Sample records for low temperature fluidity

  1. No evidence for homeoviscous adaptation in intertidal snails: analysis of membrane fluidity during thermal acclimation, thermal acclimatization, and across thermal microhabitats.

    PubMed

    Rais, Amber; Miller, Nathan; Stillman, Jonathon H

    2010-01-01

    Many eurythermal organisms alter composition of their membranes to counter perturbing effects of environmental temperature variation on membrane fluidity, a process known as homeoviscous adaptation. Marine intertidal gastropods experience uniquely large thermal excursions that challenge the functional integrity of their membranes on tidal and seasonal timescales. This study measured and compared membrane fluidity in marine intertidal snail species under three scenarios: (1) laboratory thermal acclimation, (2) thermal acclimatization during a hot midday low tide, and (3) thermal acclimatization across the vertical intertidal zone gradient in temperature. For each scenario, we used fluorescence polarization of the membrane probe DPH to measure membrane fluidity in individual samples of gill and mantle tissue. A four-week thermal acclimation of Tegula funebralis to 5, 15, and 25°C did not induce differences in membrane fluidity. Littorina keenae sampled from two thermal microhabitats at the beginning and end of a hot midday low tide exhibited no significant differences in membrane fluidity, either as a function of time of day or as a function of thermal microhabitat, despite changes in body temperature up to 24°C within 8 h. Membrane fluidities of a diverse group of snails collected from high, middle, and low vertical regions of the intertidal zone varied among species but did not correlate with thermal microhabitat. Our data suggest intertidal gastropod snails do not exhibit homeoviscous adaptation of gill and mantle membranes. We discuss possible alternatives for how these organisms counter thermal excursions characteristic of the marine intertidal zone.

  2. Effects of Insecticides on the Fluidity of Mitochondrial Membranes of the Diamondback Moth, Plutella xylostella, Resistant and Susceptible to Avermectin

    PubMed Central

    Hu, J.; Liang, P.; Shi, X.; Gao, X.

    2008-01-01

    The effects of various insecticides on the fluidity of mitochondrial membranes and cross-resistance were investigated in the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) using strains that were both resistant and susceptible to avermectin. The resistant strain of P. xylostella, AV-R, developed 1078-fold resistance to avermetins with a high level of cross-resistance to the analogs of avermectins, ivermectin and emamectin benzoate. It had more than 1000 times greater resistance when compared with the avermectin-susceptible strain, XH-S. Mitochondrial membrane fluidity was measured by detecting fluorescence polarization using DPH (1,6-Diphenyl -1,3,5-hexatriene) as the fluorescence probe. Abamectin, emamectin benzoate, ivermectin, cypermethrin and fenvalerate decreased the fluidity of mitochondrial membranes in the XH-S strain at 25°C. However, fipronil and acephate did not change the fluidity of mitochondrial membrane when the concentration of these insecticides was 1×10-4 mol/L. Membrane fluidity increased as the temperature increased. The thermotropic effect on the polarization value of DPH increased as the insecticide concentration was increased. There was a significant difference of mitochondrial membrane fluidity between both XH-S and AV-R when temperature was less than 25°C and no difference was observed when the temperature was more than 25°C. The low-dose abamectin (0.11 mg/L) in vivo treatment caused a significant change of membrane fluidity in the XH-S strain and no change in the AV-R strain. However, a high-dose abamectin (11.86 mg/L) resulted in 100% mortality of the XH-S strain. In vivo treatment may cause a significant change of membrane fluidity in the AV-R strain PMID:20345311

  3. Shear viscosity and imperfect fluidity in bosonic and fermionic superfluids

    NASA Astrophysics Data System (ADS)

    Boyack, Rufus; Guo, Hao; Levin, K.

    2014-12-01

    In this paper we address the ratio of the shear viscosity to entropy density η /s in bosonic and fermionic superfluids. A small η /s is associated with nearly perfect fluidity, and more general measures of the fluidity perfection/imperfection are of wide interest to a number of communities. We use a Kubo approach to concretely address this ratio via low-temperature transport associated with the quasiparticles. Our analysis for bosonic superfluids utilizes the framework of the one-loop Bogoliubov approximation, whereas for fermionic superfluids we apply BCS theory and its BCS-BEC extension. Interestingly, we find that the transport properties of strict BCS and Bogoliubov superfluids have very similar structures, albeit with different quasiparticle dispersion relations. While there is a dramatic contrast between the power law and exponential temperature dependence for η alone, the ratio η /s for both systems is more similar. Specifically, we find the same linear dependence (on the ratio of temperature T to inverse lifetime γ (T ) ) with η /s ∝T /γ (T ) , corresponding to imperfect fluidity. By contrast, near the unitary limit of BCS-BEC superfluids a very different behavior results, which is more consistent with near-perfect fluidity.

  4. Increased Isoprenoid Quinone Concentration Modulates Membrane Fluidity in Listeria monocytogenes at Low Growth Temperatures.

    PubMed

    Seel, Waldemar; Flegler, Alexander; Zunabovic-Pichler, Marija; Lipski, André

    2018-07-01

    Listeria monocytogenes is a food pathogen capable of growing at a broad temperature range from 50°C to refrigerator temperatures. A key requirement for bacterial activity and growth at low temperatures is the ability to adjust the membrane lipid composition to maintain cytoplasmic membrane fluidity. In this study, we confirmed earlier findings that the extents of fatty acid profile adaptation differed between L. monocytogenes strains. We were able to demonstrate for isolates from food that growth rates at low temperatures and resistance to freeze-thaw stress were not impaired by a lower adaptive response of the fatty acid composition. This indicated the presence of a second adaptation mechanism besides temperature-regulated fatty acid synthesis. For strains that showed weaker adaptive responses in their fatty acid profiles to low growth temperature, we could demonstrate a significantly higher concentration of isoprenoid quinones. Three strains even showed a higher quinone concentration after growth at 6°C than at 37°C, which is contradictory to the reduced respiratory activity at lower growth temperatures. Analyses of the membrane fluidity in vivo by measuring generalized polarization and anisotropy revealed modulation of the transition phase. Strains with increased quinone concentrations showed an expanded membrane transition phase in contrast to strains with pronounced adaptations of fatty acid profiles. The correlation between quinone concentration and membrane transition phase expansion was confirmed by suppression of quinone synthesis. A reduced quinone concentration resulted in a narrower transition phase. Expansion of the phase transition zone by increasing the concentration of non-fatty acid membrane lipids is discussed as an additional mechanism improving adaptation to temperature shifts for L. monocytogenes strains. IMPORTANCE Listeria monocytogenes is a foodborne pathogen with an outstanding temperature range for growth. The ability for growth at temperatures close to the freezing point constitutes a serious contamination potential for cold stored food. The only known mechanism of the species for adaptation of membrane fluidity is modification of the membrane fatty acid composition. We were able to demonstrate that, at least for some strains, this adaptation mechanism is supported by regulation of the menaquinone concentration. The increase of this neutral membrane lipid is correlated with fluidization of the membrane under low-temperature conditions and therefore represents a fatty acid-independent mechanism for adaptation to low temperatures. Copyright © 2018 American Society for Microbiology.

  5. The fluidity of Chinese hamster ovary cell and bull sperm membranes after cholesterol addition.

    PubMed

    Purdy, P H; Fox, M H; Graham, J K

    2005-08-01

    Cell plasma membrane fluidity is affected by membrane lipid and protein composition as well as temperature. Altering the cholesterol content of a membrane can change membrane fluidity at different temperatures and this may affect cell survival during cryopreservation. In these experiments, we examined the effect that adding cholesterol to the membranes of Chinese hamster ovary cells (CHO) and bull sperm had on cell plasma membrane fluidity and cell survival when cells were cooled to 5 degrees C or were cryopreserved. Cells were treated with 0, 1.5 or 5.0mg cholesterol-loaded cyclodextrin (CLC), stained with N-((4-(6-phenyl-1,3,5-hexatrienyl)phenyl)propyl)trimethylammonium-p-toluenesulfonate (TMAP-DPH) to evaluate membrane fluidity and with propidium iodide to evaluate cell viability, prior to analysis by flow cytometry at 23, 5 degrees C, and after cryopreservation. CHO cells exhibited a single cell population with all cells having similar membrane fluidity. Membrane fluidity did not change when temperature had been reduced and then returned to 23 degrees C (P<0.05), however, adding cholesterol to the cells induced membranes to become more rigid (P<0.05). Bull sperm samples consisted of two cell subpopulations, one having relatively higher membrane fluidity than the other, regardless of cholesterol treatment or temperature. In addition, cells possessing the highest membrane fluidity did not survive cooling or cryopreservation efficiently. CLC treatment did not significantly alter membrane fluidity after temperature changes, but did maintain higher percentages of spermatozoa surviving cooling to 5 degrees C and cryopreservation (P<0.05). In conclusion, adding cholesterol to cell resulted in detectable membrane fluidity changes in CHO cells and increased survival of bull sperm after cooling to 5 degrees C and after cryopreservation.

  6. PAQR-2 Regulates Fatty Acid Desaturation during Cold Adaptation in C. elegans

    PubMed Central

    Svensk, Emma; Ståhlman, Marcus; Andersson, Carl-Henrik; Johansson, Maja; Borén, Jan; Pilon, Marc

    2013-01-01

    C. elegans PAQR-2 is homologous to the insulin-sensitizing adiponectin receptors in mammals, and essential for adaptation to growth at 15°C, a low but usually acceptable temperature for this organism. By screening for novel paqr-2 suppressors, we identified mutations in genes involved in phosphatidylcholine synthesis (cept-1, pcyt-1 and sams-1) and fatty acid metabolism (ech-7, hacd-1, mdt-15, nhr-49 and sbp-1). We then show genetic evidence that paqr-2, phosphatidylcholines, sbp-1 and Δ9-desaturases form a cold adaptation pathway that regulates the increase in unsaturated fatty acids necessary to retain membrane fluidity at low temperatures. This model is supported by the observations that the paqr-2 suppressors normalize the levels of saturated fatty acids, and that low concentrations of detergents that increase membrane fluidity can rescue the paqr-2 mutant. PMID:24068966

  7. PAQR-2 regulates fatty acid desaturation during cold adaptation in C. elegans.

    PubMed

    Svensk, Emma; Ståhlman, Marcus; Andersson, Carl-Henrik; Johansson, Maja; Borén, Jan; Pilon, Marc

    2013-01-01

    C. elegans PAQR-2 is homologous to the insulin-sensitizing adiponectin receptors in mammals, and essential for adaptation to growth at 15°C, a low but usually acceptable temperature for this organism. By screening for novel paqr-2 suppressors, we identified mutations in genes involved in phosphatidylcholine synthesis (cept-1, pcyt-1 and sams-1) and fatty acid metabolism (ech-7, hacd-1, mdt-15, nhr-49 and sbp-1). We then show genetic evidence that paqr-2, phosphatidylcholines, sbp-1 and Δ9-desaturases form a cold adaptation pathway that regulates the increase in unsaturated fatty acids necessary to retain membrane fluidity at low temperatures. This model is supported by the observations that the paqr-2 suppressors normalize the levels of saturated fatty acids, and that low concentrations of detergents that increase membrane fluidity can rescue the paqr-2 mutant.

  8. Changing rooster sperm membranes to facilitate cryopreservation

    USDA-ARS?s Scientific Manuscript database

    Cryopreservation damages rooster sperm membranes. Part of this damage is due to membrane transitioning from the fluid to the gel state as temperature is reduced. This damage may be prevented by increasing membrane fluidity at low temperatures by incorporating cholesterol or unsaturated lipids into t...

  9. Gallium alloy films investigated for use as boundary lubricants

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Gallium alloyed with other low melting point metals has excellent lubricant properties of fluidity and low vapor pressure for high temperature or vacuum environments. The addition of other soft metals reduces the corrosivity and formation of undesirable alloys normally found with gallium.

  10. Electron paramagnetic resonance studies of the membrane fluidity of the foodborne pathogenic psychrotroph Listeria monocytogenes.

    PubMed

    Edgcomb, M R; Sirimanne, S; Wilkinson, B J; Drouin, P; Morse, R D

    2000-01-15

    Listeria monocytogenes is a foodborne psychrotrophic pathogen that grows at refrigeration temperatures. Previous studies of fatty acid profiles of wild-type and cold-sensitive, branched-chain fatty acid deficient mutants of L. monocytogenes suggest that the fatty acid 12-methyltetradecanoic (anteiso-C(15:0)) plays a critical role in low-temperature growth of L. monocytogenes, presumably by maintaining membrane fluidity. The fluidity of isolated cytoplasmic membranes of wild-type (SLCC53 and 10403S), and a cold-sensitive mutant (cld-1) of L. monocytogenes, grown with and without the supplementation of 2-methylbutyric acid, has been studied using a panel of hydrocarbon-based nitroxides (2N10, 3N10, 4N10, and 5N10) and spectral deconvolution and simulation methods to obtain directly the Lorentzian line widths and hence rotational correlation times (tau(c)) and motional anisotropies of the nitroxides in the fast motional region. tau(c) values over the temperature range of -7 degrees C to 50 degrees C were similar for the membranes of strains SLCC53 and 10403S grown at 10 degrees C and 30 degrees C, and for strain cld-1 grown with 2-methylbutyric acid supplementation (which restores branched-chain fatty acids) at 30 degrees C. However, strain cld-1 exhibited a threefold higher tau(c) when grown without 2-methylbutyric acid supplementation (deficient in branched-chain fatty acids) compared to strains SLCC53, 10403S, and supplemented cld-1. No evidence was seen for a clear lipid phase transition in any sample. We conclude that the fatty acid anteiso-C(15:0) imparts an essential fluidity to the L. monocytogenes membrane that permits growth at refrigeration temperatures.

  11. Correlation of polyunsaturated fatty acids with the cold adaptation of Rhodotorula glutinis.

    PubMed

    He, Jing; Yang, Zhaojie; Hu, Binbin; Ji, Xiuling; Wei, Yunlin; Lin, Lianbing; Zhang, Qi

    2015-11-01

    This study aimed to investigate the correlation between the cold adaptation of Rhodotorula glutinis YM25079 and the membrane fluidity, content of polyunsaturated fatty acids and mRNA expression level of the Δ(12)-desaturase gene. The optimum temperature for YM25079 growth was analysed first, then the composition changes of membrane lipid in YM25079 were detected by GC-MS and membrane fluidity was evaluated by 1-anilinonaphthalene-8-sulphonate (ANS) fluorescence. Meanwhile, the encoding sequence of Δ(12)-fatty acid desaturase in YM25079 was cloned and further transformed into Saccharomyces cerevisiae INVScl for functional analysis. The mRNA expression levels of Δ(12)-fatty acid desaturase at 15°C and 25°C were analysed by real-time PCR. YM25079 could grow at 5-30°C, with the optimum temperature of 15°C. The membrane fluidity of YM25079 was not significantly reduced when the culture temperature decreased from 25°C to 15°C, but the content of polyunsaturated fatty acids (PUFAs), including linoleic acid and α-Linolenic acid increased significantly from 29.4% to 55.39%. Furthermore, a novel Δ(12)-fatty acid desaturase gene YM25079RGD12 from YM25079 was successfully identified and characterized, and the mRNA transcription level of the Δ(12)-desaturase gene was about five-fold higher in YM25079 cells grown at 15°C than that at 25°C. These results suggests that the cold adaptation of Rhodotorula glutinis YM25079 might result from higher expression of genes, especially the Δ(12)-fatty acid desaturase gene, during polyunsaturated fatty acids biosynthesis, which increased the content of PUFAs in the cell membrane and maintained the membrane fluidity at low temperature. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Rice mutants deficient in ω-3 fatty acid desaturase (FAD8) fail to acclimate to cold temperatures.

    PubMed

    Tovuu, Altanzaya; Zulfugarov, Ismayil S; Wu, Guangxi; Kang, In Soon; Kim, Choongrak; Moon, Byoung Yong; An, Gynheung; Lee, Choon-Hwan

    2016-12-01

    To investigate the role of ω-3 fatty acid (FA) desaturase (FAD8) during cold acclimation in higher plants, we characterized three independent T-DNA insertional knock-out mutants of OsFAD8 from rice (Oryza sativa L.). At room temperature (28 °C), osfad8 plants exhibited significant alterations in fatty acid (FA) unsaturation for all four investigated plastidic lipid classes. During a 5-d acclimation period at 4 °C, further changes in FA unsaturation in both wild-type (WT) and mutant plants varied according to the type of lipid. We also monitored the fluidity of the thylakoid membrane using a threshold temperature to represent the change in fluorescence. The values were altered significantly by both FAD8 mutation and cold acclimation, suggesting that factors other than FAD8 are involved in C18 FA unsaturation and fluctuations in membrane fluidity. Similarly, significant changes were noted for both the mutant and WT samples in terms of their FA compositions as well as activities related to photosystem (PS) I, PSII, and photoprotection. This included the development of non-photochemical quenching and increased zeaxanthin accumulation. Despite the relatively small changes in FA composition during cold acclimation, cold-inducible FAD8 knock-out mutants displayed strong differences in photoprotective activities and a further drop in membrane fluidity. The mutants were more sensitive than WT to short-term low-temperature stress that resulted in increased production of reactive oxygen species after 5 d of chilling. Taken together, our findings suggest that FA unsaturation by OsFAD8 is crucial for the acclimation of higher plants to low-temperature stress. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Effects of causality on the fluidity and viscous horizon of quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Rahaman, Mahfuzur; Alam, Jan-e.

    2018-05-01

    The second-order Israel-Stewart-M u ̈ller relativistic hydrodynamics was applied to study the effects of causality on the acoustic oscillation in relativistic fluid. Causal dispersion relations have been derived with nonvanishing shear viscosity, bulk viscosity, and thermal conductivity at nonzero temperature and baryonic chemical potential. These relations have been used to investigate the fluidity of quark-gluon plasma (QGP) at finite temperature (T ). Results of the first-order dissipative hydrodynamics have been obtained as a limiting case of the second-order theory. The effects of the causality on the fluidity near the transition point and on the viscous horizon are found to be significant. We observe that the inclusion of causality increases the value of fluidity measure of QGP near Tc and hence makes the flow strenuous. It was also shown that the inclusion of the large magnetic field in the causal hydrodynamics alters the fluidity of QGP.

  14. Development of laboratory test methods to replace the simulated high-temperature grout fluidity test.

    DOT National Transportation Integrated Search

    2014-06-01

    This report contains a summary of the research performed to develop a replacement for the high-temperature grout : fluidity (HTGF) test. The HTGF test was employed in the past by FDOT to qualify post-tensioning (PT) grouts for use in : post-tensioned...

  15. Growth, fatty acid profile in major lipid classes and lipid fluidity of Aurantiochytrium mangrovei SK-02 As a function of growth temperature.

    PubMed

    Chodchoey, Kanokwan; Verduyn, Cornelis

    2012-01-01

    Aurantiochytrium mangrovei Sk-02 was grown in a medium containing glucose (40 g/l), yeast extract (10 g/L) and sea salts (15 g/L) at temperatures ranging from 12 to 35°C. The fastest growth (µmax= 0.15 h(-1)) and highest fatty acid content of 415 mg/g-dry cell weight were found in the cells grown at 30°C. However, the cells grown at 12°C showed the highest percentage of polyunsaturated fatty acid (PUFA) (48.6% of total fatty acid). The percentage of docosahexaenoic acid (DHA) and pentadecanoic acid (C15:0) decreased with an increase in the growth temperature, whereas, palmitic acid (C16:0), stearic acid (C18:0) and DPA (C22:5n6) increased with an increase in the growth temperature. The composition of the major lipid class (%w/w) was slightly affected by the growth temperature. The fluidity of the organelle membrane or intracellular lipid (by DPH measurement) decreased with an increase in the growth temperatures, while the plasma membrane fluidity (by TMA-DPH measurement) could still maintain its fluidity in a wide range of temperatures (15 - 37°C). Furthermore, the distribution of DHA was found to be higher (36 - 54%) in phospholipid (PL) as compared to neutral lipid (NL) (20 - 41%).

  16. Effect of growth temperature, surface type and incubation time on the resistance of Staphylococcus aureus biofilms to disinfectants.

    PubMed

    Abdallah, Marwan; Chataigne, Gabrielle; Ferreira-Theret, Pauline; Benoliel, Corinne; Drider, Djamel; Dhulster, Pascal; Chihib, Nour-Eddine

    2014-03-01

    The goal of this study was to investigate the effect of the environmental conditions such as the temperature change, incubation time and surface type on the resistance of Staphylococcus aureus biofilms to disinfectants. The antibiofilm assays were performed against biofilms grown at 20 °C, 30 °C and 37 °C, on the stainless steel and polycarbonate, during 24 and 48 h. The involvement of the biofilm matrix and the bacterial membrane fluidity in the resistance of sessile cells were investigated. Our results show that the efficiency of disinfectants was dependent on the growth temperature, the surface type and the disinfectant product. The increase of growth temperature from 20 °C to 37 °C, with an incubation time of 24 h, increased the resistance of biofilms to cationic antimicrobials. This change of growth temperature did not affect the major content of the biofilm matrix, but it decreased the membrane fluidity of sessile cells through the increase of the anteiso-C19 relative amount. The increase of the biofilm resistance to disinfectants, with the rise of the incubation time, was dependent on both growth temperature and disinfectant product. The increase of the biofilm age also promoted increases in the matrix production and the membrane fluidity of sessile cells. The resistance of S. aureus biofilm seems to depend on the environment of the biofilm formation and involves both extracellular matrix and membrane fluidity of sessile cells. Our study represents the first report describing the impact of environmental conditions on the matrix production, sessile cells membrane fluidity and resistance of S. aureus biofilms to disinfectants.

  17. Effect of superparamagnetic iron oxide nanoparticles on fluidity and phase transition of phosphatidylcholine liposomal membranes

    PubMed Central

    Santhosh, Poornima Budime; Drašler, Barbara; Drobne, Damjana; Kreft, Mateja Erdani; Kralj, Slavko; Makovec, Darko; Ulrih, Nataša Poklar

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) with multifunctional properties have shown great promise in theranostics. The aim of our work was to compare the effects of SPIONs on the fluidity and phase transition of the liposomal membranes prepared with zwitterionic phosphatidylcholine lipids. In order to study if the surface modification of SPIONs has any influence on these membrane properties, we have used four types of differently functionalized SPIONs, such as: plain SPIONs (primary size was shown to bê11 nm), silica-coated SPIONs, SPIONs coated with silica and functionalized with positively charged amino groups or negatively charged carboxyl groups (the primary size of all the surface-modified SPIONs was ~20 nm). Small unilamellar vesicles prepared with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipids and multilamellar vesicles prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine lipids were encapsulated or incubated with the plain and surface-modified SPIONs to determine the fluidity and phase transition temperature of the bilayer lipids, respectively. Fluorescent anisotropy and differential scanning calorimetric measurements of the liposomes that were either encapsulated or incubated with the suspension of SPIONs did not show a significant difference in the lipid ordering and fluidity; though the encapsulated SPIONs showed a slightly increased effect on the fluidity of the model membranes in comparison with the incubated SPIONs. This indicates the low potential of the SPIONs to interact with the nontargeted cell membranes, which is a desirable factor for in vivo applications. PMID:26491286

  18. The extent of the temperature-induced membrane remodeling in two closely related Bordetella species reflects their adaptation to diverse environmental niches

    PubMed Central

    Seydlova, Gabriela; Beranova, Jana; Bibova, Ilona; Dienstbier, Ana; Drzmisek, Jakub; Masin, Jiri; Fiser, Radovan; Konopasek, Ivo; Vecerek, Branislav

    2017-01-01

    Changes in environmental temperature represent one of the major stresses faced by microorganisms as they affect the function of the cytoplasmic membrane. In this study, we have analyzed the thermal adaptation in two closely related respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica. Although B. pertussis represents a pathogen strictly adapted to the human body temperature, B. bronchiseptica causes infection in a broad range of animals and survives also outside of the host. We applied GC-MS to determine the fatty acids of both Bordetella species grown at different temperatures and analyzed the membrane fluidity by fluorescence anisotropy measurement. In parallel, we also monitored the effect of growth temperature changes on the expression and production of several virulence factors. In response to low temperatures, B. pertussis adapted its fatty acid composition and membrane fluidity to a considerably lesser extent when compared with B. bronchiseptica. Remarkably, B. pertussis maintained the production of virulence factors at 24 °C, whereas B. bronchiseptica cells resumed the production only upon temperature upshift to 37 °C. This growth temperature-associated differential modulation of virulence factor production was linked to the phosphorylation state of transcriptional regulator BvgA. The observed differences in low-temperature adaptation between B. pertussis and B. bronchiseptica may result from selective adaptation of B. pertussis to the human host. We propose that the reduced plasticity of the B. pertussis membranes ensures sustained production of virulence factors at suboptimal temperatures and may play an important role in the transmission of the disease. PMID:28348085

  19. Combination of 1H nuclear magnetic resonance spectroscopy and principal component analysis to evaluate the lipid fluidity of flutamide-encapsulated lipid nanoemulsions.

    PubMed

    Takegami, Shigehiko; Ueyama, Keita; Konishi, Atsuko; Kitade, Tatsuya

    2018-06-06

    The lipid fluidity of various lipid nanoemulsions (LNEs) without and with flutamide (FT) and containing one of two neutral lipids, one of four phosphatidylcholines as a surfactant, and sodium palmitate as a cosurfactant was investigated by the combination of 1 H nuclear magnetic resonance (NMR) spectroscopy and principal component analysis (PCA). In the 1 H NMR spectra, the peaks from the methylene groups of the neutral lipids and surfactants for all LNE preparations showed downfield shifts with increasing temperature from 20 to 60 °C. PCA was applied to the 1 H NMR spectral data obtained for the LNEs. The PCA resulted in a model in which the first two principal components (PCs) extracted 88% of the total spectral variation; the first PC (PC-1) axis and second PC (PC-2) axis accounted for 73 and 15%, respectively, of the total spectral variation. The Score-1 values for PC-1 plotted against temperature revealed the existence of two clusters, which were defined by the neutral lipid of the LNE preparations. Meanwhile, the Score-2 values decreased with rising temperature and reflected the increase in lipid fluidity of each LNE preparation, consistent with fluorescence anisotropy measurements. In addition, the changes of Score-2 values with temperature for LNE preparations with FT were smaller than those for LNE preparations without FT. This indicates that FT encapsulated in LNE particles markedly suppressed the increase in lipid fluidity of LNE particles with rising temperature. Thus, PCA of 1 H NMR spectra will become a powerful tool to analyze the lipid fluidity of lipid nanoparticles. Graphical abstract ᅟ.

  20. Numerical analysis of temperature field in the high speed rotary dry-milling process

    NASA Astrophysics Data System (ADS)

    Wu, N. X.; Deng, L. J.; Liao, D. H.

    2018-01-01

    For the effect of the temperature field in the ceramic dry granulation. Based on the Euler-Euler mathematical model, at the same time, made ceramic dry granulation experiment equipment more simplify and established physical model, the temperature of the dry granulation process was simulated with the granulation time. The relationship between the granulation temperature and granulation effect in dry granulation process was analyzed, at the same time, the correctness of numerical simulation was verified by measuring the fluidity index of ceramic bodies. Numerical simulation and experimental results showed that when granulation time was 4min, 5min, 6min, maximum temperature inside the granulation chamber was: 70°C, 85°C, 95°C. And the equilibrium of the temperature in the granulation chamber was weakened, the fluidity index of the billet particles was: 56.4. 89.7. 81.6. Results of the research showed that when granulation time was 5min, the granulation effect was best. When the granulation chamber temperature was more than 85°C, the fluidity index and the effective particles quantity of the billet particles were reduced.

  1. The extent of the temperature-induced membrane remodeling in two closely related Bordetella species reflects their adaptation to diverse environmental niches.

    PubMed

    Seydlova, Gabriela; Beranova, Jana; Bibova, Ilona; Dienstbier, Ana; Drzmisek, Jakub; Masin, Jiri; Fiser, Radovan; Konopasek, Ivo; Vecerek, Branislav

    2017-05-12

    Changes in environmental temperature represent one of the major stresses faced by microorganisms as they affect the function of the cytoplasmic membrane. In this study, we have analyzed the thermal adaptation in two closely related respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica Although B. pertussis represents a pathogen strictly adapted to the human body temperature, B. bronchiseptica causes infection in a broad range of animals and survives also outside of the host. We applied GC-MS to determine the fatty acids of both Bordetella species grown at different temperatures and analyzed the membrane fluidity by fluorescence anisotropy measurement. In parallel, we also monitored the effect of growth temperature changes on the expression and production of several virulence factors. In response to low temperatures, B. pertussis adapted its fatty acid composition and membrane fluidity to a considerably lesser extent when compared with B. bronchiseptica Remarkably, B. pertussis maintained the production of virulence factors at 24 °C, whereas B. bronchiseptica cells resumed the production only upon temperature upshift to 37 °C. This growth temperature-associated differential modulation of virulence factor production was linked to the phosphorylation state of transcriptional regulator BvgA. The observed differences in low-temperature adaptation between B. pertussis and B. bronchiseptica may result from selective adaptation of B. pertussis to the human host. We propose that the reduced plasticity of the B. pertussis membranes ensures sustained production of virulence factors at suboptimal temperatures and may play an important role in the transmission of the disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Coal lithotypes before and after saturation with CO2; insights from micro- and mesoporosity, fluidity, and functional group distribution

    USGS Publications Warehouse

    Mastalerz, Maria; Drobniak, A.; Walker, R.; Morse, D.

    2010-01-01

    Four lithotypes, vitrain, bright clarain, clarain, and fusain, were hand-picked from the core of the Pennsylvanian Springfield Coal Member (Petersburg Formation) in Illinois. These lithotypes were analyzed petrographically and for meso- and micropore characteristics, functional group distribution using FTIR techniques, and fluidity. High-pressure CO2 adsorption isotherm analyses of these lithotypes were performed and, subsequently, all samples were reanalyzed in order to investigate the effects of CO2. After the high-pressure adsorption isotherm analysis was conducted and the samples were reanalyzed, there was a decrease in BET surface area for vitrain from 31.5m2/g in the original sample to 28.5m2/g, as determined by low-pressure nitrogen adsorption. Bright clarain and clarain recorded a minimal decrease in BET surface area, whereas for fusain there was an increase from 6.6m2/g to 7.9m2/g. Using low-pressure CO2 adsorption techniques, a small decrease in the quantity of the adsorbed CO2 is recorded for vitrain and bright clarain, no difference is observed for clarain, and there is an increase in the quantity of the adsorbed CO2 for fusain. Comparison of the FTIR spectra before and after CO2 injection for all lithotypes showed no differences with respect to functional group distribution, testifying against chemical nature of CO2 adsorption. Gieseler plastometry shows that: 1) softening temperature is higher for the post-CO2 sample (389.5??C vs. 386??C); 2) solidification temperature is lower for the post-CO2 sample (443.5??C vs. 451??C); and 3) the maximum fluidity is significantly lower for the post-CO2 sample (4 ddpm vs. 14 ddpm). ?? 2010 Elsevier B.V.

  3. Describing Temperature-Dependent Self-Diffusion Coefficients and Fluidity of 1- and 3-Alcohols with the Compensated Arrhenius Formalism.

    PubMed

    Fleshman, Allison M; Forsythe, Grant E; Petrowsky, Matt; Frech, Roger

    2016-09-22

    The location of the hydroxyl group in monohydroxy alcohols greatly affects the temperature dependence of the liquid structure due to hydrogen bonding. Temperature-dependent self-diffusion coefficients, fluidity (the inverse of viscosity), dielectric constant, and density have been measured for several 1-alcohols and 3-alcohols with varying alkyl chain lengths. The data are modeled using the compensated Arrhenius formalism (CAF). The CAF follows a modified transition state theory using an Arrhenius-like expression to describe the transport property, which consists of a Boltzmann factor containing an energy of activation, Ea, and an exponential prefactor containing the temperature-dependent solution dielectric constant, εs(T). Both 1- and 3-alcohols show the Ea of diffusion coefficients (approximately 43 kJ mol(-1)) is higher than the Ea of fluidity (approximately 35 kJ mol(-1)). The temperature dependence of the exponential prefactor in these associated liquids is explained using the dielectric constant and the Kirkwood-Frölich correlation factor, gk. It is argued that the dielectric constant must be used to account for the additional temperature dependence due to variations in the liquid structure (e.g., hydrogen bonding) for the CAF to accurately model the transport property.

  4. Shear viscosity to entropy density ratios and implications for (im)perfect fluidity in Fermionic and Bosonic superfluids

    NASA Astrophysics Data System (ADS)

    Boyack, Rufus; Guo, Hao; Levin, K.

    2015-03-01

    Recent experiments on both unitary Fermi gases and high temperature superconductors (arxiv:1410.4835 [cond-mat.quant-gas], arxiv:1409.5820 [cond-mat.str-el].) have led to renewed interest in near perfect fluidity in condensed matter systems. This is quantified by studying the ratio of shear viscosity to entropy density. In this talk we present calculations of this ratio in homogeneous bosonic and fermionic superfluids, with the latter ranging from BCS to BEC. While the shear viscosity exhibits a power law (for bosons) or exponential suppression (for fermions), a similar dependence is found for the respective entropy densities. As a result, strict BCS and (true) bosonic superfluids have an analogous viscosity to entropy density ratio, behaving linearly with temperature times the (T-dependent) dissipation rate; this is characteristic of imperfect fluidity in weakly coupled fluids. This is contrasted with the behavior of fermions at unitarity which we argue is a consequence of additional terms in the entropy density thereby leading to more perfect fluidity. (arXiv:1407.7572v1 [cond-mat.quant-gas])

  5. Thermal cracking of poly α-olefin aviation lubricating base oil

    NASA Astrophysics Data System (ADS)

    Fei, Yiwei; Wu, Nan; Ma, Jun; Hao, Jingtuan

    2018-02-01

    Thermal cracking of poly α-olefin (PAO) was conducted under different temperatures among 190 °C to 300 °C. The reacted mixtures were sequentially detected by gas chromatography-mass spectrometer (GC/MS). A series of small molecular normal alkanes, branched alkanes and olefins were identified. PAO perfect structure of aligned comb-likely side-chains has been seriously cracked under high temperatures. Property changes about kinematic viscosity and pour point of PAO samples reacted under high temperatures were also investigated. The appearance of small molecular compounds weakened the thermal stability, viscosity temperature performance and low temperature fluidity of PAO samples. Property of PAO samples was deteriorated due to thermal cracking under high temperatures.

  6. Membrane fluidity controls redox-regulated cold stress responses in cyanobacteria.

    PubMed

    Maksimov, Eugene G; Mironov, Kirill S; Trofimova, Marina S; Nechaeva, Natalya L; Todorenko, Daria A; Klementiev, Konstantin E; Tsoraev, Georgy V; Tyutyaev, Eugene V; Zorina, Anna A; Feduraev, Pavel V; Allakhverdiev, Suleyman I; Paschenko, Vladimir Z; Los, Dmitry A

    2017-09-01

    Membrane fluidity is the important regulator of cellular responses to changing ambient temperature. Bacteria perceive cold by the transmembrane histidine kinases that sense changes in thickness of the cytoplasmic membrane due to its rigidification. In the cyanobacterium Synechocystis, about a half of cold-responsive genes is controlled by the light-dependent transmembrane histidine kinase Hik33, which also partially controls the responses to osmotic, salt, and oxidative stress. This implies the existence of some universal, but yet unknown signal that triggers adaptive gene expression in response to various stressors. Here we selectively probed the components of photosynthetic machinery and functionally characterized the thermodynamics of cyanobacterial photosynthetic membranes with genetically altered fluidity. We show that the rate of oxidation of the quinone pool (PQ), which interacts with both photosynthetic and respiratory electron transport chains, depends on membrane fluidity. Inhibitor-induced stimulation of redox changes in PQ triggers cold-induced gene expression. Thus, the fluidity-dependent changes in the redox state of PQ may universally trigger cellular responses to stressors that affect membrane properties.

  7. Application of the compensated Arrhenius formalism to fluidity data of polar organic liquids.

    PubMed

    Petrowsky, Matt; Fleshman, Allison M; Frech, Roger

    2013-03-14

    The temperature dependence of viscosity (the reciprocal of fluidity) in polar liquids has been studied for over a century, but the available theoretical models have serious limitations. Consequently, the viscosity is often described with empirical equations using adjustable fitting parameters that offer no insight into the molecular mechanism of transport. We have previously reported a novel approach called the compensated Arrhenius formalism (CAF) to describe ionic conductivity, self-diffusion, and dielectric relaxation in terms of molecular and system properties. Here the CAF is applied to fluidity data of pure n-acetates, 2-ketones, n-nitriles, and n-alcohols over the temperature range 5-85 °C. The fluidity is represented as an Arrhenius-like expression that includes a static dielectric constant dependence in the exponential prefactor. The dielectric constant dependence results from the dependence of mass and charge transport on the molecular dipole moment and the solvent dipole density. The CAF is the only self-consistent description of fluid transport in polar liquids written solely in terms of molecular and system parameters. A scaling procedure is used to calculate the activation energy for transport. We find that the activation energies for fluidity of the aprotic liquids are comparable in value, whereas a higher average E(a) value is observed for the n-alcohol data. Finally, we contrast the molecular description of transport presented here with the conventional hydrodynamic model.

  8. Membrane Fluidity Sensing on the Single Virus Particle Level with Plasmonic Nanoparticle Transducers.

    PubMed

    Feizpour, Amin; Stelter, David; Wong, Crystal; Akiyama, Hisashi; Gummuluru, Suryaram; Keyes, Tom; Reinhard, Björn M

    2017-10-27

    Viral membranes are nanomaterials whose fluidity depends on their composition, in particular, the cholesterol (chol) content. As differences in the membrane composition of individual virus particles can lead to different intracellular fates, biophysical tools capable of sensing the membrane fluidity on the single-virus level are required. In this manuscript, we demonstrate that fluctuations in the polarization of light scattered off gold or silver nanoparticle (NP)-labeled virus-like-particles (VLPs) encode information about the membrane fluidity of individual VLPs. We developed plasmonic polarization fluctuation tracking microscopy (PFTM) which facilitated the investigation of the effect of chol content on the membrane fluidity and its dependence on temperature, for the first time on the single-VLP level. Chol extraction studies with different methyl-β-cyclodextrin (MβCD) concentrations yielded a gradual decrease in polarization fluctuations as a function of time. The rate of chol extraction for individual VLPs showed a broad spread, presumably due to differences in the membrane composition for the individual VLPs, and this heterogeneity increased with decreasing MβCD concentration.

  9. Advanced fuel system technology for utilizing broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    Factors which will determine the future supply and cost of aviation turbine fuels are discussed. The most significant fuel properties of volatility, fluidity, composition, and thermal stability are discussed along with the boiling ranges of gasoline, naphtha jet fuels, kerosene, and diesel oil. Tests were made to simulate the low temperature of an aircraft fuel tank to determine fuel tank temperatures for a 9100-km flight with and without fuel heating; the effect of N content in oil-shale derived fuels on the Jet Fuel Thermal Oxidation Tester breakpoint temperature was measured. Finally, compatibility of non-metallic gaskets, sealants, and coatings with increased aromatic content jet fuels was examined.

  10. Optimization and characterization of liposome formulation by mixture design.

    PubMed

    Maherani, Behnoush; Arab-tehrany, Elmira; Kheirolomoom, Azadeh; Reshetov, Vadzim; Stebe, Marie José; Linder, Michel

    2012-02-07

    This study presents the application of the mixture design technique to develop an optimal liposome formulation by using the different lipids in type and percentage (DOPC, POPC and DPPC) in liposome composition. Ten lipid mixtures were generated by the simplex-centroid design technique and liposomes were prepared by the extrusion method. Liposomes were characterized with respect to size, phase transition temperature, ζ-potential, lamellarity, fluidity and efficiency in loading calcein. The results were then applied to estimate the coefficients of mixture design model and to find the optimal lipid composition with improved entrapment efficiency, size, transition temperature, fluidity and ζ-potential of liposomes. The response optimization of experiments was the liposome formulation with DOPC: 46%, POPC: 12% and DPPC: 42%. The optimal liposome formulation had an average diameter of 127.5 nm, a phase-transition temperature of 11.43 °C, a ζ-potential of -7.24 mV, fluidity (1/P)(TMA-DPH)((¬)) value of 2.87 and an encapsulation efficiency of 20.24%. The experimental results of characterization of optimal liposome formulation were in good agreement with those predicted by the mixture design technique.

  11. Mechanical Fluidity of Fully Suspended Biological Cells

    PubMed Central

    Maloney, John M.; Lehnhardt, Eric; Long, Alexandra F.; Van Vliet, Krystyn J.

    2013-01-01

    Mechanical characteristics of single biological cells are used to identify and possibly leverage interesting differences among cells or cell populations. Fluidity—hysteresivity normalized to the extremes of an elastic solid or a viscous liquid—can be extracted from, and compared among, multiple rheological measurements of cells: creep compliance versus time, complex modulus versus frequency, and phase lag versus frequency. With multiple strategies available for acquisition of this nondimensional property, fluidity may serve as a useful and robust parameter for distinguishing cell populations, and for understanding the physical origins of deformability in soft matter. Here, for three disparate eukaryotic cell types deformed in the suspended state via optical stretching, we examine the dependence of fluidity on chemical and environmental influences at a timescale of ∼1 s. We find that fluidity estimates are consistent in the time and frequency domains under a structural damping (power-law or fractional-derivative) model, but not under an equivalent-complexity, lumped-component (spring-dashpot) model; the latter predicts spurious time constants. Although fluidity is suppressed by chemical cross-linking, we find that ATP depletion in the cell does not measurably alter the parameter, and we thus conclude that active ATP-driven events are not a crucial enabler of fluidity during linear viscoelastic deformation of a suspended cell. Finally, by using the capacity of optical stretching to produce near-instantaneous increases in cell temperature, we establish that fluidity increases with temperature—now measured in a fully suspended, sortable cell without the complicating factor of cell-substratum adhesion. PMID:24138852

  12. Changes in lipid fluidity and fatty acid composition with altered culture temperature in Tetrahymena pyriformis-NT1.

    PubMed

    Connolly, J G; Brown, I D; Lee, A G; Kerkut, G A

    1985-01-01

    Cultures of T. pyriformis-NT1 were grown at 20 degrees C (Tg 20 degrees C) and 38 degrees C (Tg 38 degrees C). G.L.C. analysis and D.P.H. fluorescence polarization measurements in extracted phospholipids indicated that there was increased saturation of fatty acids and relatively reduced fluidity as growth temperature was increased. Breakpoints occurred in the Arrhenius plots of fluorescence polarization at 16 degrees C for Tg 38 degrees C total extracted phospholipids and 9 degrees C for Tg 20 degrees C lipids.

  13. Membrane lipid physiology and toxin catabolism underlie ethanol and acetic acid tolerance in Drosophila melanogaster.

    PubMed

    Montooth, Kristi L; Siebenthall, Kyle T; Clark, Andrew G

    2006-10-01

    Drosophila melanogaster has evolved the ability to tolerate and utilize high levels of ethanol and acetic acid encountered in its rotting-fruit niche. Investigation of this phenomenon has focused on ethanol catabolism, particularly by the enzyme alcohol dehydrogenase. Here we report that survival under ethanol and acetic acid stress in D. melanogaster from high- and low-latitude populations is an integrated consequence of toxin catabolism and alteration of physical properties of cellular membranes by ethanol. Metabolic detoxification contributed to differences in ethanol tolerance between populations and acclimation temperatures via changes in both alcohol dehydrogenase and acetyl-CoA synthetase mRNA expression and enzyme activity. Independent of changes in ethanol catabolism, rapid thermal shifts that change membrane fluidity had dramatic effects on ethanol tolerance. Cold temperature treatments upregulated phospholipid metabolism genes and enhanced acetic acid tolerance, consistent with the predicted effects of restoring membrane fluidity. Phospholipase D was expressed at high levels in all treatments that conferred enhanced ethanol tolerance, suggesting that this lipid-mediated signaling enzyme may enhance tolerance by sequestering ethanol in membranes as phophatidylethanol. These results reveal new candidate genes underlying toxin tolerance and membrane adaptation to temperature in Drosophila and provide insight into how interactions between these phenotypes may underlie the maintenance of latitudinal clines in ethanol tolerance.

  14. Fractography, fluidity, and tensile properties of aluminum/hematite particulate composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S.C.; Girish, B.M.; Kamath, R.

    1999-06-01

    This paper examines the effect of hematite (iron oxide) particles on the fluidity of the molten composite as well as the tensile properties and fracture behavior of the solidified as-cast aluminum composites. The percentage of hematite in the composite was varied from 1 to 7% in steps of 2% by weight. The vortex method was employed to prepare the composites. It followed from the results obtained that the ultimate tensile strength and Young`s modulus of the composite increased while the liquid fluidity and solid ductility decreased with the increase in hematite content in the composite specimens. The fluidity of themore » liquid was greater in a metal mold than in a sand mold, and it decreased with an increase in reinforcing particle size and increased with pouring temperature. The presence of the reinforcing particles altered the fracture behavior of the solid composites considerably. Final fracture of the composite occurred due to the propagation of cracks through the matrix between the reinforcing particles.« less

  15. Fermentation Temperature Modulates Phosphatidylethanolamine and Phosphatidylinositol Levels in the Cell Membrane of Saccharomyces cerevisiae

    PubMed Central

    Henderson, Clark M.; Zeno, Wade F.; Lerno, Larry A.; Longo, Marjorie L.

    2013-01-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to a host of environmental and physiological stresses. Extremes of fermentation temperature have previously been demonstrated to induce fermentation arrest under growth conditions that would otherwise result in complete sugar utilization at “normal” temperatures and nutrient levels. Fermentations were carried out at 15°C, 25°C, and 35°C in a defined high-sugar medium using three Saccharomyces cerevisiae strains with diverse fermentation characteristics. The lipid composition of these strains was analyzed at two fermentation stages, when ethanol levels were low early in stationary phase and in late stationary phase at high ethanol concentrations. Several lipids exhibited dramatic differences in membrane concentration in a temperature-dependent manner. Principal component analysis (PCA) was used as a tool to elucidate correlations between specific lipid species and fermentation temperature for each yeast strain. Fermentations carried out at 35°C exhibited very high concentrations of several phosphatidylinositol species, whereas at 15°C these yeast strains exhibited higher levels of phosphatidylethanolamine and phosphatidylcholine species with medium-chain fatty acids. Furthermore, membrane concentrations of ergosterol were highest in the yeast strain that experienced stuck fermentations at all three temperatures. Fluorescence anisotropy measurements of yeast cell membrane fluidity during fermentation were carried out using the lipophilic fluorophore diphenylhexatriene. These measurements demonstrate that the changes in the lipid composition of these yeast strains across the range of fermentation temperatures used in this study did not significantly affect cell membrane fluidity. However, the results from this study indicate that fermenting S. cerevisiae modulates its membrane lipid composition in a temperature-dependent manner. PMID:23811519

  16. Influence of MLS laser radiation on erythrocyte membrane fluidity and secondary structure of human serum albumin.

    PubMed

    Pasternak, Kamila; Nowacka, Olga; Wróbel, Dominika; Pieszyński, Ireneusz; Bryszewska, Maria; Kujawa, Jolanta

    2014-03-01

    The biostimulating activity of low level laser radiation of various wavelengths and energy doses is widely documented in the literature, but the mechanisms of the intracellular reactions involved are not precisely known. The aim of this paper is to evaluate the influence of low level laser radiation from an multiwave locked system (MLS) of two wavelengths (wavelength = 808 nm in continuous emission and 905 nm in pulsed emission) on the human erythrocyte membrane and on the secondary structure of human serum albumin (HSA). Human erythrocytes membranes and HSA were irradiated with laser light of low intensity with surface energy density ranging from 0.46 to 4.9 J cm(-2) and surface energy power density 195 mW cm(-2) (1,000 Hz) and 230 mW cm(-2) (2,000 Hz). Structural and functional changes in the erythrocyte membrane were characterized by its fluidity, while changes in the protein were monitored by its secondary structure. Dose-dependent changes in erythrocyte membrane fluidity were induced by near-infrared laser radiation. Slight changes in the secondary structure of HSA were also noted. MLS laser radiation influences the structure and function of the human erythrocyte membrane resulting in a change in fluidity.

  17. Not changes in membrane fluidity but proteotoxic stress triggers heat shock protein expression in Chlamydomonas reinhardtii.

    PubMed

    Rütgers, Mark; Muranaka, Ligia Segatto; Schulz-Raffelt, Miriam; Thoms, Sylvia; Schurig, Juliane; Willmund, Felix; Schroda, Michael

    2017-12-01

    A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat-stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are as follows: (a) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift, (b) membrane fluidizers induce HSP expression at physiological temperatures, and (c) membrane rigidifier dimethylsulfoxide dampens heat-induced HSP expression. Here, we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat-induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol not only induced HSP expression but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered. © 2017 John Wiley & Sons Ltd.

  18. Analytical studies into radiation-induced starch damage in black and white peppers

    NASA Astrophysics Data System (ADS)

    Sharif, M. M.; Farkas, J.

    1993-07-01

    Temperature dependency of the apparent viscosity of heat-gelatinized suspensions of untreated and irradiated pepper samples has been investigated. There was a close linear correlation between the logaritm of "fluidity" /reciprocal of the apparent viscosity) and the reciprocal absolute temperature of the measurement. The slope of the regression line(the temperature dependence of fluidity) increased with the radiation dose. Gelatinization thermograms of aqueous suspensions of ground pepper samples were obtained by differential scanning calorimetry. Temperature characteristics of heat-gelatinization endotherms showed no significant differences between untreated and irradiated samples. A colorimetric method for damaged starch, the estimation of reducing power, and the alcohol-induced turbidity of aqueous extracts showed statistically significant increases of starch damage at doses higher than 4 kGy. These indices of starch-depolymerization have been changed less dramatically by irradiation than the apparent viscosity of the heat-gelatinized suspensions.

  19. Advances in liquid metals for biomedical applications.

    PubMed

    Yan, Junjie; Lu, Yue; Chen, Guojun; Yang, Min; Gu, Zhen

    2018-04-23

    To date, liquid metals have been widely applied in many fields such as electronics, mechanical engineering and energy. In the last decade, with a better understanding of the physicochemical properties such as low viscosity, good fluidity, high thermal/electrical conductivity and good biocompatibility, gallium and gallium-based low-melting-point (near or below physiological temperature) alloys have attracted considerable attention in bio-related applications. This tutorial review introduces the common performances of liquid metals, highlights their featured properties, as well as summarizes various state-of-the-art bio-applications involving carriers for drug delivery, molecular imaging, cancer therapy and biomedical devices. Challenges for the clinical translation of liquid metals are also discussed.

  20. Effects of semen preservation on boar spermatozoa head membranes.

    PubMed

    Buhr, M M; Canvin, A T; Bailey, J L

    1989-08-01

    Head plasma membranes were isolated from the sperm-rich fraction of boar semen and from sperm-rich semen that had been subjected to three commercial preservation processes: Extended for fresh insemination (extended), prepared for freezing but not frozen (cooled), and stored frozen for 3-5 weeks (frozen-thawed). Fluorescence polarization was used to determine fluidity of the membranes of all samples for 160 min at 25 degrees C and also for membranes from the sperm-rich and extended semen during cooling and reheating (25 to 5 to 40 degrees C, 0.4 degrees C/min). Head plasma membranes from extended semen were initially more fluid than from other sources (P less than 0.05). Fluidity of head membranes from all sources decreased at 25 degrees C, but the rate of decrease was significantly lower for membranes from cooled and lower again for membranes from frozen-thawed semen. Cooling to 5 degrees C reduced the rate of fluidity change for plasma membranes from the sperm-rich fraction, while heating over 30 degrees C caused a significantly greater decrease. The presence of Ca++ (10 mM) lowered the fluidity of the head plasma membranes from sperm-rich and extended semen over time at 25 degrees C but did not affect the membranes from the cooled or frozen-thawed semen. The change in head plasma membrane fluidity at 25 degrees C may reflect the dynamic nature of spermatozoa membranes prior to fertilization. Extenders, preservation processes and temperature changes have a strong influence on head plasma membrane fluidity and therefore the molecular organization of this membrane.

  1. Heat stress dictates microbial lipid composition in hydrothermal marine sediments

    NASA Astrophysics Data System (ADS)

    Sollich, M.; Yoshinaga, M. Y.; Häusler, S.; Hinrichs, K. U.; Bühring, S. I.

    2016-02-01

    Abundant and diverse microbial communities inhabit hydrothermal marine sediments. Since ion permeability of membranes increases with temperature archaea and bacteria that use proton/sodium as coupling ions for bioenergetics must constantly adjust their cytoplasmic membrane permeability, which in turn is mostly controlled by the lipid composition. Here, we investigated a thermal gradient across a marine sediment field (ranging from 18 to over 100°C) and tested the concept that membrane lipids provide a major biochemical basis for cellular bioenergetics of archaea and bacteria under stressful conditions. Reflecting the lower ion permeability of the ether-linked isoprenoidal lipids, we found that archaea dominate over bacteria in sediments of >50 °C. Moreover, a detailed examination of the molecular lipid species revealed a quandary: low membrane permeability concomitantly with increased fluidity is required for energy conservation of both archaea and bacteria under heat stress. For instance, bacterial fatty acids were found to increase chain length in concert with a higher degree of unsaturation at elevated sediment temperatures while archaeal tetraethers were observed to show a higher degree of bulking (e.g. methylation and H-shaped) and fluidity (i.e. cyclization) under elevated temperatures. In addition, our data indicate that strong intermolecular hydrogen bonding at the headgroup level of archaeal glycolipids and bacterial sphingolipids may provide ideal membrane stability to attain the required balance between low permeability and a more fluidized configuration. For example, sphingolipids may stabilize bacterial phospholipids into lipid domains, enabling bacteria to thrive in heated sediments under unfavorable thermodynamic conditions. The scientific marriage of lipidomics and bioenergetics described here provides a new dimension for understanding microbial life in natural environments.

  2. Interaction of curcumin with 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine liposomes: Intercalation of rhamnolipids enhances membrane fluidity, permeability and stability of drug molecule.

    PubMed

    Moussa, Zeinab; Chebl, Mazhar; Patra, Digambara

    2017-01-01

    Stability of curcumin in neutral and alkaline buffer conditions has been a serious concern for its medicinal applications. We demonstrate that the stability of curucmin can be improved in 1,2-Dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) liposomes. Curcumin strongly partition into liquid crystalline phase compared to solid gel phase of DSPC liposomes. Variation of fluorescence intensity of curcumin associated with liposomes with temperature successfully determines phase transition temperature of DSPC liposomes. However, at higher molar ratio curcumin can influence phase transition temperature by intercalating into deep hydrophobic layer of liposomes and facilitating fusion of two membrane phases. Rhamnolipids (RLs) are recently being applied for various biomedical applications. Here, we have explored new insight on intercalation of rhamnolipids with DSPC liposomes. Intercalation of rhamnolipids exceptionally increases partition of curcumin into solid gel phase of DSPC liposomes, whereas this increase is moderate in liquid crystalline phase. Fluorescence quenching study establishes that permeability and fluidity of the DSPC liposomes are enhanced in the presence of RLs. Membrane permeability and fluidity can be improved further by increasing the percentage of RLs in DSPC liposomes. The phase transition temperature of DSPC liposomes decreases with increase in percentage of RLs in DSPC liposomes by encouraging fusion between solid gel and liquid crystalline phases. Intercalation of RLs is found to further boost stability of drug, curcumin, in DSPC liposomes. Thus, mixing RLs with DSPC liposomes could potentially serve as a good candidate for drug delivery application. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of Coal Gangue on Cement Grouting Material Properties

    NASA Astrophysics Data System (ADS)

    Liu, J. Y.; Chen, H. X.

    2018-05-01

    The coal gangue is one of the most abundant industrial solid wastes and pollute source of air and water. The use of coal gangue in the production of cement grouting material comforms to the basic state policy of environment protection and the circular using of natural resources. Through coal gangue processing experiment, coal gangue cement grouting materials making test, properties detection of properties and theoretical analysis, the paper studied the effects of coal gangue on the properties of cement grouting materials. It is found that at the range of 600 to 700 °C, the fluidity and the compressive and flexural strengths of the cement grouting materials increase with the rising up of the calcination temperatures of coal gangue. The optimum calcination temperature is around 700 °C. The part substitution of cement by the calcined coal gangue in the cement grouting material will improve the mechanical properties of the cement grouting material, even thought it will decrease its fluidity. The best substitution amount of cement by coal gangue is about 30%. The fluidity and the long term strength of the ordinary silicate cement grouting material is obviously higher than that of the sulphoaluminate cement one as well as that of the silicate-sulphoaluminate complex cement one.

  4. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes.

    PubMed

    Mason, R Preston; Jacob, Robert F; Shrivastava, Sandeep; Sherratt, Samuel C R; Chattopadhyay, Amitabha

    2016-12-01

    Cholesterol crystalline domains characterize atherosclerotic membranes, altering vascular signaling and function. Omega-3 fatty acids reduce membrane lipid peroxidation and subsequent cholesterol domain formation. We evaluated non-peroxidation-mediated effects of eicosapentaenoic acid (EPA), other TG-lowering agents, docosahexaenoic acid (DHA), and other long-chain fatty acids on membrane fluidity, bilayer width, and cholesterol domain formation in model membranes. In membranes prepared at 1.5:1 cholesterol-to-phospholipid (C/P) mole ratio (creating pre-existing domains), EPA, glycyrrhizin, arachidonic acid, and alpha linolenic acid promoted the greatest reductions in cholesterol domains (by 65.5%, 54.9%, 46.8%, and 45.2%, respectively) compared to controls; other treatments had modest effects. EPA effects on cholesterol domain formation were dose-dependent. In membranes with 1:1 C/P (predisposing domain formation), DHA, but not EPA, dose-dependently increased membrane fluidity. DHA also induced cholesterol domain formation without affecting temperature-induced changes in-bilayer unit cell periodicity relative to controls (d-space; 57Å-55Å over 15-30°C). Together, these data suggest simultaneous formation of distinct cholesterol-rich ordered domains and cholesterol-poor disordered domains in the presence of DHA. By contrast, EPA had no effect on cholesterol domain formation and produced larger d-space values relative to controls (60Å-57Å; p<0.05) over the same temperature range, suggesting a more uniform maintenance of lipid dynamics despite the presence of cholesterol. These data indicate that EPA and DHA had different effects on membrane bilayer width, membrane fluidity, and cholesterol crystalline domain formation; suggesting omega-3 fatty acids with differing chain length or unsaturation may differentially influence membrane lipid dynamics and structural organization as a result of distinct phospholipid/sterol interactions. Copyright © 2016. Published by Elsevier B.V.

  5. The effects of low level microwaves on the fluidity of photoreceptor cell membrane.

    PubMed

    Pologea-Moraru, Roxana; Kovacs, Eugenia; Iliescu, Karina Roxana; Calota, Violeta; Sajin, Gheorghe

    2002-05-15

    Due to the extensive use of electromagnetic fields in everyday life, more information is required for the detection of mechanisms of interaction and the possible side effects of electromagnetic radiation on the structure and function of the organism. In this paper, we study the effects of low-power microwaves (2.45 GHz) on the membrane fluidity of rod photoreceptor cells. The retina is expected to be very sensitive to microwave irradiation due to the polar character of the photoreceptor cells [Biochim. Biophys. Acta 1273 (1995) 217] as well as to its high water content [Stud. Biophys. 81 (1981) 39].

  6. Neutralizing antibodies decrease the envelope fluidity of HIV-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, Shinji; Monde, Kazuaki; Tanaka, Yuetsu

    2008-01-05

    For successful penetration of HIV-1, the formation of a fusion pore may be required in order to accumulate critical numbers of fusion-activated gp41 with the help of fluidization of the plasma membrane and viral envelope. An increase in temperature to 40 {sup o}C after viral adsorption at 25 {sup o}C enhanced the infectivity by 1.4-fold. The enhanced infectivity was inhibited by an anti-CXCR4 peptide, T140, and anti-V3 monoclonal antibodies (0.5{beta} and 694/98-D) by post-attachment neutralization, but not by non-neutralizing antibodies (670-30D and 246-D) specific for the C5 of gp120 and cluster I of gp41, respectively. Anti-HLA-II and an anti-HTLV-I gp46more » antibody, LAT27, neutralized the molecule-carrying HIV-1{sub C-2(MT-2)}. The anti-V3 antibodies suppressed the fluidity of the HIV-1{sub C-2} envelope, whereas the non-neutralizing antibodies did not. The anti-HLA-II antibody decreased the envelope fluidity of HIV-1{sub C-2(MT-2)}, but not that of HIV-1{sub C-2}. Therefore, fluidity suppression by these antibodies represents an important neutralization mechanism, in addition to inhibition of viral attachment.« less

  7. Direct measurements of irradiation-induced creep in micropillars of amorphous Cu{sub 56}Ti{sub 38}Ag{sub 6}, Zr{sub 52}Ni{sub 48}, Si, and SiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özerinç, Sezer; Kim, Hoe Joon; Averback, Robert S.

    2015-01-14

    We report in situ measurements of irradiation-induced creep on amorphous (a-) Cu{sub 56}Ti{sub 38}Ag{sub 6}, Zr{sub 52}Ni{sub 48}, Si, and SiO{sub 2}. Micropillars 1 μm in diameter and 2 μm in height were irradiated with ∼2 MeV heavy ions during uniaxial compression at room temperature. The creep measurements were performed using a custom mechanical testing apparatus utilizing a nanopositioner, a silicon beam transducer, and an interferometric laser displacement sensor. We observed Newtonian flow in all tested materials. For a-Cu{sub 56}Ti{sub 38}Ag{sub 6}, a-Zr{sub 52}Ni{sub 48}, a-Si, and Kr{sup +} irradiated a-SiO{sub 2} irradiation-induced fluidities were found to be nearly the same, ≈3 GPa{sup −1}more » dpa{sup −1}, whereas for Ne{sup +} irradiated a-SiO{sub 2} the fluidity was much higher, 83 GPa{sup −1} dpa{sup −1}. A fluidity of 3 GPa{sup −1} dpa{sup −1} can be explained by point-defect mediated plastic flow induced by nuclear collisions. The fluidity of a-SiO{sub 2} can also be explained by this model when nuclear stopping dominates the energy loss, but when the electronic stopping exceeds 1 keV/nm, stress relaxation in thermal spikes also contributes to the fluidity.« less

  8. Heat Stress Dictates Microbial Lipid Composition along a Thermal Gradient in Marine Sediments

    PubMed Central

    Sollich, Miriam; Yoshinaga, Marcos Y.; Häusler, Stefan; Price, Roy E.; Hinrichs, Kai-Uwe; Bühring, Solveig I.

    2017-01-01

    Temperature exerts a first-order control on microbial populations, which constantly adjust the fluidity and permeability of their cell membrane lipids to minimize loss of energy by ion diffusion across the membrane. Analytical advances in liquid chromatography coupled to mass spectrometry have allowed the detection of a stunning diversity of bacterial and archaeal lipids in extreme environments such as hot springs, hydrothermal vents and deep subsurface marine sediments. Here, we investigated a thermal gradient from 18 to 101°C across a marine sediment field and tested the hypothesis that cell membrane lipids provide a major biochemical basis for the bioenergetics of archaea and bacteria under heat stress. This paper features a detailed lipidomics approach with the focus on membrane lipid structure-function. Membrane lipids analyzed here include polar lipids of bacteria and polar and core lipids of archaea. Reflecting the low permeability of their ether-linked isoprenoids, we found that archaeal polar lipids generally dominate over bacterial lipids in deep layers of the sediments influenced by hydrothermal fluids. A close examination of archaeal and bacterial lipids revealed a membrane quandary: not only low permeability, but also increased fluidity of membranes are required as a unified property of microbial membranes for energy conservation under heat stress. For instance, bacterial fatty acids were composed of longer chain lengths in concert with higher degree of unsaturation while archaea modified their tetraethers by incorporation of additional methyl groups at elevated sediment temperatures. It is possible that these configurations toward a more fluidized membrane at elevated temperatures are counterbalanced by the high abundance of archaeal glycolipids and bacterial sphingolipids, which could reduce membrane permeability through strong intermolecular hydrogen bonding. Our results provide a new angle for interpreting membrane lipid structure-function enabling archaea and bacteria to survive and grow in hydrothermal systems. PMID:28878741

  9. Microscopic mechanism analyses on influence of metabolism of erythrocyte membrane-lipid etc. by LLLIB

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Zhang, Canbang; Wen, Yuanbin; Liu, Shuxiao; Zhou, Lingyun

    2009-08-01

    Some cases with cerebral infarction were treated by He-Ne laser irradiation on blood. In the treatment before and after, membrane-cholesterol(C)/membrane-phosphatide(P), membrane fluidity(F) and deformability of erythrocyte were determined. The results showed that low level laser irradiation on blood (LLLIB) can sure reduce the ratio of (C)/(P), can heighten fluidity and improve deformability of erythrocyte .Thus the metabolism ability of erythrocyte membrane-lipid ,the blood circulation and the properties of hemorheology can be improved. In this paper, the microscopic mechanism of those aforesaid action effects by low level laser irradiation on blood were analyzed by means of Quantum theory and some corresponding models.

  10. Adaptation to low body temperature influences pulmonary surfactant composition thereby increasing fluidity while maintaining appropriately ordered membrane structure and surface activity.

    PubMed

    Suri, Lakshmi N M; McCaig, Lynda; Picardi, Maria V; Ospina, Olga L; Veldhuizen, Ruud A W; Staples, James F; Possmayer, Fred; Yao, Li-Juan; Perez-Gil, Jesus; Orgeig, Sandra

    2012-07-01

    The interfacial surface tension of the lung is regulated by phospholipid-rich pulmonary surfactant films. Small changes in temperature affect surfactant structure and function in vitro. We compared the compositional, thermodynamic and functional properties of surfactant from hibernating and summer-active 13-lined ground squirrels (Ictidomys tridecemlineatus) with porcine surfactant to understand structure-function relationships in surfactant membranes and films. Hibernating squirrels had more surfactant large aggregates with more fluid monounsaturated molecular species than summer-active animals. The latter had more unsaturated species than porcine surfactant. Cold-adapted surfactant membranes displayed gel-to-fluid transitions at lower phase transition temperatures with reduced enthalpy. Both hibernating and summer-active squirrel surfactants exhibited lower enthalpy than porcine surfactant. LAURDAN fluorescence and DPH anisotropy revealed that surfactant bilayers from both groups of squirrels possessed similar ordered phase characteristics at low temperatures. While ground squirrel surfactants functioned well during dynamic cycling at 3, 25, and 37 degrees C, porcine surfactant demonstrated poorer activity at 3 degrees C but was superior at 37 degrees C. Consequently the surfactant composition of ground squirrels confers a greater thermal flexibility relative to homeothermic mammals, while retaining tight lipid packing at low body temperatures. This may represent the most critical feature contributing to sustained stability of the respiratory interface at low lung volumes. Thus, while less effective than porcine surfactant at 37 degrees C, summer-active surfactant functions adequately at both 37 degrees C and 3 degrees C allowing these animals to enter hibernation. Here further compositional alterations occur which improve function at low temperatures by maintaining adequate stability at low lung volumes and when temperature increases during arousal from hibernation.

  11. Investigation of Resonant AC-DC Magnetic Field Effects.

    DTIC Science & Technology

    1987-07-31

    phosphatidylethanolamine with smaller amounts of phosphatidylinosital and phosphatidic acid . The fluidity of the acyl chain region of these lipids at room temperature...fusion and lipid lateral separation in phosphatidylcholine- phosphatidic acid vesicles. Biochem 25:6978-6987. Liboff AR (1985): Cyclotron resonance in

  12. Development of laboratory test methods to replace the simulated high-temperature grout fluidity test : [summary].

    DOT National Transportation Integrated Search

    2014-06-01

    Concretes remarkable role in construction depends on its marriage with reinforcing steel. Concrete is very strong in compression, but weak in tension, so reinforcing steel is added to increase tensile strength, yielding structural components capab...

  13. Short infrared laser pulses increase cell membrane fluidity

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Cantu, Jody C.; Ibey, Bennett L.; Beier, Hope T.

    2017-02-01

    Short infrared laser pulses induce a variety of effects in cells and tissues, including neural stimulation and inhibition. However, the mechanism behind these physiological effects is poorly understood. It is known that the fast thermal gradient induced by the infrared light is necessary for these biological effects. Therefore, this study tests the hypothesis that the fast thermal gradient induced in a cell by infrared light exposure causes a change in the membrane fluidity. To test this hypothesis, we used the membrane fluidity dye, di-4-ANEPPDHQ, to investigate membrane fluidity changes following infrared light exposure. Di-4-ANEPPDHQ fluorescence was imaged on a wide-field fluorescence imaging system with dual channel emission detection. The dual channel imaging allowed imaging of emitted fluorescence at wavelengths longer and shorter than 647 nm for ratiometric assessment and computation of a membrane generalized polarization (GP) value. Results in CHO cells show increased membrane fluidity with infrared light pulse exposure and this increased fluidity scales with infrared irradiance. Full recovery of pre-infrared exposure membrane fluidity was observed. Altogether, these results demonstrate that infrared light induces a thermal gradient in cells that changes membrane fluidity.

  14. Thermophysical Properties of Fluid Latent Heat Storage Material using Urea-Water Mixture

    NASA Astrophysics Data System (ADS)

    Hokamura, Taku; Ohkubo, Hidetoshi; Ashizawa, Kiyonori

    This study is concerned with the measurement of thermophysical properties of a urea-water mixture with the aim of adopting the mixture as a latent heat storage material for air-conditioning systems. The urea-water mixture is made of natural substances and has a good fluidity. The urea concentration in the mixture was controlled by measuring the refractive index of the mixture. Being a multi-component substance, a urea-water solution has a liquid-solid co-existent phase on a phase-diagram. Therefore, the liquidus temperature was measured to establish a relationship between the fraction of the solid-phase and temperature. Furthermore, apparent values of specific heat and coefficient of viscosity were measured in the two-phase region where the solid phase is ice. The apparent specific heat and coefficient of viscosity were measure by using an adiabatic calorimeter and a stirring torque meter respectively. The results revealed that the urea-water mixture can probably be used as a latent heat storage material of good fluidity.

  15. Photopolymerization of Dienoyl Lipids Creates Planar Supported Poly(lipid) Membranes with Retained Fluidity.

    PubMed

    Orosz, Kristina S; Jones, Ian W; Keogh, John P; Smith, Christopher M; Griffin, Kaitlyn R; Xu, Juhua; Comi, Troy J; Hall, H K; Saavedra, S Scott

    2016-02-16

    Polymerization of substrate-supported bilayers composed of dienoylphosphatidylcholine (PC) lipids is known to greatly enhance their chemical and mechanical stability; however, the effects of polymerization on membrane fluidity have not been investigated. Here planar supported lipid bilayers (PSLBs) composed of dienoyl PCs on glass substrates were examined to assess the degree to which UV-initiated polymerization affects lateral lipid mobility. Fluorescence recovery after photobleaching (FRAP) was used to measure the diffusion coefficients (D) and mobile fractions of rhodamine-DOPE in unpolymerized and polymerized PSLBs composed of bis-sorbyl phosphatidylcholine (bis-SorbPC), mono-sorbyl-phosphatidylcholine (mono-SorbPC), bis-dienoyl-phosphatidylcholine (bis-DenPC), and mono-dienoyl phosphatidylcholine (mono-DenPC). Polymerization was performed in both the Lα and Lβ phase for each lipid. In all cases, polymerization reduced membrane fluidity; however, measurable lateral diffusion was retained which is attributed to a low degree of polymerization. The D values for sorbyl lipids were less than those of the denoyl lipids; this may be a consequence of the distal location of polymerizable group in the sorbyl lipids which may facilitate interleaflet bonding. The D values measured after polymerization were 0.1-0.8 of those measured before polymerization, a range that corresponds to fluidity intermediate between that of a Lα phase and a Lβ phase. This D range is comparable to ratios of D values reported for liquid-disordered (Ld) and liquid-ordered (Lo) lipid phases and indicates that the effect of UV polymerization on lateral diffusion in a dienoyl PSLB is similar to the transition from a Ld phase to a Lo phase. The partial retention of fluidity in UV-polymerized PSLBs, their enhanced stability, and the activity of incorporated transmembrane proteins and peptides is discussed.

  16. Photopolymerization of dienoyl lipids creates planar supported poly(lipid) membranes with retained fluidity

    PubMed Central

    Orosz, Kristina S.; Jones, Ian W.; Keogh, John P.; Smith, Christopher M.; Griffin, Kaitlyn R.; Xu, Juhua; Comi, Troy J.; Hall, H. K.

    2016-01-01

    Polymerization of substrate-supported bilayers composed of dienoyl phosphatidylcholine (PC) lipids is known to greatly enhance their chemical and mechanical stability, however the effects of polymerization on membrane fluidity have not been investigated. Here planar supported lipid bilayers (PSLBs) composed of dienoyl PCs on glass substrates were examined to assess the degree to which UV-initiated polymerization affects lateral lipid mobility. Fluorescence recovery after photobleaching (FRAP) was used to measure the diffusion coefficients (D) and mobile fractions of rhodamine-DOPE in unpolymerized and polymerized PSLBs composed of bis-sorbyl phosphatidylcholine (bis-SorbPC), mono-sorbyl phosphatidylcholine (mono-SorbPC), bis-dienoyl phosphatidylcholine (bis-DenPC) and mono-dienoyl phosphatidylcholine (mono-DenPC). Polymerization was performed in both the Lα and Lβ phase for each lipid. In all cases, polymerization reduced membrane fluidity, however measurable lateral diffusion was retained which is attributed to a low degree of polymerization. The D values for sorbyl lipids were less than those of the denoyl lipids; this may be a consequence of the distal location of polymerizable group in the sorbyl lipids which may facilitate inter-leaflet bonding. The D values measured after polymerization were 0.1 to 0.8 of those measured before polymerization, a range that corresponds to fluidity intermediate between that of a Lα phase and a Lβ phase. This D range is comparable to ratios of D values reported for liquid-disordered (Ld) and liquid-ordered (Lo) lipid phases, and indicates that the effect of UV polymerization on lateral diffusion in a dienoyl PSLB is similar to the transition from a Ld phase to a Lo phase. The partial retention of fluidity in UV polymerized PSLBs, their enhanced stability, and the activity of incorporated transmembrane proteins and peptides is discussed. PMID:26794208

  17. A role for the thermal environment in defining co-stimulation requirements for CD4+ T cell activation

    PubMed Central

    Zynda, Evan R; Grimm, Melissa J; Yuan, Min; Zhong, Lingwen; Mace, Thomas A; Capitano, Maegan; Ostberg, Julie R; Lee, Kelvin P; Pralle, Arnd; Repasky, Elizabeth A

    2015-01-01

    Maintenance of normal core body temperature is vigorously defended by long conserved, neurovascular homeostatic mechanisms that assist in heat dissipation during prolonged, heat generating exercise or exposure to warm environments. Moreover, during febrile episodes, body temperature can be significantly elevated for at least several hours at a time. Thus, as blood cells circulate throughout the body, physiologically relevant variations in surrounding tissue temperature can occur; moreover, shifts in core temperature occur during daily circadian cycles. This study has addressed the fundamental question of whether the threshold of stimulation needed to activate lymphocytes is influenced by temperature increases associated with physiologically relevant increases in temperature. We report that the need for co-stimulation of CD4+ T cells via CD28 ligation for the production of IL-2 is significantly reduced when cells are exposed to fever-range temperature. Moreover, even in the presence of sufficient CD28 ligation, provision of extra heat further increases IL-2 production. Additional in vivo and in vitro data (using both thermal and chemical modulation of membrane fluidity) support the hypothesis that the mechanism by which temperature modulates co-stimulation is linked to increases in membrane fluidity and membrane macromolecular clustering in the plasma membrane. Thermally-regulated changes in plasma membrane organization in response to physiological increases in temperature may assist in the geographical control of lymphocyte activation, i.e., stimulating activation in lymph nodes rather than in cooler surface regions, and further, may temporarily and reversibly enable CD4+ T cells to become more quickly and easily activated during times of infection during fever. PMID:26131730

  18. Influence of membrane fatty acid composition and fluidity on airborne survival of Escherichia coli.

    PubMed

    Ng, Tsz Wai; Chan, Wing Lam; Lai, Ka Man

    2018-04-01

    Finding ways to predict and control the survival of bacterial aerosols can contribute to the development of ways to alleviate a number of crucial microbiological problems. Significant damage in the membrane integrity of Escherichia coli during aerosolization and airborne suspension has been revealed which has prompted the question of how the membrane fatty acid composition and fluidity influence the survival of airborne bacteria. Two approaches of using isogenic mutants and different growth temperatures were selected to manipulate the membrane fatty acid composition of E. coli before challenging the bacteria with different relative humidity (RH) levels in an aerosol chamber. Among the mutants (fabR - , cfa. fadA - ), fabR - had the lowest membrane fluidity index (FI) and generally showed a higher survival than the parental strain. Surprisingly, its resistance to airborne stress was so strong that its viability was fully maintained even after airborne suspension at 40% RH, a harsh RH level to bacterial survival. Moreover, E. coli cultured at 20 °C with a higher FI than that at 30 and 37 °C generally had a lower survival after aerosolization and airborne suspension. Unlike FI, individual fatty acid and cyclopropane fatty acid composition did not relate to the bacterial survival. Lipid peroxidation of the membrane was undetected in all the bacteria. Membrane fluidity plays a stronger role in determining the bacteria survival during airborne suspension than during aerosolization. Certain relationships between FI and bacteria survival were identified, which could help predict the transmission of bacteria under different conditions.

  19. Possible evolutionary origins of human female sexual fluidity.

    PubMed

    Kanazawa, Satoshi

    2017-08-01

    I propose an evolutionary theory of human female sexual fluidity and argue that women may have been evolutionarily designed to be sexually fluid in order to allow them to have sex with their cowives in polygynous marriage and thus reduce conflict and tension inherent in such marriage. In addition to providing an extensive definition and operationalization of the concept of sexual fluidity and specifying its ultimate function for women, the proposed theory can potentially solve several theoretical and empirical puzzles in evolutionary psychology and sex research. Analyses of the National Longitudinal Study of Adolescent Health (Add Health) confirm the theory's predictions that: (i) women (but not men) who experience increased levels of sexual fluidity have a larger number of children (suggesting that female sexual fluidity, if heritable, may be evolutionarily selected); (ii) women (but not men) who experience marriage or parenthood early in adult life subsequently experience increased levels of sexual fluidity; and (iii) sexual fluidity is significantly positively correlated with known markers of unrestricted sexual orientation among women whereas it is significantly negatively correlated with such markers among men. © 2016 Cambridge Philosophical Society.

  20. Influence of lecithin-lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule.

    PubMed

    Bouarab, Lynda; Maherani, Behnoush; Kheirolomoom, Azadeh; Hasan, Mahmoud; Aliakbarian, Bahar; Linder, Michel; Arab-Tehrany, Elmira

    2014-03-01

    In this work, we studied the effect of nanoliposome composition based on phospholipids of docosahexaenoic acid (PL-DHA), salmon and soya lecithin, on physico-chemical characterization of vector. Cinnamic acid was encapsulated as a hydrophobic molecule in nanoliposomes made of three different lipid sources. The aim was to evaluate the influence of membrane lipid structure and composition on entrapment efficiency and membrane permeability of cinnamic acid. These properties are important for active molecule delivery. In addition, size, electrophoretic mobility, phase transition temperature, elasticity and membrane fluidity were measured before and after encapsulation. The results showed a correlation between the size of the nanoliposome and the entrapment. The entrapment efficiency of cinnamic acid was found to be the highest in liposomes prepared from salmon lecithin. The nanoliposomes composed of salmon lecithin presented higher capabilities as a carrier for cinnamic acid encapsulation. These vesicles also showed a high stability which in turn increases the membrane rigidity of nanoliposome as evaluated by their elastic properties, membrane fluidity and phase transition temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Testing an egg yolk supplemented diet on boars to aid in sperm adaptation at 5°C.

    PubMed

    Casas, Isabel; Miller-Lux, Yvonne; Osborne, Betty; Bonet, Sergi; Althouse, Gary C

    2015-01-01

    In many species, extended semen can be stored at low temperatures to slow bacterial growth. However, boar semen performs poorly at temperatures below 15 °C and this poses unique challenges, as it is not easy to maintain a constant 15-19 °C during shipment. Some extenders have been formulated with egg yolk for storage at 5 °C but the addition of egg yolk is not applicable in the majority of commercial operations. The purpose of this study was to evaluate if boar dietary supplementation with powdered egg yolk imparts any protective effects on sperm quality when stored at 15 °C and 5 °C for up to 11 days in a conventional extender. Ten boars were fed a commercial diet with the addition of 0.11 Kg of powdered egg yolk for 10 weeks. Ejaculates collected on weeks 4, 6, 8, and 10 were processed for storage at both 15 °C and 5 °C and compared with ejaculates from boars fed a standard diet. Throughout an 11-day storage period, sperm quality was assessed including several motility and morphologic parameters and select plasma membrane properties (fluidity, integrity, and triacylglycerol content). Linear regression models were used to describe effects of treatment, storage day, week and temperature on all sperm parameters. Overall, there were minimal beneficial effects of egg yolk treatment on sperm quality parameters. Sperm from egg yolk supplemented boars did have a slower decline in viability and plasma membrane fluidity than that observed in the control sperm when stored at 5 °C (p < 0.001). Additionally, there was an increase in total morphologic abnormalities in sperm from egg yolk fed boars compared to controls at week 10 (p <  .001). In conclusion, the results of this study do not support a significant benefit to sperm quality or resistance to cold storage when feeding a 10-week dietary supplementation of 0.11 Kg powdered egg yolk to crossbred boars.

  2. Nearly Perfect Fluidity in a High Temperature Superconductor

    DOE PAGES

    Rameau, J. D.; Reber, T. J.; Yang, H. -B.; ...

    2014-10-13

    Perfect fluids are characterized as having the smallest ratio of shear viscosity to entropy density, η/s, consistent with quantum uncertainty and causality. So far, nearly perfect fluids have only been observed in the quark-gluon plasma and in unitary atomic Fermi gases, exotic systems that are amongst the hottest and coldest objects in the known universe, respectively. We use angle resolved photoemission spectroscopy to measure the temperature dependence of an electronic analog of η/s in an optimally doped cuprate high-temperature superconductor, finding it too is a nearly perfect fluid around, and above, its superconducting transition temperature T c.

  3. Nearly perfect fluidity in a high-temperature superconductor

    NASA Astrophysics Data System (ADS)

    Rameau, J. D.; Reber, T. J.; Yang, H.-B.; Akhanjee, S.; Gu, G. D.; Johnson, P. D.; Campbell, S.

    2014-10-01

    Perfect fluids are characterized as having the smallest ratio of shear viscosity to entropy density, η /s, consistent with quantum uncertainty and causality. So far, nearly perfect fluids have only been observed in the quark-gluon plasma and in unitary atomic Fermi gases, exotic systems that are amongst the hottest and coldest objects in the known universe, respectively. We use angle resolved photoemission spectroscopy to measure the temperature dependence of an electronic analog of η /s in an optimally doped cuprate high-temperature superconductor, finding it too is a nearly perfect fluid around, and above, its superconducting transition temperature Tc.

  4. Differential gene expression profiling through transcriptome approach of Saccharum spontaneum L. under low temperature stress reveals genes potentially involved in cold acclimation.

    PubMed

    Selvarajan, Dharshini; Mohan, Chakravarthi; Dhandapani, Vignesh; Nerkar, Gauri; Jayanarayanan, Ashwin Narayan; Vadakkancherry Mohanan, Manoj; Murugan, Naveenarani; Kaur, Lovejot; Chennappa, Mahadevaiah; Kumar, Ravinder; Meena, Minturam; Ram, Bakshi; Chinnaswamy, Appunu

    2018-04-01

    Sugarcane ( Saccharum sp.) is predominantly grown in both tropics and subtropics in India, and the subtropics alone contribute more than half of sugarcane production. Sugarcane active growth period in subtropics is restricted to 8-9 months mainly due to winter's low temperature stress prevailing during November to February every year. Being a commercial crop, tolerance to low temperature is important in sugarcane improvement programs. Development of cold tolerant sugarcane varieties require a deep knowledge on molecular mechanism naturally adapted by cold tolerant genotypes during low temperature stress. To understand gene regulation under low temperature stress, control and stressed (10 °C, 24 h) leaf samples of cold tolerant S. spontaneum IND 00-1037 collected from high altitude region in Arunachal Pradesh were used for transcriptome analysis using the Illumina NextSeq 500 platform with paired-end sequencing method. Raw reads of 5.1 GB (control) and 5.3 GB (stressed) obtained were assembled using trinity and annotated with UNIPROT, KEGG, GO, COG and SUCEST databases, and transcriptome was validated using qRT-PCR. The differential gene expression (DGE) analysis showed that 2583 genes were upregulated and 3302 genes were down-regulated upon low temperature stress. A total of 170 cold responsive transcriptional factors belonging to 30 families were differentially regulated. CBF6 (C-binding factor), a DNA binding transcriptional activation protein associated with cold acclimation and freezing tolerance was differentially upregulated. Many low temperature responsive genes involved in various metabolic pathways, viz. cold sensing through membrane fluidity, calcium and lipid signaling genes, MAP kinases, phytohormone signaling and biosynthetic genes, antioxidative enzymes, membrane and cellular stabilizing genes, genes involved in biosynthesis of polyunsaturated fatty acids, chaperones, LEA proteins, soluble sugars, osmoprotectants, lignin and pectin biosynthetic genes were also differentially upregulated. Potential cold responsive genes and transcriptional factors involved in cold tolerance mechanism in cold tolerant S. spontaneum IND 00-1037 were identified. Together, this study provides insights into the cold tolerance to low temperature stress in S. spontaneum , thus opening applications in the genetic improvement of cold stress tolerance in sugarcane.

  5. Reorganization of Azospirillum brasilense cell membrane is mediated by lipid composition adjustment to maintain optimal fluidity during water deficit.

    PubMed

    Cesari, A B; Paulucci, N S; Biasutti, M A; Reguera, Y B; Gallarato, L A; Kilmurray, C; Dardanelli, M S

    2016-01-01

    We study the Azospirillum brasilense tolerance to water deficit and the dynamics of adaptive process at the level of the membrane. Azospirillum brasilense was exposed to polyethylene glycol (PEG) growth and PEG shock. Tolerance, phospholipids and fatty acid (FA) composition and membrane fluidity were determined. Azospirillum brasilense was able to grow in the presence of PEG; however, its viability was reduced. Cells grown with PEG showed membrane fluidity similar to those grown without, the lipid composition was modified, increasing phosphatidylcholine and decreasing phosphatidylethanolamine amounts. The unsaturation FAs degree was reduced. The dynamics of the adaptive response revealed a decrease in fluidity 20 min after the addition of PEG, indicating that the PEG has a fluidizing effect on the hydrophobic region of the cell membrane. Fluidity returned to initial values after 60 min of PEG exposure. Azospirillum brasilense is able to perceive osmotic changes by changing the membrane fluidity. This effect is offset by changes in the composition of membrane phospholipid and FA, contributing to the homeostasis of membrane fluidity under water deficit. This knowledge can be used to develop new Azospirillum brasilense formulations showing an adapted membrane to water deficit. © 2015 The Society for Applied Microbiology.

  6. Determinants of HDL Cholesterol Efflux Capacity after Virgin Olive Oil Ingestion: Interrelationships with Fluidity of HDL Monolayer.

    PubMed

    Fernández-Castillejo, Sara; Rubió, Laura; Hernáez, Álvaro; Catalán, Úrsula; Pedret, Anna; Valls, Rosa-M; Mosele, Juana I; Covas, Maria-Isabel; Remaley, Alan T; Castañer, Olga; Motilva, Maria-José; Solá, Rosa

    2017-12-01

    Cholesterol efflux capacity of HDL (CEC) is inversely associated with cardiovascular risk. HDL composition, fluidity, oxidation, and size are related with CEC. We aimed to assess which HDL parameters were CEC determinants after virgin olive oil (VOO) ingestion. Post-hoc analyses from the VOHF study, a crossover intervention with three types of VOO. We assessed the relationship of 3-week changes in HDL-related variables after intervention periods with independence of the type of VOO. After univariate analyses, mixed linear models were fitted with variables related with CEC and fluidity. Fluidity and Apolipoprotein (Apo)A-I content in HDL was directly associated, and HDL oxidative status inversely, with CEC. A reduction in free cholesterol, an increase in triglycerides in HDL, and a decrease in small HDL particle number or an increase in HDL mean size, were associated to HDL fluidity. HDL fluidity, ApoA-I concentration, and oxidative status are major determinants for CEC after VOO. The impact on CEC of changes in free cholesterol and triglycerides in HDL, and those of small HDL or HDL mean size, could be mechanistically linked through HDL fluidity. Our work points out novel therapeutic targets to improve HDL functionality in humans through nutritional or pharmacological interventions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Thermal Regulation of Membrane Lipid Fluidity by a Two-Component System in "Bacillus Subtilis"

    ERIC Educational Resources Information Center

    Bredeston, L. M.; Marciano, D.; Albanesi, D.; De Mendoza, D.; Delfino, J. M.

    2011-01-01

    This article describes a simple and robust laboratory exercise on the regulation of membrane unsaturated fatty acid composition in bacteria by a decrease in growth temperature. We take advantage of the well characterized Des pathway of "Bacillus subtilis", composed of a [delta]5-desaturase (encoded by the "des" gene) and the canonical…

  8. The effect of alcohols on red blood cell mechanical properties and membrane fluidity depends on their molecular size.

    PubMed

    Sonmez, Melda; Ince, Huseyin Yavuz; Yalcin, Ozlem; Ajdžanović, Vladimir; Spasojević, Ivan; Meiselman, Herbert J; Baskurt, Oguz K

    2013-01-01

    The role of membrane fluidity in determining red blood cell (RBC) deformability has been suggested by a number of studies. The present investigation evaluated alterations of RBC membrane fluidity, deformability and stability in the presence of four linear alcohols (methanol, ethanol, propanol and butanol) using ektacytometry and electron paramagnetic resonance (EPR) spectroscopy. All alcohols had a biphasic effect on deformability such that it increased then decreased with increasing concentration; the critical concentration for reversal was an inverse function of molecular size. EPR results showed biphasic changes of near-surface fluidity (i.e., increase then decrease) and a decreased fluidity of the lipid core; rank order of effectiveness was butanol > propanol > ethanol > methanol, with a significant correlation between near-surface fluidity and deformability (r = 0.697; p<0.01). The presence of alcohol enhanced the impairment of RBC deformability caused by subjecting cells to 100 Pa shear stress for 300 s, with significant differences from control being observed at higher concentrations of all four alcohols. The level of hemolysis was dependent on molecular size and concentration, whereas echinocytic shape transformation (i.e., biconcave disc to crenated morphology) was observed only for ethanol and propanol. These results are in accordance with available data obtained on model membranes. They document the presence of mechanical links between RBC deformability and near-surface membrane fluidity, chain length-dependence of the ability of alcohols to alter RBC mechanical behavior, and the biphasic response of RBC deformability and near-surface membrane fluidity to increasing alcohol concentrations.

  9. The Effect of Alcohols on Red Blood Cell Mechanical Properties and Membrane Fluidity Depends on Their Molecular Size

    PubMed Central

    Sonmez, Melda; Ince, Huseyin Yavuz; Yalcin, Ozlem; Ajdžanović, Vladimir; Spasojević, Ivan; Meiselman, Herbert J.; Baskurt, Oguz K.

    2013-01-01

    The role of membrane fluidity in determining red blood cell (RBC) deformability has been suggested by a number of studies. The present investigation evaluated alterations of RBC membrane fluidity, deformability and stability in the presence of four linear alcohols (methanol, ethanol, propanol and butanol) using ektacytometry and electron paramagnetic resonance (EPR) spectroscopy. All alcohols had a biphasic effect on deformability such that it increased then decreased with increasing concentration; the critical concentration for reversal was an inverse function of molecular size. EPR results showed biphasic changes of near-surface fluidity (i.e., increase then decrease) and a decreased fluidity of the lipid core; rank order of effectiveness was butanol > propanol > ethanol > methanol, with a significant correlation between near-surface fluidity and deformability (r = 0.697; p<0.01). The presence of alcohol enhanced the impairment of RBC deformability caused by subjecting cells to 100 Pa shear stress for 300 s, with significant differences from control being observed at higher concentrations of all four alcohols. The level of hemolysis was dependent on molecular size and concentration, whereas echinocytic shape transformation (i.e., biconcave disc to crenated morphology) was observed only for ethanol and propanol. These results are in accordance with available data obtained on model membranes. They document the presence of mechanical links between RBC deformability and near-surface membrane fluidity, chain length-dependence of the ability of alcohols to alter RBC mechanical behavior, and the biphasic response of RBC deformability and near-surface membrane fluidity to increasing alcohol concentrations. PMID:24086751

  10. Effect of plasma membrane fluidity on serotonin transport by endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, E.R.; Edwards, D.

    1987-11-01

    To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of ({sup 14}C)-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluiditymore » in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells.« less

  11. Aniracetam restores the effects of amyloid-beta protein or ageing on membrane fluidity and intracellular calcium concentration in mice synaptosomes.

    PubMed

    Li, Y; Wang, J-J; Cai, J-X

    2007-01-01

    In the present study, we observed the in vitro effect of aniracetam on membrane fluidity and free calcium concentrations ([Ca(2+)]i) of frontal cortical (FC) and hippocampal (HP) synaptosomes of aged mice and young mice treated with amyloid-beta protein (Abeta) Membrane fluidity was measured by using fluorescence anisotropy of the lipophilic probe, 1,6-diphenyl-1,3,5-hexatriene (DPH). [Ca(2+)]i was measured by using Fura 2-AM fluorescent spectrophotometry. We found that membrane fluidity of the FC and HP synaptosomes was decreased in 14 months old mice compared with that in 3 months old mice. Similarly, Abeta25-35 (1 microM) decreased the membrane fluidity in 3 months old mice. These effects of ageing and Abeta25-35 on membrane fluidity were restored by aniracetam in a concentration-dependent manner. Furthermore, Abeta25-35 (1 microM) largely increased [Ca(2+)]i in FC and HP synaptosomes in 3 months old mice, but this effect on HP synaptosomes was effectively reversed by aniracetam (1-4 mM). The present findings suggest that aniracetam restores age- and Abeta-induced alterations in membrane fluidity or Abeta-induced increase in [Ca(2+)]i, demonstrating a possible beneficial role of aniracetam in the clinic treatment for senile dementia or Alzheimer's disease.

  12. Macroscopic domain formation during cooling in the platelet plasma membrane: an issue of low cholesterol content

    PubMed Central

    Bali, Rachna; Savino, Laura; Ramirez, Diego A.; Tsvetkova, Nelly M.; Bagatolli, Luis; Tablin, Fern; Crowe, John H.; Leidy, Chad

    2009-01-01

    There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large domains. In contrast, some polarizable cells do show large regions with qualitative differences in lipid fluidity. It is important to ask more precisely, based on the current phase diagrams, under what conditions would large domains be expected to form in cells. In this work we study the thermotropic phase behavior of the platelet plasma membrane by FTIR, and compare it to a POPC/Sphingomyelin/Cholesterol model representing the outer leaflet composition. We find that this model closely reflects the platelet phase behavior. Previous work has shown that the platelet plasma membrane presents inhomogeneous distribution of DiI18:0 at 24°C, but not at 37°C, which suggests the formation of macroscopic lipid domains at low temperatures. We show by fluorescence microscopy, and by comparison with published phase diagrams, that the outer leaflet model system enters the macroscopic domain region only at the lower temperature. In addition, the low cholesterol content in platelets (~15 mol %), appears to be crucial for the formation of large domains during cooling. PMID:19341703

  13. The effect of MLS laser radiation on cell lipid membrane.

    PubMed

    Pasternak, Kamila; Wróbel, Dominika; Nowacka, Olga; Pieszyński, Ireneusz; Bryszewska, Maria; Kujawa, Jolanta

    2018-03-14

    Authors of numerous publications have proved the therapeutic effect of laser irradiation on biological material, but the mechanisms at cellular and subcellular level are not yet well understood. The aim of this study was to assess the effect of laser radiation emitted by the MLS M1 system (Multiwave Locked System) at two wavelengths (808 nm continuous and 905 nm pulsed) on the stability and fluidity of liposomes with a lipid composition similar to that of human erythrocyte membrane or made of phosphatidylocholine. Liposomes were exposed to low-energy laser radiation at surface densities 195 mW/cm2 (frequency 1,000 Hz) and 230 mW/cm2 (frequency 2,000 Hz). Different doses of radiation energy in the range 0-15 J were applied. The surface energy density was within the range 0.46 - 4.9 J/cm 2. The fluidity and stability of liposomes subjected to such irradiation changed depending on the parameters of radiation used. Since MLS M1 laser radiation, depending on the parameters used, affects fluidity and stability of liposomes with the lipid content similar to erythrocyte membrane, it may also cause structural and functional changes in cell membranes.

  14. Plastic wastes as modifiers of the thermoplasticity of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.A. Diez; C. Barriocanal; R. Alvarez

    2005-12-01

    Plastic waste recycling represents a major challenge in environmental protection with different routes now available for dealing with mechanical, chemical, and energy recycling. New concepts in plastic waste recycling have emerged so that now such wastes can be used to replace fossil fuels, either as an energy source or as a secondary raw material. Our objective is to explore the modification of the thermoplastic properties of coal in order to assess the possibility of adding plastic waste to coal for the production of metallurgical coke. Two bituminous coals of different rank and thermoplastic properties were used as a base componentmore » of blends with plastic wastes such as high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), poly(ethylene terephthalate) (PET), and acrilonitrile-butadiene-styrene copolymer (ABS). In all cases, the addition of plastic waste led to a reduction in Gieseler maximum fluidity, the extent of the reduction depending on the fluidity of the base coal, and the amount, the molecular structure, and the thermal behavior of the polymer. As a consequence, the amount of volatile matter released by the plastic waste before, during, and after the maximum fluidity of the coal and the hydrogen-donor and hydrogen-acceptor capacities of the polymer were concluded to be key factors in influencing the extent of the reduction in fluidity and the development of anisotropic carbons. The incorporation of the plastic to the carbon matrix was clearly established in semicokes produced from blends of a high-fluid coal and the plastic tested by SEM examination. 42 refs., 10 figs., 7 tabs.« less

  15. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production.

    PubMed

    Wang, Yunpu; Dai, Leilei; Fan, Liangliang; Cao, Leipeng; Zhou, Yue; Zhao, Yunfeng; Liu, Yuhuan; Ruan, Roger

    2017-03-01

    In this study, a ZrO 2 -based polycrystalline ceramic foam catalyst was prepared and used in catalytic co-pyrolysis of waste vegetable oil and high density polyethylene (HDPE) for hydrocarbon fuel production. The effects of pyrolysis temperature, catalyst dosage, and HDPE to waste vegetable oil ratio on the product distribution and hydrocarbon fuel composition were examined. Experimental results indicate that the maximum hydrocarbon fuel yield of 63.1wt. % was obtained at 430°C, and the oxygenates were rarely detected in the hydrocarbon fuel. The hydrocarbon fuel yield increased when the catalyst was used. At the catalyst dosage of 15wt.%, the proportion of alkanes in the hydrocarbon fuel reached 97.85wt.%, which greatly simplified the fuel composition and improved the fuel quality. With the augment of HDPE to waste vegetable oil ratio, the hydrocarbon fuel yield monotonously increased. At the HDPE to waste vegetable oil ratio of 1:1, the maximum proportion (97.85wt.%) of alkanes was obtained. Moreover, the properties of hydrocarbon fuel were superior to biodiesel and 0 # diesel due to higher calorific value, better low-temperature low fluidity, and lower density and viscosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Evidence for a temperature acclimation mechanism in bacteria: an empirical test of a membrane-mediated trade-off

    USGS Publications Warehouse

    Hall, Edward K.; Singer, Gabriel A.; Kainz, Martin J.; Lennon, Jay T.

    2010-01-01

    1. Shifts in bacterial community composition along temporal and spatial temperature gradients occur in a wide range of habitats and have potentially important implications for ecosystem functioning. However, it is often challenging to empirically link an adaptation or acclimation that defines environmental niche or biogeography with a quantifiable phenotype, especially in micro-organisms. 2. Here we evaluate a possible mechanistic explanation for shifts in bacterioplankton community composition in response to temperature by testing a previously hypothesized membrane mediated trade-off between resource acquisition and respiratory costs. 3. We isolated two strains of Flavobacterium sp. at two temperatures (cold isolate and warm isolate) from the epilimnion of a small temperate lake in North Central Minnesota. 4. Compared with the cold isolate the warm isolate had higher growth rate, higher carrying capacity, lower lag time and lower respiration at the high temperature and lower phosphorus uptake at the low temperature. We also observed significant differences in membrane lipid composition between isolates and between environments that were consistent with adjustments necessary to maintain membrane fluidity at different temperatures. 5. Our results suggest that temperature acclimation in planktonic bacteria is, in part, a resource-dependent membrane-facilitated phenomenon. This study provides an explicit example of how a quantifiable phenotype can be linked through physiology to competitive ability and environmental niche.

  17. Role of cytoskeletal mechanics and cell membrane fluidity in the intracellular delivery of molecules mediated by laser-activated carbon nanoparticles.

    PubMed

    Holguin, Stefany Y; Anderson, Caleb F; Thadhani, Naresh N; Prausnitz, Mark R

    2017-10-01

    Exposure of cells and nanoparticles to near-infrared nanosecond pulsed laser light can lead to efficient intracellular delivery of molecules while maintaining high cell viability by a photoacoustic phenomenon known as transient nanoparticle energy transduction (TNET). Here, we examined the influence of cytoskeletal mechanics and plasma membrane fluidity on intracellular uptake of molecules and loss of cell viability due to TNET. We found that destabilization of actin filaments using latrunculin A led to greater uptake of molecules and less viability loss caused by TNET. Stabilization of actin filaments using jasplakinolide had no significant effect on uptake or viability loss caused by TNET. To study the role of plasma membrane fluidity, we increased fluidity by depletion of membrane cholesterol using methyl-β-cyclodextrin and decreased fluidity by enrichment of the membrane with cholesterol using water-soluble cholesterol. Neither of these membrane fluidity changes significantly altered cellular uptake or viability loss caused by TNET. We conclude that weakening mechanical integrity of the cytoskeleton can increase intracellular uptake and decrease loss of cell viability, while plasma membrane fluidity does not appear to play a significant role in uptake or viability loss caused by TNET. The positive effects of cytoskeletal weakening may be due to an enhanced ability of the cell to recover from the effects of TNET and maintain viability. Biotechnol. Bioeng. 2017;114: 2390-2399. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Liver mitochondrial membrane fluidity at early development of diabetes and its correlation with the respiration.

    PubMed

    Pérez-Hernández, Ismael H; Domínguez-Fuentes, Josué Misael; Palomar-Morales, Martín; Zazueta-Mendizabal, Ana Cecilia; Baiza-Gutman, Arturo; Mejía-Zepeda, Ricardo

    2017-06-01

    The biological membranes are important in cell function but, during development of diseases such as diabetes, they are impaired. Consequently, membrane-associated biological processes are impaired as well. The mitochondria are important organelles where oxidative phosphorylation takes place, a process closely related with the membranes. In general, it is accepted that the development process of diabetes decreases membrane fluidity. However, in some cases, it has been found to increase membrane fluidity of mitochondria but to decrease the Respiratory Control (RC) index. In this study we found an increase of membrane fluidity and an increase of the RC at an early phase of the development of a type 2 diabetes model. We measured the lipoperoxidation, analyzed the fatty acids composition by gas chromatography, and assessed membrane fluidity using three fluorescent monitors located at different depths inside the bilayer, dipyrenilpropane (DPyP), diphenylhexatriene (DPH), and trimethylammonium diphenylhexatriene (TMA-DPH). Our findings indicate that in the initial stage of diabetes development, when lipoperoxidation still is not significant, the membrane fluidity of liver mitochondria increases because of the increment in the unsaturated to saturated fatty acids ratio (U/S), thus producing an increase of the RC. The membrane fluidity is not the same at all depths in the bilayer. Contrary to the results obtained in mitochondria, the diabetes induced a decrease in the U/S fatty acids ratio of liver total lipids, indicating that the mitochondria might have an independent mechanism for regulating its fatty acids composition.

  19. Temperature-dependent changes in the swimming behaviour of Tetrahymena pyriformis-NT1 and their interrelationships with electrophysiology and the state of membrane lipids.

    PubMed

    Connolly, J G; Brown, I D; Lee, A G; Kerkut, G A

    1985-01-01

    The swimming velocity and the amplitude of the helical swimming path of T. pyriformis-NT1 cells grown at 20 degrees C (Tg 20 degrees C) and 38 degrees C (Tg 38 degrees C) were monitored between 0 and 40 degrees C in the presence and absence of electric fields. Within physiological limits the swimming velocity increased and the amplitude decreased as temperature was raised. The temperature profiles of these properties were not linear, and showed discontinuities at different temperatures for the different cultures. The break points in Arrhenius plots of the resting potential, regenerative spike magnitude, repolarization time, swimming velocity and swimming amplitude are tabulated and compared. The initial breakpoints upon cooling were clustered about the breakpoints in fluorescence polarization of D.P.H. in extracted phospholipids, and around the transition temperatures estimated from the literature for the pellicular membrane of these cells. The average of the initial breakpoints on cooling was 22.9 degrees C for Tg 38 degrees C cells and 13.7 degrees C for Tg 20 degrees C cells, a shift of 9.2 degrees C. Unlike Paramecium there is no depolarizing receptor potential in Tetrahymena upon warming. It is suggested that this may be the basis of a behavioural difference between Tetrahymena and Paramecium--namely that in Tetrahymena maximum swimming velocity occurs above growth temperature whereas in Paramecium the two points coincide. Swimming velocity and resting potential were correlated with membrane fluidity within physiological limits, but for other parameters the relationship with fluidity was more complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. pH-induced change in cell susceptibility to butanol in a high butanol-tolerant bacterium, Enterococcus faecalis strain CM4A.

    PubMed

    Kanno, Manabu; Tamaki, Hideyuki; Mitani, Yasuo; Kimura, Nobutada; Hanada, Satoshi; Kamagata, Yoichi

    2015-01-01

    Though butanol is considered as a potential biofuel, its toxicity toward microorganisms is the main bottleneck for the biological butanol production. Recently, butanol-tolerant bacteria have been proposed as alternative butanol production hosts overcoming the end product inhibition. One remaining key issue to be addressed is how physicochemical properties such as pH and temperature affect microbial butanol tolerance during cultivation and fermentation. We investigated the pH effect on butanol tolerance of a high butanol-tolerant bacterium, Enterococcus faecalis strain CM4A. The strain grew over a broad pH range (pH 4.0 to 12.0) and preferred alkaline pH (pH 8.0 and 10.0) in the absence of butanol. However, in the presence of butanol, strain CM4A grew better under acidic and neutral pH conditions (pH 6.0 and 6.8). Membrane fatty acid analysis revealed that the cells exposed to butanol exhibited increased cyclopropane and saturated fatty acids, which contribute to butanol tolerance of the strain by decreasing membrane fluidity, more evidently at acidic and neutral pH than at alkaline pH. Meanwhile, the strain grown under alkaline pH without butanol increased short chain fatty acids, which is involved in increasing membrane fluidity for alkaline adaptation. Such a change was not observed in the cells grown under alkaline pH with butanol. These results suggested that strain CM4A simultaneously exposed to butanol and alkali stresses was not likely able to properly adjust membrane fluidity due to the opposite response to each stress and thereby showed low butanol tolerance under alkaline pH. Indeed, the cells exposed to butanol at alkaline pH showed an irregular shape with disrupted membrane structure under transmission electron microscopy observation, which also indicated the impact of butanol and alkali stresses on functioning of cellular membrane. The study clearly demonstrated the alkaline pH-induced increase of cell susceptibility to butanol in the tested strain. Our findings indicate the non-negligible impact of pH on microbial butanol tolerance, providing a new insight into efficient butanol production.

  1. Crystal nucleation and glass formation in metallic alloy melts

    NASA Technical Reports Server (NTRS)

    Spaepen, F.

    1984-01-01

    Homogeneous nucleation, containerless solidification, and bulk formation of metallic glasses are discussed. Homogeneous nucleation is not a limiting factor for metallic glass formation at slow cooling rates if the reduced glass transition temperature is high enough. Such glasses can be made in bulk if heterogeneous nucleants are removed. Containerless processing eleminates potential sources of nucleants, but as drop tube experiments on the Pd-Si alloys show, the free surface may still be a very effective heterogeneous nucleant. Combination of etching and heating in vacuum or fluxing can be effective for cleaning fairly large ingots of nucleants. Reduced gravity processing has a potentially useful role in the fluxing technique, for example to keep large metallic ingots surrounded by a low density, low fluidity flux if this proved difficult under ground conditions. For systems where heterogeneous nucleants in the bulk of the ingot need gravity to segregate to the flux-metal interface, reduced gravity processing may not be appropriate for bulk glass formation.

  2. Inheritance pattern of platelet membrane fluidity in Alzheimer disease.

    PubMed Central

    Chakravarti, A; Slaugenhaupt, S A; Zubenko, G S

    1989-01-01

    The fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene in labeled platelet membranes, an index of membrane fluidity, is a stable, familial trait that is associated with a clinically distinct subtype of Alzheimer disease. Complex segregation analysis of this continuous variable was performed on 95 members of 14 pedigrees identified through probands who had autopsy-confirmed or clinically diagnosed Alzheimer disease. The results suggest that platelet membrane fluidity is controlled by a single genetic locus, PMF, with two alleles that have additive effects. The PMF locus appears to explain approximately 80% of the total variation in platelet membrane fluidity within the families of patients with Alzheimer disease. PMID:2729275

  3. Plasmonic Techniques for Viral Membrane Characterization

    NASA Astrophysics Data System (ADS)

    Feizpour, Amin

    The lipid bilayer membrane of enveloped viruses, such as human immunodeficiency virus type 1 (HIV-1), plays an important role in key steps of the infection, including cell binding and uptake. Phosphatidylserine (PS) and monosialotetrahexosylganglioside (GM1) are examples of two host-derived lipids in the membrane of enveloped virus particles that are known to contribute to virus attachment, uptake, and ultimately dissemination. A quantitative characterization of their contribution to the functionality of the virus requires information about their relative concentrations in the viral membrane. In this dissertation, a gold nanoparticle (NP) binding assay for probing relative PS and GM1 lipid concentrations in the outer leaflet of different virus-like particles (VLPs) using small sample sizes is introduced. The assay evaluates both scattering intensity and resonance wavelength and determines relative NP densities through plasmon coupling as a measure for the target lipid concentrations in the NP-labeled VLP membrane. The performed studies reveal significant differences in the membrane of HIV-1 and Ebola VLPs that assemble at different intracellular sites and pave the way to an optical quantification of lipid concentration in virus particles at physiological titers. In addition, this technique was used in another application to improve the understanding of the relationship between the membrane PS lipid and the infectivity of HIV-2 and murine leukemia virus (MLV). The composition of the membrane, in particular the cholesterol (chol) content, determines its fluidity. As differences in the membrane composition of individual virus particles can lead to different intracellular fates, biophysical tools capable of probing the membrane fluidity on the single-virus level are required. In this dissertation, we demonstrate that fluctuations in the polarization of light scattered off gold or silver nanoparticle (NP)-labeled virus-like-particles (VLPs) encode information about the membrane fluidity of individual VLPs. We developed a plasmonic polarization fluctuation tracking microscopy (PFTM) which facilitated, for the first time, the investigation of the effect of chol content on the membrane fluidity and its dependence on temperature on the single-VLP level. Chol extraction studies with different methyl-beta-cyclodextrin (MbetaCD) concentrations yielded a gradual decrease in polarization fluctuations as function of time. The PFTM revealed chol content and fluidity heterogeneities of an HIV-1 VLP population.

  4. Religion and Sexual Identity Fluidity in a National Three-Wave Panel of U.S. Adults.

    PubMed

    Scheitle, Christopher P; Wolf, Julia Kay

    2018-05-01

    Research has shown that cross-sectional estimates of sexual identities overlook fluidity in those identities. Research has also shown that social factors, such as competing identities, can influence sexual identity fluidity. We contributed to this literature in two ways. First, we utilized a representative panel of US adults (N = 1034) surveyed in 2010, 2012, and 2014 by the General Social Survey. The addition of a third observation allowed us to examine more complexity in sexual identity fluidity. We found that 2.40% of US adults reported at least one change in sexual identity across the 4 years, with 1.59% reporting one change and 0.81% reporting two changes. Our second contribution came from examining the role of religion, as past research has suggested that religion can destabilize and prolong sexual identity development. We found that lesbian or gay individuals (N = 17), bisexuals (N = 15), and females (N = 585) showed more sexual identity fluidity compared to heterosexuals (N = 1003) and males (N = 450), respectively. Marital status, age, race, and education did not have significant associations with sexual identity fluidity. Regarding the role of religion, we found that participants identifying as more religious in Wave 1 showed more fluidity in sexual identity across later observations. Further analysis showed that higher levels of religiosity make it more likely that lesbian or gay individuals will be fluid in sexual identity, but this is not the case for heterosexual individuals. This finding reinforces past qualitative research that has suggested that religion can extend or complicate sexual minorities' identity development.

  5. The protective effect of a 17°C holding time on boar sperm plasma membrane fluidity after exposure to 5°C.

    PubMed

    Casas, I; Althouse, G C

    2013-02-01

    The holding time (HT) is the period during which an ejaculate, either in a raw or diluted state, is held at 17°C before further processing for cold-storage. In boars, the HT positively influences select sperm quality parameters of semen cooled from 15 to 5°C, a range in temperature during which plasma membrane remodeling occurs. Objective insight into the effect of HT on plasma membrane organization remains unknown. Therefore, the present work sought to elucidate if HT contributes to minimizing alterations in boar sperm plasma membrane fluidity at the initial step of the cooling process in a cryopreservation practice (holding at 5°C) and in relation with select sperm quality parameters. Nineteen ejaculates from five boars were collected and processed according to different treatments: T1) Fresh diluted semen, 0h at 17°C; T2) Fresh diluted semen, 24h at 17°C (HT); T3) Sperm from T1 in a lactose-egg yolk (LEY) extender, 3h at 5°C; T4) Sperm from T2 in LEY, 3h at 5°C; T5) Sperm from T1 in LEY, 24h at 5°C; T6) Sperm from T2 in LEY, 24h at 5°C. Sperm motility was assessed using CASA, and sperm plasma membrane integrity and fluidity were evaluated by flow cytometry with dual labeling (M540/YO-PRO®-1). Results demonstrated that the lack of exposure to a HT (T5) results in reduced sample motility compared to those having a HT (T6), with sperm exposed to HT exhibiting less plasma membrane fluidity. Collectively, these results provide empirical evidence that incorporation of a HT in semen processing protects boar sperm against cold injury through maintenance of lipid architecture of the plasma membrane. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Double-Vacuum-Bag Process for Making Resin-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bradford, Larry J.

    2007-01-01

    A double-vacuum-bag process has been devised as a superior alternative to a single-vacuum-bag process used heretofore in making laminated fiber-reinforced resin-matrix composite-material structural components. This process is applicable to broad classes of high-performance matrix resins including polyimides and phenolics that emit volatile compounds (solvents and volatile by-products of resin-curing chemical reactions) during processing. The superiority of the double-vacuum-bag process lies in enhanced management of the volatile compounds. Proper management of volatiles is necessary for making composite-material components of high quality: if not removed and otherwise properly managed, volatiles can accumulate in interior pockets as resins cure, thereby forming undesired voids in the finished products. The curing cycle for manufacturing a composite laminate containing a reactive resin matrix usually consists of a two-step ramp-and-hold temperature profile and an associated single-step pressure profile as shown in Figure 1. The lower-temperature ramp-and-hold step is known in the art as the B stage. During the B stage, prepregs are heated and volatiles are generated. Because pressure is not applied at this stage, volatiles are free to escape. Pressure is applied during the higher-temperature ramp-and-hold step to consolidate the laminate and impart desired physical properties to the resin matrix. The residual volatile content and fluidity of the resin at the beginning of application of consolidation pressure are determined by the temperature and time parameters of the B stage. Once the consolidation pressure is applied, residual volatiles are locked in. In order to produce a void-free, high-quality laminate, it is necessary to design the curing cycle to obtain the required residual fluidity and the required temperature at the time of application of the consolidation pressure.

  7. Influence of zinc deficiency on cell-membrane fluidity in Jurkat, 3T3 and IMR-32 cells.

    PubMed Central

    Verstraeten, Sandra V; Zago, M Paola; MacKenzie, Gerardo G; Keen, Carl L; Oteiza, Patricia I

    2004-01-01

    We investigated whether zinc deficiency can affect plasma membrane rheology. Three cell lines, human leukaemia T-cells (Jurkat), rat fibroblasts (3T3) and human neuroblastoma cells (IMR-32), were cultured for 48 h in control medium, in zinc-deficient medium (1.5 microM zinc; 1.5 Zn), or in the zinc-deficient medium supplemented with 15 microM zinc (15 Zn). The number of viable cells was lower in the 1.5 Zn group than in the control and 15 Zn groups. The frequency of apoptosis was higher in the 1.5 Zn group than in the control and 15 Zn groups. Membrane fluidity was evaluated using the 6-(9-anthroyloxy)stearic acid and 16-(9-anthroyloxy)palmitic acid probes. Membrane fluidity was higher in 1.5 Zn cells than in the control cells; no differences were observed between control cells and 15 Zn cells. The effect of zinc deficiency on membrane fluidity at the water/lipid interface was associated with a higher phosphatidylserine externalization. The higher membrane fluidity in the hydrophobic region of the bilayer was correlated with a lower content of arachidonic acid. We suggest that the increased fluidity of the membrane secondary to zinc deficiency is in part due to a decrease in arachidonic acid content and the apoptosis-related changes in phosphatidylserine distribution. PMID:14629198

  8. Differences in Sexual Orientation Diversity and Sexual Fluidity in Attractions Among Gender Minority Adults in Massachusetts.

    PubMed

    Katz-Wise, Sabra L; Reisner, Sari L; Hughto, Jaclyn White; Keo-Meier, Colton L

    2016-01-01

    This study characterized sexual orientation identities and sexual fluidity in attractions in a community-based sample of self-identified transgender and gender-nonconforming adults in Massachusetts. Participants were recruited in 2013 using bimodel methods (online and in person) to complete a one-time, Web-based quantitative survey that included questions about sexual orientation identity and sexual fluidity. Multivariable logistic regression models estimated adjusted risk ratios (aRRs) and 95% confidence intervals (95% CIs) to examine the correlates of self-reported changes in attractions ever in lifetime among the whole sample (n = 452) and after transition among those who reported social gender transition (n = 205). The sample endorsed diverse sexual orientation identities: 42.7% queer, 19.0% other nonbinary, 15.7% bisexual, 12.2% straight, and 10.4% gay/lesbian. Overall, 58.2% reported having experienced changes in sexual attractions in their lifetime. In adjusted models, trans masculine individuals were more likely than trans feminine individuals to report sexual fluidity in their lifetime (aRR = 1.69; 95% CI = 1.34, 2.12). Among those who transitioned, 64.6% reported a change in attractions posttransition, and trans masculine individuals were less likely than trans feminine individuals to report sexual fluidity (aRR = 0.44; 95% CI = 0.28, 0.69). Heterogeneity of sexual orientation identities and sexual fluidity in attractions are the norm rather than the exception among gender minority people.

  9. Multi-Scale Low-Entropy Method for Optimizing the Processing Parameters during Automated Fiber Placement

    PubMed Central

    Han, Zhenyu; Sun, Shouzheng; Fu, Hongya; Fu, Yunzhong

    2017-01-01

    Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro–meso–scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy–enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy–enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates. PMID:28869520

  10. Multi-Scale Low-Entropy Method for Optimizing the Processing Parameters during Automated Fiber Placement.

    PubMed

    Han, Zhenyu; Sun, Shouzheng; Fu, Hongya; Fu, Yunzhong

    2017-09-03

    Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro-meso-scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy-enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy-enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates.

  11. Fluidity models in ancient Greece and current practices of sex assignment

    PubMed Central

    Chen, Min-Jye; McCann-Crosby, Bonnie; Gunn, Sheila; Georgiadis, Paraskevi; Placencia, Frank; Mann, David; Axelrad, Marni; Karaviti, L.P; McCullough, Laurence B.

    2018-01-01

    Disorders of sexual differentiation such as androgen insensitivity and gonadal dysgenesis can involve an intrinsic fluidity at different levels, from the anatomical and biological to the social (gender) that must be considered in the context of social constraints. Sex assignment models based on George Engel’s biopsychosocial aspects model of biology accept fluidity of gender as a central concept and therefore help establish expectations within the uncertainty of sex assignment and anticipate potential changes. The biology underlying the fluidity inherent to these disorders should be presented to parents at diagnosis, an approach that the gender medicine field should embrace as good practice. Greek mythology provides many accepted archetypes of change, and the ancient Greek appreciation of metamorphosis can be used as context with these patients. Our goal is to inform expertise and optimal approaches, knowing that this fluidity may eventually necessitate sex reassignment. Physicians should provide sex assignment education based on different components of sexual differentiation, prepare parents for future hormone-triggered changes in their children, and establish a sex-assignment algorithm. PMID:28478088

  12. Fluidity models in ancient Greece and current practices of sex assignment.

    PubMed

    Chen, Min-Jye; McCann-Crosby, Bonnie; Gunn, Sheila; Georgiadis, Paraskevi; Placencia, Frank; Mann, David; Axelrad, Marni; Karaviti, L P; McCullough, Laurence B

    2017-06-01

    Disorders of sexual differentiation such as androgen insensitivity and gonadal dysgenesis can involve an intrinsic fluidity at different levels, from the anatomical and biological to the social (gender) that must be considered in the context of social constraints. Sex assignment models based on George Engel's biopsychosocial aspects model of biology accept fluidity of gender as a central concept and therefore help establish expectations within the uncertainty of sex assignment and anticipate potential changes. The biology underlying the fluidity inherent to these disorders should be presented to parents at diagnosis, an approach that the gender medicine field should embrace as good practice. Greek mythology provides many accepted archetypes of change, and the ancient Greek appreciation of metamorphosis can be used as context with these patients. Our goal is to inform expertise and optimal approaches, knowing that this fluidity may eventually necessitate sex reassignment. Physicians should provide sex assignment education based on different components of sexual differentiation, prepare parents for future hormone-triggered changes in their children, and establish a sex-assignment algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Electron paramagnetic resonance investigation on modulatory effect of 17beta-estradiol on membrane fluidity of erythrocytes in postmenopausal women.

    PubMed

    Tsuda, K; Kinoshita, Y; Kimura, K; Nishio, I; Masuyama, Y

    2001-08-01

    Many studies have shown that estrogen may exert cardioprotective effects and reduce the risk of hypertension and coronary events. On the other hand, it has been proposed that cell membrane abnormalities play a role in the pathophysiology of hypertension, although it is not clear whether estrogen would influence membrane function in essential hypertension. The present study was performed to investigate the effects of 17beta-estradiol (E(2)) on membrane fluidity of erythrocytes in normotensive and hypertensive postmenopausal women. We determined the membrane fluidity of erythrocytes by means of an electron paramagnetic resonance and spin-labeling method. In an in vitro study, E(2) significantly decreased the order parameter for 5-nitroxide stearate and the peak height ratio for 16-nitroxide stearate obtained from electron paramagnetic resonance spectra of erythrocyte membranes in normotensive postmenopausal women. The finding indicates that E(2) might increase the membrane fluidity of erythrocytes. The effect of E(2) was significantly potentiated by the NO donor, S-nitroso-N-acetylpenicillamine, and a cGMP analogue, 8-bromo-cGMP. In contrast, the change in the membrane fluidity evoked by E(2) was attenuated in the presence of the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester, and asymmetric dimethyl-L-arginine. In hypertensive postmenopausal women, the membrane fluidity of erythrocytes was significantly lower than that in normotensive postmenopausal women. The effect of E(2) on membrane fluidity was significantly more pronounced in the erythrocytes of hypertensive postmenopausal women than in the erythrocytes of normotensive postmenopausal women. The results of the present study showed that E(2) significantly increased the membrane fluidity and improved the microviscosity of erythrocyte membranes, partially mediated by an NO- and cGMP-dependent pathway. Furthermore, the greater action of E(2) in hypertension might be consistent with the hypothesis that E(2) could have a beneficial effect in regulating rheological behavior of erythrocytes and could have a crucial role in the improvement of the microcirculation in hypertension.

  14. Lubrication with solids.

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Johnson, R. L.

    1972-01-01

    Brief discussion of the historical background, variety range, chemistry, physics, and other properties of solid lubricants, and review of their current uses. The widespread use of solid lubricants did not occur until about 1947. At present, they are the object of such interest that a special international conference on their subject was held in 1971. They are used at temperatures beyond the useful range of conventional lubricating oils and greases. Their low volatility provides them with the capability of functioning effectively in vacuum and invites their use in space applications. Their high load carrying ability makes them useful with heavily loaded components. Solid lubricants, however, do lack some of the desirable properties of conventional lubricants. Unlike oils and greases, which have fluidity and can continuously be carried back into contact with lubricated surfaces, solid lubricants, because of their immobility, have finite lives. Also, oils and greases can carry away frictional heat from contacting surfaces, while solid lubricants cannot.

  15. Quality Assessment of A356 Ingots from Different Suppliers in Wheel Production

    NASA Astrophysics Data System (ADS)

    Koca, Emre; Yuksel, Caglar; Erzi, Eray; Dışpınar, Derya

    In a typical foundry floor, several precautions are taken prior to the casting in order to achieve pore-free, high quality parts. In low pressure die castings, these operations involve runner design, pressure adjustment, die temperature selection, cooling locations etc. For the melt, it is important to determine the degassing duration and gas flow rate. In addition, the period of modification (Ti, Sr) addition also plays a significant role. Even after optimization of all these parameters, reject parts can still be found. What has always been disregarded is the quality assessment of the ingot suppliers. Therefore, in this work, four different A356 ingot provider's quality has been investigated in the wheel producer company. Reduced pressure test was used to quantify melt quality by means of bifilm index measurement. In addition, fluidity, feedability and tensile tests have been carried out. The rejection rates were compared according to provider's quality level.

  16. Electron paramagnetic resonance investigation on modulatory effect of benidipine on membrane fluidity of erythrocytes in essential hypertension.

    PubMed

    Tsuda, Kazushi

    2008-03-01

    It has been shown that benidipine, a long-lasting calcium (Ca) channel blocker, may exert its protective effect against vascular disorders by increasing nitric oxide (NO) production. The purpose of the present study was to investigate whether orally administered benidipine might influence the membrane function in patients with essential hypertension. We measured the membrane fluidity of erythrocytes by using an electron paramagnetic resonance (EPR) and spin-labeling method. In the preliminary study using erythrocytes obtained from healthy volunteers, benidipine decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (ho/h-1) for 16-NS in the EPR spectra in vitro. The finding indicated that benidipine increased the membrane fluidity and improved the microviscosity of erythrocytes. In addition, it was demonstrated that the effect of benidipine on membrane fluidity of erythrocytes was significantly potentiated by the NO-substrate, L-arginine. In the separate series of the study, we observed that orally administered benidipine for 4 weeks significantly increased the membrane fluidity of erythrocytes with a concomitant increase in plasma NO metabolite levels in hypertensive subjects. The results of the present study demonstrated that benidipine might increase the membrane fluidity and improve the microviscosity of erythrocytes both in vitro and in vivo, to some extent, by the NO-dependent mechanism. Furthermore, it is strongly suggested that orally administered benidipine might have a beneficial effect on the rheologic behavior of erythrocytes and the improvement of the microcirculation in hypertensive subjects.

  17. Differences in Sexual Orientation Diversity and Sexual Fluidity in Attractions among Gender Minority Adults in Massachusetts

    PubMed Central

    Katz-Wise, Sabra L.; Reisner, Sari L.; White, Jaclyn M.; Keo-Meier, Colton L.

    2015-01-01

    This study characterized sexual orientation identities and sexual fluidity in attractions in a community-based sample of self-identified transgender and gender nonconforming adults in Massachusetts. Participants were recruited in 2013 using bi-model methods (online and in-person) to complete a one-time web-based quantitative survey that included questions about sexual orientation identity and sexual fluidity. Multivariable logistic regression models estimated Adjusted Risk Ratios (aRR) and 95% Confidence Intervals (95% CI) to examine the correlates of self-reported changes in attractions ever in lifetime among the whole sample (n=452) and after transition among those who reported social gender transition (n=205). The sample endorsed diverse sexual orientation identities: 42.7% queer, 19.0% other non-binary, 15.7% bisexual, 12.2% straight, 10.4% gay/lesbian. Overall, 58.2% reported having experienced changes in sexual attractions in their lifetime. In adjusted models, trans masculine individuals were more likely than trans feminine individuals to report sexual fluidity in their lifetime (aRR=1.69; 95% CI=1.34, 2.12). Among those who transitioned, 64.6% reported a change in attractions post-transition and trans masculine individuals were less likely than trans feminine individuals to report sexual fluidity (aRR=0.44; 95% CI=0.28, 0.69). Heterogeneity of sexual orientation identities and sexual fluidity in attractions are the norm rather than the exception among gender minority people. PMID:26156113

  18. Vitamin E supplement improves erythrocyte membrane fluidity of thalassemia: an ESR spin labeling study.

    PubMed

    Sutipornpalangkul, Werasak; Morales, Noppawan Phumala; Unchern, Supeenun; Sanvarinda, Yupin; Chantharaksri, Udom; Fucharoen, Suthat

    2012-01-01

    Beta-thalassemia/Hemoglobin E (beta-thal/Hb E) is prevalent in Thailand. The imbalance of globin chains in red blood cells is the primary cause of this anemic disease. The excess alpha-globin in beta-thal/Hb E causes typical damage(s) to membrane of erythroblasts and erythrocytes. By using three paramagnetic labeled compounds (5-, 12-, and 16-spin labeled stearic acids, SLS), the changes of the molecular motion in the lipid bilayer of thalassemic RBCs that have structural modification can be detected. to investigate erythrocyte membrane fluidity and the effect of vitamin E treatment in beta-thalassemia/Hemoglobin E patients by using spin labeling techniques. The erythrocyte membrane fluidity was investigated in nine splenectomized and five non-splenectomized beta-thalassemia/hemoglobin E (beta-thal/Hb E) patients using EPR spin labeling techniques. To determine the effect of vitamin E on erythrocyte membrane fluidity, only the splenectomized patients were enrolled. Patients were divided into two groups. The first group received 350 mg vitamin E daily for a period of 1 month (n = 5) and the second group received placebo for an equal period (n = 4). Three paramagnetic fatty acid, 5-, 12-, and 16-doxyl stearic acids, (5-, 12- and 16-DS) were used to label phospholipids layer near both the surface (5-DS) and the deeper hydrophobic region of membrane (12-and 16-DS). Lipid peroxidation (TBARs) was measured using a colorimetric method. Vitamin E was measured with high performance liquid chromatography (HPLC). Significantly higher values of erythrocyte membrane fluidity were revealed with 12-, 16-DS in splenectomized patients, as compared with non-splenectomized patients and normal subjects. In 3-thal/Hb E patients, fluidity values, both outer hyperfine splitting (2T(//)) and order parameter (S) of 12-DS showed inverse correlation with serum TBARs. There was no significant difference between the fluidity values measured with 5-DS. After vitamin E supplementation, the erythrocyte membrane fluidity was decreased in almost all patients. In contrast to the vitamin E supplementation group, increased erythrocyte membrane fluidity was demonstrated in the placebo group. Vitamin E supplementation also had effect on other clinical parameters such as increased plasma vitamin E, decreased serum TBARs and no change in hemoglobin. The present results suggested the abnormal motion of lipid in the deeper phospholipids region of membrane. In addition, vitamin E supplementation may have a role in the prevention of erythrocyte membrane damage of these patients.

  19. Further investigation of relationships between membrane fluidity and ethanol tolerance in Saccharomyces cerevisiae.

    PubMed

    Ishmayana, Safri; Kennedy, Ursula J; Learmonth, Robert P

    2017-11-27

    Membrane lipid unsaturation index and membrane fluidity have been related to yeast ethanol stress tolerance in published studies, however findings have been inconsistent. In this study, viability reduction on exposure to 18% (v/v) ethanol was compared to membrane fluidity determined by laurdan generalized polarization. Furthermore, in the determination of viability reduction, we examined the effectiveness of two methods, namely total plate count and methylene violet staining. We found a strong negative correlation between ethanol tolerance and membrane fluidity, indicated by negative Pearson correlation coefficients of - 0.79, - 0.65 and - 0.69 for Saccharomyces cerevisiae strains A12, PDM and K7, respectively. We found that lower membrane fluidity leads to higher ethanol tolerance, as indicated by decreased viability reduction and higher laurdan generalized polarization in respiratory phase compared to respiro-fermentative phase cells. Total plate count better differentiated ethanol tolerance of yeast cells in different growth phases, while methylene violet staining was better to differentiate ethanol tolerance of the different yeast strains at a particular culture phase. Hence, both viability assessment methods have their own advantages and limitations, which should be considered when comparing stress tolerance in different situations.

  20. Fluid movement and fluid social cognition: bodily movement influences essentialist thought.

    PubMed

    Slepian, Michael L; Weisbuch, Max; Pauker, Kristin; Bastian, Brock; Ambady, Nalini

    2014-01-01

    Rigid social categorization can lead to negative social consequences such as stereotyping and prejudice. The authors hypothesized that bodily experiences of fluidity would promote fluidity in social-categorical thinking. Across a series of experiments, fluid movements compared with nonfluid movements led to more fluid lay theories of social categories, more fluidity in social categorization, and consequences of fluid social-categorical thinking, decreased stereotype endorsement, and increased concern for social inequalities. The role of sensorimotor states in fluid social cognition, with consequences for social judgment and behavior, is discussed.

  1. Seasonal acclimatization of brain lipidome in a eurythermal fish (Carassius carassius) is mainly determined by temperature.

    PubMed

    Käkelä, Reijo; Mattila, Minja; Hermansson, Martin; Haimi, Perttu; Uphoff, Andreas; Paajanen, Vesa; Somerharju, Pentti; Vornanen, Matti

    2008-05-01

    Crucian carp (Carassius carassius) is an excellent vertebrate model for studies on temperature adaptation in biological excitable membranes, since the species can tolerate temperatures from 0 to +36 degrees C. To determine how temperature affects the lipid composition of brain, the fish were acclimated for 4 wk at +30, +16, or +4 degrees C in the laboratory, or seasonally acclimatized individuals were captured from the wild throughout the year (temperature = +1 to +23 degrees C), and the brain glycerophospholipid and sphingolipid compositions were analyzed in detail by electrospray-ionization mass spectrometry. Numerous significant temperature-related changes were found in the molecular species composition of the membrane lipids. The most notable and novel finding was a large (approximately 3-fold) increase of the di-22:6n-3 phosphatidylserine and phosphatidylethanolamine species in the cold. Since the increase of 22:6n-3 in the total fatty acyl pool of the brain was small, the formation of di-22:6n-3 aminophospholipid species appears to be a specific adaptation to low temperature. Such highly unsaturated species could be needed to maintain adequate membrane fluidity in the vicinity of transporters and other integral membrane proteins. Plasmalogens increased somewhat at higher temperatures, possibly to protect membranes against oxidation. The modifications of brain lipidome during the 4-wk laboratory acclimation were, in many respects, similar to those found in the wild, which indicates that the seasonal changes observed in the wild are temperature dependent rather than induced by other environmental factors.

  2. Hydrate-melt electrolytes for high-energy-density aqueous batteries

    NASA Astrophysics Data System (ADS)

    Yamada, Yuki; Usui, Kenji; Sodeyama, Keitaro; Ko, Seongjae; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-10-01

    Aqueous Li-ion batteries are attracting increasing attention because they are potentially low in cost, safe and environmentally friendly. However, their low energy density (<100 Wh kg-1 based on total electrode weight), which results from the narrow operating potential window of water and the limited selection of suitable negative electrodes, is problematic for their future widespread application. Here, we explore optimized eutectic systems of several organic Li salts and show that a room-temperature hydrate melt of Li salts can be used as a stable aqueous electrolyte in which all water molecules participate in Li+ hydration shells while retaining fluidity. This hydrate-melt electrolyte enables a reversible reaction at a commercial Li4Ti5O12 negative electrode with a low reaction potential (1.55 V versus Li+/Li) and a high capacity (175 mAh g-1). The resultant aqueous Li-ion batteries with high energy density (>130 Wh kg-1) and high voltage (˜2.3-3.1 V) represent significant progress towards performance comparable to that of commercial non-aqueous batteries (with energy densities of ˜150-400 Wh kg-1 and voltages of ˜2.4-3.8 V).

  3. Polythermal investigation of viscosity of solution of metal carboxylates in VIK-grade mixed carboxylic acids: Yttrium and gadolinium carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezhov, E.A.; Samatov, A.V.; Troyanovskii, L.V.

    Kinematic viscosities have been measured for solutions of yttrium and gadolinium carboxylates in grade VIK mixed carboxylic acids (MCA). It has been established that the optimal fluidity of these metal carboxylate solutions for application to articles is reached at 333 K. A regression model has been developed to describe the concentration and temperature dependences of the viscosity of yttrium- and gadolinium-containing MCA solutions. 2 refs., 3 tabs.

  4. Changes Caused by Fruit Extracts in the Lipid Phase of Biological and Model Membranes

    PubMed Central

    Pruchnik, Hanna; Oszmiański, Jan; Sarapuk, Janusz; Kleszczyńska, Halina

    2010-01-01

    The aim of the study was to determine changes incurred by polyphenolic compounds from selected fruits in the lipid phase of the erythrocyte membrane, in liposomes formed of erythrocyte lipids and phosphatidylcholine liposomes. In particular, the effect of extracts from apple, chokeberry, and strawberry on the red blood cell morphology, on packing order in the lipid hydrophilic phase, on fluidity of the hydrophobic phase, as well as on the temperature of phase transition in DPPC liposomes was studied. In the erythrocyte population, the proportions of echinocytes increased due to incorporation of polyphenolic compounds. Fluorimetry with a laurdan probe indicated increased packing density in the hydrophilic phase of the membrane in presence of polyphenolic extracts, the highest effect being observed for the apple extract. Using the fluorescence probes DPH and TMA-DPH, no effect was noted inside the hydrophobic phase of the membrane, as the lipid bilayer fluidity was not modified. The polyphenolic extracts slightly lowered the phase transition temperature of phosphatidylcholine liposomes. The studies have shown that the phenolic compounds contained in the extracts incorporate into the outer region of the erythrocyte membrane, affecting its shape and lipid packing order, which is reflected in the increasing number of echinocytes. The compounds also penetrate the outer part of the external lipid layer of liposomes formed of natural and DPPC lipids, changing its packing order. PMID:21423329

  5. [Adhesive properties and related phenomena for powdered pharmaceuticals].

    PubMed

    Otsuka, A

    1998-04-01

    This report deals with adhesive properties and related phenomena of powdered materials including pharmaceuticals. The adhesive force between a powder particle and substrate as well as the tensile strength of a powder bed and tablet was measured. Various factors were found to affect powder adhesion. Physical properties such as the size, shape and surface roughness were examined. The adhesive force between a particle and substrate decreased remarkably in the presence of ultrafine particles, which is of interest since the addition of adequate amount of "glidant" causes an increase in powder fluidity. From a pharmaceutical point of view, temperature and humidity were essential to particle adhesion. For several organic substances, the adhesive force increased significantly at homologous temperatures more than ca. 0.7, suggesting the sintering mechanism to be operative. The adhsive force between polymer films and glass beads varied according to polymer and relative humidity. A close correlation of water sorbed by the polymer film with adhesive force was noted. In connection with powder fluidity, compaction properties were studied by the centrifugal and tapping methods. Apparent adhesion defined as the ratio of the adhesive force between two contacting particles to the external force acting on a particle was noted to be the primary determinant of the void fraction or the porosity of the powder bed, indicating that the probability of particle displacement essentially depended on apparent adhesion.

  6. Liposomes composed of unsaturated lipids for membrane modification of human erythrocytes.

    PubMed

    Stoll, Christoph; Holovati, Jelena L; Acker, Jason P; Wolkers, Willem F

    2011-01-01

    Previous studies have shown that certain saturated lipids protect red blood cells (RBCs) during hypothermic storage but provide little protection during freezing or freeze-drying, whereas various unsaturated lipids destabilize RBCs during hypothermic storage but protect during freezing and freeze-drying. The protective effect of liposomes has been attributed to membrane modifications. We have previously shown that cholesterol exchange and lipid transfer between liposomes composed of saturated lipids and RBCs critically depends on the length of the lipid acyl chains. In this study the effect of unsaturated lipids with differences in their number of unsaturated bonds (18:0/18:1, 18:1/18:1, 18:2/18:2) on RBC membrane properties has been studied. RBCs were incubated in the presence of liposomes and both the liposomal and RBC fraction were analyzed by Fourier transform infrared spectroscopy (FTIR) after incubation. The liposomes caused an increase in RBC membrane conformational disorder at suprazero temperatures. The fluidizing effect of the liposomes on the RBC membranes, however, was found to be similar for the different lipids irrespective of their unsaturation level. The gel to liquid crystalline phase transition temperature of the liposomes increased after incubation with RBCs. RBC membrane fluidity increased linearly during the first 8 hours of incubation in the presence of liposomes. The increase in RBC membrane fluidity was found to be temperature dependent and displayed Arrhenius behaviour between 20 and 40°C, with an activation energy of 88 kJ mol⁻¹. Taken together, liposomes composed of unsaturated lipids increase RBC membrane conformational disorder, which could explain their cryoprotective action.

  7. Physicochemical properties of binary solutions of propylene carbonate-acetonitrile in the range of 253.15-313.15 K

    NASA Astrophysics Data System (ADS)

    Tyunina, E. Yu.; Chekunova, M. D.

    2017-05-01

    The density, dynamic viscosity, and dielectric constant of propylene carbonate solutions with acetonitrile are measured over the composition of a mixed solvent at temperatures of 253.15, 273.15, 293.15, and 313.15 K. The molar volume, molar viscosity, and molar capacity of a mixture of propylene carbonate-acetonitrile and an excess amount of it are calculated. The effect the temperature and composition of the mixture have on the excess molar properties is discussed. A linear correlation is observed between the values of the molar fluidity, capacity, polarization, and molar volume of the studied system.

  8. Estriol improves membrane fluidity of erythrocytes by the nitric oxide-dependent mechanism: an electron paramagnetic resonance study.

    PubMed

    Tsuda, K; Shimamoto, Y; Kimura, K; Nishio, I; Masuyama, Y

    2001-05-01

    The present in vitro study was performed to investigate the effects of estriol (E3) on membrane fluidity of erythrocytes by means of an electron paramagnetic resonance (EPR) and spin-labeling method. E3 was shown to significantly decrease the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (ho/h-1) for 16-NS obtained from EPR spectra of erythrocyte membranes. This finding indicated that E3 might increase the membrane fluidity of erythrocytes. The effect of E3 was significantly potentiated by the nitric oxide (NO) donor, S-nitroso-N-acetylpenicillamine (SNAP), and a cyclic guanosine 3',5'-monophosphate (cGMP) analog, 8-bromo-cGMP. In contrast, the change in the membrane fluidity induced by E3 was antagonized by the NO synthase inhibitor, L-NG-nitroarginine-methyl-ester (L-NAME), and asymmetric dimethyl-L-arginine (ADMA). The results of the present study showed that E3 significantly increased the membrane fluidity and improved the microviscosity of erythrocyte membranes, partially mediated by an NO- and cGMP-dependent pathway. Furthermore, the data might be consistent with the hypothesis that E3 could have a beneficial effect on the rheological behavior of erythrocytes and may play a crucial role in the regulation of microcirculation.

  9. Low Temperature Development Induces a Specific Decrease in trans-Delta-Hexadecenoic Acid Content which Influences LHCII Organization.

    PubMed

    Huner, N P; Krol, M; Williams, J P; Maissan, E; Low, P S; Roberts, D; Thompson, J E

    1987-05-01

    Lipid and fatty acid analyses were performed on whole leaf extracts and isolated thylakoids from winter rye (Secale cereale L. cv Puma) grown at 5 degrees C cold-hardened rye (RH) and 20 degrees C nonhardened rye (RNH). Although no significant change in total lipid content was observed, growth at low, cold-hardening temperature resulted in a specific 67% (thylakoids) to 74% (whole leaves) decrease in the trans-Delta(3)-hexadecenoic acid (trans-16:1) level associated with phosphatidyldiacylglycerol (PG). Electron spin resonance and differential scanning calorimetry (DSC) indicated no significant difference in the fluidity of RH and RNH thylakoids. Separation of chlorophyll-protein complexes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the ratio of oligomeric light harvesting complex:monomeric light harvesting complex (LHCII(1):LHCII(3)) was 2-fold higher in RNH than RH thylakoids. The ratio of CP1a:CP1 was also 1.5-fold higher in RNH than RH thylakoids. Analyses of winter rye grown at 20, 15, 10, and 5 degrees C indicated that both, the trans-16:1 acid levels in PG and the LHCII(1):LHCII(3) decreased concomitantly with a decrease in growth temperature. Above 40 degrees C, differential scanning calorimetry of RNH thylakoids indicated the presence of five major endotherms (47, 60, 67, 73, and 86 degrees C). Although the general features of the temperature transitions observed above 40 degrees C in RH thylakoids were similar to those observed for RNH thylakoids, the transitions at 60 and 73 degrees C were resolved as inflections only and RH thylakoids exhibited transitions at 45 and 84 degrees C which were 2 degrees C lower than those observed in RNH thylakoids. Since polypeptide and lipid compositions of RH and RNH thylakoids were very similar, we suggest that these differences reflect alterations in thylakoid membrane organization. Specifically, it is suggested that low developmental temperature modulates LHCII organization such that oligomeric LHCII predominates in RNH thylakoids whereas a monomeric or an intermediate form of LHCII predominates in RH thylakoids. Furthermore, we conclude that low developmental temperature modulates LHCII organization by specifically altering the fatty composition of thylakoid PG.

  10. Sliding and rolling behavior of water droplets on an ordered nanoball matrix fluorocarbon polymer layer under simulated weather conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Xieqiang; Wan, Jie; Han, Haoxu; Wang, Yiping; Li, Kang; Wang, Qingjun

    2018-09-01

    Ordered nanoball matrix fluorocarbon polymer layers were produced with two different fluorocarbon polymers on an anodized aluminum oxide (AAO) surface. These treated surfaces each exhibited hydrophobicity or superhydrophobicity. The dynamic behavior of a droplet sliding down these surfaces was captured by high-speed photography under simulated weather conditions including at room temperature (25 °C) and low temperature (5 °C) with various relative humidities (30%-80%). By analyzing the trajectory of a marker in the captured video frame-by-frame, we distinguished the slipping and rolling behaviors and analyzed the internal fluidity by calculating the ratio of these two motions. Both the pore diameters of the substrate matrix and the environmental conditions play a dominant role in the resultant sliding acceleration of a water droplet. At room temperature (25 °C) and 30% relative humidity, the sliding acceleration of the droplet on the fluoropolymer layer decreased by 0.5 m·s-2 -0.6 m·s-2 as the pore diameters of the underlying AAO substrates increased. The sliding acceleration underwent a 25%-50% decrease under extreme environmental conditions (5 °C and 80% RH). These phenomena proved that a wetting transition from the Cassie-Baxter model to the Wenzel model can partially occur under various weather conditions.

  11. Protein separations using enhanced-fluidity liquid chromatography.

    PubMed

    Bennett, Raffeal; Olesik, Susan V

    2017-11-10

    Enhanced-fluidity liquid chromatography (EFLC) methods using methanol/H 2 O/CO 2 and hydrophilic interaction liquid chromatography (HILIC) were explored for the separation of proteins and peptides. EFLC is a separation mode that uses a mobile phase made of conventional solvents combined with liquid carbon dioxide (CO 2 ) in subcritical conditions. The addition of liquid CO 2 enhances diffusivity and decreases viscosity while maintaining mixture polarity, which typically results in reduced time of analysis. TFA additive and elevated temperature were leveraged as key factors in the separation of a 13-analyte intact protein mixture in under 5min. Under these conditions EFLC showed modest improvement in terms of peak asymmetry and analysis time over the competing ACN/H 2 O separation. Protein analytes detected by electrospray ionization - quadrupole time of flight, were shown to be unaffected by the addition of CO 2 in the mobile phase. Herein, the feasibility of separating hydrophilic proteins up to 80kDa (with transferrin) is demonstrated for CO 2 -containing mobile phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Tolerance to chitosan by Trichoderma species is associated with low membrane fluidity.

    PubMed

    Zavala-González, Ernesto A; Lopez-Moya, Federico; Aranda-Martinez, Almudena; Cruz-Valerio, Mayra; Lopez-Llorca, Luis Vicente; Ramírez-Lepe, Mario

    2016-07-01

    The effect of chitosan on growth of Trichoderma spp., a cosmopolitan genus widely exploited for their biocontrol properties was evaluated. Based on genotypic (ITS of 18S rDNA) characters, four isolates of Trichoderma were identified as T. pseudokoningii FLM16, T. citrinoviride FLM17, T. harzianum EZG47, and T. koningiopsis VSL185. Chitosan reduces radial growth of Trichoderma isolates in concentration-wise manner. T. koningiopsis VSL185 was the most chitosan tolerant isolate in all culture media amended with chitosan (0.5-2.0 mg ml(-1) ). Minimal Inhibitory Concentration (MIC) and Minimal Fungicidal Concentration (MFC) were determined showing that T. koningiopsis VSL185 displays higher chitosan tolerance with MIC value >2000 μg ml(-1) while for other Trichoderma isolates MIC values were around 10 μg ml(-1) . Finally, free fatty acid composition reveals that T. koningiopsis VSL185, chitosan tolerant isolate, displays lower linolenic acid (C18:3) content than chitosan sensitive Trichoderma isolates. Our findings suggest that low membrane fluidity is associated with chitosan tolerance in Trichoderma spp. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Leptin improves membrane fluidity of erythrocytes in humans via a nitric oxide-dependent mechanism--an electron paramagnetic resonance investigation.

    PubMed

    Tsuda, Kazushi; Kimura, Keizo; Nishio, Ichiro

    2002-09-27

    Abnormalities in physical properties of the cell membranes may underlie the defects that are strongly linked to hypertension, stroke, and other cardiovascular diseases. Recently, there has been an indication that leptin, the product of the human obesity gene, actively participates not only in the metabolic regulations but also in the control of cardiovascular functions. In the present study, to assess the role of leptin in the regulation of membrane properties, the effects of leptin on membrane fluidity of erythrocytes in humans are examined. The membrane fluidity of erythrocytes in healthy volunteers by means of an electron paramagnetic resonance (EPR) and spin-labeling method is determined. In an in vitro study, leptin decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (ho/h-1) for 16-NS obtained from EPR spectra of erythrocyte membranes in a dose-dependent manner in healthy volunteers. The finding indicated that leptin increased the membrane fluidity and improved the microviscosity of erythrocytes. The effect of leptin on the membrane fluidity was significantly potentiated by the nitric oxide (NO) donors, L-arginine and S-nitroso-N-acetylpenicillamine (SNAP), and a cyclic guanosine monophosphate (cGMP) analog, 8-bromo-cGMP. In contrast, the change evoked by leptin was significantly attenuated in the presence of the NO synthase inhibitors, N(G)-nitro-L-arginine-methyl-ester (L-NAME) and asymmetric dimethyl-L-arginine (ADMA). The results of the present study showed that leptin increased the membrane fluidity and improved the rigidity of cell membranes to some extent via an NO- and cGMP-dependent mechanism. Furthermore, the data also suggest that leptin might have a crucial role in the regulation of rheological behavior of erythrocytes and microcirculation in humans.

  14. Nitric oxide improves membrane fluidity of erythrocytes in essential hypertension: An electron paramagnetic resonance investigation.

    PubMed

    Tsuda, K; Kimura, K; Nishio, I; Masuyama, Y

    2000-09-07

    It has been shown that rheological abnormality might be an etiological factor in hypertension. Recent studies have revealed that human erythrocytes possess a nitric oxide (NO) synthase and that this activation might be involved in the regulation of rheological properties of erythrocytes. The present study was undertaken to investigate the role of NO in the regulation of membrane functions of erythrocytes in patients with essential hypertension by means of an electron paramagnetic resonance (EPR) and spin-labeling method. The NO donor S-nitroso-N-acetylpenicillamine (SNAP) decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (h(0)/h(-1)) for 16-NS obtained from EPR spectra of erythrocyte membranes in a dose-dependent manner. The finding indicated that the NO donor increased the membrane fluidity of erythrocytes. In addition, the effect of SNAP was significantly potentiated by 8-bromo-cyclic guanosine monophosphate. By contrast, the change of the fluidity induced by SNAP was reversed in the presence of L-N(G)-nitroarginine methyl ester and asymmetric dimethyl L-arginine. In patients with essential hypertension, the membrane fluidity of erythrocytes was significantly lower than in the normotensive subjects. The effect of SNAP was more pronounced in essential hypertension than in normotensive subjects. These results showed that NO increased the membrane fluidity and decreased the rigidity of cell membranes. Furthermore, the greater effect of NO on the fluidity in essential hypertension suggests that NO might actively participate in the regulation of rheological behavior of erythrocytes and have a crucial role in the improvement of microcirculation in hypertension. Copyright 2000 Academic Press.

  15. Med15B Regulates Acid Stress Response and Tolerance in Candida glabrata by Altering Membrane Lipid Composition

    PubMed Central

    Qi, Yanli; Liu, Hui; Yu, Jiayin; Chen, Xiulai

    2017-01-01

    ABSTRACT Candida glabrata is a promising producer of organic acids. To elucidate the physiological function of the Mediator tail subunit Med15B in the response to low-pH stress, we constructed a deletion strain, C. glabrata med15BΔ, and an overexpression strain, C. glabrata HTUΔ/CgMED15B. Deletion of MED15B caused biomass production, glucose consumption rate, and cell viability to decrease by 28.3%, 31.7%, and 26.5%, respectively, compared with those of the parent (HTUΔ) strain at pH 2.0. Expression of lipid metabolism-related genes was significantly downregulated in the med15BΔ strain, whereas key genes of ergosterol biosynthesis showed abnormal upregulation. This caused the proportion of C18:1 fatty acids, the ratio of unsaturated to saturated fatty acids (UFA/SFA), and the total phospholipid content to decrease by 11.6%, 27.4%, and 37.6%, respectively. Cells failed to synthesize fecosterol and ergosterol, leading to the accumulation and a 60.3-fold increase in the concentration of zymosterol. Additionally, cells showed reductions of 69.2%, 11.6%, and 21.8% in membrane integrity, fluidity, and H+-ATPase activity, respectively. In contrast, overexpression of Med15B increased the C18:1 levels, total phospholipids, ergosterol content, and UFA/SFA by 18.6%, 143.5%, 94.5%, and 18.7%, respectively. Membrane integrity, fluidity, and H+-ATPase activity also increased by 30.2%, 6.9%, and 51.8%, respectively. Furthermore, in the absence of pH buffering, dry weight of cells and pyruvate concentrations were 29.3% and 61.2% higher, respectively, than those of the parent strain. These results indicated that in C. glabrata, Med15B regulates tolerance toward low pH via transcriptional regulation of acid stress response genes and alteration in lipid composition. IMPORTANCE This study explored the role of the Mediator tail subunit Med15B in the metabolism of Candida glabrata under acidic conditions. Overexpression of MED15B enhanced yeast tolerance to low pH and improved biomass production, cell viability, and pyruvate yield. Membrane lipid composition data indicated that Med15B might play a critical role in membrane integrity, fluidity, and H+-ATPase activity homeostasis at low pH. Thus, controlling membrane composition may serve to increase C. glabrata productivity at low pH. PMID:28710262

  16. Effect of Low Temperature Cultivation on the Phytochemical Profile and Bioactivity of Arctic Plants: A Case of Dracocephalum palmatum.

    PubMed

    Olennikov, Daniil N; Chirikova, Nadezhda K; Kashchenko, Nina I; Gornostai, Tat'yana G; Selyutina, Inessa Yu; Zilfikarov, Ifrat N

    2017-11-30

    The influence of climatic factors, e.g., low temperature, on the phytochemical composition and bioactivity of the arctic plant Dracocephalum palmatum Steph. ax Willd. (palmate dragonhead), a traditional food and medical herb of Northern Siberia, was investigated. D. palmatum seedlings were grown in a greenhouse experiment at normal (20 °C, NT) and low (1 °C, LT) temperature levels and five groups of components that were lipophilic and hydrophilic in nature were characterized. The analyses indicated that D. palmatum under NT demonstrates high content of photosynthetic pigments, specific fatty acid (FA) profile with domination of saturated FA (53.3%) and the essential oil with trans-pinocamphone as a main component (37.9%). Phenolic compounds were identified using a combination of high performance liquid chromatography with diode array detection and electrospray ionization mass-spectrometric detection (HPLC-DAD-ESI-MS) techniques, as well as free carbohydrates and water soluble polysaccharides. For the first time, it was established that the cold acclimation of D. palmatum seedlings resulted in various changes in physiological and biochemical parameters such as membrane permeability, photosynthetic potential, membrane fluidity, leaf surface secretory function, reactive oxygen species-antioxidant balance, osmoregulator content and cell wall polymers. In brief, results showed that the adaptive strategy of D. palmatum under LT was realized on the accumulation of membrane or surface components with more fluid properties (unsaturated FA and essential oils), antioxidants (phenolic compounds and enzymes), osmoprotectants (free sugars) and cell wall components (polysaccharides). In addition, the occurrence of unusual flavonoids including two new isomeric malonyl esters of eriodictyol-7- O -glucoside was found in LT samples. Data thus obtained allow improving our understanding of ecophysiological mechanisms of cold adaptation of arctic plants.

  17. Effect of Low Temperature Cultivation on the Phytochemical Profile and Bioactivity of Arctic Plants: A Case of Dracocephalum palmatum

    PubMed Central

    Chirikova, Nadezhda K.; Gornostai, Tat’yana G.; Selyutina, Inessa Yu.; Zilfikarov, Ifrat N.

    2017-01-01

    The influence of climatic factors, e.g., low temperature, on the phytochemical composition and bioactivity of the arctic plant Dracocephalum palmatum Steph. ax Willd. (palmate dragonhead), a traditional food and medical herb of Northern Siberia, was investigated. D. palmatum seedlings were grown in a greenhouse experiment at normal (20 °C, NT) and low (1 °C, LT) temperature levels and five groups of components that were lipophilic and hydrophilic in nature were characterized. The analyses indicated that D. palmatum under NT demonstrates high content of photosynthetic pigments, specific fatty acid (FA) profile with domination of saturated FA (53.3%) and the essential oil with trans-pinocamphone as a main component (37.9%). Phenolic compounds were identified using a combination of high performance liquid chromatography with diode array detection and electrospray ionization mass-spectrometric detection (HPLC-DAD-ESI-MS) techniques, as well as free carbohydrates and water soluble polysaccharides. For the first time, it was established that the cold acclimation of D. palmatum seedlings resulted in various changes in physiological and biochemical parameters such as membrane permeability, photosynthetic potential, membrane fluidity, leaf surface secretory function, reactive oxygen species–antioxidant balance, osmoregulator content and cell wall polymers. In brief, results showed that the adaptive strategy of D. palmatum under LT was realized on the accumulation of membrane or surface components with more fluid properties (unsaturated FA and essential oils), antioxidants (phenolic compounds and enzymes), osmoprotectants (free sugars) and cell wall components (polysaccharides). In addition, the occurrence of unusual flavonoids including two new isomeric malonyl esters of eriodictyol-7-O-glucoside was found in LT samples. Data thus obtained allow improving our understanding of ecophysiological mechanisms of cold adaptation of arctic plants. PMID:29189749

  18. Multiscale Modelling of the 2011 Tohoku Tsunami with Fluidity: Coastal Inundation and Run-up.

    NASA Astrophysics Data System (ADS)

    Hill, J.; Martin-Short, R.; Piggott, M. D.; Candy, A. S.

    2014-12-01

    Tsunami-induced flooding represents one of the most dangerous natural hazards to coastal communities around the world, as exemplified by Tohoku tsunami of March 2011. In order to further understand this hazard and to design appropriate mitigation it is necessary to develop versatile, accurate software capable of simulating large scale tsunami propagation and interaction with coastal geomorphology on a local scale. One such software package is Fluidity, an open source, finite element, multiscale, code that is capable of solving the fully three dimensional Navier-Stokes equations on unstructured meshes. Such meshes are significantly better at representing complex coastline shapes than structured meshes and have the advantage of allowing variation in element size across a domain. Furthermore, Fluidity incorporates a novel wetting and drying algorithm, which enables accurate, efficient simulation of tsunami run-up over complex, multiscale, topography. Fluidity has previously been demonstrated to accurately simulate the 2011 Tohoku tsunami (Oishi et al 2013) , but its wetting and drying facility has not yet been tested on a geographical scale. This study makes use of Fluidity to simulate the 2011 Tohoku tsunami and its interaction with Japan's eastern shoreline, including coastal flooding. The results are validated against observations made by survey teams, aerial photographs and previous modelling efforts in order to evaluate Fluidity's current capabilities and suggest methods of future improvement. The code is shown to perform well at simulating flooding along the topographically complex Tohoku coast of Japan, with major deviations between model and observation arising mainly due to limitations imposed by bathymetry resolution, which could be improved in future. In theory, Fluidity is capable of full multiscale tsunami modelling, thus enabling researchers to understand both wave propagation across ocean basins and flooding of coastal landscapes down to interaction with individual defence structures. This makes the code an exciting candidate for use in future studies aiming to investigate tsunami risk elsewhere in the world. Oishi, Y. et al. Three-dimensional tsunami propagation simulations using an unstructured mesh finite element model. J. Geophys. Res. [Solid Earth] 118, 2998-3018 (2013).

  19. Investigation of the fluidity of biological fluids with a PDDTBN spin probe

    NASA Astrophysics Data System (ADS)

    Severcan, Feride; Acar, Berrin; Gökalp, Saadet

    1997-06-01

    The aim of this study is to ascertain whether the electron spin resonance technique using perdeutero-di- t-butyl nitroxide (PDDTBN) as a spin probe is able to monitor relative fluidity changes occurring in body fluids, such as blood and parotid saliva, according to different physiological conditions. The present study reveals that the spin probe PDDTBN is able to monitor the fluidity changes in parotid saliva related to habitual smoking, and in whole blood related to the estradiol level. The rotational correlation time of the spin probe and the local viscosity values of the parotid saliva and blood have been reported.

  20. Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xue, Leigang; Lee, Seung-Yul; Zhao, Zuofeng; Angell, C. Austen

    2015-11-01

    Safety and high energy density are the two focus issues for current lithium ion batteries. For safety, it has been demonstrated that sulfone electrolytes are much less flammable than the prevailing all-carbonate type, and they are also promising for high voltage batteries due to the high oxidization resistance. However, the high melting points and viscosities greatly restricted their application. Based on our previous work on use of fluidity-enhancing cosolvents to make binary sulfone-carbonate electrolytes, we report here a three-component system that is more conductive and should be even less flammable while additionally having better low temperature stability. The conductivity-viscosity relations have been determined for this electrolyte and are comparable to those of the "standard" carbonate electrolyte. The additional component also produces much improved capacity retention for the LiNi0.5Mn1.5O4 cathode. As with carbonate electrolytes, increase of temperature to 55 °C leads to rapid capacity decrease during cycling, but the capacity loss is due to the salt, not the solvent. The high discharge capacity observed at 25 °C when LiBF4 replaces LiPF6, is fully retained at 55 °C.

  1. Microscale mechanical characterization of materials for extreme environments

    NASA Astrophysics Data System (ADS)

    Ozerinc, Sezer

    Nanocrystalline metals are promising materials for applications that require outstanding strength and stability in extreme environments. Further improvements in the desirable mechanical properties of these materials require a better understanding of the relationship between their microstructure and grain boundary deformation behavior. Previous molecular dynamics simulations suggested that solute additions to grain boundaries can enhance the strength of nanocrystalline metals, but there has been a lack of experimental studies investigating this prediction. This dissertation presents mechanical and microstructural characterization of nanocrystalline Cu alloys and demonstrate that addition of Nb solutes to grain boundaries greatly enhances the strength of Cu. The measured hardness of Cu90Nb10 alloy is 5.6 GPa which is more than double the hardness of nanocrystalline pure Cu. Microstructural characterization through transmission electron microscopy and energy-dispersive X-ray spectroscopy on these alloys indicates a strong correlation between the grain boundary composition and the hardness. Variation of measured hardness with measured grain boundary composition is in very good agreement with previous molecular dynamics simulation predictions. The results of this work provide experimental evidence that grain boundary doping enhances the strength of nanocrystalline Cu far beyond that predicted by classical Hall-Petch strengthening and decreasing grain boundary energy through solute additions is the key to reaching theoretical strength in nanocrystalline metals. Irradiation induced creep is a deformation mechanism that takes place under combined stress and particle bombardment. Effective characterization of this phenomenon on nanostructured materials is crucial for the assessment of their potential use in next generation nuclear power plants. Direct measurements of irradiation induced creep under MeV-heavy ion bombardment have not been feasible until recently due to the requirements of micron-sized specimens, muN-level force sensitivity, and nm-level displacement sensitivity. A recently developed mechanical characterization technique, micropillar compression, has enabled the testing of miniaturized specimens; however, there has been no demonstration of the application of this technique to irradiation induced creep measurements. This dissertation presents the development of an in situ measurement apparatus for compression testing of micron-sized cylindrical specimens under MeV-heavy ion bombardment. The apparatus has a force resolution of 1 muN and a displacement resolution of 1 nm. The apparatus measured irradiation induced creep in four different amorphous materials and the findings clarified the significance of different creep mechanisms in these materials. In amorphous metals and amorphous Si, the measured irradiation induced fluidity is ≈ 3 dpa-1GPa-1 (dpa: displacements per atom). The measured fluidity is in excellent agreement with previous molecular dynamics simulation predictions, providing experimental evidence for point defect mediated plastic flow under ion bombardment. For amorphous SiO2, stress relaxation through thermal spikes further contribute to the creep response, resulting in higher fluidities up to ≈ 83 dpa-1GPa -1. Finally, this dissertation presents the further development of the creep testing apparatus for high temperature measurements. The apparatus demonstrated good thermal and mechanical stability and measured irradiation induced creep of nanocrystalline Cu at 200°C. Resulting irradiation induced fluidity is ≈ 10% of the fluidity of the amorphous metals, in agreement with previous measurements on free-standing films. Understanding the creep behavior of nanostructured metals under heavy ion bombardment at elevated temperatures is important for identifying the governing creep mechanisms in these materials. The developed apparatus provides a new and effective method of accelerated mechanical characterization of such promising materials for their potential use in future nuclear applications.

  2. A role for protein kinase C in the regulation of membrane fluidity and Ca²(+) flux at the endoplasmic reticulum and plasma membranes of HEK293 and Jurkat cells.

    PubMed

    Chen, Lihong; Meng, Qingli; Jing, Xian; Xu, Pingxiang; Luo, Dali

    2011-02-01

    Protein kinase C (PKC) plays a prominent role in the regulation of a variety of cellular functions, including Ca²(+) signalling. In HEK293 and Jurkat cells, the Ca²(+) release and Ca²(+) uptake stimulated by several different activators were attenuated by activation of PKC with phorbol myristate acetate (PMA) or 1-oleoyl-2-acetyl-sn-glycerol (OAG) and potentiated by PKC inhibition with Gö6983 or knockdown of PKCα or PKCβ using shRNA. Immunostaining and Western blotting analyses revealed that PKCα and PKCβII accumulated at the plasma membrane (PM) and that these isoforms, along with PKCβI, also translocated to the endoplasmic reticulum (ER) upon activation with PMA. Measurements of membrane fluidity showed that, like the cell membrane stabilizers bovine serum albumin (BSA) and ursodeoxycholate (UDCA), PMA and OAG significantly reduced the fluidity of both the PM and ER membranes; these effects were blocked in PKC-knockdown cells. Interestingly, both BSA and UDCA inhibited the Ca²(+) responses to agonists to the same extent as PMA, whereas Tween 20, which increases membrane fluidity, raised the internal Ca²(+) concentration. Thus, activation of PKC induces both translocation of PKC to the PM and ER membranes and downregulation of membrane fluidity, thereby negatively modulating Ca²(+) flux. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Effects of unripe Citrus hassaku fruits extract and its flavanone glycosides on blood fluidity.

    PubMed

    Itoh, Kimihisa; Masuda, Megumi; Naruto, Shunsuke; Murata, Kazuya; Matsuda, Hideaki

    2010-01-01

    The enhancement of blood fluidity may lead to improvements in skin problems resulting from unsmooth circulation or blood stagnation. Since a 50% ethanolic extract (CH-ext) obtained from unripe Citrus hassaku fruits may be a useful ingredient in skin-whitening cosmetics, the present study was designed to examine the effect of CH-ext on blood fluidity. CH-ext concentration-dependently inhibited in vitro collagen-induced rabbit platelet aggregation and in vitro polybrene-induced rat erythrocyte aggregation. The CH-ext showed in vitro fibrinolysis activity in fibrin plate assay. Activity-guided fractionation of the CH-ext using antiplatelet activity, inhibitory activity of erythrocyte aggregation, and fibrinolysis activity revealed that these activities of CH-ext were attributable to naringenin-7-glycoside (prunin). Successive oral administration of CH-ext to rats inhibited the lipopolysaccharide (LPS)-induced decrease of blood platelets and fibrinogen, and LPS-induced increase of fibrin degradation products (FDP) in LPS-induced disseminated intravascular coagulation (DIC) model rats. Effects of CH-ext on blood fluidity were analyzed by a micro channel array flow analyzer (MC-FAN). Preventive oral administration of CH-ext to rats showed dose-dependent reduction of the passage time of whole blood flow of the DIC model rats in comparison with that of the vehicle control rats. These results imply that CH-ext may have effects which improve effects on blood fluidity.

  4. Born both ways: the alloparenting hypothesis for sexual fluidity in women.

    PubMed

    Kuhle, Barry X; Radtke, Sarah

    2013-04-07

    Given the primacy of reproduction, same-sex sexual behavior poses an evolutionary puzzle. Why would selection fashion motivational mechanisms to engage in sexual behaviors with members of the same sex? We propose the alloparenting hypothesis, which posits that sexual fluidity in women is a contingent adaptation that increased ancestral women's ability to form pair bonds with female alloparents who helped them rear children to reproductive age. Ancestral women recurrently faced the adaptive problems of securing resources and care for their offspring, but were frequently confronted with either a dearth of paternal resources due to their mates' death, an absence of paternal investment due to rape, or a divestment of paternal resources due to their mates' extra-pair mating efforts. A fluid sexuality would have helped ancestral women secure resources and care for their offspring by promoting the acquisition of allomothering investment from unrelated women. Under this view, most heterosexual women are born with the capacity to form romantic bonds with both sexes. Sexual fluidity is a conditional reproductive strategy with pursuit of men as the default strategy and same-sex sexual responsiveness triggered when inadequate paternal investment occurs or when women with alloparenting capabilities are encountered. Discussion focuses on (a) evidence for alloparenting and sexual fluidity in humans and other primates; (b) alternative explanations for sexual fluidity in women; and(c) fourteen circumstances predicted to promote same-sex sexual behavior in women.

  5. Smoking-induced alterations in platelet membrane fluidity and Na(+)/K(+)-ATPase activity in chronic cigarette smokers.

    PubMed

    Padmavathi, Pannuru; Reddy, Vaddi Damodara; Maturu, Paramahamsa; Varadacharyulu, Nallanchakravarthula

    2010-06-30

    Cigarette smoking is a recognized risk factor for cardiovascular diseases and has been implicated in the pathogenesis of atherosclerosis. Platelet adhesiveness and aggregation increases as a result of smoking. Cigarette smoking modifies haemostatic parameters via thrombosis with a consequently higher rate of cardiovascular events, but smoking-induced alterations of platelet membrane fluidity and other changes have not been studied. Thirty experimental and control subjects (mean age 35+/-8) were selected for the study. Experimental subjects had smoked 10+/-2 cigarettes per day for 7-10 years. The plasma lipid profile, platelet carbonyls, sulfhydryl groups, Na(+)/k(+)-ATPase activity, fluidity using a fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH), total cholesterol and phospholipids as well individual phospholipids were determined. Increases in the platelet membrane cholesterol phospholipid (C/P) ratio, phosphotidylethanolamine, phosphotidylserine with decreased phosphotidylcholine, Na(+)/k(+)-ATPase activity, fluidity and no significant change in phosphotidylinositol and sphingomylein, as well as increases in plasma total cholesterol, LDL-cholesterol, protein carbonyls with decreased HDL-cholesterol and sulfhydryl groups were observed in cigarette smokers. Platelet membrane total phospholipids were positively correlated with plasma LDL-cholesterol (r=0.568) and VLDL-cholesterol (r=0.614) in cigarette smokers. Increased plasma LDL-cholesterol, VLDL-cholesterol and total cholesterol might have resulted in the increased C/P ratio and decreased platelet membrane fluidity of cigarette smokers.

  6. Subcellular membrane fluidity of Lactobacillus delbrueckii subsp. bulgaricus under cold and osmotic stress.

    PubMed

    Meneghel, Julie; Passot, Stéphanie; Cenard, Stéphanie; Réfrégiers, Matthieu; Jamme, Frédéric; Fonseca, Fernanda

    2017-09-01

    Cryopreservation of lactic acid bacteria may lead to undesirable cell death and functionality losses. The membrane is the first target for cell injury and plays a key role in bacterial cryotolerance. This work aimed at investigating at a subcellular resolution the membrane fluidity of two populations of Lactobacillus delbrueckii subsp. bulgaricus when subjected to cold and osmotic stresses associated to freezing. Cells were cultivated at 42 °C in mild whey medium, and they were exposed to sucrose solutions of different osmolarities (300 and 1800 mOsm L -1 ) after harvest. Synchrotron fluorescence microscopy was used to measure membrane fluidity of cells labeled with the cytoplasmic membrane probe 1-[4 (trimethylamino) phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH). Images were acquired at 25 and 0 °C, and more than a thousand cells were individually analyzed. Results revealed that a bacterial population characterized by high membrane fluidity and a homogeneous distribution of fluidity values appeared to be positively related to freeze-thaw resistance. Furthermore, rigid domains with different anisotropy values were observed and the occurrence of these domains was more important in the freeze-sensitive bacterial population. The freeze-sensitive cells exhibited a broadening of existing highly rigid lipid domains with osmotic stress. The enlargement of domains might be ascribed to the interaction of sucrose with membrane phospholipids, leading to membrane disorganization and cell degradation.

  7. Role of Alcohols in Growth, Lipid Composition, and Membrane Fluidity of Yeasts, Bacteria, and Archaea ▿

    PubMed Central

    Huffer, Sarah; Clark, Melinda E.; Ning, Jonathan C.; Blanch, Harvey W.; Clark, Douglas S.

    2011-01-01

    Increased membrane fluidity, which causes cofactor leakage and loss of membrane potential, has long been documented as a cause for decreased cell growth during exposure to ethanol, butanol, and other alcohols. Reinforcement of the membrane with more complex lipid components is thus thought to be beneficial for the generation of more tolerant organisms. In this study, organisms with more complex membranes, namely, archaea, did not maintain high growth rates upon exposure to alcohols, indicating that more complex lipids do not necessarily fortify the membrane against the fluidizing effects of alcohols. In the presence of alcohols, shifts in lipid composition to more saturated and unbranched lipids were observed in most of the organisms tested, including archaea, yeasts, and bacteria. However, these shifts did not always result in a decrease in membrane fluidity or in greater tolerance of the organism to alcohol exposure. In general, organisms tolerating the highest concentrations of alcohols maintained membrane fluidity after alcohol exposure, whereas organisms that increased membrane rigidity were less tolerant. Altered lipid composition was a common response to alcohol exposure, with the most tolerant organisms maintaining a modestly fluid membrane. Our results demonstrate that increased membrane fluidity is not the sole cause of growth inhibition and that alcohols may also denature proteins within the membrane and cytosol, adversely affecting metabolism and decreasing cell growth. PMID:21784917

  8. Liposomes for Topical Use: A Physico-Chemical Comparison of Vesicles Prepared from Egg or Soy Lecithin

    PubMed Central

    Budai, Lívia; Kaszás, Nóra; Gróf, Pál; Lenti, Katalin; Maghami, Katayoon; Antal, István; Klebovich, Imre; Petrikovics, Ilona; Budai, Marianna

    2013-01-01

    Developments in nanotechnology and in the formulation of liposomal systems provide the opportunity for cosmetic dermatology to design novel delivery systems. Determination of their physico-chemical parameters has importance when developing a nano-delivery system. The present study highlights some technological aspects/characteristics of liposomes formulated from egg or soy lecithins for topical use. Alterations in the pH, viscosity, surface tension, and microscopic/macroscopic appearance of these vesicular systems were investigated. The chemical composition of the two types of lecithin was checked by mass spectrometry. Caffeine, as a model molecule, was encapsulated into multilamellar vesicles prepared from the two types of lecithin: then zeta potential, membrane fluidity, and encapsulation efficiency were compared. According to our observations, samples prepared from the two lecithins altered the pH in opposite directions: egg lecithin increased it while soy lecithin decreased it with increased lipid concentration. Our EPR spectroscopic results showed that the binding of caffeine did not change the membrane fluidity in the temperature range of possible topical use (measured between 2 and 50 °C). Combining our results on encapsulation efficiency for caffeine (about 30% for both lecithins) with those on membrane fluidity data, we concluded that the interaction of caffeine with the liposomal membrane does not change the rotational motion of the lipid molecules close to the head group region. In conclusion, topical use of egg lecithin for liposomal formulations can be preferred if there are no differences in the physico-chemical properties due to the encapsulated drugs, because the physiological effects of egg lecithin vesicles on skin are significantly better than that of soy lecithin liposomes. PMID:24482779

  9. Rooster sperm plasma membrane protein and phospholipid organization and reorganization attributed to cooling and cryopreservation

    USDA-ARS?s Scientific Manuscript database

    Cholesterol to phospholipid ratio is used as a representation for membrane fluidity, and predictor of cryopreservation success but results are not consistent across species and ignore the impact of membrane proteins. Therefore, this research explored the modulation of membrane fluidity and protein ...

  10. Experimental Determination of η/s for Finite Nuclear Matter.

    PubMed

    Mondal, Debasish; Pandit, Deepak; Mukhopadhyay, S; Pal, Surajit; Dey, Balaram; Bhattacharya, Srijit; De, A; Bhattacharya, Soumik; Bhattacharyya, S; Roy, Pratap; Banerjee, K; Banerjee, S R

    2017-05-12

    We present, for the first time, simultaneous determination of shear viscosity (η) and entropy density (s) and thus, η/s for equilibrated nuclear systems from A∼30 to A∼208 at different temperatures. At finite temperature, η is estimated by utilizing the γ decay of the isovector giant dipole resonance populated via fusion evaporation reaction, while s is evaluated from the nuclear level density parameter (a) and nuclear temperature (T), determined precisely by the simultaneous measurements of the evaporated neutron energy spectra and the compound nuclear angular momenta. The transport parameter η and the thermodynamic parameter s both increase with temperature, resulting in a mild decrease of η/s with temperature. The extracted η/s is also found to be independent of the neutron-proton asymmetry at a given temperature. Interestingly, the measured η/s values are comparable to that of the high-temperature quark-gluon plasma, pointing towards the fact that strong fluidity may be the universal feature of the strong interaction of many-body quantum systems.

  11. Interface Engineering Based on Liquid Metal for Compact-Layer-free, Fully Printable Mesoscopic Perovskite Solar Cells.

    PubMed

    Zhang, Yumin; Zhao, Jianhong; Zhang, Jin; Jiang, Xixi; Zhu, Zhongqi; Liu, Qingju

    2018-05-09

    A printing process for the fabrication of perovskite solar cells (PSCs) exhibits promising future application in the photovoltaic industry due to its low-cost and eco-friendly preparation. In mesoscopic carbon-based PSCs, however, compared to conventional ones, the hole-transport-layer-free PSCs often lead to inefficient hole extraction. Here, we used liquid metal (LM, Galinstan) as an interface modifier material in combination with a carbon electrode. Considering the high conductivity and room-temperature fluidity, it is found that LMs are superior in improving hole extraction and, more importantly, LMs tend to be reserved at the interface between ZrO 2 and carbon for enhancing the contact property. Correspondingly, the carrier transfer resistance was decreased at the carbon/perovskite interface. As optimized content, the triple mesoscopic PSCs based on mixed-cation perovskite with a power conversion efficiency of 13.51% was achieved, involving a 26% increase compared to those without LMs. This work opens new techniques for LMs in optoelectronics and printing.

  12. Beyond Alphabet Soup: Helping College Health Professionals Understand Sexual Fluidity

    ERIC Educational Resources Information Center

    Oswalt, Sara B.; Evans, Samantha; Drott, Andrea

    2016-01-01

    Many college students today are no longer using the terms straight, gay, lesbian, bisexual, or transgender to self-identify their sexual orientation or gender identity. This commentary explores research related to fluidity of sexual identities, emerging sexual identities used by college students, and how these identities interact with the health…

  13. Influence of polyunsaturated fatty acid supplementation and membrane fluidity on ozone and nitrogen dioxide sensitivity of rat alveolar macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rietjens, I.M.; van Tilburg, C.A.; Coenen, T.M.

    1987-01-01

    The phospholipid polyunsaturated fatty acid (PUFA) content and the membrane fluidity of rat alveolar macrophages were modified dose-dependently and in different ways. This was done to study the importance of both membrane characteristics for the cellular sensitivity toward ozone and nitrogen dioxide. Cells preincubated with arachidonic acid (20:4) complexed to bovine serum albumin (BSA) demonstrated an increased in vitro sensitivity versus ozone and nitrogen dioxide. The phenomenon was only observed at the highest 20:4 concentrations tested, whereas the membrane fluidity of the 20:4-treated cells already showed a maximum increase at lower preincubation concentrations. Hence it could be concluded that themore » increased ozone and nitrogen dioxide sensitivity of PUFA-enriched cells is not caused by their increased membrane fluidity, resulting in an increased accessibility of sensitive cellular fatty acid moieties or amino acid residues. This conclusion receives further support from other observations. These results strongly support the involvement of lipid oxidation in the mechanism(s) of toxic action of both ozone and nitrogen dioxide in an intact cell system.« less

  14. Preparation, Characterization and Performances of Powdered Polycarboxylate Superplasticizer with Bulk Polymerization.

    PubMed

    Liu, Xiao; Wang, Ziming; Zheng, Yunsheng; Cui, Suping; Lan, Mingzhang; Li, Huiqun; Zhu, Jie; Liang, Xu

    2014-08-29

    A polycarboxylate superplasticizer (PCE) was synthesized in a non-solvent system with bulk polymerization and then was pulverized into powdered form to achieve a rapid transportation and convenient preparation. PCE synthesized by using isopentenyl polyethylene glycol (TPEG) or isobutenyl polyethylene glycol (IPEG) as a macromonomer exhibited the best fluidities and retaining properties at 80 °C and 75 °C, respectively. Besides, azobisisobutyronitrile (AIBN) was suitable as an initiator, and the fumaric acid was suitable as the third monomer. The test results of ¹H nuclear magnetic resonance (¹H NMR) confirmed the occurrences of polymerization, and the measurement results of molecular weight and distribution showed that PCE molecular weight characteristics were in accordance with their fluidity properties in cement paste. The application performances in cement showed that PCEs with the best paste fluidity retentions had the longest final setting time and the shortest setting time interval, and the PCEs with good fluidity properties can obviously delay the hydration process and lower the hydration heat. Accordingly, this is a novel, energy-saving and economical method to prepare powdered PCE in the field of concrete admixtures.

  15. Preparation, Characterization and Performances of Powdered Polycarboxylate Superplasticizer with Bulk Polymerization

    PubMed Central

    Liu, Xiao; Wang, Ziming; Zheng, Yunsheng; Cui, Suping; Lan, Mingzhang; Li, Huiqun; Zhu, Jie; Liang, Xu

    2014-01-01

    A polycarboxylate superplasticizer (PCE) was synthesized in a non-solvent system with bulk polymerization and then was pulverized into powdered form to achieve a rapid transportation and convenient preparation. PCE synthesized by using isopentenyl polyethylene glycol (TPEG) or isobutenyl polyethylene glycol (IPEG) as a macromonomer exhibited the best fluidities and retaining properties at 80 °C and 75 °C, respectively. Besides, azobisisobutyronitrile (AIBN) was suitable as an initiator, and the fumaric acid was suitable as the third monomer. The test results of 1H nuclear magnetic resonance (1H NMR) confirmed the occurrences of polymerization, and the measurement results of molecular weight and distribution showed that PCE molecular weight characteristics were in accordance with their fluidity properties in cement paste. The application performances in cement showed that PCEs with the best paste fluidity retentions had the longest final setting time and the shortest setting time interval, and the PCEs with good fluidity properties can obviously delay the hydration process and lower the hydration heat. Accordingly, this is a novel, energy-saving and economical method to prepare powdered PCE in the field of concrete admixtures. PMID:28788184

  16. Fluidity of pea root plasma membranes under altered gravity

    NASA Astrophysics Data System (ADS)

    Klymchuk, D. O.; Baranenko, V. V.; Vorobyova, T. V.; Dubovoy, V. D.

    This investigation aims to determine whether clinorotation 2 rev min of pea Pisum sativum L seedlings induces the alterations in the physical-chemical properties of cellular membranes including the plasma membrane fluidity The last is an important regulator of functional activity of membrane enzymes The plasma membranes were isolated by aqueous two-phase partitioning from roots of 6-day old pea seedlings The membrane fluidity was examined by fluorescence spectroscopy using pyrene probe The plasma membrane vesicles with known protein concentration were added to the incubation buffer to a final concentration of 50 mu g of protein per ml A small amount by 1 mu l of pyrene solution in 2-propanol was added to the incubation mixture to a final probe concentration 5 mu M at constant mixing Fluorescence spectra were measured using a Perkin-Elmer LS-50 spectrofluorometer Perkin-Elmer England Pyrene was excited at 337 nm and fluorescence intensity of monomers I M and excimers I E were measured at 393 and 470 nm respectively The I E I M ratios were 0 081 pm 0 003 and 0 072 pm 0 004 in preparations obtained from clinorotated and the control seedlings respectively This fact indicates that rotation on the clinostat increases the membrane fluidity Compared with controls clinorotated seedlings have also showed a reduced growth and a higher level of total unsaturated fatty acids determined by gas chromatography The factors that influence on the fluidity of membrane lipids in bilayer appear to be the

  17. What's Cooler Than Being Cool? Ice-Sheet Models Using a Fluidity-Based FOSLS Approach to Nonlinear-Stokes Flow

    NASA Astrophysics Data System (ADS)

    Allen, Jeffery M.

    This research involves a few First-Order System Least Squares (FOSLS) formulations of a nonlinear-Stokes flow model for ice sheets. In Glen's flow law, a commonly used constitutive equation for ice rheology, the viscosity becomes infinite as the velocity gradients approach zero. This typically occurs near the ice surface or where there is basal sliding. The computational difficulties associated with the infinite viscosity are often overcome by an arbitrary modification of Glen's law that bounds the maximum viscosity. The FOSLS formulations developed in this thesis are designed to overcome this difficulty. The first FOSLS formulation is just the first-order representation of the standard nonlinear, full-Stokes and is known as the viscosity formulation and suffers from the problem above. To overcome the problem of infinite viscosity, two new formulation exploit the fact that the deviatoric stress, the product of viscosity and strain-rate, approaches zero as the viscosity goes to infinity. Using the deviatoric stress as the basis for a first-order system results in the the basic fluidity system. Augmenting the basic fluidity system with a curl-type equation results in the augmented fluidity system, which is more amenable to the iterative solver, Algebraic MultiGrid (AMG). A Nested Iteration (NI) Newton-FOSLS-AMG approach is used to solve the nonlinear-Stokes problems. Several test problems from the ISMIP set of benchmarks is examined to test the effectiveness of the various formulations. These test show that the viscosity based method is more expensive and less accurate. The basic fluidity system shows optimal finite-element convergence. However, there is not yet an efficient iterative solver for this type of system and this is the topic of future research. Alternatively, AMG performs better on the augmented fluidity system when using specific scaling. Unfortunately, this scaling results in reduced finite-element convergence.

  18. Fluidity of the dietary fatty acid profile and risk of coronary heart disease and ischemic stroke: Results from the EPIC-Netherlands cohort study.

    PubMed

    Sluijs, I; Praagman, J; Boer, J M A; Verschuren, W M M; van der Schouw, Y T

    2017-09-01

    The fluidity of dietary fatty acids consumed has been suggested to inversely affect coronary heart disease (CHD) risk. Lipophilic index (LI) represents overall fluidity of the dietary fatty acid profile. Lipophilic load (LL) represents a combination of overall fluidity and absolute intake of dietary fatty acids. We investigated the relations of dietary LI and LL with risk of CHD and ischemic stroke (iStroke). We used data from the prospective EPIC-NL study, including 36,520 participants aged 20-70 years. LI and LL were calculated using dietary intake data estimated with a validated FFQ. Incident CHD (n = 2348) and iStroke (n = 479) cases were obtained through linkage to national registers during 15 years follow-up. LI and LL were not associated with CHD risk (HRs highest-versus-lowest-quartiles : 0.93 [95%CI: 0.83, 1.04], and 0.92 [95%CI: 0.79, 1.07], respectively), and neither with iStroke risk (HRs 1.15 (95%CI: 0.89, 1.48), and 0.98 (95%CI: 0.70, 1.38), respectively). Original fatty acid classes (SFA, MUFA and PUFA), and LI and LL stratified by these fatty acid classes, were overall not related to CHD and ischemic stroke either. In this Dutch population, neither the overall fluidity of the dietary fatty acid profile (LI), nor the combined fluidity and amount of fatty acids consumed (LL) were related to CHD or iStroke risk. Dietary LI and LL may have limited added value above original fatty acid classes and food sources in establishing the relation of fatty acid consumption with CVD. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  19. Preparation and characterization of acorn starch/poly(lactic acid) composites modified with functionalized vegetable oil derivates.

    PubMed

    Li, Shouhai; Xia, Jianling; Xu, Yuzhi; Yang, Xuejuan; Mao, Wei; Huang, Kun

    2016-05-20

    Composites of acorn starch (AS) and poly(1actic acid) (PLA) modified with dimer fatty acid (DFA) or dimer fatty acid polyamide (DFAPA) were produced by a hot-melt extrusion method. The effects of DFA and DFAPA contents on the mechanical, hydrophobic, thermal properties and melt fluidity of the composites were studied under an invariable AS-to-PLA mass ratio of 40/60. SEM and DMA research results show that the compatibility of AS/PLA composites are determined by the dosage of DFA or DFAPA. The hydrophobicity and melt fluidity of composites are improved with the addition of DFA and DFAPA. The glass transition temperatures of the composites are all reduced remarkably by additives DFA and DFAPA. However, DFA and DFAPA exert different effects on the mechanical properties of AS/PLA composites. In the DFAPA-modified system, the tensile and flexural strength first increase and then decrease with the increase of DFAPA dosage; the mechanical strength is maximized when the dosage of DFAPA is 2 wt% of total weight. In the DFA-modified system, the tensile and flexural strength decrease with the increase of DFA dosage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Research of vacuum polymer film on three-dimension surface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bau, Yung-Han

    2016-09-01

    This study focused on UV-curable acrylic hybrid of solute in vacuum-deposited on the surface and make it smooth. On the surface coating of the entire process, including the pre-treatment of organic solutes, vacuum, nozzle pressure, airflow, frequency ratio, the surface of the rotation rate, nozzle angle, UV light irradiation time, waste solute recycling.Organic solutes through a flow meter and precise measured,by high pressure or vibration of a piezoelectric material, spray our organic solute in a certain degree of vacuum,leaving nozzle of tiny micro-mist volatiles in a vacuum to form secondary atomization,deposited our surface,Since no UV light irradiation, the surface is a liquid having fluidity, so the non-planar substrates can have good performance, finally it is irradiated by UV light of sufficient energy solidify to form a solid film.The advantage of this approach is that a smooth surface,Strong adhesion, low-cost equipment, low temperature, a wide range of high deposition rate can be combined with other deposition method,Under vacuum have not waste because excess paint can be recycled.Avoid solute direct contact with human, relative to the environment-friendly.

  1. [Description and evaluation of creative thinking in preterm low birth weight infants].

    PubMed

    Parisi, L; Di Filippo, T; Firrigno, L; La Grutta, S; Testa, D; Roccella, M

    2007-04-01

    Since the 1950s, the problem of how to evaluate creativity has been addressed in studies on the definition of measurement criteria and on the relationship between intelligence and creative thinking. Many revealed cognitive and relational disorders in preterm infants, particularly in preterm very low birth weight infants (birth weight <1500 g) and in infants with serious complications. This study describes the development of creative thinking in a group of children born preterm. The study sample was 43 children (21 males, 22 females; age range 6-11 years), regularly attending school, born with low birth weight (1050-2450 g) at 29-32 weeks gestational age, and compared with a control group with birth weight >2500 g. The test battery included: Torrance Test of Creative Thinking (TCTT); WISC-R intelligence test; Goodenough Human Figure Drawing Test. Statistical analysis (Mann-Whitney U test) showed a statistically significant difference (P>0.05) between the 2 groups; scores for figure originality, figure fluidity and figure elaboration were consistently higher in the control group. Within the low birth weight group, there was a significant correlation (Spearman r) between verbal IQ and verbal fluidity and verbal flexibility subscale scores and between IQ performance and figure elaboration. Scores on the figure drawing tests showed higher creative ability in the control group. In children born preterm with low birth weight, emotive dynamics and flow of affection may influence the channels of communication between child and family. The low figure originality subscale scores support the hypothesis that psychodynamic and relational factors (worry about the preterm condition, overprotective behaviour by parents and others) could lead to diminished autonomy, flexibility and manipulatory interest in the child.

  2. Electrosteric stabilization of heteroflocculating suspensions and its application to the processing of self-compacting engineered cementitious composites

    NASA Astrophysics Data System (ADS)

    Kong, Hyun-Joon

    This dissertation investigates a dispersion/stabilization technique to improve the fluidity of heteroflocculating concentrated suspensions, and applies the technique to develop self-compacting Engineered Cementitious Composites (ECC), defined as a cementitious material which compacts without any external consolidation in the fresh state, while exhibiting strain-hardening performance in the hardened state. To meet the criteria of micromechanical design to achieve the ductile performance and processing design to attain high fluidity, this work has focused on preparing cement suspensions with low viscosity and high cohesiveness at a particle loading determined by the micromechanical design. Therefore, the goal of this work is to quantify how to adjust the strong flocculation between cement particles due to electrostatic and van der Waals attractive forces. For this purpose, a strong polyelectrolyte, melamine formaldehyde sulfonate (MFS), to disperse the oppositely-charged particles present in the cement dispersion, is combined with a non-ionic polymer, hydroxypropylmethylcellulose (HPMC). The combination of these two polymers to prevent re-flocculation leads to "complementary electrosteric dispersion/ stabilization". With these polymers, suspensions with the desired fluidity for processing are obtained. To quantify the roles of the two polymers in imparting stability, a heteroflocculating model suspension was developed, which facilitates the control of the interactions typical of cement suspensions, but without irreversible hydration. This model suspension is composed of alumina and silica particles, which bear surface potentials of opposite sign at intermediate pHs, as well as has a comparable magnitude of the Hamaker constant as compared to cement particles. As a result, the model system displays not only van der Waals attraction but also electrostatic attraction between dissimilar particles. Rheological studies of the model system stabilized by MFS and HPMC show behavior identical to that of the cement suspensions, allowing the model system to be used to interpret the role of the stabilizers in altering the system microstructure and fluidity. Finally, the self-compacting performance of fresh ECC mixes made with the electrosterically stabilized fresh matrix mix and the ductile strain-hardening performance of the hardened ECC were demonstrated.

  3. Effects of Light and Temperature on Fatty Acid Production in Nannochloropsis Salina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Wagenen, Jonathan M.; Miller, Tyler W.; Hobbs, Samuel J.

    2012-03-12

    Accurate prediction of algal biofuel yield will require empirical determination of physiological responses to the climate, particularly light and temperature. One strain of interest, Nannochloropsis salina, was subjected to ranges of light intensity (5-850 {mu}mol m{sup -2} s{sup -1}) and temperature (13-40 C); exponential growth rate, total fatty acids (TFA) and fatty acid composition were measured. The maximum acclimated growth rate was 1.3 day{sup -1} at 23 C and 250 {mu}mol m{sup -2} s{sup -1}. Fatty acids were detected by gas chromatography with flame ionization detection (GC-FID) after transesterification to corresponding fatty acid methyl esters (FAME). A sharp increase inmore » TFA containing elevated palmitic acid (C16:0) and palmitoleic acid (C16:1) during exponential growth at high light was observed, indicating likely triacylglycerol accumulation due to photo-oxidative stress. Lower light resulted in increases in the relative abundance of unsaturated fatty acids; in thin cultures, increases were observed in palmitoleic and eicosapentaenoeic acids (C20:5{omega}3). As cultures aged and the effective light intensity per cell converged to very low levels, fatty acid profiles became more similar and there was a notable increase of oleic acid (C18:1{omega}9). The amount of unsaturated fatty acids was inversely proportional to temperature, demonstrating physiological adaptations to increase membrane fluidity. This data will improve prediction of fatty acid characteristics and yields relevant to biofuel production.« less

  4. Mechanical Characterization of Hybrid Vesicles Based on Linear Poly(Dimethylsiloxane-b-Ethylene Oxide) and Poly(Butadiene-b-Ethylene Oxide) Block Copolymers

    PubMed Central

    Gaspard, Jeffery; Casey, Liam M.; Rozin, Matt; Munoz-Pinto, Dany J.; Silas, James A.; Hahn, Mariah S.

    2016-01-01

    Poly(dimethylsiloxane-ethylene oxide) (PDMS-PEO) and poly(butadiene-b-ethylene oxide) (PBd-PEO) are two block copolymers which separately form vesicles with disparate membrane permeabilities and fluidities. Thus, hybrid vesicles formed from both PDMS-PEO and PBd-PEO may ultimately allow for systematic, application-specific tuning of vesicle membrane fluidity and permeability. However, given the relatively low strength previously noted for comb-type PDMS-PEO vesicles, the mechanical robustness of the resulting hybrid vesicles must first be confirmed. Toward this end, we have characterized the mechanical behavior of vesicles formed from mixtures of linear PDMS-PEO and linear PBd-PEO using micropipette aspiration. Tension versus strain plots of pure PDMS12-PEO46 vesicles revealed a non-linear response in the high tension regime, in contrast to the approximately linear response of pure PBd33-PEO20 vesicles. Remarkably, the area expansion modulus, critical tension, and cohesive energy density of PDMS12-PEO46 vesicles were each significantly greater than for PBd33-PEO20 vesicles, although critical strain was not significantly different between these vesicle types. PDMS12-PEO46/PBd33-PEO20 hybrid vesicles generally displayed graded responses in between that of the pure component vesicles. Thus, the PDMS12-PEO46/PBd33-PEO20 hybrid vesicles retained or exceeded the strength and toughness characteristic of pure PBd-PEO vesicles, indicating that future assessment of the membrane permeability and fluidity of these hybrid vesicles may be warranted. PMID:26999148

  5. Evaluation of creative thinking in children with idiopathic epilepsy (absence epilepsy).

    PubMed

    Di Filippo, T; Parisi, L; Roccella, M

    2012-02-01

    Creativity represents the silent character of human behaviour. In children with epilepsy, cognitive performance of has mainly been investigated under the assumption that the disorder represents a risk factor for the development of intellectual function. In subjects with different forms of epilepsy, neuropsychologic disorders have been detected even when cognitive-global functioning is unimpaired. The cognitive functions of subjects with epilepsy have been widely studied, but their creativity has been never evaluated to date. The aim of this study was to describe the development of creative thinking in a group of children with absence epilepsy. The test battery included: the Torrance Test of Creative Thinking (TTCT), the Wechsler Intelligence Scale for Children-revised (WISC-R) and the Goodenough Human Figure Drawing Test. Statistical analysis (Mann-Whitney test) showed a statistically significant difference (P <0.05) in test scores between two groups of subjects (children with epilesy vs control group), with higher scores for figure originality, figure fluidity and figure elaboration in the control group. There was a significant correlation (Spearman's rho) between verbal IQ and verbal fluidity and verbal flexibility subscale scores and between performance IQ and figure elaboration, between total IQ and verbal fluidity and verbal flexibility subscales (P <0.05; r >0.30). Low scores on the figure originality subscales seem to confirm the hypothesis that adverse psychodynamic and relational factors impoverish autonomy, flexibility and manipulator interests. The communication channels between subjects with epilepsy and their family members were affected by the disorder, as were the type of emotional dynamics and affective flux.

  6. Age Differences in Symbolic Representation: Fluidity in Representational Construction.

    ERIC Educational Resources Information Center

    Reifel, Stuart

    This paper reports a cross-sectional, developmental study of the fluidity of children's mental functioning (representational skills) in contexts involving the representational use of blocks. Data were collected from a sample of 40 children from a laboratory school: 20 four-year-olds and 20 seven-year-olds, with an equal number of boys and girls in…

  7. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOEpatents

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  8. Emotion Talk in Preschool Same-Sex Friendship Groups: Fluidity over Time and Context.

    ERIC Educational Resources Information Center

    Kyratzis, Amy

    2001-01-01

    Examined "emotion talk" among 3- and 4-year-old peers in a children's center in different contexts over the academic year. Found that the boys' group evolved norms against expression of being scared with norms downgrading girl characteristics. Boys' and girls' groups showed contextual fluidity in expressing emotion and emotion talk that…

  9. Inhibition of HIV-1 entry by the tricyclic coumarin GUT-70 through the modification of membrane fluidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuda, Kouki; Hattori, Shinichiro; Kariya, Ryusho

    Membrane fusion between host cells and HIV-1 is the initial step in HIV-1 infection, and plasma membrane fluidity strongly influences infectivity. In the present study, we demonstrated that GUT-70, a natural product derived from Calophyllum brasiliense, stabilized plasma membrane fluidity, inhibited HIV-1 entry, and down-regulated the expression of CD4, CCR5, and CXCR4. Since GUT-70 also had an inhibitory effect on viral replication through the inhibition of NF-κB, it is expected to be used as a dual functional and viral mutation resistant reagent. Thus, these unique properties of GUT-70 enable the development of novel therapeutic agents against HIV-1 infection.

  10. Specific binding of 15 HETE to lymphocytes. Effects on the fluidity of plasmatic membranes.

    PubMed

    Mexmain, S; Gualde, N; Aldigier, J C; Motta, C; Chable-Rabinovitch, H; Rigaud, M

    1984-01-01

    Specific binding of mouse lymphocytes for 15 HETE was examined by incubating cells with [14C]-15 HETE, 1 X 10(-8) to 1 X 10(-10)M. It was observed that the specific binding of radiolabeled 15 HETE is a function of time, of temperature and is modified by Ca2+ and dithiothreitol. When a fluorescent probe was embedded in the phospholipid core of the lymphocyte membrane and its motion analysed by fluorescence polarization, it was observed that 15 HETE increases the viscosity of the plasmatic membrane.

  11. Low Temperature Development Induces a Specific Decrease in trans-Δ3-Hexadecenoic Acid Content which Influences LHCII Organization 1

    PubMed Central

    Huner, Norman P. A.; Krol, Marianna; Williams, John P.; Maissan, Ellen; Low, Phillip S.; Roberts, Dane; Thompson, John E.

    1987-01-01

    Lipid and fatty acid analyses were performed on whole leaf extracts and isolated thylakoids from winter rye (Secale cereale L. cv Puma) grown at 5°C cold-hardened rye (RH) and 20°C nonhardened rye (RNH). Although no significant change in total lipid content was observed, growth at low, cold-hardening temperature resulted in a specific 67% (thylakoids) to 74% (whole leaves) decrease in the trans-Δ3-hexadecenoic acid (trans-16:1) level associated with phosphatidyldiacylglycerol (PG). Electron spin resonance and differential scanning calorimetry (DSC) indicated no significant difference in the fluidity of RH and RNH thylakoids. Separation of chlorophyll-protein complexes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the ratio of oligomeric light harvesting complex:monomeric light harvesting complex (LHCII1:LHCII3) was 2-fold higher in RNH than RH thylakoids. The ratio of CP1a:CP1 was also 1.5-fold higher in RNH than RH thylakoids. Analyses of winter rye grown at 20, 15, 10, and 5°C indicated that both, the trans-16:1 acid levels in PG and the LHCII1:LHCII3 decreased concomitantly with a decrease in growth temperature. Above 40°C, differential scanning calorimetry of RNH thylakoids indicated the presence of five major endotherms (47, 60, 67, 73, and 86°C). Although the general features of the temperature transitions observed above 40°C in RH thylakoids were similar to those observed for RNH thylakoids, the transitions at 60 and 73°C were resolved as inflections only and RH thylakoids exhibited transitions at 45 and 84°C which were 2°C lower than those observed in RNH thylakoids. Since polypeptide and lipid compositions of RH and RNH thylakoids were very similar, we suggest that these differences reflect alterations in thylakoid membrane organization. Specifically, it is suggested that low developmental temperature modulates LHCII organization such that oligomeric LHCII predominates in RNH thylakoids whereas a monomeric or an intermediate form of LHCII predominates in RH thylakoids. Furthermore, we conclude that low developmental temperature modulates LHCII organization by specifically altering the fatty composition of thylakoid PG. PMID:16665384

  12. Erythrocyte membrane fluidity and indices of plasmatic oxidative damage after acute physical exercise in humans.

    PubMed

    Berzosa, C; Gómez-Trullén, E M; Piedrafita, E; Cebrián, I; Martínez-Ballarín, E; Miana-Mena, F J; Fuentes-Broto, L; García, J J

    2011-06-01

    Optimal levels of membrane fluidity are essential for numerous cell functions including cell growth, solute transport and signal transduction. Since exercise enhances free radical production, our aim was to evaluate in healthy male subjects the effects of an acute bout of maximal and submaximal exercise on the erythrocyte membrane fluidity and its possible relation to the oxidative damage overproduction due to exercise. Subjects (n = 34) performed three cycloergometric tests: a continuous progressive exercise, a strenuous exercise until exhaustion and an acute bout of exercise at an intensity corresponding to 70% of maximal work capacity for 30 min. Venous blood samples were collected before and immediately after these exercises. Erythrocyte membrane fluidity was assessed by fluorescence spectroscopy. Plasma malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations and carbonyl content of plasmatic proteins were used as an index of lipid and protein oxidation, respectively. Exercise produced a dramatic drop in the erythrocyte membrane fluidity as compared to resting time, but this was not accompanied by significant changes in the plasmatic MDA and 4-HDA concentrations. The highest erythrocyte membrane rigidity was detected immediately after strenuous exercise until exhaustion was performed. Protein carbonyl levels were higher after exhaustive exercises than at rest. Continuous progressive and strenuous exercises until exhaustion, but not submaximal workload, resulted in a significant enhanced accumulation of carbonylated proteins in the plasma. These findings are consistent with the idea that exercise exaggerates oxidative damage, which may contribute, at least partially, to explain the rigidity in the membrane of the erythrocytes due to acute exercise.

  13. Solanum Nigrum polysaccharide (SNL) extract effects in transplanted tumor-bearing mice--erythrocyte membrane fluidity and blocking of functions.

    PubMed

    Yuan, Hong-Liang; Liu, Xiao-Lei; Liu, Ying-Jie

    2014-01-01

    Solanum nigrum L. has been used in traditional Chinese medicine because of its diuretic and antipyretic effects. The present research concerned effects of crude polysaccharides isolated from Solanum nigrum L. on erythrocyte membranes of tumor-bearing S180 and H22 in mice. Fluorescence- labeled red blood cell membranes were used with DPH fluorescence spectrophotometry to examine erythrocyte membrane fluidity, and colorimetry to determine degree of erythrocyte surface membrane blocking. Extent of reaction by tumor-bearing mice with the enzyme erythrocyte membrane bubble shadow detection of red cell membrane variation in the degree of closure before and after administration. Solanum nigrum polysaccharide could significantly improve the S180 and H22 tumor-bearing mice erythrocyte membrane fluidity, compared with the control group, the difference was significant (p<0.01), SNL can significantly improve the red blood cell membrane and then S180 tumor-bearing mice sealing ability, compared with the negative control group, the difference was significant(p<0.05, p<0.01). H22 tumor-bearing mice can increase red cell membrane and then sealing ability, the difference was significant (p<0.05). Solanum nigrum polysaccharide degree of fluidity and blocking two transplanted tumors in mice restored the ability to raise the red cell membrane has a significant effect. Solanum nigrum L.-type mice transplanted tumor can affect the red blood cell membrane fluidity and re-closed, through the red cell membrane of red blood cells to enhance the immune function of the possibility of erythrocyte immunity against tumor formation garland provide experimental basis.

  14. An Examination of Organizational Fluidity and Workplace Quality in a Community College Setting: An Internal Multi-Stakeholder Perspective

    ERIC Educational Resources Information Center

    Porter, Catherine L.

    2013-01-01

    Community colleges today are experiencing monumental shifts in their operating environments. Some of these changes are known, but many of them are not. They include shifts in curriculum, funding, and societal expectation to name a few. Through the constructs of high quality work environment and organizational fluidity theory, this research…

  15. [Study on nano-CaCO3 applicated in Xin Yue Shu Capsules preliminarily].

    PubMed

    Jiang, Yan-Rong; Zhang, Zhen-Hai; Cui, Li; He, Jun-Jie; Hu, Shao-Ying; Jia, Xiao-Bin

    2012-11-01

    To investigate the characteristics of nano-CaCO3 applicated in Xin Yue Shu Capsules. Studied the effect of different dosages of aerosil or nano-CaCO3 on fluidity, bulk density, moisture absorption of Xin Yue Shu capsules spray drying powder. In vitro dissolution and ferulic acid stability of Xin Yue Shu capsules was observed. It significantly improved powder fluidity and bulk density of Xin Yue Shu spray drying powder when aerosil or nano-CaCO3 was added. But there was no significant effect on powder moisture absorption, ferulic acid in vitro dissolution and ferulic acid stability. The effect of Nano-CaCO3 on improving powder fluidity and bulk density applicated in the spray drying powder of traditional Chinese medicine deserves studying further.

  16. Thermal Cycling Behavior of Zinc Antimonide Thin Films for High Temperature Thermoelectric Power Generation Applications.

    PubMed

    Shim, Hyung Cheoul; Woo, Chang-Su; Han, Seungwoo

    2015-08-19

    The zinc antimonide compound ZnxSby is one of the most efficient thermoelectric materials known at high temperatures due to its exceptional low thermal conductivity. For this reason, it continues to be the focus of active research, especially regarding its glass-like atomic structure. However, before practical use in actual surroundings, such as near a vehicle manifold, it is imperative to analyze the thermal reliability of these materials. Herein, we present the thermal cycling behavior of ZnxSby thin films in nitrogen (N2) purged or ambient atmosphere. ZnxSby thin films were prepared by cosputtering and reached a power factor of 1.39 mW m(-1) K(-2) at 321 °C. We found maximum power factor values gradually decreased in N2 atmosphere due to increasing resistivity with repeated cycling, whereas the specimen in air kept its performance. X-ray diffraction and electron microscopy observations revealed that fluidity of Zn atoms leads to nanoprecipitates, porous morphologies, and even growth of a coating layer or fiber structures on the surface of ZnxSby after repetitive heating and cooling cycles. With this in mind, our results indicate that proper encapsulation of the ZnxSby surface would reduce these unwanted side reactions and the resulting degradation of thermoelectric performance.

  17. The role of membrane fluidization in the gel-assisted formation of giant polymersomes

    DOE PAGES

    Greene, Adrienne C.; Henderson, Ian M.; Gomez, Andrew; ...

    2016-07-13

    Polymersomes are being widely explored as synthetic analogs of lipid vesicles based on their enhanced stability and potential uses in a wide variety of applications in (e.g., drug delivery, cell analogs, etc.). Controlled formation of giant polymersomes for use in membrane studies and cell mimetic systems, however, is currently limited by low-yield production methodologies. Here, we describe for the first time, how the size distribution of giant poly(ethylene glycol)-poly(butadiene) (PEO-PBD) polymersomes formed by gel-assisted rehydration may be controlled based on membrane fluidization. We first show that the average diameter and size distribution of PEO-PBD polymersomes may be readily increased bymore » increasing the temperature of the rehydration solution. Further, we describe a correlative relationship between polymersome size and membrane fluidization through the addition of sucrose during rehydration, enabling the formation of PEO-PBD polymersomes with a range of diameters, including giant-sized vesicles (>100 μm). This correlative relationship suggests that sucrose may function as a small molecule fluidizer during rehydration, enhancing polymer diffusivity during formation and increasing polymersome size. Altogether the ability to easily regulate the size of PEO-PBD polymersomes based on membrane fluidity, either through temperature or fluidizers, has broadly applicability in areas including targeted therapeutic delivery and synthetic biology.« less

  18. Gender fluidity and child abuse: A personal view.

    PubMed

    Lewis, Charles

    2017-12-01

    Gender fluidity and a failure to respect biological norms may have potentially horrific implications for children and adolescents who express doubt about their bodies. Are transgender activists driving an agenda that will result in inappropriate interventions that block normal development in children and adolescents from which there can be no return? Can the Law protect children and adolescents from harm committed with the intention of helping them?

  19. Material-induced Senescence (MIS): Fluidity Induces Senescent Type Cell Death of Lung Cancer Cells via Insulin-Like Growth Factor Binding Protein 5.

    PubMed

    Mano, Sharmy Saimon; Uto, Koichiro; Ebara, Mitsuhiro

    2017-01-01

    Objective: We propose here material-induced senescence (MIS) as a new therapeutic concept that limits cancer progression by stable cell cycle arrest. This study examined for the first time the effect of material fluidity on cellular senescence in lung carcinoma using poly(ε-caprolactone- co -D, L-lactide) (P(CL- co -DLLA)) with tunable elasticity and fluidity. Methods: The fluidity was varied by chemically crosslinking the polymer networks: the crosslinked P(CL- co -DLLA) shows solid-like properties with a stiffness of 260 kPa, while the non-crosslinked polymer exists in a quasi-liquid state with loss and storage moduli of 33 kPa and 11 kPa, respectively. Results: We found that cancer cells growing on the non-crosslinked, fluidic substrate undergo a non-apoptotic form of cell death and the cell cycle was accumulated in a G0/G1 phase. Next, we investigated the expression of biomarkers that are associated with cancer pathways. The cancer cells on the fluidic substrate expressed several biomarkers associated with senescence such as insulin-like growth factor binding protein 5 (IGFBP5). This result indicates that when cancer cells sense fluidity in their surroundings, the cells express IGFBP5, which in turn triggers the expression of tumor suppressor protein 53 and initiates cell cycle arrest at the G1 phase followed by cellular senescence. Furthermore, the cancer cells on the fluidic substrate maintained their epithelial phenotype, suggesting that the cancer cells do not undergo epithelial to mesenchymal transition. Conclusion: By considering these results as the fundamental information for MIS, our system could be applied to induce senescence in treatment-resistant cancers such as metastatic cancer or cancer stem cells.

  20. Membrane fluidity profiles as deduced by saturation-recovery EPR measurements of spin-lattice relaxation times of spin labels

    NASA Astrophysics Data System (ADS)

    Mainali, Laxman; Feix, Jimmy B.; Hyde, James S.; Subczynski, Witold K.

    2011-10-01

    There are no easily obtainable EPR spectral parameters for lipid spin labels that describe profiles of membrane fluidity. The order parameter, which is most often used as a measure of membrane fluidity, describes the amplitude of wobbling motion of alkyl chains relative to the membrane normal and does not contain explicitly time or velocity. Thus, this parameter can be considered as nondynamic. The spin-lattice relaxation rate ( T1-1) obtained from saturation-recovery EPR measurements of lipid spin labels in deoxygenated samples depends primarily on the rotational correlation time of the nitroxide moiety within the lipid bilayer. Thus, T1-1 can be used as a convenient quantitative measure of membrane fluidity that reflects local membrane dynamics. T1-1 profiles obtained for 1-palmitoyl-2-( n-doxylstearoyl)phosphatidylcholine ( n-PC) spin labels in dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol are presented in parallel with profiles of the rotational diffusion coefficient, R⊥, obtained from simulation of EPR spectra using Freed's model. These profiles are compared with profiles of the order parameter obtained directly from EPR spectra and with profiles of the order parameter obtained from simulation of EPR spectra. It is shown that T1-1 and R⊥ profiles reveal changes in membrane fluidity that depend on the motional properties of the lipid alkyl chain. We find that cholesterol has a rigidifying effect only to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. These effects cannot be differentiated by profiles of the order parameter. All profiles in this study were obtained at X-band (9.5 GHz).

  1. Roles of pyruvate dehydrogenase and branched-chain α-keto acid dehydrogenase in branched-chain membrane fatty acid levels and associated functions in Staphylococcus aureus.

    PubMed

    Singh, Vineet K; Sirobhushanam, Sirisha; Ring, Robert P; Singh, Saumya; Gatto, Craig; Wilkinson, Brian J

    2018-04-01

    Membrane fluidity to a large extent is governed by the presence of branched-chain fatty acids (BCFAs). Branched-chain α-keto acid dehydrogenase (BKD) is the key enzyme in BCFA synthesis. A Staphylococcus aureus BKD-deficient strain still produced substantial levels of BCFAs. Pyruvate dehydrogenase (PDH) with structural similarity to BKD has been speculated to contribute to BCFAs in S. aureus. This study was carried out using BKD-, PDH- and BKD : PDH-deficient derivatives of methicillin-resistant S. aureus strain JE2. Differences in growth kinetics were evaluated spectrophotometrically, membrane BCFAs using gas chromatography and membrane fluidity by fluorescence polarization. Carotenoid levels were estimated by measuring A465 of methanol extracts from 48 h cultures. MIC values were determined by broth microdilution.Results/Key findings. BCFAs made up 50 % of membrane fatty acids in wild-type but only 31 % in the BKD-deficient mutant. BCFA level was ~80 % in the PDH-deficient strain and 38 % in the BKD : PDH-deficient strain. BKD-deficient mutant showed decreased membrane fluidity, the PDH-deficient mutant showed increased membrane fluidity. The BKD- and PDH-deficient strains grew slower and the BKD : PDH-deficient strain grew slowest at 37 °C. However at 20 °C, the BKD- and BKD : PDH-deficient strains grew only a little followed by autolysis of these cells. The BKD-deficient strain produced higher levels of staphyloxanthin. The PDH-deficient and BKD : PDH-deficient strains produced very little staphyloxanthin. The BKD-deficient strain showed increased susceptibility to daptomycin. The BCFA composition of the cell membrane in S. aureus seems to significantly impact cell growth, membrane fluidity and resistance to daptomycin.

  2. Cleavage and crosslinking of polymeric coal structures during pyrolysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillen, D.F.; Malhotra, R.

    1992-02-01

    The ultimate objective of this project was to develop a better understanding of volatiles production to help optimize the yield and character of condensable coproducts during coal pyrolysis or mild gasification. The specific objectives were to (1) Develop pyrolysis procedures that minimize secondary reactions; and (2) Develop coal pretreatments that current knowledge suggests will prorate bond scission or prevent retrograde reactions. Our approach was to study the pyrolysis of coals and tar-loaded coals by using several techniques that span a range of heating rates and pressures. Slow-heating pyrolyses were performed at low pressures in the inlet of a field ionizationmore » mass spectrometer and at atmospheric pressures in a thermogravimetric analyzer. Moderately rapid-heating pyrolyses were performed in a vacuum TGA apparatus and in sealed silica ampules heated in a molten-salt bath. The fastest heating rates were achieved with laser pyrolysis at about 30,000 X/s. The high tar yield seen in this work where the entire volume of the coal particle becomes hot and fluid at very nearly the same time, taken together with the evident non-vapor transport of the tar under these conditions, emphasizes the importance of better understanding the development of fluidity during coal heating. This specifically includes the profound effects--long-recognized but poorly understood that mild oxidation has in suppressing coal fluidity. It also includes the more recently recognized fact that heating in the presence of an inert gas produced substantially greater fluidity than does heating in the presence of combustion gases, even if the conditions are very fuel rich and all the oxygen itself has already been consumed when the coal particles are encountered.« less

  3. Cleavage and crosslinking of polymeric coal structures during pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillen, D.F.; Malhotra, R.

    1992-02-01

    The ultimate objective of this project was to develop a better understanding of volatiles production to help optimize the yield and character of condensable coproducts during coal pyrolysis or mild gasification. The specific objectives were to (1) Develop pyrolysis procedures that minimize secondary reactions; and (2) Develop coal pretreatments that current knowledge suggests will prorate bond scission or prevent retrograde reactions. Our approach was to study the pyrolysis of coals and tar-loaded coals by using several techniques that span a range of heating rates and pressures. Slow-heating pyrolyses were performed at low pressures in the inlet of a field ionizationmore » mass spectrometer and at atmospheric pressures in a thermogravimetric analyzer. Moderately rapid-heating pyrolyses were performed in a vacuum TGA apparatus and in sealed silica ampules heated in a molten-salt bath. The fastest heating rates were achieved with laser pyrolysis at about 30,000 X/s. The high tar yield seen in this work where the entire volume of the coal particle becomes hot and fluid at very nearly the same time, taken together with the evident non-vapor transport of the tar under these conditions, emphasizes the importance of better understanding the development of fluidity during coal heating. This specifically includes the profound effects--long-recognized but poorly understood that mild oxidation has in suppressing coal fluidity. It also includes the more recently recognized fact that heating in the presence of an inert gas produced substantially greater fluidity than does heating in the presence of combustion gases, even if the conditions are very fuel rich and all the oxygen itself has already been consumed when the coal particles are encountered.« less

  4. Influence of different surfactants on the physicochemical properties of elastic liposomes.

    PubMed

    Barbosa, R M; Severino, P; Preté, P S C; Santana, M H A

    2017-05-01

    Elastic liposomes are capable to improve drug transport through the skin by acting as penetration enhancers due to the high fluidity and elasticity of the liposome membranes. Therefore, elastic liposomes were prepared and characterized to facilitate the transdermal transport of bioactive molecules. Liposomes consisted of dimyristoylphosphatidylcholine (DMPC) as the structural component, with different surfactants derived from lauric acid as elastic components: C 12 E 5 (polyoxyethylene-5-lauryl ether), PEG4L (polyethyleneglycol-4-lauryl ester), PEG4DL (polyethylene glycol-4-dilauryl ester), PEG8L (polyethylene glycol-8-lauryl ester) and PEG8DL (polyethylene glycol-8-dilauryl ester). The elastic liposomes were characterized in terms of their phospholipid content, mean diameter, size distribution, elasticity and stability during storage, as well as their ability to incorporate surfactant and permeate through 50 nm pore size membranes. The results showed that the phospholipid phase transition temperature, the fluidity of the lipid bilayer resulting from incorporation of the surfactant and the preservation of particle integrity were factors determining the performance of the elastic liposomes in permeating through nanoporous membranes. The best results were obtained using DMPC combined with the surfactants PEG8L or PEG8DL. The findings demonstrate the potential of using elastic liposomes for transdermal administration of drugs.

  5. The effects of oxygen on the evolution of microbial membranes

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.

    1991-01-01

    One prokaryote, Methylococcus capsulatus, synthesizes both hopanoids and sterols and, thus, provides a unique opportunity to study the evolution of membrane function. When M. capsulatus was grown at different temperatures, lipid analysis of the whole cells showed that both sterol and unsaturated fatty acid levels decreased at higher growth temperatures; sterol concentrations were 0.116 micro mole/micro mole phospholipid at 30 C and 0.025 micro mole/mirco mole phospholipid at 45 C, while the saturated to unsaturated fatty acid ratio increased from 0.397 to 1.475. Hopane polyol levels were constant over this range; however, methylation of the A-ring decreased markedly in cells grown at 30 C. These results imply that sterol and hopane molecules are required for enhancement of some specific membrane function, potentially by modulating membrane fluidity.

  6. Raman Investigation of Temperature Profiles of Phospholipid Dispersions in the Biochemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.

    2015-06-01

    The temperature dependence of self-assembled, cell-like dispersions of phospholipids is investigated with Raman spectroscopy in the biochemistry laboratory. Vibrational modes in the hydrocarbon interiors of phospholipid bilayers are strongly Raman active, whereas the vibrations of the polar head groups and the water matrix have little Raman activity. From Raman spectra increases in fluidity of the hydrocarbon chains can be monitored with intensity changes as a function of temperature in the CH-stretching region. The experiment uses detection of scattered 1064-nm laser light (Nicolet NXR module) by a Fourier transform infrared spectrometer (Nicolet 6700). A thermoelectric heater-cooler device (Melcor) gives convenient temperature control from 5 to 95°C for samples in melting point capillaries. Use of deuterium oxide instead of water as the matrix avoids some absorption of the exciting laser light and interference with intensity observations in the CH-stretching region. Phospholipids studied range from dimyristoylphosphotidyl choline (C14, transition T = 24°C) to dibehenoylphosphotidyl choline (C22, transition T = 74°C).

  7. Effects of global change factors on fatty acids and mycosporine-like amino acid production in Chroothece richteriana (Rhodophyta).

    PubMed

    Gonzalez-Silvera, Daniel; Pérez, Sandra; Korbee, Nathalie; Figueroa, Félix L; Asencio, Antonia D; Aboal, Marina; López-Jiménez, José Ángel

    2017-10-01

    Under natural conditions, Chroothece richteriana synthesizes a fairly high proportion of fatty acids. However, nothing is known about how environmental changes affect their production, or about the production of protective compounds, when colonies develop under full sunshine with high levels of UV radiation. In this study, wild colonies of C. richteriana were subjected to increasing temperature, conductivity, ammonium concentrations and photosynthetically active radiation (PAR), and UV radiations to assess the potential changes in lipid composition and mycosporine-like amino acids (MAAs) concentration. The PERMANOVA analysis detected no differences for the whole fatty acid profile among treatments, but the percentages of α-linolenic acid and total polyunsaturated fatty acids increased at the lowest assayed temperature. The percentages of linoleic and α-linolenic acids increased with lowering temperature. γ-linolenic and arachidonic acids decreased with increasing conductivity, and a high arachidonic acid concentration was related with increased conductivity. The samples exposed to UVB radiation showed higher percentages of eicosapentaenoic acid and total monounsaturated fatty acids, at the expense of saturated fatty acids. MAAs accumulation increased but not significantly at the lowest conductivity, and also with the highest PAR and UVR exposure, while ammonium and temperature had no effect. The observed changes are probably related with adaptations of both membrane fluidity to low temperature, and metabolism to protect cells against UV radiation damage. The results suggest the potential to change lipid composition and MAAs concentration in response to environmental stressful conditions due to climate change, and highlight the interest of the species in future research about the biotechnological production of both compound types. © 2017 Phycological Society of America.

  8. Hydrostatic pressure decreases membrane fluidity and lipid desaturase expression in chondrocyte progenitor cells.

    PubMed

    Montagne, Kevin; Uchiyama, Hiroki; Furukawa, Katsuko S; Ushida, Takashi

    2014-01-22

    Membrane biomechanical properties are critical in modulating nutrient and metabolite exchange as well as signal transduction. Biological membranes are predominantly composed of lipids, cholesterol and proteins, and their fluidity is tightly regulated by cholesterol and lipid desaturases. To determine whether such membrane fluidity regulation occurred in mammalian cells under pressure, we investigated the effects of pressure on membrane lipid order of mouse chondrogenic ATDC5 cells and desaturase gene expression. Hydrostatic pressure linearly increased membrane lipid packing and simultaneously repressed lipid desaturase gene expression. We also showed that cholesterol mimicked and cholesterol depletion reversed those effects, suggesting that desaturase gene expression was controlled by the membrane physical state itself. This study demonstrates a new effect of hydrostatic pressure on mammalian cells and may help to identify the molecular mechanisms involved in hydrostatic pressure sensing in chondrocytes. © 2013 Elsevier Ltd. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, Noppawan Phumala; Charlermchoung, Chalermkhwan; Luechapudiporn, Rataya

    Atherosclerosis-related vascular complications in {beta}-thalassemia/hemoglobin E ({beta}-thal/Hb E) patients may result from iron induced oxidation of lipoproteins. To identify the specific site of oxidative damage, changes in lipid fluidity at different regions in LDL and HDL particle were investigated using two fluorescence probes and two ESR spin probes. The magnitude of increased lipid fluidity in thalassemic lipoproteins was dependent on the location of the probes. In hydrophobic region, the rotational correlation times for 16-doxyl stearic acid and DPH anisotropy were markedly changed in LDL and HDL of the patients. In the surface region, there was only a slight change inmore » the order parameter (S) for 5-doxyl stearic acid and TMA-DPH anisotropy. Lipid fluidity at the core of LDL and HDL showed good correlation with oxidative stress markers, the ratio of CL/CO, and the level of {alpha}-tocopherol, suggesting that hydrophobic region of thalassemic lipoprotein was a target site for oxidative damage.« less

  10. Molecular dynamics study of the behavior of nitromethanes enclosed inside carbon nanotube containers.

    PubMed

    Bae, Se Won; Cho, Soo Gyeong

    2016-07-01

    We utilized molecular dynamics (MD) to investigate the behavior of nitromethane molecules (NMs) enclosed inside carbon nanotube (CNT) containers sealed with buckybowl caps. Two different sizes of CNT containers, i.e., (10,10) and (20,20), were employed to contain the energetic NMs. After loading the NMs into these containers, MD simulations were carried out at different loading densities. The loading density was changed from 0.4 to 2.0 g/cc. At low loading densities, NMs preferentially resided near the surface of the CNT wall (orienting themselves in the cylindrical direction) and near the buckybowl caps (orienting themselves in the principal-axis direction). This behavior suggests the buckybowl caps and the CNT wall have attractive interactions with the NMs. The distribution of the NMs inside the containers did not change upon increasing the temperature from ambient to 100 °C. However, the positional preference of the NMs found at ambient temperature to 100 °C was not the same as that observed at 1000 °C due to the increased thermal motions of the NMs. The size of the CNT container had a significant effect on the fluidity of the NMs. From 25 to 100 °C, the NMs inside the (10,10) CNT container were only mobile at low loading densities. On the other hand, in the (20,20) CNT container, the NMs showed good mobility up to a loading density of 1.6 g/cc. Graphical Abstract Attractive interactions between the nitromethanes and the buckybowl caps as well as the carbon nanotube wall.

  11. A selective estrogen receptor modulator, tamoxifen, and membrane fluidity of erythrocytes in normotensive and hypertensive postmenopausal women: an electron paramagnetic resonance investigation.

    PubMed

    Tsuda, Kazushi; Nishio, Ichiro

    2005-08-01

    Recent studies have shown that tamoxifen, which belongs to a group called selective estrogen receptor modulators (SERM), may exert protective effects against cardiovascular diseases and stroke in postmenopausal women. On the other hand, abnormalities in physical properties of the cell membranes may underlie the defects that are strongly linked to hypertension, stroke, and other cardiovascular diseases. The present study was performed to investigate the effects of tamoxifen on cell membrane fluidity (a reciprocal value of membrane microviscosity) in normotensive and hypertensive postmenopausal women. We used an electron paramagnetic resonance (EPR) and spin-labeling method. Tamoxifen significantly decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (h(o)/h(-1)) for 16-NS obtained from EPR spectra of erythrocyte membranes in normotensive postmenopausal women (mean +/- SEM, order parameter value; control 0.719 +/- 0.002, n = 41; tamoxifen 1 x 10(-7) mol/L 0.704 +/- 0.002, n = 41, P < .0001; tamoxifen 1 x 10(-6) mol/L 0.696 +/- 0.002, n = 41, P < .0001; tamoxifen 1 x 10(-5) mol/L 0.692 +/- 0.002, n = 41, P < .0001). The finding indicated that tamoxifen increased the membrane fluidity and improved the membrane microviscosity of erythrocytes. The membrane action of tamoxifen was antagonized by the estrogen receptor antagonist ICI 182,780. The effect of tamoxifen was significantly potentiated by the nitric oxide (NO) donors, l-arginine and S-nitroso-N-acetylpenicillamine, and a cGMP analog 8-bromo-cGMP. In contrast, the change evoked by tamoxifen was counteracted by the NO synthase inhibitors N(G)-nitro-l-arginine-methyl-ester and asymmetric dimethyl-l-arginine. In hypertensive postmenopausal women, the membrane fluidity of erythrocytes was significantly lower than in normotensive postmenopausal women. The effect of tamoxifen on the membrane fluidity was more pronounced in hypertensive postmenopausal women than in normotensive postmenopausal women. These results showed that tamoxifen increased the membrane fluidity of erythrocytes and improved the rigidity of cell membranes in postmenopausal women, to some extent, through the NO- and cGMP-dependent mechanisms. Furthermore, the greater effect of tamoxifen in hypertensive postmenopausal women suggests that tamoxifen could have a beneficial effect in regulating the blood rheologic behavior and in the improvement of the microcirculation in hypertension.

  12. Religion, social mobility and education in Scotland.

    PubMed

    Paterson, Lindsay; Iannelli, Cristina

    2006-09-01

    The relationship among religion, education and social mobility in Scotland is analysed statistically using the Scottish Household Survey of 2001. The large sample size allows much greater statistical power for this purpose than any previous source, and thus allows a more reliable assessment of claims that the stratifying effect of religion in Scotland may have declined. The questions investigated are as follows. What are the religious differences in the distributions of class origins and class destinations, in the movement between these (absolute mobility), and in the association of these (relative mobility, or social fluidity)? Do changes in social fluidity across cohorts vary among people with different religious affiliation? Are there religious differences in the association of origins and education, in the association of education and destinations, or in the role of education in social fluidity, and do any of these vary over cohorts? The conclusions are that, in younger cohorts, there is no religious difference in social status, and that in older cohorts Catholics are generally of lower status than Protestants and the non-religious. Social fluidity does not, however, vary among religious groups, even for older cohorts, and does not change over time. The reason for convergence in social status of religious groups over time is probably the equalizing of educational attainment among the groups: there is no evidence for any of the cohorts that the labour-market rewards to education differ by religion.

  13. Thermal acclimation in American alligators: Effects of temperature regime on growth rate, mitochondrial function, and membrane composition.

    PubMed

    Price, Edwin R; Sirsat, Tushar S; Sirsat, Sarah K G; Kang, Gurdeep; Keereetaweep, Jantana; Aziz, Mina; Chapman, Kent D; Dzialowski, Edward M

    2017-08-01

    We investigated the ability of juvenile American alligators (Alligator mississippiensis) to acclimate to temperature with respect to growth rate. We hypothesized that alligators would acclimate to cold temperature by increasing the metabolic capacity of skeletal muscles and the heart. Additionally, we hypothesized that lipid membranes in the thigh muscle and liver would respond to low temperature, either to maintain fluidity (via increased unsaturation) or to maintain enzyme reaction rates (via increased docosahexaenoic acid). Alligators were assigned to one of 3 temperature regimes beginning at 9 mo of age: constant warm (30°C), constant cold (20°C), and daily cycling for 12h at each temperature. Growth rate over the following 7 mo was highest in the cycling group, which we suggest occurred via high digestive function or feeding activity during warm periods and energy-saving during cold periods. The warm group also grew faster than the cold group. Heart and liver masses were proportional to body mass, while kidney was proportionately larger in the cold group compared to the warm animals. Whole-animal metabolic rate was higher in the warm and cycling groups compared to the cold group - even when controlling for body mass - when assayed at 30°C, but not at 20°C. Mitochondrial oxidative phosphorylation capacity in permeabilized fibers of thigh muscle and heart did not differ among treatments. Membrane fatty acid composition of the brain was largely unaffected by temperature treatment, but adjustments were made in the phospholipid headgroup composition that are consistent with homeoviscous adaptation. Thigh muscle cell membranes had elevated polyunsaturated fatty acids in the cold group relative to the cycling group, but this was not the case for thigh muscle mitochondrial membranes. Liver mitochondria from cold alligators had elevated docosahexaenoic acid, which might be important for maintenance of reaction rates of membrane-bound enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Beyond alphabet soup: helping college health professionals understand sexual fluidity.

    PubMed

    Oswalt, Sara B; Evans, Samantha; Drott, Andrea

    2016-01-01

    Many college students today are no longer using the terms straight, gay, lesbian, bisexual, or transgender to self-identify their sexual orientation or gender identity. This commentary explores research related to fluidity of sexual identities, emerging sexual identities used by college students, and how these identities interact with the health and well-being of the student. Additionally, the authors discuss strategies to help college health professionals provide a sensitive environment and clinical experience for students whose sexual identity is fluid.

  15. Plasma membrane microorganization of LR73 multidrug-resistant cells revealed by FCS

    NASA Astrophysics Data System (ADS)

    Winckler, Pascale; Jaffiol, Rodolphe; Cailler, Aurélie; Morjani, Hamid; Jeannesson, Pierre; Deturche, Régis

    2011-03-01

    Tumoral cells could present a multidrug resistance (MDR) to chemotherapeutic treatments. This drug resistance would be associated to biomechanisms occurring at the plasma membrane level, involving modification of membrane fluidity, drug permeability, presence of microdomains (rafts, caveolae...), and membrane proteins overexpression such as Pglycoprotein. Fluorescence correlation spectroscopy (FCS) is the relevant method to investigate locally the fluidity of biological membranes through the lateral diffusion of a fluorescent membrane probe. Thus, we use FCS to monitor the plasma membrane local organization of LR73 carcinoma cells and three derived multidrug-resistant cancer cells lines. Measurements were conducted at the single cell level, which enabled us to get a detailed overview of the plasma membrane microviscosity distribution of each cell line studied. Moreover, we propose 2D diffusion simulation based on a Monte Carlo model to investigate the membrane organisation in terms of microdomains. This simulation allows us to relate the differences in the fluidity distributions with microorganization changes in plasma membrane of MDR cells.

  16. "It Has No Color, It Has No Gender, It's Gender Bending": Gender and Sexuality Fluidity and Subversiveness in Drag Performance.

    PubMed

    Egner, Justine; Maloney, Patricia

    2016-07-01

    Gender identity is a key question for drag performers. Previous research has shown a lack of consensus about the subversiveness and gender fluidity of drag performers. This article examines the question: How does the relationship between performers and their audience affect the subversive nature and gender representation of drag performers in this study? Furthermore, is this relationship complicated by sexuality? This study uses ethnographic and interview methods, examining experiences of 10 drag performers. Findings indicate mutuality in the relationship between performers and audience. The recursiveness of this relationship provides a constant feedback to the performers in their effort to displace the audience's previously held notions. The performers have fluid understandings of gender and sexuality, often presenting multiple genders in and out of drag. Interactions between performers and their audience indicate their belief in gender fluidity; moreover, the drag performers themselves desire to be subversive and gender and sexually fluid.

  17. [The effects of electromagnetic pulse on fluidity and lipid peroxidation of mitochondrial membrane].

    PubMed

    Wang, Changzhen; Cong, Jianbo; Xian, Hong; Cao, Xiaozhe; Sun, Cunpu; Wu, Ke

    2002-08-01

    To study the effects of intense electromagnetic pulse(EMP) on the biological effects of mitochondrial membrane. Rat liver mitochondrial suspension was exposed to EMP at 60 kV/m level. The changes of membrane lipid fluidity and membrane protein mobility were detected by ESR and spin label technique. Malondialdehyde(MDA) was detected by spectrophotometer. The mobility of membrane protein decreased significantly(P < 0.05). Correlation time (tau c) of control group was (0.501 +/- 0.077) x 10(-9)s, and tau c of EMP group was (0.594 +/- 0.049) x 10(-9)s, indicating that the mobility of protein was restricted. The fluidity of mitochondrial membrane increased significantly(P < 0.05) at the same time. Order parameter(S) of mitochondrial membrane lipid in control group was 0.63 +/- 0.01, while S of EMP group was 0.61 +/- 0.01(P < 0.05). MDA decreased significantly. The mobility and lipid peroxidation of mitochondrial membrane may be disturbed after EMP exposure.

  18. Detection of erythrocyte membrane structural abnormalities in lecithin: cholesterol acyltransferase deficiency using a spin label approach.

    PubMed

    Maraviglia, B; Herring, F G; Weeks, G; Godin, D V

    1979-01-01

    The membrane fluidity of erythrocytes from patients with Lecithin: cholesterol acyltransferase (LCAT) deficiency was studied by means of electron spin resonance. The temperature dependence of the separation of the outer extrema of the spectra of 2-(3-carboxy-propyl)-4,4-dimethyl, 2-tridecyl-3-oxazolidinyloxyl spin probe was monitored for normal, presumed carrier and clinically affected subjects. The temperature profile of controls was significantly different from that of the presumed carriers and the clinically affected individuals. The results show that the compositional abnormalities previously noted in erythrocyte membranes from patients with LCAT deficiency are associated with alterations in the physiocochemical state of the membrane. An investigation of the spectral lineshapes below 10 degrees C allowed a distinction to be made at the membrane level between clinically affected subjects and clinically normal heterozygous carriers. Alterations in the temperature dependence of elec-ron spin resonance parameters may provide a sensitive index of red cell membrane alterations in pathological states of generalized membrane involvement.

  19. Aluminum and temperature alteration of cell membrane permeability of Quercus rubra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junping Chen; Sucoff, E.I.; Stadelmann, E.J.

    1991-06-01

    Al toxicity is the major factor limiting plant growth in acid soils. This report extends research on Al-induced changes in membrane behavior of intact root cortex cells of Northern red oak (Quercus rubra). Membrane permeability was determined by the plasmometric method for individual intact cells at temperatures from 2 or 4 to 35 C. Al (0.37 millimolar) significantly increased membrane permeability to urea and monoethyl urea and decreased permeability to water. Al significantly altered the activation energy required to transport water (+ 32%), urea (+ 9%), and monoethyl urea ({minus}7%) across cell membranes. Above 9 C, Al increased the lipidmore » partiality of the cell membranes; below 7 C, Al decreased it. Al narrowed by 6 C the temperature range over which plasmolysis occurred without membrane damage. These changes in membrane behavior are explainable if Al reduced membrane lipid fluidity and kink frequency and increases packing density and the occurrence of straight lipid chains.« less

  20. A calcium channel blocker, benidipine, improves cell membrane fluidity in human subjects via a nitric oxide-dependent mechanism. An electron paramagnetic resonance investigation.

    PubMed

    Tsuda, Kazushi; Nishio, Ichiro

    2004-12-01

    Recent studies have revealed that benidipine, a long-acting dihydropyridine-type of calcium (Ca) channel blocker, may exert its protective effect against vascular disorders by increasing nitric oxide (NO) production. The purpose of the present study was to investigate the effects of benidipine and NO on the membrane function in human subjects. We measured the membrane fluidity of erythrocytes by using an electron paramagnetic resonance (EPR) and spin-labeling method. Benidipine decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (h(o)/h(-1)) for 16-NS obtained from EPR spectra of erythrocyte membranes in a dose-dependent manner in normotensive volunteers. The finding indicated that benidipine increased the membrane fluidity and improved the microviscosity of erythrocytes. The effect of benidipine was significantly potentiated by the NO donor, S-nitroso-n-acetylpenicillamine, and by the cyclic guanosine 3', 5'-monophosphate (cGMP) analog, 8-bromo-cGMP. In contrast, the change evoked by benidipine was counteracted by the NO synthase inhibitors, N(G)-nitro-L-arginine-methyl-ester and asymmetric dimethyl-L-arginine. These results demonstrated that benidipine increased the membrane fluidity of erythrocytes, at least in part, via the NO- and cGMP-dependent mechanism. Furthermore, the data strongly suggest that benidipine might have a beneficial effect on the rheologic behavior of erythrocytes and the improvement of the microcirculation in humans.

  1. Growth-Environment Dependent Modulation of Staphylococcus aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids.

    PubMed

    Sen, Suranjana; Sirobhushanam, Sirisha; Johnson, Seth R; Song, Yang; Tefft, Ryan; Gatto, Craig; Wilkinson, Brian J

    2016-01-01

    The fatty acid composition of membrane glycerolipids is a major determinant of Staphylococcus aureus membrane biophysical properties that impacts key factors in cell physiology including susceptibility to membrane active antimicrobials, pathogenesis, and response to environmental stress. The fatty acids of S. aureus are considered to be a mixture of branched-chain fatty acids (BCFAs), which increase membrane fluidity, and straight-chain fatty acids (SCFAs) that decrease it. The balance of BCFAs and SCFAs in USA300 strain JE2 and strain SH1000 was affected considerably by differences in the conventional laboratory medium in which the strains were grown with media such as Mueller-Hinton broth and Luria broth resulting in high BCFAs and low SCFAs, whereas growth in Tryptic Soy Broth and Brain-Heart Infusion broth led to reduction in BCFAs and an increase in SCFAs. Straight-chain unsaturated fatty acids (SCUFAs) were not detected. However, when S. aureus was grown ex vivo in serum, the fatty acid composition was radically different with SCUFAs, which increase membrane fluidity, making up a substantial proportion of the total (<25%) with SCFAs (>37%) and BCFAs (>36%) making up the rest. Staphyloxanthin, an additional major membrane lipid component unique to S. aureus, tended to be greater in content in cells with high BCFAs or SCUFAs. Cells with high staphyloxanthin content had a lower membrane fluidity that was attributed to increased production of staphyloxanthin. S. aureus saves energy and carbon by utilizing host fatty acids for part of its total fatty acids when growing in serum, which may impact biophysical properties and pathogenesis given the role of SCUFAs in virulence. The nutritional environment in which S. aureus is grown in vitro or in vivo in an infection is likely to be a major determinant of membrane fatty acid composition.

  2. Boron nutrition and chilling tolerance of warm climate crop species.

    PubMed

    Huang, Longbin; Ye, Zhengqian; Bell, Richard W; Dell, Bernard

    2005-10-01

    Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress. This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from >0 to 20 degrees C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance. For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 10-17 degrees C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (2-5 degrees C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B x chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in the shoot; and (c) B deficiency induced sensitivity to photo-oxidative damage in leaf cells. However, specific evidence for each of the mechanisms is still lacking. Impacts of B status on chilling tolerance in crop species have important implications for the management of B supply during sensitive stages of growth, such as early growth after planting and early reproductive development, both of which can coincide with the occurrence of chilling temperatures in the field.

  3. "None Must Meddle Betueene Man and Wife": assessing family and the fluidity of public and private in early modern Scotland.

    PubMed

    Nugent, Janay

    2010-01-01

    The physical and ideological boundaries between public and private in early modern Scotland were constantly contested, resulting in a shifting reality of what was public and private. This fluidity has been recognized by historians, but how, when, and why the shifting took place is not as clear. The moral church courts (Kirk Sessions) of Reformation Scotland allow a unique opportunity to begin to understand the largely elusive boundaries between public and private in the early modern era.

  4. The effect of propofol on plasma membrane ultrastructure in the intact cells

    NASA Astrophysics Data System (ADS)

    Jin, Weixiang; Pralle, Arnd

    The mechanism of general anesthesia is still unknown. One drug used for human anesthesia, propofol, has been shown to interact with some ligand gated ion-channels, but also easily dissolves in the lipid bilayer and alters fluidity. Which mechanism dominates or even how anesthesia arises are unclear. We study the influence of propofol on plasma membrane (PM) ultrastructure in intact cells. In the PM, transient submicroscopic nanodomains form by interactions between lipid-acyl-chains or lipid head groups, stabilized by cholesterol. In addition, membrane cytoskeleton further regulates the nanodomains, which then regulate signaling. We study transient propofol effects on these domains from low to clinically relevant propofol concentrations by analyzing diffusion of GFP-tagged outer leaflet/inner leaflet membrane proteins. Using bimFCS we measure diffusion on multiple length scales simultaneously. We observe that at low propofol concentrations, the nanodomains trap GPI-mGFP less, consistent with studies showing that propofol decreases the phase transition temperature of membrane derived vesicles. Interestingly, at clinical relevant concentrations of propofol, the nanodomains trap GPI-mGFP more strongly. This is only observed at 37C. By inhibiting myosin activity or actin filaments (de-)polymerization, we find that the activity of actin filaments further alters the behavior of cholesterol nanodomains due to propofol. We compare the effect of propofol and its analog confirming specificity.

  5. Effect of primycin on growth-arrested cultures and cell integrity of Staphylococcus aureus.

    PubMed

    Feiszt, Péter; Schneider, György; Emődy, Levente

    2017-06-01

    Bactericidal effect against non-dividing bacteria is a very advantageous, but rare characteristic among antimicrobial agents, mostly possessed by those affecting the cell membrane. These kinds of agents can kill bacterial cells without lysis. We assessed these characteristics on primycin, a topical anti-staphylococcal agent highly effective against prevalent multiresistant strains, as it also acts on the cell membrane. In time-kill studies, primycin preserved its bactericidal activity against growth-arrested Staphylococcus aureus cultures. The bactericidal action was slower against growth-arrested cultures compared to the exponentially growing ones to different extents depending on the manner of arrest. The bactericidal effect was less influenced by stringent response and by protein synthesis inhibition, proving that it does not depend on metabolic activity. In contrast, uncoupling of the membrane potential predominantly slowed, and low temperature almost stopped killing of bacteria. In consideration of published data, these facts suggest that the antibacterial action of primycin involves disrupting of the membrane potential, and is predominantly influenced by the membrane fluidity. Optical density measurements and transmission electron microscopy verified that primycin kills bacterial cells without lysis. These results reveal favorable characteristics of primycin and point to, and broaden the knowledge on its membrane-targeted effect.

  6. Temperature-induced changes in lecithin model membranes detected by novel covalent spin-labelled phospholipids.

    PubMed

    Stuhne-Sekalec, L; Stanacev, N Z

    1977-02-01

    Several spin-labelled phospholipids carrying covalently bound 5-doxylstearic acid (2-(3-carboxydecyl)-2-hexyl-4,4-dimethyl-3-oxazolidinoxyl) were intercalated in liposomes of saturated and unsaturated lecithins. Temperature-induced changes of these liposomes, detected by the spin-labelled phospholipids, were found to be in agreement with the previously described transitions of hydrocarbon chains of host lecithins detected by different probes and different techniques, establishing that spin-labelled phosopholipids are sensitive probes for the detection of temperature-induced changes in lecithin model membranes. In addition to the detection of already-known transitions in lecithin liposomes, the coexistence of two distinctly different enviroments was observed above the characteristic transition temperature. This phenomenon was tentatively attributed to the influence of the lecithin polar group on the fluidity of fatty acyl chains near the polar group. Combined with other results from the literature, the coexistence of two environments could be associated with the coexistence of two conformational isomers of lecithin, differing in the orientation of the polar head group with respect to the plane of bilayer. These findings have been discussed in view of the present state of knowledge regarding temperature-induced changes in model membranes.

  7. Plasticizing aqueous suspensions of concentrated alumina with maltodextrin sugar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilling, C.H.; Bellman, R.A.; Smith, R.M.

    1999-01-01

    Aqueous suspensions of submicrometer, 20 vol% Al{sub 2}O{sub 3} powder exhibited a transition from strongly flocculated, thixotropic behavior to a low-viscosity, Newtonian-like state upon adding small amounts of maltodextrin (0.03 g of maltodextrin/(g of Al{sub 2}O{sub 3})). These suspensions could be filter pressed to highly dense (57%) and extrudable pastes only when prepared with maltodextrin. The authors analyzed the interaction of maltodextrin with Al{sub 2}O{sub 3} powder surfaces and quantitatively measured the resulting claylike consolidation, rheological, and extrusion behaviors. Benbow extrusion parameters were comparable to, but higher than, those of kaolin at approximately the same packing density of 57 vol%.more » In contrast, Al{sub 2}O{sub 3} filter cakes without maltodextrin at 57 vol% density were too stiff to be extruded. Measurements of rheological properties, acoustophoresis, electrophoresis, sorption isotherms, and diffuse reflectance Fourier infrared spectroscopy supported the hypothesis that sorbate-mediated steric hindrance, rather than electrostatic, interparticle repulsion, is important to enhancing the consolidation and fluidity of maltodextrin-Al{sub 2}O{sub 3} suspensions. Viscosity measurements on aqueous maltodextrin solutions indicated that free maltodextrin in solution does not improve suspension fluidity by decreasing the viscosity of the interparticle solution.« less

  8. Construction of viscosity diagrams for CaO-SiO2-Al2O3-8% MgO-4% B2O3 slags by the simplex lattice method

    NASA Astrophysics Data System (ADS)

    Babenko, A. A.; Istomin, S. A.; Zhuchkov, V. I.; Sychev, A. V.; Ryabov, V. V.; Upolovnikova, A. G.

    2017-05-01

    The simplex lattice method of planning experiments is used to study the viscosities of CaO-SiO2-Al2O3-8% MgO-4% B2O3 slags in a wide chemical composition range. For each viscosity, we developed an adequate mathematical model in the form of a reduced third-order polynomial. The results of mathematical simulation are presented in composition-viscosity diagrams. Composition regions with a high fluidity of slags, the viscosities of which are 0.8-1.2 Pa s in the temperature range 1500-1600°C, are indicated in the diagrams.

  9. Bivariate and multivariate analyses of the correlations between stability of the erythrocyte membrane, serum lipids and hematological variables.

    PubMed

    Bernardino Neto, M; de Avelar, E B; Arantes, T S; Jordão, I A; da Costa Huss, J C; de Souza, T M T; de Souza Penha, V A; da Silva, S C; de Souza, P C A; Tavares, M; Penha-Silva, N

    2013-01-01

    The observation that the fluidity must remain within a critical interval, outside which the stability and functionality of the cell tends to decrease, shows that stability, fluidity and function are related and that the measure of erythrocyte stability allows inferences about the fluidity or functionality of these cells. This study determined the biochemical and hematological variables that are directly or indirectly related to erythrocyte stability in a population of 71 volunteers. Data were evaluated by bivariate and multivariate analysis. The erythrocyte stability showed a greater association with hematological variables than the biochemical variables. The RDW stands out for its strong correlation with the stability of erythrocyte membrane, without being heavily influenced by other factors. Regarding the biochemical variables, the erythrocyte stability was more sensitive to LDL-C. Erythrocyte stability was significantly associated with RDW and LDL-C. Thus, the level of LDL-C is a consistent link between stability and functionality, suggesting that a measure of stability could be more one indirect parameter for assessing the risk of degenerative processes associated with high levels of LDL-C.

  10. Interaction of cationic carbosilane dendrimers and their complexes with siRNA with erythrocytes and red blood cell ghosts.

    PubMed

    Wrobel, Dominika; Kolanowska, Katarzyna; Gajek, Arkadiusz; Gomez-Ramirez, Rafael; de la Mata, Javier; Pedziwiatr-Werbicka, Elżbieta; Klajnert, Barbara; Waczulikova, Iveta; Bryszewska, Maria

    2014-03-01

    We have investigated the interactions between cationic NN16 and BDBR0011 carbosilane dendrimers with red blood cells or their cell membranes. The carbosilane dendrimers used possess 16 cationic functional groups. Both the dendrimers are made of water-stable carbon-silicon bonds, but NN16 possesses some oxygen-silicon bonds that are unstable in water. The nucleic acid used in the experiments was targeted against GAG-1 gene from the human immunodeficiency virus, HIV-1. By binding to the outer leaflet of the membrane, carbosilane dendrimers decreased the fluidity of the hydrophilic part of the membrane but increased the fluidity of the hydrophobic interior. They induced hemolysis, but did not change the morphology of the cells. Increasing concentrations of dendrimers induced erythrocyte aggregation. Binding of short interfering ribonucleic acid (siRNA) to a dendrimer molecule decreased the availability of cationic groups and diminished their cytotoxicity. siRNA-dendrimer complexes changed neither the fluidity of biological membranes nor caused cell hemolysis. Addition of dendriplexes to red blood cell suspension induced echinocyte formation. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. In vivo influence of extract from Aronia melanocarpa on the erythrocyte membranes in patients with hypercholesterolemia.

    PubMed

    Duchnowicz, Piotr; Nowicka, Agmieszka; Koter-Michalak, Maria; Broncel, Marlena

    2012-09-01

    Hypercholesterolemia increases cholesterol concentration in erythrocyte membranes, which results in decrease of membrane fluidity and decreases the deformability of red blood cells. The fruits of Arona melanocarpa contains many of polyphenols and other compounds that have beneficial health effects. The aim of the study was to estimate the influence of 2-month supplementation of extract from Aronia melanocarpa (100 mg Aronox, three times per day) on cholesterol concentration, lipid peroxidation, membrane fluidity, level of thiol groups and activity of ATPase in erythrocytes from patients with hypercholesterolemia. The study involved 25 patients with hypercholesterolemia without pharmacological treatment and 20 healthy individuals as a control group. Blood samples were collected before, and after 1 and 2 months of Aronia administration. The 2-month Aronia supplementation resulted in a decrease of cholesterol concentration (by 22%) and a decrease of lipid peroxidation (by 40%), and an increase of membrane fluidity. No statistically significant increase of the concentration of thiol groups and of ATPase activity were observed. Our study shows that supplementation of extract from Aronia melanocarpa has a beneficial effect on rheological properties of erythrocytes.

  12. Fischer-Tropsch fuel for use by the U.S. military as battlefield-use fuel of the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delanie Lamprecht

    2007-06-15

    The United States Department of Defense (DoD) has been interested in low-sulfur, environmentally cleaner Fischer-Tropsch (FT) fuels since 2001 because they want to be less dependent upon foreign crude oil and ensure the security of the supply. A three-phase Joint Battlefield-Use Fuel of the Future (BUFF) program was initiated to evaluate, demonstrate, certify, and implement turbine fuels produced from alternative energy resources for use in all of its gas turbine and diesel engine applications. Sasol Synfuels International (Pty) Ltd. and Sasol Chevron Holdings Ltd., among others, were invited to participate in the program with the objective to supply the DoDmore » with a FT BUFF that conforms to Jet Propulsion 8 (JP-8) and JP-5 fuel volatility and low-temperature fluidity requirements. Although the DoD is more interested in coal-to-liquid (CTL) technology, the product from a gas-to-liquid (GTL) Products Work-Up Demonstration Unit in Sasolburg, South Africa, was used to evaluate (on a bench scale) the possibility of producing a BUFF fraction from the Sasol Slurry Phase Distillate (Sasol SPD) low-temperature FT (LTFT) process and Chevron Isocracking technology. It was concluded from the study that the production of a synthetic FT BUFF is feasible using the Sasol SPD LTFT technology together with the current Chevron isocracking technology. The product yield for a BUFF conforming to JP-8 requirements is 30 vol % of the fractionator feed, whereas the product yield for a BUFF conforming to the JP-5 volatility requirement is slightly less than 22 vol % of the fractionator feed. Also concluded from the study was that the end point of the Sasol SPD LTFT BUFF will be restricted by the freezing point requirement of the DoD and not the maximum viscosity requirement. One would therefore need to optimize the hydrocracking process conditions to increase the Sasol SPD LTFT BUFF product yield. 16 refs., 8 figs., 6 tabs.« less

  13. Trans-cis isomerization of lipophilic dyes probing membrane microviscosity in biological membranes and in live cells.

    PubMed

    Chmyrov, Volodymyr; Spielmann, Thiemo; Hevekerl, Heike; Widengren, Jerker

    2015-06-02

    Membrane environment and fluidity can modulate the dynamics and interactions of membrane proteins and can thereby strongly influence the function of cells and organisms in general. In this work, we demonstrate that trans-cis isomerization of lipophilic dyes is a useful parameter to monitor packaging and fluidity of biomembranes. Fluorescence fluctuations, generated by trans-cis isomerization of the thiocarbocyanine dye Merocyanine 540 (MC540), were first analyzed by fluorescence correlation spectroscopy (FCS) in different alcohol solutions. Similar isomerization kinetics of MC540 in lipid vesicles could then also be monitored, and the influence of lipid polarity, membrane curvature, and cholesterol content was investigated. While no influence of membrane curvature and lipid polarity could be observed, a clear decrease in the isomerization rates could be observed with increasing cholesterol contents in the vesicle membranes. Finally, procedures to spatially map photoinduced and thermal isomerization rates on live cells by transient state (TRAST) imaging were established. On the basis of these procedures, MC540 isomerization was studied on live MCF7 cells, and TRAST images of the cells at different temperatures were found to reliably detect differences in the isomerization parameters. Our studies indicate that trans-cis isomerization is a useful parameter for probing membrane dynamics and that the TRAST imaging technique can provide spatial maps of photoinduced isomerization as well as both photoinduced and thermal back-isomerization, resolving differences in local membrane microviscosity in live cells.

  14. MODEL AND CELL MEMBRANE PARTITIONING OF PERFLUOROOCTANESULFONATE IS INDEPENDENT OF THE LIPID CHAIN LENGTH

    PubMed Central

    Xie, Wei; Ludewig, Gabriele; Wang, Kai; Lehmler, Hans-Joachim

    2009-01-01

    Perfluorooctanesulfonic acid (PFOS) is a persistent environmental pollutant that may cause adverse health effects in humans and animals by interacting with and disturbing of the normal properties of biological lipid assemblies. To gain further insights into these interactions, we investigated the effect of PFOS potassium salt on dimyristoyl- (DMPC), dipalmitoyl- (DPPC) and distearoylphosphatidylcholine (DSPC) model membranes using fluorescence anisotropy measurements and differential scanning calorimetry (DSC) and on the cell membrane of HL-60 human leukemia cells and freshly isolated rat alveolar macrophages using fluorescence anisotropy measurements. PFOS caused a concentration-dependent decrease of the main phase transition temperature (Tm) and an increased peak width (ΔTw) in both the fluorescence anisotropy and the DSC experiments, with a rank order DMPC > DPPC > DSPC. PFOS caused a fluidization of the gel phase of all phosphatidylcholines investigated, but had the opposite effect on the liquid crystalline phase. The apparent partition coefficients of PFOS between the phosphatidylcholine bilayer and the bulk aqueous phase were largely independent of the phosphatidylcholine chain length and ranged from 4.4 × 104 to 8.8 × 104. PFOS also significantly increased the fluidity of membranes of cells. These findings suggest that PFOS readily partitions into lipid assemblies, independent of their composition, and may cause adverse biological effects by altering their fluidity in a manner that depends on the membrane cooperativity and state (e.g., gel versus liquid crystalline phase) of the lipid assembly. PMID:19932010

  15. Retardation effect of different alcohols on the cement coagulation in polycarboxylate- and naphthalene-based cement admixtures

    NASA Astrophysics Data System (ADS)

    Huang, S. M.; Zhou, F. L.

    2017-12-01

    Alcohol has great potential to delay the coagulation of cement. The effects of alcohol on paste fluidity and normal consistency coagulation time have been studied for polycarboxylate superplasticizer and naphthene cement admixture. Seven alcohols were combined with polycarboxylate superplasticizer and naphthene at a concentration of 0.01-0.09%, respectively, including n-propanol, methanol, sorbitol, ethylene glycol, glycerol, ethanol, and mannitol. The fluidity and normal consistency coagulation time of each cement admixture were measured. The performance of both polycarboxylate superplasticizer and naphthene cement admixtures were compared to develop cement admixture with delayed coagulation.

  16. Viscosity Determination of Molten Ash from Low-Grade US Coals

    DOE PAGES

    Zhu, Jingxi; Nakano, Jinichiro; Kaneko, Tetsuya Kenneth; ...

    2012-10-01

    In entrained slagging gasifiers, the fluidity of the molten ash is a critical factor for process control since it affects slag formation, the capture of inorganic constituents, refractory wear, and slag drainage along the gasification chamber walls. The use of western coal, or mixtures of eastern and western coals as gasifier feedstock, is likely to occur as western coals become available and technological issues that hinder their use are being resolved. In the present work, the viscosity of synthetic slags with ash chemistries simulating the western U.S. coals, was experimentally measured at a Po 2 = 10 - 8 atmmore » in the temperature range of 1773–1573 K (1500–1300 °C) using a rotating-bob viscometer. Alumina spindles and containment crucibles of both alumina and zirconia were used. Crystallization studies of this slag using a confocal scanning laser microscope found that a (Mg,Fe)Al 2O 4-based spinel precipitated at temperatures below 1723 K (1450 °C), and this agreed with FactSage equilibrium phase prediction. The same spinels were observed in the post-viscometry experiment slags when ZrO 2 crucibles were used and assumed to be in equilibrium with the slag at the higher temperatures. Zirconia dissolution resulted in a slight increase in the solid fraction present in slags at lower temperatures, compared to spinel fraction. Crystal precipitation changed the apparent activation energy and required a longer stabilization times for viscosity measurements. The viscosity results were used in predictive equations based on Veytsman and Einstein's models, with critical nucleation temperatures and the solid fraction calculated with FactSage. In the simulated eastern/western coal feedstock blends based on ash compositions, the fractions of the solid precipitates were also calculated using the thermodynamic program FactSage for each blend composition, and the plastic viscosity of each eastern/western coal slag blend was predicted using Veytsman's model and compared to available experimental data.« less

  17. Influence of selenium and fluoride on blood antioxidant capacity of rats.

    PubMed

    Feng, Pei; Wei, Jun-ren; Zhang, Zi-gui

    2012-09-01

    This study is to explore the effect of selenium and fluoride on blood antioxidant capacity of rats, and try to find out the optimal level of selenium in drinking water against fluorosis. Animals were divided into control group, sodium fluoride treated group (NaF, 50 mg/L) and selenium+NaF treated group (sodium selenite 0.375, 0.75, 1.5 mg/L) in water were respectively administered to male rats, which were decapitated after 6 months. Their blood was collected for GSH-Px activity, plasma SOD activity, T-AOC assay, uric acid assay, sialic acid (SA) content and MDA content, and the fluidity of erythrocyte membrane by electron spin resonance (ESR) was analyzed. The results showed that, compared with the control group, the blood antioxidant capacity of the rats exposed to fluoride was down-regulated significantly (P<0.05, P<0.01), MDA content increased significantly (P<0.05), the fluidity of erythrocyte membrane decreased (P<0.05, P<0.01). Meanwhile, the treatments of selenium along with NaF compared with fluorosis group, SOD activity, GSH-Px activity and T-AOC assay increased respectively, MDA content decreased significantly (P<0.05) in NaF+Se (Se 0.75, 1.5 mg/L) treated groups, uric acid level was up-regulated, but had no statistical significant difference (P>0.05). The fluidity of erythrocyte membrane showed significant increase (P<0.05), the content of SA was lower. Fluorosis could induce the decline of blood antioxidant capacity and the fluidity of erythrocyte membrane, as evident in this study, and Se at different levels possess some antagonistic effects on blood induced by fluoride. However, high dose of selenium (1.5 mg/L) is the optimum concentration. Copyright © 2010 Elsevier GmbH. All rights reserved.

  18. Vitamin E supplementation protects erythrocyte membranes from oxidative stress in healthy Chinese middle-aged and elderly people.

    PubMed

    Sun, Yongye; Ma, Aiguo; Li, Yong; Han, Xiuxia; Wang, Qiuzhen; Liang, Hui

    2012-05-01

    Elderly people are subject to higher levels of oxidative stress than are young people. Vitamin E, as a powerful antioxidant residing mainly in biomembranes, may provide effective protection against oxidative membrane damage and resultant age-related deterioration, especially in the elderly. We hypothesized that appropriate levels of vitamin E supplementation would protect erythrocyte membranes from oxidative stress and thus improve membrane fluidity in healthy middle-aged and elderly people. To test this, we conducted a 4-month double-blind, randomized trial in which 180 healthy subjects (55-70 years old) were randomly divided into 4 groups: group C (control), and 3 treatment groups in which daily doses of 100 mg (VE1), 200 mg (VE2), and 300 mg (VE3) dl-α-tocopheryl acetate were administered. We measured plasma α-tocopherol concentration, malondialdehyde, and superoxide dismutase levels, erythrocyte hemolysis, and erythrocyte membrane fluidity at the beginning and end of the trial. After 4 months supplementation, plasma α-tocopherol concentrations in the 3 treatment groups had increased by 71%, 78%, and 95%, respectively (all P < .01), and significant decreases in plasma malondialdehyde concentrations were observed in these groups (all P < .05). Erythrocyte hemolysis was decreased by 20% to 38% after vitamin E supplementation (all P < .05), and in addition, groups VE2 and VE3 showed dramatic improvements in erythrocyte membrane fluidity (P < .01). Surprisingly, superoxide dismutase activity also decreased significantly in the treatment groups (all P < .05). In summary, vitamin E supplementation apparently alleviates oxidative stress in healthy middle-aged to elderly people, at least in part by improving erythrocyte membrane fluidity and reducing erythrocyte hemolysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Effect of various enhancers on transdermal penetration of indomethacin and urea, and relationship between penetration parameters and enhancement factors.

    PubMed

    Ogiso, T; Iwaki, M; Paku, T

    1995-04-01

    The enhancing capacity of various chemicals, which are widely recognized as enhancers, for the transdermal penetration into full-thickness rat skin of a model lipophilic drug [indomethacin (IND)] and a hydrophilic permeant (urea) was estimated by an in vitro technique. In addition, the fluidity of the stratum corneum lipids, the partitioning of IND into skin, the lipid (ceramides) extraction from the stratum corneum by enhancers, and the IND solubility in enhancer vehicle were measured and related to the enhancing capacity. In vitro permeation experiments with hairless rat skin unequivocally revealed that the enhancers varied in abilities to enhance the fluxes of both agents. Laurocapram, isopropylmyristate (IPM), sodium oleate, and cineol increased fluxes of both agents to a great extent, but N-methyl-2-pyrrolidone (NMP), N,N-diethyl-m-tolamide (DEET), and oleyl oleate were less effective acclerants. Many enhancers increased the fluidity of the lipids [with a threshold of approximately 0.6-0.8 ns at 37 degrees C in the rotational correlation time (tau c)], the skin partitioning of IND, the extraction of ceramides from the cornified cells, and the thermodynamic activity of IND in vehicle (calculated from the solubility) to varying extents. A good correlation was observed between the increase in the fluidity of stratum corneum lipids and the partitioning of IND into skin, between the increase in the fluidity and the flux or the decrease in lag time for IND, between the removal of ceramides and the skin partitioning of IND, and between the removal of ceramides and the flux of urea (p < 0.05 in all cases).(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Molecular view of the interaction between iota-carrageenan and a phospholipid film and its role in enzyme immobilization.

    PubMed

    Nobre, Thatyane M; de Sousa e Silva, Heurison; Furriel, Rosa P M; Leone, Francisco A; Miranda, Paulo B; Zaniquelli, Maria Elisabete D

    2009-05-28

    Proteins incorporated into phospholipid Langmuir-Blodgett (LB) films are a good model system for biomembranes and enzyme immobilization studies. The specific fluidity of biomembranes, an important requisite for enzymatic activity, is naturally controlled by varying phospholipid compositions. In a model system, instead, LB film fluidity may be varied by covering the top layer with different substances able to interact simultaneously with the phospholipid and the protein to be immobilized. In this study, we immobilized a carbohydrate rich Neurospora crassa alkaline phosphatase (NCAP) in monolayers of the sodium salt of dihexadecylphosphoric acid (DHP), a synthetic phospholipid that provides very condensed Langmuir films. The binding of NCAP to DHP Langmuir-Blodgett (LB) films was mediated by the anionic polysaccharide iota-carrageenan (iota-car). Combining results from surface isotherms and the quartz crystal microbalance technique, we concluded that the polysaccharide was essential to promote the interaction between DHP and NCAP and also to increase the fluidity of the film. An estimate of DHP:iota-car ratio within the film also revealed that the polysaccharide binds to DHP LB film in an extended conformation. Furthermore, the investigation of the polysaccharide conformation at molecular level, using sum-frequency vibrational spectroscopy (SFG), indicated a preferential conformation of the carrageenan molecules with the sulfate groups oriented toward the phospholipid monolayer, and both the hydroxyl and ether groups interacting preferentially with the protein. These results demonstrate how interfacial electric fields can reorient and induce conformational changes in macromolecules, which may significantly affect intermolecular interactions at interfaces. This detailed knowledge of the interaction mechanism between the enzyme and the LB film is relevant to design strategies for enzyme immobilization when orientation and fluidity properties of the film provided by the matrix are important to improve enzymatic activity.

  1. Cholesterol-loaded-cyclodextrins improve the post-thaw quality of stallion sperm.

    PubMed

    Murphy, C; English, A M; Holden, S A; Fair, S

    2014-03-01

    An unacceptable proportion of stallion sperm do not survive the freeze-thaw process. The hypothesis of this study was that adding cholesterol to a stallion semen extender would stabilise the sperm membrane, resulting in an improved post-thaw semen quality in terms of increased sperm viability, membrane integrity and fluidity, and reduced oxidative stress. Semen was collected from three stallions and diluted in four extenders: TALP; TALP+0.75mg methyl-β-cyclodextrin-cholesterol (MβCD)/mL (MβCD0.75); TALP+1.5mg MβCD-cholesterol/mL (MβCD1.5); and Equipro. Following 15min incubation, samples were centrifuged and diluted to 100×10(6)sperm/mL, frozen in 0.5mL straws and stored in liquid nitrogen. Sperm from each treatment was assessed for progressive linear motility (PLM) and acceptable membrane integrity under hypotonic conditions on a phase contrast microscope at 1000× while viability, membrane fluidity and superoxide generation were assessed by flow cytometry. The MβCD1.5 and MβCD0.75 treatments had a greater proportion of viable sperm than the TALP treatment (P<0.01). There was no effect of treatment on PLM or membrane integrity. The MβCD1.5 treatment had a greater proportion of viable sperm positive for membrane fluidity than the TALP treatment (P<0.05). The MβCD1.5 and MβCD0.75 treatments had a lesser proportion of viable sperm positive for superoxide generation than the TALP treatment (P<0.001). This study has demonstrated that adding cholesterol to stallion sperm prior to cryopreservation increases post-thaw viability, with these viable sperm being of better quality in terms of increased membrane fluidity and reduced superoxide generation. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. On sub-T(g) dewetting of nanoconfined liquids and autophobic dewetting of crystallites.

    PubMed

    Souda, Ryutaro

    2012-03-28

    The glass transition temperature (T(g)) of thin films is reduced by nanoconfinement, but it is also influenced by the free surface and substrate interface. To gain more insights into their contributions, dewetting behaviors of n-pentane, 3-methylpentane, and toluene films are investigated on various substrates as functions of temperature and film thickness. It is found that monolayers of these molecules exhibit sub-T(g) dewetting on a perfluoro-alkyl modified Ni substrate, which is attributable to the evolution of a 2D liquid. The onset temperature of dewetting increases with film thickness because fluidity evolves via cooperative motion of many molecules; sub-T(g) dewetting is observed for films thinner than 5 monolayers. In contrast, monolayers wet substrates of graphite, silicon, and amorphous solid water until crystallization occurs. The crystallites exhibit autophobic dewetting on the substrate covered with a wetting monolayer. The presence of premelting layers is inferred from the fact that n-pentane crystallites disappear on amorphous solid water via intermixing. Thus, the properties of quasiliquid formed on the crystallite surface differ significantly from those of the 2D liquid formed before crystallization.

  3. Service climate as a mediator of organizational empowerment in customer-service employees.

    PubMed

    Mendoza-Sierra, Maria Isabel; Orgambídez-Ramos, Alejandro; Carrasco-González, Ana María; León-Jariego, José Carlos

    2014-01-01

    The aim of this study is to examine the mediating role of the service climate between organizational empowerment (i.e., dynamic structural framework, control of workplace decisions, fluidity in information sharing) and service quality (functional and relational). 428 contact employees from 46 hotels participated in the survey. Correlations demonstrated that dynamic structural framework, control decisions, and fluidity in information sharing are related to both functional and relational service quality. Regression analyses and Sobel tests revealed that service climate totally mediated the relationship between all three dimensions of organizational empowerment and relational service quality. Implications for practice and future research are discussed.

  4. Effect of Morinda citrifolia fruit extract and its iridoid glycosides on blood fluidity.

    PubMed

    Murata, Kazuya; Abe, Yumi; Futamura-Masuda, Megumi; Uwaya, Akemi; Isami, Fumiyuki; Deng, Shixin; Matsuda, Hideaki

    2014-07-01

    The aim of this study was to investigate the effect of Morinda citrifolia fruit on blood fluidity. M. citrifolia fruit extract (MCF-ext) was investigated for its influence on blood aggregation and fibrinolysis. MCF-ext inhibited polybrene-induced erythrocyte aggregation and thrombin activity. The fibrinolytic activity of MCF-ext, in the euglobulin lysis time test and fibrin plate assay, is reported here for the first time. One of the active compounds was an iridoid glycoside, asperulosidic acid. The results indicated that MCF-ext is a potentially useful health food which is capable of improving blood flow and preventing lifestyle-related diseases.

  5. The fluidity of Thai women's gendered and sexual subjectivities.

    PubMed

    Thaweesit, Suchada

    2004-05-01

    This paper reports on an ethnographic study of gender and sexuality as factors within contemporary Thai factory women's subjectivities. Competing discourses of what it means to be a woman in contemporary Thai society make women's self-presentations fluid and incoherent. Data from participant-observation and open-ended interviews suggest that the fluidity and inconsistency of women's self-presentations reflect both their negative experiences and oppression within the Thai patriarchal system, and women's strength and resistance to the normative discourses that oppress them. By naming or reinterpreting experiences and desires in their own terms, Thai factory women can redraw elements of their own lives.

  6. Plasma membrane order and fluidity are diversely triggered by elicitors of plant defence

    PubMed Central

    Sandor, Roman; Der, Christophe; Grosjean, Kevin; Anca, Iulia; Noirot, Elodie; Leborgne-Castel, Nathalie; Lochman, Jan; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2016-01-01

    Although plants are exposed to a great number of pathogens, they usually defend themselves by triggering mechanisms able to limit disease development. Alongside signalling events common to most such incompatible interactions, modifications of plasma membrane (PM) physical properties could be new players in the cell transduction cascade. Different pairs of elicitors (cryptogein, oligogalacturonides, and flagellin) and plant cells (tobacco and Arabidopsis) were used to address the issue of possible modifications of plant PM biophysical properties induced by elicitors and their links to other events of the defence signalling cascade. We observed an increase of PM order whatever the elicitor/plant cell pair used, provided that a signalling cascade was induced. Such membrane modification is dependent on the NADPH oxidase-mediated reactive oxygen species production. Moreover, cryptogein, which is the sole elicitor able to trap sterols, is also the only one able to trigger an increase in PM fluidity. The use of cryptogein variants with altered sterol-binding properties confirms the strong correlation between sterol removal from the PM and PM fluidity enhancement. These results propose PM dynamics as a player in early signalling processes triggered by elicitors of plant defence. PMID:27604805

  7. Effects of TEA·HCl hardening accelerator on the workability of cement-based materials

    NASA Astrophysics Data System (ADS)

    Pan, Wenhao; Ding, Zhaoyang; Chen, Yanwen

    2017-03-01

    The aim of the test is to research the influence rules of TEA·HCl on the workability of cement paste and concrete. Based on the features of the new hardening accelerator, an experimental analysis system were established through different dosages of hardening accelerator, and the feasibility of such accelerator to satisfy the need of practical engineering was verified. The results show that adding of the hardening accelerator can accelerate the cement hydration, and what’s more, when the dosage was 0.04%, the setting time was the shortest while the initial setting time and final setting time were 130 min and 180 min, respectively. The initial fluidity of cement paste of adding accelerator was roughly equivalent compared with that of blank. After 30 min, fluidity loss would decrease with the dosage increasing, but fluidity may increase. The application of the hardening accelerator can make the early workability of concrete enhance, especially the slump loss of 30 min can improve more significantly. The bleeding rate of concrete significantly decreases after adding TEA·HCl. The conclusion is that the new hardening accelerator can meet the need of the workability of cement-based materials in the optimum dosage range.

  8. Lipid engineering reveals regulatory roles for membrane fluidity in yeast flocculation and oxygen-limited growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degreif, Daniel; de Rond, Tristan; Bertl, Adam

    Cells modulate lipid metabolism in order to maintain membrane homeostasis. In this paper, we use a metabolic engineering approach to manipulate the stoichiometry of fatty acid unsaturation, a regulator of cell membrane fluidity, in Saccharomyces cerevisiae. Unexpectedly, reduced lipid unsaturation triggered cell-cell adhesion (flocculation), a phenomenon characteristic of industrial yeast but uncommon in laboratory strains. We find that ER lipid saturation sensors induce expression of FLO1 – encoding a cell wall polysaccharide binding protein – independently of its canonical regulator. In wild-type cells, Flo1p-dependent flocculation occurs under oxygen-limited growth, which reduces unsaturated lipid synthesis and thus serves as the environmentalmore » trigger for flocculation. Transcriptional analysis shows that FLO1 is one of the most highly induced genes in response to changes in lipid unsaturation, and that the set of membrane fluidity-sensitive genes is globally activated as part of the cell's long-term response to hypoxia during fermentation. Finally, our results show how the lipid homeostasis machinery of budding yeast is adapted to carry out a broad response to an environmental stimulus important in biotechnology.« less

  9. Lipid engineering reveals regulatory roles for membrane fluidity in yeast flocculation and oxygen-limited growth.

    PubMed

    Degreif, Daniel; de Rond, Tristan; Bertl, Adam; Keasling, Jay D; Budin, Itay

    2017-05-01

    Cells modulate lipid metabolism in order to maintain membrane homeostasis. Here we use a metabolic engineering approach to manipulate the stoichiometry of fatty acid unsaturation, a regulator of cell membrane fluidity, in Saccharomyces cerevisiae. Unexpectedly, reduced lipid unsaturation triggered cell-cell adhesion (flocculation), a phenomenon characteristic of industrial yeast but uncommon in laboratory strains. We find that ER lipid saturation sensors induce expression of FLO1 - encoding a cell wall polysaccharide binding protein - independently of its canonical regulator. In wild-type cells, Flo1p-dependent flocculation occurs under oxygen-limited growth, which reduces unsaturated lipid synthesis and thus serves as the environmental trigger for flocculation. Transcriptional analysis shows that FLO1 is one of the most highly induced genes in response to changes in lipid unsaturation, and that the set of membrane fluidity-sensitive genes is globally activated as part of the cell's long-term response to hypoxia during fermentation. Our results show how the lipid homeostasis machinery of budding yeast is adapted to carry out a broad response to an environmental stimulus important in biotechnology. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  10. In vivo influence of extract from Aronia melanocarpa on the erythrocyte membranes in patients with hypercholesterolemia

    PubMed Central

    Duchnowicz, Piotr; Nowicka, Agnieszka; Koter-Michalak, Maria; Broncel, Marlena

    2012-01-01

    Summary Background Hypercholesterolemia increases cholesterol concentration in erythrocyte membranes, which results in decrease of membrane fluidity and decreases the deformability of red blood cells. The fruits of Arona melanocarpa contains many of polyphenols and other compounds that have beneficial health effects. Material/Methods The aim of the study was to estimate the influence of 2-month supplementation of extract from Aronia melanocarpa (100 mg Aronox, three times per day) on cholesterol concentration, lipid peroxidation, membrane fluidity, level of thiol groups and activity of ATPase in erythrocytes from patients with hypercholesterolemia. The study involved 25 patients with hypercholesterolemia without pharmacological treatment and 20 healthy individuals as a control group. Blood samples were collected before, and after 1 and 2 months of Aronia administration. Results The 2-month Aronia supplementation resulted in a decrease of cholesterol concentration (by 22%) and a decrease of lipid peroxidation (by 40%), and an increase of membrane fluidity. No statistically significant increase of the concentration of thiol groups and of ATPase activity were observed. Conclusions Our study shows that supplementation of extract from Aronia melanocarpa has a beneficial effect on rheological properties of erythrocytes. PMID:22936193

  11. Migration of Water in Litopenaeus Vannamei Muscle Following Freezing and Thawing.

    PubMed

    Deng, Qi; Wang, Yaling; Sun, Lijun; Li, Jianrong; Fang, Zhijia; Gooneratne, Ravi

    2018-06-15

    Water and protein are major constituents of shrimp, any changes in protein and the state of water influence the quality of shrimp. Therefore, a study to examine the law of moisture migration and protein denaturation under different freezing and thawing conditions is important. The proton density images of thawed frozen-shrimp revealed that the water loss during quick-freezing was much greater than that during slow freezing or microfreezing. At room temperature (25 °C), the water loss from brine-thawing was more than still-water thawing and still-water thawing was more than thawing spontaneously. Freezing-thawing resulted in uniform water redistribution in shrimp muscle. Nuclear magnetic resonance technology (low field magnetic imaging) was used to directly monitor the dynamic processes of fluidity state in shrimp and indirectly monitor protein denaturation and thereby determine the optimal method of freezing-thawing shrimp. Our research showed that microfreezing preservation minimized weight loss, juice leakage and protein denaturation in shrimp muscle during thawing. Water is one of the major components in most organs and is an important factor that influences the shrimp muscle quality. Water migration patterns and subsequent effects on the shrimp muscle under different freezing and thawing conditions were examined using low field nuclear magnetic resonance (NMR) technology. This research provides a theoretical foundation for shrimp processing plants to improve the freezing and thawing process to obtain optimal quality and flavor of shrimp products. © 2018 Institute of Food Technologists®.

  12. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation.

    PubMed

    Park, Jeong-Hoon; Hong, Ji-Yeon; Jang, Hyun Chul; Oh, Seung Geun; Kim, Sang-Hyoun; Yoon, Jeong-Jun; Kim, Yong Jin

    2012-03-01

    A facile continuous method for dilute-acid hydrolysis of the representative red seaweed species, Gelidium amansii was developed and its hydrolysate was subsequently evaluated for fermentability. In the hydrolysis step, the hydrolysates obtained from a batch reactor and a continuous reactor were systematically compared based on fermentable sugar yield and inhibitor formation. There are many advantages to the continuous hydrolysis process. For example, the low melting point of the agar component in G. amansii facilitates improved raw material fluidity in the continuous reactor. In addition, the hydrolysate obtained from the continuous process delivered a high sugar and low inhibitor concentration, thereby leading to both high yield and high final ethanol titer in the fermentation process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review.

    PubMed

    Subczynski, Witold K; Pasenkiewicz-Gierula, Marta; Widomska, Justyna; Mainali, Laxman; Raguz, Marija

    2017-12-01

    Lipid composition determines membrane properties, and cholesterol plays a major role in this determination as it regulates membrane fluidity and permeability, as well as induces the formation of coexisting phases and domains in the membrane. Biological membranes display a very diverse lipid composition, the lateral organization of which plays a crucial role in regulating a variety of membrane functions. We hypothesize that, during biological evolution, membranes with a particular cholesterol content were selected to perform certain functions in the cells of eukaryotic organisms. In this review, we discuss the major membrane properties induced by cholesterol, and their relationship to certain membrane functions.

  14. The Role of Lug Preheating, Melt Pool Temperature, and Lug Entrance Delay on the Cast-on-Strap Joining Process

    NASA Astrophysics Data System (ADS)

    Pahlavan, Sohrab; Nikpour, Saman; Mirjalili, Mostafa; Alagheband, Ali; Azimi, Mohammadyousef; Taji, Iman

    2017-07-01

    This work deals with effective parameters in the cast-on-strap (COS) process during which grid lugs of a lead-acid battery are joined together by a strap. The effects of lug preheating, melt pool temperature, and lug entrance delay on the quality of joints and casting defects were investigated. Lug preheating was found to propitiously reduce joint internal voids because of flux elimination. Its adverse effect on lowering lug wettability, however, made it unfavorable under the experimental conditions. The melt pool temperature also showed a two-sided effect depending on the process conditions. Raising the temperature increases the strap melt fluidity, which improves the joint contact area; however, it has a negative effect on lug wettability by flux evaporation. Besides, higher temperatures cause more lug back-melting and, hence, lower relative contact lengths. Therefore, an intermediate temperature of 683 K (410 °C) was found to make the most proper condition. Moreover, the case at which the lugs enter the mold coincident with its filling by the melt rendered the best joint quality. In this condition, the melt flows through the interlug spaces, which helps the voids to escape, resulting in the better joint interface. As the conclusion, the lug entrance time has the most effective role on joint quality, considering that lug preheating does not show any improving effect.

  15. Hyperforin modifies neuronal membrane properties in vivo.

    PubMed

    Eckert, Gunter P; Keller, Jan-Henning; Jourdan, Claudia; Karas, Michael; Volmer, Dietrich A; Schubert-Zsilavecz, Manfred; Müller, Walter E

    2004-09-02

    Hyperforin, the major active constituent of St. John Wort (SJW) extract, affects several neurotransmitter systems in the brain putatively by modulation of the physical state of neuronal membranes. Accordingly, we tested the effects of SJW extract and of hyperforin on the properties of murine brain membrane fluidity. Oral administration of SJW extract and of hyperforin sodium salt results in significant hyperforin brain levels. Treatment of mice with hyperforin leads to decreased annular- and bulk fluidity and increased acyl-chain flexibility of brain membranes. All hyperforin related changes of membrane properties were significantly correlated with the corresponding hyperforin brain levels. Our data emphasises a membrane interaction of hyperforin that possibly contributes to its pharmacological effects.

  16. Pancreatic β-Cell Membrane Fluidity and Toxicity Induced by Human Islet Amyloid Polypeptide Species

    NASA Astrophysics Data System (ADS)

    Pilkington, Emily H.; Gurzov, Esteban N.; Kakinen, Aleksandr; Litwak, Sara A.; Stanley, William J.; Davis, Thomas P.; Ke, Pu Chun

    2016-02-01

    Aggregation of human islet amyloid polypeptide (hIAPP) into fibrils and plaques is associated with pancreatic β-cell loss in type 2 diabetes (T2D). However, due to the rapidness of hIAPP conversion in aqueous phase, exactly which hIAPP species is responsible for the observed toxicity and through what mechanisms remains ambiguous. In light of the importance of understanding hIAPP toxicity for T2D here we show a biophysical scheme based on the use of a lipophilic Laurdan dye for examining MIN6 cell membranes upon exposure to fresh and oligomeric hIAPP as well as mature amyloid. It has been found that all three hIAPP species, especially fresh hIAPP, enhanced membrane fluidity and caused losses in cell viability. The cell generation of reactive oxygen species (ROS), however, was the most pronounced with mature amyloid hIAPP. The correlation between changes in membrane fluidity and cell viability and their lack of correlation with ROS production suggest hIAPP toxicity is elicited through both physical and biochemical means. This study offers a new insight into β-cell toxicity induced by controlled hIAPP species, as well as new biophysical methodologies that may prove beneficial for the studies of T2D as well as neurological disorders.

  17. Plasma membrane order and fluidity are diversely triggered by elicitors of plant defence.

    PubMed

    Sandor, Roman; Der, Christophe; Grosjean, Kevin; Anca, Iulia; Noirot, Elodie; Leborgne-Castel, Nathalie; Lochman, Jan; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2016-09-01

    Although plants are exposed to a great number of pathogens, they usually defend themselves by triggering mechanisms able to limit disease development. Alongside signalling events common to most such incompatible interactions, modifications of plasma membrane (PM) physical properties could be new players in the cell transduction cascade. Different pairs of elicitors (cryptogein, oligogalacturonides, and flagellin) and plant cells (tobacco and Arabidopsis) were used to address the issue of possible modifications of plant PM biophysical properties induced by elicitors and their links to other events of the defence signalling cascade. We observed an increase of PM order whatever the elicitor/plant cell pair used, provided that a signalling cascade was induced. Such membrane modification is dependent on the NADPH oxidase-mediated reactive oxygen species production. Moreover, cryptogein, which is the sole elicitor able to trap sterols, is also the only one able to trigger an increase in PM fluidity. The use of cryptogein variants with altered sterol-binding properties confirms the strong correlation between sterol removal from the PM and PM fluidity enhancement. These results propose PM dynamics as a player in early signalling processes triggered by elicitors of plant defence. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Effect of Pulsed Electric Field on Membrane Lipids and Oxidative Injury of Salmonella typhimurium

    PubMed Central

    Yun, Ou; Zeng, Xin-An; Brennan, Charles S.; Han, Zhong

    2016-01-01

    Salmonella typhimurium cells were subjected to pulsed electric field (PEF) treatment at 25 kV/cm for 0–4 ms to investigate the effect of PEF on the cytoplasmic membrane lipids and oxidative injury of cells. Results indicated that PEF treatment induced a decrease of membrane fluidity of Salmonella typhimurium (S. typhimuriumi), possibly due to the alterations of fatty acid biosynthesis-associated gene expressions (down-regulation of cfa and fabA gene expressions and the up-regulation of fabD gene expression), which, in turn, modified the composition of membrane lipid (decrease in the content ratio of unsaturated fatty acids to saturated fatty acids). In addition, oxidative injury induced by PEF treatment was associated with an increase in the content of malondialdehyde. The up-regulation of cytochrome bo oxidase gene expressions (cyoA, cyoB, and cyoC) indicated that membrane damage was induced by PEF treatment, which was related to the repairing mechanism of alleviating the oxidative injury caused by PEF treatment. Based on these results, we achieved better understanding of microbial injury induced by PEF, suggesting that micro-organisms tend to decrease membrane fluidity in response to PEF treatment and, thus, a greater membrane fluidity might improve the efficiency of PEF treatment to inactivate micro-organisms. PMID:27556460

  19. Slow Freezing Coupled Static Magnetic Field Exposure Enhances Cryopreservative Efficiency—A Study on Human Erythrocytes

    PubMed Central

    Lin, Chun-Yen; Wei, Po-Li; Chang, Wei-Jen; Huang, Yung-Kai; Feng, Sheng-Wei; Lin, Che-Tong; Lee, Sheng-Yang; Huang, Haw-Ming

    2013-01-01

    The aim of this study was to assess the cryoprotective effect of static magnetic fields (SMFs) on human erythrocytes during the slow cooling procedure. Human erythrocytes suspended in 20% glycerol were slowly frozen with a 0.4-T or 0.8-T SMF and then moved to a −80°C freezer for 24 hr. The changes in survival rate, morphology, and metabolites of the thawed erythrocytes were examined. To understand possible cryoprotective mechanisms of SMF, membrane fluidity and dehydration stability of SMF-exposed erythrocytes were tested. For each test, sham-exposed erythrocytes were used as controls. Our results showed that freezing coupled with 0.4-T or 0.8-T SMFs significantly increased the relative survival ratios of the frozen-thawed erythrocytes by 10% and 20% (p<0.001), respectively. The SMFs had no effect on erythrocyte morphology and metabolite levels. However, membrane fluidity of the samples exposed to 0.8-T SMF decreased significantly (p<0.05) in the hydrophobic regions. For the dehydration stability experiments, the samples exposed to 0.8-T SMF exhibited significantly lower (p<0.05) hemolysis. These results demonstrate that a 0.8-T SMF decreases membrane fluidity and enhances erythrocyte membrane stability to resist dehydration damage caused by slow cooling procedures. PMID:23520546

  20. Effects and Location of Coplanar and Noncoplanar PCB in a Lipid Bilayer: A Solid-State NMR Study.

    PubMed

    Totland, Christian; Nerdal, Willy; Steinkopf, Signe

    2016-08-02

    Coplanar and noncoplanar polychlorinated biphenyls (PCBs) are known to have different routes and degree of toxicity. Here, the effects of noncoplanar PCB 52 and coplanar PCB 77 present at 2 mol % in a model system consisting of POPC liposomes (50% hydrated) are investigated by solid-state (13)C and (31)P NMR at 298 K. Both PCBs intercalate horizontally in the outer part of the bilayer, near the segments of the acyl chain close to the glycerol group. Despite similar membrane locations, the coplanar PCB 77 shows little effect on the bilayer properties overall, except for the four nearest neighboring lipids, while the effect of PCB 52 is more dramatic. The first ∼2 layers of lipids around each PCB 52 in the bilayer form a high fluidity lamellar phase, whereas lipids beyond these layers form a lamellar phase with a slight increase in fluidity compared to a bilayer without PCB 52. Further, a third high mobility domain is observed. The explanation for this is the interference of several high fluidity lamellar phases caused by interactions of PCB 52 molecules in different leaflets of the model bilayer. This causes formation of high curvature toroidal region in the bilayer and might induce formation of channels.

  1. Gradient separation of oligosaccharides and suppressing anomeric mutarotation with enhanced-fluidity liquid hydrophilic interaction chromatography.

    PubMed

    Bennett, Raffeal; Olesik, Susan V

    2017-04-01

    Enhanced fluidity liquid chromatography using the hydrophilic interaction retention mechanism (EFLC-HILIC) is studied as an alternative separation mode for analyzing oligosaccharides and other sugars. These carbohydrates, which are important for the study of foods and biological systems, are difficult to comprehensively profile and either require a non-green, expensive solvent (i.e. acetonitrile) or derivatization of the analytes at the expense of time, sample loss, and loss of quantitative information. These difficulties arise from the diverse isomerism, mutarotation, and lack of a useable chromophore/fluorophore for spectroscopic detection. Enhanced fluidity liquid chromatography is an alternative separation method that involves the use of conventional polar solvents, such as methanol/water mixtures, as the primary mobile phase component and liquid carbon dioxide (CO 2 ) as the modifier in subcritical conditions. The addition of liquid CO 2 enhances diffusivity and decreases viscosity while maintaining mixture polarity, which typically results in reduced time of analysis and higher efficiency. This work illustrates an optimized EFLC-HILIC separation of a test mixture of oligosaccharides and simple sugars with a resolution greater than 1.3 and an analysis time decrease of over 35% compared to a conventional HPLC HILIC-mode analysis using acetonitrile/water mobile phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Musa paradisica RCI complements AtRCI and confers Na+ tolerance and K+ sensitivity in Arabidopsis.

    PubMed

    Liu, Bing; Feng, Dongru; Zhang, Bipei; Mu, Peiqiang; Zhang, Yang; He, Yanming; Qi, Kangbiao; Wang, Jinfa; Wang, Hongbin

    2012-03-01

    The mechanisms involved in Na⁺/K⁺ uptake and extrusion are important in plant salt tolerance. In this study, we investigated the physiological role of a plasma membrane (PM)-localized protein, MpRCI, from plantain in transgenic Arabidopsis under NaCl and KCl stress and determined its effect on PM fluidity and H⁺-ATPase activity. The MpRCI gene exhibited high homology to the AtRCI2 gene family in Arabidopsis and was therefore able to complement for loss of the yeast AtRCI2-related PMP3 gene. Results of phenotypic espial and atomic emission spectrophotometer (AES) assays indicated that MpRCI overexpression in the AtRCI2A knockout mutant with reduced shoot Na⁺ and increased K⁺ exhibited increased Na⁺-tolerance and K⁺-sensitivity under NaCl or KCl treatments, respectively. Furthermore, comparisons of PM fluidity and H⁺-ATPase activity in shoots, with expression or absence of MpRCI/AtRCI2A expression under NaCl or KCl stress, showed MpRCI maintained PM fluidity and H⁺-ATPase activity under stress conditions. Results suggest that MpRCI plays an essential role in Na⁺/K⁺ flux in plant cells. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. High thermal conductivity liquid metal pad for heat dissipation in electronic devices

    NASA Astrophysics Data System (ADS)

    Lin, Zuoye; Liu, Huiqiang; Li, Qiuguo; Liu, Han; Chu, Sheng; Yang, Yuhua; Chu, Guang

    2018-05-01

    Novel thermal interface materials using Ag-doped Ga-based liquid metal were proposed for heat dissipation of electronic packaging and precision equipment. On one hand, the viscosity and fluidity of liquid metal was controlled to prevent leakage; on the other hand, the thermal conductivity of the Ga-based liquid metal was increased up to 46 W/mK by incorporating Ag nanoparticles. A series of experiments were performed to evaluate the heat dissipation performance on a CPU of smart-phone. The results demonstrated that the Ag-doped Ga-based liquid metal pad can effectively decrease the CPU temperature and change the heat flow path inside the smart-phone. To understand the heat flow path from CPU to screen through the interface material, heat dissipation mechanism was simulated and discussed.

  4. Influence of menhaden oil on mitochondrial respiration in BHE rats.

    PubMed

    Kim, M J; Berdanier, C D

    1989-11-01

    The effects of corn or menhaden oil and thyroxine treatment on hepatic mitochondrial respiration was studied. BHE rats were fed a 64% sucrose, 6% corn, or menhaden oil diet until they were 60-70 days of age. Succinate-supported mitochondrial respiration was studied at 3 degrees C intervals from 4 to 40 degrees C. Upper and lower activation energies and transition temperatures were determined through the calculation of Arrhenius plot. Menhaden oil plus daily thyroxine injection resulted in higher and lower activation energies than the other treatments. This combined treatment also resulted in lower state 3 and higher state 4 respiration rates and tighter coupling of respiration to ATP synthesis. These effects were thought to be due to the effect this treatment combination had on membrane fluidity.

  5. A biophysical approach to daunorubicin interaction with model membranes: relevance for the drug's biological activity.

    PubMed

    Alves, Ana Catarina; Ribeiro, Daniela; Horta, Miguel; Lima, José L F C; Nunes, Cláudia; Reis, Salette

    2017-08-01

    Daunorubicin is extensively used in chemotherapy for diverse types of cancer. Over the years, evidence has suggested that the mechanisms by which daunorubicin causes cytotoxic effects are also associated with interactions at the membrane level. The aim of the present work was to study the interplay between daunorubicin and mimetic membrane models composed of different ratios of 1,2-dimyristoyl- sn -glycero- 3 -phosphocholine (DMPC), sphingomyelin (SM) and cholesterol (Chol). Several biophysical parameters were assessed using liposomes as mimetic model membranes. Thereby, the ability of daunorubicin to partition into lipid bilayers, its apparent location within the membrane and its effect on membrane fluidity were investigated. The results showed that daunorubicin has higher affinity for lipid bilayers composed of DMPC, followed by DMPC : SM, DMPC : Chol and lastly by DMPC : SM : Chol. The addition of SM or Chol into DMPC membranes not only increases the complexity of the model membrane but also decreases its fluidity, which, in turn, reduces the amount of anticancer drug that can partition into these mimetic models. Fluorescence quenching studies suggest a broad distribution of the drug across the bilayer thickness, with a preferential location in the phospholipid tails. The gathered data support that daunorubicin permeates all types of membranes to different degrees, interacts with phospholipids through electrostatic and hydrophobic bonds and causes alterations in the biophysical properties of the bilayers, namely in membrane fluidity. In fact, a decrease in membrane fluidity can be observed in the acyl region of the phospholipids. Ultimately, such outcomes can be correlated with daunorubicin's biological action, where membrane structure and lipid composition have an important role. In fact, the results indicate that the intercalation of daunorubicin between the phospholipids can also take place in rigid domains, such as rafts that are known to be involved in different receptor processes, which are important for cellular function. © 2017 The Author(s).

  6. Higher membrane fluidity mediates the increased subcutaneous fatty acid content in pigs fed reduced protein diets.

    PubMed

    Lopes, P A; Martins, A P; Martins, S V; Madeira, M S; Santos, N C; Moura, T F; Prates, J A M; Soveral, G

    2017-04-01

    The production of pork with moderate amounts of intramuscular fat (IMF) without an increase in subcutaneous fat is highly desirable for the meat industry. Several studies indicate that dietary protein reduction during the growing-finishing period of pigs enhances IMF content, but its consequence on carcass fat deposition is still contradictory. In this study, we hypothesized that the effects of reduced protein diets (RPD), corrected or not with the limiting amino acid lysine, on subcutaneous fat deposition from pigs with distinct genotypes are mediated by adipose membranes biophysical properties. In total, 36 crossbred (Large White×Landrace×Pietrain - a lean genotype) and purebred (Alentejana breed - a fatty genotype) male pigs were randomly assigned to the control group, the RPD group or the reduced protein diet equilibrated for lysine (RPDL) group, allowing a 2×3 factorial arrangement (n=6). Backfat thickness and total fatty acid content were higher in Alentejana relative to crossbred pigs. Although dietary treatments did not change backfat thickness, RPD and RPDL increased total fatty acids content of subcutaneous fat. In order to understand this effect, adipose tissue membranes isolated from pig's subcutaneous fat were assayed for glycerol permeability and fluidity, using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-(trimethylamino)-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) probes. The glycerol transport across adipose membranes was not mediated by aquaglyceroporins and remained unchanged across dietary groups. Regardless of lysine correction, RPD increased membrane fluidity at the hydrocarbon region (lower DPH fluorescence anisotropy) in both genotypes of pigs. This result was associated with a lower ratio between oleic acid and linoleic acid on membrane's fatty acid composition. Adipose membrane's cholesterol content was independent from genotype and diet. Taken together, the present study shows that dietary protein reduction is successful in maintaining backfat thickness, although a negative side effect was observed on total fatty acids in subcutaneous fat, which may be due to changes in the fluidity of adipose membranes.

  7. Sensitive change of iso-branched fatty acid (iso-15:0) in Bacillus pumilus PAMC 23174 in response to environmental changes.

    PubMed

    Yi, Da-Hye; Sathiyanarayanan, Ganesan; Seo, Hyung Min; Kim, Jung-Ho; Bhatia, Shashi Kant; Kim, Yun-Gon; Park, Sung-Hee; Jung, Ji-Young; Lee, Yoo Kyung; Yang, Yung-Hun

    2016-01-01

    In this study, the environmental adaptive metabolic processes were investigated using a psychrotrophic polar bacterium Bacillus pumilus PAMC 23174 in response to various temperatures and nutrients, especially in regard to the synthesis of fatty acids. Fatty acid methyl ester analysis was performed using gas chromatography-mass spectrometry and we found that a sensitive changes in iso-branched fatty acid (iso-15:0) synthesis occurred when adjusting the nutritional ratio of branched chain fatty acids (anteiso/iso) with different temperatures, resulting in a change in the balance of anteiso- and iso-form fatty acids. We also observed that this Arctic bacterium preferred amino acid leucine for the synthesis of fatty acids. The increased and decreased synthesis of iso-form fatty acids in response to different temperatures and leucine preference, changes the fatty acid ratio in bacteria, which further affects the membrane fluidity and it is also directly correlated with survival of bacteria in an extreme environment. Hence, this study suggests that B. pumilus PAMC 23174 is a potential model organism for the analysis of the unique ecological adaptations of polar bacteria in changing and the extreme environments.

  8. Effects of clary sage oil and its main components, linalool and linalyl acetate, on the plasma membrane of Candida albicans: an in vivo EPR study.

    PubMed

    Blaskó, Ágnes; Gazdag, Zoltán; Gróf, Pál; Máté, Gábor; Sárosi, Szilvia; Krisch, Judit; Vágvölgyi, Csaba; Makszin, Lilla; Pesti, Miklós

    2017-02-01

    The effects of clary sage (Salvia sclarea L.) oil (CS-oil), and its two main components, linalool (Lol) and linalyl acetate (LA), on cells of the eukaryotic human pathogen yeast Candida albicans were studied. Dynamic and thermodynamic properties of the plasma membrane were investigated by electron paramagnetic resonance (EPR) spectroscopy, with 5-doxylstearic acid (5-SASL) and 16-SASL as spin labels. The monitoring of the head group regions with 5-SASL revealed break-point frequency decrease in a temperature dependent manner of the plasma membrane between 9.55 and 13.15 °C in untreated, in CS-oil-, Lol- and LA-treated membranes. The results suggest a significant increase in fluidity of the treated plasma membranes close to the head groups. Comparison of the results observed with the two spin labels demonstrated that CS-oil and LA induced an increased level of fluidization at both depths of the plasma membrane. Whereas Lol treatment induced a less (1 %) ordered bilayer organization in the superficial regions and an increased (10 %) order of the membrane leaflet in deeper layers. Acute toxicity tests and EPR results indicated that both the apoptotic and the effects exerted on the plasma membrane fluidity depended on the composition and chemical structure of the examined materials. In comparison with the control, treatment with CS-oil, Lol or LA induced 13.0, 12.3 and 26.4 % loss respectively, of the metabolites absorbing at 260 nm, as a biological consequence of the plasma membrane fluidizing effects. Our results confirmed that clary sage oil causes plasma membrane perturbations which leads to cell apoptosis process.

  9. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.

    PubMed

    Maherani, Behnoush; Arab-Tehrany, Elmira; Kheirolomoom, Azadeh; Geny, David; Linder, Michel

    2013-11-01

    The design of the drug delivery depends upon different parameters. One of the most noticeable factors in design of the drug delivery is drug-release profile which determines the site of action, the concentration of the drug at the time of administration, the period of time that the drug must remain at a therapeutic concentration. To get a better understanding of drug release, large unilamellar liposomes containing calcein were prepared using 1,2-dioleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-palmitoyl-sn-glycero-3-phosphocholine, and a mixture of them; calcein was chosen as a model of hydrophilic drug. The calcein permeability across liposomal membrane (with different compositions) was evaluated on the basis of the first-order kinetic by spectrofluorometer. Also, the effects of liposome composition/fluidity as well as the incubation temperature/pH were investigated. Furthermore, we simulated the digestion condition in the gastrointestinal tract in humans, to mimic human gastro-duodenal digestion to monitor calcein release during the course of the digestion process. In vitro digestion model ''pH stat'' was used to systematically examine the influence of pH/enzyme on phospholipid liposomes digestion under simulated gastro-duodenal digestion. The results revealed that calcein permeates across liposomal membrane without membrane disruption. The release rate of calcein from the liposomes depends on the number and fluidity of bilayers and its mechanical/physical properties such as permeability, bending elasticity. Chemo-structural properties of drugs like as partition coefficient (Log P), H-bonding, polar surface area (PSA) are also determinative parameter in release behavior. Finally, stimulated emission depletion (STED) microscopy was used to study calcein translocation through liposomal bilayers. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Cytoplasmic membrane response to copper and nickel in Acidithiobacillus ferrooxidans.

    PubMed

    Mykytczuk, N C S; Trevors, J T; Ferroni, G D; Leduc, L G

    2011-03-20

    Metal tolerance has been found to vary among Acidithiobacillus ferrooxidans strains and this can impact the efficiency of biomining practices. To explain observed strain variability for differences in metal tolerance we examined the effects of Cu(2+) and Ni(2+) concentrations (1-200 mM) on cytoplasmic membrane properties of two A. ferrooxidans type strains (ATCC 23270 and 19859) and four strains isolated from AMD water around Sudbury, Ontario, Canada. Growth rate, membrane fluidity and phase, determined from the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), and fatty acid profiles indicated that three different modes of adaptation were present and could separate between strains showing moderate, or high metal tolerance from more sensitive strains. To compensate for the membrane ordering effects of the metals, significant remodelling of the membrane was used to either maintain homeoviscous adaptation in the moderately tolerant strains or to increase membrane fluidity in the sensitive strains. Shifts in the gel-to-liquid crystalline transition temperature in the moderately tolerant strains led to multiple phase transitions, increasing the potential for phase separation and compromised membrane integrity. The metal-tolerant strain however, was able to tolerate increases in membrane order without significant compensation via fatty acid composition. Our multivariate analyses show a common adaptive response which involves changes in the abundant 16:0 and 18:1 fatty acids. However, fatty acid composition and membrane properties showed no difference in response to either copper or nickel suggesting that adaptive response was non-specific and tolerance dependent. We demonstrate that strain variation can be evaluated using differences in membrane properties as intrinsic determinants of metal susceptibility. Copyright © 2010 Elsevier GmbH. All rights reserved.

  11. Stearoyl-CoA desaturase is an essential enzyme for the parasitic protist Trypanosoma brucei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alloatti, Andres; Gupta, Shreedhara; Gualdron-Lopez, Melisa

    2011-08-26

    Highlights: {yields} Inhibiting {Delta}9 desaturase drastically changes T. brucei's fatty-acid composition. {yields} Isoxyl specifically inhibits the {Delta}9 desaturase causing a growth arrest. {yields} RNA interference of desaturase expression causes a similar effect. {yields} Feeding T. brucei-infected mice with Isoxyl decreases the parasitemia. {yields} 70% of Isoxyl-treated mice survived the trypanosome infection. -- Abstract: Trypanosoma brucei, the etiologic agent of sleeping sickness, is exposed to important changes in nutrients and temperature during its life cycle. To adapt to these changes, the fluidity of its membranes plays a crucial role. This fluidity, mediated by the fatty-acid composition, is regulated by enzymes namedmore » desaturases. We have previously shown that the oleoyl desaturase is essential for Trypanosoma cruzi and T. brucei. In this work, we present experimental support for the relevance of stearoyl-CoA desaturase (SCD) for T. brucei's survival, in both its insect or procyclic-form (PCF) and bloodstream-form (BSF) stages. We evaluated this essentiality in two different ways: by generating a SCD knocked-down parasite line using RNA interference, and by chemical inhibition of the enzyme with two compounds, Isoxyl and a thiastearate with the sulfur atom at position 10 (10-TS). The effective concentration for 50% growth inhibition (EC{sub 50}) of PCF was 1.0 {+-} 0.2 {mu}M for Isoxyl and 5 {+-} 2 {mu}M for 10-TS, whereas BSF appeared more susceptible with EC{sub 50} values 0.10 {+-} 0.03 {mu}M (Isoxyl) and 1.0 {+-} 0.6 {mu}M (10-TS). RNA interference showed to be deleterious for both stages of the parasite. In addition, T. brucei-infected mice were fed with Isoxyl, causing a reduction of the parasitemia and an increase of the rodents' survival.« less

  12. Interrelationships between Fatty Acid Composition, Staphyloxanthin Content, Fluidity, and Carbon Flow in the Staphylococcus aureus Membrane.

    PubMed

    Tiwari, Kiran B; Gatto, Craig; Wilkinson, Brian J

    2018-05-17

    Fatty acids play a major role in determining membrane biophysical properties. Staphylococcus aureus produces branched-chain fatty acids (BCFAs) and straight-chain saturated fatty acids (SCSFAs), and can directly incorporate exogenous SCSFAs and straight-chain unsaturated fatty acids (SCUFAs). Many S. aureus strains produce the triterpenoid pigment staphyloxanthin, and the balance of BCFAs, SCSFAs and staphyloxanthin determines membrane fluidity. Here, we investigated the relationship of fatty acid and carotenoid production in S. aureus using a pigmented strain (Pig1), its carotenoid-deficient mutant (Pig1Δ crtM ) and the naturally non-pigmented Staphylococcus argenteus that lacks carotenoid biosynthesis genes and is closely related to S. aureus . Fatty acid compositions in all strains were similar under a given culture condition indicating that staphyloxanthin does not influence fatty acid composition. Strain Pig1 had decreased membrane fluidity as measured by fluorescence anisotropy compared to the other strains under all conditions indicating that staphyloxanthin helps maintain membrane rigidity. We could find no evidence for correlation of expression of crtM and fatty acid biosynthesis genes. Supplementation of medium with glucose increased SCSFA production and decreased BCFA and staphyloxanthin production, whereas acetate-supplementation also decreased BCFAs but increased staphyloxanthin production. We believe that staphyloxanthin levels are influenced more through metabolic regulation than responding to fatty acids incorporated into the membrane.

  13. The Effect of Combined Ezetimibe/Atorvastatin Therapy vs. Atorvastatin Monotherapy on the Erythrocyte Membrane Structure in Patients with Coronary Artery Disease: A Pilot Study.

    PubMed

    Jackowska, Paulina; Pytel, Edyta; Koter-Michalak, Maria; Olszewska-Banaszczyk, Małgorzata; Legęza, Aleksandra; Broncel, Marlena

    2016-01-01

    Erythrocytes play an important role in atherogenesis. An excessive accumulation of cholesterol in erythrocyte membranes leads to disruption of the erythrocytes. The aim of the study was to compare the effect of two different hypolipidemic therapies on the structure of erythrocyte membranes. The study included 18 patients with angiographic confirmed coronary artery disease who, despite at least 6 months of hypolipidemic treatment, had not achieved LDL-C < 70 mg/dL and 18 healthy individuals as the control group. The following parameters were studied: total cholesterol level and erythrocyte membrane fluidity, lipid peroxidation, SH groups in membrane protein and plasma lipids. We observed a decrease in TC (20%), LDL-C (35%), level of lipid peroxidation (25%) and total cholesterol in erythrocytes (23%), and an increase in HDL-C (8%) and erythrocyte membrane fluidity of subsurface layers (14%) after 6 months of 10 mg atorvastatin + 10 mg ezetimibe therapy, in comparison with healthy controls. In the group treated with 40 mg atorvastatin for 6 months, decreased LDL-C (23%), lipid peroxidation (37%) and membrane cholesterol concentration (18%) was noted, as well as an increase in erythrocyte membrane fluidity in the subsurface layers (12%). Both the combination therapy and the monotherapy lead to an improvement of erythrocyte membrane structure, whose parameters reached values close to those in the control healthy group.

  14. Dynamics of sperm subpopulations based on motility and plasma membrane status in thawed ram spermatozoa incubated under conditions that support in vitro capacitation and fertilisation.

    PubMed

    García-Álvarez, Olga; Maroto-Morales, Alejandro; Ramón, Manuel; del Olmo, Enrique; Jiménez-Rabadán, Pilar; Fernández-Santos, M Rocio; Anel-López, Luis; Garde, J Julián; Soler, Ana J

    2014-06-01

    The present study evaluated modifications occurring in thawed ram spermatozoa during incubation in different media that supported in vitro capacitation and fertilisation, and examines how these changes relate to IVF. Thawed sperm samples were incubated under capacitating (Cap) and non-capacitating (non-Cap) conditions for 0, 1 and 2h and used in an IVF test. During incubation, changes related to membrane status and the motility pattern of spermatozoa were assessed, the latter being used to characterise sperm subpopulations. A significantly greater increase (P≤0.05) in the percentage of spermatozoa with higher membrane fluidity was observed in samples incubated with Cap medium from the beginning of incubation. In addition, changes over time in the distribution of the motile subpopulation were particularly evident when spermatozoa were incubated with Cap medium, with a noted increase in spermatozoa classified as 'hyperactivated like', with major changes occurring after 1h incubation. Both characteristics (i.e. membrane fluidity and the percentage of the hyperactivated-like subpopulation) were significantly related with in vitro fertility, and only sperm samples incubated with the Cap medium were capable of fertilising oocytes. These results support the idea that changes in sperm membrane fluidity and motility pattern (i.e. an increase in hyperactivated spermatozoa) are needed for fertilisation to take place.

  15. Fluorescent Probe Study of AOT Vesicle Membranes and Their Alteration upon Addition of Aniline or the Aniline Dimer p-Aminodiphenylamine (PADPA).

    PubMed

    Iwasaki, Fumihiko; Luginbühl, Sandra; Suga, Keishi; Walde, Peter; Umakoshi, Hiroshi

    2017-02-28

    Artificial vesicles formed from sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in aqueous solution are used successfully as additives for enzymatic oligomerizations or polymerizations of aniline or the aniline dimer p-aminodiphenylamine (PADPA) under slightly acidic conditions (e.g., pH 4.3 with horseradish peroxidase and hydrogen peroxide as oxidants). In these systems, the reactions occur membrane surface-confined. Therefore, (i) the physicochemical properties of the vesicle membrane and (ii) the interaction of aniline or PADPA with the AOT membrane play crucial roles in the progress and final outcome of the reactions. For this reason, the properties of AOT vesicles with and without added aniline or PADPA were investigated by using two fluorescent membrane probes: 1,6-diphenyl-1,3,5-hexatriene (DPH) and 6-lauroyl-2-dimethylaminonaphthalene (Laurdan). DPH and Laurdan were used as "sensors" of the membrane fluidity, surface polarity, and membrane phase state. Moreover, the effect of hexanol, alone or in combination with aniline or PADPA, as a possible modifier of the AOT membrane, was also studied with the aim of evaluating whether the membrane fluidity and surface polarity is altered significantly by hexanol, which, in turn, may have an influence on the mentioned types of reactions. The data obtained indicate that the AOT vesicle membrane at room temperature and pH 4.3 (0.1 M NaH 2 PO 4 ) is more fluid and has a more polar surface than in the case of fluid phospholipid vesicle membranes formed from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Furthermore, the fluorescence measurements indicate that mixed AOT-hexanol membranes are less fluid than pure AOT membranes and that they have a lower surface polarity than pure AOT membranes. PADPA strongly binds to AOT and to mixed AOT/hexanol membranes and leads to drastic changes in the membrane properties (decrease in fluidity and surface polarity), resulting in Laurdan fluorescence spectra, which are characteristic for intramembrane phase separations (coexistence of ordered and disordered domains). This means that highly fluid AOT membranes transform upon the addition of PADPA into membranes that have ordered domains. Although the relevance of this finding for the enzymatic oligomerization of PADPA is not yet clear, it is also of interest if one likes to use heterogeneous vesicle membranes as additives for carrying out membrane surface-confined reactions that do not necessarily involve PADPA as a reactant.

  16. Quantification of Randomly-methylated-{beta}-cyclodextrin effect on liposome: An ESR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grammenos, A., E-mail: A.Grammenos@ulg.ac.be; Bahri, M.A.; Guelluy, P.H.

    2009-12-04

    In the present work, the effect of Randomly-methylated-{beta}-cyclodextrin (Rameb) on the microviscosity of dimyristoyl-L-{alpha} phosphatidylcholine (DMPC) bilayer was investigated using the electron spin resonance (ESR) technique. The ability of Rameb to extract membrane cholesterol was demonstrated. For the first time, the percentage of cholesterol extracted by Rameb from cholesterol doped DMPC bilayer was monitored and quantified throughout a wide Rameb concentration range. The effect of cholesterol on the inner part of the membrane was also investigated using 16-doxyl stearic acid spin label (16-DSA). 16-DSA seems to explore two different membrane domains and report their respective microviscosities. ESR experiments also establishmore » that the presence of 30% of cholesterol in DMPC liposomes suppresses the jump in membrane fluidity at lipids phase-transition temperature (23.9 {sup o}C).« less

  17. Starbursts and Wispy Drops : Surfactants Spreading on Gel Substrates

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Shomeek; Daniels, Karen; Behringer, Robert

    2005-11-01

    We report a phase diagram for a novel instability seen in drops of nonionic surfactant solution (Triton X-305) spreading on viscoelastic agar gel substrate . This system allows us to examine the effect of varying the effective fluidity/stiffness of aqueous substrates. The morphology is strongly affected by the substrate fluidity, ranging from spreading starbursts of arms on weak gels, to wispy drops on intermediate strength gels, to circular drops on stiff gels. We analyze the dynamics of spreading in the starburst phase, where the arm length grows as t ^3/4 at early times, independent of the gel strength and surfactant concentration. The number of arms is proportional to the surfactant concentration and inversely proportional to the gel strength. Ongoing work is exploring the effects of changing the drop volume.

  18. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.

    PubMed

    Schierbaum, Nicolas; Rheinlaender, Johannes; Schäffer, Tilman E

    2017-06-01

    Malignant transformation drastically alters the mechanical properties of the cell and its response to the surrounding cellular environment. We studied the influence of the physical contact between adjacent cells in an epithelial monolayer on the viscoelastic behavior of normal MCF10A, non-invasive cancerous MCF7, and invasive cancerous MDA-MB-231 human breast cells. Using an atomic force microscopy (AFM) imaging technique termed force clamp force mapping (FCFM) to record images of the viscoelastic material properties, we found that normal MCF10A cells are stiffer and have a lower fluidity at confluent than at sparse density. Contrarily, cancerous MCF7 and MDA-MB-231 cells do not stiffen and do not decrease their fluidity when progressing from sparse to confluent density. The behavior of normal MCF10A cells appears to be governed by the formation of stable cell-cell contacts, because their disruption with a calcium-chelator (EGTA) causes the stiffness and fluidity values to return to those at sparse density. In contrast, EGTA-treatment of MCF7 and MDA-MB-231 cells does not change their viscoelastic properties. Confocal fluorescence microscopy showed that the change of the viscoelastic behavior in MCF10A cells when going from sparse to confluent density is accompanied by a remodeling of the actin cytoskeleton into thick stress fiber bundles, while in MCF7 and MDA-MB-231 cells the actin cytoskeleton is only composed of thin and short fibers, regardless of cell density. While the observed behavior of normal MCF10A cells might be crucial for providing mechanical stability and thus in turn integrity of the epithelial monolayer, the dysregulation of this behavior in cancerous MCF7 and MDA-MB-231 cells is possibly a central aspect of cancer progression in the epithelium. We measured the viscoelastic properties of normal and cancerous human breast epithelial cells in different states of confluency using atomic force microscopy. We found that confluent normal cells are stiffer and have lower fluidity than sparse normal cells, which appears to be governed by the formation of cell-cell contacts. Contrarily, confluent cancer cells do not stiffen and not have a decreased fluidity compared to sparse cancer cells and their viscoelastic properties are independent of cell-cell contact formation. While the observed behavior of normal cells appears to be crucial for providing the mechanical stability and therefore the integrity of the epithelial monolayer, the dysregulation of this behavior in cancer cells might be a central aspect of early stage cancer progression and metastasis in the epithelium. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Goodbye Career, Hello Success.

    ERIC Educational Resources Information Center

    Komisar, Randy

    2000-01-01

    Success in today's economy means throwing out the old career rules. The "noncareer" career is driven by passion for the work and has the fluidity and flexibility needed in the contemporary workplace. (JOW)

  20. In vitro analysis of the effect of alkyl-chain length of anionic surfactants on the skin by using a reconstructed human epidermal model.

    PubMed

    Yamaguchi, Fumiko; Watanabe, Shin-Ichi; Harada, Fusae; Miyake, Miyuki; Yoshida, Masaki; Okano, Tomomichi

    2014-01-01

    We investigated the effect of the alkyl-chain length of anionic surfactants on the skin using an in vitro model. The evaluated anionic surfactants were sodium alkyl sulfate (AS) and sodium fatty acid methyl ester sulfonate (MES), which had different alkyl-chain lengths (C8-C14). Skin tissue damage and permeability were examined using a reconstructed human epidermal model, LabCyte EPI-MODEL24. Skin tissue damage was examined by measuring cytotoxicity with an MTT assay. Liquid chromatography/tandem mass spectrometry (LC/MS-MS) and liquid chromatography/mass spectrometry (LC/MS) were used to detect surfactants that permeated into the assay medium through an epidermal model. To assess the permeation mechanism and cell damage caused by the surfactants through the epidermis, we evaluated the structural changes of Bovine Serum Albumin (BSA), used as a simple model protein, and the fluidity of 1,2-dipalmitoyl-sn-glycero-3-phosphpcholine (DPPC) liposome, which serves as one of the most abundant phospholipid models of living cell membranes in the epidermis. The effects of the surfactants on the proteins were measured using Circular Dichroism (CD) spectroscopy, while the effects on membrane fluidity were investigated by electron spin resonance (ESR) spectroscopy. ET50 (the 50% median effective time) increased as follows: C10 < C12 < C8 < C14 in AS and C8, C10 < C12 < C14 in MES. The order of permeation through the LabCyte EPI-MODEL24 was C10 > C12 > C14, for both AS and MES. For both AS and MES, the order parameter, which is the criteria for the microscopic viscosity of lipid bilayers, increased as follows: C10 < C12 < C14, which means the membrane fluidity is C10 > C12 > C14. It was determined that the difference in skin tissue damage in the LabCyte EPI-MODEL24 with C10 to C14 AS and MES was caused by the difference in permeation and cell membrane fluidity through the lipid bilayer path in the epidermis.

  1. Why have relative rates of class mobility become more equal among women in Britain?

    PubMed

    Bukodi, Erzsébet; Goldthorpe, John H; Joshi, Heather; Waller, Lorraine

    2017-09-01

    In a previous paper it has been shown that across three cohorts of men and women born in Britain in 1946, 1958 and 1970 a gender difference exists in regard to relative rates of class mobility. For men these rates display an essential stability but for women they become more equal. The aim of the present paper is to shed light on the causes of this trend-or, that is, of increasing social fluidity-among women. We begin by considering a refined version of the perverse fluidity hypothesis: that is, one that proposes that part-time work leads to increasing downward worklife mobility among women that also entails downward intergenerational mobility and thus promotes greater fluidity. We do in fact find that the increase in fluidity is very largely, if not entirely, confined to women who have had at least one period of part-time work. However, a more direct test of the hypothesis is not supportive. We are then led to investigate whether it is not that part-time working itself is the crucial factor but rather that women who subsequently work part-time already differ from those who do not at entry into employment. We find that eventual full- and part-timers do not differ in their class origins nor, in any systematic way, in their educational qualifications. But there is a marked and increasing difference in the levels of employment at which they make their labour market entry. Eventual part-timers are more likely than eventual full-timers to enter in working-class positions, regardless of their class origins and qualifications. Insofar as these women are from more advantaged origins, they would appear not to seek to exploit their advantages to the same extent as do full-timers in order to advance their own work careers. And it is, then, in the downward mobility accepted by these women-who increase in number across the cohorts-that we would locate the main source of the weakening association between class origins and destinations that is revealed among women at large. © London School of Economics and Political Science 2017.

  2. Using spin-label W-band EPR to study membrane fluidity profiles in samples of small volume

    NASA Astrophysics Data System (ADS)

    Mainali, Laxman; Hyde, James S.; Subczynski, Witold K.

    2013-01-01

    Conventional and saturation-recovery (SR) EPR at W-band (94 GHz) using phosphatidylcholine spin labels (labeled at the alkyl chain [n-PC] and headgroup [T-PC]) to obtain profiles of membrane fluidity has been demonstrated. Dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol have been studied, and the results have been compared with similar studies at X-band (9.4 GHz) (L. Mainali, J.B. Feix, J.S. Hyde, W.K. Subczynski, J. Magn. Reson. 212 (2011) 418-425). Profiles of the spin-lattice relaxation rate (T1-1) obtained from SR EPR measurements for n-PCs and T-PC were used as a convenient quantitative measure of membrane fluidity. Additionally, spectral analysis using Freed's MOMD (microscopic-order macroscopic-disorder) model (E. Meirovitch, J.H. Freed J. Phys. Chem. 88 (1984) 4995-5004) provided rotational diffusion coefficients (R⊥ and R||) and order parameters (S0). Spectral analysis at X-band provided one rotational diffusion coefficient, R⊥. T1-1, R⊥, and R|| profiles reflect local membrane dynamics of the lipid alkyl chain, while the order parameter shows only the amplitude of the wobbling motion of the lipid alkyl chain. Using these dynamic parameters, namely T1-1, R⊥, and R||, one can discriminate the different effects of cholesterol at different depths, showing that cholesterol has a rigidifying effect on alkyl chains to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. The nondynamic parameter, S0, shows that cholesterol has an ordering effect on alkyl chains at all depths. Conventional and SR EPR measurements with T-PC indicate that cholesterol has a fluidizing effect on phospholipid headgroups. EPR at W-band provides more detailed information about the depth-dependent dynamic organization of the membrane compared with information obtained at X-band. EPR at W-band has the potential to be a powerful tool for studying membrane fluidity in samples of small volume, ˜30 nL, compared with a representative sample volume of ˜3 μL at X-band.

  3. Biochemical characterization and membrane fluidity of membranous vesicles isolated from boar seminal plasma.

    PubMed

    Piehl, Lidia L; Cisale, Humberto; Torres, Natalia; Capani, Francisco; Sterin-Speziale, Norma; Hager, Alfredo

    2006-05-01

    Mammalian seminal plasma contains membranous vesicles (MV), which differ in composition and origin. Among these particles, human prostasomes and equine prostasome-like MV have been the most studied. The aim of the present work is to characterize the biochemical composition and membrane fluidity of MV isolated from boar seminal plasma. The MV from boar seminal plasma were isolated by ultracentrifugation and further purification by gel filtration on Sephadex G-200. The MV were examined by electron microscopy (EM), amount of cholesterol, total phospholipid, protein content, and phospholipid composition were analyzed. Membrane fluidity of MV and spermatozoa were estimated from the electron spin resonance (ESR) spectra of the 5-doxilstearic acid incorporated into the vesicle membranes by the order parameter (S). The S parameter gives a measure of degree of structural order in the membrane and is defined as the ratio of the spectral anisotropy in the membranes to the maximum anisotropy obtained in a rigidly oriented system. The S parameter takes into consideration that S = 1 for a rapid spin-label motion of about only one axis and S = 0 for a rapid isotropic motion. Intermediate S values between S = 0 and S = 1 represents the consequence of decreased membrane fluidity. The EM revealed the presence of bilaminar and multilaminar electron-dense vesicles. Cholesterol to phospholipid molar ratio from the isolated MV was 1.8. Phospholipid composition showed a predominance of sphingomyelin. The S parameter for porcine MV and for boar spermatozoa was 0.73 +/- 0.02 and 0.644 +/- 0.008, respectively, with the S for MV being greater (p < 0.001) than the S for spermatozoa. The high order for S found for boar MV was in agreement with the greater cholesterol/phospholipids ratio and the lesser ratio for phosphatidylcholine/sphingomyelin. Results obtained in the present work indicate that MV isolated from boar semen share many biochemical and morphological characteristics with equine prostasome-like MV and human prostasomes. The characteristics of the porcine MV of the seminal plasma, however, differed from those of boar sperm plasma membranes.

  4. Influence of gating design on microstructure and fluidity of thin sections AA320.0 cast hypo-eutectic Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Ramadan, Mohamed

    2018-05-01

    Influence of gating design especially number of ingrates on microstructure and fluidity of thin sections of 2, 4, 6 mm AA320.0 cast hypo-eutectic Al-Si alloy was evaluated for sand casting molding technique. Increasing the number of ingates improves the microstructe to be fine and more globular. About 87 μm of α-Al grain size, 0.6 α-Al grain sphericity and 37 μm dendrite arm spacing DAS are achieved by using 4 ingates in gating system. Increasing the number of ingates up to 3 increases hardness, filling area and related fluditiy of all cast samples. The minimum thickness of 2.5 mm for each ingate should be considered in order to successfully production of high quality light weight thin sections castings in sand mold.

  5. Development of Thin Section Zinc Die Casting Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, Frank

    2013-10-31

    A new high fluidity zinc high pressure die casting alloy, termed the HF alloy, was developed during laboratory trials and proven in industrial production. The HF alloy permits castings to be achieved with section thicknesses of 0.3 mm or less. Technology transfer activities were conducted to develop usage of the HF high fluidity alloy. These included production of a brochure and a one-hour webinar on the HF alloy. The brochure was then sent to 1,184 product designers in the Interzinc database. There was excellent reception to this mailing, and from this initial contact 5 technology transfer seminars were conducted formore » 81 participants from 30 companies across a wide range of business sectors. Many of the successful applications to date involve high quality surface finishes. Design and manufacturing assistance was given for development of selected applications.« less

  6. Alteration by prolactin of surface charge and membrane fluidity of rat 13762 mammary ascites tumor cells.

    PubMed

    Zarkower, D A; Plank, L D; Kunze, E; Keith, A; Todd, P; Hymer, W C

    1984-03-01

    Intraperitoneal injection of ovine prolactin (100 micrograms/d) in Fischer 344 rats bearing transplantable 13762 mammary ascites tumor (MAT) cells modifies the surface charge density and membrane fluidity of the tumor cells. In each of five experiments the mean electrophoretic mobility (epm) of MAT cells taken from prolactin-treated rats was significantly lower than that of cells from nonhormone-treated controls. Prolactin concentrations were increased in vivo by (a) direct intraperitoneal injection of ovine prolactin; (b) subcutaneous implantation of diethylstilbestrol-containing silastic capsules to produce pituitary prolactin secreting tumors; or (c) a single subcutaneous injection of polyestradiol phosphate, a long-acting estrogen. In an effort to establish that the prolactin effect was a direct one, two in vivo protocols were used: (a) MAT cells were coincubated with anterior pituitary halves obtained from nontumor-bearing littermates; or (b) rat or ovine prolactin was added to serum-free culture media containing MAT cells. In both protocols, the epm of the prolactin-treated cells was significantly lower. The isoelectric focusing pH of whole cells was increased by prolactin treatment from 4.93 to 5.12, consistent with a reduction in the number of surface carboxyl groups. The fluidity of membranes of treated cells was drastically increased, as measured by spin-label probe rotation rates. These combined results imply that the hormone exerts its effect by stimulating events in the cell that lead to a reduction of the average density of carboxylic acid residues on the tumor cell surface.

  7. Effect of antihypertensive agents - captopril and nifedipine - on the functional properties of rat heart mitochondria

    PubMed Central

    Kancirová, Ivana; Jašová, Magdaléna; Waczulíková, Iveta; Ravingerová, Táňa; Ziegelhöffer, Attila; Ferko, Miroslav

    2016-01-01

    Objective(s): Investigation of acute effect on cellular bioenergetics provides the opportunity to characterize the possible adverse effects of drugs more comprehensively. This study aimed to investigate the changes in biochemical and biophysical properties of heart mitochondria induced by captopril and nifedipine antihypertensive treatment. Materials and Methods: Male, 12-week-old Wistar rats in two experimental models (in vivo and in vitro) were used. In four groups, the effects of escalating doses of captopril, nifedipine and combination of captopril + nifedipine added to the incubation medium (in vitro) or administered per os to rat (in vivo) on mitochondrial ATP synthase activity and membrane fluidity were monitored. Results: In the in vitro model we observed a significant inhibitory effect of treatment on the ATP synthase activity (P<0.05) with nonsignificant differences in membrane fluidity. Decrease in the value of maximum reaction rate Vmax (P<0.05) without any change in the value of Michaelis-Menten constant Km, indicative of a noncompetitive inhibition, was presented. At the in vivo level, we did not demonstrate any significant changes in the ATP synthase activity and the membrane fluidity in rats receiving captopril, nifedipine, and combined therapy. Conclusion: In vitro kinetics study revealed that antihypertensive drugs (captopril and nifedipine) directly interact with mitochondrial ATP synthase. In vivo experiment did not prove any acute effect on myocardial bioenergetics and suggest that drugs do not enter cardiomyocyte and have no direct effect on mitochondria. PMID:27482342

  8. Gradient enhanced-fluidity liquid hydrophilic interaction chromatography of ribonucleic acid nucleosides and nucleotides: A "green" technique.

    PubMed

    Beilke, Michael C; Beres, Martin J; Olesik, Susan V

    2016-03-04

    A "green" hydrophilic interaction liquid chromatography (HILIC) technique for separating the components of mixtures with a broad range of polarities is illustrated using enhanced-fluidity liquid mobile phases. Enhanced-fluidity liquid chromatography (EFLC) involves the addition of liquid CO2 to conventional liquid mobile phases. Decreased mobile phase viscosity and increased analyte diffusivity results when a liquefied gas is dissolved in common liquid mobile phases. The impact of CO2 addition to a methanol:water (MeOH:H2O) mobile phase was studied to optimize HILIC gradient conditions. For the first time a fast separation of 16 ribonucleic acid (RNA) nucleosides/nucleotides was achieved (16min) with greater than 1.3 resolution for all analyte pairs. By using a gradient, the analysis time was reduced by over 100% compared to similar separations conducted under isocratic conditions. The optimal separation using MeOH:H2O:CO2 mobile phases was compared to MeOH:H2O and acetonitrile:water (ACN:H2O) mobile phases. Based on chromatographic performance parameters (efficiency, resolution and speed of analysis) and an assessment of the environmental impact of the mobile phase mixtures, MeOH:H2O:CO2 mixtures are preferred over ACN:H2O or MeOH:H2O mobile phases for the separation of mixtures of RNA nucleosides and nucleotides. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hybrid molecular-colloidal liquid crystals.

    PubMed

    Mundoor, Haridas; Park, Sungoh; Senyuk, Bohdan; Wensink, Henricus H; Smalyukh, Ivan I

    2018-05-18

    Order and fluidity often coexist, with examples ranging from biological membranes to liquid crystals, but the symmetry of these soft-matter systems is typically higher than that of the constituent building blocks. We dispersed micrometer-long inorganic colloidal rods in a nematic liquid crystalline fluid of molecular rods. Both types of uniaxial building blocks, while freely diffusing, interact to form an orthorhombic nematic fluid, in which like-sized rods are roughly parallel to each other and the molecular ordering direction is orthogonal to that of colloidal rods. A coarse-grained model explains the experimental temperature-concentration phase diagram with one biaxial and two uniaxial nematic phases, as well as the orientational distributions of rods. Displaying properties of biaxial optical crystals, these hybrid molecular-colloidal fluids can be switched by electric and magnetic fields. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Signal Sensing and Transduction by Histidine Kinases as Unveiled through Studies on a Temperature Sensor.

    PubMed

    Abriata, Luciano A; Albanesi, Daniela; Dal Peraro, Matteo; de Mendoza, Diego

    2017-06-20

    Histidine kinases (HK) are the sensory proteins of two-component systems, responsible for a large fraction of bacterial responses to stimuli and environmental changes. Prototypical HKs are membrane-bound proteins that phosphorylate cognate response regulator proteins in the cytoplasm upon signal detection in the membrane or periplasm. HKs stand as potential drug targets but also constitute fascinating systems for studying proteins at work, specifically regarding the chemistry and mechanics of signal detection, transduction through the membrane, and regulation of catalytic outputs. In this Account, we focus on Bacillus subtilis DesK, a membrane-bound HK part of a two-component system that maintains appropriate membrane fluidity at low growth temperatures. Unlike most HKs, DesK has no extracytoplasmic signal-sensing domains; instead, sensing is carried out by 10 transmembrane helices (coming from two protomers) arranged in an unknown structure. The fifth transmembrane helix from each protomer connects, without any of the intermediate domains found in other HKs, into the dimerization and histidine phosphotransfer (DHp) domain located in the cytoplasm, which is followed by the ATP-binding domains (ABD). Throughout the years, genetic, biochemical, structural, and computational studies on wild-type, mutant, and truncated versions of DesK allowed us to dissect several aspects of DesK's functioning, pushing forward a more general understanding of its own structure/function relationships as well as those of other HKs. We have shown that the sensing mechanism is rooted in temperature-dependent membrane properties, most likely a combination of thickness, fluidity, and water permeability, and we have proposed possible mechanisms by which DesK senses these properties and transduces the signals. X-ray structures and computational models have revealed structural features of TM and cytoplasmic regions in DesK's kinase- and phosphatase-competent states. Biochemical and genetic experiments and molecular simulations further showed that reversible formation of a two-helix coiled coil in the fifth TM segment and the N-terminus of the cytoplasmic domain is essential for the sensing and signal transduction mechanisms. Together with other structural and functional works, the emerging picture suggests that diverse HKs possess distinct sensing and transduction mechanisms but share as rather general features (i) a symmetric phosphatase state and an asymmetric kinase state and (ii) similar functional outputs on the conserved DHp and ABD domains, achieved through different mechanisms that depend on the nature of the initial signal. We here advance (iii) an important role for TM prolines in transducing the initial signals to the cytoplasmic coiled coils, based on simulations of DesK's TM helices and our previous work on a related HK, PhoQ. Lastly, evidence for DesK, PhoQ, BvgS, and DctB HKs shows that (iv) overall catalytic output is tuned by a delicate balance between hydration potentials, coiled coil stability, and exposure of hydrophobic surface patches at their cytoplasmic coiled coils and at the N-terminal and C-terminal sides of their TM helices. This balance is so delicate that small perturbations, either physiological signals or induced by mutations, lead to large remodeling of the underlying conformational landscape achieving clear-cut changes in catalytic output, mirroring the required response speed of these systems for proper biological function.

  11. Guerbet compounds

    USDA-ARS?s Scientific Manuscript database

    Guerbet alcohols are of significant commercial interest for various applications, including in lubricants and surfactant systems, due to their great fluidity range, high oxidative stability, and good lubricity imparted by the saturated hydrocarbon backbone, branching, and the presence of an OH group...

  12. Multiracial in Middle School: The Influence of Classmates and Friends on Changes in Racial Self-Identification.

    PubMed

    Echols, Leslie; Ivanich, Jerreed; Graham, Sandra

    2017-11-27

    In the present research, the influence of racial diversity among classmates and friends on changes in racial self-identification among multiracial youth was examined (n = 5,209; M age  = 10.56 years at the beginning of sixth grade). A novel individual-level measure of diversity among classmates based on participants' course schedules was utilized. The findings revealed that although there was some fluidity in multiracial identification at the beginning of middle school, changes in multiracial identification were more evident later in middle school. In addition, although diversity among classmates and friends both increased the likelihood of multiracial identification in the beginning of middle school, only diversity among friends mattered later in middle school, when fluidity in multiracial identification was at its peak. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  13. The actin homologue MreB organizes the bacterial cell membrane

    PubMed Central

    Strahl, Henrik; Bürmann, Frank; Hamoen, Leendert W.

    2014-01-01

    The eukaryotic cortical actin cytoskeleton creates specific lipid domains, including lipid rafts, which determine the distribution of many membrane proteins. Here we show that the bacterial actin homologue MreB displays a comparable activity. MreB forms membrane-associated filaments that coordinate bacterial cell wall synthesis. We noticed that the MreB cytoskeleton influences fluorescent staining of the cytoplasmic membrane. Detailed analyses combining an array of mutants, using specific lipid staining techniques and spectroscopic methods, revealed that MreB filaments create specific membrane regions with increased fluidity (RIFs). Interference with these fluid lipid domains (RIFs) perturbs overall lipid homeostasis and affects membrane protein localization. The influence of MreB on membrane organization and fluidity may explain why the active movement of MreB stimulates membrane protein diffusion. These novel MreB activities add additional complexity to bacterial cell membrane organization and have implications for many membrane-associated processes. PMID:24603761

  14. The actin homologue MreB organizes the bacterial cell membrane.

    PubMed

    Strahl, Henrik; Bürmann, Frank; Hamoen, Leendert W

    2014-03-07

    The eukaryotic cortical actin cytoskeleton creates specific lipid domains, including lipid rafts, which determine the distribution of many membrane proteins. Here we show that the bacterial actin homologue MreB displays a comparable activity. MreB forms membrane-associated filaments that coordinate bacterial cell wall synthesis. We noticed that the MreB cytoskeleton influences fluorescent staining of the cytoplasmic membrane. Detailed analyses combining an array of mutants, using specific lipid staining techniques and spectroscopic methods, revealed that MreB filaments create specific membrane regions with increased fluidity (RIFs). Interference with these fluid lipid domains (RIFs) perturbs overall lipid homeostasis and affects membrane protein localization. The influence of MreB on membrane organization and fluidity may explain why the active movement of MreB stimulates membrane protein diffusion. These novel MreB activities add additional complexity to bacterial cell membrane organization and have implications for many membrane-associated processes.

  15. Effects of thallium(I) and thallium(III) on liposome membrane physical properties.

    PubMed

    Villaverde, Marcela S; Verstraeten, Sandra V

    2003-09-15

    The hypothesis that thallium (Tl) interaction with membrane phospholipids could result in the alteration of membrane physical properties was investigated. Working with liposomes composed of brain phosphatidylcholine and phosphatidylserine, we found that Tl(+), Tl(3+), and Tl(OH)(3) (0.5-25 microM): (a) increased membrane surface potential, (b) decreased the fluidity of the anionic regions of the membrane, in association with an increased fluidity in the cationic regions, and (c) promoted the rearrangement of lipids through lateral phase separation. The magnitude of these effects followed the order Tl(3+), Tl(OH)(3)>Tl(+). In addition, Tl(3+) also decreased the hydration of phospholipid polar headgroups and induced membrane permeabilization. The present results show that Tl interacts with membranes inducing major alterations in the rheology of the bilayer, which could be partially responsible for the neurotoxic effects of this metal.

  16. Electrostatic-Assisted Liquefaction of Porous Carbons

    DOE PAGES

    Li, Peipei; Schott, Jennifer A.; Zhang, Jinshui; ...

    2017-10-10

    Porous liquids are a newly developed porous material that combine unique fluidity with permanent porosity, which exhibit promising functionalities for a variety of applications. However, the apparent incompatibility between fluidity and permanent porosity makes the stabilization of porous nanoparticle with still empty pores in the dense liquid phase a significant challenging. For this study, by exploiting the electrostatic interaction between carbon networks and polymerized ionic liquids, we demonstrate that carbon-based porous nanoarchitectures can be well stabilized in liquids to afford permanent porosity, and thus opens up a new approach to prepare porous carbon liquids. Furthermore, we hope this facile synthesismore » strategy can be widely applicated to fabricate other types of porous liquids, such as those (e.g., carbon nitride, boron nitride, metal–organic frameworks, covalent organic frameworks etc.) also having the electrostatic interaction with polymerized ionic liquids, evidently advancing the development and understanding of porous liquids.« less

  17. Structural Degradation and Swelling of Lipid Bilayer under the Action of Benzene.

    PubMed

    Odinokov, Alexey; Ostroumov, Denis

    2015-12-03

    Benzene and other nonpolar organic solvents can accumulate in the lipid bilayer of cellular membranes. Their effect on the membrane structure and fluidity determines their toxic properties and antibiotic action of the organic solvents on the bacteria. We performed molecular dynamics simulations of the interaction of benzene with the dimyristoylphosphatidylcholine (DMPC) bilayer. An increase in the membrane surface area and fluidity was clearly detected. Changes in the acyl chain ordering, tilt angle, and overall bilayer thickness were, however, much less marked. The dependence of all computed quantities on the benzene content showed two regimes separated by the solubility limit of benzene in water. When the amount of benzene exceeded this point, a layer of almost pure benzene started to grow between the membrane leaflets. This process corresponds to the nucleation of a new phase and provides a molecular mechanism for the mechanical rupture of the bilayer under the action of nonpolar compounds.

  18. Stability and rheology of dilute TiO2-water nanofluids

    PubMed Central

    2011-01-01

    The apparent wall slip (AWS) effect, accompanying the flow of colloidal dispersions in confined geometries, can be an important factor for the applications of nanofluids in heat transfer and microfluidics. In this study, a series of dilute TiO2 aqueous dispersions were prepared and tested for the possible presence of the AWS effect by means of a novel viscometric technique. The nanofluids, prepared from TiO2 rutile or anatase nanopowders by ultrasonic dispersing in water, were stabilized by adjusting the pH to the maximum zeta potential. The resulting stable nanofluid samples were dilute, below 0.7 vol.%. All the samples manifest Newtonian behavior with the fluidities almost unaffected by the presence of the dispersed phase. No case of important slip contribution was detected: the Navier slip coefficient of approximately 2 mm Pa-1 s-1 would affect the apparent fluidity data in a 100-μm gap by less than 1%. PMID:21711783

  19. Between Scylla and Charybdis: Hydrophobic Graphene-Guided Water Diffusion on Hydrophilic Substrates

    PubMed Central

    Kim, Jin-Soo; Choi, Jin Sik; Lee, Mi Jung; Park, Bae Ho; Bukhvalov, Danil; Son, Young-Woo; Yoon, Duhee; Cheong, Hyeonsik; Yun, Jun-Nyeong; Jung, Yousung; Park, Jeong Young; Salmeron, Miquel

    2013-01-01

    The structure of water confined in nanometer-sized cavities is important because, at this scale, a large fraction of hydrogen bonds can be perturbed by interaction with the confining walls. Unusual fluidity properties can thus be expected in the narrow pores, leading to new phenomena like the enhanced fluidity reported in carbon nanotubes. Crystalline mica and amorphous silicon dioxide are hydrophilic substrates that strongly adsorb water. Graphene, on the other hand, interacts weakly with water. This presents the question as to what determines the structure and diffusivity of water when intercalated between hydrophilic substrates and hydrophobic graphene. Using atomic force microscopy, we have found that while the hydrophilic substrates determine the structure of water near its surface, graphene guides its diffusion, favouring growth of intercalated water domains along the C-C bond zigzag direction. Molecular dynamics and density functional calculations are provided to help understand the highly anisotropic water stripe patterns observed. PMID:23896759

  20. Physiological and biochemical effects of 17β estradiol in aging female rat brain.

    PubMed

    Kumar, Pardeep; Taha, Asia; Kale, R K; Cowsik, S M; Baquer, Najma Zaheer

    2011-07-01

    Aging in females and males is considered as the end of natural protection against age related diseases like osteoporosis, coronary heart disease, diabetes, Alzheimer's disease and Parkinson's disease. These changes increase during menopausal condition in females when the level of estradiol is decreased. The objective of this study was to observe the changes in activities of monoamine oxidase, glucose transporter-4 levels, membrane fluidity, lipid peroxidation levels and lipofuscin accumulation occurring in brains of female rats of 3 months (young), 12 months (adult) and 24 months (old) age groups, and to see whether these changes are restored to normal levels after exogenous administration of estradiol (0.1 μg/g body weight for 1 month). The results obtained in the present work revealed that normal aging was associated with significant increases in the activity of monoamine oxidase, lipid peroxidation levels and lipofuscin accumulation in the brains of aging female rats, and a decrease in glucose transporter-4 level and membrane fluidity. Our data showed that estradiol treatment significantly decreased monoamine oxidase activity, lipid peroxidation and lipofuscin accumulation in brain regions of aging rats, and a reversal of glucose transporter-4 levels and membrane fluidity was achieved, therefore it can be concluded from the present findings that estradiol's beneficial effects seemed to arise from its antilipofuscin, antioxidant and antilipidperoxidative effects, implying an overall anti-aging action. The results of this study will be useful for pharmacological modification of the aging process and applying new strategies for control of age related disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Structural Characterization of Biocompatible Reverse Micelles Using Small-Angle X-ray Scattering, 31P Nuclear Magnetic Resonance, and Fluorescence Spectroscopy.

    PubMed

    Odella, Emmanuel; Falcone, R Darío; Ceolín, Marcelo; Silber, Juana J; Correa, N Mariano

    2018-04-19

    The most critical problem regarding the use of reverse micelles (RMs) in several fields is the toxicity of their partial components. In this sense, many efforts have been made to characterize nontoxic RM formulations on the basis of biological amphiphiles and/or different oils. In this contribution, the microstructure of biocompatible mixed RMs formulated by sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT) and tri- n-octylphosphine oxide (TOPO) surfactants dispersed in the friendly solvent methyl laurate was studied by using SAXS and 31 P NMR and by following the solvatochromic behavior of the molecular probe 4-aminophthalimide (4-AP). The results indicated the presence of RM aggregates upon TOPO incorporation with a droplet size reduction and an increase in the interfacial fluidity in comparison with pure AOT RMs. When confined inside the mixed systems, 4-AP showed a red-edge excitation shift and confirmed the increment of interfacial fluidity upon TOPO addition. Also, the partition between the external nonpolar solvent and the RM interface and an increase in both the local micropolarity and the capability to form a hydrogen bond interaction between 4-AP and a mixed interface were observed. The findings have been explained in terms of the nonionic surfactant structure and its complexing nature expressed at the interfacial level. Notably, we show how two different approaches, i.e., SAXS and the solvatochromism of the probe 4-AP, can be used in a complementary way to enhance our understanding of the interfacial fluidity of RMs, a parameter that is difficult to measure directly.

  2. Membrane Fluidity Changes, A Basic Mechanism of Interaction of Gravity with Cells?

    NASA Astrophysics Data System (ADS)

    Kohn, Florian; Hauslage, Jens; Hanke, Wolfgang

    2017-10-01

    All life on earth has been established under conditions of stable gravity of 1g. Nevertheless, in numerous experiments the direct gravity dependence of biological processes has been shown on all levels of organization, from single molecules to humans. According to the underlying mechanisms a variety of questions, especially about gravity sensation of single cells without specialized organelles or structures for gravity sensing is being still open. Biological cell membranes are complex structures containing mainly lipids and proteins. Functional aspects of such membranes are usually attributed to membrane integral proteins. This is also correct for the gravity dependence of cells and organisms which is well accepted since long for a wide range of biological systems. However, it is as well established that parameters of the lipid matrix are directly modifying the function of proteins. Thus, the question must be asked, whether, and how far plain lipid membranes are affected by gravity directly. In principle it can be said that up to recently no real basic mechanism for gravity perception in single cells has been presented or verified. However, it now has been shown that as a basic membrane parameter, membrane fluidity, is significantly dependent on gravity. This finding might deliver a real basic mechanism for gravity perception of living organisms on all scales. In this review we summarize older and more recent results to demonstrate that the finding of membrane fluidity being gravity dependent is consistent with a variety of published laboratory experiments. We additionally point out to the consequences of these recent results for research in the field life science under space condition.

  3. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes

    NASA Astrophysics Data System (ADS)

    Fei, Haojie; Yang, Chongyang; Bao, Hua; Wang, Gengchao

    2014-11-01

    Flexible all-solid-state supercapacitors (SCs) are fabricated using graphene/carbon black nanoparticle (GCB) film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes (gPVAP-H2SO4). The GCB composite films, with carbon black (CB) nanoparticles uniformly distributed in the graphene nanosheets, greatly improve the active surface areas and ion transportation of pristine graphene film. The porous structure of as-prepared gPVAP-H2SO4 membrane improves the equilibrium swelling ratio in electrolyte and provides interconnected ion transport channels. The chemical crosslinking solves the fluidity problem of PVA-H2SO4 gel electrolyte at high temperature. As-fabricated GCB//gPVAP(20)-H2SO4//GCB flexible SC displays an increased specific capacitance (144.5 F g-1 at 0.5 A g-1) and a higher specific capacitance retention (67.9% from 0.2 to 4 A g-1). More importantly, the flexible SC possesses good electrochemical performance at high temperature (capacitance retention of 78.3% after 1000 cycles at 70 °C).

  4. Comparison Actin- and Glass-Supported Phospholipid Bilayer Diffusion Coefficients

    PubMed Central

    Sterling, Sarah M.; Dawes, Ryan; Allgeyer, Edward S.; Ashworth, Sharon L.; Neivandt, David J.

    2015-01-01

    The formation of biomimetic lipid membranes has the potential to provide insights into cellular lipid membrane dynamics. The construction of such membranes necessitates not only the utilization of appropriate lipids, but also physiologically relevant substrate/support materials. The substrate materials employed have been shown to have demonstrable effects on the behavior of the overlying lipid membrane, and thus must be studied before use as a model cushion support. To our knowledge, we report the formation and investigation of a novel actin protein-supported lipid membrane. Specifically, inner leaflet lateral mobility of globular actin-supported DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayers, deposited via the Langmuir-Blodgett/Langmuir Schaefer methodology, was investigated by z-scan fluorescence correlation spectroscopy across a temperature range of 20–44°C. The actin substrate was found to decrease the diffusion coefficient when compared to an identical membrane supported on glass. The depression of the diffusion coefficient occurred across all measured temperatures. These results indicated that the actin substrate exerted a direct effect on the fluidity of the lipid membrane and highlighted the fact that the choice of substrate/support is critical in studies of model lipid membranes. PMID:25902434

  5. Interaction of phloretin and 6-ketocholestanol with DPPC-liposomes as phospholipid model membranes.

    PubMed

    Auner, Barbara G; O'Neill, Michael A A; Valenta, Claudia; Hadgraft, Jonathan

    2005-04-27

    Phloretin and 6-ketocholestanol are penetration enhancers for percutaneous delivery of certain topically applied drugs. In the present study some physicochemical experiments have been performed to elucidate the mechanism of action of phloretin and 6-ketocholestanol. The penetration enhancing effect of phloretin and 6-ketocholestanol is believed to be due to their increase of the fluidity of the intercellular lipid bilayers of the stratum corneum. Phospholipid vesicles were chosen as a simple model to represent these bilayers. The effect of phloretin and 6-ketocholestanol on phase transition temperature and enthalpy was studied using differential scanning calorimetry. Beside of that the size of liposomes was monitored when the amount of penetration enhancer in the liposome preparation was changed. Addition of increasing amounts of phloretin and 6-ketocholestanol to the bilayer resulted in lowering of phase transition temperatures and increasing the enthalpy. Additionally the size of the liposomes was increased when penetration enhancer was added. The results suggest that phloretin as well as 6-ketocholestanol would interact with stratum corneum lipids in a similar manner, both reduce the diffusional resistance of the stratum corneum to drugs with balanced hydrophilic-lipophilic characteristics.

  6. Hyaluron Filler Containing Lidocaine on a CPM Basis for Lip Augmentation: Reports from Practical Experience.

    PubMed

    Fischer, Tanja C; Sattler, Gerhard; Gauglitz, Gerd G

    2016-06-01

    Lip augmentation with hyaluronic acid fillers is established. As monophasic polydensified hyaluronic acid products with variable density, CPM-HAL1 (Belotero Balance Lidocaine, Merz Aesthetics, Raleigh, NC) and CPM-HAL2 (Belotero Intense Lidocaine, Merz Aesthetics, Raleigh, NC) are qualified for beautification and particularly natural-looking rejuvenation, respectively. The aim of this article was to assess the handling and outcome of lip augmentation using the lidocaine-containing hyaluronic acid fillers, CPM-HAL1 and CPM-HAL2. Data were documented from patients who received lip augmentation by means of beautification and/or rejuvenation using CPM-HAL1 and/or CPM-HAL2. Observation period was 4 months, with assessment of natural outcome, evenness, distribution, fluidity, handling, malleability, tolerability, as well as patient satisfaction and pain. A total of 146 patients from 21 German centers participated. Physicians rated natural outcome and evenness as good or very good for more than 95% of patients. Distribution, fluidity, handling, and malleability were assessed for both fillers as good or very good in more than 91% of patients. At every evaluation point, more than 93% of patients were very or very much satisfied with the product. A total of 125 patients (85.6%) experienced transient injection-related side effects. Pain intensity during the procedure was mild (2.72 ± 1.72 on the 0-10 pain assessment scale) and abated markedly within 30 minutes (0.42 ± 0.57). Lip augmentation with hyaluronic acid fillers produced a long-term cosmetic result. Due to the lidocaine content, procedural pain was low and transient. Accordingly, a high degree of patient satisfaction was achieved that was maintained throughout the observation period. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Detrimental Effects of Non-Functional Spermatozoa on the Freezability of Functional Spermatozoa from Boar Ejaculate

    PubMed Central

    Martinez-Alborcia, Maria J.; Valverde, Anthony; Parrilla, Inmaculada; Vazquez, Juan M.; Martinez, Emilio A.; Roca, Jordi

    2012-01-01

    In the present study, the impact of non-functional spermatozoa on the cryopreservation success of functional boar spermatozoa was evaluated. Fifteen sperm-rich ejaculate fractions collected from five fertile boars were frozen with different proportions of induced non-functional sperm (0 –native semen sample-, 25, 50 and 75% non-functional spermatozoa). After thawing, the recovery of motile and viable spermatozoa was assessed, and the functional of the spermatozoa was evaluated from plasma membrane fluidity and intracellular reactive oxygen species (ROS) generation upon exposure to capacitation conditions. In addition, the lipid peroxidation of the plasma membrane was assessed by the indirect measurement of malondialdehyde (MDA) generation. The normalized (with respect to a native semen sample) sperm motility (assessed by CASA) and viability (cytometrically assessed after staining with Hoechst 33342, propidium iodide and fluorescein-conjugated peanut agglutinin) decreased (p<0.01) as the proportion of functional spermatozoa in the semen samples before freezing decreased, irrespective of the semen donor. However, the magnitude of the effect differed (p<0.01) among boars. Moreover, semen samples with the largest non-functional sperm subpopulation before freezing showed the highest (p<0.01) levels of MDA after thawing. The thawed viable spermatozoa of semen samples with a high proportion of non-functional spermatozoa before freezing were also functionally different from those of samples with a low proportion of non-functional spermatozoa. These differences consisted of higher (p<0.01) levels of intracellular ROS generation (assessed with 5-(and-6) chloromethyl-20,70-dichlorodihydrofluorescein diacetate acetyl ester; CM-H2DCFDA) and increased (p<0.01) membrane fluidity (assessed with Merocyanine 540). These findings indicate that non-functional spermatozoa in the semen samples before freezing negatively influence the freezability of functional spermatozoa. PMID:22567165

  8. Characterization of the Tissue and Stromal Cell Components of Micro-Superficial Enhanced Fluid Fat Injection (Micro-SEFFI) for Facial Aging Treatment.

    PubMed

    Rossi, Martina; Roda, Barbara; Zia, Silvia; Vigliotta, Ilaria; Zannini, Chiara; Alviano, Francesco; Bonsi, Laura; Zattoni, Andrea; Reschiglian, Pierluigi; Gennai, Alessandro

    2018-06-14

    New microfat preparations provide material suitable for use as a regenerative filler for different facial areas. To support the development of new robust techniques for regenerative purposes, the cellular content of the sample should be considered. To evaluate the stromal vascular fraction (SVF) cell components of micro-superficial enhanced fluid fat injection (SEFFI) samples via a technique to harvest re-injectable tissue with minimum manipulation. The results were compared to those obtained from SEFFI samples. Microscopy analysis was performed to visualize the tissue structure. Micro-SEFFI samples were also fractionated using Celector ®, an innovative non-invasive separation technique, to provide an initial evaluation of sample fluidity and composition. SVFs obtained from SEFFI and micro-SEFFI were studied. Adipose stromal cells (ASCs) were isolated and characterized by proliferation and differentiation capacity assays. Microscopic and quality analyses of micro-SEFFI samples by Celector® confirmed the high fluidity and sample cellular composition in terms of red blood cell contamination, the presence of cell aggregates and extracellular matrix fragments. ASCs were isolated from adipose tissue harvested using SEFFI and micro-SEFFI systems. These cells were demonstrated to have a good proliferation rate and differentiation potential towards mesenchymal lineages. Despite the small sizes and low cellularity observed in micro-SEFFI-derived tissue, we were able to isolate stem cells. This result partially explains the regenerative potential of autologous micro-SEFFI tissue grafts. In addition, using this novel Celector® technology, tissues used for aging treatment were characterized analytically, and the adipose tissue composition was evaluated with no need for extra sample processing.

  9. Effects of in vitro supplementation with Syzygium cumini (L.) on platelets from subjects affected by diabetes mellitus.

    PubMed

    Raffaelli, Francesca; Borroni, Francesca; Alidori, Alessandro; Tirabassi, Giacomo; Faloia, Emanuela; Rabini, Rosa Anna; Giulietti, Alessia; Mazzanti, Laura; Nanetti, Laura; Vignini, Arianna

    2015-01-01

    The aim of this study was to assess the in vitro effects of Syzygium cumini (L.) (Sc) incubation on platelets from patients with diabetes, in order to test its efficacy as a potential adjuvant therapy. This study was performed on 77 patients with diabetes [29 in good (DMgc) and 48 in poor glycemic control (DMpc)] and 85 controls. In patients, platelets were analyzed at recruitment and after in vitro Sc incubation (final concentration of 200 µg/ml for 3 hours at 37 °C), whereas in controls only basal evaluation was performed. Lipoperoxide and nitric oxide (NO) levels, superoxide dismutase (SOD) and Na(+)/K(+) ATPase activities, total antioxidant capacity (TAC), and membrane fluidity tested by anisotropy of fluorescent probes 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) and 1-6-phenyl-1,3,5-hexatriene (DPH) were determined. Collagen-induced platelet aggregation was also evaluated. In vitro Sc activity counteracts oxidative damage, by improving platelet function through augmented membrane fluidity and Na(+)/K(+) ATPase activity; it also enhances antioxidant system functionality by increasing NO levels, SOD activity, and TAC and by decreasing lipoperoxide levels both in whole samples and in DMgc and DMpc. In addition, a slight tendency towards collagen-induced platelet aggregation decrease after Sc was observed. However, all these parameters, even after improvement, did not reach the levels of control subjects. Our results suggest that Sc may have a preventive and protective effect in oxidative damage progression associated with diabetes mellitus and its complications. If our data will be confirmed, Sc supplementation might become a further tool in the management of this disease, especially in view of its easy availability, safety, low cost, and absence of side effects.

  10. [Lidocaine-containing hyaluronic acid filler on a CPM® basis for lip augmentation : Experience from clinical practice].

    PubMed

    Fischer, T; Sattler, G; Gauglitz, G

    2016-06-01

    Lip augmentation with hyaluronic acid fillers is an established procedure. As monophasic polydensified hyaluronic acid products with variable density CPM-HAL1 (Belotero® Balance Lidocaine) and CPM-HAL2 (Belotero® Intense Lidocaine) are qualified for beautification and particularly natural-looking rejuvenation, respectively. Assessment of handling and outcome of lip augmentation using the lidocaine-containing hyaluronic acid fillers CPM-HAL1 and CPM-HAL2. Data from patients who received lip augmentation by means of bautification and/or rejuvenation using CPM-HAL1 and/or CPM-HAL2 were documented. Observation period was 4 months, with assessment of natural outcome, evenness, handling, fluidity, distribution, malleability, tolerability, as well as patient satisfaction and pain. In total, 146 patients from 21 German centres participated. Physicians rated natural outcome and evenness as good or very good for > 95 % of patients. Handling, fluidity, distribution and malleability were assessed for both fillers as good or very good in > 91 % of patients. At every evaluation point, more than 93 % of patients were very or very much satisfied with the product. A total of 125 patients (85.6 %) experienced transient injection-related side effects. Pain intensity during the procedure was mild (2.72 ± 1.72 on the 0-10 pain assessment scale) and abated markedly within 30 min (0.42 ± 0.57). Lip augmentation with hyaluronic acid fillers produced a long-term cosmetic result. Due to the lidocaine content, procedural pain was low and transient. Accordingly, a high degree of patient satisfaction was achieved that was maintained throughout the observation period.

  11. Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution

    PubMed Central

    Zhou, Aifen; Baidoo, Edward; He, Zhili; Mukhopadhyay, Aindrila; Baumohl, Jason K; Benke, Peter; Joachimiak, Marcin P; Xie, Ming; Song, Rong; Arkin, Adam P; Hazen, Terry C; Keasling, Jay D; Wall, Judy D; Stahl, David A; Zhou, Jizhong

    2013-01-01

    Desulfovibrio vulgaris Hildenborough strains with significantly increased tolerance to NaCl were obtained via experimental evolution. A NaCl-evolved strain, ES9-11, isolated from a population cultured for 1200 generations in medium amended with 100 mM NaCl, showed better tolerance to NaCl than a control strain, EC3-10, cultured for 1200 generations in parallel but without NaCl amendment in medium. To understand the NaCl adaptation mechanism in ES9-11, we analyzed the transcriptional, metabolite and phospholipid fatty acid (PLFA) profiles of strain ES9-11 with 0, 100- or 250 mM-added NaCl in medium compared with the ancestral strain and EC3-10 as controls. In all the culture conditions, increased expressions of genes involved in amino-acid synthesis and transport, energy production, cation efflux and decreased expression of flagellar assembly genes were detected in ES9-11. Consistently, increased abundances of organic solutes and decreased cell motility were observed in ES9-11. Glutamate appears to be the most important osmoprotectant in D. vulgaris under NaCl stress, whereas, other organic solutes such as glutamine, glycine and glycine betaine might contribute to NaCl tolerance under low NaCl concentration only. Unsaturation indices of PLFA significantly increased in ES9-11. Branched unsaturated PLFAs i17:1 ω9c, a17:1 ω9c and branched saturated i15:0 might have important roles in maintaining proper membrane fluidity under NaCl stress. Taken together, these data suggest that the accumulation of osmolytes, increased membrane fluidity, decreased cell motility and possibly an increased exclusion of Na+ contribute to increased NaCl tolerance in NaCl-evolved D. vulgaris. PMID:23575373

  12. Adaptive Changes in Membrane Lipids of Barophilic Bacteria in Response to Changes in Growth Pressure

    PubMed Central

    Yano, Yutaka; Nakayama, Akihiko; Ishihara, Kenji; Saito, Hiroaki

    1998-01-01

    The lipid compositions of barophilic bacterial strains which contained docosahexaenoic acid (DHA [22:6n-3]) were examined, and the adaptive changes of these compositions were analyzed in response to growth pressure. In the facultatively barophilic strain 16C1, phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) were major components which had the same fatty acid chains. However, in PE, monounsaturated fatty acids such as hexadecenoic acid were major components, and DHA accounted for only 3.7% of the total fatty acids, while in PG, DHA accounted for 29.6% of the total fatty acids. In response to an increase in growth pressure in strain 16C1, the amounts of saturated fatty acids in PE were reduced, and these decreases were mainly balanced by an increase in unsaturated fatty acids, including DHA. In PG, the decrease in saturated fatty acids was mainly balanced by an increase in DHA. Similar adaptive changes in fatty acid composition were observed in response to growth pressure in obligately barophilic strain 2D2. Furthermore, these adaptive changes in response were also observed in response to low temperature in strain 16C1. These results confirm that the general shift from saturated to unsaturated fatty acids including DHA is one of the adaptive changes in response to increases in pressure and suggest that DHA may play a role in maintaining the proper fluidity of membrane lipids under high pressure. PMID:16349499

  13. Lipid nanoparticle interactions and assemblies

    NASA Astrophysics Data System (ADS)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron oxide nanoparticles encapsulated in the lipid bilayer, the local temperature and membrane fluidity could be observed. DLNAs were encapsulated with different sized nanoparticles and concentrations in order to observe the effect of the bilayer nanoparticles on the lipid bilayer's phase behavior and leakage. Two different sized nanoparticles were used, a 2 nm gold nanoparticle (GNP) much smaller than the thickness of the bilayer and a 4 nm GNP near the thickness of the lipid bilayer. The 2 nm GNPs were shown to affect the lipid bilayer differently than the 4 nm GNP. Specifically, the two nanoparticles altered the phase behavior and leakage differently in a temperature dependent fashion, demonstrating that embedded nanoparticle size can be used induce or inhibit bilayer leakage. A dual solvent exchange method was used to control the lipid surface composition of an iron oxide nanoparticle with a cationic lipid and a polyethylene glycol (PEG) lipid to produce lipid coated magnetic nanoparticles (LMNPs). PEG is well known for its ability to enhance the pharmacokinetics of nanostructures by preventing uptake by the immune system. By controlling the lipid surface composition, the surface charge and PEG conformation can be controlled which allowed the LMNPs to be used as an MRI contrast agent and a delivery system for siRNA that could be triggered with temperature.

  14. Membrane fluidization by alcohols inhibits DesK-DesR signalling in Bacillus subtilis.

    PubMed

    Vaňousová, Kateřina; Beranová, Jana; Fišer, Radovan; Jemioła-Rzemińska, Malgorzata; Matyska Lišková, Petra; Cybulski, Larisa; Strzałka, Kazimierz; Konopásek, Ivo

    2018-03-01

    After cold shock, the Bacillus subtilis desaturase Des introduces double bonds into the fatty acids of existing membrane phospholipids. The synthesis of Des is regulated exclusively by the two-component system DesK/DesR; DesK serves as a sensor of the state of the membrane and triggers Des synthesis after a decrease in membrane fluidity. The aim of our work is to investigate the biophysical changes in the membrane that are able to affect the DesK signalling state. Using linear alcohols (ethanol, propanol, butanol, hexanol, octanol) and benzyl alcohol, we were able to suppress Des synthesis after a temperature downshift. The changes in the biophysical properties of the membrane caused by alcohol addition were followed using membrane fluorescent probes and differential scanning calorimetry. We found that the membrane fluidization induced by alcohols was reflected in an increased hydration at the lipid-water interface. This is associated with a decrease in DesK activity. The addition of alcohol mimics a temperature increase, which can be measured isothermically by fluorescence anisotropy. The effect of alcohols on the membrane periphery is in line with the concept of the mechanism by which two hydrophilic motifs located at opposite ends of the transmembrane region of DesK, which work as a molecular caliper, sense temperature-dependent variations in membrane properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Lipid membrane modulation and pigmentation: A cryoprotection mechanism in Arctic pigmented bacteria.

    PubMed

    Singh, Archana; Krishnan, Kottekattu P; Prabaharan, Dharmar; Sinha, Rupesh K

    2017-09-01

    The present study aims to address the effect of gradual change in temperature (15-4 °C) followed by freeze-thaw on pigmented bacterial strains - Leeuwenhoekiella aequorea, Pseudomonas pelagia, Halomonas boliviensis, Rhodococcus yunnanensis, and Algoriphagus ratkwoskyi, isolated from Kongsfjorden (an Arctic fjord) to understand their survival in present climate change scenario. The total cell count and retrievability of the isolates were not affected despite the variation in temperature. In all the isolates, the saturated fatty acids, particularly stearic and palmitic acid were predominant at higher temperature, while at 4 °C, the unsaturated fatty acids, primarily cis-10-pentadecenoic, palmitoleic, and oleic acid, were major constituents, confirming homeoviscous adaptation. Even after freeze-thaw, the unsaturated fatty acid composition was retained in all the isolates except A. ratkwoskyi. The increase in unsaturated fatty acids was at the expense of their saturated analogs, probably by desaturase activity. The major pigment in the isolates resembled Zeaxanthin, whose concentration was found to be 26-65% higher after freeze-thaw, suggesting its vital role as a cryoprotective agent in regulating membrane fluidity. Such experimental simulations related to freeze-thaw in polar bacterial isolates are helpful in understanding the physiological plasticity adaptations, which could be critical for survival in harsh and rapidly changing polar environments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Chemistry of thermally altered high volatile bituminous coals from southern Indiana

    USGS Publications Warehouse

    Walker, R.; Mastalerz, Maria; Brassell, S.; Elswick, E.; Hower, J.C.; Schimmelmann, A.

    2007-01-01

    The optical properties and chemical characteristics of two thermally altered Pennsylvanian high volatile bituminous coals, the non-coking Danville Coal Member (Ro = 0.55%) and the coking Lower Block Coal Member (Ro = 0.56%) were investigated with the purpose of understanding differences in their coking behavior. Samples of the coals were heated to temperatures of 275????C, 325????C, 375????C and 425????C, with heating times of up to one hour. Vitrinite reflectance (Ro%) rises with temperature in both coals, with the Lower Block coal exhibiting higher reflectance at 375????C and 425????C compared to the Danville coal. Petrographic changes include the concomitant disappearance of liptinites and development of vesicles in vitrinites in both coals, although neither coal developed anisotropic coke texture. At 375????C, the Lower Block coal exhibits a higher aromatic ratio, higher reflectance, higher carbon content, and lower oxygen content, all of which indicate a greater degree of aromatization at this temperature. The Lower Block coal maintains a higher CH2/CH3 ratio than the Danville coal throughout the heating experiment, indicating that the long-chain unbranched aliphatics contained in Lower Block coal liptinites are more resistant to decomposition. As the Lower Block coal contains significant amounts of liptinite (23.6%), the contribution of aliphatics from these liptinites appears to be the primary cause of its large plastic range and high fluidity. ?? 2006 Elsevier B.V. All rights reserved.

  17. Bile salts stimulate mucin secretion by cultured dog gallbladder epithelial cells independent of their detergent effect.

    PubMed

    Klinkspoor, J H; Yoshida, T; Lee, S P

    1998-05-15

    1. Bile salts stimulate mucin secretion by the gallbladder epithelium. We have investigated whether this stimulatory effect is due to a detergent effect of bile salts. 2. The bile salts taurocholic acid (TC) and tauroursodeoxycholic acid (TUDC) and the detergents Triton X-100 (12.5-400 microM) and Tween-20 (0.1-3.2 mM) were applied to monolayers of cultured dog gallbladder epithelial cells. Mucin secretion was studied by measuring the secretion of [3H]N-acetyl-d-glucosamine-labelled glycoproteins. We also attempted to alter the fluidity of the apical membrane of the cells through extraction of cholesterol with beta-cyclodextrin (2.5-15 mM). The effect on TUDC-induced mucin secretion was studied. Cell viability was assessed by measuring lactate dehydrogenase (LDH) leakage or 51Cr release. 3. In contrast with the bile salts, the detergents were not able to cause an increase in mucin secretion without causing concomitant cell lysis. Concentrations of detergent that increased mucin release (>100 microM Triton X-100, >0.8 mM Tween-20), caused increased LDH release. Incubation with beta-cyclodextrin resulted in effective extraction of cholesterol without causing an increase in 51Cr release. However, no effect of the presumed altered membrane fluidity on TUDC (10 mM)-induced mucin secretion was observed. 4. The stimulatory effect of bile salts on mucin secretion by gallbladder epithelial cells is not affected by the fluidity of the apical membrane of the cells and also cannot be mimicked by other detergents. We conclude that the ability of bile salts to cause mucin secretion by the gallbladder epithelium is not determined by their detergent properties.

  18. Fluidization of Membrane Lipids Enhances the Tolerance of Saccharomyces cerevisiae to Freezing and Salt Stress▿

    PubMed Central

    Rodríguez-Vargas, Sonia; Sánchez-García, Alicia; Martínez-Rivas, Jose Manuel; Prieto, Jose Antonio; Randez-Gil, Francisca

    2007-01-01

    Unsaturated fatty acids play an essential role in the biophysical characteristics of cell membranes and determine the proper function of membrane-attached proteins. Thus, the ability of cells to alter the degree of unsaturation in their membranes is an important factor in cellular acclimatization to environmental conditions. Many eukaryotic organisms can synthesize dienoic fatty acids, but Saccharomyces cerevisiae can introduce only a single double bond at the Δ9 position. We expressed two sunflower (Helianthus annuus) oleate Δ12 desaturases encoded by FAD2-1 and FAD2-3 in yeast cells of the wild-type W303-1A strain (trp1) and analyzed their effects on growth and stress tolerance. Production of the heterologous desaturases increased the content of dienoic fatty acids, especially 18:2Δ9,12, the unsaturation index, and the fluidity of the yeast membrane. The total fatty acid content remained constant, and the level of monounsaturated fatty acids decreased. Growth at 15°C was reduced in the FAD2 strains, probably due to tryptophan auxotrophy, since the trp1 (TRP1) transformants that produced the sunflower desaturases grew as well as the control strain did. Our results suggest that changes in the fluidity of the lipid bilayer affect tryptophan uptake and/or the correct targeting of tryptophan transporters. The expression of the sunflower desaturases, in either Trp+ or Trp− strains, increased NaCl tolerance. Production of dienoic fatty acids increased the tolerance to freezing of wild-type cells preincubated at 30°C or 15°C. Thus, membrane fluidity is an essential determinant of stress resistance in S. cerevisiae, and engineering of membrane lipids has the potential to be a useful tool of increasing the tolerance to freezing in industrial strains. PMID:17071783

  19. Comparative study of hypocholesterolemic and hypolipidemic effects of conjugated linolenic acid isomers against induced biochemical perturbations and aberration in erythrocyte membrane fluidity.

    PubMed

    Saha, Siddhartha S; Chakraborty, Anirban; Ghosh, Santinath; Ghosh, Mahua

    2012-06-01

    The purpose of the study was to evaluate hypolipidemic and hypocholesterolemic activities of conjugated linolenic acid (CLnA) isomers, present in bitter gourd and snake gourd seed, in terms of amelioration of plasma lipid profile, lipoprotein oxidation and erythrocyte membrane fluidity after oral administration. Male albino rats were divided into six groups. Group 1 was control, and others were induced with oxidative stress by oral gavage of sodium arsenite (Sa). Group 2 was kept as treated control, and groups 3-6 were further treated with different oral doses of seed oils to maintaining definite concentration of CLnA isomers (0.5 and 1.0% of total lipid for each CLnA isomer). CLnA isomers normalized cholesterol, LDL-cholesterol, HDL-cholesterol and triglyceride contents in plasma and body weight of experimental rats and decreased cholesterol synthesis by reducing hepatic HMG-CoA reductase activity. Administration of Sa caused alteration in erythrocyte membrane fluidity due to increase in cholesterol and decrease in phospholipid content. Tissue cholesterol and lipid contents were also increased by Sa administration. These altered parameters were reversed by experimental oil administration. Protective effect of CLnA isomers on erythrocyte morphology was observed by atomic force microscopy (AFM). Fatty acid composition of erythrocyte membrane showed decrease in polyunsaturated fatty acid (PUFA) and increase in arachidonic acid content after Sa administration, which was normalized with the treatment of these oils. Supplementation of CLnA isomers restored erythrocyte membrane (EM) lipid peroxidation and lipoprotein oxidation. CLnA isomers, present in vegetable oils, showed potent hypolipidemic and hypocholesterolemic activities against biochemical perturbations.

  20. Phase-field modeling of mixing/demixing of regular binary mixtures with a composition-dependent viscosity

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2017-04-01

    We simulate the mixing (demixing) process of a quiescent binary liquid mixture with a composition-dependent viscosity which is instantaneously brought from the two-phase (one-phase) to the one-phase (two-phase) region of its phase diagram. Our theoretical approach follows a standard diffuse-interface model of partially miscible regular binary mixtures wherein convection and diffusion are coupled via a nonequilibrium capillary force, expressing the tendency of the phase-separating system to minimize its free energy. Based on 2D simulation results, we discuss the influence of viscosity ratio on basic statistics of the mixing (segregation) process triggered by a rapid heating (quench), assuming that the ratio of capillary to viscous forces (a.k.a. the fluidity coefficient) is large. We show that, for a phase-separating system, at a fixed value of the fluidity coefficient (with the continuous phase viscosity taken as a reference), the separation depth and the characteristic length of single-phase microdomains decrease monotonically for increasing values of the viscosity of the dispersed phase. This variation, however, is quite small, in agreement with experimental results. On the other hand, as one might expect, at a fixed viscosity of the dispersed phase both of the above statistics increase monotonically as the viscosity of the continuous phase decreases. Finally, we show that for a mixing system the attainment of a single-phase equilibrium state by coalescence and diffusion is retarded by an increase in the viscosity ratio at a fixed fluidity for the dispersed phase. In fact, for large enough values of the viscosity ratio, a thin film of the continuous phase becomes apparent when two drops of the minority phase approach each other, which further retards coalescence.

  1. Fluid Movement and Creativity

    ERIC Educational Resources Information Center

    Slepian, Michael L.; Ambady, Nalini

    2012-01-01

    Cognitive scientists describe creativity as fluid thought. Drawing from findings on gesture and embodied cognition, we hypothesized that the physical experience of fluidity, relative to nonfluidity, would lead to more fluid, creative thought. Across 3 experiments, fluid arm movement led to enhanced creativity in 3 domains: creative generation,…

  2. Cybergirls: Negotiating Social Identities on Cybersites

    ERIC Educational Resources Information Center

    Guzzetti, Barbara J.

    2006-01-01

    Cyberspace has been regarded as an ideal site for adolescents' identity exploration since it is socially mediated. Liberal cyberfeminists argue that virtual spaces promote gender equality, fluidity, and unity through body-free interactions. This study investigated the cybersites frequented by two adolescent girls who eschewed typical…

  3. The formation of ordered nanoclusters controls cadherin anchoring to actin and cell–cell contact fluidity

    PubMed Central

    Strale, Pierre-Olivier; Duchesne, Laurence; Peyret, Grégoire; Montel, Lorraine; Nguyen, Thao; Png, Evelyn; Tampé, Robert; Troyanovsky, Sergey; Hénon, Sylvie; Ladoux, Benoit

    2015-01-01

    Oligomerization of cadherins could provide the stability to ensure tissue cohesion. Cadherins mediate cell–cell adhesion by forming trans-interactions. They form cis-interactions whose role could be essential to stabilize intercellular junctions by shifting cadherin clusters from a fluid to an ordered phase. However, no evidence has been provided so far for cadherin oligomerization in cellulo and for its impact on cell–cell contact stability. Visualizing single cadherins within cell membrane at a nanometric resolution, we show that E-cadherins arrange in ordered clusters, providing the first demonstration of the existence of oligomeric cadherins at cell–cell contacts. Studying the consequences of the disruption of the cis-interface, we show that it is not essential for adherens junction formation. Its disruption, however, increased the mobility of junctional E-cadherin. This destabilization strongly affected E-cadherin anchoring to actin and cell–cell rearrangement during collective cell migration, indicating that the formation of oligomeric clusters controls the anchoring of cadherin to actin and cell–cell contact fluidity. PMID:26195669

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Jae-Sung; Choo, Hyo-Jung; Cho, Bong-Rae

    Lipid rafts are plasma membrane platforms mediating signal transduction pathways for cellular proliferation, differentiation and apoptosis. Here, we show that membrane fluidity was increased in HeLa cells following treatment with ginsenoside Rh2 (Rh2), as determined by cell staining with carboxy-laurdan (C-laurdan), a two-photon dye designed for measuring membrane hydrophobicity. In the presence of Rh2, caveolin-1 appeared in non-raft fractions after sucrose gradient ultracentrifugation. In addition, caveolin-1 and GM1, lipid raft landmarkers, were internalized within cells after exposure to Rh2, indicating that Rh2 might disrupt lipid rafts. Since cholesterol overloading, which fortifies lipid rafts, prevented an increase in Rh2-induced membrane fluidity,more » caveolin-1 internalization and apoptosis, lipid rafts appear to be essential for Rh2-induced apoptosis. Moreover, Rh2-induced Fas oligomerization was abolished following cholesterol overloading, and Rh2-induced apoptosis was inhibited following treatment with siRNA for Fas. This result suggests that Rh2 is a novel lipid raft disruptor leading to Fas oligomerization and apoptosis.« less

  5. Interaction of nanoparticles with lipid membranes: a multiscale perspective

    NASA Astrophysics Data System (ADS)

    Montis, Costanza; Maiolo, Daniele; Alessandri, Ivano; Bergese, Paolo; Berti, Debora

    2014-05-01

    Freestanding lipid bilayers were challenged with 15 nm Au nanospheres either coated by a citrate layer or passivated by a protein corona. The effect of Au nanospheres on the bilayer morphology, permeability and fluidity presents strong differences or similarities, depending on the observation length scale, from the colloidal to the molecular domains. These findings suggest that the interaction between nanoparticles and lipid membranes should be conveniently treated as a multiscale phenomenon.Freestanding lipid bilayers were challenged with 15 nm Au nanospheres either coated by a citrate layer or passivated by a protein corona. The effect of Au nanospheres on the bilayer morphology, permeability and fluidity presents strong differences or similarities, depending on the observation length scale, from the colloidal to the molecular domains. These findings suggest that the interaction between nanoparticles and lipid membranes should be conveniently treated as a multiscale phenomenon. Electronic supplementary information (ESI) available: All the experimental details, figures and tables. See DOI: 10.1039/c4nr00838c

  6. Multiscale analysis of the correlation of processing parameters on viscidity of composites fabricated by automated fiber placement

    NASA Astrophysics Data System (ADS)

    Han, Zhenyu; Sun, Shouzheng; Fu, Yunzhong; Fu, Hongya

    2017-10-01

    Viscidity is an important physical indicator for assessing fluidity of resin that is beneficial to contact resin with the fibers effectively and reduce manufacturing defects during automated fiber placement (AFP) process. However, the effect of processing parameters on viscidity evolution is rarely studied during AFP process. In this paper, viscidities under different scales are analyzed based on multi-scale analysis method. Firstly, viscous dissipation energy (VDE) within meso-unit under different processing parameters is assessed by using finite element method (FEM). According to multi-scale energy transfer model, meso-unit energy is used as the boundary condition for microscopic analysis. Furthermore, molecular structure of micro-system is built by molecular dynamics (MD) method. And viscosity curves are then obtained by integrating stress autocorrelation function (SACF) with time. Finally, the correlation characteristics of processing parameters to viscosity are revealed by using gray relational analysis method (GRAM). A group of processing parameters is found out to achieve the stability of viscosity and better fluidity of resin.

  7. A Fluid Sea in the Mariana Islands: Community Archaeology and Mapping the Seascape of Saipan

    NASA Astrophysics Data System (ADS)

    McKinnon, Jennifer; Mushynsky, Julie; Cabrera, Genevieve

    2014-06-01

    This paper applies both a community archaeology and seascape approach to the investigation of the sea and its importance to the Indigenous community on the island of Saipan in the Mariana Islands in western Oceania. It examines data collected during a community project including archaeological sites, oral histories, lived experiences and contemporary understandings of both tangible and intangible maritime heritage to explore Indigenous connections with the sea and better define the seascape. What the seascape of Saipan conveys in the larger sense is the true fluidity of the sea. In this instance fluidity has more than one connotation; it refers to the sea as both a substance and an idea that permeates and flows into all aspects of Indigenous life. Chamorro and Carolinian people of Saipan identify themselves as having an ancestral connection with the sea that they continue to maintain to this day as they engage in daily activities within their seascape.

  8. In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity

    PubMed Central

    Kuriyama, Sei; Theveneau, Eric; Benedetto, Alexandre; Parsons, Maddy; Tanaka, Masamitsu; Charras, Guillaume; Kabla, Alexandre

    2014-01-01

    Collective cell migration (CCM) and epithelial–mesenchymal transition (EMT) are common to cancer and morphogenesis, and are often considered to be mutually exclusive in spite of the fact that many cancer and embryonic cells that have gone through EMT still cooperate to migrate collectively. Here we use neural crest (NC) cells to address the question of how cells that have down-regulated cell–cell adhesions can migrate collectively. NC cell dissociation relies on a qualitative and quantitative change of the cadherin repertoire. We found that the level of cell–cell adhesion is precisely regulated by internalization of N-cadherin downstream of lysophosphatidic acid (LPA) receptor 2. Rather than promoting the generation of single, fully mesenchymal cells, this reduction of membrane N-cadherin only triggers a partial mesenchymal phenotype. This intermediate phenotype is characterized by an increase in tissue fluidity akin to a solid-like–to–fluid-like transition. This change of plasticity allows cells to migrate under physical constraints without abolishing cell cooperation required for collectiveness. PMID:25002680

  9. Characterization of Storage-Induced Red Blood Cell Hemolysis Using Raman Spectroscopy.

    PubMed

    Gautam, Rekha; Oh, Joo-Yeun; Marques, Marisa B; Dluhy, Richard A; Patel, Rakesh P

    2018-06-11

    The therapeutic efficacy and safety of stored red blood cells (RBCs) relies on minimal in-bag hemolysis. The accuracy of current methods of measuring hemolysis can suffer as a result of specimen collection and processing artefacts. To test whether Raman spectroscopy could be used to assess hemolysis. RBCs were stored for as long as 42 days. Raman spectra of RBCs were measured before and after washing, and hemolysis was measured in supernatant by visible spectroscopy. Raman spectra indicated increased concentrations of oxyhemoglobin (oxyHb) and methemoglobin (metHb), and decreased membrane fluidity with storage age. Changes in oxyHb and metHb were associated with the intraerythrocytic and extracellular fractions, respectively. Hemolysis increased in a storage age-dependent manner. Changes in Raman bands reflective of oxyHb, metHb, and RBC membranes correlated with hemolysis; the most statistically significant change was an increased intensity of metHb and decreased membrane fluidity. These data suggest that Raman spectroscopy may offer a new label-free modality to assess RBC hemolysis during cold storage.

  10. Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress

    PubMed Central

    Dubousquet, Vaimiti; Gros, Emmanuelle; Berteaux-Lecellier, Véronique; Viguier, Bruno; Raharivelomanana, Phila; Bertrand, Cédric; Lecellier, Gaël J.

    2016-01-01

    ABSTRACT Temperature can modify membrane fluidity and thus affects cellular functions and physiological activities. This study examines lipid remodelling in the marine symbiotic organism, Tridacna maxima, during a time series of induced thermal stress, with an emphasis on the morphology of their symbiont Symbiodinium. First, we show that the French Polynesian giant clams harbour an important proportion of saturated fatty acids (SFA), which reflects their tropical location. Second, in contrast to most marine organisms, the total lipid content in giant clams remained constant under stress, though some changes in their composition were shown. Third, the stress-induced changes in fatty acid (FA) diversity were accompanied by an upregulation of genes involved in lipids and ROS pathways. Finally, our microscopic analysis revealed that for the giant clam's symbiont, Symbiodinium, thermal stress led to two sequential cell death processes. Our data suggests that the degradation of Symbiodinium cells could provide an additional source of energy to T. maxima in response to heat stress. PMID:27543058

  11. Cholesterol segregates into submicrometric domains at the living erythrocyte membrane: evidence and regulation.

    PubMed

    Carquin, Mélanie; Conrard, Louise; Pollet, Hélène; Van Der Smissen, Patrick; Cominelli, Antoine; Veiga-da-Cunha, Maria; Courtoy, Pierre J; Tyteca, Donatienne

    2015-12-01

    Although cholesterol is essential for membrane fluidity and deformability, the level of its lateral heterogeneity at the plasma membrane of living cells is poorly understood due to lack of appropriate probe. We here report on the usefulness of the D4 fragment of Clostridium perfringens toxin fused to mCherry (theta*), as specific, non-toxic, sensitive and quantitative cholesterol-labeling tool, using erythrocyte flat membrane. By confocal microscopy, theta* labels cholesterol-enriched submicrometric domains in coverslip-spread but also gel-suspended (non-stretched) fresh erythrocytes, suggesting in vivo relevance. Cholesterol domains on spread erythrocytes are stable in time and space, restricted by membrane:spectrin anchorage via 4.1R complexes, and depend on temperature and sphingomyelin, indicating combined regulation by extrinsic membrane:cytoskeleton interaction and by intrinsic lipid packing. Cholesterol domains partially co-localize with BODIPY-sphingomyelin-enriched domains. In conclusion, we show that theta* is a useful vital probe to study cholesterol organization and demonstrate that cholesterol forms submicrometric domains in living cells.

  12. The emergence of understanding in a computer model of concepts and analogy-making

    NASA Astrophysics Data System (ADS)

    Mitchell, Melanie; Hofstadter, Douglas R.

    1990-06-01

    This paper describes Copycat, a computer model of the mental mechanisms underlying the fluidity and adaptability of the human conceptual system in the context of analogy-making. Copycat creates analogies between idealized situations in a microworld that has been designed to capture and isolate many of the central issues of analogy-making. In Copycat, an understanding of the essence of a situation and the recognition of deep similarity between two superficially different situations emerge from the interaction of a large number of perceptual agents with an associative, overlapping, and context-sensitive network of concepts. Central features of the model are: a high degree of parallelism; competition and cooperation among a large number of small, locally acting agents that together create a global understanding of the situation at hand; and a computational temperature that measures the amount of perceptual organization as processing proceeds and that in turn controls the degree of randomness with which decisions are made in the system.

  13. The Perceived Impact of Conflict on Adolescent Relationships.

    ERIC Educational Resources Information Center

    Laursen, Brett

    1993-01-01

    Examined adolescents' perceptions of their daily conflicts in relationships with mothers, fathers, siblings, friends, romantic partners, and other peers and adults. Most adolescent conflicts were perceived as benign events with few positive or negative consequences for the relationship. Results suggest that adolescents recognize the fluidity and…

  14. Queering Black Racial Identity Development

    ERIC Educational Resources Information Center

    Johnson, Alandis A.; Quaye, Stephen John

    2017-01-01

    We used queer theory to encourage readers to think differently about previous theories about Black racial identity development. Queer theory facilitates new and deeper understandings of how Black people develop their racial identities, prompting more fluidity and nuance. Specifically, we present a queered model of Black racial identity development…

  15. Comparison of [corrected] actin- and glass-supported phospholipid bilayer diffusion coefficients.

    PubMed

    Sterling, Sarah M; Dawes, Ryan; Allgeyer, Edward S; Ashworth, Sharon L; Neivandt, David J

    2015-04-21

    The formation of biomimetic lipid membranes has the potential to provide insights into cellular lipid membrane dynamics. The construction of such membranes necessitates not only the utilization of appropriate lipids, but also physiologically relevant substrate/support materials. The substrate materials employed have been shown to have demonstrable effects on the behavior of the overlying lipid membrane, and thus must be studied before use as a model cushion support. To our knowledge, we report the formation and investigation of a novel actin protein-supported lipid membrane. Specifically, inner leaflet lateral mobility of globular actin-supported DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayers, deposited via the Langmuir-Blodgett/Langmuir Schaefer methodology, was investigated by z-scan fluorescence correlation spectroscopy across a temperature range of 20-44°C. The actin substrate was found to decrease the diffusion coefficient when compared to an identical membrane supported on glass. The depression of the diffusion coefficient occurred across all measured temperatures. These results indicated that the actin substrate exerted a direct effect on the fluidity of the lipid membrane and highlighted the fact that the choice of substrate/support is critical in studies of model lipid membranes. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Toward a Unified Science Curriculum.

    ERIC Educational Resources Information Center

    Showalter, Victor M.

    The two major models of science curriculum change, textbook revision and national curriculum projects, are derived from, and reinforce, the present curriculum structure. This is undesirable in a time of increasing fluidity and change, because adaptation to new situations is difficult. Unified science, based on the premise that science is a unity,…

  17. Intercultural Comparative Research: Rethinking Insider and Outsider Perspectives

    ERIC Educational Resources Information Center

    Kelly, Peter

    2014-01-01

    A commonsense problematic positions comparative researchers as either inside or outside cultures, or their situation is considered so as to acknowledge cultural fluidity and fragmentation. This article rejects the objectivism of these positions to provide a relational account. Using the lens of social practice theory, comparative pedagogy is…

  18. Toward a Dialectical Model of Family Gender Discourse: Body, Identity, and Sexuality.

    ERIC Educational Resources Information Center

    Blume, Libby Balter; Blume, Thomas W.

    2003-01-01

    Proposes a dialectical model representing gender discourse in families. A brief review of literature in sociology, psychology, and gender studies focuses on three dialectical issues: nature versus culture, similarity versus difference, and stability versus fluidity. Deconstructing gender theories from a postmodern feminist perspective, the authors…

  19. Being in Community: A Food Security Themed Approach to Public Scholarship

    ERIC Educational Resources Information Center

    Harrison, Barbara; Nelson, Connie; Stroink, Mirella

    2013-01-01

    For six years the Food Security Research Network at Lakehead University, Canada, has been engaged in an interdisciplinary theme-based service-learning initiative focusing on food security. Informed by complexity theory, the contextual fluidity partnership model brings community partners, students, and faculty into a nexus through which new…

  20. You Sank My Lipid Rafts!

    ERIC Educational Resources Information Center

    Campbell, Tessa N.

    2009-01-01

    The plasma membrane is the membrane that serves as a boundary between the interior of a cell and its extracellular environment. Lipid rafts are microdomains within a cellular membrane that possess decreased fluidity due to the presence of cholesterol, glycolipids, and phospholipids containing longer fatty acids. These domains are involved in many…

  1. Metaphors of the Co-Taught Classroom.

    ERIC Educational Resources Information Center

    Adams, Lois; Cessna, Kay

    1993-01-01

    Discussions with exemplary Colorado general and special education coteachers led to development of three metaphors for the coteaching process: (1) yin and yang (the uniqueness and unity of the two teachers); (2) the dance (the rhythm, fluidity, and automaticity of effective collaboration); and (3) the particle and the stream (the thriving of…

  2. Fruit metabolite networks in engineered and non-engineered tomato genotypes reveal fluidity in a hormone and agroecosystem specific manner

    USDA-ARS?s Scientific Manuscript database

    Multiple strategies have been explored throughout the world to meet food security. These include molecular breeding, transgenic genotype development, reduced-tillage crop production, modification of the soil environment with cover crops or polyethylene mulches and tunnels, and organic farming. Unde...

  3. Thorns on My Tongue

    ERIC Educational Resources Information Center

    Reed, Malcolm

    2012-01-01

    How might we bear witness to the fluidity and fragility of identity work that takes place during classroom discussion? How do teachers and pupils play with the personal politics of positioning during our everyday interactions? The piece that follows is written as a story almost entirely in everyday dialogue. It takes a methodological turn towards…

  4. Mind-Culture Interactions: How Writing Molds Mental Fluidity in Early Development

    ERIC Educational Resources Information Center

    Kazi, Smaragda; Demetriou, Andreas; Spanoudis, George; Zhang, Xiang Kui; Wang, Yuan

    2012-01-01

    This study investigated intellectual development in 4-7 years old Greek and Chinese children. They were examined on speeded performance, working memory, reasoning, and self-awareness tasks in order to investigate possible effects of learning the Chinese logographic system on possible differences in intellectual development between these ethnic…

  5. Quantitative analysis of arm movement smoothness

    NASA Astrophysics Data System (ADS)

    Szczesna, Agnieszka; Błaszczyszyn, Monika

    2017-07-01

    The paper deals with the problem of motion data quantitative smoothness analysis. We investigated values of movement unit, fluidity and jerk for healthy and paralyzed arm of patients with hemiparesis after stroke. Patients were performing drinking task. To validate the approach, movement of 24 patients were captured using optical motion capture system.

  6. Physicochemical properties of collagen solutions cross-linked by glutaraldehyde.

    PubMed

    Tian, Zhenhua; Li, Conghu; Duan, Lian; Li, Guoying

    2014-06-01

    The physicochemical properties of collagen solutions (5 mg/ml) cross-linked by various amounts of glutaraldehyde (GTA) [GTA/collagen (w/w) = 0-0.5] under acidic condition (pH 4.00) were examined. Based on the results of the determination of residual amino group content, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, dynamic rheological measurements, differential scanning calorimetry and atomic force microscopy (AFM), it was proved that the collagen solutions possessed strikingly different physicochemical properties depending on the amount of GTA. At low GTA amounts [GTA/collagen (w/w) ≤ 0.1], the residual amino group contents of the cross-linked collagens decreased largely from 100% to 32.76%, accompanied by an increase in the molecular weight. Additionally, increases of the fiber diameter and the values of G', G″ and η* were measured, while the thermal denaturation temperature (Td) did not change visibly and the fluidity of collagen samples was still retained with increasing the GTA amount. When the ratio of GTA to collagen exceeded 0.1, although the residual amino group content only decreased by ~8.2%, the cross-linked collagen solution [GTA/collagen (w/w) = 0.3] displayed a clear loss of flow and a sudden rise (~2.0 °C) of the Td value compared to the uncross-linked collagen solution, probably illustrating that the collagen solution was converted into a gel with mature network structure-containing nuclei observed in AFM image. It was conjectured that the physicochemical properties of the collagen solutions might be in connection with the cross-linking between collagen molecules from the same aggregate or different aggregates.

  7. Homosexuality as a Discrete Class.

    PubMed

    Norris, Alyssa L; Marcus, David K; Green, Bradley A

    2015-12-01

    Previous research on the latent structure of sexual orientation has returned conflicting results, with some studies finding a dimensional structure (i.e., ranging quantitatively along a spectrum) and others a taxonic structure (i.e., categories of individuals with distinct orientations). The current study used a sample (N = 33,525) from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). A series of taxometric analyses were conducted using three indicators of sexual orientation: identity, behavior, and attraction. These analyses, performed separately for women and men, revealed low-base-rate same-sex-oriented taxa for men (base rate = 3.0%) and women (base rate = 2.7%). Generally, taxon membership conferred an increased risk for psychiatric and substance-use disorders. Although taxa were present for men and women, women demonstrated greater sexual fluidity, such that any level of same-sex sexuality conferred taxon membership for men but not for women. © The Author(s) 2015.

  8. Physical Immobilization Liposomes in Uniform Zwitterionic Microgel Particles Fabricated in Microcapillary Device

    NASA Astrophysics Data System (ADS)

    Jeong, Eun Seon; Byun, Aram; Kim, Jin Woong

    2014-03-01

    Lipid molecules have both hydrophilic and hydrophobic properties. Since their packing parameter ranges from 0.5 to 1, they self-assemble to form a vesicle structure, liposome. Thanks to the vesicle structure, liposome is able to encapsulate both hydrophilic and hydrophobic active ingredients, thus widening its applicability to pharmaceutical, cosmetic, and food industry. However, its vesicular structure is readily transferred to micelle in the presence of amphiphilic additives with low packing parameters. Therefore, it is critical to developing a technique to overcome this drawback. This study introduces a microfluidic approach to physically immobilize liposome in microgel particles. For this, we generate a uniform liposome-in-oil-in-water emulsion in a capillary-based microfluidic device. Basically, we observe how the flows in micro-channels affect generation of embryo emulsion drops. Then, the uniform emulsion is solidified by using photo-polymerization. Finally, we characterize the particle morphology, membrane fluidity, and mesh property, encapsulation efficiency and releasing.

  9. Experimental Study on Hot Metal Desulfurization Using Sintered Red Mud-Based Flux

    NASA Astrophysics Data System (ADS)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-09-01

    This research presents the results of laboratory and pilot-scale tests conducted on the use of sintered red mud (RM)-based flux in the hot metal desulfurization (HMD) process. Al2O3/Na2O in RM can decrease the melting point of lime-based slag and can work as a flux in the HMD process. Good slag fluidity was observed throughout the process, and high desulfurization rates ( 80%) with a low final S content (<0.02%) were experimentally obtained when the RM:CaO ratio was between 1.2:1 and 2.4:1. The pilot-scale test results indicated that a desulfurization rate as high as 91% and a S content <0.0099% could be acquired when RM:lime = 1:1, verifying the feasibility of using sintered RM-based flux in HMD. The data obtained provide important information for promoting the large-scale application of sintered RM in steelmaking.

  10. Pollock without Paint?

    ERIC Educational Resources Information Center

    Sutley, Jane

    2011-01-01

    This article describes how the author exposes her students to the world of Jackson Pollock, the artist who brings to mind dripping, meandering, splashing puddles of paint. Pollock's action paintings of the late 1940s-'50s call out for unfettered movement, fluidity, and freedom of application. Is it even possible to capture the action, rhythm and…

  11. Afro-Caribbean International Students' Ethnic Identity Development: Fluidity, Intersectionality, Agency, and Performativity

    ERIC Educational Resources Information Center

    Malcolm, Zaria T.; Mendoza, Pilar

    2014-01-01

    Afro-Caribbean international students (ACIS) often become engrossed in a complex racial and ethnic dialogue wherein they are thrust into homogenous categorizations forcing them to negotiate their Afro-Caribbean self with other identities perceived by others such as African American, first- and second-generation Caribbean immigrant, African, and…

  12. Influence of Changes in Water-to-Cement Ratio, Alkalinity, Concrete Fluidity, Voids, and Type of Reinforcing Steel on the Corrosion Potential of Steel in Concrete.

    DOT National Transportation Integrated Search

    2014-04-01

    "Research on steel corrosion has demonstrated that the concentrations of chloride and hydroxide ion at the concrete/steel : interface influence the susceptibility of the steel to corrosive attack. This study used electrochemical means and changes in ...

  13. Swimming Between: An Examination of the Inherent Complexity within Social Justice

    ERIC Educational Resources Information Center

    Aguilar, Israel; Nelson, Sarah; Niño, Juan Manuel

    2016-01-01

    Classrooms tend to be absolute spaces, places where fluidity is rejected and nearly everything--from people, to ideas, to practices and policies--is viewed and organized through binary logic. Because binary logic is implicitly accepted as the natural order in schools and the structures resulting from it are highly unmalleable, individuals who…

  14. Exploring Embodied Methodologies for Transformative Practice in Early Childhood and Youth

    ERIC Educational Resources Information Center

    Cahill, Helen; Coffey, Julia; Smith, Kylie

    2016-01-01

    The development of gendered identities during early childhood and youth occurs in a context of "body culture" and the hyper-visibility of "perfect" bodies, which align with traditional gender ideals. Embodied methods can assist to make complexity more visible, and to allow participants to see fluidity, shifts, and becoming.…

  15. "Change4Life for Your Kids": Embodied Collectives and Public Health Pedagogy

    ERIC Educational Resources Information Center

    Evans, Bethan; Colls, Rachel; Horschelmann, Kathrin

    2011-01-01

    Recent work in human geography has begun to explore the fluidity of bodily boundaries and to foreground the connectedness of bodies to other bodies/objects/places. Across multiple subdisciplinary areas, including health, children's and feminist geographies, geographers have begun to challenge the notion of a singular, bounded body by highlighting…

  16. Higher lipophilic index indicates higher risk of coronary heart disease in postmenopausal women

    USDA-ARS?s Scientific Manuscript database

    Fatty acids are essential components of cell membranes and play an integral role in membrane fluidity. The lipophilic index (LI, defined as the sum of the products between fatty acid levels and melting points (degrees Celsius), divided by the total amount of fatty acids is thought to reflect membran...

  17. Contesting Borders: A Challenge to Some Paradigmatic Assumptions of Intercultural and Comparative Education

    ERIC Educational Resources Information Center

    Bash, Leslie; Gundara, Jagdish

    2012-01-01

    Both intercultural education and comparative education have conventionally assumed the primacy of territoriality and sovereignty. This paper engages critically with these assumptions and, in turn, highlights the historical fluidity of nation states while seeking to normalise the process of geographical movement of populations. As such, a number of…

  18. Difference-Sensitive Communities, Networked Learning, and Higher Education: Potentialities and Risks

    ERIC Educational Resources Information Center

    Papastephanou, Marianna

    2005-01-01

    Recent emphases on prospects for difference-sensitive virtual communities rely implicity or explicity on some optimist accounts of cyberspace and globalization. It is expected that hybridity, diaspora and fluidity, marking new understandings of spatiality and temporality in a globalized postmodern era, will create new forms of belonging that will…

  19. "A Writer More than . . . A Child": A Longitudinal Study Examining Adolescent Writer Identity

    ERIC Educational Resources Information Center

    Lammers, Jayne C.; Marsh, Valerie L.

    2018-01-01

    This article reconsiders theoretical claims of identity fluidity, stability, and agency through a longitudinal case study investigating one adolescent's writing over time and across spaces. Qualitative data spanning her four years of high school were collected and analyzed using a grounded theory approach with literacy-and-identity theory…

  20. Queering Constructs: Proposing a Dynamic Gender and Sexuality Model

    ERIC Educational Resources Information Center

    Jourian, T. J.

    2015-01-01

    Higher education educators commonly understand social identities, including gender, to be fluid and dynamic. Lev's (2004) model of four components of sexual identity is commonly used to demonstrate the fluidity of sex, gender, and sexuality for individuals, but it does little to address the fixedness of those constructs. Through a multipronged…

  1. State-Controlled Licensure and Interstate Mobility: Questions from Katrina

    ERIC Educational Resources Information Center

    Taylor, Carmen L.

    2006-01-01

    State licensure laws in speech-language pathology and audiology vary from state to state. Natural disaster displacements as well as trends in job mobility have increased the need for licensees to be able to have more fluidity in practicing from 1 state to another. Additionally, literature reviews on the history of professional licensure…

  2. The Pharmacological Treatment of Depression in College Age Students: Some Principles and Precautions

    ERIC Educational Resources Information Center

    Blue, Howard C.; Sanfilippo, Louis C.; Young, Christopher M.

    2007-01-01

    College age students are in the midst of important psychosocial and neurobiological changes. The developmental fluidity of this period of life compels caution in diagnosing and treating depressive episodes, especially in discriminating between bipolar and non-bipolar depression. Treating college age students with depression requires adherence to…

  3. ATP-induced lipid membrane reordering in the myelinated nerve fiber identified using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kutuzov, N. P.; Brazhe, A. R.; Yusipovich, A. I.; Maksimov, G. V.; Dracheva, O. E.; Lyaskovskiy, V. L.; Bulygin, F. V.; Rubin, A. B.

    2013-07-01

    We demonstrate a successful application of Raman spectroscopy to the problem of lipid ordering with microscopic resolution in different regions of the myelinated nerve fiber. Simultaneous collection of Raman spectra of lipids and carotenoids has enabled us to characterize membrane fluidity and the degree of lipid ordering based on intensity ratios for the 1527/1160 and 2940/2885 cm-1 bands. We show that the intensity profiles of the major Raman bands vary significantly between the three major regions of myelinated nerve fiber: internode, paranode and the node of Ranvier. Mapping Raman peak intensities over these areas suggested that the carotenoid molecules are localized in the myelin membranes of nerve cells. Paranodal membranes were sensitive to extracellular ATP. ATP solutions (7 mM) influenced the 1527/1160 and 2940/2885 cm-1 intensity ratios. Changes in both carotenoid and lipid Raman spectra were in accord and indicated an increase in lipid ordering degree and decrease in membrane fluidity under ATP administration. The collected data provide evidence for the existence of a regulatory purinergic signaling pathway in the peripheral nervous system.

  4. In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity.

    PubMed

    Kuriyama, Sei; Theveneau, Eric; Benedetto, Alexandre; Parsons, Maddy; Tanaka, Masamitsu; Charras, Guillaume; Kabla, Alexandre; Mayor, Roberto

    2014-07-07

    Collective cell migration (CCM) and epithelial-mesenchymal transition (EMT) are common to cancer and morphogenesis, and are often considered to be mutually exclusive in spite of the fact that many cancer and embryonic cells that have gone through EMT still cooperate to migrate collectively. Here we use neural crest (NC) cells to address the question of how cells that have down-regulated cell-cell adhesions can migrate collectively. NC cell dissociation relies on a qualitative and quantitative change of the cadherin repertoire. We found that the level of cell-cell adhesion is precisely regulated by internalization of N-cadherin downstream of lysophosphatidic acid (LPA) receptor 2. Rather than promoting the generation of single, fully mesenchymal cells, this reduction of membrane N-cadherin only triggers a partial mesenchymal phenotype. This intermediate phenotype is characterized by an increase in tissue fluidity akin to a solid-like-to-fluid-like transition. This change of plasticity allows cells to migrate under physical constraints without abolishing cell cooperation required for collectiveness. © 2014 Kuriyama et al.

  5. Enhanced fluidity liquid chromatography of inulin fructans using ternary solvent strength and selectivity gradients.

    PubMed

    Bennett, Raffeal; Olesik, Susan V

    2018-01-25

    The value of exploring selectivity and solvent strength ternary gradients in enhanced fluidity liquid chromatography (EFLC) is demonstrated for the separation of inulin-type fructans from chicory. Commercial binary pump systems for supercritical fluid chromatography only allow for the implementation of ternary solvent strength gradients which can be restrictive for the separation of polar polymeric analytes. In this work, a custom system was designed to extend the capability of EFLC to allow tuning of selectivity or solvent strength in ternary gradients. Gradient profiles were evaluated using the Berridge function (RF 1 ), normalized resolution product (NRP), and gradient peak capacity (P c ). Selectivity gradients provided the separation of more analytes over time. The RF 1 function showed favor to selectivity gradients with comparable P c to that of solvent strength gradients. NRP did not strongly correlate with P c or RF 1 score. EFLC with the hydrophilic interaction chromatography, HILIC, separation mode was successfully employed to separate up to 47 fructan analytes in less than 25 min using a selectivity gradient. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. In vitro effects of fermented papaya (Carica papaya, L.) on platelets obtained from patients with type 2 diabetes.

    PubMed

    Raffaelli, F; Nanetti, L; Montecchiani, G; Borroni, F; Salvolini, E; Faloia, E; Ferretti, G; Mazzanti, L; Vignini, A

    2015-02-01

    Oxidative stress is associated with insulin resistance pathogenesis, insulin secretion deficiency, and complication onset. Fermented papaya preparation (FPP), a dietary supplement obtained by fermentation of the papaya fruit, may be used as an antioxidant in the prevention of diabetic complications. Platelets from 30 patients with type 2 diabetes mellitus (DM 2) and 15 healthy subjects were analyzed to evaluate the in vitro effects of FPP incubation. Na(+)/K(+)-adenosine triphosphatase (ATPase) activity, membrane fluidity, total antioxidant capacity (TAC), superoxide dismutase (SOD) activity, and conjugated diene levels were determined. In vitro FPP incubation improved platelet function, by enhancing Na(+)/K(+)-ATPase activity and membrane fluidity, and ameliorated the antioxidant system functionality, through an increase in TAC and SOD activity and a parallel decrease in conjugated diene levels in patients with DM 2. Our data suggest that the incubation with FPP may have a protective effect on platelets from patients with DM 2, by preventing the progression of oxidative damage associated with diabetes and its complications. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The Extent and Nature of Fluidity in Typologies of Female Sex Work in Southern India: Implications for HIV Prevention Programs

    PubMed Central

    Saggurti, Niranjan

    2012-01-01

    These authors examine the nature and extent of fluidity in defining the typology of female sex work based on the place of solicitation or place of sex or both places together, and whether sex workers belonging to a particular typology are at increased risk of HIV in southern India. Data are drawn from a cross-sectional survey conducted during 2007–2008 among mobile female sex workers (N = 5301) in four Indian states. Findings from this study address an important policy issue: Should programmatic prevention interventions be spread to cover all places of sex work or be focused on a few places that cover a large majority of sex workers? Results indicate that most female sex workers, including those who are usually hard to reach such as those who are mobile or who use homes for soliciting clients or sex, can be reached programmatically multiple times by concentrating on a smaller number of categories, such as street-, lodge-, and brothel-based sex workers. PMID:22745597

  8. Fatty acids rehabilitated long-term neurodegenerative: like symptoms in olfactory bulbectomized rats.

    PubMed

    Yehuda, Shlomo; Rabinovitz, Sharon

    2015-05-01

    Our previous study demonstrated that an olfactory bulbectomy in rats induced short-term, multifaceted, devastating Alzheimer's-like effects, which included cognitive impairment, hyperactivity, hyperthermia, and increased levels of homocysteine and pro-inflammatory cytokines, including IL-17A. In addition, the rats exhibited an increase in the hyperphosphorylation of brain Tau proteins and in the number of neurofibrillary tangles. Here, we examined the long-term effects of the surgery and found that olfactory bulbectomy also rendered the rats to become anemic with brain iron overload. Additionally, a significant reduction in the membrane fluidity index in frontal cortex synaptosomes was found. Treatment with a mixture of n - 3/n - 6 of fatty acids restored the unwanted effect. The beneficial effects of fatty acids are mediated via the effects of fatty acids on the neuronal membrane structure and fluidity. These findings are similar to Alzheimer's symptoms, which suggest this model can be used as an animal model for Alzheimer's disease. We recommend using this model to scan potential new anti-Alzheimer's drugs.

  9. Nanoscale evaluation of lubricity on well-defined polymer brush surfaces using QCM-D and AFM.

    PubMed

    Kitano, Kazuhiko; Inoue, Yuuki; Matsuno, Ryosuke; Takai, Madoka; Ishihara, Kazuhiko

    2009-11-01

    For preparing a "highly lubricated biointerface", which has both excellent lubricity and biocompatibility, we investigated the factors responsible for resistance to friction during polymer grafting. We prepared poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(2-hydroxyethyl methacrylate) (PHEMA), and poly(methyl methacrylate) (PMMA) brush layers with high graft density and well-controlled thickness using atom transfer radical polymerization (ATRP). We measured the water absorptivity in the polymer brush layers and the viscoelasticity of the polymer-hydrated layers using a quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. The PMPC brush layer had the highest water absorptivity, while the PMPC-hydrated layer had the highest fluidity. The friction properties of the polymer brush layers were determined in air, water, and toluene by atomic force microscopy (AFM). The friction on each polymer brush decreased only when a good solvent was chosen for each polymer. In conclusion, the brush layer possessing high water absorptivity and fluidity in water contributes to reduce friction. PMPC grafting is an effective and promising method for obtaining highly lubricated biointerfaces.

  10. On the possibility to affect the course of glycaemia, insulinaemia, and perceived hunger/satiety to bread meals in healthy volunteers.

    PubMed

    Ekström, Linda M N K; Björck, Inger M E; Ostman, Elin M

    2013-04-25

    Frequent hyperglycaemia is associated with oxidative stress and subclinical inflammation, and thus increased risk of cardiovascular disease. Possibilities of modulating glycaemia, insulinaemia and perceived satiety for bread products were investigated, with emphasis on the course of glycaemia expressed as a glycaemic profile (defined as the duration of the glucose curve above the fasting concentration divided by the incremental glucose peak). For this purpose white wheat bread was supplemented with whole grain corn flour with an elevated amylose content and different types and levels of guar gum. The bread products were characterised in vitro for release of starch degradation products and content of resistant starch. Fibre related fluidity following enzyme hydrolysis was also studied. By combining medium weight guar gum and whole grain corn flour with an elevated amylose content, the course of glycaemia, insulinaemia and subjective appetite ratings were improved compared to the reference white wheat bread. In addition, the combination beneficially influenced the content of resistant starch. Fluidity measurements showed potential to predict the glycaemic profile.

  11. IFITM Proteins Restrict Viral Membrane Hemifusion

    PubMed Central

    Golfetto, Ottavia; Bungart, Brittani; Li, Minghua; Ding, Shilei; He, Yuxian; Liang, Chen; Lee, James C.; Gratton, Enrico; Cohen, Fredric S.; Liu, Shan-Lu

    2013-01-01

    The interferon-inducible transmembrane (IFITM) protein family represents a new class of cellular restriction factors that block early stages of viral replication; the underlying mechanism is currently not known. Here we provide evidence that IFITM proteins restrict membrane fusion induced by representatives of all three classes of viral membrane fusion proteins. IFITM1 profoundly suppressed syncytia formation and cell-cell fusion induced by almost all viral fusion proteins examined; IFITM2 and IFITM3 also strongly inhibited their fusion, with efficiency somewhat dependent on cell types. Furthermore, treatment of cells with IFN also markedly inhibited viral membrane fusion and entry. By using the Jaagsiekte sheep retrovirus envelope and influenza A virus hemagglutinin as models for study, we showed that IFITM-mediated restriction on membrane fusion is not at the steps of receptor- and/or low pH-mediated triggering; instead, the creation of hemifusion was essentially blocked by IFITMs. Chlorpromazine (CPZ), a chemical known to promote the transition from hemifusion to full fusion, was unable to rescue the IFITM-mediated restriction on fusion. In contrast, oleic acid (OA), a lipid analog that generates negative spontaneous curvature and thereby promotes hemifusion, virtually overcame the restriction. To explore the possible effect of IFITM proteins on membrane molecular order and fluidity, we performed fluorescence labeling with Laurdan, in conjunction with two-photon laser scanning and fluorescence-lifetime imaging microscopy (FLIM). We observed that the generalized polarizations (GPs) and fluorescence lifetimes of cell membranes expressing IFITM proteins were greatly enhanced, indicating higher molecularly ordered and less fluidized membranes. Collectively, our data demonstrated that IFITM proteins suppress viral membrane fusion before the creation of hemifusion, and suggested that they may do so by reducing membrane fluidity and conferring a positive spontaneous curvature in the outer leaflets of cell membranes. Our study provides novel insight into the understanding of how IFITM protein family restricts viral membrane fusion and infection. PMID:23358889

  12. The fluidity of blood in African elephants (Loxodonta africana).

    PubMed

    Windberger, U; Plasenzotti, R; Voracek, Th

    2005-01-01

    The large cellular volume of erythrocytes and the increased plasma concentration of proteins in elephants are factors which potentially affect blood rheology adversely. To verify blood rheology, routine hemorheologic variables were analyzed in four African elephants (Loxodonta africana), housed in the zoo of Vienna. Whole blood viscosity at three different shear rates (WBV at low shear rate: WBV 0.7 s(-1) and WBV 2.4 s(-1); WBV at high shear rate: WBV 94 s(-1) done by LS30, Contraves) and erythrocyte aggregation (aggregation indices AI by LS30; aggregation indices M0, M1 by Myrenne aggregometer) were high (WBV 94 s(-1): 5.368 (5.246/5.648); WBV 2.4 s(-1): 16.291 (15.605/17.629); WBV 0.7 s(-1): 28.28 (25.537/32.173) mPa s; AI 2.4 s(-1): 0.25 (0.23/0.30); AI 0.7 s(-1): 0.24 (0.23/0.28); M0: 7.8 (6.4/8.4); M1: 30.2 (25/31)). Plasma viscosity (PV) was increased as well (1.865 (1.857/1.912) mPa s) compared to other mammalian species. These parameters would indicate a decrease in blood fluidity in elephants. However, erythrocyte rigidity (LORCA, Mechatronics) was decreased, which in contrast, has a promotive effect on peripheral perfusion. Blood rheology of the elephants was determined by a high whole blood and plasma viscosity as the result of pronounced erythrocyte aggregation and high plasma protein concentration. Thus, in the terminal vessels the resistance to flow will be increased. The large erythrocytes, which might impede blood flow further due to geometrical reasons, however, had a pronounced flexibility. We conclude that the effect of the increased inner resistance to peripheral blood flow was counteracted by the decreased rigidity of the erythrocytes to enable an adequate blood flow in African elephants.

  13. Short branched-chain C6 carboxylic acids result in increased growth, novel 'unnatural' fatty acids and increased membrane fluidity in a Listeria monocytogenes branched-chain fatty acid-deficient mutant.

    PubMed

    Sen, Suranjana; Sirobhushanam, Sirisha; Hantak, Michael P; Lawrence, Peter; Brenna, J Thomas; Gatto, Craig; Wilkinson, Brian J

    2015-10-01

    Listeria monocytogenes is a psychrotolerant food borne pathogen, responsible for the high fatality disease listeriosis, and expensive food product recalls. Branched-chain fatty acids (BCFAs) of the membrane play a critical role in providing appropriate membrane fluidity and optimum membrane biophysics. The fatty acid composition of a BCFA-deficient mutant is characterized by high amounts of straight-chain fatty acids and even-numbered iso fatty acids, in contrast to the parent strain where odd-numbered anteiso fatty acids predominate. The presence of 2-methylbutyrate (C5) stimulated growth of the mutant at 37°C and restored growth at 10°C along with the content of odd-numbered anteiso fatty acids. The C6 branched-chain carboxylic acids 2-ethylbutyrate and 2-methylpentanoate also stimulated growth to a similar extent as 2-methylbutyrate. However, 3-methylpentanoate was ineffective in rescuing growth. 2-Ethylbutyrate and 2-methylpentanoate led to novel major fatty acids in the lipid profile of the membrane that were identified as 12-ethyltetradecanoic acid and 12-methylpentadecanoic acid respectively. Membrane anisotropy studies indicated that growth of strain MOR401 in the presence of these precursors increased its membrane fluidity to levels of the wild type. Cells supplemented with 2-methylpentanoate or 2-ethylbutyrate at 10°C shortened the chain length of novel fatty acids, thus showing homeoviscous adaptation. These experiments use the mutant as a tool to modulate the membrane fatty acid compositions through synthetic precursor supplementation, and show how existing enzymes in L. monocytogenes adapt to exhibit non-native activity yielding unique 'unnatural' fatty acid molecules, which nevertheless possess the correct biophysical properties for proper membrane function in the BCFA-deficient mutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. [Status of vitamin A, vitamin B2, iron and an-oxidantive activity in anemic pregnant women in China].

    PubMed

    Yang, Fang; Ma, Ai-Guo; Zhang, Xiu-Zhen; Jiang, Dian-Chen

    2006-05-01

    To investigate the status of vitamin A(VA), vitamin B2 (VB2), iron and anoxidative function in anemic and non-anemic pregnant women. 426 anemic and 36 non-anemic pregnant women were included in the study. The survey of 24-hour's diet recall of pregnant women was made to evaluate intake of iron, VB2, folic acid, etc by the nutrition software provided by Beijing 301 hospital, iron and VA were measured by Radioimmunoassay (RIA) and by high-pressure liquid chromatography. VB2 status was detected using the assay for erythrocyte glutathione reductase (Egr; EC 1.6.4.2) activity. SOD and GSH-Px activities and MDA were determined using commercial kits. Peripheral blood erythrocyte membrane fluidity was detected by using 1,6-diphenyl-1,3,5-hexatriene as a probe, the degree of fluorescence polarization (P) at 25 degrees C of disrupted cells plasma membranes were compared for a variety of systems. Median intakes of protein and vitamin C met the current Chinese RNIs for pregnancy, whereas intakes of(VA) and VB2 were well below the recommendations. Intake of iron were above 90%, but the main sources of iron are vegetables. Plasma VA (1.25 micromol/L) and iron (20.57 microg/L) were lower, BGRAC (1.79) was higher than that in non-anemia group (VA 1.57 micromol/L, SF 33.16 microg/L, BGRAC 1.52). The level of plasma SOD (77.1U/ml) and the activity of GSH-Px (61.9U) were lower than those in non-anemia group (92.2U/ml, 71.6U, P < 0.05), while MDA (4.58 nmol/ml) level and erythrocyte membrane (P = 0.2622, eta = 2.7465) fluidity were higher than those non-anemia group(MDA = 3.78 nmol/ ml, P = 0.2360, eta = 2.3658). Plasam VA, VB2 and iron, antioxidantcapacity and erythrocyte membrane fluidity were decreased in the anemic pregnant women.

  15. Multiphase flow modelling of explosive volcanic eruptions using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Jacobs, Christian T.; Collins, Gareth S.; Piggott, Matthew D.; Kramer, Stephan C.

    2014-05-01

    Explosive volcanic eruptions generate highly energetic plumes of hot gas and ash particles that produce diagnostic deposits and pose an extreme environmental hazard. The formation, dispersion and collapse of these volcanic plumes are complex multiscale processes that are extremely challenging to simulate numerically. Accurate description of particle and droplet aggregation, movement and settling requires a model capable of capturing the dynamics on a range of scales (from cm to km) and a model that can correctly describe the important multiphase interactions that take place. However, even the most advanced models of eruption dynamics to date are restricted by the fixed mesh-based approaches that they employ. The research presented herein describes the development of a compressible multiphase flow model within Fluidity, a combined finite element / control volume computational fluid dynamics (CFD) code, for the study of explosive volcanic eruptions. Fluidity adopts a state-of-the-art adaptive unstructured mesh-based approach to discretise the domain and focus numerical resolution only in areas important to the dynamics, while decreasing resolution where it is not needed as a simulation progresses. This allows the accurate but economical representation of the flow dynamics throughout time, and potentially allows large multi-scale problems to become tractable in complex 3D domains. The multiphase flow model is verified with the method of manufactured solutions, and validated by simulating published gas-solid shock tube experiments and comparing the numerical results against pressure gauge data. The application of the model considers an idealised 7 km by 7 km domain in which the violent eruption of hot gas and volcanic ash high into the atmosphere is simulated. Although the simulations do not correspond to a particular eruption case study, the key flow features observed in a typical explosive eruption event are successfully captured. These include a shock wave resulting from the sudden high-velocity inflow of gas and ash; the formation of a particle-laden plume rising several hundred metres into the atmosphere; the eventual collapse of the plume which generates a volcanic ash fountain and a fast ground-hugging pyroclastic density current; and the growth of a dilute convective region that rises above the ash fountain as a result of buoyancy effects. The results from Fluidity are also compared with results from MFIX, a fixed structured mesh-based multiphase flow code, that uses the same set-up. The key flow features are also captured in MFIX, providing at least some confidence in the plausibility of the numerical results in the absence of quantitative field data. Finally, it is shown by a convergence analysis that Fluidity offers the same solution accuracy for reduced computational cost using an adaptive mesh, compared to the same simulation performed with a uniform fixed mesh.

  16. [Effects of ursodeoxycholic acid on the liver plasma membrane fluidity, hepatic glutathione concentration, hepatic estrogen receptors and progesterone receptors in pregnant rats with ethinylestradiol and progesterone induced intrahepatic cholestasis].

    PubMed

    Shi, Qing-yun; Kong, Bei-hua; Ma, Kai-dong; Zhang, Xiang-li; Jiang, Sen

    2003-11-01

    To explore the effects of ursodeoxycholic acid (UDCA) on the fluidity of hepatic plasma membrane, glutathione concentration in liver, hepatic estrogen receptors and progesterone receptors in pregnant rats with ethinylestradiol and progesterone induced intrahepatic cholestasis. sixty clean SD pregnant rats were selected and divided into three groups at random. Since the 13th day of pregnancy after taking blood, normal group was injected subcutaneously with refined vegetable oil 2.5 ml x kg(-1) x d(-1). Control group and treatment group were injected subcutaneously with the solution of progesterone 75 mg x kg(-1) x d(-1) and 17-alpha-ethynylestradio 1.25 mg x kg(-1) x d(-1) till the 17th day. Since the 17th day control group, normal group were fedwish 0.9% natriichloridi solution 5 ml x kg(-1) x d(-1); Treatment group was fedwish UDCA 50 mg x kg(-1) x d(-1) every day. On the 21th day, all rats were killed. Then the livers were collected for study. Membrane fluidity was measured by fluorescence polarization using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a probe. Glutathione concentration was measured by 5,5'-dithionbis (2-nitrobenzoic acid) (DTNB). Estrogen receptors and progesterone receptors were measured by flow cytometry. (1) Hepatic plasma membrane fluidity and glutathione (GSH) concentration: significantly lower level of GSH concentration and higher fluorescence polarization (P) were detected in control group (GSH: 1.13 +/- 0.03, P: 0.149 +/- 0.008) in comparison with normal group (GSH: 2.11 +/- 0.07, P: 0.132 +/- 0.004, P < 0.05). However, Significantly higher level of GSH concentration and lower fluorescence polarization were detected in treatment group (GSH: 1.82 +/- 0.04, P: 0.141 +/- 0.006) in comparison with control group (P < 0.05). The level of GSH concentration and fluorescence polarization were no difference between treatment group and normal group. Hepatic estrogen receptors (ER) and progesterone receptors (PR): The expression of ER and PR in control group (ER: 89.4 +/- 8.4, PR: 112.3 +/- 11.6) were higher than that of other two groups (P < 0.05). The expression of ER and PR in treatment group (ER: 56.4 +/- 7.5, PR: 70.1 +/- 9.3) were lower than that of control group (P < 0.05). But there was no difference between treatment group and normal group (ER: 39.5 +/- 7.3, PR: 59.6 +/- 7.4; P > 0.05). Ursodeoxycholic acid may be effective drug in treatment intrahepatic cholestasis of pregnancy.

  17. The Multi/Plural Turn, Postcolonial Theory, and Neoliberal Multiculturalism: Complicities and Implications for Applied Linguistics

    ERIC Educational Resources Information Center

    Kubota, Ryuko

    2016-01-01

    In applied linguistics and language education, an increased focus has been placed on plurality and hybridity to challenge monolingualism, the native speaker norm, and the modernist view of language and language use as unitary and bounded. The multi/plural turn parallels postcolonial theory in that they both support hybridity and fluidity while…

  18. 76 FR 27156 - Bureau of Educational and Cultural Affairs (ECA) Request for Grant Proposals; Teacher Exchange...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... fluidity and synergy. The international teachers gain an in-depth understanding of U.S. schools... implementation at host universities and schools. International teachers in the U.S. for a semester audit two... 2013 to visit the home schools of selected international teacher alumni, to develop lesson plans on...

  19. Combined Diffusion Tensor Imaging and Transverse Relaxometry in Early-Onset Bipolar Disorder

    ERIC Educational Resources Information Center

    Gonenc, Atilla; Frazier, Jean A.; Crowley, David J.; Moore, Constance M.

    2010-01-01

    Objective: Transverse relaxation time (T2) imaging provides the opportunity to examine membrane fluidity, which can affect a number of cellular functions. The objective of the present work was to examine T2 abnormalities in children with unmodified DSM-IV-TR bipolar disorder (BD) in bilateral cingulate-paracingulate (CPC) white matter. Method: A…

  20. Exploring the Adolescent's Creative Pathways: Mindfulness, Role Fluidity, Story, and the Dramatic Curriculum

    ERIC Educational Resources Information Center

    McNees, David

    2015-01-01

    David McNees' deep foray into creativity theory and drama begins with mindfulness as a preparation for adolescent focus. This article discusses role incarnation, the correlation of the three-period lesson to Landy's role theory, the creation and re-creation of personal story and identity, archetypal heroes, and how the adaptability learned in…

  1. The Complexities of Adolescent Dating and Sexual Relationships: Fluidity, Meaning(s), and Implications for Young Adults' Well-Being

    ERIC Educational Resources Information Center

    Manning, Wendy D.; Longmore, Monica A.; Copp, Jennifer; Giordano, Peggy C.

    2014-01-01

    The complexity of adolescents' dating and sexual lives is not easily operationalized with simple indicators of dating or sexual activity. While building on prior work that emphasizes the "risky" nature of adolescents' intimate relationships, we assess whether a variety of indicators reflecting the complexity of…

  2. Symposium: "Crash": Rhetorically Wrecking Discourses of Race, Tolerance, and White Privilege

    ERIC Educational Resources Information Center

    Nunley, Vorris L.

    2007-01-01

    From within the milieu of race and identity fatigue emerges "Crash." Winner of three Academy Awards, including Best Picture, "Crash" addresses how the fluidity of identity is pooled, ebbed, blocked, directed, dammed up. How identity and subjectivity are dammed up and mediated through the force of the anxieties, fears, and frustrations of people…

  3. The VLE as a Trojan Mouse: Policy, Politics and Pragmatism

    ERIC Educational Resources Information Center

    Brown, Mark; Paewai, Shelley; Suddaby, Gordon

    2010-01-01

    This paper argues that selecting a new Learning Management System (LMS) is a strategic decision about the future direction of your institution. However, the development of a robust methodology for the selection of a new LMS is particularly challenging given the fluidity of the e-learning environment. This is especially so when both quantitative…

  4. Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters.

    PubMed

    Liu, Su; Jiang, Wei; Wu, Bing; Yu, Jing; Yu, Haiyan; Zhang, Xu-Xiang; Torres-Duarte, Cristina; Cherr, Gary N

    2016-01-01

    Low levels of graphene and graphene oxide (GO) are considered to be environmentally safe. In this study, we analyzed the potential effects of graphene and GO at relatively low concentrations on cellular xenobiotic defense system mediated by efflux transporters. The results showed that graphene (<0.5 μg/mL) and GO (<20 μg/mL) did not decrease cell viability, generate reactive oxygen species, or disrupt mitochondrial function. However, graphene and GO at the nontoxic concentrations could increase calcein-AM (CAM, an indicator of membrane ATP-binding cassette (ABC) transporter) activity) accumulation, indicating inhibition of ABC transporters' efflux capabilities. This inhibition was observed even at 0.005 μg/mL graphene and 0.05 μg/mL GO, which are 100 times and 400 times lower than their lowest toxic concentration from cytotoxicity experiments, respectively. The inhibition of ABC transporters significantly increased the toxicity of paraquat and arsenic, known substrates of ABC transporters. The inhibition of ABC transporters was found to be based on graphene and GO damaging the plasma membrane structure and fluidity, thus altering functions of transmembrane ABC transporters. This study demonstrates that low levels of graphene and GO are not environmentally safe since they can significantly make cell more susceptible to other xenobiotics, and this chemosensitizing activity should be considered in the risk assessment of graphene and GO.

  5. Atomic Force Microscope Studies of the Fusion of Floating Lipid Bilayers

    PubMed Central

    Abdulreda, Midhat H.; Moy, Vincent T.

    2007-01-01

    This study investigated the fusion of apposing floating bilayers of egg L-α-phosphatidylcholine (egg PC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine. Atomic force microscope measurements of fusion forces under different compression rates were acquired to reveal the energy landscape of the fusion process under varied lipid composition and temperature. Between compression rates of ∼1000 and ∼100,000 pN/s, applied forces in the range from ∼100 to ∼500 pN resulted in fusion of floating bilayers. Our atomic force microscope measurements indicated that one main energy barrier dominated the fusion process. The acquired dynamic force spectra were fit with a simple model based on the transition state theory with the assumption that the fusion activation potential is linear. A significant shift in the energy landscape was observed when bilayer fluidity and composition were modified, respectively, by temperature and different cholesterol concentrations (15% ≤ chol ≤ 25%). Such modifications resulted in a more than twofold increase in the width of the fusion energy barrier for egg PC and 1,2-dimyristoyl-sn-glycero-3-phosphocholine floating bilayers. The addition of 25% cholesterol to egg PC bilayers increased the activation energy by ∼1.0 kBT compared with that of bilayers with egg PC alone. These results reveal that widening of the energy barrier and consequently reduction in its slope facilitated membrane fusion. PMID:17400691

  6. Atomic force microscope studies of the fusion of floating lipid bilayers.

    PubMed

    Abdulreda, Midhat H; Moy, Vincent T

    2007-06-15

    This study investigated the fusion of apposing floating bilayers of egg L-alpha-phosphatidylcholine (egg PC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine. Atomic force microscope measurements of fusion forces under different compression rates were acquired to reveal the energy landscape of the fusion process under varied lipid composition and temperature. Between compression rates of approximately 1000 and approximately 100,000 pN/s, applied forces in the range from approximately 100 to approximately 500 pN resulted in fusion of floating bilayers. Our atomic force microscope measurements indicated that one main energy barrier dominated the fusion process. The acquired dynamic force spectra were fit with a simple model based on the transition state theory with the assumption that the fusion activation potential is linear. A significant shift in the energy landscape was observed when bilayer fluidity and composition were modified, respectively, by temperature and different cholesterol concentrations (15% < or = chol < or = 25%). Such modifications resulted in a more than twofold increase in the width of the fusion energy barrier for egg PC and 1,2-dimyristoyl-sn-glycero-3-phosphocholine floating bilayers. The addition of 25% cholesterol to egg PC bilayers increased the activation energy by approximately 1.0 k(B)T compared with that of bilayers with egg PC alone. These results reveal that widening of the energy barrier and consequently reduction in its slope facilitated membrane fusion.

  7. Effects of calcium on hepatocyte iron uptake from transferrin, iron-pyrophosphate and iron-ascorbate.

    PubMed

    Nilsen, T

    1991-10-16

    Calcium stimulates hepatocyte iron uptake from transferrin, ferric-iron-pyrophosphate and ferrous-iron-ascorbate. Maximal stimulation of iron uptake is observed at 1-1.5 mM of extra-cellular calcium and the effect is reversible and immediate. Neither the receptor affinity for transferrin, nor the total amounts of transferrin associated with the cells or the rate of transferrin endocytosis are significantly affected by calcium. In the presence of calcium the rate of iron uptake of non-transferrin bound iron increases abruptly at approximate 17 degrees C and 27 degrees C and as assessed by Arrhenius plots, the activation energy is reduced in a calcium dependent manner at approx. 27 degrees C. At a similar temperature, i.e., between 25 degrees C and 28 degrees C, calcium increases the rates of cellular iron uptake from transferrin in a way that is not reflected in the rate of transferrin endocytosis. By the results of this study it is concluded that calcium increases iron transport across the plasma membrane by a mechanism dependent on membrane fluidity.

  8. Hydraulic transport across hydrophilic and hydrophobic nanopores: Flow experiments with water and n-hexane.

    PubMed

    Gruener, Simon; Wallacher, Dirk; Greulich, Stefanie; Busch, Mark; Huber, Patrick

    2016-01-01

    We experimentally explore pressure-driven flow of water and n-hexane across nanoporous silica (Vycor glass monoliths with 7- or 10-nm pore diameters, respectively) as a function of temperature and surface functionalization (native and silanized glass surfaces). Hydraulic flow rates are measured by applying hydrostatic pressures via inert gases (argon and helium, pressurized up to 70 bar) on the upstream side in a capacitor-based membrane permeability setup. For the native, hydrophilic silica walls, the measured hydraulic permeabilities can be quantitatively accounted for by bulk fluidity provided we assume a sticking boundary layer, i.e., a negative velocity slip length of molecular dimensions. The thickness of this boundary layer is discussed with regard to previous capillarity-driven flow experiments (spontaneous imbibition) and with regard to velocity slippage at the pore walls resulting from dissolved gas. Water flow across the silanized, hydrophobic nanopores is blocked up to a hydrostatic pressure of at least 70 bar. The absence of a sticking boundary layer quantitatively accounts for an enhanced n-hexane permeability in the hydrophobic compared to the hydrophilic nanopores.

  9. Milk fat globules: fatty acid composition, size and in vivo regulation of fat liquidity.

    PubMed

    Timmen, H; Patton, S

    1988-07-01

    Populations of large and small milk fat globules were isolated and analyzed to determine differences in fatty acid composition. Globule samples were obtained by centrifugation from milks of a herd and of individual animals produced under both pasture and barn feeding. Triacylglycerols of total globule lipids were prepared by thin layer chromatography and analyzed for fatty acid composition by gas chromatography. Using content of the acids in large globules as 100%, small globules contained fewer short-chain acids, -5.9%, less stearic acid, -22.7%, and more oleic acids, +4.6%, mean values for five trials. These differences are consistent with alternative use of short-chain acids or oleic acid converted from stearic acid to maintain liquidity at body temperature of milk fat globules and their precursors, intracellular lipid droplets. Stearyl-CoA desaturase (EC 1.14.99.5), which maintains fluidity of cellular endoplasmic reticulum membrane, is suggested to play a key role in regulating globule fat liquidity. Possible origins of differences between individual globules in fatty acid composition of their triacylglycerols are discussed.

  10. Disruption of gel phase lipid packing efficiency by sucralose studied with merocyanine 540.

    PubMed

    Barker, Morgan; Kennedy, Anthony

    2017-04-01

    Sucralose, an artificial sweetener, displays very different behavior towards membranes than its synthetic precursor sucrose. The impact of both sugars on model dipalmitoylphosphatidylcholine model membranes was investigated using absorbance and flourescence spectroscopy and the membrane probe merocyanine 540. This probe molecule is highly sensitive to changes in membrane packing, microviscosity and polarity. This work focuses on the impact of sugars on the outer leaflet of unilamellar dipalmitoyl phosphatidylcholine model membranes. The choice of lipid permits access to the gel phase at room temperature and incorporation of the dye after liposome formation allows us to examine the direct impact of the sugar on the outer leaflet while maximizing the response of the dye to changes in the bilayer. The results demonstrate that sucrose has no impact on the packing efficiency of lipids in unilamellar DPPC vesicles in the gel phase. Conversely sucralose decreases the packing efficiency of lipids in the gel phase and results in decreased microviscosity and increased membrane fluidity, which may be as a result of water disruption at the membrane water interface. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress.

    PubMed

    Dubousquet, Vaimiti; Gros, Emmanuelle; Berteaux-Lecellier, Véronique; Viguier, Bruno; Raharivelomanana, Phila; Bertrand, Cédric; Lecellier, Gaël J

    2016-10-15

    Temperature can modify membrane fluidity and thus affects cellular functions and physiological activities. This study examines lipid remodelling in the marine symbiotic organism, Tridacna maxima, during a time series of induced thermal stress, with an emphasis on the morphology of their symbiont Symbiodinium First, we show that the French Polynesian giant clams harbour an important proportion of saturated fatty acids (SFA), which reflects their tropical location. Second, in contrast to most marine organisms, the total lipid content in giant clams remained constant under stress, though some changes in their composition were shown. Third, the stress-induced changes in fatty acid (FA) diversity were accompanied by an upregulation of genes involved in lipids and ROS pathways. Finally, our microscopic analysis revealed that for the giant clam's symbiont, Symbiodinium, thermal stress led to two sequential cell death processes. Our data suggests that the degradation of Symbiodinium cells could provide an additional source of energy to T maxima in response to heat stress. © 2016. Published by The Company of Biologists Ltd.

  12. Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunsoo; Wang, Kefeng; Nakajima, Yasuyuki

    In all known fermionic super fluids, Cooper pairs are composed of spin-1/2 quasi-particles that pair to form either spin-singlet or spin-triplet bound states. The "spin" of a Bloch electron, however, is xed by the symmetries of the crystal and the atomic orbitals from which it is derived, and in some cases can behave as if it were a spin-3/2 particle. The superconducting state of such a system allows pairing beyond spin-triplet, with higher spin quasi-particles combining to form quintet or even septet pairs. Here, we report evidence of unconventional superconductivity emerging from a spin-3/2 quasiparticle electronic structure in the half-Heuslermore » semimetal YPtBi, a low-carrier density noncentrosymmetric cubic material with a high symmetry that preserves the p-like j = 3/2 manifold in the Bi-based Γ 8 band in the presence of strong spin-orbit coupling. With a striking linear temperature dependence of the London penetration depth, the existence of line nodes in the superconducting order parameter Δ is directly explained by a mixed-parity Cooper pairing model with high total angular momentum, consistent with a high-spin fermionic super fluid state. We propose a k ∙ p model of the j = 3/2 fermions to explain how a dominant J=3 septet pairing state is the simplest solution that naturally produces nodes in the mixed even-odd parity gap. Together with the underlying topologically non-trivial band structure, the unconventional pairing in this system represents a truly novel form of super fluidity that has strong potential for leading the development of a new generation of topological superconductors.« less

  13. The role of dimethyl sulfoxide (DMSO) in ex-vivo examination of human skin burn injury treatment

    NASA Astrophysics Data System (ADS)

    Pielesz, Anna; Gawłowski, Andrzej; Biniaś, Dorota; Bobiński, Rafał; Kawecki, Marek; Klama-Baryła, Agnieszka; Kitala, Diana; Łabuś, Wojciech; Glik, Justyna; Paluch, Jadwiga

    2018-05-01

    Dimethyl sulfoxide (DMSO) is one of the most versatile solvents in biological science, therefore it is frequently used as a solvent in biological studies and as a vehicle for drug therapy. DMSO readily penetrates, diffuses through biological membranes and ipso facto increases fluidity of liposomal membranes modelling stratum corneum. Thermal injury is associated with the appearance of lipid peroxidation products in the burned skin. The influence of DMSO on protein structure and stability is concentration and temperature dependant. The aim of this study was to assess the impact of DMSO on human burn wounds and examine the interactions between DMSO and skin surface. The real problem in burn treatment is hypoalbuminemia. At the level of the laboratory studies there was an attempt at answering the question of whether the DMSO will modify the standard serum solution. In the case of the incubation of skin fragments in 1%-100% DMSO, the following findings were reported: modification of the serum, appearance of low molecular weight oligomer bands, disappearance of albumin bands or reconstruction of native serum bands during incubation in antioxidant solutions. The result of the modification is also the exposure of FTIR 1603 and 1046 cm-1 bands observed in frozen serum solutions. In the case of modification of the burned skin by DMSO solutions or antioxidants - frequency shifts, an increase in the intensity of amide I band as well as the appearance of the 1601 cm-1 band can be specific biomarkers of the tissue regeneration process. In this study the areas 1780-1580 cm-1 and 1418-1250 cm-1 on the Raman spectra are particularly rich in spectral information.

  14. Structure and Dynamics of Antifreeze Protein--Model Membrane Interactions: A Combined Spectroscopic and Molecular Dynamics Study.

    PubMed

    Kar, Rajiv K; Mroue, Kamal H; Kumar, Dinesh; Tejo, Bimo A; Bhunia, Anirban

    2016-02-11

    Antifreeze proteins (AFPs) are the key biomolecules that enable species to survive under subzero temperature conditions. The physiologically relevant activities of AFPs are based on the adsorption to ice crystals, followed by the inhibition of subsequent crystal layer growth of ice, routed with depression in freezing point in a noncolligative manner. The functional attributes governing the mechanism by which AFPs inhibit freezing of body fluids in bacteria, fungi, plants, and fishes are mainly attributed to their adsorption onto the surface of ice within the physiological system. Importantly, AFPs are also known for their application in cryopreservation of biological samples that might be related to membrane interaction. To date, there is a paucity of information detailing the interaction of AFPs with membrane structures. Here, we focus on elucidating the biophysical properties of the interactions between AFPs and micelle models that mimic the membrane system. Micelle model systems of zwitterionic DPC and negatively charged SDS were utilized in this study, against which a significant interaction is experienced by two AFP molecules, namely, Peptide 1m and wfAFP (the popular AFP sourced from winter flounder). Using low- and high-resolution biophysical characterization techniques, such as circular dichroism (CD) and NMR spectroscopy, a strong evidence for the interactions of these AFPs with the membrane models is revealed in detail and is corroborated by in-depth residue-specific information derived from molecular dynamics simulation. Altogether, these results not only strengthen the fact that AFPs interact actively with membrane systems, but also demonstrate that membrane-associated AFPs are dynamic and capable of adopting a number of conformations rendering fluidity to the system.

  15. The role of dimethyl sulfoxide (DMSO) in ex-vivo examination of human skin burn injury treatment.

    PubMed

    Pielesz, Anna; Gawłowski, Andrzej; Biniaś, Dorota; Bobiński, Rafał; Kawecki, Marek; Klama-Baryła, Agnieszka; Kitala, Diana; Łabuś, Wojciech; Glik, Justyna; Paluch, Jadwiga

    2018-05-05

    Dimethyl sulfoxide (DMSO) is one of the most versatile solvents in biological science, therefore it is frequently used as a solvent in biological studies and as a vehicle for drug therapy. DMSO readily penetrates, diffuses through biological membranes and ipso facto increases fluidity of liposomal membranes modelling stratum corneum. Thermal injury is associated with the appearance of lipid peroxidation products in the burned skin. The influence of DMSO on protein structure and stability is concentration and temperature dependant. The aim of this study was to assess the impact of DMSO on human burn wounds and examine the interactions between DMSO and skin surface. The real problem in burn treatment is hypoalbuminemia. At the level of the laboratory studies there was an attempt at answering the question of whether the DMSO will modify the standard serum solution. In the case of the incubation of skin fragments in 1%-100% DMSO, the following findings were reported: modification of the serum, appearance of low molecular weight oligomer bands, disappearance of albumin bands or reconstruction of native serum bands during incubation in antioxidant solutions. The result of the modification is also the exposure of FTIR 1603 and 1046cm -1 bands observed in frozen serum solutions. In the case of modification of the burned skin by DMSO solutions or antioxidants - frequency shifts, an increase in the intensity of amide I band as well as the appearance of the 1601cm -1 band can be specific biomarkers of the tissue regeneration process. In this study the areas 1780-1580cm -1 and 1418-1250cm -1 on the Raman spectra are particularly rich in spectral information. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.

    PubMed

    Tan, Zaigao; Yoon, Jong Moon; Nielsen, David R; Shanks, Jacqueline V; Jarboe, Laura R

    2016-05-01

    Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio-product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal

    DOE PAGES

    Kim, Hyunsoo; Wang, Kefeng; Nakajima, Yasuyuki; ...

    2018-04-06

    In all known fermionic super fluids, Cooper pairs are composed of spin-1/2 quasi-particles that pair to form either spin-singlet or spin-triplet bound states. The "spin" of a Bloch electron, however, is xed by the symmetries of the crystal and the atomic orbitals from which it is derived, and in some cases can behave as if it were a spin-3/2 particle. The superconducting state of such a system allows pairing beyond spin-triplet, with higher spin quasi-particles combining to form quintet or even septet pairs. Here, we report evidence of unconventional superconductivity emerging from a spin-3/2 quasiparticle electronic structure in the half-Heuslermore » semimetal YPtBi, a low-carrier density noncentrosymmetric cubic material with a high symmetry that preserves the p-like j = 3/2 manifold in the Bi-based Γ 8 band in the presence of strong spin-orbit coupling. With a striking linear temperature dependence of the London penetration depth, the existence of line nodes in the superconducting order parameter Δ is directly explained by a mixed-parity Cooper pairing model with high total angular momentum, consistent with a high-spin fermionic super fluid state. We propose a k ∙ p model of the j = 3/2 fermions to explain how a dominant J=3 septet pairing state is the simplest solution that naturally produces nodes in the mixed even-odd parity gap. Together with the underlying topologically non-trivial band structure, the unconventional pairing in this system represents a truly novel form of super fluidity that has strong potential for leading the development of a new generation of topological superconductors.« less

  18. "If Only I Did Not Have That Label Attached to Me": Foregrounding Self-Positioning and Intersectionality in the Experiences of Immigrant and Refugee Youth

    ERIC Educational Resources Information Center

    Fruja Amthor, Ramona

    2017-01-01

    In order to bring forth the specific intricacies of the migration experience among comparatively understudied immigrant and refugee youth, this article bridges an intersectionality framework with multicultural education scholars' calls to flexibility and fluidity in conceptualizing culture and identity. Drawing on in-depth interviews, the analysis…

  19. The Contribution of Aboriginal Epistemologies to Mathematics Education in Australia: Exploring the Silences

    ERIC Educational Resources Information Center

    Hughes, Amber; Laura, Ron

    2018-01-01

    Epistemology is a conceptual template for how we think about the world, and the study of how we come to know the world around us. The world does not dictate unequivocally how to interpret it. This article will explore this position on the fluidity of epistemic constructs through two prominent philosophical perspectives, those being derived from…

  20. A Ratchet Lens: Black Queer Youth, Agency, Hip Hop, and the Black Ratchet Imagination

    ERIC Educational Resources Information Center

    Love, Bettina L.

    2017-01-01

    This article explores the utilization of the theory of a Black ratchet imagination as a methodological perspective to examine the multiple intersections of Black and queer identity constructions within the space of hip hop. In particular, I argue for the need of a methodological lens that recognizes, appreciates, and struggles with the fluidity,…

  1. I'm Deleting as Fast as I Can: Negotiating Learning Practices in Cyberspace

    ERIC Educational Resources Information Center

    Thompson, Terrie Lynn

    2012-01-01

    Learning in and through work is one of the many spaces in which pedagogy may unfold. Web technologies amplify this fluidity and online learning now encompasses a plethora of practices. In this paper I focus on the delete button and deleting practices of self-employed workers engaged in informal work-related learning in online communities. How the…

  2. Controlling Protein Conformation and Activities on Block-Copolymer Nanopatterns

    DTIC Science & Technology

    2013-10-24

    adsorption: the need for large stick pads! Average area = 2.4±1.5x104 nm2 Average area = 7.9±4.7x104 nm2 ~14 nm2 ~56 nm2 ~350 nm2 Kinetic...Fluidity in multivalent interactions Pre-clustering - “ sweet spot” Dynamic- clustering Label free lipid bilayer arrays with SPR The dark area

  3. Will Global Warming Cause a Rise in Sea Level? A Simple Activity about the States of Water

    ERIC Educational Resources Information Center

    Oguz, Ayse

    2009-01-01

    In this activity, a possible problem related to global warming is clarified by the principle of states of water. The activity consists of an experiment that includes three scientific principles: Archimedes' Principle, the Law of Conservation of Matter, and the fluidity of liquids. The experiment helps students raise questions and open new horizons…

  4. Adventures with Text and Beyond: Education for Empowerment--The Link between Multiple Literacies and Critical Consciousness.

    ERIC Educational Resources Information Center

    Hubbard, Scott

    2013-01-01

    For students who sense no fluidity between their academic context and their personal contexts, what's at stake is more than just their scholastic achievement--rather, their development as individual agents who exist in larger social and historical contexts is jeopardized. When teachers and schools neglect to recognize the legitimacy of…

  5. Ambivalence and Fluidity in the Teenage Smoking and Quitting Experience: Lessons from a Qualitative Study at an English Secondary School

    ERIC Educational Resources Information Center

    Buswell, Marina; Duncan, Peter

    2013-01-01

    Objective: To evaluate a school-based stop smoking pilot project and to understand the teenage experience of smoking and quitting within that context. Design: Flexible design methods. Setting: A Kent (United Kingdom [UK]) secondary school. Methods: Semi-structured interviews analyzed following a grounded theory approach. Results: The main themes…

  6. Youth Participatory Action Research (YPAR) 2.0: How Technological Innovation and Digital Organizing Sparked a Food Revolution in East Oakland

    ERIC Educational Resources Information Center

    Akom, Antwi; Shah, Aekta; Nakai, Aaron; Cruz, Tessa

    2016-01-01

    This article argues that technological innovation is transforming the flow of information, the fluidity of social action, and is giving birth to new forms of bottom up innovation that are capable of expanding and exploding old theories of reproduction and resistance because "smart mobs," "street knowledge," and "social…

  7. Omega-3 Fatty Acid Supplementation for the Treatment of Children with Attention-Deficit/Hyperactivity Disorder Symptomatology: Systematic Review and Meta-Analysis

    ERIC Educational Resources Information Center

    Bloch, Michael H.; Qawasmi, Ahmad

    2011-01-01

    Objective: Several studies have demonstrated differences in omega-3 fatty acid composition in plasma and in erythrocyte membranes in patients with attention-deficit/hyperactivity disorder (ADHD) compared with unaffected controls. Omega-3 fatty acids have anti-inflammatory properties and can alter central nervous system cell membrane fluidity and…

  8. Fluidity in the Networked Society--Self-Initiated learning as a Digital Literacy Competence

    ERIC Educational Resources Information Center

    Levinsen, Karin Tweddell

    2011-01-01

    In the globalized economies e-permeation has become a basic condition in our everyday lives. ICT can no longer be understood solely as artefacts and tools and computer-related literacy are no longer restricted to the ability to operate digital tools for specific purposes. The network society, and therefore also eLearning are characterized by…

  9. Dimensions of somatization and hypochondriasis.

    PubMed

    Ford, C V

    1995-05-01

    A significantly large group of patients who communicate their psychosocial distress in the form of physical symptoms are called somatizers. They tend to overuse medical services. The syndromes with which they present have indistinct boundaries, and there tends to be some fluidity of their symptomatic presentations. Underlying psychiatric disorders such as mood disorders, anxiety disorders (including obsessive compulsive disorder), and personality disorders are frequently present.

  10. A New Destination for "The Flying Bus"?: The Implications of Orlando-Rican Migration for Luis Rafael Sanchez's "La guagua aerea"

    ERIC Educational Resources Information Center

    Barreneche, Gabriel Ignacio; Lombardi, Jane; Ramos-Flores, Hector

    2012-01-01

    Puerto Rican author Luis Rafael Sanchez's "La guagua aerea" explores the duality, hybridity, and fluidity of US-Puerto Rican identity through the frequent travel of migrants between New York City (the traditional destination city for Puerto Rican migrants) and the island. In recent years, however, the "flying bus" has adopted a…

  11. Performances and working mechanism of a novel polycarboxylate superplasticizer synthesized through changing molecular topological structure.

    PubMed

    Liu, Xiao; Guan, Jianan; Lai, Guanghong; Wang, Ziming; Zhu, Jie; Cui, Suping; Lan, Mingzhang; Li, Huiqun

    2017-10-15

    A novel star-shaped polycarboxylate superplasticizer (SPCE) was synthesized through a simple two-step method. 1 H Nuclear Magnetic Resonance ( 1 H NMR) and Infrared Spectroscopy (IR) measurements were used for structural characterization. SPCE and comb-shaped polycarboxylate superplasticizer (CPCE) with same molecular weights were designed and synthesized. The cement paste containing SPCE exhibited better fluidity, fluidity retention, water reduction, 25% lower saturated dosage of PCE, 10% longer setting time, lower hydration heat, more delayed hydration heat evolution and lower amount of hydration products at early ages. Furthermore, the adsorption behavior of SPCE and CPCE in cement pastes and the zeta potential were investigated, and then the working mechanism of SPCE was theoretically explained. It is interesting that changing topological structure from comb-shape to star-shape can achieve the optimization of dispersion effect, and further improve the working effectiveness. The aims of this study are to provide a new avenue to synthesize superplasticizer with novel structure achieving the chemical diversity of superplasticizer structure, and to verify the contribution of optimizing molecular shape. This new type of superplasticizer can be used as a rheology modifying agent in fresh cement-based materials. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Perfect fluidity of a dissipative system: Analytical solution for the Boltzmann equation in AdS 2 Ⓧ S 2

    DOE PAGES

    Noronha, Jorge; Denicol, Gabriel S.

    2015-12-30

    In this paper we obtain an analytical solution of the relativistic Boltzmann equation under the relaxation time approximation that describes the out-of-equilibrium dynamics of a radially expanding massless gas. This solution is found by mapping this expanding system in flat spacetime to a static flow in the curved spacetime AdS 2 Ⓧ S 2. We further derive explicit analytic expressions for the momentum dependence of the single-particle distribution function as well as for the spatial dependence of its moments. We find that this dissipative system has the ability to flow as a perfect fluid even though its entropy density doesmore » not match the equilibrium form. The nonequilibrium contribution to the entropy density is shown to be due to higher-order scalar moments (which possess no hydrodynamical interpretation) of the Boltzmann equation that can remain out of equilibrium but do not couple to the energy-momentum tensor of the system. Furthermore, in this system the slowly moving hydrodynamic degrees of freedom can exhibit true perfect fluidity while being totally decoupled from the fast moving, nonhydrodynamical microscopic degrees of freedom that lead to entropy production.« less

  13. Effect of a Vietnamese Cinnamomum cassia essential oil and its major component trans-cinnamaldehyde on the cell viability, membrane integrity, membrane fluidity, and proton motive force of Listeria innocua.

    PubMed

    Trinh, Nga-Thi-Thanh; Dumas, Emilie; Thanh, Mai Le; Degraeve, Pascal; Ben Amara, Chedia; Gharsallaoui, Adem; Oulahal, Nadia

    2015-04-01

    The antibacterial mechanism of a Cinnamomum cassia essential oil from Vietnam and of its main component (trans-cinnamaldehyde, 90% (m/m) of C. cassia essential oil) against a Listeria innocua strain was investigated to estimate their potential for food preservation. In the presence of C. cassia essential oil or trans-cinnamaldehyde at their minimal bactericidal concentration (2700 μg·mL(-1)), L. innocua cells fluoresced green after staining with Syto9® and propidium iodide, as observed by epifluorescence microscopy, suggesting that the perturbation of membrane did not cause large pore formation and cell lysis but may have introduced the presence of viable but nonculturable bacteria. Moreover, the fluidity, potential, and intracellular pH of the cytoplasmic membrane were perturbed in the presence of the essential oil or trans-cinnamaldehyde. However, these membrane perturbations were less severe in the presence of trans-cinnamaldehyde than in the presence of multicomponent C. cassia essential oil. This indicates that in addition to trans-cinnamaldehyde, other minor C. cassia essential oil components play a major role in its antibacterial activity against L. innocua cells.

  14. Kinetic analysis of the interaction between poly(amidoamine) dendrimers and model lipid membranes.

    PubMed

    Tiriveedhi, Venkataswarup; Kitchens, Kelly M; Nevels, Kerrick J; Ghandehari, Hamidreza; Butko, Peter

    2011-01-01

    We used fluorescence spectroscopy and surface tensiometry to study the interaction between low-generation (G1 and G4) poly(amidoamine) (PAMAM) dendrimers, potential vehicles for intracellular drug delivery, and model lipid bilayers. Membrane association of fluorescently labeled dendrimers, measured by fluorescence anisotropy, increased with increasing size of the dendrimer and with increasing negative charge density in the membrane, indicating the electrostatic nature of the interaction. When the membrane was doped with pyrene-labeled phosphatidyl glycerol (pyrene-PG), pyrene excimer fluorescence demonstrated a dendrimer-induced selective aggregation of negatively charged lipids when the membrane was in the liquid crystalline state. A nonlinear Stern-Volmer quenching of dendrimer fluorescence with cobalt bromide suggested a dendrimer-induced aggregation of lipid vesicles, which increased with the dendrimer's generation number. Surface tensiometry measurements showed that dendrimers penetrated into the lipid monolayer only at subphysiologic surface pressures (<30mN/m). We conclude that the low-generation PAMAM dendrimers associate with lipid membranes predominantly electrostatically, without significantly compromising the bilayer integrity. They bind stronger to membranes with higher fluidity and lower surface pressure, which are characteristic of rapidly dividing cells. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Effects of cholesterol on plasma membrane lipid order in MCF-7 cells by two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Zeng, Yixiu; Chen, Jianling; Yang, Hongqin; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-09-01

    Lipid rafts are cholesterol- and glycosphingolipids- enriched microdomains on plasma membrane surface of mammal cells, involved in a variety of cellular processes. Depleting cholesterol from the plasma membrane by drugs influences the trafficking of lipid raft markers. Optical imaging techniques are powerful tools to study lipid rafts in live cells due to its noninvasive feature. In this study, breast cancer cells MCF-7 were treated with different concentrations of MβCD to deplete cholesterol and an environmentally sensitive fluorescence probe, Laurdan was loaded to image lipid order by two-photon microscopy. The generalized polarization (GP) values were calculated to distinguish the lipid order and disorder phase. GP images and GP distributions of native and cholesterol-depleted MCF-7 cells were obtained. Our results suggest that even at low concentration (0.5 mM) of MβCD, the morphology of the MCF-7 cells changes. Small high GP areas (lipid order phase) decrease more rapidly than low GP areas (lipid disorder phase), indicating that lipid raft structure was altered more severely than nonraft domains. The data demonstrates that cholesterol dramatically affect raft coverage and plasma membrane fluidity in living cells.

  16. Family Drawings before and after Treatment for Child Conduct Problems: Fluidity of Family Dysfunction.

    PubMed

    Kloft, Lilian; Hawes, David; Moul, Caroline; Sultan, Sonia; Dadds, Mark

    2017-01-01

    Children's drawings have previously been found to reflect their representations of family relationships. The present study examined whether evidence-based parent training for child conduct problems impacts on representations of family functioning using the Family Drawing Paradigm (FDP). N  = 53 clinic-referred children (aged 3-15) with conduct problems and their families were assessed pre-treatment and at 6-month follow-up on a modified version of the FDP. Analyses of changes in the FDP revealed improvements in family functioning but not tone of language (as indicated by written descriptors) following treatment. Higher family dysfunction scores were associated with increased levels of callous-unemotional (CU) traits in the children pre-treatment. Children with high levels of CU, however, demonstrated greater change in FDP dysfunction than a low CU group, resulting in similar levels at follow-up. CU traits also moderated the association between change in family warmth and conduct problem severity, with increased FDP warmth more strongly related to improved conduct problems in the high vs. the low CU group. FDP drawings are sensitive to changes in family functioning arising from parent training, accounting for unique variance in child outcomes independent of verbal reports.

  17. Bioeffects of low-energy continuous ultrasound on isolated sarcoma 180 cells.

    PubMed

    Wang, Xiaobing; Liu, Quanhong; Wang, Zhezhi; Wang, Pan; Hao, Qiao; Li, Chendi

    2009-01-01

    The aim of this study was to investigate the mechanism underlying bioeffects of low-intensity continuous ultrasound on isolated sarcoma 180 (S180) cells and cellular responses to these effects. After sonication, several structural and functional parameters were examined to elucidate ultrasound-induced cell damage. Instant disruption of the cell membrane might be caused by acoustic cavitation, producing mechanical and chemical effects that acted simultaneously on S180 cells; this could be reflected by immediate (morphological) changes such as membrane permeability, membrane fluidity, lipid peroxidation and the generation of hydroxyl radicals in culture medium. Our results of the delayed effects also indicated S180 cells were sensitive to ultrasound-induced apoptosis, and the rate of apoptosis rose gradually with a prolonged incubation time. The presence of apoptotic cells was identified by a distinct morphological form characterized by membrane blebbing, cell shrinkage, chromatin condensation and DNA fragmentation. Moreover, delayed cytotoxicity was accompanied by an increase in intracellular reactive oxygen species (ROS) and a decrease in the mitochondrial membrane potential, and the two events presented obviously a negative correlation. ROS secondarily generated from damaged mitochondria may play a role in the induction of apoptosis. Copyright 2009 S. Karger AG, Basel.

  18. Bicontinuous microemulsions as a biomembrane mimetic system for melittin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Douglas G.; Ye, Ran; Dunlap, Rachel N.

    Antimicrobial peptides effectively kill antibiotic-resistant bacteria by forming pores in prokaryotes' biomembranes via penetration into the biomembranes' interior. Bicontinuous microemulsions, consisting of interdispersed oil and water nanodomains separated by flexible surfactant monolayers, are potentially valuable for hosting membrane-associated peptides and proteins due to their thermodynamic stability, optical transparency, low viscosity, and high interfacial area. Here, we show that bicontinuous microemulsions formed by negatively-charged surfactants are a robust biomembrane mimetic system for the antimicrobial peptide melittin. When encapsulated in bicontinuous microemulsions formed using three-phase (Winsor-III) systems, melittin's helicity increases greatly due to penetration into the surfactant monolayers, mimicking its behavior inmore » biomembranes. But, the threshold melittin concentration required to achieve these trends is lower for the microemulsions. The extent of penetration was decreased when the interfacial fluidity of the microemulsions was increased. In conclusion, these results suggest the utility of bicontinuous microemulsions for isolation, purification, delivery, and host systems for antimicrobial peptides.« less

  19. Protic ionic liquids based on the dimeric and oligomeric anions: [(AcO)xH(x-1)]-.

    PubMed

    Johansson, K M; Izgorodina, E I; Forsyth, M; MacFarlane, D R; Seddon, K R

    2008-05-28

    We describe a fluidity and conductivity study as a function of composition in N-methylpyrrolidine-acetic acid mixtures. The simple 1 : 1 acid-base mixture appears to form an ionic liquid, but its degree of ionicity is quite low and such liquids are better thought of as poorly dissociated mixtures of acid and base. The composition consisting of 3 moles acetic acid and 1 mole N-methylpyrrolidine is shown to form the highest ionicity mixture in this binary due to the presence of oligomeric anionic species [(AcO)(x)H(x-1)](-) stabilised by hydrogen bonds. These oligomeric species, being weaker bases than the acetate anion, shift the proton transfer equilibrium towards formation of ionic species, thus generating a higher degree of ionicity than is present at the 1 : 1 composition. A Walden plot analysis, thermogravimetric behaviour and proton NMR data, as well as ab initio calculations of the oligomeric species, all support this conclusion.

  20. Bicontinuous microemulsions as a biomembrane mimetic system for melittin

    DOE PAGES

    Hayes, Douglas G.; Ye, Ran; Dunlap, Rachel N.; ...

    2017-11-12

    Antimicrobial peptides effectively kill antibiotic-resistant bacteria by forming pores in prokaryotes' biomembranes via penetration into the biomembranes' interior. Bicontinuous microemulsions, consisting of interdispersed oil and water nanodomains separated by flexible surfactant monolayers, are potentially valuable for hosting membrane-associated peptides and proteins due to their thermodynamic stability, optical transparency, low viscosity, and high interfacial area. Here, we show that bicontinuous microemulsions formed by negatively-charged surfactants are a robust biomembrane mimetic system for the antimicrobial peptide melittin. When encapsulated in bicontinuous microemulsions formed using three-phase (Winsor-III) systems, melittin's helicity increases greatly due to penetration into the surfactant monolayers, mimicking its behavior inmore » biomembranes. But, the threshold melittin concentration required to achieve these trends is lower for the microemulsions. The extent of penetration was decreased when the interfacial fluidity of the microemulsions was increased. In conclusion, these results suggest the utility of bicontinuous microemulsions for isolation, purification, delivery, and host systems for antimicrobial peptides.« less

  1. Effect of chitosan ethers on fresh state properties of lime mortars

    NASA Astrophysics Data System (ADS)

    Vyšvařil, M.; Žižlavský, T.

    2017-10-01

    The fresh state properties of mortars are eminently important since determine the material workability and also have a great influence on its hardened state characteristics. In this paper, the behaviour of fresh lime mortars modified by etherified derivatives of chitosan (hydroxypropylchitosan (HPCH) and carboxymethylchitosan (CMCH)) is assessed with the purpose of exploring a new application of such derivatives as lime mortar admixtures. The rheological parameters (relative yield stress, consistency coefficient and fluidity index) and viscoelastic properties were correlated with flow table tests, relative density measurements, water retention abilities of mortars and air content in mortars. Results were seen to be strongly dependent on substituents of the chitosan. Non-ionic derivative (HPCH) had a plasticizing influence on the mortars; the ionic CMCH showed the thickening effect. The effect of chitosan ethers was found to be dosage-dependent. CMCH had low impact on water retention, while HPCH displayed high water retention capability. It was concluded, that the ionic derivative (CMCH) is very similar by its viscosity enhancing effect to starch ether.

  2. Mutation K42E in dehydrodolichol diphosphate synthase (DHDDS) causes recessive retinitis pigmentosa.

    PubMed

    Lam, Byron L; Züchner, Stephan L; Dallman, Julia; Wen, Rong; Alfonso, Eduardo C; Vance, Jeffery M; Peričak-Vance, Margaret A

    2014-01-01

    A single-nucleotide mutation in the gene that encodes DHDDS has been identified by whole exome sequencing as the cause of the non-syndromic recessive retinitis pigmentosa (RP) in a family of Ashkenazi Jewish origin in which three of the four siblings have early onset retinal degeneration. The peripheral retinal degeneration in the affected siblings was evident in the initial examination in 1992 and only one had detectable electroretinogram (ERG) that suggested cone-rod dysfunction. The pigmentary retinal degeneration subsequently progressed rapidly. The identified mutation changes the highly conserved residue Lys42 to Glu, resulting in lower catalytic efficiency. Patterns of plasma transferrin isoelectric focusing gel were normal in all family members, indicating no significant abnormality in protein glycosylation. Dolichols have been shown to influence the fluidity and of the membrane and promote vesicle fusion. Considering that photoreceptor outer segments contain stacks of membrane discs, we believe that the mutation may lead to low dolichol levels in photoreceptor outer segments, resulting in unstable membrane structure that leads to photoreceptor degeneration.

  3. Aspirin Increases the Solubility of Cholesterol in Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Alsop, Richard; Barrett, Matthew; Zheng, Sonbo; Dies, Hannah; Rheinstadter, Maikel

    2014-03-01

    Aspirin (ASA) is often prescribed for patients with high levels of cholesterol for the secondary prevention of myocardial events, a regimen known as the Low-Dose Aspirin Therapy. We have recently shown that Aspirin partitions in lipid bilayers. However, a direct interplay between ASA and cholesterol has not been investigated. Cholesterol is known to insert itself into the membrane in a dispersed state at moderate concentrations (under ~37.5%) and decrease fluidity of membranes. We prepared model lipid membranes containing varying amounts of both ASA and cholesterol molecules. The structure of the bilayers as a function of ASA and cholesterol concentration was determined using high-resolution X-ray diffraction. At cholesterol levels of more than 40mol%, immiscible cholesterol plaques formed. Adding ASA to the membranes was found to dissolve the cholesterol plaques, leading to a fluid lipid bilayer structure. We present first direct evidence for an interaction between ASA and cholesterol on the level of the cell membrane.

  4. [Liquid modernity and internet addiction].

    PubMed

    Doi, Takayoshi

    2015-09-01

    We are afraid that we are not always connected to somebody. There are such strong feelings to human relations in the background of internet addiction. It is reflection of today's social fluidity, and it is also reflection of the strength of the approval desire to occur from there. The feeling of fear in being off human relations in this society directs us to always-on connection by the internet.

  5. Bloom's "Normal" (2002) and Tarttelin's "Golden Boy" (2013): Teaching Gender Fluidity Written across Time and Text

    ERIC Educational Resources Information Center

    LeSavoy, Barbara

    2016-01-01

    The author is in a faculty position in women and gender studies (WGST) at a comprehensive public university in western New York. In this article, the author summarize theories of identity and voice as backdrop for inquiry, transitioning to a systematic discussion of teaching about sex and gender identity to differently positioned learners, drawing…

  6. Cryopreservation of canine semen - new challenges.

    PubMed

    Farstad, W

    2009-07-01

    Egg yolk (EY) protects cell membranes against cold shock, and it prevents or restores the loss of phospholipids from the membrane. EY has been widely used in semen extenders. It has been added to Tris-Glucose buffer and has been widely used for cooling and cryopreservation of canine semen. EY is not a defined entity, but a complex biological compound containing proteins, vitamins, phospholipids, glucose and antioxidants which are all potentially useful for cell membrane integrity. Unfortunately, it also is a biologically hazardous compound. Hence, whole EY needs to be replaced by other chemically defined components for semen processing in dogs. Freezing poor semen does not improve its quality, so attention must be focused on how to cope with dogs whose semen does not freeze well, and on designing individual freezing extenders for semen from such males. Furthermore, differences have been found among canid species in the ability of their spermatozoa to withstand freezing. There are differences in sperm membrane fatty acid composition among species, which may explain part of these differences. If the presence of long-chained polyunsaturated fatty acids contributes to increased membrane fluidity, this relationship may be biphasic, i.e. either too much membrane fluidity, or too little, could compromise successful sperm cryopreservation. An increase in fluidity of the outer leaflet of the plasma membrane has been shown in frozen thawed dog spermatozoa. The protective effect of exogenous lipids may lie in close association with the membrane rather than in modification or rearrangement of the membrane. This also points at lipids as an important, if not entirely new group of substances, which may substitute standard EY-based diluents in preserving sperm survival during freezing. EY-derived phospholipids or lecithin could be used to replace whole EY. Vegetable lecithin is currently investigated to avoid using substances of animal origin. EY also contains antioxidants which prevent cells from oxidative damage due to the generation of reactive oxygen species. An increasing number of publications now recognize the significance of protecting sperm from this damage during processing by using dietary or diluent supplemented antioxidants. This paper aims at looking at some of the new challenges in freezing of dog semen.

  7. Cytoskeletal stiffness, friction, and fluidity of cancer cell lines with different metastatic potential.

    PubMed

    Coughlin, Mark F; Bielenberg, Diane R; Lenormand, Guillaume; Marinkovic, Marina; Waghorne, Carol G; Zetter, Bruce R; Fredberg, Jeffrey J

    2013-03-01

    We quantified mechanical properties of cancer cells differing in metastatic potential. These cells included normal and H-ras-transformed NIH3T3 fibroblast cells, normal and oncoprotein-overexpressing MCF10A breast cancer cells, and weakly and strongly metastatic cancer cell line pairs originating from human cancers of the skin (A375P and A375SM cells), kidney (SN12C and SN12PM6 cells), prostate (PC3M and PC3MLN4 cells), and bladder (253J and 253JB5 cells). Using magnetic twisting cytometry, cytoskeletal stiffness (g') and internal friction (g″) were measured over a wide frequency range. The dependencies of g' and g″ upon frequency were used to determine the power law exponent x which is a direct measure of cytoskeletal fluidity and quantifies where the cytoskeleton resides along the spectrum of solid-like (x = 1) to fluid-like (x = 2) states. Cytoskeletal fluidity x increased following transformation by H-ras oncogene expression in NIH3T3 cells, overexpression of ErbB2 and 14-3-3-ζ in MCF10A cells, and implantation and growth of PC3M and 253J cells in the prostate and bladder, respectively. Each of these perturbations that had previously been shown to enhance cancer cell motility and invasion are shown here to shift the cytoskeleton towards a more fluid-like state. In contrast, strongly metastatic A375SM and SN12PM6 cells that disseminate by lodging in the microcirculation of peripheral organs had smaller x than did their weakly metastatic cell line pairs A375P and SN12C, respectively. Thus, enhanced hematological dissemination was associated with decreased x and a shift towards a more solid-like cytoskeleton. Taken together, these results are consistent with the notion that adaptations known to enhance metastatic ability in cancer cell lines define a spectrum of fluid-like versus solid-like states, and the position of the cancer cell within this spectrum may be a determinant of cancer progression.

  8. [Lipids, depression and suicide].

    PubMed

    Colin, A; Reggers, J; Castronovo, V; Ansseau, M

    2003-01-01

    Polyunsatured fatty acids are made out of a hydrocarbonated chain of variable length with several double bonds. The position of the first double bond (omega) differentiates polyunsatured omega 3 fatty acids (for example: alpha-linolenic acid or alpha-LNA) and polyunsatured omega 6 fatty acids (for example: linoleic acid or LA). These two classes of fatty acids are said to be essential because they cannot be synthetised by the organism and have to be taken from alimentation. The omega 3 are present in linseed oil, nuts, soya beans, wheat and cold water fish whereas omega 6 are present in maize, sunflower and sesame oil. Fatty acids are part of phospholipids and, consequently, of all biological membranes. The membrane fluidity, of crucial importance for its functioning, depends on its lipidic components. Phospholipids composed of chains of polyunsatured fatty acids increase the membrane fluidity because, by bending some chains, double bonds prevent them from compacting themselves perfectly. Membrane fluidity is also determined by the phospholipids/free cholesterol ratio, as cholesterol increases membrane viscosity. A diet based on a high proportion of essential polyunsatured fatty acids (fluid) would allow a higher incorporation of cholesterol (rigid) in the membranes to balance their fluidity, which would contribute to lower blood cholesterol levels. Brain membranes have a very high content in essential polyunsatured fatty acids for which they depend on alimentation. Any dietary lack of essential polyunsatured fatty acids has consequences on cerebral development, modifying the activity of enzymes of the cerebral membranes and decreasing efficiency in learning tasks. The prevalence of depression seems to increase continuously since the beginning of the century. Though different factors most probably contribute to this evolution, it has been suggested that it could be related to an evolution of alimentary patterns in the Western world, in which polyunsatured omega 3 fatty acids contained in fish, game and vegetables have been largely replaced by polyunsatured omega 6 fatty acids of cereal oils. Some epidemiological data support the hypothesis of a relation between lower depression and/or suicide rates and a higher consumption of fish. These data do not however prove a relation of causality. Several cohort studies (on nondepressed subjects) have assessed the relationship between plasma cholesterol and depressive symptoms with contradictory results. Though some results found a significant relationship between a decrease of total cholesterol and high scores of depression, some other did not. Studies among patients suffering from major depression signalled more constantly an association between low cholesterol and major depression. Besides, some trials showed that clinical recovery may be associated with a significant increase of total cholesterol. The hypothesis that a low cholesterol level may represent a suicidal risk factor was discovered accidentally following a series of epidemiological studies which revealed an increase of the suicidal risk among subjects with a low cholesterol level. Though some contradictory studies do exist, this relationship has been confirmed by several subsequent cohort studies. These findings have challenged the vast public health programs aimed at promoting the decrease of cholesterol, and even suggested to suspend the administration of lipid lowering drugs. Recent clinical studies on populations treated with lipid lowering drugs showed nevertheless a lack of significant increase of mortality, either by suicide or accident. In addition, several controlled studies among psychiatric patients revealed a decrease of the concentrations of plasma cholesterol among patients who had attempted suicide in comparison with other patients. In major depression, all studies revealed a significant decrease of the polyunsaturated omega 3 fatty acids and/or an increase of the omega 6/omega 3 ratio in plasma and/or in the membranes of the red cells. In addition, two studies found a higher severity of depression when the level of polyunsaturated omega 3 fatty acids or the ratio omega 3/omega 6 was low. Parallel to these modifications, other biochemical perturbations have been reported in major depression, particularly an activation of the inflammatory response system, resulting in an increase of the pro-inflammatory cytokines (interleukins: IL-1b, IL-6 and interferon g) and eicosanoids (among others, prostaglandin E2) in the blood and the CSF of depressed patients. These substances cause a peroxidation and, consequently a catabolism of membrane phospholipids, among others those containing polyunsaturated fatty acids. The cytokines and eicosanoids derive from polyunsaturated fatty acids and have opposite physiological functions according to their omega 3 or omega 6 precursor. Arachidonic acid (omega 6) is, among others, precursor of pro-inflammatory prostaglandin E2 (PGE2), whereas polyunsaturated omega 3 fatty acids inhibit the formation of PGE2. It has been shown that a dietary increase of polyunsaturated omega 3 fatty acids reduced strongly the production of IL-1 beta, IL-2, IL-6 and TNF-alpha (tumor necrosis factor-alpha). In contrast, diets with a higher supply of linoleic acid (omega 6) increased significantly the production of pro-inflammatory cytokines, like TNF-alpha. Therefore, polyunsaturated omega 3 fatty acids could be associated at different levels in the pathophysiology of major depression, on the one hand through their role in the membrane fluidity which influences diverse steps of neurotransmission and, on the other hand, through their function as precursor of pro-inflammatory cytokines and eicosanoids disturbing neurotransmission. In addition, antidepressants could exhibit an immunoregulating effect by reducing the release of pro-inflammatory cytokines, by increasing the release of endogenous antagonists of pro-inflammatory cytokines like IL-10 and, finally, by acting like inhibitors of cyclo-oxygenase. Data available concerning the administration of supplements of DHA (docosahexanoic acid) or other polyunsaturated fatty acids omega 3 are limited. In a double blind placebo-controlled study on 30 patients with bipolar disorder, the addition of polyunsaturated omega 3 fatty acids was associated with a longer period of remission. Moreover, nearly all the other prognosis measures were better in the omega 3 group. Very recently, a controlled trial showed the benefits of adding an omega 3 fatty acid, eicosopentanoic acid, among depressed patients. After 4 weeks, six of the 10 patients receiving the fatty acid were considered as responders in comparison with only one of the ten patients receiving placebo. Some epidemiological, experimental and clinical data favour the hypothesis that polyunsaturated fatty acids could play a role in the pathogenesis and/or the treatment of depression. More studies however are needed in order to better precise the actual implication of those biochemical factors among the various aspects of depressive illness.

  9. Lens lipids.

    PubMed

    Zelenka, P S

    1984-11-01

    Lens cells can synthesize, degrade, and remodel lipids. Endogenous lipid synthesis, in conjunction with uptake of exogenous cholesterol and certain fatty acids, leads to the formation of a plasma membrane that is especially rich in sphingomyelin, cholesterol, and long-chain saturated fatty acids. As a result of this unusual lipid composition, lens membranes have very low fluidity, which is restricted even further by lipid-protein interactions. The composition and metabolism of membrane lipids may affect the formation of various types of cataracts. Diets rich in vegetable oils offer some protection against the formation of osmotic cataracts and the hereditary cataract of the RCS rat, although the mechanism of this effect is not clear. Vitamin E also protects against the formation of several types of cataract in vivo and in vitro, suggesting that lipid peroxidation may play a role in cataractogenesis. Certain drugs which inhibit lipid synthesis or degradation are cataractogenic, and a deficiency in cataractogenic, and a deficiency in phosphatidylserine is associated with a loss of Na+/K+ ATPase activity in several types of cataract. Human senile cataracts show a marked loss of protein-lipid interactions, although the overall lipid composition is normal. This loss of protein-lipid interactions may be related to oxidative damage to membrane-associated proteins. Interestingly, the decrease in the fluidity of lens membranes with age would counteract the formation of aqueous pores in the membrane, which can result from the oxidative cross-linking of membrane-associated proteins. Certain pathways of lipid metabolism seem to have regulatory functions. Among these are phosphatidylinositol turnover, phosphatidylethanolamine methylation, and arachidonic acid metabolism. All of these pathways function in the lens. Phosphatidylinositol turnover is correlated with the rate of lens epithelial cell division, while phosphatidylethanolamine methylation seems to be related to the initiation of lens fiber cell formation. Both pathways are associated with the release and metabolism of arachidonic acid in other cell types. While it is not known whether phosphatidylinositol turnover or phosphatidylethanolamine methylation result in the release of arachidonic acid in the lens, recent work has shown that lens cells from a variety of species can metabolize arachidonic acid by both the cyclooxygenase and lipoxygenase pathways. The possible physiological significance of these metabolites to the lens is yet to be determined.

  10. Influence of Low-Shear Modeled Microgravity on Heat Resistance, Membrane Fatty Acid Composition, and Heat Stress-Related Gene Expression in Escherichia coli O157:H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895.

    PubMed

    Kim, H W; Rhee, M S

    2016-05-15

    We previously showed that modeled microgravity conditions alter the physiological characteristics of Escherichia coli O157:H7. To examine how microgravity conditions affect bacterial heat stress responses, D values, membrane fatty acid composition, and heat stress-related gene expression (clpB, dnaK, grpE, groES, htpG, htpX, ibpB, and rpoH), E. coli O157:H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895 were cultured under two different conditions: low-shear modeled microgravity (LSMMG, an analog of spaceflight conditions) and normal gravity (NG, Earth-like conditions). When 24-h cultures were heated to 55°C, cells cultured under LSMMG conditions showed reduced survival compared with cells cultured under NG conditions at all time points (P < 0.05). D values of all tested strains were lower after LSMMG culture than after NG culture. Fourteen of 37 fatty acids examined were present in the bacterial membrane: nine saturated fatty acids (SFA) and five unsaturated fatty acids (USFA). The USFA/SFA ratio, a measure of membrane fluidity, was higher under LSMMG conditions than under NG conditions. Compared with control cells grown under NG conditions, cells cultured under LSMMG conditions showed downregulation of eight heat stress-related genes (average, -1.9- to -3.7-fold). The results of this study indicate that in a simulated space environment, heat resistance of E. coli O157:H7 decreased, and this might be due to the synergistic effects of the increases in membrane fluidity and downregulated relevant heat stress genes. Microgravity is a major factor that represents the environmental conditions in space. Since infectious diseases are difficult to deal with in a space environment, comprehensive studies on the behavior of pathogenic bacteria under microgravity conditions are warranted. This study reports the changes in heat stress resistance of E. coli O157:H7, the severe foodborne pathogen, under conditions that mimic microgravity. The results provide scientific clues for further understanding of the bacterial response under the simulated microgravity conditions. It will contribute not only to the improvement of scientific knowledge in the academic fields but also ultimately to the development of a prevention strategy for bacterial disease in the space environment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Canthaxanthin production with modified Mucor circinelloides strains.

    PubMed

    Papp, Tamás; Csernetics, Arpád; Nagy, Gábor; Bencsik, Ottó; Iturriaga, Enrique A; Eslava, Arturo P; Vágvölgyi, Csaba

    2013-06-01

    Canthaxanthin is a natural diketo derivative of β-carotene primarily used by the food and feed industries. Mucor circinelloides is a β-carotene-accumulating zygomycete fungus and one of the model organisms to study the carotenoid biosynthesis in fungi. In this study, the β-carotene ketolase gene (crtW) of the marine bacterium Paracoccus sp. N81106 fused with fungal promoter and terminator regions was integrated into the M. circinelloides genome to construct stable canthaxanthin-producing strains. Different transformation methods including polyethylene glycol-mediated transformation with linear DNA fragments, restriction enzyme-mediated integration and Agrobacterium tumefaciens-mediated transformation were tested to integrate the crtW gene into the Mucor genome. Mitotic stability, site of integration and copy number of the transferred genes were analysed in the transformants, and several stable strains containing the crtW gene in high copy number were isolated. Carotenoid composition of selected transformants and effect of culturing conditions, such as temperature, carbon sources and application of certain additives in the culturing media, on their carotenoid content were analysed. Canthaxanthin-producing transformants were able to survive at higher growth temperature than the untransformed strain, maybe due to the effect of canthaxanthin on the membrane fluidity and integrity. With the application of glucose, trehalose, dihydroxyacetone and L-aspartic acid as sole carbon sources in minimal medium, the crtW-expressing M. circinelloides strain, MS12+pCA8lf/1, produced more than 200 μg/g (dry mass) of canthaxanthin.

  12. Solid-to-fluid – like DNA transition in viruses facilitates infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ting; Sae-Ueng, Udom; Li, Dong

    2014-10-14

    Releasing the packaged viral DNA into the host cell is an essential process to initiate viral infection. In many double-stranded DNA bacterial viruses and herpesviruses, the tightly packaged genome is hexagonally ordered and stressed in the protein shell, called the capsid. DNA condensed in this state inside viral capsids has been shown to be trapped in a glassy state, with restricted molecular motion in vitro. This limited intracapsid DNA mobility is caused by the sliding friction between closely packaged DNA strands, as a result of the repulsive interactions between the negative charges on the DNA helices. It had been unclearmore » how this rigid crystalline structure of the viral genome rapidly ejects from the capsid, reaching rates of 60,000 bp/s. Through a combination of single- molecule and bulk techniques, we determined how the structure and energy of the encapsidated DNA in phage λ regulates the mobility required for its ejection. Our data show that packaged λ -DNA undergoes a solid-to-fluid – like disordering transition as a function of temperature, resultin g locally in less densely packed DNA, reducing DNA – DNA repulsions. This p rocess leads to a sig- nificant increase in genome mobility or fluidity, which facilitates genome release at temperatures close to that of viral infection (37 °C), suggesting a remarkab le physical adaptation of bac- terial viruses to the environment of Escherichia coli cells in a human host.« less

  13. Army Reserve Components Research Roadmap Volume 2: Research Agenda

    DTIC Science & Technology

    1997-09-01

    over a 150-mile radius. This obviously makes training above the company level difficult for any time other than annual training (AT). In addition...at a higher level of decision- making , fluidity in the assignments of force structures to units creates wide spread change which affects whole units...can increasingly make TADSS and other enhancements practical solutions to persistent training needs. It should also be noted that the questions

  14. Properties of Plasma Membrane from Pea Root Seedlings under Altered Gravity

    NASA Astrophysics Data System (ADS)

    Klymchuk, D.; Baranenko, V.; Vorobyova, T. V.; Kurylenko, I.; Chyzhykova, O.; Dubovoy, V.

    In this study, the properties of pea (Pisum sativum L.) plasma membrane were examined to determine how the membrane structure and functions are regulated in response to clinorotation (2 rev/min) conditions. Membrane preparations enriched by plasma membrane vesicles were obtained by aqueous two-phase partitioning from 6-day seedling roots. The specific characteristics of H^+-ATPase, lípid composition and peroxidation intensity as well as fluidity of lipid bilayer were analysed. ATP hydrolytic activity was inhibited by ortovanadate and was insensitive to aside and nitrate in sealed plasma membrane vesicles isolated from both clinorotated and control seedlings. Plasma membrane vesicles from clinorotated seedlings in comparison to controls were characterised by increase in the total lipid/protein ratio, ATP hydrolytic activity and intensifying of lipid peroxidation. Sitosterol and campesterol were the predominant free sterol species. Clinorotated seedlings contained a slightly higher level of unsaturated fatty acid than controls. Plasma membrane vesicles were labelled with pyrene and fluorescence originating from monomeric (I_M) molecules and excimeric (I_E) aggregates were measured. The calculated I_E/I_M values were higher in clinorotated seedlings compared with controls reflecting the reduction in membrane microviscosity. The involvement of the changes in plasma membrane lipid content and composition, fluidity and H^+-ATPase activity in response of pea seedlings to altered gravity is discussed.

  15. Consequences of transition from liquid chromatography to supercritical fluid chromatography on the overall performance of a chiral zwitterionic ion-exchanger.

    PubMed

    Wolrab, Denise; Frühauf, Peter; Gerner, Christopher; Kohout, Michal; Lindner, Wolfgang

    2017-09-29

    Major differences in the chromatographic performance of a zwitterion ion-exchange type (ZWIX) chiral stationary phase (CSP) in supercritical fluid chromatography (SFC) and high-performance liquid chromatography (HPLC) have been observed. To explain these differences, transition from HPLC to SFC conditions has been performed. The amount of a protic organic modifier in supercritical carbon dioxide (scCO 2 ) was stepwise increased and the effect of this change studied using acidic, basic and ampholytic analytes. At the same time, the effect of various basic additives to the mobile phase and transient acidic buffer species, formed by the reaction of scCO 2 with the organic modifier and additives, was assessed. Evidence is provided that a transient acid together with the intrinsic counter-ions present in the ZWIX selector structure drive the elution of analytes even when no buffer is employed. We show that the tested analytes can be enantioseparated under both SFC and HPLC conditions; the best conditions for the resolution of ampholytes are in the so-called enhanced-fluidity mobile phase region. As a consequence, subcritical fluid and enhanced-fluidity mobile phase regions seem to be chromatographic modes with a high potential for operating ZWIX CSPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Sputtered Gum metal thin films showing bacterial inactivation and biocompatibility.

    PubMed

    Achache, S; Alhussein, A; Lamri, S; François, M; Sanchette, F; Pulgarin, C; Kiwi, J; Rtimi, S

    2016-10-01

    Super-elastic Titanium based thin films Ti-23Nb-0.7Ta-2Zr-(O) (TNTZ-O) and Ti-24Nb-(N) (TN-N) (at.%) were deposited by direct current magnetron sputtering (DCMS) in different reactive atmospheres. The effects of oxygen doping (TNTZ-O) and/or nitrogen doping (TN-N) on the microstructure, mechanical properties and biocompatibility of the as-deposited coatings were investigated. Nano-indentation measurements show that, in both cases, 1sccm of reactive gas in the mixture is necessary to reach acceptable values of hardness and Young's modulus. Mechanical properties are considered in relation to the films compactness, the compressive stress and the changes in the grain size. Data on Bacterial inactivation and biocompatibility are reported in this study. The biocompatibility tests showed that O-containing samples led to higher cells proliferation. Bacterial inactivation was concomitant with the observed pH and surface potential changes under light and in the dark. The increased cell fluidity leading to bacterial lysis was followed during the bacterial inactivation time. The increasing cell wall fluidity was attributed to the damage of the bacterial outer cell which losing its capacity to regulate the ions exchange in and out of the bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mechanical coupling of microtubule-dependent motor teams during peroxisome transport in Drosophila S2 cells.

    PubMed

    De Rossi, María Cecilia; Wetzler, Diana E; Benseñor, Lorena; De Rossi, María Emilia; Sued, Mariela; Rodríguez, Daniela; Gelfand, Vladimir; Bruno, Luciana; Levi, Valeria

    2017-12-01

    Intracellular transport requires molecular motors that step along cytoskeletal filaments actively dragging cargoes through the crowded cytoplasm. Here, we explore the interplay of the opposed polarity motors kinesin-1 and cytoplasmic dynein during peroxisome transport along microtubules in Drosophila S2 cells. We used single particle tracking with nanometer accuracy and millisecond time resolution to extract quantitative information on the bidirectional motion of organelles. The transport performance was studied in cells expressing a slow chimeric plus-end directed motor or the kinesin heavy chain. We also analyzed the influence of peroxisomes membrane fluidity in methyl-β-ciclodextrin treated cells. The experimental data was also confronted with numerical simulations of two well-established tug of war scenarios. The velocity distributions of retrograde and anterograde peroxisomes showed a multimodal pattern suggesting that multiple motor teams drive transport in either direction. The chimeric motors interfered with the performance of anterograde transport and also reduced the speed of the slowest retrograde team. In addition, increasing the fluidity of peroxisomes membrane decreased the speed of the slowest anterograde and retrograde teams. Our results support the existence of a crosstalk between opposed-polarity motor teams. Moreover, the slowest teams seem to mechanically communicate with each other through the membrane to trigger transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Kinetics of apoptotic markers in exogeneously induced apoptosis of EL4 cells.

    PubMed

    Jessel, Robert; Haertel, Steffen; Socaciu, Carmen; Tykhonova, Svetlana; Diehl, Horst A

    2002-01-01

    We investigated the time-dependence of apoptotic events in EL4 cells by monitoring plasma membrane changes in correlation to DNA fragmentation and cell shrinkage. We applied three apoptosis inducers (staurosporine, tubericidine and X-rays) and we looked at various markers to follow the early-to-late apoptotic events: phospholipid translocation (identified through annexin V-fluorescein assay and propidium iodide), lipid package (via merocyanine assay), membrane fluidity and anisotropy (via fluorescent measurements), DNA fragmentation by the fluorescence-labeling test and cell size measurements. The different apoptotic inducers caused different reactions of the cells: staurosporine induced apoptosis most rapidly in a high number of cells, tubercidine triggered apoptosis only in the S phase cells, while X-rays caused a G2/M arrest and subsequently apoptosis. Loss of lipid asymmetry is promptly detectable after one hour of incubation time. The phosphatidylserine translocation, decrease of lipid package and anisotropy, and the increase of membrane fluidity appeared to be based on the same process of lipid asymmetry loss. Therefore, the DNA fragmentation and the cell shrinkage appear to be parallel and independent processes running on different time scales but which are kinetically inter-related. The results indicate different signal steps to apoptosis dependent on inducer characteristics but the kinetics of "early-to-late" apoptosis appears to be a fixed program.

  19. Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi.

    PubMed

    Turk, Martina; Méjanelle, Laurence; Sentjurc, Marjeta; Grimalt, Joan O; Gunde-Cimerman, Nina; Plemenitas, Ana

    2004-02-01

    The halophilic melanized yeast-like fungi Hortaea werneckii, Phaeotheca triangularis, and the halotolerant Aureobasidium pullulans, isolated from salterns as their natural environment, were grown at different NaCl concentrations and their membrane lipid composition and fluidity were examined. Among sterols, besides ergosterol, which was the predominant one, 23 additional sterols were identified. Their total content did not change consistently or significantly in response to raised NaCl concentrations in studied melanized fungi. The major phospholipid classes were phosphatidylcholine and phosphatidylethanolamine, followed by anionic phospholipids. The most abundant fatty acids in phospholipids contained C16 and C18 chain lengths with a high percentage of C18:2Delta9,12. Salt stress caused an increase in the fatty acid unsaturation in the halophilic H. werneckii and halotolerant A. pullulans but a slight decrease in halophilic P. triangularis. All the halophilic fungi maintained their sterol-to-phospholipid ratio at a significantly lower level than did the salt-sensitive Saccharomyces cerevisiae and halotolerant A. pullulans. Electron paramagnetic resonance (EPR) spectroscopy measurements showed that the membranes of all halophilic fungi were more fluid than those of the halotolerant A. pullulans and salt-sensitive S. cerevisiae, which is in good agreement with the lipid composition observed in this study.

  20. Quality design of belite–melilite clinker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurokawa, Daisuke, E-mail: daisuke_kurokawa@taiheiyo-cement.co.jp; Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555; Honma, Kenichi

    2013-12-15

    We have developed a new cement clinker, consisting mainly of belite and melilite, which is capable of increasing the amount of recycled waste as a part of its raw materials. We analyzed clinkers with a wide range of compositions, and clarified the quantitative relationship between the chemical and mineral compositions. Clinkers consisting mostly of belite and melilite were successfully obtained at the CaO/SiO{sub 2} mass ratio of 1.7 to 1.9. Test cements were prepared using these clinkers and mixed with OPC for the evaluation of fluidity and strength. The belite–melilite cement was found to have good fluidity, and the belite–melilitemore » cement mixed with OPC at up to 30% exhibited a satisfactory long term strength equivalent to the OPC, demonstrating the potential as an alternative to OPC. Electron probe microanalysis revealed the relatively high concentration of diphosphorus pentaoxide in belite, suggesting this component might contribute to the strength enhancement of the cement. -- Highlights: •A new cement clinker consisting mainly of belite and melilite was designed. •The clinker enables the use of various recycled wastes as part of its raw materials. •The relationship between the chemical and mineral compositions was clarified. •This cement mixed with OPC at up to 30% exhibited a good quality equivalent to OPC.« less

  1. Agarose Gel Electrophoresis Reveals Structural Fluidity of a Phage T3 DNA Packaging Intermediate

    PubMed Central

    Serwer, Philip; Wright, Elena T.

    2012-01-01

    We find a new aspect of DNA packaging-associated structural fluidity for phage T3 capsids. The procedure is (1) glutaraldehyde cross-linking of in vivo DNA packaging intermediates for stabilization of structure and then (2) determining of effective radius by two-dimensional agarose gel electrophoresis (2d-AGE). The intermediates are capsids with incompletely packaged DNA (ipDNA) and without an external DNA segment; these intermediates are called ipDNA-capsids. We initially increase production of ipDNA-capsids by raising NaCl concentration during in vivo DNA packaging. By 2d-AGE, we find a new state of contracted shell for some particles of one previously identified ipDNA-capsid. The contracted shell-state is found when ipDNA length/mature DNA length (F) is above 0.17, but not at lower F. Some contracted-shell ipDNA-capsids have the phage tail; others do not. The contracted-shell ipDNA-capsids are explained by premature DNA maturation cleavage that makes accessible a contracted-shell intermediate of a cycle of the T3 DNA packaging motor. The analysis of ipDNA-capsids, rather than intermediates with uncleaved DNA, provides a simplifying strategy for a complete biochemical analysis of in vivo DNA packaging. PMID:22222979

  2. Pulmonary lung surfactant synthetic peptide concentration-dependent modulation of DPPC and POPG acyl chain order in a DPPC:POPG:palmitic acid lipid mixture.

    PubMed

    Krill, S L; Gupta, S L; Smith, T

    1994-05-06

    Lung surfactant-associated protein interaction with lipid matrices and the effects on lipid thermotropic phase behavior are areas of active research. Many studies limit the lipids to a single or two-component system. The current investigation utilizes a three-lipid component matrix (DPPC:POPG:palmitic acid) to investigate the impact of a synthetic surfactant protein B fragment (SP-B 53-78 DiACM) on the dynamic surface activity of the lipid admixture as measured by a Wilhelmy surface balance. Also, the modulation of the individual lipid acyl chain order by the peptide within the lipid matrix is studied through the use of thermal perturbation FTIR spectroscopy. The data clearly demonstrate a concentration-dependent effect of the peptide on the surface activity with an improvement in the dynamic surface tension diagram characteristics (decreased surface tension and increased collapse plateau) especially at low, 0.36 M%, peptide concentrations. These effects are diminished upon further addition of the peptide. FTIR spectral data demonstrate that the peptide addition results in a significant increase in the acyl chain order of the DPPC and POPG components as measured by the position of the methylene stretching vibrational bands. DPPC is most sensitive to the peptide presence, while the palmitic acid is least affected. The transition temperatures of the individual lipids are also increased with the addition of the peptide. The presence of POPG in the matrix achieves the surface activity similarly seen with natural lung surfactant relative to a DPPC/palmitic acid lipid matrix alone. Its presence increases the sensitivity of the DPPC acyl chains to the presence of the peptide. These effects on the chain order are most probably related to the increased acyl chain fluidity which POPG imparts to the lipid matrix because of the presence of the cis double bond. The phosphatidylglycerol headgroup also adds a negative charge to the lipid matrix which enhances the peptide-lipid interaction. Although the palmitic acid is minimally affected by the peptide, its presence, as suggested by surface balance measurements, results in the establishment of a stable lipid film with DPPC, capable of achieving low surface tension values.

  3. Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Peterson, D.W.; Holcomb, R.T.; Tilling, R.I.; Christiansen, R.L.

    1994-01-01

    During the 1969-1974 Mauna Ulu eruption on Kilauea's upper east rift zone, lava tubes were observed to develop by four principal processes: (1) flat, rooted crusts grew across streams within confined channels; (2) overflows and spatter accreted to levees to build arched roofs across streams; (3) plates of solidified crust floating downstream coalesced to form a roof; and (4) pahoehoe lobes progressively extended, fed by networks of distributaries beneath a solidified crust. Still another tube-forming process operated when pahoehoe entered the ocean; large waves would abruptly chill a crust across the entire surface of a molten stream crossing through the surf zone. These littoral lava tubes formed abruptly, in contrast to subaerial tubes, which formed gradually. All tube-forming processes were favored by low to moderate volume-rates of flow for sustained periods of time. Tubes thereby became ubiquitous within the pahoehoe flows and distributed a very large proportionof the lava that was produced during this prolonged eruption. Tubes transport lava efficiently. Once formed, the roofs of tubes insulate the active streams within, allowing the lava to retain its fluidity for a longer time than if exposed directly to ambient air temperature. Thus the flows can travel greater distances and spread over wider areas. Even though supply rates during most of 1970-1974 were moderate, ranging from 1 to 5 m3/s, large tube systems conducted lava as far as the coast, 12-13 km distant, where they fed extensive pahoehoe fields on the coastal flats. Some flows entered the sea to build lava deltas and add new land to the island. The largest and most efficient tubes developed during periods of sustained extrusion, when new lava was being supplied at nearly constant rates. Tubes can play a major role in building volcanic edifices with gentle slopes because they can deliver a substantial fraction of lava erupted at low to moderate rates to sites far down the flank of a volcano. We conclude, therefore, that the tendency of active pahoehoe flows to form lava tubes is a significant factor in producing the common shield morphology of basaltic volcanoes. ?? 1994 Springer-Verlag.

  4. Biophysical characterization of gold nanoparticles-loaded liposomes.

    PubMed

    Mady, Mohsen Mahmoud; Fathy, Mohamed Mahmoud; Youssef, Tareq; Khalil, Wafaa Mohamed

    2012-10-01

    Gold nanoparticles were prepared and loaded into the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Biophysical characterization of gold-loaded liposomes was studied by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy as well as turbidity and rheological measurements. FTIR measurements showed that gold nanoparticles made significant changes in the frequency of the CH(2) stretching bands, revealing that gold nanoparticles increased the number of gauche conformers and create a conformational change within the acyl chains of phospholipids. The transmission electron micrographs (TEM) revealed that gold nanoparticles were loaded in the liposomal bilayer. The zeta potential of DPPC liposomes had a more negative value after incorporating of Au NPs into liposomal membranes. Turbidity studies revealed that the loading of gold nanoparticles into DPPC liposomes results in shifting the temperature of the main phase transition to a lower value. The membrane fluidity of DPPC bilayer was increased by loading the gold nanoparticles as shown from rheological measurements. Knowledge gained in this study may open the door to pursuing liposomes as a viable strategy for Au NPs delivery in many diagnostic and therapeutic applications. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Influence of a static magnetic field on the slow freezing of human erythrocytes.

    PubMed

    Lin, Chun-Yen; Chang, Wei-Jen; Lee, Sheng-Yang; Feng, Sheng-Wei; Lin, Che-Tong; Fan, Kan-Shin; Huang, Haw-Ming

    2013-01-01

    The aim of this study was to test whether or not a strong static magnetic field (SMF) had a positive effect on the survival rate of frozen erythrocytes. Human erythrocytes were slow freezing at a rate of -1°C/min, to a final temperature of -20°C. During the freezing process, the cells were simultaneously exposed to an SMF with a magnetic induction of 0.2 or 0.4 T. After the cells were thawed, the survival rate, morphology, and function of the thawed erythrocytes were evaluated. Furthermore, tests of membrane fluidity were performed to assess the effect of the SMF on the cell membrane. The slow freezing process coupled with an SMF increased the survival rate of frozen erythrocytes, without any negative effect on the cell morphology or function. The increases in relative survival rates of frozen erythrocytes were 5.7% and 9.1% when the cells were frozen in 0.2 T and 0.4 T groups, respectively. In addition, the 0.4 T group significantly increased the membrane rigidity of the erythrocytes. Slow freezing coupled with a strong SMF produced positive effects on the survival rate of thawed erythrocytes, without changing their normal function.

  6. Fourier transform infrared imaging showing reduced unsaturated lipid content in the hippocampus of a mouse model of Alzheimer's disease.

    PubMed

    Leskovjan, Andreana C; Kretlow, Ariane; Miller, Lisa M

    2010-04-01

    Polyunsaturated fatty acids are essential to brain functions such as membrane fluidity, signal transduction, and cell survival. It is also thought that low levels of unsaturated lipid in the brain may contribute to Alzheimer's disease (AD) risk or severity. However, it is not known how accumulation of unsaturated lipids is affected in different regions of the hippocampus, which is a central target of AD plaque pathology, during aging. In this study, we used Fourier transform infrared imaging (FTIRI) to visualize the unsaturated lipid content in specific regions of the hippocampus in the PSAPP mouse model of AD as a function of plaque formation. Specifically, the unsaturated lipid content was imaged using the olefinic =CH stretching mode at 3012 cm(-1). The axonal, dendritic, and somatic layers of the hippocampus were examined in the mice at 13, 24, 40, and 56 weeks old. Results showed that lipid unsaturation in the axonal layer was significantly increased with normal aging in control (CNT) mice (p < 0.01) but remained low and relatively constant in PSAPP mice. Thus, these findings indicate that unsaturated lipid content is reduced in hippocampal white matter during amyloid pathogenesis and that maintaining unsaturated lipid content early in the disease may be critical in avoiding progression of the disease.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Towata, Tomomi; Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811; Komizu, Yuji

    Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by human herpes virus-8 infection, and is generally resistant to chemotherapy. Hybrid liposomes, composed of dimyristoylphosphatidylcholine (DMPC) and polyoxyethylene (21) dodecyl ether (C{sub 12}(EO){sub 21}) (HL-21), were rapidly accumulated in the membrane of PEL cells. HL-21 also increased membrane fluidity of PEL cells, and induced caspase-3 activation along with cell death. These results suggest that HL-21 should be an effective and attractive regent for PEL treatment.

  8. Dynamic Photonic Materials Based on Liquid Crystals (Postprint)

    DTIC Science & Technology

    2013-09-01

    AFRL-RX-WP-JA-2015-0059 DYNAMIC PHOTONIC MATERIALS BASED ON LIQUID CRYSTALS (POSTPRINT) Luciano De Sio and Cesare Umeton University...ON LIQUID CRYSTALS (POSTPRINT) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) (see back...10.1016/B978-0-444-62644-8.00001-7. 14. ABSTRACT Liquid crystals, combining optical non-linearity and self-organizing properties with fluidity, and being

  9. Color and shape changing polymeric ribbons and sheets

    DOEpatents

    Stevens, Raymond C.; Cheng, Quan; Song, Jie

    2006-05-23

    The present invention herein provides the design, synthesis and characterization of compositions comprising asymmetric bolaamphiphilic lipids that form extended polymeric ribbons and wide sheets. These compositions may be doped, or interspersed, with various compounds to fine-tune the fluidity and rigidity of the bolaamphiphilic lipid composition, and promote other morphologies of the composition, including fluid vesicles and truncated flat sheets. Upon an increase in pH these compositions undergo a calorimetric and morphological transformation.

  10. Interaction of nanoparticles with lipid membranes: a multiscale perspective.

    PubMed

    Montis, Costanza; Maiolo, Daniele; Alessandri, Ivano; Bergese, Paolo; Berti, Debora

    2014-06-21

    Freestanding lipid bilayers were challenged with 15 nm Au nanospheres either coated by a citrate layer or passivated by a protein corona. The effect of Au nanospheres on the bilayer morphology, permeability and fluidity presents strong differences or similarities, depending on the observation length scale, from the colloidal to the molecular domains. These findings suggest that the interaction between nanoparticles and lipid membranes should be conveniently treated as a multiscale phenomenon.

  11. Influences of two high intensity interval exercise protocols on the main determinants of blood fluidity in overweight men.

    PubMed

    Ahmadizad, Sajad; Bassami, Minoo; Hadian, Mohsen; Eslami, Maryam

    2016-01-01

    Acute effects of continuous exercise on the markers of blood fluidity have been addressed in different populations and the changes are intensity related. However, the effect of different high intensity interval exercise (HIIE) on these variables is unclear. This study is designed to determine the effects of two different HIIE with different work/rest ratios but the same energy expenditure on the main determinants of blood fluidity. Ten overweight men (age, 26.3±1.7 yrs) completed two HIIE protocols on two separate occasions with one week intervening. The two HIIE encompassed performing: 1) 6 intervals of 2 min activity at 85% of VO2max interspersed by 2 min active recovery at 30% of VO2max (ratio 1 to 1, HIIE1/1), and 2) 6 intervals of 30 s activity at 110% of VO2max interspersed by 4 min active recovery at 40% of VO2max (ratio 1 to 8, HIIE1/8). Each exercise trial was followed by 30 min rest. Venous blood samples were obtained before exercise, immediately after exercise and after recovery and analyzed for blood and plasma viscosity, fibrinogen and red blood cell indices. The HIIE1/1 protocol led to higher reduction (P < 0.01) in plasma volume changes compared to HIIE1/8 (9.9% vs 5.7%). Moreover, increases in blood viscosity, plasma viscosity, hematocrit, RBC count and mean arterial blood pressure observed following HIIE1/1 were significantly (P < 0.05) higher than HIIE1/8 ; whereas, the changes in fibrinogen concentration neither were significant in response to both trials nor were significantly different between two protocols (P > 0.05). However, the changes in all variables during exercise were transient and returned to the baseline levels after 30 min recovery. It is concluded that the HIIE protocol with lower intensity and shorter rest intervals (higher work to rest ratio) clearly results in more physiological strain than HIIE with higher intensity but longer rest intervals (lower work to rest ratio) in overweight individuals, and that the work to rest ratio could be as important as exercise intensity when considering the hemorheological variables during HIIE.

  12. Ex vivo effects of ibogaine on the activity of antioxidative enzymes in human erythrocytes.

    PubMed

    Nikolić-Kokić, Aleksandra; Oreščanin-Dušić, Zorana; Spasojević, Ivan; Slavić, Marija; Mijušković, Ana; Paškulin, Roman; Miljević, Čedo; Spasić, Mihajlo B; Blagojević, Duško P

    2015-04-22

    Ibogaine is a naturally occurring alkaloid with psychotropic and metabotropic effects, derived from the bark of the root of the West African Tabernanthe iboga plant. The tribes of Kongo basin have been using iboga as a stimulant, for medicinal purposes, and in rite of passage ceremonies, for centuries. Besides, it has been found that this drug has anti-addictive effects. Previous studies have demonstrated that ibogaine changed the quantity of ATP and energy related enzymes as well as the activity of antioxidant enzymes in cells thus altering redox equilibrium in a time manner. In this work, the mechanism of its action was further studied by measuring the effects of ibogaine in human erythrocytes in vitro on ATP liberation, membrane fluidity and antioxidant enzymes activity. Heparinized human blood samples were incubated with ibogaine (10 and 20 μM) at 37°C for 1h. Blood plasma was separated by centrifugation and the levels of ATP and uric acid were measured 10 min after the addition of ibogaine using standard kits. The activity of copper-zinc superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were measured in erythrocytes after incubation period. The stability of SOD1 activity was further tested through in vitro incubation with H2O2 and scanning of its electrophoretic profiles. Membrane fluidity was determined using an electron paramagnetic resonance spin-labelling method. Results showed that ibogaine treatment of erythrocytes in vitro increased ATP concentration in the blood plasma without changes in neither erythrocytes membrane fluidity nor uric acid concentration. Ibogaine also increased SOD1 activity in erythrocytes at both doses applied here. Treatment with 20 μM also elevated GR activity after in vitro incubation at 37°C. Electrophoretic profiles revealed that incubation with ibogaine mitigates H2O2 mediated suppression of SOD1 activity. Some of the effects of ibogaine seem to be mediated through its influence on energy metabolism, redox active processes and the effects of discrete fluctuations of individual reactive oxygen species on different levels of enzyme activities. Overall, ibogaine acts as a pro-antioxidant by increasing activity of antioxidative enzymes and as an adaptagene in oxidative distress. Copyright © 2015. Published by Elsevier Ireland Ltd.

  13. Transitions of Developmental Trajectories of Depressive Symptoms Between Junior and Senior High School Among Youths in Taiwan: Linkages to Symptoms in Young Adulthood.

    PubMed

    Wang, Yu-Chung Lawrence; Chan, Hsun-Yu; Chen, Pei-Chun

    2018-02-21

    We investigated the heterogeneous developmental trajectories of depressive symptoms in junior and senior high school, the transitions to different trajectories after entering senior high school, and the linkages to the development of depressive symptoms in early adulthood among Taiwanese adolescents. An eight-wave longitudinal data set was analyzed, including 2687 Taiwanese adolescents (51.2% boys, M age = 14.3 at first wave). Using a manual three-step latent transition growth mixture model, we found that a three-class solution fit the data for both junior high school (termed high-improving, cumulative, and JS-low-stable) and senior high school period (termed heightening, moderate-stable, and HS-low-stable). The depressive symptoms of most individuals maintained at a low level (i.e., low-stable) from adolescence to early adulthood; however, nearly a quarter of the adolescents reported depressive symptoms that were moderately or highly severe in senior high school and beyond. More than 30% of the participants experienced transitioning into a different developmental trajectory between junior and senior high school. When perceiving a higher level of paternal behavioral control, adolescents categorized in the high-improving class in junior high school would have a higher chance to transition to the moderate-stable class than to HS-low-stable class in senior high school. Adolescent boys and girls did not differ in the probability of transitioning between trajectories across junior and senior high school. However, a clear and consistent pattern of symptoms between late adolescence and early adulthood was not observed. These results help elucidate the heterogeneity and fluidity associated with the development of depressive symptoms between early adolescence and early adulthood in light of school transition among youths in Taiwan.

  14. The Categorical Stability of Gambling Motives Among Community-Recruited Gamblers: A Longitudinal Assessment.

    PubMed

    McGrath, Daniel S; Konkolÿ Thege, Barna

    2018-03-01

    Over the past decade, several motivational models have been proposed to explain the role of motives in gambling disorder. In the model captured by the four-factor Gambling Motives Questionnaire Financial (GMQ-F), gamblers are described as being primarily motivated to gamble for 'coping', 'enhancement', 'social', and 'financial' reasons. Although this model has received significant empirical support; to date, research assessing the role of motives in gambling disorder has been primarily cross-sectional in nature. Thus, the extent to which gambling motives remain stable over time has yet to be explored. In the current study, the stability versus fluidity of self-assessed gambling motives was investigated using the Quinte Longitudinal Study, a longitudinal dataset of gambling behaviour collected over 5 years. Gambling motives of 2795 gamblers were examined over all five annual assessments. The total proportion of gamblers who stayed in the same primary motive category across each of the 5 consecutive assessments was 22%, indicating substantial fluidity in category membership. Substantial movement between categories was seen for each GMQ-F group, as well as an additional group of non-classified motives. Logistic regression analyses suggest that greater resistance to gambling fallacies significantly predicted stability between the baseline assessment and a follow-up 1 year later, but gambling severity did not. Potential limitations in the study design and opportunities for future research are discussed.

  15. Pull-Out Strength and Bond Behavior of Prestressing Strands in Prestressed Self-Consolidating Concrete

    PubMed Central

    Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Hwang, Soo-Duck; Xing, Feng

    2014-01-01

    With the extensive use of self-consolidating concrete (SCC) worldwide, it is important to ensure that such concrete can secure uniform in-situ mechanical properties that are similar to those obtained with properly consolidated concrete of conventional fluidity. Ensuring proper stability of SCC is essential to enhance the uniformity of in-situ mechanical properties, including bond to embedded reinforcement, which is critical for structural engineers considering the specification of SCC for prestressed applications. In this investigation, Six wall elements measuring 1540 mm × 2150 mm × 200 mm were cast using five SCC mixtures and one reference high-performance concrete (HPC) of normal consistency to evaluate the uniformity of bond strength between prestressing strands and concrete as well as the distribution of compressive strength obtained from cores along wall elements. The evaluated SCC mixtures used for casting wall elements were proportioned to achieve a slump flow consistency of 680 ± 15 mm and minimum caisson filling capacity of 80%, and visual stability index of 0.5 to 1. Given the spreads in viscosity and static stability of the SCC mixtures, the five wall elements exhibited different levels of homogeneity in in-situ compressive strength and pull-out bond strength. Test results also indicate that despite the high fluidity of SCC, stable concrete can lead to more homogenous in-situ properties than HPC of normal consistency subjected to mechanical vibration. PMID:28788223

  16. Deoxycholic acid modulates cell death signaling through changes in mitochondrial membrane properties[S

    PubMed Central

    Sousa, Tânia; Castro, Rui E.; Pinto, Sandra N.; Coutinho, Ana; Lucas, Susana D.; Moreira, Rui; Rodrigues, Cecília M. P.; Prieto, Manuel; Fernandes, Fábio

    2015-01-01

    Cytotoxic bile acids, such as deoxycholic acid (DCA), are responsible for hepatocyte cell death during intrahepatic cholestasis. The mechanisms responsible for this effect are unclear, and recent studies conflict, pointing to either a modulation of plasma membrane structure or mitochondrial-mediated toxicity through perturbation of mitochondrial outer membrane (MOM) properties. We conducted a comprehensive comparative study of the impact of cytotoxic and cytoprotective bile acids on the membrane structure of different cellular compartments. We show that DCA increases the plasma membrane fluidity of hepatocytes to a minor extent, and that this effect is not correlated with the incidence of apoptosis. Additionally, plasma membrane fluidity recovers to normal values over time suggesting the presence of cellular compensatory mechanisms for this perturbation. Colocalization experiments in living cells confirmed the presence of bile acids within mitochondrial membranes. Experiments with active isolated mitochondria revealed that physiologically active concentrations of DCA change MOM order in a concentration- and time-dependent manner, and that these changes preceded the mitochondrial permeability transition. Importantly, these effects are not observed on liposomes mimicking MOM lipid composition, suggesting that DCA apoptotic activity depends on features of mitochondrial membranes that are absent in protein-free mimetic liposomes, such as the double-membrane structure, lipid asymmetry, or mitochondrial protein environment. In contrast, the mechanism of action of cytoprotective bile acids is likely not associated with changes in cellular membrane structure. PMID:26351365

  17. Changes in the lipid composition of Bradyrhizobium cell envelope reveal a rapid response to water deficit involving lysophosphatidylethanolamine synthesis from phosphatidylethanolamine in outer membrane.

    PubMed

    Cesari, Adriana B; Paulucci, Natalia S; Biasutti, María A; Morales, Gustavo M; Dardanelli, Marta S

    2018-06-02

    We evaluate the behavior of the membrane of Bradyrhizobium sp. SEMIA6144 during adaptation to polyethylene glycol (PEG). A dehydrating effect on the morphology of the cell surface, as well as a fluidizing effect on the membrane was observed 10 min after PEG shock; however, the bacteria were able to restore optimal membrane fluidity. Shock for 1 h caused an increase of lysophosphatidylethanolamine in the outer membrane at the expense of phosphatidylcholine and phosphatidylethanolamine (PE), through an increase in phospholipase activity. The amount of lysophosphatidylethanolamine did not remain constant during PEG shock, but after 24 h the outer membrane was composed of large amounts of phosphatidylcholine and less amount of lysophosphatidylethanolamine similar to the control. The inner membrane composition was also modified after 1 h of shock, observing an increase of phosphatidylcholine at the expense of PE, the proportions of these phospholipids were then modified to reach 24 h of shock values similar to the control. Vesicles prepared with the lipids of cells exposed to 1 h shock presented higher rigidity compared to the control, indicating that changes in the composition of phospholipids after 1 h of shock restoring fluidity after the PEG effect and would allow cells to maintain surface morphology. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. The Use of Stepper Motor-Controlled Proportional Valve for Fio2 Calculation in the Ventilator and its Control with Fuzzy Logic.

    PubMed

    Gölcük, Adem; Güler, İnan

    2017-01-01

    This article proposes the employment of a proportional valve that can calculate the amount of oxygen in the air to be given to patient in accordance with the amount of FiO 2 which is set from the control menu of the ventilation device. To actualize this, a stepper motor-controlled proportional valve was used. Two counts of valves were employed in order to control the gases with 2 bar pressure that came from both the oxygen and medical air tanks. Oxygen and medical air manometers alongside the pressure regulators were utilized to perform this task. It is a fuzzy-logic-based controller which calculates at what rate the proportional valves will be opened and closed for FiO 2 calculation. Fluidity and pressure of air given by the ventilation device were tested with a FlowMeter while the oxygen level was tested using the electronic lung model. The obtained results from the study revealed that stepper motor controlled proportional valve could be safely used in ventilation devices. In this article, it was indicated that fluidity and pressure control could be carried out with just two counts of proportional valve, which could be done with many solenoid valves, so this reduces the cost of ventilator, electrical power consumed by the ventilator, and the dimension of ventilator.

  19. Metabolism of Fructooligosaccharides in Lactobacillus plantarum ST-III via Differential Gene Transcription and Alteration of Cell Membrane Fluidity

    PubMed Central

    Chen, Chen; Zhao, Guozhong

    2015-01-01

    Although fructooligosaccharides (FOS) can selectively stimulate the growth and activity of probiotics and beneficially modulate the balance of intestinal microbiota, knowledge of the molecular mechanism for FOS metabolism by probiotics is still limited. Here a combined transcriptomic and physiological approach was used to survey the global alterations that occurred during the logarithmic growth of Lactobacillus plantarum ST-III using FOS or glucose as the sole carbon source. A total of 363 genes were differentially transcribed; in particular, two gene clusters were induced by FOS. Gene inactivation revealed that both of the clusters participated in the metabolism of FOS, which were transported across the membrane by two phosphotransferase systems (PTSs) and were subsequently hydrolyzed by a β-fructofuranosidase (SacA) in the cytoplasm. Combining the measurements of the transcriptome- and membrane-related features, we discovered that the genes involved in the biosynthesis of fatty acids (FAs) were repressed in cells grown on FOS; as a result, the FA profiles were altered by shortening of the carbon chains, after which membrane fluidity increased in response to FOS transport and utilization. Furthermore, incremental production of acetate was observed in both the transcriptomic and the metabolic experiments. Our results provided new insights into gene transcription, the production of metabolites, and membrane alterations that could explain FOS metabolism in L. plantarum. PMID:26319882

  20. High-level iron mitigates fusaricidin-induced membrane damage and reduces membrane fluidity leading to enhanced drug resistance in Bacillus subtilis.

    PubMed

    Yu, Wen-Bang; Ye, Bang-Ce

    2016-05-01

    Fusaricidins are a class of cyclic lipopeptide antibiotics that have strong antifungal activities against plant pathogenic fungi and excellent bactericidal activities against Gram-positive bacteria. The mechanism through which fusaricidin exerts its action is not yet entirely clear. To investigate the mode of action of fusaricidin, we determined the physiological and transcriptional responses of Bacillus subtilis to fusaricidin treatment by using a systems-level approach. Our data show that fusaricidin rapidly induced the expression of σ(W) regulon and caused membrane damage in B. subtilis. We further demonstrated that ferric ions play multiple roles in the action of fusaricidin on B. subtilis. Iron deprivation blocked the formation of hydroxyl radical in the cells and significantly inhibited the bactericidal activity of fusaricidin. Conversely, high levels of iron (>2 mM) repressed the expression of BkdR regulon, resulting in a smaller cellular pool of branched-chain precursors for iso- and anteiso-branched fatty acids, which in turn led to a decrease in the proportion of branched-chain fatty acids in the membrane of B. subtilis. This change in membrane composition reduced its bilayer fluidity and increased its resistance to antimicrobial agents. In conclusion, our experiments uncovered some novel interactions and a synergism between cellular iron levels and drug resistance in Gram-positive bacteria. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Unraveling the concept of race in Brazil: issues for the Rio de Janeiro Cooperative Agreement site.

    PubMed

    Surratt, H L; Inciardi, J A

    1998-01-01

    Scholars throughout the Americas have spent much of the 20th century studying race and its meaning in Brazil. Racial identities in Brazil are dynamic concepts which can only be understood if situated and explored within the appropriate cultural context. Empirical evidence of the fluidity of racial identification quickly came to the authors' attention within the context of a prevention initiative targeting segments of the Rio de Janeiro population at high risk for HIV/AIDS. Because the main objective of this program was to slow the spread of AIDS through an intervention designed to promote behavioral change, comparisons of client data at the baseline and follow-up assessments form the core of the analyses. Through quality control procedures used to link client information collected at different points in time, it was revealed that 106 clients, or 12.5% of the follow-up sample, had changed their racial self-identification. The authors' attempts to engage project staff in a dialogue about the fluidity of racial identity among these clients have provided some insight into what might be called the "contextual redefinition" of race in Brazil. Within the framework of this study, the ramifications of this phenomenon are clear. Racial comparisons of HIV risk, sexual activity, drug use, and behavioral change, which are part and parcel of U.S.-based research, would appear to be of little utility in this setting.

  2. Pull-Out Strength and Bond Behavior of Prestressing Strands in Prestressed Self-Consolidating Concrete.

    PubMed

    Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Hwang, Soo-Duck; Xing, Feng

    2014-10-10

    With the extensive use of self-consolidating concrete (SCC) worldwide, it is important to ensure that such concrete can secure uniform in-situ mechanical properties that are similar to those obtained with properly consolidated concrete of conventional fluidity. Ensuring proper stability of SCC is essential to enhance the uniformity of in-situ mechanical properties, including bond to embedded reinforcement, which is critical for structural engineers considering the specification of SCC for prestressed applications. In this investigation, Six wall elements measuring 1540 mm × 2150 mm × 200 mm were cast using five SCC mixtures and one reference high-performance concrete (HPC) of normal consistency to evaluate the uniformity of bond strength between prestressing strands and concrete as well as the distribution of compressive strength obtained from cores along wall elements. The evaluated SCC mixtures used for casting wall elements were proportioned to achieve a slump flow consistency of 680 ± 15 mm and minimum caisson filling capacity of 80%, and visual stability index of 0.5 to 1. Given the spreads in viscosity and static stability of the SCC mixtures, the five wall elements exhibited different levels of homogeneity in in-situ compressive strength and pull-out bond strength. Test results also indicate that despite the high fluidity of SCC, stable concrete can lead to more homogenous in-situ properties than HPC of normal consistency subjected to mechanical vibration.

  3. Electronic paramagnetic resonance investigation of the activity of Origanum vulgare L. essential oil on the Listeria monocytogenes membrane.

    PubMed

    Serio, A; Chiarini, M; Tettamanti, E; Paparella, A

    2010-08-01

    To evaluate the effect of oregano essential oil on Listeria monocytogenes cytoplasmic membrane. Nitroxide free-radical Electron Paramagnetic Resonance was applied on L. monocytogenes after 30 min exposure to oregano essential oil concentrations ranging from 0 to 1.25%. The impact of essential oil on the number of viable cells was evaluated by plate count. Growth dynamics of survivors in BHI and TSB were evaluated by turbidometry. After exposure to essential oil concentrations up to 0.50%, the membrane fluidity was changed and its order increased. When L. monocytogenes was exposed to higher concentrations, membrane order parameters slightly returned to the values of untreated cells. However, when the cells were exposed to EO in the presence of sodium azide, which impairs energy metabolism, the membrane fluidity was progressively enhanced, even at the lowest EO concentration (0.25%). Microbiological analyses confirmed a progressive reduction of viable count, at increasing essential oil concentrations. Both in BHI and TSB, the Lag phase length increased in treated cells with respect to controls, suggesting a cell damage recovery. The combined approach including microbiological and EPR analyses provided relevant information on membrane modification and cell response to essential oils. EPR approach was demonstrated to be an effective and helpful tool to comprehend the modifications exerted by essential oil on the bacterial membrane.

  4. Haemato-protective influence of dietary fenugreek (Trigonella foenum-graecum L.) seeds is potentiated by onion (Allium cepa L.) in streptozotocin-induced diabetic rats.

    PubMed

    Pradeep, Seetur R; Srinivasan, Krishnapura

    2018-02-01

    We have recently reported the beneficial modulation of metabolic abnormalities and oxidative stress in diabetic rats by dietary fenugreek seeds and onion. This investigation evaluated the protective influence of dietary fenugreek seeds (100 g kg -1 ) and onion (30 g kg -1 ) on erythrocytes of streptozotocin-induced diabetic rats, through modulation of reduced haematological indices and antisickling potency. This study also evaluated the altered erythrocyte membrane lipid profile and beneficial countering of increased lipid peroxidation, osmotic fragility, along with reduced membrane fluidity and deformability, nitric oxide production and echinocyte formation. Dietary fenugreek seeds and onion appeared to counter the deformity and fragility of erythrocytes partially in diabetic rats by their antioxidant potential and hypocholesterolemic property. The antisickling potency of these spices was accomplished by a substantial decrease in echinocyte population and AGEs in diabetic rats. Further insight into the factors that might have reduced the fluidity of erythrocytes in diabetic rats revealed changes in the cholesterol: phospholipid ratio, fatty acid profile, and activities of membrane-bound enzymes. Dietary fenugreek seeds and onion offered a beneficial protective effect to the red blood cells, the effect being higher with fenugreek + onion. This is the first report on the hemato-protective influence of a nutraceutical food component in diabetic situation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes.

    PubMed

    Nogueira, Daniele Rubert; Mitjans, Montserrat; Busquets, M Antonia; Pérez, Lourdes; Vinardell, M Pilar

    2012-08-14

    Amino acid-based surfactants constitute an important class of natural surface-active biomolecules with an unpredictable number of industrial applications. To gain a better mechanistic understanding of surfactant-induced membrane destabilization, we assessed the phospholipid bilayer-perturbing properties of new cationic lysine-based surfactants. We used erythrocytes as biomembrane models to study the hemolytic activity of surfactants and their effects on cells' osmotic resistance and morphology, as well as on membrane fluidity and membrane protein profile with varying pH. The antihemolytic capacity of amphiphiles correlated negatively with the length of the alkyl chain. Anisotropy measurements showed that the pH-sensitive surfactants, with the positive charge on the α-amino group of lysine, significantly increased membrane fluidity at acidic conditions. SDS-PAGE analysis revealed that surfactants induced significant degradation of membrane proteins in hypo-osmotic medium and at pH 5.4. By scanning electron microscopy examinations, we corroborated the interaction of surfactants with lipid bilayer. We found that varying the surfactant chemical structure is a way to modulate the positioning of the molecule inside bilayer and, thus, the overall effect on the membrane. Our work showed that pH-sensitive lysine-based surfactants significantly disturb the lipid bilayer of biomembranes especially at acidic conditions, which suggests that these compounds are promising as a new class of multifunctional bioactive excipients for active intracellular drug delivery.

  6. Effect of polyvinylpyrrolidone and sodium lauroyl isethionate on kaolinite suspension in an aqueous phase.

    PubMed

    Kwan, Chang-Chin; Chu, Wen-Hweu; Shimabayashi, Saburo

    2006-08-01

    Suspension of concentrated kaolinite (20 g/30 ml-medium) in the presence of polyvinylpyrrolidone (PVP) and sodium lauroyl isethionate (SLI) was allowed to evaluate its degree of dispersion based on their rheological studies. Flow curves at low shear rate, measured by means of cone-plate method, showed a non-Newtonian flow. Plastic viscosity and Bingham yield value were derived from the flow curves. Relative viscosity, effective volume fraction and void fraction of secondary particle were also obtained. Results of dispersity and fluidity of the suspension were explained. PVP acted as a flocculant at a concentration lower than 0.1% but as a dispersant at a higher concentration. The presence of SLI could decrease both the Bingham yield value and suspension viscosity. Cooperative and competitive effects of PVP and SLI were found. Results indicated that SLI enhanced the degree of dispersion of kaolinite when PVP was less than 0.1%. The suspension, however, showed a maximum flocculation (i.e., aggregation) at 4 mM SLI when the concentration of PVP was higher than 0.1%.

  7. Pilot-Scale Test of Dephosphorization in Steelmaking Using Red Mud-Based Flux

    NASA Astrophysics Data System (ADS)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-09-01

    Bayer red mud is characterized by its highly oxidizing nature and high alkalinity. It can act as an ideal flux and dephosphorizer in steelmaking. In this study, pilot-scale tests applying the Bayer red mud-based flux in steelmaking have been conducted in a 200-kg, medium-frequency induction furnace. Good slag fluidity and no rephosphorization phenomena are observed. High dephosphorization rates ( 90%) and low final [P] (<0.02%) are obtained in the situation of high [C] of 2.0-3.0%, which are of great importance for the production of clean steel. The P2O5 content in the P-rich phase in the red mud-based slag can reach as high as 34.05 wt.%, far higher than the 6.73 wt.% in ordinary industrial slag. This suggests that the Al2O3, TiO2 in Bayer red mud can enhance the solid solubility of phosphorus in the P-rich phase. The data obtained are important for promoting the large-scale application of red mud in steelmaking.

  8. Stress and dietary factors modify boar sperm for processing.

    PubMed

    Radomil, L; Pettitt, M J; Merkies, K M; Hickey, K D; Buhr, M M

    2011-09-01

    This paper reviews stresses boar sperm undergo during processing and presents preliminary results of dietary modification that minimize this damage. Processing for artificial insemination (AI) stresses boar sperm by osmotic effects; altering cell size, shape and membranes; intracellular ice formation; and production of reactive oxygen species (ROS). Sperm response to ROS is concentration-dependent, with low levels activating the ERK pathway to stimulate tyrosine phosphorylation (Tyr-P) and capacitation, but high concentrations or inappropriately timed onset of ROS pathways can harm sperm. Fresh boar sperm exposed to ROS increased intracellular hydrogen peroxide (H(2) O(2) ) phospholipase and lipid peroxidation, maintained viability but lost motility and underwent acrosome reactions (AR). Direct incorporation of lipids ± the antioxidant Vitamin E improves the survival of liquid- and frozen-stored semen. Boars fed dietary flaxseed for 8 weeks to increase n-3 fatty acids displayed improved sperm morphology (p < 0.05), increased membrane fluidity (p < 0.05) and better retention of motility and viability during 5-7 day storage (p < 0.05). Processes reducing oxidative damage to stored sperm should be evaluated. © 2011 Blackwell Verlag GmbH.

  9. Antimicrobial activity of clove and cinnamon essential oils against Listeria monocytogenes in pasteurized milk.

    PubMed

    Cava, R; Nowak, E; Taboada, A; Marin-Iniesta, F

    2007-12-01

    The antimicrobial activity of essential oils (EOs) of cinnamon bark, cinnamon leaf, and clove against Listeria monocytogenes Scott A were studied in semiskimmed milk incubated at 7 degrees C for 14 days and at 35 degrees C for 24 h. The MIC was 500 ppm for cinnamon bark EO and 3,000 ppm for the cinnamon leaf and clove EOs. These effective concentrations increased to 1,000 ppm for cinnamon bark EO, 3,500 ppm for clove EO, and 4,000 ppm for cinnamon leaf EO when the semiskimmed milk was incubated at 35 degrees C for 24 h. Partial inhibitory concentrations and partial bactericidal concentrations were obtained for all the assayed EOs. The MBC was 3,000 ppm for the cinnamon bark EO, 10,500 ppm for clove EO, and 11,000 ppm for cinnamon leaf EO. The incubation temperature did not affect the MBC of the EOs but slightly increased the MIC at 35 degrees C. The increased activity at the lower temperature could be attributed to the increased membrane fluidity and to the membrane-perturbing action of EOs. The influence of the fat content of milk on the antimicrobial activity of EOs was tested in whole and skimmed milk. In milk samples with higher fat content, the antimicrobial activity of the EOs was reduced. These results indicate the possibility of using these three EOs in milk beverages as natural antimicrobials, especially because milk beverages flavored with cinnamon and clove are consumed worldwide and have been increasing in popularity in recent years.

  10. Reorganization of plasma membrane lipid domains during conidial germination.

    PubMed

    Santos, Filipa C; Fernandes, Andreia S; Antunes, Catarina A C; Moreira, Filipe P; Videira, Arnaldo; Marinho, H Susana; de Almeida, Rodrigo F M

    2017-02-01

    Neurospora crassa, a filamentous fungus, in the unicellular conidial stage has ideal features to study sphingolipid (SL)-enriched domains, which are implicated in fundamental cellular processes ranging from antifungal resistance to apoptosis. Several changes in lipid metabolism and in the membrane composition of N. crassa occur during spore germination. However, the biophysical impact of those changes is unknown. Thus, a biophysical study of N. crassa plasma membrane, particularly SL-enriched domains, and their dynamics along conidial germination is prompted. Two N. crassa strains, wild-type (WT) and slime, which is devoid of cell wall, were studied. Conidial growth of N. crassa WT from a dormancy state to an exponential phase was accompanied by membrane reorganization, namely an increase of membrane fluidity, occurring faster in a supplemented medium than in Vogel's minimal medium. Gel-like domains, likely enriched in SLs, were found in both N. crassa strains, but were particularly compact, rigid and abundant in the case of slime cells, even more than in budding yeast Saccharomyces cerevisiae. In N. crassa, our results suggest that the melting of SL-enriched domains occurs near growth temperature (30°C) for WT, but at higher temperatures for slime. Regarding biophysical properties strongly affected by ergosterol, the plasma membrane of slime conidia lays in between those of N. crassa WT and S. cerevisiae cells. The differences in biophysical properties found in this work, and the relationships established between membrane lipid composition and dynamics, give new insights about the plasma membrane organization and structure of N. crassa strains during conidial growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Systemic Cold Stress Adaptation of Chlamydomonas reinhardtii*

    PubMed Central

    Valledor, Luis; Furuhashi, Takeshi; Hanak, Anne-Mette; Weckwerth, Wolfram

    2013-01-01

    Chlamydomonas reinhardtii is one of the most important model organisms nowadays phylogenetically situated between higher plants and animals (Merchant et al. 2007). Stress adaptation of this unicellular model algae is in the focus because of its relevance to biomass and biofuel production. Here, we have studied cold stress adaptation of C. reinhardtii hitherto not described for this algae whereas intensively studied in higher plants. Toward this goal, high throughput mass spectrometry was employed to integrate proteome, metabolome, physiological and cell-morphological changes during a time-course from 0 to 120 h. These data were complemented with RT-qPCR for target genes involved in central metabolism, signaling, and lipid biosynthesis. Using this approach dynamics in central metabolism were linked to cold-stress dependent sugar and autophagy pathways as well as novel genes in C. reinhardtii such as CKIN1, CKIN2 and a hitherto functionally not annotated protein named CKIN3. Cold stress affected extensively the physiology and the organization of the cell. Gluconeogenesis and starch biosynthesis pathways are activated leading to a pronounced starch and sugar accumulation. Quantitative lipid profiles indicate a sharp decrease in the lipophilic fraction and an increase in polyunsaturated fatty acids suggesting this as a mechanism of maintaining membrane fluidity. The proteome is completely remodeled during cold stress: specific candidates of the ribosome and the spliceosome indicate altered biosynthesis and degradation of proteins important for adaptation to low temperatures. Specific proteasome degradation may be mediated by the observed cold-specific changes in the ubiquitinylation system. Sparse partial least squares regression analysis was applied for protein correlation network analysis using proteins as predictors and Fv/Fm, FW, total lipids, and starch as responses. We applied also Granger causality analysis and revealed correlations between proteins and metabolites otherwise not detectable. Twenty percent of the proteins responsive to cold are uncharacterized proteins. This presents a considerable resource for new discoveries in cold stress biology in alga and plants. PMID:23564937

  12. Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an additive enhancement in apoptosis induction in human lymphoma U937 cells.

    PubMed

    Yoshida, Toru; Kondo, Takashi; Ogawa, Ryohei; Feril, Loreto B; Zhao, Qing-Li; Watanabe, Akihiko; Tsukada, Kazuhiro

    2008-04-01

    Potential clinical use of ultrasound (US) in enhancing the effects of anticancer drugs in the treatment of cancers has been highlighted in previous reports. Increased uptake of drugs by the cancer cells due to US has been suggested as a mechanism. However, the precise mechanism of the enhancement has not yet been elucidated. Here, the combined effects of low-intensity pulsed US and doxorubicin (DOX) on cell killing and apoptosis induction of U937 cells, and mechanisms involved were investigated. Human myelomonocytic lymphoma U937 cells were used for the experiments. Experiments were conducted in 4 groups: (1) non-treated, (2) DOX treated (DOX), (3) US treated (US), and (4) combined (DOX + US). In DOX +US, cells were exposed to 5 microM DOX for 30 min and sonicated by 1 MHz pulsed US (PRF 100 Hz, DF 10%) at intensities of 0.2-0.5 W/cm(2) for 60 s. The cells were washed and incubated for 6 h. The viability was evaluated by Trypan blue dye exclusion test and apoptosis and incorporation of DOX was assessed by flow cytometry. Involvement of sonoporation in molecular incorporation was evaluated using FITC-dextran, hydroxyl radical formation was measured by electron paramagnetic resonance-spin trapping, membrane alteration including lipid peroxidation and membrane fluidity by DOX was evaluated using cis-parinaric acid and perylene fluorescence polarization method, respectively. Synergistic enhancement in cell killing and additive enhancement in induction of apoptosis were observed at and above 0.3 W/cm(2). No enhancement was observed at 0.2 W/cm(2) in cell killing and induction of apoptosis. Hydroxyl radicals formation was detected at and above 0.3 W/cm(2). The radicals were produced more in the DOX + US than US alone. Incorporation of DOX was increased 13% in DOX + US (vs. DOX) at 0.5 W/cm(2). Involvement of sonoporation for increase of drug uptake was suggested by experiment using FITC-labeled dextran. We made the hypothesis that DOX treatment made the cells weaken against the mechanical effect of the US. Although treatment of DOX at 5 microM for 30 min did not affect lipid peroxidation and fluidity of cell membrane significantly, higher concentration and longer treatment of DOX induced the significant alteration of cell membrane. Mechanisms of enhancements could be (1) increase in incorporation of the DOX by US involved with sonoporation, (2) enhancement of the cavitation by DOX. Cavitation is required for the enhancement of the effect of DOX. Although the precise involvement of the membrane modifications by DOX in the enhancement remains to be elucidated, they could be involved in the latent effects.

  13. Analysis of Lipids and Lipid Rafts in Borrelia.

    PubMed

    Toledo, Alvaro; Huang, Zhen; Benach, Jorge L; London, Erwin

    2018-01-01

    Lipid rafts are membrane microdomains that are involved in cellular processes such as protein trafficking and signaling processes, and which play a fundamental role in membrane fluidity and budding. The lipid composition of the membrane and the biochemical characteristics of the lipids found within rafts define the ability of cells to form microdomains and compartmentalize the membrane. In this chapter, we describe the biophysical, biochemical, and molecular approaches used to define and characterize lipid rafts in the Lyme disease agent, Borrelia burgdorferi.

  14. Coupling of lipid membrane elasticity and in-plane dynamics

    NASA Astrophysics Data System (ADS)

    Tsang, Kuan-Yu; Lai, Yei-Chen; Chiang, Yun-Wei; Chen, Yi-Fan

    2017-07-01

    Biomembranes exhibit liquid and solid features concomitantly with their in-plane fluidity and elasticity tightly regulated by cells. Here, we present experimental evidence supporting the existence of the dynamics-elasticity correlations for lipid membranes and propose a mechanism involving molecular packing densities to explain them. This paper thereby unifies, at the molecular level, the aspects of the continuum mechanics long used to model the two membrane features. This ultimately may elucidate the universal physical principles governing the cellular phenomena involving biomembranes.

  15. High-resolution nanopatterning of biodegradable polylactide by thermal nanoimprint lithography using gas permeable mold

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Hanabata, Makoto

    2017-03-01

    We report high-resolution (150 nm) nanopatterning of biodegradable polylactide by thermal nanoimprint lithography using dichloromethane as a volatile solvent for improving the liquidity and a porous cyclodextrin-based gas-permeable mold. This study demonstrates the high-resolution patterning of polylactic acid and other non-liquid functional materials with poor fluidity by thermal nanoimprinting. Such a patterning is expected to expand the utility of thermal nanoimprint lithography and fabricate non-liquid functional materials suitable for eco-friendly and biomedical applications.

  16. Optimal distribution of science funding

    NASA Astrophysics Data System (ADS)

    Huang, Ding-wei

    2018-07-01

    We propose a new model to investigate the theoretical implications of a novel funding system. We introduce new parameters to model the accumulated advantage. We assume that all scientists are equal and follow the same regulations. The model presents three distinct regimes. In regime (I), the fluidity of funding is significant. The funding distribution is continuous. The concentration of funding is effectively suppressed. In both regimes (II) and (III), a small group of scientists emerges as a circle of elites. Large funding is acquired by a small number of scientists.

  17. Cellular Effects of Perfluorinated Fatty Acids (PFDA).

    DTIC Science & Technology

    This is a proposal to investigate the effects of perfluorinated decanoic acid ( PFDA ) on the cell surface of liver cells and tissue. The major method...summarized as follows: (a) differentiated liver tissue culture cells in vitro do have the membrane fluidity affected by PFDA whereas undifferentiated, non...d) the effect on mobility occurs within 24 hours of exposure without further increase with time of exposure; (e) scanning EM demonstrates no gross structural abnormality of the surface as a result of the non-toxic levels of PFDA .

  18. Tuning the superstructure of ultrahigh-molecular-weight polyethylene/low-molecular-weight polyethylene blend for artificial joint application.

    PubMed

    Xu, Ling; Chen, Chen; Zhong, Gan-Ji; Lei, Jun; Xu, Jia-Zhuang; Hsiao, Benjamin S; Li, Zhong-Ming

    2012-03-01

    An easy approach was reported to achieve high mechanical properties of ultrahigh-molecular-weight polyethylene (UHMWPE)-based polyethylene (PE) blend for artificial joint application without the sacrifice of the original excellent wear and fatigue behavior of UHMWPE. The PE blend with desirable fluidity was obtained by melt mixing UHMWPE and low molecular weight polyethylene (LMWPE), and then was processed by a modified injection molding technology-oscillatory shear injection molding (OSIM). Morphological observation of the OSIM PE blend showed LMWPE contained well-defined interlocking shish-kebab self-reinforced superstructure. Addition of a small amount of long chain polyethylene (2 wt %) to LMWPE greatly induced formation of rich shish-kebabs. The ultimate tensile strength considerably increased from 27.6 MPa for conventional compression molded UHMWPE up to 78.4 MPa for OSIM PE blend along the flow direction and up to 33.5 MPa in its transverse direction. The impact strength of OSIM PE blend was increased by 46% and 7% for OSIM PE blend in the direction parallel and vertical to the shear flow, respectively. Wear and fatigue resistance were comparable to conventional compression molded UHMWPE. The superb performance of the OSIM PE blend was originated from formation of rich interlocking shish-kebab superstructure while maintaining unique properties of UHMWPE. The present results suggested the OSIM PE blend has high potential for artificial joint application. © 2012 American Chemical Society

  19. Transbilayer transport of a propyltrimethylammonium derivative of diphenylhexatriene (TMAP-DPH) in bovine blood platelets and adrenal chromaffin cells.

    PubMed

    Kitagawa, Shuji; Tachikawa, Eiichi; Kashimoto, Takashi

    2002-12-01

    The membrane fluorescent probe N-((4-(6-phenyl-1,3,5-hexatrienyl)phenyl)propyl)trimethylammonium (TMAP-DPH) has an additional three-carbon spacer between the fluorophore and the trimethylammonium substituent of 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH). As a basic study to clarify the transport mechanism of amphiphilic quaternary ammoniums, we observed the characteristics of the transbilayer transport of TMAP-DPH in bovine blood platelets and bovine adrenal chromaffin cells using the albumin extraction method. We compared these inward transport rates with those of TMA-DPH. TMAP-DPH crossed into the cytoplasmic layers of the membranes more slowly than TMA-DPH after rapid binding to the outer halves of the plasma membranes. The transport rate markedly depended on temperature. Time to reach the half-maximal incorporated amount of TMAP-DPH increased threefold accompanied by an increase in the concentration from 0.2 to 1.5 microM. The transport was stimulated significantly by various types of membrane perturbations such as modification of sulfhydryl-groups by N-ethylmaleimide and benzyl alcohol-induced increase in the fluidity of the lipid bilayer. The saturation phenomenon suggested the presence of the regulatory process in the transbilayer transport of TMAP-DPH.

  20. In silico studies of the properties of water hydrating a small protein

    NASA Astrophysics Data System (ADS)

    Sinha, Sudipta Kumar; Jana, Madhurima; Chakraborty, Kausik; Bandyopadhyay, Sanjoy

    2014-12-01

    Atomistic molecular dynamics simulation of an aqueous solution of the small protein HP-36 has been carried out with explicit solvent at room temperature. Efforts have been made to explore the influence of the protein on the relative packing and ordering of water molecules around its secondary structures, namely, three α-helices. The calculations reveal that the inhomogeneous water ordering and density distributions around the helices are correlated with their relative hydrophobicity. Importantly, we have identified the existence of a narrow relatively dehydrated region containing randomly organized "quasi-free" water molecules beyond the first layer of "bound" waters at the protein surface. These water molecules with relatively weaker binding energies form the transition state separating the "bound" and "free" water molecules at the interface. Further, increased contribution of solid-like caging motions of water molecules around the protein is found to be responsible for reduced fluidity of the hydration layer. Interestingly, we notice that the hydration layer of helix-3 is more fluidic with relatively higher entropy as compared to the hydration layers of the other two helical segments. Such characteristics of helix-3 hydration layer correlate well with the activity of HP-36, as helix-3 contains the active site of the protein.

  1. Restoring effect of selenium on the molecular content, structure and fluidity of diabetic rat kidney brush border cell membrane.

    PubMed

    Gurbanov, Rafig; Bilgin, Mehmet; Severcan, Feride

    2016-04-01

    Diabetic kidney disease (DKD) is a dominant factor standing for kidney impairments during diabetes. In this study, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was used to disclose the diabetes-induced structural changes in the kidney and evaluate the effects of selenium on diabetes. The increase in the area of the olefinic band indicated increased amount of lipid peroxidation end products in diabetic kidney brush border cell membrane. Moreover, saturated lipid content of this cell membrane considerably diminished. DKD was found to disrupt lipid order and cause a decrease in membrane dynamics. However, the administration of selenium at low and medium doses was shown to improve these conditions by changing the lipid contents toward control values, restoring the ordered structure of the lipids and membrane dynamics. Curve-fitting and artificial neural network (ANN) analyses of secondary structures of proteins demonstrated a relative increase in α-helix and reduction in the β-sheet during diabetes in comparison to the control group, which were ameliorated following selenium treatment at low and medium doses. These findings were further confirmed by applying hierarchical cluster analysis (HCA) and principal component analysis (PCA). A clear separation of the experimental groups was obtained with high heterogeneity in the lipid and protein regions. These chemometric analyses showed that the low and medium doses of selenium-treated diabetic groups are successfully segregated from the diabetic group and clustered closer to the control. The study suggests that medium and, more predominantly, low-dose selenium treatment can be efficient in eliminating diabetes-induced structural alterations. Copyright © 2016 Elsevier B.V. All rights reserved

  2. Can the tricyanomethanide anion improve CO2 absorption by acetate-based ionic liquids?

    PubMed

    Lepre, L F; Szala-Bilnik, J; Pison, L; Traïkia, M; Pádua, A A H; Ando, R A; Costa Gomes, M F

    2017-05-17

    Carbon dioxide absorption by mixtures of two ionic liquids with a common cation-1-butyl-3-methylimidazolium acetate, [C 4 C 1 Im][OAc], and 1-butyl-3-methylimidazolium tricyanomethanide, [C 4 C 1 Im][C(CN) 3 ]-was determined experimentally at pressures below atmospheric pressure as a function of temperature between 303 K and 343 K, and at 303 K as a function of pressure up to 10 bar. It is observed that the absorption of carbon dioxide decreases with increasing tricyanomethanide anion concentration and with increasing temperature, showing a maximum of 0.4 mole fraction of carbon dioxide in pure [C 4 C 1 Im][OAc] at 303 K. At this temperature, the CO 2 absorption in the mixtures [C 4 C 1 Im][OAc] (1-x) [C(CN) 3 ] x is approximately the mole-fraction average of that in the pure ionic liquids. By applying an appropriate thermodynamic treatment, after identification of the species in solution, it was possible to calculate both the equilibrium constant, K eq , and Henry's law constant, K H , in the different mixtures studied thus obtaining an insight into the relative contribution of chemical and physical absorption of the gas. It is shown that chemical sorption proceeds through a 1 : 2 stoichiometry between CO 2 and acetate-based ionic liquid. The presence of the C(CN) 3 - anion does not significantly affect the chemical reaction of the gas with the solvent (K eq = 75 ± 2 at 303 K) but leads to lower Henry's law constants (from K H = 77.8 ± 0.6 bar to K H = 49.5 ± 0.5 bar at 303 K), thus pointing towards larger physical absorption of the gas. The tricyanomethanide anion considerably improves the mass transfer by increasing the fluidity of the absorbent as proven by the larger diffusivities of all the ions when the concentration of the C(CN) 3 - anion increases in the mixtures.

  3. Alterations of hepatocyte function with free radical generators and reparation or prevention with coffee polyphenols.

    PubMed

    Saidi Merzouk, Amel; Hafida, Merzouk; Medjdoub, Amel; Loukidi, Bouchra; Cherrak, Sabri; Merzouk, Sid Ahmed; Elhabiri, Mourad

    2017-03-01

    Liver diseases are linked in the majority of cases to oxidative stress that antioxidants could neutralize with reducing liver injury. Chlorogenic acid, a coffee polyphenol, possesses antioxidant prosperities. The aim of this study was to evaluate in vitro preventive and corrective effects of cholorogenic acid in hepatocyte toxicity induced by free radicals. Hepatocytes were isolated from adult male Wistar rats. To determine corrective effects and reparation, cells were first exposed to two free radical generators (hydrogen peroxide/iron sulfate for hydroxyl radical formation, and phenazine methosulfate/nicotinamide adenine dinucleotide for superoxide anion formation) for 12H and thereafter treated by chlorogenic acid (1 and 10 μM final concentration) for another 12H. To show preventive effects, cells were pretreated by chlorogenic acid and thereafter exposed to free radical generators. Hepatocyte proliferation, glucose uptake, ATP contents, membrane fluidity and integrity, and intracellular redox status were investigated after 24H culture. The results showed that chlorogenic acid reversed the decrease in cell proliferation, glucose uptake and ATP levels, the increased LDH release and the reduced membrane fluidity and restored the oxidant/antioxidant status under oxidative stress. When pre-treated with chlorogenic acid, hepatocytes became very resistant to oxidative conditions and cellular homeostasis was maintained. In conclusion, chlorogenic acid displayed not only corrective but also preventive effects in hepatocytes exposed to oxidative stress and could be beneficial in patients with or at risk of liver diseases.

  4. Stability of Sexual Attractions Across Different Timescales: The Roles of Bisexuality and Gender.

    PubMed

    Diamond, Lisa M; Dickenson, Janna A; Blair, Karen L

    2017-01-01

    We examined the stability of same-sex and other-sex attractions among 294 heterosexual, lesbian, gay, and bisexual men and women between the ages of 18 and 40 years. Participants used online daily diaries to report the intensity of each day's strongest same-sex and other-sex attraction, and they also reported on changes they recalled experiencing in their attractions since adolescence. We used multilevel dynamical systems models to examine individual differences in the stability of daily attractions (stability, in these models, denotes the tendency for attractions to "self-correct" toward a person-specific setpoint over time). Women's attractions showed less day-to-day stability than men's, consistent with the notion of female sexual fluidity (i.e., heightened erotic sensitivity to situational and contextual influences). Yet, women did not recollect larger post-adolescent changes in sexual attractions than did men, and larger recollected post-adolescent changes did not predict lower day-to-day stability in the sample as a whole. Bisexually attracted individuals recollected larger post-adolescent changes in their attractions, and they showed lower day-to-day stability in attractions to their "less-preferred" gender, compared to individuals with exclusive same-sex or exclusive other-sex attractions. Our results suggest that both gender and bisexuality have independent influences on sexual fluidity, but these influences vary across short versus long timescales, and they also differ for attractions to one's "more-preferred" versus "less-preferred" gender.

  5. Effects of DHA-phospholipids, melatonin and tryptophan supplementation on erythrocyte membrane physico-chemical properties in elderly patients suffering from mild cognitive impairment.

    PubMed

    Cazzola, Roberta; Rondanelli, Mariangela; Faliva, Milena; Cestaro, Benvenuto

    2012-12-01

    A randomized, double-blind placebo-controlled clinical trial was carried out to assess the efficacy of a docosahexenoic acid (DHA)-phospholipids, melatonin and tryptophan supplemented diet in improving the erythrocyte oxidative stress, membrane fluidity and membrane-bound enzyme activities of elderly subjects suffering from mild cognitive impairment (MCI). These subjects were randomly assigned to the supplement group (11 subjects, 9F and 2M; age 85.3±5.3y) or placebo group (14-matched subjects, 11F and 3M; 86.1±6.5). The duration of the treatment was 12weeks. The placebo group showed no significant changes in erythrocyte membrane composition and function. The erythrocyte membranes of the supplement group showed a significant increase in eicosapentenoic acid, docosapentenoic acid and DHA concentrations and a significant decrease in arachidonic acid, malondialdehyde and lipofuscin levels. These changes in membrane composition resulted in an increase in the unsaturation index, membrane fluidity and acetylcholine esterase activity. Moreover, a significant increase in the ratio between reduced and oxidized glutathione was observed in the erythrocyte of the supplement group. Although this study is a preliminary investigation, we believe these findings to be of great speculative and interpretative interest to better understand the complex and multi-factorial mechanisms behind the possible links between diets, their functional components and possible molecular processes that contribute to increasing the risk of developing MCI and Alzheimer's. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. The in vitro comparative study of the effect of BPA, BPS, BPF and BPAF on human erythrocyte membrane; perturbations in membrane fluidity, alterations in conformational state and damage to proteins, changes in ATP level and Na+/K+ ATPase and AChE activities.

    PubMed

    Maćczak, Aneta; Duchnowicz, Piotr; Sicińska, Paulina; Koter-Michalak, Maria; Bukowska, Bożena; Michałowicz, Jaromir

    2017-12-01

    Bisphenols are massively used in the industry, and thus the exposure of biota including humans to these substances has been noted. In this study we have assessed the effect of BPA and its selected analogs, i.e. BPS, BPF and BPAF on membrane of human red blood cells, which is the first barrier that must be overcome by xenobiotics penetrating the cell, and is commonly utilized as a model in the investigation of the effect of different xenobiotics on various cell types. Red blood cells were incubated with BPA and its analogs in the concentrations ranging from 0.1 to 250 μg/ml for 4 h and 24 h. We have noted that the compounds studied altered membrane fluidity at its hydrophobic region, increased internal viscosity and osmotic fragility of the erythrocytes and altered conformational state of membrane proteins. Moreover, bisphenols examined increased thiol groups level, caused oxidative damage to membrane proteins, decreased ATP level, depleted the activity of Na+/K + ATPase and changed the activity of AChE in human red blood cells. It has been shown that the strongest changes were noted in cells treated with BPAF, while BPS caused the weakest (or none) alterations in the parameters studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Tracking solvents in the skin through atomically resolved measurements of molecular mobility in intact stratum corneum

    PubMed Central

    Topgaard, Daniel; Sparr, Emma

    2017-01-01

    Solvents are commonly used in pharmaceutical and cosmetic formulations and sanitary products and cleansers. The uptake of solvent into the skin may change the molecular organization of skin lipids and proteins, which may in turn alter the protective skin barrier function. We herein examine the molecular effects of 10 different solvents on the outermost layer of skin, the stratum corneum (SC), using polarization transfer solid-state NMR on natural abundance 13C in intact SC. With this approach it is possible to characterize the molecular dynamics of solvent molecules when present inside intact SC and to simultaneously monitor the effects caused by the added solvent on SC lipids and protein components. All solvents investigated cause an increased fluidity of SC lipids, with the most prominent effects shown for the apolar hydrocarbon solvents and 2-propanol. However, no solvent other than water shows the ability to fluidize amino acids in the keratin filaments. The solvent molecules themselves show reduced molecular mobility when incorporated in the SC matrix. Changes in the molecular properties of the SC, and in particular alternation in the balance between solid and fluid SC components, may have significant influences on the macroscopic SC barrier properties as well as mechanical properties of the skin. Deepened understanding of molecular effects of foreign compounds in SC fluidity can therefore have strong impact on the development of skin products in pharmaceutical, cosmetic, and sanitary applications. PMID:28028209

  8. Pro-inflammatory and anti-inflammatory compounds exert similar effects on P-glycoprotein in blood-brain barrier endothelial cells.

    PubMed

    Torres-Vergara, Pablo; Penny, Jeffrey

    2018-06-01

    The effects of anti-inflammatory glucocorticoids dexamethasone (DX) and hydrocortisone (HC), pro-inflammatory cytokine interleukin-1β (IL-1β) and dietary long-chain polyunsaturated fatty acids (PUFAs) on expression and activity of the ATP-binding cassette transporter P-glycoprotein (P-GP) were studied in porcine brain endothelial cells (PBECs). Primary PBECs were treated for 24 h with glucocorticoids, IL-1β and long-chain PUFAs. P-GP activity was determined by measuring intracellular calcein accumulation and P-GP expression by Western blotting. The effect of PUFAs on membrane fluidity was assessed by fluorescence recovery after photobleaching (FRAP). Dexamethasone, HC and IL-1β significantly increased P-GP expression and activity. The effect of IL-1β was attenuated by the IL-1 receptor antagonist (IL-1RA). This is the first report of the combined actions of IL-1β and IL-1RA on P-GP expression and the first evidence of glucocorticoid-mediated P-GP up-regulation in PBECs. Arachidonic acid (AA), docosahexaenoic acid (DHA) and eicosapentenoic acid (EPA) significantly decreased P-GP activity without affecting expression or membrane fluidity. AA, DHA and EPA counteracted IL-1β-mediated increases in P-GP activity, while AA and EPA, but not DHA, counteracted glucocorticoid-mediated increase in P-GP activity. While glucocorticoids and IL-1β possess opposing actions in inflammation, they demonstrate functional consistency by increasing P-GP expression and activity in PBECs. © 2018 Royal Pharmaceutical Society.

  9. Structure and properties of binder gels formed in the system Mg(OH)2-SiO2-H2O for immobilisation of Magnox sludge.

    PubMed

    Walling, Sam A; Kinoshita, Hajime; Bernal, Susan A; Collier, Nick C; Provis, John L

    2015-05-07

    A cementitious system for the immobilisation of magnesium rich Magnox sludge was produced by blending an Mg(OH)2 slurry with silica fume and an inorganic phosphate dispersant. The Mg(OH)2 was fully consumed after 28 days of curing, producing a disordered magnesium silicate hydrate (M-S-H) with cementitious properties. The structural characterisation of this M-S-H phase by (29)Si and (25)Mg MAS NMR showed clearly that it has strong nanostructural similarities to a disordered form of lizardite, and does not take on the talc-like structure as has been proposed in the past for M-S-H gels. The addition of sodium hexametaphosphate (NaPO3)6 as a dispersant enabled the material to be produced at a much lower water/solids ratio, while still maintaining the fluidity which is essential in practical applications, and producing a solid monolith. Significant retardation of M-S-H formation was observed with larger additions of phosphate, however the use of 1 wt% (NaPO3)6 was beneficial in increasing fluidity without a deleterious effect on M-S-H formation. This work has demonstrated the feasibility of using M-S-H as binder to structurally immobilise Magnox sludge, enabling the conversion of a waste into a cementitious binder with potentially very high waste loadings, and providing the first detailed nanostructural description of the material thus formed.

  10. Membrane-associated stress proteins: more than simply chaperones.

    PubMed

    Horváth, Ibolya; Multhoff, Gabriele; Sonnleitner, Alois; Vígh, László

    2008-01-01

    The protein- and/or lipid-mediated association of chaperone proteins to membranes is a widespread phenomenon and implicated in a number of physiological and pathological events that were earlier partially or completely overlooked. A temporary association of certain HSPs with membranes can re-establish the fluidity and bilayer stability and thereby restore the membrane functionality during stress conditions. The fluidity and microdomain organization of membranes are decisive factors in the perception and transduction of stresses into signals that trigger the activation of specific HS genes. Conversely, the membrane association of HSPs may result in the inactivation of membrane-perturbing signals, thereby switch off the heat shock response. Interactions between certain HSPs and specific lipid microdomains ("rafts") might be a previously unrecognized means for the compartmentalization of HSPs to specific signaling platforms, where key signaling proteins are known to be concentrated. Any modulations of the membranes, especially the raft-lipid composition of the cells can alter the extracellular release and thus the immuno-stimulatory activity of certain HSPs. Reliable techniques, allowing mapping of the composition and dynamics of lipid microdomains and simultaneously the spatio-temporal localization of HSPs in and near the plasma membrane can provide suitable means with which to address fundamental questions, such as how HSPs are transported to and translocated through the plasma membrane. The possession of such information is critical if we are to target the membrane association principles of HSPs for successful drug development in most various diseases.

  11. Phenotypic and genotypic correlates of daptomycin-resistant methicillin-susceptible Staphylococcus aureus clinical isolates.

    PubMed

    Kang, Kyoung-Mi; Mishra, Nagendra N; Park, Kun Taek; Lee, Gi-Yong; Park, Yong Ho; Bayer, Arnold S; Yang, Soo-Jin

    2017-02-01

    Daptomycin (DAP) has potent activity in vitro and in vivo against both methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains. DAP-resistance (DAP-R) in S. aureus has been mainly observed in MRSA strains, and has been linked to single nucleotide polymorphisms (SNPs) within the mprF gene leading to altered cell membrane (CM) phospholipid (PL) profiles, enhanced positive surface charge, and changes in CM fluidity. The current study was designed to delineate whether these same genotypic and phenotypic perturbations are demonstrated in clinically-derived DAP-R MSSA strains. We used three isogenic DAP-susceptible (DAP-S)/DAP-R strainpairs and compared: (i) presence of mprF SNPs, (ii) temporal expression profiles of the two key determinants (mprF and dltABCD) of net positive surface charge, (iii) increased production of mprF-dependent lysinylated-phosphatidylglycerol (L-PG), (iv) positive surface charge assays, and (v) susceptibility to cationic host defense peptides (HDPs) of neutrophil and platelet origins. Similar to prior data in MRSA, DAP-R (vs DAP-S) MSSA strains exhibited hallmark hot-spot SNPs in mprF, enhanced and dysregulated expression of both mprF and dltA, L-PG overproduction, HDP resistance and enhanced positive surface charge profiles. However, in contrast to most DAP-R MRSA strains, there were no changes in CM fluidity seen. Thus, charge repulsion via mprF-and dlt-mediated enhancement of positive surface charge may be the main mechanism to explain DAP-R in MSSA strains.

  12. Microenvironmental pH is a key factor for exosome traffic in tumor cells.

    PubMed

    Parolini, Isabella; Federici, Cristina; Raggi, Carla; Lugini, Luana; Palleschi, Simonetta; De Milito, Angelo; Coscia, Carolina; Iessi, Elisabetta; Logozzi, Mariantonia; Molinari, Agnese; Colone, Marisa; Tatti, Massimo; Sargiacomo, Massimo; Fais, Stefano

    2009-12-04

    Exosomes secreted by normal and cancer cells carry and deliver a variety of molecules. To date, mechanisms referring to tumor exosome trafficking, including release and cell-cell transmission, have not been described. To gain insight into this, exosomes purified from metastatic melanoma cell medium were labeled with a lipid fluorescent probe, R18, and analyzed by spectrofluorometry and confocal microscopy. A low pH condition is a hallmark of tumor malignancy, potentially influencing exosome release and uptake by cancer cells. Using different pH conditions as a modifier of exosome traffic, we showed (i) an increased exosome release and uptake at low pH when compared with a buffered condition and (ii) exosome uptake by melanoma cells occurred by fusion. Membrane biophysical analysis, such as fluidity and lipid composition, indicated a high rigidity and sphingomyelin/ganglioside GM3 (N-acetylneuraminylgalactosylglucosylceramide) content in exosomes released at low pH. This was likely responsible for the increased fusion efficiency. Consistent with these results, pretreatment with proton pump inhibitors led to an inhibition of exosome uptake by melanoma cells. Fusion efficiency of tumor exosomes resulted in being higher in cells of metastatic origin than in those derived from primary tumors or normal cells. Furthermore, we found that caveolin-1, a protein involved in melanoma progression, is highly delivered through exosomes released in an acidic condition. The results of our study provide the evidence that exosomes may be used as a delivery system for paracrine diffusion of tumor malignancy, in turn supporting the importance of both exosomes and tumor pH as key targets for future anti-cancer strategies.

  13. Cholesterol modulates open probability and desensitization of NMDA receptors

    PubMed Central

    Korinek, Miloslav; Vyklicky, Vojtech; Borovska, Jirina; Lichnerova, Katarina; Kaniakova, Martina; Krausova, Barbora; Krusek, Jan; Balik, Ales; Smejkalova, Tereza; Horak, Martin; Vyklicky, Ladislav

    2015-01-01

    NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate excitatory neurotransmission in the CNS. Although these receptors are in direct contact with plasma membrane, lipid–NMDAR interactions are little understood. In the present study, we aimed at characterizing the effect of cholesterol on the ionotropic glutamate receptors. Whole-cell current responses induced by fast application of NMDA in cultured rat cerebellar granule cells (CGCs) were almost abolished (reduced to 3%) and the relative degree of receptor desensitization was increased (by seven-fold) after acute cholesterol depletion by methyl-β-cyclodextrin. Both of these effects were fully reversible by cholesterol repletion. By contrast, the responses mediated by AMPA/kainate receptors were not affected by cholesterol depletion. Similar results were obtained in CGCs after chronic inhibition of cholesterol biosynthesis by simvastatin and acute enzymatic cholesterol degradation to 4-cholesten-3-one by cholesterol oxidase. Fluorescence anisotropy measurements showed that membrane fluidity increased after methyl-β-cyclodextrin pretreatment. However, no change in fluidity was observed after cholesterol enzymatic degradation, suggesting that the effect of cholesterol on NMDARs is not mediated by changes in membrane fluidity. Our data show that diminution of NMDAR responses by cholesterol depletion is the result of a reduction of the open probability, whereas the increase in receptor desensitization is the result of an increase in the rate constant of entry into the desensitized state. Surface NMDAR population, agonist affinity, single-channel conductance and open time were not altered in cholesterol-depleted CGCs. The results of our experiments show that cholesterol is a strong endogenous modulator of NMDARs. Key points NMDA receptors (NMDARs) are tetrameric cation channels permeable to calcium; they mediate excitatory synaptic transmission in the CNS and their excessive activation can lead to neurodegeneration. Although these receptors are in direct contact with plasma membrane, lipid–NMDAR interactions are little understood. Using cultured rat cerebellar granule cells, we show that acute and chronic pretreatments resulting in cell cholesterol depletion profoundly diminish NMDAR responses and increase NMDAR desensitization, and also that cholesterol enrichment potentiates NMDAR responses; however, cholesterol manipulation has no effect on the amplitude of AMPA/kainate receptor responses. Diminution of NMDAR responses by cholesterol depletion is the result of a reduction of the ion channel open probability, whereas the increase in receptor desensitization is the result of an increase in the rate constant of entry into the desensitized state. These results demonstrate the physiological role of membrane lipids in the modulation of NMDAR activity. PMID:25651798

  14. Eicosapentaenoic acid and docosahexaenoic acid have distinct membrane locations and lipid interactions as determined by X-ray diffraction.

    PubMed

    Sherratt, Samuel C R; Mason, R Preston

    2018-01-31

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) differentially influence lipid oxidation, signal transduction, fluidity, and cholesterol domain formation, potentially due in part to distinct membrane interactions. We used small angle X-ray diffraction to evaluate the EPA and DHA effects on membrane structure. Membrane vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol (C) (0.3C:POPC mole ratio) were prepared and treated with vehicle, EPA, or DHA (1:10 mol ratio to POPC). Electron density profiles generated from the diffraction data showed that EPA increased membrane hydrocarbon core electron density over a broad area, up to ± 20 Å from the membrane center, indicating an energetically favorable extended orientation for EPA likely stabilized by van der Waals interactions. By contrast, DHA increased electron density in the phospholipid head group region starting at ± 12 Å from the membrane center, presumably due to DHA-surface interactions, with coincident reduction in electron density in the membrane hydrocarbon core centered ± 7-9 Å from the membrane center. The membrane width (d-space) decreased by 5 Å in the presence of vehicle as the temperature increased from 10 °C to 30 °C due to increased acyl chain trans-gauche isomerizations, which was unaffected by addition of EPA or DHA. The influence of DHA on membrane structure was modulated by temperature changes while the interactions of EPA were unaffected. The contrasting EPA and DHA effects on membrane structure indicate distinct molecular locations and orientations that may contribute to observed differences in biological activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Phase transitions in methyl parben doped dipalmitoyl phosphatidylethanolamine vesicles

    NASA Astrophysics Data System (ADS)

    Panicker, Lata

    2013-02-01

    Influence of the preservative, methyl paraben (MPB), on the thermal properties of dipalmitoyl phosphatidylethanolamine (DPPE) vesicles was investigated using DSC. DSC measurement of the lipid acyl chain melting transition in DPPE membrane doped with MPB, showed MPB concentration dependant modifications in the membrane thermal properties. The interesting findings are: (1) the presence of parabens increases the membrane fluidity. (2) the MPB molecules seem to be present in the aqueous bilayer interfacial region intercalated between the neighboring lipid polar headgroup (3) high concentration of MPB favored formation of crystalline and glassy phases.

  16. Research on and Application to BH-HTC High Density Cementing Slurry System on Tarim Region

    NASA Astrophysics Data System (ADS)

    Yuanhong, Song; Fei, Gao; Jianyong, He; Qixiang, Yang; Jiang, Yang; Xia, Liu

    2017-08-01

    A large section of salt bed is contented in Tarim region Piedmont which constructs complex geological conditions. For high-pressure gas well cementing difficulties from the region, high density cement slurry system has been researched through reasonable level of particle size distribution and second weighting up. The results of laboratory tests and field applications show that the high density cementing slurry system is available to Tarim region cementing because this system has a well performance in slurry stability, gas breakthrough control, fluidity, water loss, and strength.

  17. The Study on Development of Light-Weight Foamed Mortar for Tunnel Backfill

    NASA Astrophysics Data System (ADS)

    Ma, Sang-Joon; Kang, Eun-Gu; Kim, Dong-Min

    This study was intended to develop the Light-Weight Foamed Mortar which is used for NATM Composite lining backfill. In the wake of the study, the mixing method which satisfies the requirements for compressive strength, permeability coefficient, fluidity, specific gravity and settlement was developed and moreover field applicability was verified through the model test. Thus the mixing of Light-Weight Foamed Mortar developed in this study is expected to be applicable to NATM Composite lining, thereby making commitment to improving the stability and drainage performance of lining.

  18. Phase transition of a DPPC bilayer induced by an external surface pressure: from bilayer to monolayer behavior. a molecular dynamics simulation study.

    PubMed

    López Cascales, J J; Otero, T F; Fernandez Romero, A J; Camacho, L

    2006-06-20

    Understanding the lipid phase transition of lipid bilayers is of great interest from biophysical, physicochemical, and technological points of view. With the aim of elucidating the structural changes that take place in a DPPC phospholipid bilayer induced by an external isotropic surface pressure, five computer simulations were carried out in a range from 0.1 to 40 mN/m. Molecular dynamics simulations provided insight into the structural changes that took place in the lipid structure. It was seen that low pressures ranging from 0.1 to 1 mN/m had hardly any effect on the structure, electrical properties, or hydration of the lipid bilayer. However, for pressures above 40 mN/m, there was a sharp change in the lipid-lipid interactions, hydrocarbon lipid fluidity, and electrostatic potential, corresponding to the mesomorphic transition from a liquid crystalline state (L(alpha)) to its gel state (P'(beta)). The head lipid orientation remained almost unaltered, parallel to the lipid layer, as the surface pressure was increased, although a noticeable change in its angular distribution function was evident with the phase transition.

  19. Aggregation of Aß(25-35) on DOPC and DOPC/DHA bilayers: an atomic force microscopy study.

    PubMed

    Sublimi Saponetti, Matilde; Grimaldi, Manuela; Scrima, Mario; Albonetti, Cristiano; Nori, Stefania Lucia; Cucolo, Annamaria; Bobba, Fabrizio; D'Ursi, Anna Maria

    2014-01-01

    β amyloid peptide plays an important role in both the manifestation and progression of Alzheimer disease. It has a tendency to aggregate, forming low-molecular weight soluble oligomers, higher-molecular weight protofibrillar oligomers and insoluble fibrils. The relative importance of these single oligomeric-polymeric species, in relation to the morbidity of the disease, is currently being debated. Here we present an Atomic Force Microscopy (AFM) study of Aβ(25-35) aggregation on hydrophobic dioleoylphosphatidylcholine (DOPC) and DOPC/docosahexaenoic 22∶6 acid (DHA) lipid bilayers. Aβ(25-35) is the smallest fragment retaining the biological activity of the full-length peptide, whereas DOPC and DOPC/DHA lipid bilayers were selected as models of cell-membrane environments characterized by different fluidity. Our results provide evidence that in hydrophobic DOPC and DOPC/DHA lipid bilayers, Aβ(25-35) forms layered aggregates composed of mainly annular structures. The mutual interaction between annular structures and lipid surfaces end-results into a membrane solubilization. The presence of DHA as a membrane-fluidizing agent is essential to protect the membrane from damage caused by interactions with peptide aggregates; to reduces the bilayer defects where the delipidation process starts.

  20. Accumulation of unsaturated lipids in monocytes during early phase pyrogen tolerance.

    PubMed

    Szewczenko-Pawlikowski, M; Kozak, W

    2000-04-12

    This paper presents data that inspired a new explanation for the mechanism of early phase endotoxin tolerance. Rabbits injected intravenously with LPS from Salmonella abortus developed a two-phase fever (6 h) and monophasic hyperlipidemia of very low density lipoproteins (two consecutive days). If during these days rabbits were injected with the same dose of LPS at 24-h intervals, the second phase of fever disappeared, i.e. early phase pyrogenic tolerance was obtained. This was correlated with a decrease of lipoprotein hyperlipidemia (measured 1.5 h after LPS injection) and an accumulation of lipids rich in double bonds in monocytes (measured 3.5 h after LPS injection). Results showed that the degree of unsaturation of acyl chains (AC) in monocytes (AC/DB, DB=double bonds) is negatively correlated (r=-0.72) with fever response (fever index). The authors maintain that a gradual increase in monocyte membrane fluidity is an adaptation to repeated exposure of monocytes to lipid A and is responsible for the progressive desensitization of monocytes to endotoxin. It is suggested that disorders of this mechanism lead to an accumulation of abnormal quantities of saturated lipids and cholesterol within macrophages, which, as foam cells, are the starting point for atherosclerosis pathology.

  1. The interaction of an antiparasitic peptide active against African sleeping sickness with cell membrane models.

    PubMed

    Pascholati, Cauê P; Lopera, Esteban Parra; Pavinatto, Felippe J; Caseli, Luciano; Nobre, Thatyane M; Zaniquelli, Maria E D; Viitala, Tapani; D'Silva, Claudius; Oliveira, Osvaldo N

    2009-12-01

    Zwitterionic peptides with trypanocidal activity are promising lead compounds for the treatment of African Sleeping Sickness, and have motivated research into the design of compounds capable of disrupting the protozoan membrane. In this study, we use the Langmuir monolayer technique to investigate the surface properties of an antiparasitic peptide, namely S-(2,4-dinitrophenyl)glutathione di-2-propyl ester, and its interaction with a model membrane comprising a phospholipid monolayer. The drug formed stable Langmuir monolayers, whose main feature was a phase transition accompanied by a negative surface elasticity. This was attributed to aggregation upon compression due to intermolecular bond associations of the molecules, inferred from surface pressure and surface potential isotherms, Brewster angle microscopy (BAM) images, infrared spectroscopy and dynamic elasticity measurements. When co-spread with dipalmitoyl phosphatidyl choline (DPPC), the drug affected both the surface pressure and the monolayer morphology, even at high surface pressures and with low amounts of the drug. The results were interpreted by assuming a repulsive, cooperative interaction between the drug and DPPC molecules. Such repulsive interaction and the large changes in fluidity arising from drug aggregation may be related to the disruption of the membrane, which is key for the parasite killing property.

  2. Synthetic biology for production of natural and new-to-nature terpenoids in photosynthetic organisms.

    PubMed

    Arendt, Philipp; Pollier, Jacob; Callewaert, Nico; Goossens, Alain

    2016-07-01

    With tens of thousands of characterized members, terpenoids constitute the largest class of natural compounds that are synthesized by all living organisms. Several terpenoids play primary roles in the maintenance of cell membrane fluidity, as pigments or as phytohormones, but most of them function as specialized metabolites that are involved in plant resistance to herbivores or plant-environment interactions. Terpenoids are an essential component of human nutrition, and many are economically important pharmaceuticals, aromatics and potential next-generation biofuels. Because of the often low abundance in their natural source, as well as the demand for novel terpenoid structures with new or improved bioactivities, terpenoid biosynthesis has become a prime target for metabolic engineering and synthetic biology projects. In this review we focus on the creation of new-to-nature or tailor-made plant-derived terpenoids in photosynthetic organisms, in particular by means of combinatorial biosynthesis and the activation of silent metabolism. We reflect on the characteristics of different potential photosynthetic host organisms and recent advances in synthetic biology and discuss their utility for the (heterologous) production of (novel) terpenoids. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  3. Knocking Down of Isoprene Emission Modifies the Lipid Matrix of Thylakoid Membranes and Influences the Chloroplast Ultrastructure in Poplar1

    PubMed Central

    Velikova, Violeta; Müller, Constanze; Ghirardo, Andrea; Rock, Theresa Maria; Aichler, Michaela; Walch, Axel; Schmitt-Kopplin, Philippe

    2015-01-01

    Isoprene is a small lipophilic molecule with important functions in plant protection against abiotic stresses. Here, we studied the lipid composition of thylakoid membranes and chloroplast ultrastructure in isoprene-emitting (IE) and nonisoprene-emitting (NE) poplar (Populus × canescens). We demonstrated that the total amount of monogalactosyldiacylglycerols, digalactosyldiacylglycerols, phospholipids, and fatty acids is reduced in chloroplasts when isoprene biosynthesis is blocked. A significantly lower amount of unsaturated fatty acids, particularly linolenic acid in NE chloroplasts, was associated with the reduced fluidity of thylakoid membranes, which in turn negatively affects photosystem II photochemical efficiency. The low photosystem II photochemical efficiency in NE plants was negatively correlated with nonphotochemical quenching and the energy-dependent component of nonphotochemical quenching. Transmission electron microscopy revealed alterations in the chloroplast ultrastructure in NE compared with IE plants. NE chloroplasts were more rounded and contained fewer grana stacks and longer stroma thylakoids, more plastoglobules, and larger associative zones between chloroplasts and mitochondria. These results strongly support the idea that in IE species, the function of this molecule is closely associated with the structural organization and functioning of plastidic membranes. PMID:25975835

  4. Cholesterol asymmetry in synaptic plasma membranes.

    PubMed

    Wood, W Gibson; Igbavboa, Urule; Müller, Walter E; Eckert, Gunter P

    2011-03-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  5. Evolutionary prisoner's dilemma games on the network with punishment and opportunistic partner switching

    NASA Astrophysics Data System (ADS)

    Takesue, H.

    2018-02-01

    Punishment and partner switching are two well-studied mechanisms that support the evolution of cooperation. Observation of human behaviour suggests that the extent to which punishment is adopted depends on the usage of alternative mechanisms, including partner switching. In this study, we investigate the combined effect of punishment and partner switching in evolutionary prisoner's dilemma games conducted on a network. In the model, agents are located on the network and participate in the prisoner's dilemma games with punishment. In addition, they can opportunistically switch interaction partners to improve their payoff. Our Monte Carlo simulation showed that a large frequency of punishers is required to suppress defectors when the frequency of partner switching is low. In contrast, cooperation is the most abundant strategy when the frequency of partner switching is high regardless of the strength of punishment. Interestingly, cooperators become abundant not because they avoid the cost of inflicting punishment and earn a larger average payoff per game but rather because they have more numerous opportunities to be referred to as a role agent by defectors. Our results imply that the fluidity of social relationships has a profound effect on the adopted strategy in maintaining cooperation.

  6. Mechanism of enhanced oral absorption of morin by phospholipid complex based self-nanoemulsifying drug delivery system.

    PubMed

    Zhang, Jinjie; Li, Jianbo; Ju, Yuan; Fu, Yao; Gong, Tao; Zhang, Zhirong

    2015-02-02

    Phospholipid complex (PLC) based self-nanoemulsifying drug delivery system (PLC-SNEDDS) has been developed for efficient delivery of drugs with poor solubility and low permeability. In the present study, a BCS class IV drug and a P-glycoprotein (P-gp) substrate, morin, was selected as the model drug to elucidate the oral absorption mechanism of PLC-SNEDDS. PLC-SNEDDS was superior to PLC in protecting morin from degradation by intestinal enzymes in vitro. In situ perfusion study showed increased intestinal permeability by PLC was duodenum-specific. In contrast, PLC-SNEDDS increased morin permeability in all intestinal segments and induced a change in the main absorption site of morin from colon to ileum. Moreover, ileum conducted the lymphatic transport of PLC-SNEDDS, which was proven by microscopic intestinal visualization of Nile red labeled PLC-SNEDDS and lymph fluids in vivo. Low cytotoxicity and increased Caco-2 cell uptake suggested a safe and efficient delivery of PLC-SNEDDS. The increased membrane fluidity and disrupted actin filaments were closely associated with the increased cell uptake of PLC-SNEDDS. PLC-SNEDDS could be internalized into enterocytes as an intact form in a cholesterol-dependent manner via clathrin-mediated endocytosis and macropinocytosis. The enhanced oral absorption of morin was attributed to the P-gp inhibition by Cremophor RH and the intact internalization of M-PLC-SNEDDS into Caco-2 cells bypassing P-gp recognition. Our findings thus provide new insights into the development of novel nanoemulsions for poorly absorbed drugs.

  7. [Effect of green alga Ulva lactuca polysaccharides supplementation on blood pressure and on atherogenic risk factors, in rats fed a high fat diet].

    PubMed

    Tair, Z I; Bensalah, F; Boukortt, F

    2018-05-15

    To highlight the benefits of green alga Ulva lactuca polysaccharides supplementation on blood pressure and atherogenic risk factors in rats fed a high fat diet. Wistar male rats were fed a high fat diet (30% sheep fat) for 3 months. At an average body weight (BW) of 360g, the rats (n=18) were divided into 3 groups and consumed, for 28 days, either a high fat diet (HFD) or a high fat diet enriched with 1% of whole green algae (WGA) powder or with 1% of its polysaccharides (PLS). In HFD, WGA and PLS supplementation reduced BW and food intake. WGA and PLS compared to HFD reduced systolic (PAS) (-17% and -19%) and diastolic (PAD) blood pressure (-38% and -39%), serum glucose (-37% and -30%, respectively), insulinemia (-55% and -74%, respectively), serum and hepatic total lipids, triglycerides, total cholesterol levels, as well as the total cholesterol concentration of low and very low density lipoproteins. The same, atherogenicity ratios and membrane fluidity decreased in the WGA and PLS vs HFD while lecithin: cholesterol acyltransferase (LCAT) activity increased (51 and 41% respectively). Ulva lactuca and its polysaccharides, one of the bioactive compounds of this macroalga, seem to have hypotensive, hypoglycemic, hypolipaemic and antiatherogenic properties that can correct or prevent certain cardiovascular complications linked to a high fat diet. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  9. Pathological levels of glucosylceramide change the biophysical properties of artificial and cell membranes.

    PubMed

    Varela, Ana R P; Ventura, Ana E; Carreira, Ana C; Fedorov, Aleksander; Futerman, Anthony H; Prieto, Manuel; Silva, Liana C

    2016-12-21

    Glucosylceramide (GlcCer) plays an active role in the regulation of various cellular events. Moreover, GlcCer is also a key modulator of membrane biophysical properties, which might be linked to the mechanism of its biological action. In order to understand the biophysical implications of GlcCer on membranes of living cells, we first studied the effect of GlcCer on artificial membranes containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sphingomyelin (SM) and cholesterol (Chol). Using an array of biophysical methods, we demonstrate that at lower GlcCer/Chol ratios, GlcCer stabilizes SM/Chol-enriched liquid-ordered domains. However, upon decreasing the Chol content, GlcCer significantly increased membrane order through the formation of gel domains. Changes in pH disturbed the packing properties of GlcCer-containing membranes, leading to an increase in membrane fluidity and reduced membrane electronegativity. To address the biophysical impact of GlcCer in biological membranes, studies were performed in wild type and in fibroblasts treated with conduritol-B-epoxide (CBE), which causes intracellular GlcCer accumulation, and in fibroblasts from patients with type I Gaucher disease (GD). Decreased membrane fluidity was observed in cells containing higher levels of GlcCer, such as in CBE-treated and GD cells. Together, we demonstrate that elevated GlcCer levels change the biophysical properties of cellular membranes, which might compromise membrane-associated cellular events and be of relevance for understanding the pathology of diseases, such as GD, in which GlcCer accumulates at high levels.

  10. Polycyclic aromatic hydrocarbons in model bacterial membranes - Langmuir monolayer studies.

    PubMed

    Broniatowski, Marcin; Binczycka, Martyna; Wójcik, Aneta; Flasiński, Michał; Wydro, Paweł

    2017-12-01

    High molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) are persistent organic pollutants which due to their limited biodegradability accumulate in soils where their increased presence can lead to the impoverishment of the decomposer organisms. As very hydrophobic PAHs easily penetrate cellular membranes of soil bacteria and can be incorporated therein, changing the membrane fluidity and other functions which in consequence can lead to the death of the organism. The structure and size of PAH molecule can be crucial for its membrane activity; however the correlation between PAH structure and its interaction with phospholipids have not been investigated so far. In our studies we applied phospholipid Langmuir monolayers as model bacterial membranes and investigated how the incorporation of six structurally different PAH molecules change the membrane texture and physical properties. In our studies we registered surface pressure and surface potential isotherms upon the monolayer compression, visualized the monolayer texture with the application of Brewster angle microscopy and searched the ordering of the film-forming molecules with molecular resolution with the application of grazing incidence X-ray diffraction (GIXD) method. It turned out that the phospholipid-PAH interactions are strictly structure dependent. Four and five-ring PAHs of the angular or cluster geometry can be incorporated into the model membranes changing profoundly their textures and fluidity; whereas linear or large cluster PAHs cannot be incorporated and separate from the lipid matrix. The observed phenomena were explained based on structural similarities of the applied PAHs with membrane steroids and hopanoids. Copyright © 2017. Published by Elsevier B.V.

  11. Oxidative Stress and Erythrocyte Membrane Alterations in Children with Autism: Correlation with Clinical Features.

    PubMed

    Ghezzo, Alessandro; Visconti, Paola; Abruzzo, Provvidenza M; Bolotta, Alessandra; Ferreri, Carla; Gobbi, Giuseppe; Malisardi, Gemma; Manfredini, Stefano; Marini, Marina; Nanetti, Laura; Pipitone, Emanuela; Raffaelli, Francesca; Resca, Federica; Vignini, Arianna; Mazzanti, Laura

    2013-01-01

    It has been suggested that oxidative stress may play a role in the pathogenesis of Autism Spectrum Disorders (ASD), but the literature reports somewhat contradictory results. To further investigate the issue, we evaluated a high number of peripheral oxidative stress parameters, and some related issues such as erythrocyte membrane functional features and lipid composition. Twenty-one autistic children (Au) aged 5 to 12 years, were gender and age-matched with 20 typically developing children (TD). Erythrocyte thiobarbituric acid reactive substances, urinary isoprostane and hexanoyl-lysine adduct levels were elevated in Au, thus confirming the occurrence of an imbalance of the redox status of Au, whilst other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma radical absorbance capacity and carbonyl groups, erythrocyte superoxide dismutase and catalase activities) were unchanged. A very significant reduction of Na(+)/K(+)-ATPase activity (-66%, p<0.0001), a reduction of erythrocyte membrane fluidity and alteration in erythrocyte fatty acid membrane profile (increase in monounsaturated fatty acids, decrease in EPA and DHA-ω3 with a consequent increase in ω6/ω3 ratio) were found in Au compared to TD, without change in membrane sialic acid content. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity. Oxidative stress and erythrocyte membrane alterations may play a role in the pathogenesis of ASD and prompt the development of palliative therapeutic protocols. Moreover, the marked decrease in NKA could be potentially utilized as a peripheral biomarker of ASD.

  12. Mechanism of permeability-enhancing effect of EDTA and boric acid on the corneal penetration of 4-[1-hydroxy-1-methylethyl]-2-propyl-1-[4-[2-[tetrazole-5-yl]phenyl]phenyl] methylimidazole-5-carboxylic acid monohydrate (CS-088).

    PubMed

    Kikuchi, Takayuki; Suzuki, Masahiko; Kusai, Akira; Iseki, Ken; Sasaki, Hitoshi; Nakashima, Kenichiro

    2005-08-11

    This study was conducted to clarify the penetration properties of 4-[1-hydroxy-1-methylethyl]-2-propyl-1-[4-[2-[tetrazole-5-yl]phenyl]phenyl]methylimidazole-5-carboxylic acid monohydrate (CS-088), an ophthalmic agent, and the mechanism of the permeability-enhancing effect of EDTA and boric acid (EDTA/boric acid) on the corneal penetration of CS-088. In the absence of additives, corneal permeability decreased with increasing concentration of CS-088 as CS-088 monomers self-associate to form dimers. Presence of EDTA/boric acid caused no significant changes in the physicochemical properties of CS-088, the apparent partition coefficient or the mean particle size of CS-088. EDTA/boric acid induced only a slight change in the zeta potential of liposomes used as a model of the biological membrane. On the other hand, EDTA/boric acid significantly increased membrane fluidity of liposomes, whereas other buffering agents tested did not. This effect was synergistic and concentration-dependent for both EDTA and boric acid as was observed in in vitro corneal penetration of CS-088. In accordance with the result, the rate of CS-088 permeation into the liposomes significantly increased by the addition of EDTA/boric acid. Therefore, it was demonstrated that EDTA/boric acid promotes corneal penetration of CS-088 through the transcellular pathway by increasing membrane fluidity. Conversely, other buffering agents decreased corneal permeability of CS-088 by inducing further self-association of CS-088 aggregates.

  13. Modification of membrane cholesterol and its impact on frozen-thawed chicken sperm characteristics.

    PubMed

    Partyka, Agnieszka; Bonarska-Kujawa, Dorota; Sporniak, Marta; Strojecki, Maciej; Niżański, Wojciech

    2016-10-01

    This study was conducted to determine the changes in chicken sperm plasma membranes fluidity and polarity as lipid packing arrangement induced by cholesterol-loaded cyclodextrin (CLC) and 2-hydroxypropyl-β-cyclodextrin (HBCD) and how sperm cryopreservation outcomes are improved by these changes. Treatment with 2 mg HBCD supported the highest (P < 0.01) percentage of viable spermatozoa compared with the control and CLCs groups after cryopreservation. The percentage of post-thaw progressive and rapid sperm motility was highest in 2 mg HBCD (P < 0.01). After thawing, sperm treated with 1 or 2 mg CLC showed the highest anisotropy at 5, 21, 25 and 40°C (P < 0.01). At 25°C, the lowest anisotropy was observed in the thawed semen from the control group. The highest value (P < 0.01) of generalized polarization (GP) (0.5) at 5°C was observed in the 1 mg CLC treated sample. After 2 h of incubation, the highest percentage of viable spermatozoa was observed in the HBCD group in relation to the other treatments (P < 0.01). Exposure to 1 mg or 2 mg of CLC significantly decreased the percentage of live spermatozoa after thawing (P < 0.01). In conclusion, HBCD appears to play a role in the modification of sperm membranes, increasing their fluidity and preventing them against membrane phase transition to gel, thus minimizing freezing-thaw sperm damage. HBCD treatment enhances chicken sperm viability and motility after cryopreservation and subsequent storage. This novel procedure may be useful for improving the technology for cryopreservation of fowl spermatozoa.

  14. Customizing semen preservation protocols for individual dogs and individual species: sperm preservation beyond the state of the art.

    PubMed

    Farstad, W

    2012-12-01

    Sperm quality can be variable in morphometric and physiological attributes between males of different species, between males within species subtypes reared under different environmental conditions, between ejaculates of the same male or even between sperm populations within an ejaculate. Clinical semen evaluation is based on evaluation of whole ejaculates, which is not a chemically or physiologically well-defined entity, rather a collection of heterogeneous subpopulations giving different measurements and possessing different fertilizing potential. Identification of subpopulations with different motility patterns is important as well as characterizing the subtle structural changes underlying the motility differences observed. The ability to identify populations of sperm responding rapidly or failing to progress through the capacitation process may have clinical applications. Studies of lipid-phase fluidity of sperm membranes, mathematical modelling of membrane ion transport, role of modifying components and detergent-resistant microdomains are of particular interest. When customizing extenders to ejaculates from cryosensitive males or species, a thorough knowledge of species sperm membrane physiology and an assessment of the individual ejaculate's sperm populations are necessary. Structural differences have been found in sperm membranes between fox species with different cryosurvival potential of their spermatozoa. Supplementation of lipids and detergents in cryoextenders may influence membrane fluidity of the surviving spermatozoa in a species-dependent manner and influence capacitation. Immobilization of sperm prior to cryopreservation with subsequent slow release of sperm in the female genital tract may be a way to prolong the fertile life of sperm. In canids with a long oocyte maturation time, delayed capacitation may be beneficial. © 2012 Blackwell Verlag GmbH.

  15. Using a patterned grating structure to create lipid bilayer platforms insensitive to air bubbles.

    PubMed

    Han, Chung-Ta; Chao, Ling

    2015-01-07

    Supported lipid bilayers (SLBs) have been used for various biosensing applications. The bilayer structure enables embedded lipid membrane species to maintain their native orientation, and the two-dimensional fluidity is crucial for numerous biomolecular interactions to occur. The platform integrated with a microfluidic device for reagent transport and exchange has great potential to be applied with surface analytical tools. However, SLBs can easily be destroyed by air bubbles during assay reagent transport and exchange. Here, we created a patterned obstacle grating structured surface in a microfluidic channel to protect SLBs from being destroyed by air bubbles. Unlike all of the previous approaches using chemical modification or adding protection layers to strengthen lipid bilayers, the uniqueness of this approach is that it uses the patterned obstacles to physically trap water above the bilayers to prevent the air-water interface from directly coming into contact with and peeling the bilayers. We showed that our platform with certain grating geometry criteria can provide promising protection to SLBs from air bubbles. The required obstacle distance was found to decrease when we increased the air-bubble movement speed. In addition, the interaction assay results from streptavidin and biotinylated lipids in the confined SLBs suggested that receptors at the SLBs retained the interaction ability after air-bubble treatment. The results showed that the developed SLB platform can preserve both high membrane fluidity and high accessibility to the outside environment, which have never been simultaneously achieved before. Incorporating the built platforms with some surface analytical tools could open the bottleneck of building highly robust in vitro cell-membrane-related bioassays.

  16. Cannabinoid receptor signalling in neurodegenerative diseases: a potential role for membrane fluidity disturbance

    PubMed Central

    Maccarrone, M; Bernardi, G; Agrò, A Finazzi; Centonze, D

    2011-01-01

    Type-1 cannabinoid receptor (CB1) is the most abundant G-protein-coupled receptor (GPCR) in the brain. CB1 and its endogenous agonists, the so-called ‘endocannabinoids (eCBs)’, belong to an ancient neurosignalling system that plays important functions in neurodegenerative and neuroinflammatory disorders like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. For this reason, research on the therapeutic potential of drugs modulating the endogenous tone of eCBs is very intense. Several GPCRs reside within subdomains of the plasma membranes that contain high concentrations of cholesterol: the lipid rafts. Here, the hypothesis that changes in membrane fluidity alter function of the endocannabinoid system, as well as progression of particular neurodegenerative diseases, is described. To this end, the impact of membrane cholesterol on membrane properties and hence on neurodegenerative diseases, as well as on CB1 signalling in vitro and on CB1-dependent neurotransmission within the striatum, is discussed. Overall, present evidence points to the membrane environment as a critical regulator of signal transduction triggered by CB1, and calls for further studies aimed at better clarifying the contribution of membrane lipids to eCBs signalling. The results of these investigations might be exploited also for the development of novel therapeutics able to combat disorders associated with abnormal activity of CB1. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21323908

  17. Fullerene inhibits benzo(a)pyrene Efflux from Cyprinus carpio hepatocytes by affecting cell membrane fluidity and P-glycoprotein expression.

    PubMed

    Chen, Qiqing; Hu, Xialin; Wang, Rui; Yuan, Jin; Yin, Daqiang

    2016-05-01

    P-Glycoprotein (P-gp) can protect cells by pumping out toxic compounds, and has been found widely expressed in fish tissues. Here, we illustrate the P-gp efflux ability for benzo(a)pyrene (BaP) in the hepatocytes of common carp (Cyprinus carpio) after exposing to fullerene aqueous suspension (nC60). The results revealed that nC60 increased the membrane fluidity by decreasing the ratio of saturated to unsaturated fatty acids, and increased the cholesterol contents. These findings, combined with 10-38% and 70-75% down-regulation of P-gp mRNA and protein respectively, suggested that nC60 caused inhibition on P-gp efflux transport system. Therefore, we further investigated the cellular efflux ability for BaP. Results showed unequivocally that nC60 is a potent P-gp inhibitor. The retaining BaP amounts after efflux were elevated by 1.7-2.8 fold during the 10 day exposure. Meanwhile, 5mg/L humic acid (one of the important fractions of natural organic matter, which is ubiquitous in aquatic environment) alleviated the nC60 damage to hepatocytes in terms of oxidative damage, cholesterol increment, and P-gp content reduction; and finally attenuated the suppressed P-gp efflux ability. Collectively, this study provides the first evidence of nC60 toxicity to P-gp functionality in fish and illustrates the possible mechanism of the suppressed P-gp efflux ability for BaP. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Influence of the state of phase of lipid bilayer on the exposure of glucose residues on the surface of liposomes.

    PubMed

    Villalva, Denise Gradella; Giansanti, Luisa; Mauceri, Alessandro; Ceccacci, Francesca; Mancini, Giovanna

    2017-11-01

    The presence of carbohydrate-binding proteins (i.e. lectins) on the surface of various bacterial strains and their overexpression in some tumor tissues makes the use of glycosylated liposomes a promising approach for the specific drug delivery in antibacterial and anti-cancer therapies. However, the functionalization of liposome surface with sugar moieties by glycosylated amphiphiles does not ensure the binding of sugar-coated vesicles with lectins. In fact, the composition and properties of lipid bilayer play a pivotal role in the exposure of sugar residues and in the interaction with lectins. The influence of the length of the hydrophilic spacer that links the sugar to liposome surface and of the presence of saturated or unsaturated phospholipids in the lipid bilayer on the ability of glucosylated liposomes to interact with a model lectin, Concanavalin A, was investigated. Our results demonstrate that both the chain length and the prensece of unsaturation, parameters that strongly affect the fluidity of the lipid bilayer, affect agglutination. In particular, agglutination is favored when liposomes are in the gel phase within a defined range of temperature. Moreover, the obtained results confirm that the length of the PEG spacer, that influences both lipid organization and the exposure of sugar moieties to the bulk, plays a crucial role in liposome/lectin interaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Microenvironmental pH Is a Key Factor for Exosome Traffic in Tumor Cells*

    PubMed Central

    Parolini, Isabella; Federici, Cristina; Raggi, Carla; Lugini, Luana; Palleschi, Simonetta; De Milito, Angelo; Coscia, Carolina; Iessi, Elisabetta; Logozzi, Mariantonia; Molinari, Agnese; Colone, Marisa; Tatti, Massimo; Sargiacomo, Massimo; Fais, Stefano

    2009-01-01

    Exosomes secreted by normal and cancer cells carry and deliver a variety of molecules. To date, mechanisms referring to tumor exosome trafficking, including release and cell-cell transmission, have not been described. To gain insight into this, exosomes purified from metastatic melanoma cell medium were labeled with a lipid fluorescent probe, R18, and analyzed by spectrofluorometry and confocal microscopy. A low pH condition is a hallmark of tumor malignancy, potentially influencing exosome release and uptake by cancer cells. Using different pH conditions as a modifier of exosome traffic, we showed (i) an increased exosome release and uptake at low pH when compared with a buffered condition and (ii) exosome uptake by melanoma cells occurred by fusion. Membrane biophysical analysis, such as fluidity and lipid composition, indicated a high rigidity and sphingomyelin/ganglioside GM3 (N-acetylneuraminylgalactosylglucosylceramide) content in exosomes released at low pH. This was likely responsible for the increased fusion efficiency. Consistent with these results, pretreatment with proton pump inhibitors led to an inhibition of exosome uptake by melanoma cells. Fusion efficiency of tumor exosomes resulted in being higher in cells of metastatic origin than in those derived from primary tumors or normal cells. Furthermore, we found that caveolin-1, a protein involved in melanoma progression, is highly delivered through exosomes released in an acidic condition. The results of our study provide the evidence that exosomes may be used as a delivery system for paracrine diffusion of tumor malignancy, in turn supporting the importance of both exosomes and tumor pH as key targets for future anti-cancer strategies. PMID:19801663

  20. Low to moderate temperature nanolaminate heater

    DOEpatents

    Eckels, J Del [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Hau-Riege, Stefan [Fremont, CA; Walton, Chris [Oakland, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA

    2011-01-11

    A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200.degree. C.

  1. Essential oils from Inula japonica and Angelicae dahuricae enhance sensitivity of MCF-7/ADR breast cancer cells to doxorubicin via multiple mechanisms.

    PubMed

    Wu, Min; Li, Tingting; Chen, Lilan; Peng, Sugang; Liao, Wei; Bai, Ruolan; Zhao, Xue; Yang, Hong; Wu, Chunhui; Zeng, Hongjuan; Liu, Yiyao

    2016-03-02

    Angelicae dahurica (Hoffm.) Benth. & Hook.f.ex Franch. & Sav combined with Pueraria and Gastrodia elata Bl. combined with Inula japonica Thunb. are widely used in herb-pairs of traditional chinese medicine. Previous studies have shown that Angelicae dahuricae essential oil (ADO) enhanced puerarin internalization into ABCB1-overexpressed Caco-2 cells. These findings suggest the possibility that essential oils may enhance the absorption via certain mechanisms related to ABCB1 and reverse multidrug resistance (MDR). ADO and essential oils from Inula japonica (IJO) may reverse ABCB1-mediated MDR, but this ability has not been investigated in detail in the well-established cancer cell lines. In this study, the underlying molecular mechanisms were further investigated to examine how IJO and ADO reverse MDR in the resistant human breast cancer cell line of MCF-7/ADR. Also this work may help uncover the conceivable compatibility mechanisms of above herb-pairs involved in ABCB1. The MDR human breast cancer MCF-7/ADR cells were treated with IJO, its sesquiterpene component isoalantolactone (ISO) or ADOat non- cytotoxic concentrations. The MDR ability was examined by measuring the sensitivity to doxorubicin (DOX), DOX accumulation and efflux, ABCB1 ATPase activity, ABCB1 expression, membrane fluidity, and stability and localization of lipid rafts and caveolae. Finally, the molecular modeling was performed to postulate how ISO interacts with ABCB1. Treating MCF-7/ADR cells with IJ oil, ISO or AD oil reversed MDR 2- to 3-fold, without affecting the sensitivity of the non-MDR parental cell line. Mechanistic studies showed that these oils down-regulated mRNA and protein expression of ABCB1, and reduced the stability of lipid rafts in the cell membrane, which has previously been shown to reduce ABCB1-mediated transport. On the other hand, IJO, ISO and ADO did not inhibit ABCB1 ATPase activity, and fluorescence polarization experiments showed that low concentrations of the oils did not appear to alter membrane fluidity, unlike some MDR-reversing agents, ISO showed a higher docking score than verapamil but lower than dofequidar and tariquidar. Our results suggest that IJO, ISO and ADO could reverse MDR by down-regulating ABCB1 expression and reducing lipid raft stability. These findings may be useful for developing safer and effective MDR reversal agents and also help find out the compatibility mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. IFITM proteins-cellular inhibitors of viral entry.

    PubMed

    Smith, Se; Weston, S; Kellam, P; Marsh, M

    2014-02-01

    Interferon inducible transmembrane (IFITM) proteins are a recently discovered family of cellular anti-viral proteins that restrict the replication of a number of enveloped and non-enveloped viruses. IFITM proteins are located in the plasma membrane and endosomal membranes, the main portals of entry for many viruses. Biochemical and membrane fusion studies suggest IFITM proteins have the ability to inhibit viral entry, possibly by modulating the fluidity of cellular membranes. Here we discuss the IFITM proteins, recent work on their mode of action, and future directions for research. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Beyond the dichotomy: six religious views of homosexuality.

    PubMed

    Moon, Dawne

    2014-01-01

    Using published theological and scholarly evidence, this article disrupts the stereotypical "born gay"/"sinful choice" dichotomy widely assumed to characterize religious views of homosexuality in the United States. It argues that we need to keep moral questions separate from questions about the fixity or fluidity of sexual orientation. Rather than two, American Christian and Jewish views of homosexuality can been seen on a range from the "God Hates Fags" view through "Love the Sinner, Hate the Sin," "We Don't Talk About That," "They Can't Help It," "God's Good Gift," and a queer-theological view of the "Godly Calling."

  4. Prolonged Preservation of Human Platelets for Combat Casualty Care.

    DTIC Science & Technology

    1994-04-15

    membrane fluidity. 5) Flurbiprofen : Flurbiprofen is an inhibitor of the cyclooxygenase enzyme and thus blocks this arm of the arachidonic acid cascade...were previously demonstrated individually to effectively block agonist stimulated activation. These agents are quinacrine, flurbiprofen and...1 0 02 1 Quinacrine 0 0 25 13 0 67 28 5nM 0 25 38 0 67 56 50nM 0 25 37 0 44 61 .5M 0 6 25 0 38 28 Flurbiprofen 0 0 6 0 0 63 13 10nM 0 6 0 0 56 19 .lM

  5. Ruptures of vulnerability: Linda Stein's Knight Series.

    PubMed

    Bible, Ann Vollmann

    2010-01-01

    Drawing on the work of Monique Wittig, this article understands Linda Stein's Knight Series as a lacunary writing communicating both her challenges to come to representation and her creative registration of subjectivity. The argument is grounded in an exploration of the rich interplay of power and vulnerability across the series as against the discourse of escapist fashion. Specifically, Stein's critical contradictions of inside and outside, conflated temporality, disjunctions between decoration and abstraction, and fluidity of sex and gender are examined. The discussion is elaborated through consideration of the work of Julia Kristeva, Elizabeth Grosz, and Hayao Miyazaki.

  6. Effects of Current Guides Destruction at Ultra-fast Acceleration of Macrobodies

    NASA Astrophysics Data System (ADS)

    Kataev, V. N.; Boriskin, A. S.; Golosov, S. N.; Demidov, V. A.; Klimashov, M. V.; Korolev, P. V.; Makartsev, G. F.; Pikar, A. S.; Russkov, A. S.; Shapovalov, E. V.; Shibitov, Yu. M.

    2006-08-01

    The paper is devoted to discussion of current guides destruction effects in different accelerators: thermal-electric and electro-magnetic rail accelerator at macrobodies acceleration value of 108-109 m/s2. Experimental results with thermal-electric accelerators powering from megajoule capacitor battery and helical magneto-cumulative generator MCG-100 at currents up to 3.5 MA are analyzed. The process of rails destruction at railgun at pressure magnetic field excess over the limit of metal fluidity is presented. Methods of efficiency coefficient increase of capacitive storage energy transmission to kinetic energy of accelerating body are discussed.

  7. Low-Temperature Power Electronics Program

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Dickman, John E.; Hammoud, Ahmad; Gerber, Scott

    1997-01-01

    Many space and some terrestrial applications would benefit from the availability of low-temperature electronics. Exploration missions to the outer planets, Earth-orbiting and deep-space probes, and communications satellites are examples of space applications which operate in low-temperature environments. Space probes deployed near Pluto must operate in temperatures as low as -229 C. Figure 1 depicts the average temperature of a space probe warmed by the sun for various locations throughout the solar system. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. The development of electrical power systems capable of extremely low-temperature operation represents a key element of some advanced space power systems. The Low-Temperature Power Electronics Program at NASA Lewis Research Center focuses on the design, fabrication, and characterization of low-temperature power systems and the development of supporting technologies for low-temperature operations such as dielectric and insulating materials, power components, optoelectronic components, and packaging and integration of devices, components, and systems.

  8. [Impact of low temperature in young ear formation stage on rice seed setting.

    PubMed

    Ma, Shu Qing; Liu, Xiao Hang; Deng, Kui Cai; Quan, Hu Jie; Tong, Li Yuan; Xi, Zhu Xiang; Chai, Qing Rong; Yang, Jun

    2018-01-01

    A low temperature treatment in rice booting key period was executed on the north slope of Changbai Mountains to construct the impact model of low temperature on rice shell rate, and to reveal the effects of low temperature at different stages of rice young panicle on seed setting. The results showed that effects of low temperature in the young ear formation stage on rice shell rate generally followed the logarithmic function, the lower the temperature was, the greater the temperature influence coefficient was, and the longer the low temperature duration was, the higher rice shell rate was. The seed setting rate was most sensitive to low temperature in the middle time of booting stage (the period from formation to meiosis of the pollen mother cell), followed by the early and later stages. During the booting stage, with 1 ℃ decrease of daily temperature under 2-, 3- and 5-day low temperature treatments, the shell rate increased by 0.5, 1.7 and 4.3 percentage, respectively, and with 1 ℃ decrease of daily minimum temperature, the shell rate increased by 0.4,1.8 and 4.5 percentage, respectively. The impact of 2-day low temperature was smaller than that of 3 days or more. The impact of accumulative cold-temperature on the shell rate followed exponential function. In the range of harmful low temperature, rice shell rate increased about 8.5 percentage with the accumulative cold-temperature increasing 10 ℃·d. When the 3 days average temperature dropped to 21.6, 18.0 and 15.0 ℃, or the 5 days average temperature dropped to 22.0, 20.4 and 18.5 ℃, or the accumulative cold-temperature was more than 8, 19, 26 ℃·d, the light, moderate and severe booting stage chilling injury would occur, respectively. In Northeast China, low temperature within 2 d in rice booting stage might not cause moderate and severe chilling injury.

  9. Development of UItra-Low Temperature Motor Controllers: Ultra Low Temperatures Evaluation and Characterization of Semiconductor Technologies For The Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.

    2003-01-01

    Electronics designed for low temperature operation will result in more efficient systems than room temperature. This improvement is a result of better electronic, electrical, and thermal properties of materials at low temperatures. In particular, the performance of certain semiconductor devices improves with decreasing temperature down to ultra-low temperature (-273 'C). The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components and systems suitable for applications in deep space missions. Research is being conducted on devices and systems for use down to liquid helium temperatures (-273 'C). Some of the components that are being characterized include semiconductor switching devices, resistors, magnetics, and capacitors. The work performed this summer has focused on the evaluation of silicon-, silicon-germanium- and gallium-Arsenide-based (GaAs) bipolar, MOS and CMOS discrete components and integrated circuits (ICs), from room temperature (23 'C) down to ultra low temperatures (-263 'C).

  10. In Situ Irradiation and Measurement of Triple Junction Solar Cells at Low Intensity, Low Temperature (LILT) Conditions

    NASA Technical Reports Server (NTRS)

    Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.

    2008-01-01

    The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell

  11. Adaptation of the Black Yeast Wangiella dermatitidis to Ionizing Radiation: Molecular and Cellular Mechanisms

    PubMed Central

    Robertson, Kelly L.; Mostaghim, Anahita; Cuomo, Christina A.; Soto, Carissa M.; Lebedev, Nikolai; Bailey, Robert F.; Wang, Zheng

    2012-01-01

    Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS), increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and individual genes regulated by radiation. PMID:23139812

  12. Photosynthesis of young apple trees in response to low sink demand under different air temperatures.

    PubMed

    Fan, Pei G; Li, Lian S; Duan, Wei; Li, Wei D; Li, Shao H

    2010-03-01

    Gas exchange, chlorophyll fluorescence, photosynthetic end products and related enzymes in source leaves in response to low sink demand after girdling to remove the root sink were assessed in young apple trees (Malus pumila) grown in two greenhouses with different air temperatures for 5 days. Compared with the non-girdled control in the low-temperature greenhouse (diurnal maximum air temperature <32 degrees C), low sink demand resulted in lower net photosynthetic rate (P(n)), stomatal conductance (g(s)) and transpiration rate (E) but higher leaf temperature on Day 5, while in the high-temperature greenhouse (diurnal maximum air temperature >36 degrees C), P(n), g(s) and E declined from Day 3 onwards. Moreover, gas exchange responded more to low sink demand in the high-temperature greenhouse than in the low-temperature greenhouse. Decreased P(n) at low sink demand was accompanied by lower intercellular CO(2) concentrations in the low-temperature greenhouse. However, decreased maximal photochemical efficiency, potential activity, efficiency of excitation capture, actual efficiency and photochemical quenching, with increased minimal fluorescence and non-photochemical quenching of photosystem II (PSII), were observed in low sink demand leaves only in the high-temperature greenhouse. In addition, low sink demand increased leaf starch and soluble carbohydrate content in both greenhouses but did not result in lower activity of enzymes involved in metabolism. Thus, decreased P(n) under low sink demand was independent of a direct effect of end-product feedback but rather depended on a high temperature threshold. The lower P(n) was likely due to stomatal limitation in the low-temperature greenhouse, but mainly due to non-stomatal limitation in the high-temperature greenhouse.

  13. Structural study of the effects of mutations in proteins to identify the molecular basis of the loss of local structural fluidity leading to the onset of autoimmune diseases.

    PubMed

    Ali, Ananya; Ghosh, Semanti; Bagchi, Angshuman

    2017-02-26

    Protein-Protein Interactions (PPIs) are crucial in most of the biological processes and PPI dysfunctions are known to be associated with the onsets of various diseases. One of such diseases is the auto-immune disease. Auto-immune diseases are one among the less studied group of diseases with very high mortality rates. Thus, we tried to correlate the appearances of mutations with their probable biochemical basis of the molecular mechanisms leading to the onset of the disease phenotypes. We compared the effects of the Single Amino Acid Variants (SAVs) in the wild type and mutated proteins to identify any structural deformities that might lead to altered PPIs leading ultimately to disease onset. For this we used Relative Solvent Accessibility (RSA) as a spatial parameter to compare the structural perturbation in mutated and wild type proteins. We observed that the mutations were capable to increase intra-chain PPIs whereas inter-chain PPIs would remain mostly unaltered. This might lead to more intra-molecular friction causing a deleterious alteration of protein's normal function. A Lyapunov exponent analysis, using the altered RSA values due to polymorphic and disease causing mutations, revealed polymorphic mutations have a positive mean value for the Lyapunov exponent while disease causing mutations have a negative mean value. Thus, local spatial stochasticity has been lost due to disease causing mutations, indicating a loss of structural fluidity. The amino acid conversion plot also showed a clear tendency of altered surface patch residue conversion propensity than polymorphic conversions. So far, this is the first report that compares the effects of different kinds of mutations (disease and non-disease causing polymorphic mutations) in the onset of autoimmune diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Improvement of Transmembrane Transport Mechanism Study of Imperatorin on P-Glycoprotein-Mediated Drug Transport.

    PubMed

    Liao, Zheng-Gen; Tang, Tao; Guan, Xue-Jing; Dong, Wei; Zhang, Jing; Zhao, Guo-Wei; Yang, Ming; Liang, Xin-Li

    2016-11-24

    P-glycoprotein (P-gp) affects the transport of many drugs; including puerarin and vincristine. Our previous study demonstrated that imperatorin increased the intestinal absorption of puerarin and vincristine by inhibiting P-gp-mediated drug efflux. However; the underlying mechanism was not known. The present study investigated the mechanism by which imperatorin promotes P-gp-mediated drug transport. We used molecular docking to predict the binding force between imperatorin and P-gp and the effect of imperatorin on P-gp activity. P-gp efflux activity and P-gp ATPase activity were measured using a rhodamine 123 (Rh-123) accumulation assay and a Pgp-Glo™ assay; respectively. The fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to assess cellular membrane fluidity in MDCK-MDR1 cells. Western blotting was used to analyze the effect of imperatorin on P-gp expression; and P-gp mRNA levels were assessed by qRT-PCR. Molecular docking results demonstrated that the binding force between imperatorin and P-gp was much weaker than the force between P-gp and verapamil (a P-gp substrate). Imperatorin activated P-gp ATPase activity; which had a role in the inhibition of P-gp activity. Imperatorin promoted Rh-123 accumulation in MDCK-MDR1 cells and decreased cellular membrane fluidity. Western blotting demonstrated that imperatorin inhibited P-gp expression; and qRT-PCR revealed that imperatorin down-regulated P-gp (MDR1) gene expression. Imperatorin decreased P-gp-mediated drug efflux by inhibiting P-gp activity and the expression of P-gp mRNA and protein. Our results suggest that imperatorin could down-regulate P-gp expression to overcome multidrug resistance in tumors.

  15. The direct anti-MRSA effect of emodin via damaging cell membrane.

    PubMed

    Liu, Ming; Peng, Wei; Qin, Rongxin; Yan, Zifei; Cen, Yanyan; Zheng, Xinchuan; Pan, Xichun; Jiang, Weiwei; Li, Bin; Li, Xiaoli; Zhou, Hong

    2015-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has become an important bacterium for nosocomial infection. Only a few antibiotics can be effective against MRSA. Therefore, searching for new drugs against MRSA is important. Herein, anti-MRSA activities of emodin and its mechanisms were investigated. Firstly, in vitro antimicrobial activity was investigated by minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-growth curve, and multipassage resistance testing was performed. Secondly, protection of emodin on mice survival and blood bacterial load in mice challenged with lethal or sublethal dose of MRSA were investigated. Subsequently, the influences of emodin on the bacterial morphology, messenger RNA (mRNA) expressions related to cell wall synthesis and lysis, β-lactamase activity, drug accumulation, membrane fluidity, and integrity were performed to investigate its mechanisms. Lastly, in vitro cytotoxicity assay were performed using the 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) method. The results showed MICs and MBCs of emodin against MRSA252 and 36 clinical MRSA strains were among 2-8 and 4-32 μg/mL, respectively. There was no MIC increase for emodin during 20 passages. In vivo, emodin dose-dependently protected mice challenged with lethal dose of MRSA and decreased bacterial load in mice challenged with sublethal dose of MRSA. Morphology observation showed emodin might disrupt cell wall and membrane of MRSA. Although emodin had no influence on genes related to cell wall synthesis and lysis as well as β-lactamase activity and drug accumulation, emodin reduced membrane fluidity and disrupted membrane integrity. Based on the fact that emodin had no significant cytotoxicity against mammalian cells, it could be further investigated as a membrane-damage bactericide against MRSA in the future.

  16. Interactions of plaunotol with bacterial membranes.

    PubMed

    Koga, T; Watanabe, H; Kawada, H; Takahashi, K; Utsui, Y; Domon, H; Ishii, C; Narita, T; Yasuda, H

    1998-08-01

    Plaunotol, a cytoprotective antiulcer agent, has a bactericidal effect against Helicobacter pylori, which may result from interaction of this compound with the bacterial cell membrane. The purpose of the present study was to confirm that plaunotol interacts with the H. pylori membrane. Membrane fluidities were measured using two stearic acid spin labels, namely 5-doxyl-stearic acid (in which the nitroxide group is located in the upper portion of the bacterial cell membrane) and 16-doxyl-stearic acid methyl ester (in which the nitroxide group is located deeper in the bacterial cell membrane), by means of electron spin resonance. The membrane fluidities of plaunotol-treated cells were significantly increased in the measurements made using the two spin labels. We also attempted to isolate plaunotol-resistant H. pylori in vitro by two different methods. To assess the level of resistance that could be reached, H. pylori was passaged five times on an agar plate containing subinhibitory concentrations of plaunotol or metronidazole. To measure the rate of development of resistance, H. pylori was grown with subinhibitory concentrations (0.25 x MIC) of plaunotol or metronidazole, and quantitatively plated on to medium containing 4 x MIC of the compounds. This treatment was repeated once more. No plaunotol-resistant colonies were selected by the two methods. H. pylori developed resistance to metronidazole easily and at a relatively high rate. The mechanism by which plaunotol directly fluidizes and destroys the H. pylori membrane might make it difficult for this organism to develop resistance to plaunotol. It was confirmed that the bactericidal effects of plaunotol were also shown against Staphylococcus aureus, Streptococcus pneumoniae, Neisseria gonorrhoeae, Moraxella catarrhalis and Haemophilus influenzae. No such effect was seen against Escherichia coli and Pseudomonas aeruginosa.

  17. Terpenes increase the lipid dynamics in the Leishmania plasma membrane at concentrations similar to their IC50 values.

    PubMed

    Camargos, Heverton Silva; Moreira, Rodrigo Alves; Mendanha, Sebastião Antonio; Fernandes, Kelly Souza; Dorta, Miriam Leandro; Alonso, Antonio

    2014-01-01

    Although many terpenes have shown antitumor, antibacterial, antifungal, and antiparasitic activity, the mechanism of action is not well established. Electron paramagnetic resonance (EPR) spectroscopy of the spin-labeled 5-doxyl stearic acid revealed remarkable fluidity increases in the plasma membrane of terpene-treated Leishmania amazonensis promastigotes. For an antiproliferative activity assay using 5×10(6) parasites/mL, the sesquiterpene nerolidol and the monoterpenes (+)-limonene, α-terpineol and 1,8-cineole inhibited the growth of the parasites with IC50 values of 0.008, 0.549, 0.678 and 4.697 mM, respectively. The IC50 values of these terpenes increased as the parasite concentration used in the cytotoxicity assay increased, and this behavior was examined using a theoretical treatment of the experimental data. Cytotoxicity tests with the same parasite concentration as in the EPR experiments revealed a correlation between the IC50 values of the terpenes and the concentrations at which they altered the membrane fluidity. In addition, the terpenes induced small amounts of cell lysis (4-9%) at their respective IC50 values. For assays with high cell concentrations (2×10(9) parasites/mL), the incorporation of terpene into the cell membrane was very fast, and the IC50 values observed for 24 h and 5 min-incubation periods were not significantly different. Taken together, these results suggest that terpene cytotoxicity is associated with the attack on the plasma membrane of the parasite. The in vitro cytotoxicity of nerolidol was similar to that of miltefosine, and nerolidol has high hydrophobicity; thus, nerolidol might be used in drug delivery systems, such as lipid nanoparticles to treat leishmaniasis.

  18. Terpenes Increase the Lipid Dynamics in the Leishmania Plasma Membrane at Concentrations Similar to Their IC50 Values

    PubMed Central

    Camargos, Heverton Silva; Moreira, Rodrigo Alves; Mendanha, Sebastião Antonio; Fernandes, Kelly Souza; Dorta, Miriam Leandro; Alonso, Antonio

    2014-01-01

    Although many terpenes have shown antitumor, antibacterial, antifungal, and antiparasitic activity, the mechanism of action is not well established. Electron paramagnetic resonance (EPR) spectroscopy of the spin-labeled 5-doxyl stearic acid revealed remarkable fluidity increases in the plasma membrane of terpene-treated Leishmania amazonensis promastigotes. For an antiproliferative activity assay using 5×106 parasites/mL, the sesquiterpene nerolidol and the monoterpenes (+)-limonene, α-terpineol and 1,8-cineole inhibited the growth of the parasites with IC50 values of 0.008, 0.549, 0.678 and 4.697 mM, respectively. The IC50 values of these terpenes increased as the parasite concentration used in the cytotoxicity assay increased, and this behavior was examined using a theoretical treatment of the experimental data. Cytotoxicity tests with the same parasite concentration as in the EPR experiments revealed a correlation between the IC50 values of the terpenes and the concentrations at which they altered the membrane fluidity. In addition, the terpenes induced small amounts of cell lysis (4–9%) at their respective IC50 values. For assays with high cell concentrations (2×109 parasites/mL), the incorporation of terpene into the cell membrane was very fast, and the IC50 values observed for 24 h and 5 min-incubation periods were not significantly different. Taken together, these results suggest that terpene cytotoxicity is associated with the attack on the plasma membrane of the parasite. The in vitro cytotoxicity of nerolidol was similar to that of miltefosine, and nerolidol has high hydrophobicity; thus, nerolidol might be used in drug delivery systems, such as lipid nanoparticles to treat leishmaniasis. PMID:25101672

  19. Oxidative Stress and Erythrocyte Membrane Alterations in Children with Autism: Correlation with Clinical Features

    PubMed Central

    Visconti, Paola; Bolotta, Alessandra; Ferreri, Carla; Gobbi, Giuseppe; Malisardi, Gemma; Manfredini, Stefano; Marini, Marina; Nanetti, Laura; Pipitone, Emanuela; Raffaelli, Francesca; Resca, Federica; Mazzanti, Laura

    2013-01-01

    It has been suggested that oxidative stress may play a role in the pathogenesis of Autism Spectrum Disorders (ASD), but the literature reports somewhat contradictory results. To further investigate the issue, we evaluated a high number of peripheral oxidative stress parameters, and some related issues such as erythrocyte membrane functional features and lipid composition. Twenty-one autistic children (Au) aged 5 to 12 years, were gender and age-matched with 20 typically developing children (TD). Erythrocyte thiobarbituric acid reactive substances, urinary isoprostane and hexanoyl-lysine adduct levels were elevated in Au, thus confirming the occurrence of an imbalance of the redox status of Au, whilst other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma radical absorbance capacity and carbonyl groups, erythrocyte superoxide dismutase and catalase activities) were unchanged. A very significant reduction of Na+/K+-ATPase activity (−66%, p<0.0001), a reduction of erythrocyte membrane fluidity and alteration in erythrocyte fatty acid membrane profile (increase in monounsaturated fatty acids, decrease in EPA and DHA-ω3 with a consequent increase in ω6/ω3 ratio) were found in Au compared to TD, without change in membrane sialic acid content. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity. Oxidative stress and erythrocyte membrane alterations may play a role in the pathogenesis of ASD and prompt the development of palliative therapeutic protocols. Moreover, the marked decrease in NKA could be potentially utilized as a peripheral biomarker of ASD. PMID:23840462

  20. A Virtual Reality avatar interaction (VRai) platform to assess residual executive dysfunction in active military personnel with previous mild traumatic brain injury: proof of concept.

    PubMed

    Robitaille, Nicolas; Jackson, Philip L; Hébert, Luc J; Mercier, Catherine; Bouyer, Laurent J; Fecteau, Shirley; Richards, Carol L; McFadyen, Bradford J

    2017-10-01

    This proof of concept study tested the ability of a dual task walking protocol using a recently developed avatar-based virtual reality (VR) platform to detect differences between military personnel post mild traumatic brain injury (mTBI) and healthy controls. The VR platform coordinated motion capture, an interaction and rendering system, and a projection system to present first (participant-controlled) and third person avatars within the context of a specific military patrol scene. A divided attention task was also added. A healthy control group was compared to a group with previous mTBI (both groups comprised of six military personnel) and a repeated measures ANOVA tested for differences between conditions and groups based on recognition errors, walking speed and fluidity and obstacle clearance. The VR platform was well tolerated by both groups. Walking fluidity was degraded for the control group within the more complex navigational dual tasking involving avatars, and appeared greatest in the dual tasking with the interacting avatar. This navigational behaviour was not seen in the mTBI group. The present findings show proof of concept for using avatars, particularly more interactive avatars, to expose differences in executive functioning when applying context-specific protocols (here for the military). Implications for rehabilitation Virtual reality provides a means to control context-specific factors for assessment and intervention. Adding human interaction and agency through avatars increases the ecologic nature of the virtual environment. Avatars in the present application of the Virtual Reality avatar interaction platform appear to provide a better ability to reveal differences between trained, military personal with and without mTBI.

Top