-SNPs, 10 new loci, 15 loci with a low-frequency and 10 loci with missense lead-SNPs, and, 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC, and APOE), or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2), explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for LDL-C and TC. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to re-sequencing. PMID:25961943

  15. Characterization and Impact of Low Frequency Wind Turbine Noise Emissions

    NASA Astrophysics Data System (ADS)

    Finch, James

    Wind turbine noise is a complex issue that requires due diligence to minimize any potential impact on quality of life. This study enhances existing knowledge of wind turbine noise through focused analyses of downwind sound propagation, directionality, and the low frequency component of the noise. Measurements were conducted at four wind speeds according to a design of experiments at incremental distances and angles. Wind turbine noise is shown to be highly directional, while downwind sound propagation is spherical with limited ground absorption. The noise is found to have a significant low frequency component that is largely independent of wind speed over the 20-250 Hz range. The generated low frequency noise is shown to be audible above 40 Hz at the MOE setback distance of 550 m. Infrasound levels exhibit higher dependency on wind speed, but remain below audible levels up to 15 m/s.

  16. Low-frequency noise effect on terahertz tomography using thermal detectors.

    PubMed

    Guillet, J P; Recur, B; Balacey, H; Bou Sleiman, J; Darracq, F; Lewis, D; Mounaix, P

    2015-08-01

    In this paper, the impact of low-frequency noise on terahertz-computed tomography (THz-CT) is analyzed for several measurement configurations and pyroelectric detectors. We acquire real noise data from a continuous millimeter-wave tomographic scanner in order to figure out its impact on reconstructed images. Second, noise characteristics are quantified according to two distinct acquisition methods by (i) extrapolating from experimental acquisitions a sinogram for different noise backgrounds and (ii) reconstructing the corresponding spatial distributions in a slice using a CT reconstruction algorithm. Then we describe the low-frequency noise fingerprint and its influence on reconstructed images. Thanks to the observations, we demonstrate that some experimental choices can dramatically affect the 3D rendering of reconstructions. Thus, we propose some experimental methodologies optimizing the resulting quality and accuracy of the 3D reconstructions, with respect to the low-frequency noise characteristics observed during acquisitions.

  17. An all digital low data rate communication system

    NASA Technical Reports Server (NTRS)

    Chen, C.; Fan, M.

    1973-01-01

    The advent of digital hardwares has made it feasible to implement many communication system components digitally. With the exception of frequency down conversion, the proposed low data rate communication system uses digital hardwares completely. Although the system is designed primarily for deep space communications with large frequency uncertainty and low signal-to-noise ratio, it is also suitable for other low data rate applications with time-shared operation among a number of channels. Emphasis is placed on the fast Fourier transform receiver and the automatic frequency control via digital filtering. The speed available from the digital system allows sophisticated signal processing to reduce frequency uncertainty and to increase the signal-to-noise ratio. The practical limitations of the system such as the finite register length are examined. It is concluded that the proposed all-digital system is not only technically feasible but also has potential cost reduction over the existing receiving systems.

  18. [Electric traction magnetic fields of ultra-low frequency as an occupational risk factor of ischemic heart disease].

    PubMed

    Ptitsyna, N G; Kudrin, V A; Villorezi, D; Kopytenko, Iu A; Tiasto, M I; Kopytenko, E A; Bochko, V A; Iuchchi, N

    1996-01-01

    The study was inspired by earlier results that displayed influence of variable natural geomagnetic field (0.005-10 Hz range-ultra-low frequencies) on circulatory system, indicated possible correlation between industrial ultra-low frequency fields and prevalence of myocardial infarction. The authors conducted unique measurements of ultra-low frequency fields produced by electric engines. The results were compared with data on morbidity among railway transport workers. The findings are that level of magnetic variations in electric locomotive cabin can exceed 280 micro Tesla, whereas that in car sections reaches 50 micro Tesla. Occurrence of coronary heart disease among the locomotive operators appeared to be 2.0 + 0.2 times higher than that among the car section operators. Higher risk of coronary heart disease in the locomotive operators is associated with their increased occupational magnetic load.

  19. Modulated microwave microscopy and probes used therewith

    DOEpatents

    Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

    2012-09-11

    A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

  20. Ionization-Assisted Getter Pumping for Ultra-Stable Trapped Ion Frequency Standards

    NASA Technical Reports Server (NTRS)

    Tjoelker, Robert L.; Burt, Eric A.

    2010-01-01

    A method eliminates (or recovers from) residual methane buildup in getter-pumped atomic frequency standard systems by applying ionizing assistance. Ultra-high stability trapped ion frequency standards for applications requiring very high reliability, and/or low power and mass (both for ground-based and space-based platforms) benefit from using sealed vacuum systems. These systems require careful material selection and system processing (cleaning and high-temperature bake-out). Even under the most careful preparation, residual hydrogen outgassing from vacuum chamber walls typically limits the base pressure. Non-evaporable getter pumps (NEGs) provide a convenient pumping option for sealed systems because of low mass and volume, and no power once activated. An ion gauge in conjunction with a NEG can be used to provide a low mass, low-power method for avoiding the deleterious effects of methane buildup in high-performance frequency standard vacuum systems.

  1. Neuro-muscular transmission in blood vessels: phasic and tonic components. An in-vitro study of mesenteric arteries of the rat.

    PubMed

    Sjöblom-Widfeldt, N

    1990-01-01

    For many years noradrenaline was considered to be the exclusive transmitter released from sympathetic nerves. However, during recent years both ATP and NPY have been suggested to be co-transmitters to noradrenaline in these nerves. The present study aimed to investigate the functional relationship between these suggested transmitters during nerve stimulation with different frequencies and in different extracellular calcium concentrations. Also the importance of the pattern of nerve stimulation and the potentiation of the neurogenic response after a period of high-frequency nerve stimulation were investigated. Contractions caused by nerve stimulation and applied agonists were investigated in segments of small mesenteric arteries from rat. The biophysical, electrophysiological, and pharmacological properties of these vessels are well characterized in previous studies. The rapid contraction caused by a single nerve stimulus, the "single twitch", and the initial, phasic contraction caused by high-frequency nerve stimulation were only slightly affected by alpha-adrenoceptor blockade with prazosin, whereas the tonic response to high-frequency stimulation was markedly reduced. The phasic responses and those to low-frequency nerve stimulation thus appear to be due mainly to a non-adrenergic transmitter. After inhibiting the response to exogenous ATP by alpha beta-methylene ATP, the response to single impulses and to low-frequency nerve stimulation were markedly reduced, while those to high-frequency stimulation were unaffected. This suggests that ATP acts as a true transmitter in sympathetic nerves, being responsible mainly for rapid responses to low-frequency stimulation, and for the initial part of responses to high-frequency stimulation. When alpha beta-methylene ATP and prazosin were given in combination, no contraction was obtained during nerve stimulation at any frequency. However, if in this situation a contraction was induced by e.g. exogenous vasopressin, field stimulation caused a further, slow contraction. This additional response was undoubtedly neurogenic, but required high-frequency nerve stimulation. The response to nerve stimulation was found to be calcium-dependent, the calcium-dependency being more pronounced at low than at high stimulation frequencies. A continuous, high-frequency (8-16 Hz) nerve stimulation could greatly (5-15 fold) enhance the response to subsequent low-frequency nerve stimulation. This potentiation increased with the frequency of the conditioning stimulation and, within limits, with the number of impulses delivered. Also the extracellular calcium concentration during the conditioning stimulation determined the magnitude of the potentiation. This post-tetanic potentiation has many characteristics in common with the post-tetanic potentiation studied in the central and somatomotor nervous system.(ABSTRACT TRUNCATED AT 400 WORDS)

  2. The Shape of Things to Come: Evaluating Word Frequency as a Continuous Variable in Recognition Memory

    ERIC Educational Resources Information Center

    Hemmer, Pernille; Criss, Amy H.

    2013-01-01

    The role of experience in memory, specifically the word frequency (WF) mirror effect showing higher hit rates and lower false alarm rates for low-frequency words, is one of the hallmarks of memory. However, this "regularity of memory" is limited because normative WF has been treated as discrete (low vs. high). We evaluate the extent to…

  3. The seasonal predictability of blocking frequency in two seasonal prediction systems (CMCC, Met-Office) and the associated representation of low-frequency variability.

    NASA Astrophysics Data System (ADS)

    Athanasiadis, Panos; Gualdi, Silvio; Scaife, Adam A.; Bellucci, Alessio; Hermanson, Leon; MacLachlan, Craig; Arribas, Alberto; Materia, Stefano; Borelli, Andrea

    2014-05-01

    Low-frequency variability is a fundamental component of the atmospheric circulation. Extratropical teleconnections, the occurrence of blocking and the slow modulation of the jet streams and storm tracks are all different aspects of low-frequency variability. Part of the latter is attributed to the chaotic nature of the atmosphere and is inherently unpredictable. On the other hand, primarily as a response to boundary forcings, tropospheric low-frequency variability includes components that are potentially predictable. Seasonal forecasting faces the difficult task of predicting these components. Particularly referring to the extratropics, the current generation of seasonal forecasting systems seem to be approaching this target by realistically initializing most components of the climate system, using higher resolution and utilizing large ensemble sizes. Two seasonal prediction systems (Met-Office GloSea and CMCC-SPS-v1.5) are analyzed in terms of their representation of different aspects of extratropical low-frequency variability. The current operational Met-Office system achieves unprecedented high scores in predicting the winter-mean phase of the North Atlantic Oscillation (NAO, corr. 0.74 at 500 hPa) and the Pacific-N. American pattern (PNA, corr. 0.82). The CMCC system, considering its small ensemble size and course resolution, also achieves good scores (0.42 for NAO, 0.51 for PNA). Despite these positive features, both models suffer from biases in low-frequency variance, particularly in the N. Atlantic. Consequently, it is found that their intrinsic variability patterns (sectoral EOFs) differ significantly from the observed, and the known teleconnections are underrepresented. Regarding the representation of N. hemisphere blocking, after bias correction both systems exhibit a realistic climatology of blocking frequency. In this assessment, instantaneous blocking and large-scale persistent blocking events are identified using daily geopotential height fields at 500 hPa. Given a documented strong relationship between high-latitude N. Atlantic blocking and the NAO, one would expect a predictive skill for the seasonal frequency of blocking comparable to that of the NAO. However, this remains elusive. Future efforts should be in the direction of reducing model biases not only in the mean but also in variability (band-passed variances).

  4. Advanced ACTPol Low-Frequency Array: Readout and Characterization of Prototype 27 and 39 GHz Transition Edge Sensors

    NASA Astrophysics Data System (ADS)

    Koopman, B. J.; Cothard, N. F.; Choi, S. K.; Crowley, K. T.; Duff, S. M.; Henderson, S. W.; Ho, S. P.; Hubmayr, J.; Gallardo, P. A.; Nati, F.; Niemack, M. D.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Wollack, E. J.

    2018-05-01

    Advanced ACTPol (AdvACT) is a third-generation polarization upgrade to the Atacama Cosmology Telescope, designed to observe the cosmic microwave background (CMB). AdvACT expands on the 90 and 150 GHz transition edge sensor (TES) bolometer arrays of the ACT Polarimeter (ACTPol), adding both high-frequency (HF, 150/230 GHz) and low-frequency (LF, 27/39 GHz) multichroic arrays. The addition of the high- and low-frequency detectors allows for the characterization of synchrotron and spinning dust emission at the low frequencies and foreground emission from galactic dust and dusty star-forming galaxies at the high frequencies. The increased spectral coverage of AdvACT will enable a wide range of CMB science, such as improving constraints on dark energy, the sum of the neutrino masses, and the existence of primordial gravitational waves. The LF array will be the final AdvACT array, replacing one of the MF arrays for a single season. Prior to the fabrication of the final LF detector array, we designed and characterized prototype TES bolometers. Detector geometries in these prototypes are varied in order to inform and optimize the bolometer designs for the LF array, which requires significantly lower noise levels and saturation powers (as low as {˜ } 1 pW) than the higher-frequency detectors. Here we present results from tests of the first LF prototype TES detectors for AdvACT, including measurements of the saturation power, critical temperature, thermal conductance, and time constants. We also describe the modifications to the time-division SQUID readout architecture compared to the MF and HF arrays.

  5. Rate and timing cues associated with the cochlear amplifier: level discrimination based on monaural cross-frequency coincidence detection.

    PubMed

    Heinz, M G; Colburn, H S; Carney, L H

    2001-10-01

    The perceptual significance of the cochlear amplifier was evaluated by predicting level-discrimination performance based on stochastic auditory-nerve (AN) activity. Performance was calculated for three models of processing: the optimal all-information processor (based on discharge times), the optimal rate-place processor (based on discharge counts), and a monaural coincidence-based processor that uses a non-optimal combination of rate and temporal information. An analytical AN model included compressive magnitude and level-dependent-phase responses associated with the cochlear amplifier, and high-, medium-, and low-spontaneous-rate (SR) fibers with characteristic frequencies (CFs) spanning the AN population. The relative contributions of nonlinear magnitude and nonlinear phase responses to level encoding were compared by using four versions of the model, which included and excluded the nonlinear gain and phase responses in all possible combinations. Nonlinear basilar-membrane (BM) phase responses are robustly encoded in near-CF AN fibers at low frequencies. Strongly compressive BM responses at high frequencies near CF interact with the high thresholds of low-SR AN fibers to produce large dynamic ranges. Coincidence performance based on a narrow range of AN CFs was robust across a wide dynamic range at both low and high frequencies, and matched human performance levels. Coincidence performance based on all CFs demonstrated the "near-miss" to Weber's law at low frequencies and the high-frequency "mid-level bump." Monaural coincidence detection is a physiologically realistic mechanism that is extremely general in that it can utilize AN information (average-rate, synchrony, and nonlinear-phase cues) from all SR groups.

  6. Feedback and feedforward control of frequency tuning to naturalistic stimuli.

    PubMed

    Chacron, Maurice J; Maler, Leonard; Bastian, Joseph

    2005-06-08

    Sensory neurons must respond to a wide variety of natural stimuli that can have very different spatiotemporal characteristics. Optimal responsiveness to subsets of these stimuli can be achieved by devoting specialized neural circuitry to different stimulus categories, or, alternatively, this circuitry can be modulated or tuned to optimize responsiveness to current stimulus conditions. This study explores the mechanisms that enable neurons within the initial processing station of the electrosensory system of weakly electric fish to shift their tuning properties based on the spatial extent of the stimulus. These neurons are tuned to low frequencies when the stimulus is restricted to a small region within the receptive field center but are tuned to higher frequencies when the stimulus impinges on large regions of the sensory epithelium. Through a combination of modeling and in vivo electrophysiology, we reveal the respective contributions of the filtering characteristics of extended dendritic structures and feedback circuitry to this shift in tuning. Our results show that low-frequency tuning can result from the cable properties of an extended dendrite that conveys receptor-afferent information to the cell body. The shift from low- to high-frequency tuning, seen in response to spatially extensive stimuli, results from increased wide-band input attributable to activation of larger populations of receptor afferents, as well as the activation of parallel fiber feedback from the cerebellum. This feedback provides a cancellation signal with low-pass characteristics that selectively attenuates low-frequency responsiveness. Thus, with spatially extensive stimuli, these cells preferentially respond to the higher-frequency components of the receptor-afferent input.

  7. REPRODUCING THE CORRELATIONS OF TYPE C LOW-FREQUENCY QUASI-PERIODIC OSCILLATION PARAMETERS IN XTE J1550–564 WITH A SPIRAL STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varniere, Peggy; Vincent, Frederic H., E-mail: varniere@apc.univ-paris7.fr

    While it has been observed that the parameters intrinsic to the type C low-frequency quasi-periodic oscillations are related in a nonlinear manner among themselves, there has been, up to now, no model to explain or reproduce how the frequency, the FWHM, and the rms amplitude of the type C low-frequency quasi-periodic oscillations behave with respect to one another. Here we are using a simple toy model representing the emission from a standard disk and a spiral such as that caused by the accretion–ejection instability to reproduce the overall observed behavior and shed some light on its origin. This allows usmore » to prove the ability of such a spiral structure to be at the origin of flux modulation over more than an order of magnitude in frequency.« less

  8. Low-frequency 1/f noise in graphene devices

    NASA Astrophysics Data System (ADS)

    Balandin, Alexander A.

    2013-08-01

    Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.

  9. Comparison of sound power radiation from isolated airfoils and cascades in a turbulent flow.

    PubMed

    Blandeau, Vincent P; Joseph, Phillip F; Jenkins, Gareth; Powles, Christopher J

    2011-06-01

    An analytical model of the sound power radiated from a flat plate airfoil of infinite span in a 2D turbulent flow is presented. The effects of stagger angle on the radiated sound power are included so that the sound power radiated upstream and downstream relative to the fan axis can be predicted. Closed-form asymptotic expressions, valid at low and high frequencies, are provided for the upstream, downstream, and total sound power. A study of the effects of chord length on the total sound power at all reduced frequencies is presented. Excellent agreement for frequencies above a critical frequency is shown between the fast analytical isolated airfoil model presented in this paper and an existing, computationally demanding, cascade model, in which the unsteady loading of the cascade is computed numerically. Reasonable agreement is also observed at low frequencies for low solidity cascade configurations. © 2011 Acoustical Society of America

  10. Low-frequency 1/f noise in graphene devices.

    PubMed

    Balandin, Alexander A

    2013-08-01

    Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.

  11. Harmonic generation by yeast cells in response to low-frequency electric fields

    NASA Astrophysics Data System (ADS)

    Nawarathna, D.; Claycomb, J. R.; Cardenas, G.; Gardner, J.; Warmflash, D.; Miller, J. H., Jr.; Widger, W. R.

    2006-05-01

    We report on harmonic generation by budding yeast cells (Saccharomyces cerevisiae, 108cells/ml ) in response to sinusoidal electric fields with amplitudes ranging from zero to 5V/cm in the frequency range 10-300Hz . The cell-generated harmonics are found to exhibit strong amplitude and frequency dependence. Sodium metavanadate, an inhibitor of the proton pump known as H+ -ATPase, and glucose, a substrate of H+ -ATPase, are found to increase harmonic production at low amplitudes while reducing it at large amplitudes. This P-type proton pump can be driven by an oscillatory transmembrane potential, and its nonlinear response is believed to be largely responsible for harmonic production at low frequencies in yeast cells. We find that the observed harmonics show dramatic changes with time and in their field and frequency dependence after perturbing the system by adding an inhibitor, substrate, or membrane depolarizer to the cell suspension.

  12. Masking in three pinnipeds: underwater, low-frequency critical ratios.

    PubMed

    Southall, B L; Schusterman, R J; Kastak, D

    2000-09-01

    Behavioral techniques were used to determine underwater masked hearing thresholds for a northern elephant seal (Mirounga angustirostris), a harbor seal (Phoca vitulina), and a California sea lion (Zalophus californianus). Octave-band white noise maskers were centered at five test frequencies ranging from 200 to 2500 Hz; a slightly wider noise band was used for testing at 100 Hz. Critical ratios were calculated at one masking noise level for each test frequency. Above 200 Hz, critical ratios increased with frequency. This pattern is similar to that observed in most animals tested, and indicates that these pinnipeds lack specializations for detecting low-frequency tonal sounds in noise. However, the individual pinnipeds in this study, particularly the northern elephant seal, detected signals at relatively low signal-to-noise ratios. These results provide a means of estimating zones of auditory masking for pinnipeds exposed to anthropogenic noise sources.

  13. Theoretical modeling of infrared spectra of aspirin and its deuterated derivative

    NASA Astrophysics Data System (ADS)

    Boczar, Marek; Wójcik, Marek J.; Szczeponek, Krzysztof; Jamróz, Dorota; Zi e̡ba, Adam; Kawałek, Bożena

    2003-01-01

    Theoretical simulation of the νs stretching band is presented for aspirin (acetylsalicylic acid) and its OD derivative at 300 and 77 K. The simulation takes into account an adiabatic coupling between the high-frequency O-H(D) stretching and the low-frequency intermolecular O⋯O stretching modes, linear and quadratic distortions of the potential energy for the low-frequency vibrations in the excited state of the O-H(D) stretching vibration, resonance interaction between two hydrogen bonds in the dimer, and Fermi resonance between the O-H(D) stretching and the overtone of the O-H(D) bending vibrations. The effect of deuteration and the temperature has been successfully reproduced by our model calculations. Infrared, far-infrared, Raman and low-frequency Raman spectra of the polycrystalline aspirin have been measured. The geometry and experimental frequencies are compared with the results of our B3LYP/6-31++G** calculations.

  14. A Wide Band Absorbing Material Design Using Band-Pass Frequency Selective Surface

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Xu, Qiang; Liu, Ting; Zheng, Dianliang; Zhou, Li

    2018-03-01

    Based on the high frequency advantage characteristics of the Fe based absorbing coating, a method for designing the structure of broadband absorbing structure by using frequency selective surface (FSS) is proposed. According to the transmission and reflection characteristic of the different size FSS structure, the frequency variation characteristic was simulated. Secondly, the genetic algorithm was used to optimize the high frequency broadband absorbing materials, including the single and double magnetic layer material. Finally, the absorbing characteristics in iron layer were analyzed as the band pass FSS structure was embedded, the results showed that the band-pass FSS had the influence on widening the absorbing frequency. As the FSS was set as the bottom layer, it was effective to achieve the good absorbing property in low frequency and the high frequency absorbing performance was not weakened, because the band-pass FSS led the low frequency absorption and the high frequency shielding effect. The results of this paper are of guiding significance for designing and manufacturing the broadband absorbing materials.

  15. SSD with generalized phase modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothenberg, J.

    1996-01-09

    Smoothing by spectral dispersion (SSD) with standard frequency modulation (FM), although simple to implement, has the disadvantage that low spatial frequencies present in the spectrum of the target illumination are not smoothed as effectively as with a more general smoothing method (eg, induced spatial incoherence method). The reduced smoothing performance of standard FM-SSD can result in spectral power of the speckle noise at these low spatial frequencies as much as one order of magnitude larger than that achieved with a more general method. In fact, at small integration times FM-SSD has no smoothing effect at all for a broad bandmore » of low spatial frequencies. This effect may have important implications for both direct and indirect drive ICF.« less

  16. Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments

    PubMed Central

    Macias-Bobadilla, Gonzalo; Rodríguez-Reséndiz, Juvenal; Mota-Valtierra, Georgina; Soto-Zarazúa, Genaro; Méndez-Loyola, Maurino; Garduño-Aparicio, Mariano

    2016-01-01

    Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function) applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA) for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10−9 Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation. PMID:26999138

  17. Fitting the low-frequency Raman spectra to boson peak models: glycerol, triacetin and polystyrene

    NASA Astrophysics Data System (ADS)

    Kirillov, S. A.; Perova, T. S.; Faurskov Nielsen, O.; Praestgaard, E.; Rasmussen, U.; Kolomiyets, T. M.; Voyiatzis, G. A.; Anastasiadis, S. H.

    1999-04-01

    A computational approach was elaborated to explicitly account for the Rayleigh line wing, the Boson peak and vibrational contributions to the low-frequency Raman spectra of amorphous solids and viscous liquids. It was shown that the low-frequency Raman spectra of glycerol and polystyrene consist of the Rayleigh contribution of Lorentzian form and the Boson peak which profile follows the predictions of the theory by Martin and Brenig in the version by Malinovsky and Sokolov. In the case of triacetin, the Boson peaks decay faster in their high-frequency side than the above theory predicts. Their form can be successfully modeled with a newly introduced empirical function intermediate between the Martin-Brenig and Malinovsky-Sokolov predictions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Liang; Au-Yeung, Ka Yan; Yang, Min

    Damping of low frequency vibration by lightweight and compact devices has been a serious challenge in various areas of engineering science. Here we report the experimental realization of a type of miniature low frequency vibration dampers based on decorated membrane resonators. At frequency around 150 Hz, two dampers, each with outer dimensions of 28 mm in diameter and 5 mm in height, and a total mass of 1.78 g which is less than 0.6% of the host structure (a nearly free-standing aluminum beam), can reduce its vibrational amplitude by a factor of 1400, or limit its maximum resonance quality factormore » to 18. Furthermore, the conceptual design of the dampers lays the foundation and demonstrates the potential of further miniaturization of low frequency dampers.« less

  19. Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments.

    PubMed

    Macias-Bobadilla, Gonzalo; Rodríguez-Reséndiz, Juvenal; Mota-Valtierra, Georgina; Soto-Zarazúa, Genaro; Méndez-Loyola, Maurino; Garduño-Aparicio, Mariano

    2016-03-16

    Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function) applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA) for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10(-9) Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation.

  20. Theory and observations of high frequency Alfvén eigenmodes in low aspect ratio plasmas

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.; Fredrickson, E.; Belova, E.; Cheng, C. Z.; Gates, D.; Kaye, S.; White, R.

    2003-04-01

    New observations of sub-cyclotron frequency instability in low aspect ratio plasmas in national spherical torus experiments are reported. The frequencies of observed instabilities correlate with the characteristic Alfvén velocity of the plasma. A theory of localized compressional Alfvén eigenmodes (CAE) and global shear Alfvén eigenmodes (GAE) in low aspect ratio plasmas is presented to explain the observed high frequency instabilities. CAEs/GAEs are driven by the velocity space gradient of energetic super-Alfvénic beam ions via Doppler shifted cyclotron resonances. One of the main damping mechanisms of GAEs, the continuum damping, is treated perturbatively within the framework of ideal MHD. Properties of these cyclotron instability ions are presented.

  1. Enhanced therapeutic anti-inflammatory effect of betamethasone on topical administration with low-frequency, low-intensity (20 kHz, 100 mW/cm(2)) ultrasound exposure on carrageenan-induced arthritis in a mouse model.

    PubMed

    Cohen, Gadi; Natsheh, Hiba; Sunny, Youhan; Bawiec, Christopher R; Touitou, Elka; Lerman, Melissa A; Lazarovici, Philip; Lewin, Peter A

    2015-09-01

    The purpose of this work was to investigate whether low-frequency, low-intensity (20 kHz, <100 mW/cm(2), spatial-peak, temporal-peak intensity) ultrasound, delivered with a lightweight (<100 g), tether-free, fully wearable, battery-powered applicator, is capable of reducing inflammation in a mouse model of rheumatoid arthritis. The therapeutic, acute, anti-inflammatory effect was estimated from the relative swelling induced in mice hindlimb paws. In an independent, indirect approach, the inflammation was bio-imaged by measuring glycolytic activity with near-infrared labeled 2-deoxyglucose. The outcome of the experiments indicated that the combination of ultrasound exposure and topical application of 0.1% (w/w) betamethasone gel resulted in statistically significantly (p < 0.05) enhanced anti-inflammatory activity in comparison with drug or ultrasound treatment alone. The present study underscores the potential benefits of low-frequency, low-intensity ultrasound-assisted drug delivery. However, the proof of concept presented indicates the need for additional experiments to systematically evaluate and optimize the potential of, and the conditions for, tolerable low-frequency, low-intensity ultrasound-promoted non-invasive drug delivery. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Low- and high-frequency transcutaneous electrical nerve stimulation have no deleterious or teratogenic effects on pregnant mice.

    PubMed

    Yokoyama, L M; Pires, L A; Ferreira, E A Gonçalves; Casarotto, R A

    2015-06-01

    To evaluate the effects of application of transcutaneous electrical nerve stimulation (TENS) at low and high frequencies to the abdomens of Swiss mice throughout pregnancy. Experimental animal study. Research laboratory. Thirty Swiss mice received TENS throughout pregnancy. They were divided into three groups (n=10): placebo, low-frequency TENS (LF group) and high-frequency TENS (HF group). In the placebo group, the electrodes were applied to the abdominal region without any electrical current. In the LF group, the frequency was 10 Hz, pulse duration was 200 μs and intensity started at 2 mA. In the HF group, the same parameters were applied and the frequency was 150 Hz. All stimulation protocols were applied for 20 min/day from Day 0 until Day 20. The pregnant mice were weighed on Days 0, 7, 14 and 20 to verify weekly weight gain by two-way analysis of variance. The numbers of fetuses, placentas, implantations, resorptions and major external fetal malformations on Day 20 were analysed using the Kruskal-Wallis test. No significant differences were found between the placebo and TENS groups (P>0.05). Application of low- and high-frequency TENS to the abdomens of pregnant mice did not cause any deleterious or major teratogenic effects. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  3. Investigation of a L1-optimized choke ring ground plane for a low-cost GPS receiver-system

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Schwieger, Volker

    2018-01-01

    Besides the geodetic dual-frequency GNSS receivers-systems (receiver and antenna), there are also low-cost single-frequency GPS receiver-systems. The multipath effect is a limiting factor of accuracy for both geodetic dual-frequency and low-cost single-frequency GPS receivers. And the multipath effect is for the short baselines dominating error (typical for the monitoring in Engineering Geodesy). So accuracy and reliability of GPS measurement for monitoring can be improved by reducing the multipath signal. In this paper, the self-constructed L1-optimized choke ring ground plane (CR-GP) is applied to reduce the multipath signal. Its design will be described and its performance will be investigated. The results show that the introduced low-cost single-frequency GPS receiver-system, which contains the Ublox LEA-6T single-frequency GPS receiver and Trimble Bullet III antenna with a self-constructed L1-optimized CR-GP, can reach standard deviations of 3 mm in east, 5 mm in north and 9 mm in height in the test field which has many reflectors. This accuracy is comparable with the geodetic dual-frequency GNSS receiver-system. The improvement of the standard deviation of the measurement using the CR-GP is about 50 % and 35 % compared to the used antenna without shielding and with flat ground plane respectively.

  4. Masking of low-frequency signals by high-frequency, high-level narrow bands of noisea

    PubMed Central

    Patra, Harisadhan; Roup, Christina M.; Feth, Lawrence L.

    2011-01-01

    Low-frequency masking by intense high-frequency noise bands, referred to as remote masking (RM), was the first evidence to challenge energy-detection models of signal detection. Its underlying mechanisms remain unknown. RM was measured in five normal-hearing young-adults at 250, 350, 500, and 700 Hz using equal-power, spectrally matched random-phase noise (RPN) and low-noise noise (LNN) narrowband maskers. RM was also measured using equal-power, two-tone complex (TC2) and eight-tone complex (TC8). Maskers were centered at 3000 Hz with one or two equivalent rectangular bandwidths (ERBs). Masker levels varied from 80 to 95 dB sound pressure level in 5 dB steps. LNN produced negligible masking for all conditions. An increase in bandwidth in RPN yielded greater masking over a wider frequency region. Masking for TC2 was limited to 350 and 700 Hz for one ERB but shifted to only 700 Hz for two ERBs. A spread of masking to 500 and 700 Hz was observed for TC8 when the bandwidth was increased from one to two ERBs. Results suggest that high-frequency noise bands at high levels could generate significant low-frequency masking. It is possible that listeners experience significant RM due to the amplification of various competing noises that might have significant implications for speech perception in noise. PMID:21361445

  5. Cholinergic enhancement of visual attention and neural oscillations in the human brain.

    PubMed

    Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon

    2012-03-06

    Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Reticular lamina and basilar membrane vibrations in the basal turn of gerbil and mouse cochleae

    NASA Astrophysics Data System (ADS)

    Ren, Tianying; He, Wenxuan

    2018-05-01

    Low-coherence interferometry in living cochleae has provided valuable information for understanding cochlear micromechanics. A recent measurement of the reticular lamina and basilar membrane vibrations in mouse cochleae, however, is inconsistent with data collected from guinea pig cochleae. To determine whether a species difference accounts for the observed difference, a custom-built heterodyne low-coherence interferometer was used to measure reticular lamina and basilar membrane vibrations at the basal turn of sensitive gerbil and mouse cochleae. For the gerbil and mouse, both the reticular lamina and basilar membrane vibrations show sharp tuning and nonlinear compressive growth near the best frequency. The magnitude of the reticular lamina vibration is significantly greater than that of the basilar membrane vibration not only near the best frequency, but also at low frequencies. The phase of the reticular lamina vibration leads the basilar membrane phase by up to 180-degrees at low frequencies, and this phase lead decreases with frequency, approaching zero near the best frequency. The best frequency of the reticular lamina and basilar membrane vibrations at the cochlear basal turn in mice is significantly higher than that in gerbils. Besides this difference, cochlear micromechanical responses in the gerbil are similar to those in the mouse. Thus, the current results indicate that gerbil and mouse cochleae detect and process sounds likely through a similar micromechanical mechanism.

  7. Effect of renal nerve stimulation on responsiveness of the rat renal vasculature.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2002-11-01

    When the renal nerves are stimulated with sinusoidal stimuli over the frequency range 0.04-0.8 Hz, low (< or =0.4 Hz)- but not high (> or =0.4 Hz)-frequency oscillations appear in renal blood flow (RBF) and are proposed to increase responsiveness of the renal vasculature to stimuli. This hypothesis was tested in anesthetized rats in which RBF responses to intrarenal injection of norepinephrine and angiotensin and to reductions in renal arterial pressure (RAP) were determined during conventional rectangular pulse and sinusoidal renal nerve stimulation. Conventional rectangular pulse renal nerve stimulation decreased RBF at 2 Hz but not at 0.2 or 1.0 Hz. Sinusoidal renal nerve stimulation elicited low-frequency oscillations (< or =0.4 Hz) in RBF only when the basal carrier signal frequency produced renal vasoconstriction, i.e., at 5 Hz but not at 1 Hz. Regardless of whether renal vasoconstriction occurred, neither conventional rectangular pulse nor sinusoidal renal nerve stimulation altered renal vasoconstrictor responses to norepinephrine and angiotensin. The RBF response to reduction in RAP was altered by both conventional rectangular pulse and sinusoidal renal nerve stimulation only when renal vasoconstriction occurred: the decrease in RBF during reduced RAP was greater. Sinusoidal renal nerve stimulation with a renal vasoconstrictor carrier frequency results in a decrease in RBF with superimposed low-frequency oscillations. However, these low-frequency RBF oscillations do not alter renal vascular responsiveness to vasoconstrictor stimuli.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivasakthi, P.; Sekar, R.; Bapu, G.N.K.Ramesh, E-mail: bapu2657@yahoo.com

    Highlights: • Nickel deposits from sulphamate solutions using pulse method are prepared. • Effect of duty cycle and frequency are studied. • XRD, SEM and AFM of the nickel deposits are characterized. • Corrosion characteristics of the nickel deposit are reported. - Abstract: Nickel deposits have been obtained on mild steel substrate by pulse current (PC) electrodeposition method using nickel sulphamate electrolyte. Micro hardness values increased with decreasing duty cycle and pulse frequency. X-ray diffraction studies revealed that (2 0 0) plane was predominant and the nickel deposit obtained at low duty cycle and low frequency has the smallest grainmore » size. The surface morphology of the coatings was explored by scanning electron microscopy (SEM) and atomic force microscopy. These studies showed that the microstructure of the nickel coatings changed from pyramidal structure to homogeneous structure with increasing duty cycle and pulse frequencies. The corrosion resistance of coatings was evaluated by potentiodynamic polarization and electrochemical impedance studies in 3.5 wt% sodium chloride (NaCl) solutions. An enhancement of the corrosion resistance, charge-transfer resistance and wear resistance has been obtained at low duty cycle and low frequencies.« less

  9. Mapping of Low-Frequency Raman Modes in CVD-Grown Transition Metal Dichalcogenides: Layer Number, Stacking Orientation and Resonant Effects

    PubMed Central

    O’Brien, Maria; McEvoy, Niall; Hanlon, Damien; Hallam, Toby; Coleman, Jonathan N.; Duesberg, Georg S.

    2016-01-01

    Layered inorganic materials, such as the transition metal dichalcogenides (TMDs), have attracted much attention due to their exceptional electronic and optical properties. Reliable synthesis and characterization of these materials must be developed if these properties are to be exploited. Herein, we present low-frequency Raman analysis of MoS2, MoSe2, WSe2 and WS2 grown by chemical vapour deposition (CVD). Raman spectra are acquired over large areas allowing changes in the position and intensity of the shear and layer-breathing modes to be visualized in maps. This allows detailed characterization of mono- and few-layered TMDs which is complementary to well-established (high-frequency) Raman and photoluminescence spectroscopy. This study presents a major stepping stone in fundamental understanding of layered materials as mapping the low-frequency modes allows the quality, symmetry, stacking configuration and layer number of 2D materials to be probed over large areas. In addition, we report on anomalous resonance effects in the low-frequency region of the WS2 Raman spectrum. PMID:26766208

  10. Stabilizing Effect of Sweep on Low-Frequency STBLI Unsteadiness

    NASA Astrophysics Data System (ADS)

    Adler, Michael; Gaitonde, Datta

    2017-11-01

    A Large-Eddy Simulation database is generated to examine unsteady shock/turbulent boundary-layer-interaction (STBLI) mechanisms in a Mach 2 swept-compression-corner. Such interactions exhibit open separation, with separation relief from the sweep, and lack the closed mean recirculation found in spanwise-homogeneous STBLIs. We find that the swept interaction lacks the low-frequency coherent shock unsteadiness, two-decades below incoming turbulent boundary layer scales, that is a principal feature of comparable closed separation STBLIs. Rather, the prominent unsteady content is a mid-frequency regime that develops in the separated shear layer and scales weakly with the local separation length. Additionally, a linear perturbation analysis of the unsteady flow indicates that the feedback pathway (associated with an absolute instability in spanwise-homogeneous interactions) is absent in swept-compression-corner interactions. This suggests that 1) the linear oscillator is an essential component of low-frequency unsteadiness in interactions with closed separation. 2) Low-frequency control efforts should be focused on disrupting this oscillator. 3) Introduction of 3D effects constitute one mechanism to disrupt the oscillator.

  11. Plate-type metamaterials for extremely broadband low-frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaopeng; Guo, Xinwei; Chen, Tianning; Yao, Ge

    2018-01-01

    A novel plate-type acoustic metamaterial with a high sound transmission loss (STL) in the low-frequency range ( ≤1000 Hz) is designed, theoretically proven and then experimentally verified. The thin plates with large modulus used in this paper mean that we do not need to apply tension to the plates, which is more applicable to practical engineering, the achievement of noise reduction is better and the installation of plates is more user-friendly than that of the membranes. The effects of different structural parameters of the plates on the sound-proofed performance at low-frequencies were also investigated by experiment and finite element method (FEM). The results showed that the STL can be modulated effectively and predictably using vibration theory by changing the structural parameters, such as the radius and thickness of the plate. Furthermore, using unit cells of different geometric sizes which are responsible for different frequency regions, the stacked panels with thickness ≤16 mm and weight ≤5 kg/m2 showed high STL below 2000 Hz. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  12. Eddy current imaging with an atomic radio-frequency magnetometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wickenbrock, Arne, E-mail: wickenbr@uni-mainz.de; Leefer, Nathan; Blanchard, John W.

    2016-05-02

    We use a radio-frequency {sup 85}Rb alkali-vapor cell magnetometer based on a paraffin-coated cell with long spin-coherence time and a small, low-inductance driving coil to create highly resolved conductivity maps of different objects. We resolve sub-mm features in conductive objects, we characterize the frequency response of our technique, and by operating at frequencies up to 250 kHz we are able to discriminate between differently conductive materials based on the induced response. The method is suited to cover a wide range of driving frequencies and can potentially be used for detecting non-metallic objects with low DC conductivity.

  13. Spectral-Temporal Evolution of Low-Frequency Pulsations in the Microwave Radiation of Solar Flares

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Kislyakov, A. G.; Urpo, S.; Stepanov, A. V.; Shkelev, E. I.

    2003-10-01

    Low-frequency pulsations of 22 and 37 GHz microwave radiation detected during solar flares are analyzed. Several microwave bursts observed at the Metsähovi Radio Observatory are studied with time resolutions of 100 and 50 ms. A fast Fourier transformation with a sliding window and the Wigner-Ville method are used to obtain frequency-time diagrams for the low-frequency pulsations, which are interpreted as natural oscillations of coronal magnetic loops; the dynamical spectra of the pulsations are synthesized for the first time. Three types of low-frequency fluctuations modulating the flare microwave radiation can be distinguished in the observations. First, there are fast and slow magneto-acoustic oscillations with periods of 0.5 0.8 s and 200 280 s, respectively. The fast magneto-acoustic oscillations appear as trains of narrow-band signals with durations of 100 200 s, a positive frequency drift dν/dt=0.25 MHz/min, and frequency splitting δν=0.01 0.05 Hz. Second, there are natural oscillations of the coronal magnetic loops as equivalent electrical circuits. These oscillations have periods of 0.5 10 s and positive or negative frequency drift rates dν/dt=8×10-3 Hz/min or dν/dt=-1.3×10-2 Hz/min, depending on the phase of the radio outburst. Third, there are modulations of the microwave radiation by short periodic pulses with a period of 20 s. The dynamical spectra of the low-frequency pulsations supply important information about the parameters of the magnetic loops: the ratio of the loop radius to its length r/L≈0.1, the plasma parameter β≈10-3, the ratio of the plasma densities outside and inside the loop ρe/ρi≈10-2, and the electrical current flowing along the loop I≈1012 A.

  14. Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS 2

    DOE PAGES

    Huang, Shengxi; Liang, Liangbo; Ling, Xi; ...

    2016-02-21

    A variety of van der Waals homo- and hetero- structures assembled by stamping monolayers together present optoelectronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. Twisted bilayer transition metal dichalcogenides offer a great platform for developing a precise understanding of the structure/property relationship. Here, we study the low-frequency interlayer shear and breathing Raman modes (<50 cm-1) in twisted bilayer MoS 2 by Raman spectroscopy and first-principles modeling. Twisting introduces both rotational and translational shifts and significantly alters the interlayer stacking and coupling, leading to notable frequency andmore » intensity changes of low-frequency modes. The frequency variation can be up to 8 cm-1 and the intensity can vary by a factor of ~5 for twisting near 0 and 60 , where the stacking is a mixture of multiple high-symmetry stacking patterns and is thus especially sensitive to twisting. Moreover, for twisting angles between 20 and 40 , the interlayer coupling is nearly constant since the stacking results in mismatched lattices over the entire sample. It follows that the Raman signature is relatively uniform. Interestingly, unlike the breathing mode, the shear mode is extremely sensitive to twisting: it disappears between 20 and 40 as its frequency drops to almost zero due to the stacking-induced mismatch. Note that for some samples, multiple breathing mode peaks appear, indicating non-uniform coupling across the interface. In contrast to the low-frequency interlayer modes, high-frequency intralayer Raman modes are much less sensitive to interlayer stacking and coupling, showing negligible changes upon twisting. Our research demonstrates the effectiveness of low-frequency Raman modes for probing the interfacial coupling and environment of twisted bilayer MoS2, and potentially other two-dimensional materials and heterostructures.« less

  15. Low-frequency electric muscle stimulation combined with physical therapy after total hip arthroplasty for hip osteoarthritis in elderly patients: a randomized controlled trial.

    PubMed

    Gremeaux, Vincent; Renault, Julien; Pardon, Laurent; Deley, Gaelle; Lepers, Romuald; Casillas, Jean-Marie

    2008-12-01

    To assess the effects of low-frequency electric muscle stimulation associated with usual physiotherapy on functional outcome after total hip arthroplasty (THA) for hip osteoarthritis (OA) in elderly subjects. Randomized controlled trial; pre- and posttreatment measurements. Hospital rehabilitation department. Subjects (N=29) referred to the rehabilitation department after THA for hip OA. The intervention group (n=16; 78+/-8 y) received simultaneous low-frequency electric muscle stimulation of bilateral quadriceps and calf muscles (highest tolerated intensity, 1h session, 5 d/wk, for 5 weeks) associated with conventional physical therapy including resistance training. The control group (n=13; 76+/-10 y) received conventional physical therapy alone (25 sessions). Maximal isometric strength of knee extensors, FIM instrument, before and after; a six-minute walk test and a 200 m fast walk test, after; length of stay (LOS). Low-frequency electric muscle stimulation was well tolerated. It resulted in a greater improvement in strength of knee extensors on the operated side (77% vs 23%; P<.01), leading to a better balance of muscle strength between the operated and nonoperated limb. The low-frequency electric muscle stimulation group also showed a greater improvement in FIM scores, though improvements in the walk tests were similar for the 2 groups, as was LOS. Low-frequency electric muscle stimulation is a safe, well-tolerated therapy after THA for hip OA. It improves knee extensor strength, which is one of the factors leading to greater functional independence after THA.

  16. Noise and low-frequency sound levels due to aerial fireworks and prediction of the occupational exposure of pyrotechnicians to noise

    PubMed Central

    Tanaka, Tagayasu; Inaba, Ryoichi; Aoyama, Atsuhito

    2016-01-01

    Objectives: This study investigated the actual situation of noise and low-frequency sounds in firework events and their impact on pyrotechnicians. Methods: Data on firework noise and low-frequency sounds were obtained at a point located approximately 100 m away from the launch site of a firework display held in "A" City in 2013. We obtained the data by continuously measuring and analyzing the equivalent continuous sound level (Leq) and the one-third octave band of the noise and low-frequency sounds emanating from the major firework detonations, and predicted sound levels at the original launch site. Results: Sound levels of 100-115 dB and low-frequency sounds of 100-125 dB were observed at night. The maximum and mean Leq values were 97 and 95 dB, respectively. The launching noise level predicted from the sounds (85 dB) at the noise measurement point was 133 dB. Occupational exposure to noise for pyrotechnicians at the remote operation point (located 20-30 m away from the launch site) was estimated to be below 100 dB. Conclusions: Pyrotechnicians are exposed to very loud noise (>100 dB) at the launch point. We believe that it is necessary to implement measures such as fixing earplugs or earmuffs, posting a warning at the workplace, and executing a remote launching operation to prevent hearing loss caused by occupational exposure of pyrotechnicians to noise. It is predicted that both sound levels and low-frequency sounds would be reduced by approximately 35 dB at the remote operation site. PMID:27725489

  17. Noise and low-frequency sound levels due to aerial fireworks and prediction of the occupational exposure of pyrotechnicians to noise.

    PubMed

    Tanaka, Tagayasu; Inaba, Ryoichi; Aoyama, Atsuhito

    2016-11-29

    This study investigated the actual situation of noise and low-frequency sounds in firework events and their impact on pyrotechnicians. Data on firework noise and low-frequency sounds were obtained at a point located approximately 100 m away from the launch site of a firework display held in "A" City in 2013. We obtained the data by continuously measuring and analyzing the equivalent continuous sound level (Leq) and the one-third octave band of the noise and low-frequency sounds emanating from the major firework detonations, and predicted sound levels at the original launch site. Sound levels of 100-115 dB and low-frequency sounds of 100-125 dB were observed at night. The maximum and mean Leq values were 97 and 95 dB, respectively. The launching noise level predicted from the sounds (85 dB) at the noise measurement point was 133 dB. Occupational exposure to noise for pyrotechnicians at the remote operation point (located 20-30 m away from the launch site) was estimated to be below 100 dB. Pyrotechnicians are exposed to very loud noise (>100 dB) at the launch point. We believe that it is necessary to implement measures such as fixing earplugs or earmuffs, posting a warning at the workplace, and executing a remote launching operation to prevent hearing loss caused by occupational exposure of pyrotechnicians to noise. It is predicted that both sound levels and low-frequency sounds would be reduced by approximately 35 dB at the remote operation site.

  18. Effects of low harmonics on tone identification in natural and vocoded speech.

    PubMed

    Liu, Chang; Azimi, Behnam; Tahmina, Qudsia; Hu, Yi

    2012-11-01

    This study investigated the contribution of low-frequency harmonics to identifying Mandarin tones in natural and vocoded speech in quiet and noisy conditions. Results showed that low-frequency harmonics of natural speech led to highly accurate tone identification; however, for vocoded speech, low-frequency harmonics yielded lower tone identification than stimuli with full harmonics, except for tone 4. Analysis of the correlation between tone accuracy and the amplitude-F0 correlation index suggested that "more" speech contents (i.e., more harmonics) did not necessarily yield better tone recognition for vocoded speech, especially when the amplitude contour of the signals did not co-vary with the F0 contour.

  19. Low-flow frequency curves for selected long-term stream gaging stations in eastern United States

    USGS Publications Warehouse

    Hardison, Clayton H.; Martin, Robert O.R.

    1963-01-01

    Curves showing the magnitude and frequency of annual low flow at 85 streamgaging stations located in 17 States east and 5 States west of the Mississippi River have been smoothed and adjusted to one of four long-term periods. They are presented to show the similarity and dissimilarity of curves even in the same State and to provide background information for studies of the statistical properties of low-flow frequency curves and for studies of the relation between hydrologic environment and low flow. The results are presented as greatly reduced graphs to facilitate comparison and are summarized in tables from which expanded graphs can be plotted.

  20. The Challenges of Low-Frequency Radio Polarimetry: Lessons from the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Lenc, E.; Anderson, C. S.; Barry, N.; Bowman, J. D.; Cairns, I. H.; Farnes, J. S.; Gaensler, B. M.; Heald, G.; Johnston-Hollitt, M.; Kaplan, D. L.; Lynch, C. R.; McCauley, P. I.; Mitchell, D. A.; Morgan, J.; Morales, M. F.; Murphy, Tara; Offringa, A. R.; Ord, S. M.; Pindor, B.; Riseley, C.; Sadler, E. M.; Sobey, C.; Sokolowski, M.; Sullivan, I. S.; O'Sullivan, S. P.; Sun, X. H.; Tremblay, S. E.; Trott, C. M.; Wayth, R. B.

    2017-09-01

    We present techniques developed to calibrate and correct Murchison Widefield Array low-frequency (72-300 MHz) radio observations for polarimetry. The extremely wide field-of-view, excellent instantaneous (u, v)-coverage and sensitivity to degree-scale structure that the Murchison Widefield Array provides enable instrumental calibration, removal of instrumental artefacts, and correction for ionospheric Faraday rotation through imaging techniques. With the demonstrated polarimetric capabilities of the Murchison Widefield Array, we discuss future directions for polarimetric science at low frequencies to answer outstanding questions relating to polarised source counts, source depolarisation, pulsar science, low-mass stars, exoplanets, the nature of the interstellar and intergalactic media, and the solar environment.

Top