Low voltage to high voltage level shifter and related methods
NASA Technical Reports Server (NTRS)
Mentze, Erik J. (Inventor); Buck, Kevin M. (Inventor); Hess, Herbert L. (Inventor); Cox, David F. (Inventor)
2006-01-01
A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.
30 CFR 77.901 - Protection of low- and medium-voltage three-phase circuits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Protection of low- and medium-voltage three... WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901 Protection of low- and medium-voltage three-phase circuits. (a) Low- and medium-voltage circuits supplying...
30 CFR 77.901 - Protection of low- and medium-voltage three-phase circuits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protection of low- and medium-voltage three... WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901 Protection of low- and medium-voltage three-phase circuits. (a) Low- and medium-voltage circuits supplying...
30 CFR 77.901 - Protection of low- and medium-voltage three-phase circuits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Protection of low- and medium-voltage three... WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901 Protection of low- and medium-voltage three-phase circuits. (a) Low- and medium-voltage circuits supplying...
30 CFR 77.901 - Protection of low- and medium-voltage three-phase circuits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of low- and medium-voltage three... WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901 Protection of low- and medium-voltage three-phase circuits. (a) Low- and medium-voltage circuits supplying...
30 CFR 77.901 - Protection of low- and medium-voltage three-phase circuits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protection of low- and medium-voltage three... WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.901 Protection of low- and medium-voltage three-phase circuits. (a) Low- and medium-voltage circuits supplying...
Kobayashi, Akihiro; Misumida, Naoki; Aoi, Shunsuke; Kanei, Yumiko
Low QRS voltage was reported to predict adverse outcomes in acute myocardial infarction in the pre-thrombolytic era. However, the association between low voltage and angiographic findings has not been fully addressed. We performed a retrospective analysis of patients with anterior ST-segment elevation myocardial infarction (STEMI). Low QRS voltage was defined as either peak to peak QRS complex voltage <1.0mV in all precordial leads or <0.5mV in all limb leads. Among 190 patients, 37 patients (19%) had low voltage. Patients with low voltage had a higher rate of multi-vessel disease (MVD) (76% vs. 52%, p=0.01). Patients with low voltage were more likely to undergo coronary artery bypass grafting (CABG) during admission (11% vs. 2%, p=0.028). Low voltage was an independent predictor for MVD (OR 2.50; 95% CI 1.12 to 6.03; p=0.032). Low QRS voltage was associated with MVD and in-hospital CABG in anterior STEMI. Copyright © 2017 Elsevier Inc. All rights reserved.
30 CFR 75.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage ground check monitor... Medium-Voltage Alternating Current Circuits § 75.902 Low- and medium-voltage ground check monitor circuits. [Statutory Provisions] On or before September 30, 1970, low- and medium-voltage resistance...
30 CFR 75.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Low- and medium-voltage ground check monitor... Medium-Voltage Alternating Current Circuits § 75.902 Low- and medium-voltage ground check monitor circuits. [Statutory Provisions] On or before September 30, 1970, low- and medium-voltage resistance...
30 CFR 75.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Low- and medium-voltage ground check monitor... Medium-Voltage Alternating Current Circuits § 75.902 Low- and medium-voltage ground check monitor circuits. [Statutory Provisions] On or before September 30, 1970, low- and medium-voltage resistance...
30 CFR 75.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Low- and medium-voltage ground check monitor... Medium-Voltage Alternating Current Circuits § 75.902 Low- and medium-voltage ground check monitor circuits. [Statutory Provisions] On or before September 30, 1970, low- and medium-voltage resistance...
30 CFR 75.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Low- and medium-voltage ground check monitor... Medium-Voltage Alternating Current Circuits § 75.902 Low- and medium-voltage ground check monitor circuits. [Statutory Provisions] On or before September 30, 1970, low- and medium-voltage resistance...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits § 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage circuits...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits § 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage circuits...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits § 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage circuits...
30 CFR 77.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Low- and medium-voltage ground check monitor... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902 Low- and medium-voltage ground check monitor circuits. On and after September 30, 1971, three-phase low- and...
30 CFR 77.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Low- and medium-voltage ground check monitor... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902 Low- and medium-voltage ground check monitor circuits. On and after September 30, 1971, three-phase low- and...
30 CFR 77.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Low- and medium-voltage ground check monitor... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902 Low- and medium-voltage ground check monitor circuits. On and after September 30, 1971, three-phase low- and...
30 CFR 77.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage ground check monitor... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902 Low- and medium-voltage ground check monitor circuits. On and after September 30, 1971, three-phase low- and...
30 CFR 77.902 - Low- and medium-voltage ground check monitor circuits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Low- and medium-voltage ground check monitor... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902 Low- and medium-voltage ground check monitor circuits. On and after September 30, 1971, three-phase low- and...
Kim, Diana H; Verdino, Ralph J
To define clinical correlates of low voltage isolated to precordial leads on the surface electrocardiogram (ECG). Low voltage (V) on the ECG is defined as QRS V<5mm in all limb leads and <10mm in all precordial leads. The diagnostic use of ECGs with low voltage isolated to the precordial leads with normal limb lead voltages is unclear. Twelve-lead ECGs with QRS V>5mm in one or more limb leads and <10mm in all precordial leads were collected. Associated clinical conditions were determined from clinical data, echocardiograms, and chest radiographs. Low precordial voltage was found in 256 of 150,000 ECGs (~0.2%). 50.4% of patients had discordant ECGs that correlated with classic etiologies, with a higher incidence of LV dilation in those with classic etiologies than those without. Low precordial voltage is associated with classic etiologies and LV dilation. Copyright © 2017 Elsevier Inc. All rights reserved.
Choi, Tayoung; Ganapathy, Sriram; Jung, Jaehak; Savage, David R.; Lakshmanan, Balasubramanian; Vecasey, Pamela M.
2013-04-16
A system and method for detecting a low performing cell in a fuel cell stack using measured cell voltages. The method includes determining that the fuel cell stack is running, the stack coolant temperature is above a certain temperature and the stack current density is within a relatively low power range. The method further includes calculating the average cell voltage, and determining whether the difference between the average cell voltage and the minimum cell voltage is greater than a predetermined threshold. If the difference between the average cell voltage and the minimum cell voltage is greater than the predetermined threshold and the minimum cell voltage is less than another predetermined threshold, then the method increments a low performing cell timer. A ratio of the low performing cell timer and a system run timer is calculated to identify a low performing cell.
30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Low- and medium-voltage circuits serving three... STANDARDS-UNDERGROUND COAL MINES Underground Low- and Medium-Voltage Alternating Current Circuits § 75.900 Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit breakers...
30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Low- and medium-voltage circuits serving three... STANDARDS-UNDERGROUND COAL MINES Underground Low- and Medium-Voltage Alternating Current Circuits § 75.900 Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit breakers...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage circuits serving three... STANDARDS-UNDERGROUND COAL MINES Underground Low- and Medium-Voltage Alternating Current Circuits § 75.900 Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit breakers...
30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...
30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...
30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...
Voltage gradient mapping and electrophysiologically guided cryoablation in children with AVNRT.
Drago, Fabrizio; Battipaglia, Irma; Russo, Mario Salvatore; Remoli, Romolo; Pazzano, Vincenzo; Grifoni, Gino; Allegretti, Greta; Silvetti, Massimo Stefano
2018-04-01
Recently, voltage gradient mapping of Koch's triangle to find low-voltage connections, or 'voltage bridges', corresponding to the anatomic position of the slow pathway, has been introduced as a method to ablate atrioventricular nodal reentry tachycardia (AVNRT) in children. Thus, we aimed to assess the effectiveness of voltage mapping of Koch's triangle, combined with the search for the slow potential signal in 'low-voltage bridges', to guide cryoablation of AVNRT in children. From June 2015 to May 2016, 35 consecutive paediatric patients (mean age 12.1 ± 4.5 years) underwent 3D-guided cryoablation of AVNRT at our Institution. Fifteen children were enrolled as control group (mean age 14 ± 4 years). A voltage gradient mapping of Koch's triangle was obtained in all patients, showing low-voltage connections in all children with AVNRT but not in controls. Prior to performing cryoablation, we looked for the typical 'hump and spike' electrogram, generally considered to be representative of slow pathway potential within a low-voltage bridge. In all patients the 'hump and spike' electrogram was found inside bridges of low voltage. Focal or high-density linear lesions, extended or not, were delivered guided by low-voltage bridge visualization. Acute success rate was 100%, and no recurrence was reported at a mean follow-up of 8 ± 3 months. Voltage gradient mapping of Koch's triangle, combined with the search for the slow potential signal in low-voltage bridges, is effective in guiding cryoablation of AVNRT in paediatric patients, with a complete acute success rate and no AVNRT recurrences at mid-term follow-up.
Single Event Transients in Low Voltage Dropout (LVDO) Voltage Regulators
NASA Technical Reports Server (NTRS)
LaBel, K.; Karsh, J.; Pursley, S.; Kleyner, I.; Katz, R.; Poivey, C.; Kim, H.; Seidleck, C.
2006-01-01
This viewgraph presentation reviews the use of Low Voltage Dropout (LVDO) Voltage Regulators in environments where heavy ion induced Single Event Transients are a concern to the designers.Included in the presentation are results of tests of voltage regulators.
A low knee voltage and high breakdown voltage of 4H-SiC TSBS employing poly-Si/Ni Schottky scheme
NASA Astrophysics Data System (ADS)
Kim, Dong Young; Seok, Ogyun; Park, Himchan; Bahng, Wook; Kim, Hyoung Woo; Park, Ki Cheol
2018-02-01
We report a low knee voltage and high breakdown voltage 4H-SiC TSBS employing poly-Si/Ni dual Schottky contacts. A knee voltage was significantly improved from 0.75 to 0.48 V by utilizing an alternative low work-function material of poly-Si as an anode electrode. Also, reverse breakdown voltage was successfully improved from 901 to 1154 V due to a shrunk low-work-function Schottky region by a proposed self-align etching process between poly-Si and SiC. SiC TSBS with poly-Si/Ni dual Schottky scheme is a suitable structure for high-efficiency rectification and high-voltage blocking operation.
Shih, Jessica G; Shahrokhi, Shahriar; Jeschke, Marc G
2016-01-01
Objective To review low-voltage versus high-voltage electrical burn complications in adults, and to identify novel areas that are not recognized to improve outcomes. Methods An extensive literature search on electrical burn injuries was performed using OVID Medline, PubMed and EMBASE databases from 1946–2015. Studies relating to outcomes of electrical injury in the adult population (≥18 years of age) were included in the study. Results Forty-one single-institution publications with a total of 5485 electrical injury patients were identified and included in the present study. 18.0% of these patients were low-voltage injuries (LVI), 38.3% high-voltage injuries (HVI) and 43.7% with voltage not otherwise specified (NOS). Forty-four percent of studies did not characterize outcomes according to low versus high-voltage injuries. Reported outcomes include surgical, medical, post-traumatic, and other (long-term/psychological/rehabilitative), all of which report greater incidence rates in HVI compared to LVI. Only two studies report on psychological outcomes such as post-traumatic stress disorder. Mortality from electrical injuries are 2.6% in LVI, 5.2% in HVI and 3.7% in NOS. Coroner’s reports reveal a ratio of 2.4:1 for deaths caused by low-voltage injury compared to high voltage-injury. Conclusions High-voltage injuries lead to greater morbidity and mortality than low-voltage injuries. However, the results of the coroner’s reports suggest that immediate mortality from low-voltage injury may be underestimated. Furthermore, based on the data of this analysis we conclude that the majority of studies report electrical injury outcomes, however, the majority of them do not analyze complications by low versus high voltage and often lack long-term psychological and rehabilitation outcomes post-electrical injury indicating that a variety of central aspects are not being evaluated or assessed. PMID:27359191
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-04
... Medium- and Low-Voltage Dry-Type Distribution Transformers AGENCY: Department of Energy, Office of Energy... Dry-Type Distribution Transformers and the second addressing Low-Voltage Dry-Type Distribution Transformers. The Liquid Immersed and Medium-Voltage Dry-Type Group (MV Group) and the Low-Voltage Dry-Type...
Masuda, Masaharu; Fujita, Masashi; Iida, Osamu; Okamoto, Shin; Ishihara, Takayuki; Nanto, Kiyonori; Kanda, Takashi; Tsujimura, Takuya; Matsuda, Yasuhiro; Okuno, Shota; Ohashi, Takuya; Tsuji, Aki; Mano, Toshiaki
2018-04-15
Association between the presence of left atrial low-voltage areas and atrial fibrillation (AF) recurrence after pulmonary vein isolation (PVI) has been shown mainly in persistent AF patients. We sought to compare the AF recurrence rate in paroxysmal AF patients with and without left atrial low-voltage areas. This prospective observational study included 147 consecutive patients undergoing initial ablation for paroxysmal AF. Voltage mapping was performed after PVI during sinus rhythm, and low-voltage areas were defined as regions where bipolar peak-to-peak voltage was <0.50mV. Left atrial low-voltage areas after PVI were observed in 22 (15%) patients. Patients with low-voltage areas were significantly older (72±6 vs. 66±10, p<0.0001), more likely to be female (68% vs. 32%, p=0.002), and had higher CHA 2 DS 2 -VASc score (2.5±1.5 vs. 1.8±1.3, p=0.028). During a mean follow-up of 22 (18, 26) months, AF recurrence was observed in 24 (16%) and 16 (11%) patients after the single and multiple ablation procedures, respectively. AF recurrence rate after multiple ablations was higher in patients with low-voltage areas than without (36% vs. 6%, p<0.001). Low-voltage areas were independently associated with AF recurrence even after adjustment for the other related factors (Hazard ratio, 5.89; 95% confidence interval, 2.16 to 16.0, p=0.001). The presence of left atrial low-voltage areas after PVI predicts AF recurrence in patients with paroxysmal AF as well as in patients with persistent AF. Copyright © 2017 Elsevier B.V. All rights reserved.
Pecunia, Vincenzo; Nikolka, Mark; Sou, Antony; Nasrallah, Iyad; Amin, Atefeh Y; McCulloch, Iain; Sirringhaus, Henning
2017-06-01
Solution-processed semiconductors such as conjugated polymers have great potential in large-area electronics. While extremely appealing due to their low-temperature and high-throughput deposition methods, their integration in high-performance circuits has been difficult. An important remaining challenge is the achievement of low-voltage circuit operation. The present study focuses on state-of-the-art polymer thin-film transistors based on poly(indacenodithiophene-benzothiadiazole) and shows that the general paradigm for low-voltage operation via an enhanced gate-to-channel capacitive coupling is unable to deliver high-performance device behavior. The order-of-magnitude longitudinal-field reduction demanded by low-voltage operation plays a fundamental role, enabling bulk trapping and leading to compromised contact properties. A trap-reduction technique based on small molecule additives, however, is capable of overcoming this effect, allowing low-voltage high-mobility operation. This approach is readily applicable to low-voltage circuit integration, as this work exemplifies by demonstrating high-performance analog differential amplifiers operating at a battery-compatible power supply voltage of 5 V with power dissipation of 11 µW, and attaining a voltage gain above 60 dB at a power supply voltage below 8 V. These findings constitute an important milestone in realizing low-voltage polymer transistors for solution-based analog electronics that meets performance and power-dissipation requirements for a range of battery-powered smart-sensing applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Trineural injury to the right hand after domestic electrocution.
Cahill, Kevin C; Tiong, William H C; Conroy, Frank J
2014-01-01
Electrocution injuries account for a significant amount of burns unit admissions each year, and can be fatal. These injuries are divided into high-voltage (over 1000 volts) and low-voltage (less than 1000 volts) injuries, with lightning strikes (greater than 100 million volts) considered separately. Although the majority of electrocution injuries are of low voltage, most of the published reports concern industrial/high-voltage and lightning injuries. This disparity may trivialize low-voltage injuries in the minds of clinicians. We report a rare case of trineural (median, ulnar, and radial) injury in an upper limb after a low-voltage electrocution, and discuss the pathogenesis, investigation, and treatment of these injuries.
47 CFR 15.611 - General technical requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... § 15.109(b). (2) Low voltage power lines. Access BPL systems that operate over low-voltage power lines, including those that operate over low-voltage lines that are connected to the in-building wiring, shall... limits—(1) Medium voltage power lines. (i) Access BPL systems that operate in the frequency range of 1...
47 CFR 15.611 - General technical requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... § 15.109(b). (2) Low voltage power lines. Access BPL systems that operate over low-voltage power lines, including those that operate over low-voltage lines that are connected to the in-building wiring, shall... limits—(1) Medium voltage power lines. (i) Access BPL systems that operate in the frequency range of 1...
47 CFR 15.611 - General technical requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... § 15.109(b). (2) Low voltage power lines. Access BPL systems that operate over low-voltage power lines, including those that operate over low-voltage lines that are connected to the in-building wiring, shall... limits—(1) Medium voltage power lines. (i) Access BPL systems that operate in the frequency range of 1...
NASA Astrophysics Data System (ADS)
Lin, Jia-De; Lin, Jyun-Wei; Lee, Chia-Rong
2018-02-01
Electrical tuning of photonic bandgap (PBG) of cholesteric liquid crystal (CLC) without deformation within the entire visible region at low voltages is not easy to achieve. This study demonstrates low-voltage-tunable PBG in full visible region with less deformation of the PBG based on smart materials of ferroelectric liquid crystal doped CLC (FLC-CLC) integrating with electrothermal film heaters. Experimental results show that the reflective color of the FLC-CLC can be low-voltage-tuned through entire visible region. The induced temperature change is induced by electrically heating the electrothermal film heaters at low voltages at near the smectic-CLC transition temperature. Coaxial electrospinning can be used to develop smart fibrous devices with FLC/CLC-core and polymer-shell which color is tunable in full visible region at low voltages.
Lightning Overvoltage on Low-Voltage Distribution System
NASA Astrophysics Data System (ADS)
Michishita, Koji
The portion of the faults of a medium-voltage line, cause by lightning, tends to increase with often reaching beyond 30%. However, due to the recent progress of the lightning protection design, the number of faults has decreased to 1/3 of that at 30 years ago. As for the low-voltage distribution line, the fault rate has been estimated primarily, although the details of the overvoltages have not been studied yet. For the further development of highly information-oriented society, improvement of reliability of electric power supply to the appliance in a low-voltage customer will be socially expected. Therefore, it is important to establish effective lightning protection design of the low-voltage distribution system, defined to be composed of lines having mutual interaction on the customers' electric circuits, such as a low-voltage distribution line, an antenna line and a telecommunication line. In this report, the author interprets the recent research on the lightning overvoltage on a low-voltage distribution system.
Over-voltage protection system and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Song; Dong, Dong; Lai, Rixin
An over-voltage protection system includes an electronic valve connected across two terminals of a circuit and an over-voltage detection circuit connected across one of the plurality of semiconductor devices for detecting an over-voltage across the circuit. The electronic valve includes a plurality of semiconductor devices connected in series. The over-voltage detection circuit includes a voltage divider circuit connected to a break-over diode in a way to provide a representative low voltage to the break-over diode and an optocoupler configured to receive a current from the break-over diode when the representative low voltage exceeds a threshold voltage of the break-over diodemore » indicating an over-voltage condition. The representative low voltage provided to the break-over diode represents a voltage across the one semiconductor device. A plurality of self-powered gate drive circuits are connected to the plurality of semiconductor devices, wherein the plurality of self-powered gate drive circuits receive over-voltage triggering pulses from the optocoupler during the over-voltage condition and switch on the plurality of semiconductor devices to bypass the circuit.« less
Analysis and Research on the effect of the Operation of Small Hydropower in the Regional Power Grid
NASA Astrophysics Data System (ADS)
Ang, Fu; Guangde, Dong; Xiaojun, Zhu; Ruimiao, Wang; Shengyi, Zhu
2018-03-01
The analysis of reactive power balance and voltage of power network not only affects the system voltage quality, but also affects the economic operation of power grid. In the calculation of reactive power balance and voltage analysis in the past, the problem of low power and low system voltage has been the concern of people. When small hydropower stations in the wet period of low load, the analysis of reactive power surplus and high voltage for the system, if small hydropower unit the capability of running in phase is considered, it can effectively solve the system low operation voltage of the key point on the high side.
A High Voltage Ratio and Low Ripple Interleaved DC-DC Converter for Fuel Cell Applications
Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih
2012-01-01
This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters. PMID:23365536
A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.
Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih
2012-01-01
This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.
Combating the Reliability Challenge of GPU Register File at Low Supply Voltage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Jingweijia; Song, Shuaiwen; Yan, Kaige
Supply voltage reduction is an effective approach to significantly reduce GPU energy consumption. As the largest on-chip storage structure, the GPU register file becomes the reliability hotspot that prevents further supply voltage reduction below the safe limit (Vmin) due to process variation effects. This work addresses the reliability challenge of the GPU register file at low supply voltages, which is an essential first step for aggressive supply voltage reduction of the entire GPU chip. We propose GR-Guard, an architectural solution that leverages long register dead time to enable reliable operations from unreliable register file at low voltages.
Low Power, High Voltage Power Supply with Fast Rise/Fall Time
NASA Technical Reports Server (NTRS)
Bearden, Douglas B. (Inventor)
2007-01-01
A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.
Low power, high voltage power supply with fast rise/fall time
NASA Technical Reports Server (NTRS)
Bearden, Douglas B. (Inventor)
2007-01-01
A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.
Van, Ngoc Huynh; Lee, Jae-Hyun; Sohn, Jung Inn; Cha, Seung Nam; Whang, Dongmok; Kim, Jong Min; Kang, Dae Joon
2014-05-21
We successfully fabricated nanowire-based complementary metal-oxide semiconductor (NWCMOS) inverter devices by utilizing n- and p-type Si nanowire field-effect-transistors (NWFETs) via a low-temperature fabrication processing technique. We demonstrate that NWCMOS inverter devices can be operated at less than 1 V, a significantly lower voltage than that of typical thin-film based complementary metal-oxide semiconductor (CMOS) inverter devices. This low-voltage operation was accomplished by controlling the threshold voltage of the n-type Si NWFETs through effective management of the nanowire (NW) doping concentration, while realizing high voltage gain (>10) and ultra-low static power dissipation (≤3 pW) for high-performance digital inverter devices. This result offers a viable means of fabricating high-performance, low-operation voltage, and high-density digital logic circuits using a low-temperature fabrication processing technique suitable for next-generation flexible electronics.
Degtiarenko, Pavel V [Williamsburg, VA; Popov, Vladimir E [Newport News, VA
2011-03-22
A first stage electronic system for receiving charge or current from voltage-controlled sensors or detectors that includes a low input impedance current receiver/converter device (for example, a transimpedance amplifier), which is directly coupled to the sensor output, a source of bias voltage, and the device's power supply (or supplies), which use the biased voltage point as a baseline.
Does voltage predict return to work and neuropsychiatric sequelae following electrical burn injury?
Chudasama, Shruti; Goverman, Jeremy; Donaldson, Jeffrey H; van Aalst, John; Cairns, Bruce A; Hultman, Charles Scott
2010-05-01
Voltage has historically guided the acute management and long-term prognosis of physical morbidity in electrical injury patients; however, few large studies exist that include neuropsychiatric morbidity in final outcome analysis. This review compares high (>1000 V) to low (<1000 V) voltage injuries, focusing on return to work and neuropsychiatric sequelae following electrical burn injury. Patients with electrical injuries admitted to the University of North Carolina Jaycee Burn Center between 2000 and 2005 were prospectively entered into a trauma database, then retrospectively reviewed. Patients were divided into 4 cohorts: high voltage (>1000 V), low voltage (<1000 V), flash arc, and lightning. Demographics, hospital course, and follow-up were recorded to determine physical and neuropsychiatric morbidity. Differences among cohorts were tested for statistical significance. Over 5 years, 2548 patients were admitted to the burn center, including 115 patients with electrical injuries. There were 110 males and 5 females, with a mean age of 35 years (range, 0.75-65 years). The cause of the electrical injury was high voltage in 60 cases, low voltage in 25 cases, flash arc in 29 cases and lightning in 1 case. The mean total body surface area burn was 8% (range, 0%-52%). The etiology was work-related electrical injury in 85 patients. Mean follow-up period was 352 days with 13 (11%) patients lost to follow-up. Patients with high voltage injuries had significantly larger total body surface area burn, longer ICU stays, longer hospitalizations, and significantly higher rates of fasciotomy, amputation, nerve decompression and outpatient reconstruction, with 4 cases of renal failure and 2 deaths. In spite of these differences, high and low voltage groups experienced similar rates of neuropsychiatric sequelae, limited return to work and delays in return to work. Final impairment ratings for the high and low voltage groups were 17.5% and 5.3%, respectively. Electrical injuries often incur severe morbidity despite relatively small burn size and/or low voltage. When comparing high and low voltage injuries, similarities in endpoints such as neuropsychiatric sequelae, the need for late reconstruction, and failure to return to work challenge previous notions that voltage predicts outcome.
Sperry, Brett W; Vranian, Michael N; Hachamovitch, Rory; Joshi, Hariom; McCarthy, Meghann; Ikram, Asad; Hanna, Mazen
2016-07-01
Low voltage electrocardiography (ECG) coupled with increased ventricular wall thickness is the hallmark of cardiac amyloidosis. However, patient characteristics influencing voltage in the general population, including bundle branch block, have not been evaluated in amyloid heart disease. A retrospective analysis was performed of patients with newly diagnosed cardiac amyloidosis from 2002 to 2014. ECG voltage was calculated using limb (sum of QRS complex in leads I, II and III) and precordial (Sokolow: S in V1 plus R in V5-V6) criteria. The associations between voltage and clinical variables were tested using multivariable linear regression. A Cox model assessed the association of voltage with mortality. In 389 subjects (transthyretin ATTR 186, light chain AL 203), 30% had conduction delay (QRS >120ms). In those with narrow QRS, 68% met low limb, 72% low Sokolow and 57% both criteria, with lower voltages found in AL vs ATTR. LV mass index as well as other typical factors that impact voltage (age, sex, race, hypertension, BSA, and smoking) in the general population were not associated with voltage in this cardiac amyloidosis cohort. Patients with LBBB and IVCD had similar voltages when compared to those with narrow QRS. Voltage was significantly associated with mortality (p<0.001 for both criteria) after multivariable adjustment. Classic predictors of ECG voltage in the general population are not valid in cardiac amyloidosis. In this cohort, the prevalence estimates of ventricular conduction delay and low voltage are higher than previously reported. Voltage predicts mortality after multivariable adjustment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
High temperature charge amplifier for geothermal applications
Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.
2015-12-08
An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.
Copper laser modulator driving assembly including a magnetic compression laser
Cook, Edward G.; Birx, Daniel L.; Ball, Don G.
1994-01-01
A laser modulator (10) having a low voltage assembly (12) with a plurality of low voltage modules (14) with first stage magnetic compression circuits (20) and magnetic assist inductors (28) with a common core (91), such that timing of the first stage magnetic switches (30b) is thereby synchronized. A bipolar second stage of magnetic compression (42) is coupled to the low voltage modules (14) through a bipolar pulse transformer (36) and a third stage of magnetic compression (44) is directly coupled to the second stage of magnetic compression (42). The low voltage assembly (12) includes pressurized boxes (117) for improving voltage standoff between the primary winding assemblies (34) and secondary winding (40) contained therein.
Synthesis of polymer nanostructures with conductance switching properties
Su, Kai; Nuraje, Nurxat; Zhang, Lingzhi; Matsui, Hiroshi; Yang, Nan Loh
2015-03-03
The present invention is directed to crystalline organic polymer nanoparticles comprising a conductive organic polymer; wherein the crystalline organic polymer nanoparticles have a size of from 10 nm to 200 nm and exhibits two current-voltage states: (1) a high resistance current-voltage state, and (2) a low resistance current-voltage state, wherein when a first positive threshold voltage (V.sub.th1) or higher positive voltage, or a second negative threshold voltage (V.sub.th2) or higher negative voltage is applied to the nanoparticle, the nanoparticle exhibits the low-resistance current-voltage state, and when a voltage less positive than the first positive threshold voltage or a voltage less negative than the second negative threshold voltage is applied to the nanoparticle, the nanoparticle exhibits the high-resistance current-voltage state. The present invention is also directed methods of manufacturing the nanoparticles using novel interfacial oxidative polymerization techniques.
Brainard, John P [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM
2009-11-03
A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-phase alternating current equipment; circuit breakers. 75.900 Section 75.900 Mineral Resources MINE... Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit breakers. [Statutory Provisions] Low- and medium-voltage power circuits serving three-phase alternating current...
Low voltage nonprimary explosive detonator
Dinegar, Robert H.; Kirkham, John
1982-01-01
A low voltage, electrically actuated, nonprimary explosive detonator is disclosed wherein said detonation is achieved by means of an explosive train in which a deflagration-to-detonation transition is made to occur. The explosive train is confined within a cylindrical body and positioned adjacent to low voltage ignition means have electrical leads extending outwardly from the cylindrical confining body. Application of a low voltage current to the electrical leads ignites a self-sustained deflagration in a donor portion of the explosive train which then is made to undergo a transition to detonation further down the train.
NASA Astrophysics Data System (ADS)
Vartak, Rajdeep; Rag, Adarsh; De, Shounak; Bhat, Somashekhara
2018-05-01
We report here the use of facile and environmentally benign way synthesized reduced graphene oxide (RGO) for low-voltage non-volatile memory device as charge storing element. The RGO solutions have been synthesized using electrochemical exfoliation of battery electrode. The solution processed based RGO solution is suitable for large area and low-cost processing on plastic substrate. Room-temperature current-voltage characterisation has been carried out in Ag/RGO/ITO PET sandwich configuration to study the type of trap distribution. It is observed that in the low-voltage sweep, ohmic current is the main mechanism of current flow and trap filled/assisted conduction is observed at high-sweep voltage region. The Ag/RGO/ITO PET sandwich structure showed bipolar resistive switching behavior. These mechanisms can be analyzed based on oxygen availability and vacancies in the RGO giving rise to continuous least resistive path (conductive) and high resistance path along the structure. An Ag/RGO/ITO arrangement demonstrates long retention time with low operating voltage, low set/reset voltage, good ON/OFF ratio of 103 (switching transition between lower resistance state and higher resistance state and decent switching performance. The RGO memory showed decent results with an almost negligible degradation in switching properties which can be used for low-voltage and low-cost advanced flexible electronics.
Observation of Dust Stream Formation Produced by Low Current, High Voltage Cathode Spots
NASA Technical Reports Server (NTRS)
Foster, John E.
2004-01-01
Macro-particle acceleration driven by low current, high voltage cathode spots has been investigated. The phenomenon was observed to occur when nanometer and micrometer-sized particles in the presence of a discharge plasma were exposed to a high voltage pulse. The negative voltage pulse initiates the formation of multiple, high voltage, low current cathode spots which provides the mechanism of actual acceleration of the charged dust particles. Dust streams generated by this process were detected using laser scattering techniques. The particle impact craters observed at the surface of downstream witness badges were documented using SEM and light microscopy.
A Low Power Low Phase Noise Oscillator for MICS Transceivers
Li, Dawei; Liu, Dongsheng; Kang, Chaojian; Zou, Xuecheng
2017-01-01
A low-power, low-phase-noise quadrature oscillator for Medical Implantable Communications Service (MICS) transceivers is presented. The proposed quadrature oscillator generates 349~689 MHz I/Q (In-phase and Quadrature) signals covering the MICS band. The oscillator is based on a differential pair with positive feedback. Each delay cell consists of a few transistors enabling lower voltage operation. Since the oscillator is very sensitive to disturbances in the supply voltage and ground, a self-bias circuit for isolating the voltage disturbance is proposed to achieve bias voltages which can track the disturbances from the supply and ground. The oscillation frequency, which is controlled by the bias voltages, is less sensitive to the supply and ground noise, and a low phase noise is achieved. The chip is fabricated in the UMC (United Microelectronics Corporation) 0.18 μm CMOS (Complementary Metal Oxide Semiconductor) process; the core just occupies a 28.5 × 22 μm2 area. The measured phase noise is −108.45 dBc/Hz at a 1 MHz offset with a center frequency of 540 MHz. The gain of the oscillator is 0.309 MHz/mV with a control voltage from 0 V to 1.1 V. The circuit can work with a supply voltage as low as 1.2 V and the power consumption is only 0.46 mW at a 1.8 V supply voltage. PMID:28085107
A Low Power Low Phase Noise Oscillator for MICS Transceivers.
Li, Dawei; Liu, Dongsheng; Kang, Chaojian; Zou, Xuecheng
2017-01-12
A low-power, low-phase-noise quadrature oscillator for Medical Implantable Communications Service (MICS) transceivers is presented. The proposed quadrature oscillator generates 349~689 MHz I/Q (In-phase and Quadrature) signals covering the MICS band. The oscillator is based on a differential pair with positive feedback. Each delay cell consists of a few transistors enabling lower voltage operation. Since the oscillator is very sensitive to disturbances in the supply voltage and ground, a self-bias circuit for isolating the voltage disturbance is proposed to achieve bias voltages which can track the disturbances from the supply and ground. The oscillation frequency, which is controlled by the bias voltages, is less sensitive to the supply and ground noise, and a low phase noise is achieved. The chip is fabricated in the UMC (United Microelectronics Corporation) 0.18 μm CMOS (Complementary Metal Oxide Semiconductor) process; the core just occupies a 28.5 × 22 μm² area. The measured phase noise is -108.45 dBc/Hz at a 1 MHz offset with a center frequency of 540 MHz. The gain of the oscillator is 0.309 MHz/mV with a control voltage from 0 V to 1.1 V. The circuit can work with a supply voltage as low as 1.2 V and the power consumption is only 0.46 mW at a 1.8 V supply voltage.
Permanent split capacitor single phase electric motor system
Kirschbaum, Herbert S.
1984-01-01
A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-01
... the low-voltage transformer used when testing coil-only residential central air conditioners and heat... the Low-Voltage Transformer Used When Testing Coil- Only Central Air Conditioners and Heat Pumps and... metric, estimating off-mode energy consumption, and selecting the low- voltage transformer in the test...
Synchronous Half-Wave Rectifier
NASA Technical Reports Server (NTRS)
Rippel, Wally E.
1989-01-01
Synchronous rectifying circuit behaves like diode having unusually low voltage drop during forward-voltage half cycles. Circuit particularly useful in power supplies with potentials of 5 Vdc or less, where normal forward-voltage drops in ordinary diodes unacceptably large. Fabricated as monolithic assembly or as hybrid. Synchronous half-wave rectifier includes active circuits to attain low forward voltage drop and high rectification efficiency.
IEEE 342 Node Low Voltage Networked Test System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Kevin P.; Phanivong, Phillippe K.; Lacroix, Jean-Sebastian
The IEEE Distribution Test Feeders provide a benchmark for new algorithms to the distribution analyses community. The low voltage network test feeder represents a moderate size urban system that is unbalanced and highly networked. This is the first distribution test feeder developed by the IEEE that contains unbalanced networked components. The 342 node Low Voltage Networked Test System includes many elements that may be found in a networked system: multiple 13.2kV primary feeders, network protectors, a 120/208V grid network, and multiple 277/480V spot networks. This paper presents a brief review of the history of low voltage networks and how theymore » evolved into the modern systems. This paper will then present a description of the 342 Node IEEE Low Voltage Network Test System and power flow results.« less
A nanoscale piezoelectric transformer for low-voltage transistors.
Agarwal, Sapan; Yablonovitch, Eli
2014-11-12
A novel piezoelectric voltage transformer for low-voltage transistors is proposed. Placing a piezoelectric transformer on the gate of a field-effect transistor results in the piezoelectric transformer field-effect transistor that can switch at significantly lower voltages than a conventional transistor. The piezoelectric transformer operates by using one piezoelectric to squeeze another piezoelectric to generate a higher output voltage than the input voltage. Multiple piezoelectrics can be used to squeeze a single piezoelectric layer to generate an even higher voltage amplification. Coupled electrical and mechanical modeling in COMSOL predicts a 12.5× voltage amplification for a six-layer piezoelectric transformer. This would lead to more than a 150× reduction in the power needed for communications.
Low-jitter high-power thyristor array pulse driver and generator
Hanks, Roy L.
2002-01-01
A method and apparatus for generating low-jitter, high-voltage and high-current pulses for driving low impedance loads such as detonator fuses uses a MOSFET driver which, when triggered, discharges a high-voltage pre-charged capacitor into the primary of a toroidal current-multiplying transformer with multiple isolated secondary windings. The secondary outputs are suitable for driving an array of thyristors that discharge a precharged high-voltage capacitor and thus generating the required high-voltage and high-current pulse.
Permanent split capacitor single phase electric motor system
Kirschbaum, H.S.
1984-08-14
A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation. 4 figs.
A new low-voltage plateau of Na₃V₂(PO₄)₃ as an anode for Na-ion batteries
Jian, Zelang; Sun, Yang; Ji, Xiulei
2015-04-04
A low-voltage plateau at ~0.3 V is discovered during the deep sodiation of Na₃V₂(PO₄)₃ by combined computational and experimental studies. This new low-voltage plateau doubles the sodiation capacity of Na₃V₂(PO₄)₃, turning it into a promising anode for Na-ion batteries.
NASA Technical Reports Server (NTRS)
Wilson, J. P.
1994-01-01
Improved bypass device provides low-resistance current shunt around low-voltage power cell when cell fails in open-circuit condition during operation. In comparison with older bypass devices for same application, this one weighs less, generates less heat, and has lower voltage drop (less resistance). Bypass device connected in parallel with power cell. Draws very little current during normal operation of cell.
Triple voltage dc-to-dc converter and method
Su, Gui-Jia
2008-08-05
A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.
NASA Astrophysics Data System (ADS)
Qi, Wenke; Jiang, Pan; Lin, Dan; Chi, Xiaoping; Cheng, Min; Du, Yikui; Zhu, Qihe
2018-01-01
A mini time-sliced ion velocity map imaging photofragment translational spectrometer using low voltage acceleration has been constructed. The innovation of this apparatus adopts a relative low voltage (30-150 V) to substitute the traditional high voltage (650-4000 V) to accelerate and focus the fragment ions. The overall length of the flight path is merely 12 cm. There are many advantages for this instrument, such as compact structure, less interference, and easy to operate and control. Low voltage acceleration gives a longer turn-around time to the photofragment ions forming a thicker Newton sphere, which provides sufficient time for slicing. Ion trajectory simulation has been performed for determining the structure dimensions and the operating voltages. The photodissociation and multiphoton ionization of O2 at 224.999 nm is used to calibrate the ion images and examine the overall performance of the new spectrometer. The velocity resolution (Δν/ν) of this spectrometer from O2 photodissociation is about 0.8%, which is better than most previous results using high acceleration voltage. For the case of CF3I dissociation at 277.38 nm, many CF3 vibrational states have been resolved, and the anisotropy parameter has been measured. The application of low voltage acceleration has shown its advantages on the ion velocity map imaging (VMI) apparatus. The miniaturization of the VMI instruments can be realized on the premise of high resolution.
Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.
Hornstein, Melissa K; Bajaj, Vikram S; Griffin, Robert G; Temkin, Richard J
2007-02-01
The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents.
Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz
Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.
2007-01-01
The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE2,3,1 mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents. PMID:17687412
USDA-ARS?s Scientific Manuscript database
Broilers in the United States are typically electrically stunned using low voltage-high frequency (12-38V, =400Hz) DC or AC water bath stunners. In the European Union, however, broilers are required to be electrocuted using high voltage-low frequency (50-150V, 50-350Hz) AC. Low voltage stunned broil...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trailing cables supplying power to low-voltage... Alternating Current Circuits § 77.906 Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check wires. On and after September 30, 1971, all trailing cables supplying power to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cables supplying power to low-voltage... Alternating Current Circuits § 77.906 Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check wires. On and after September 30, 1971, all trailing cables supplying power to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Trailing cables supplying power to low-voltage... Alternating Current Circuits § 77.906 Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check wires. On and after September 30, 1971, all trailing cables supplying power to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... accordance with movement requirements of high-voltage power centers and portable transformers (§ 75.812) and... transformer. A step-up transformer is a transformer that steps up the low or medium voltage to high voltage... supplying low or medium voltage to the step-up transformer must meet the applicable requirements of 30 CFR...
Code of Federal Regulations, 2013 CFR
2013-07-01
... accordance with movement requirements of high-voltage power centers and portable transformers (§ 75.812) and... transformer. A step-up transformer is a transformer that steps up the low or medium voltage to high voltage... supplying low or medium voltage to the step-up transformer must meet the applicable requirements of 30 CFR...
Code of Federal Regulations, 2012 CFR
2012-07-01
... accordance with movement requirements of high-voltage power centers and portable transformers (§ 75.812) and... transformer. A step-up transformer is a transformer that steps up the low or medium voltage to high voltage... supplying low or medium voltage to the step-up transformer must meet the applicable requirements of 30 CFR...
Code of Federal Regulations, 2010 CFR
2010-07-01
... accordance with movement requirements of high-voltage power centers and portable transformers (§ 75.812) and... transformer. A step-up transformer is a transformer that steps up the low or medium voltage to high voltage... supplying low or medium voltage to the step-up transformer must meet the applicable requirements of 30 CFR...
Code of Federal Regulations, 2014 CFR
2014-07-01
... accordance with movement requirements of high-voltage power centers and portable transformers (§ 75.812) and... transformer. A step-up transformer is a transformer that steps up the low or medium voltage to high voltage... supplying low or medium voltage to the step-up transformer must meet the applicable requirements of 30 CFR...
Low-Voltage InGaZnO Thin Film Transistors with Small Sub-Threshold Swing.
Cheng, C H; Chou, K I; Hsu, H H
2015-02-01
We demonstrate a low-voltage driven, indium-gallium-zinc oxide thin-film transistor using high-κ LaAlO3 gate dielectric. A low VT of 0.42 V, very small sub-threshold swing of 68 mV/dec, field-effect mobility of 4.1 cm2/Ns and low operation voltage of 1.4 V were reached simultaneously in LaAlO3/IGZO TFT device. This low-power and small SS TFT has the potential for fast switching speed and low power applications.
Apparatus for Controlling Low Power Voltages in Space Based Processing Systems
NASA Technical Reports Server (NTRS)
Petrick, David J. (Inventor)
2017-01-01
A low power voltage control circuit for use in space missions includes a switching device coupled between an input voltage and an output voltage. The switching device includes a control input coupled to an enable signal, wherein the control input is configured to selectively turn the output voltage on or off based at least in part on the enable signal. A current monitoring circuit is coupled to the output voltage and configured to produce a trip signal, wherein the trip signal is active when a load current flowing through the switching device is determined to exceed a predetermined threshold and is inactive otherwise. The power voltage control circuit is constructed of space qualified components.
A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.
Hashemi, S Saeid; Sawan, Mohamad; Savaria, Yvon
2012-08-01
We present, in this paper, a new full-wave CMOS rectifier dedicated for wirelessly-powered low-voltage biomedical implants. It uses bootstrapped capacitors to reduce the effective threshold voltage of selected MOS switches. It achieves a significant increase in its overall power efficiency and low voltage-drop. Therefore, the rectifier is good for applications with low-voltage power supplies and large load current. The rectifier topology does not require complex circuit design. The highest voltages available in the circuit are used to drive the gates of selected transistors in order to reduce leakage current and to lower their channel on-resistance, while having high transconductance. The proposed rectifier was fabricated using the standard TSMC 0.18 μm CMOS process. When connected to a sinusoidal source of 3.3 V peak amplitude, it allows improving the overall power efficiency by 11% compared to the best recently published results given by a gate cross-coupled-based structure.
Abdullah, Wan Rafizah Wan; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd
2012-01-01
High demands on low-voltage electronics have increased the need for zinc oxide (ZnO) varistors with fast response, highly non-linear current-voltage characteristics and energy absorption capabilities at low breakdown voltage. However, trade-off between breakdown voltage and grain size poses a critical bottle-neck in the production of low-voltage varistors. The present study highlights the synthesis mechanism for obtaining praseodymium oxide (Pr6O11) based ZnO varistor ceramics having breakdown voltages of 2.8 to 13.3 V/mm through employment of direct modified citrate gel coating technique. Precursor powder and its ceramics were examined by means of TG/DTG, FTIR, XRD and FESEM analyses. The electrical properties as a function of Pr6O11 addition were analyzed on the basis of I-V characteristic measurement. The breakdown voltage could be adjusted from 0.01 to 0.06 V per grain boundary by controlling the amount of Pr6O11 from 0.2 to 0.8 mol%, without alteration of the grain size. The non-linearity coefficient, α, varied from 3.0 to 3.5 and the barrier height ranged from 0.56 to 0.64 eV. Breakdown voltage and α lowering with increasing Pr6O11 content were associated to reduction in the barrier height caused by variation in O vacancies at grain boundary. PMID:22606043
Abdullah, Wan Rafizah Wan; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd
2012-01-01
High demands on low-voltage electronics have increased the need for zinc oxide (ZnO) varistors with fast response, highly non-linear current-voltage characteristics and energy absorption capabilities at low breakdown voltage. However, trade-off between breakdown voltage and grain size poses a critical bottle-neck in the production of low-voltage varistors. The present study highlights the synthesis mechanism for obtaining praseodymium oxide (Pr(6)O(11)) based ZnO varistor ceramics having breakdown voltages of 2.8 to 13.3 V/mm through employment of direct modified citrate gel coating technique. Precursor powder and its ceramics were examined by means of TG/DTG, FTIR, XRD and FESEM analyses. The electrical properties as a function of Pr(6)O(11) addition were analyzed on the basis of I-V characteristic measurement. The breakdown voltage could be adjusted from 0.01 to 0.06 V per grain boundary by controlling the amount of Pr(6)O(11) from 0.2 to 0.8 mol%, without alteration of the grain size. The non-linearity coefficient, α, varied from 3.0 to 3.5 and the barrier height ranged from 0.56 to 0.64 eV. Breakdown voltage and α lowering with increasing Pr(6)O(11) content were associated to reduction in the barrier height caused by variation in O vacancies at grain boundary.
Electrical injuries in urban children in New Delhi.
Rai, Ashish; Khalil, Sumaira; Batra, Prerna; Gupta, Saurabh Kumar; Bhattacharya, Sameek; Dubey, Nand K; Mehra, Neha; Saha, Abhijeet
2013-03-01
The objective of this study was to analyze the epidemiology, presentation, management, and complications of electrical burn injuries in urban children. Data from records and clinical data were collected retrospectively and prospectively during 2008 to 2010. Of 41 children enrolled, the mean age of children enrolled was 8.1 ± 4.5 years. Low-voltage injury was seen in 28 (68.2%), and 13 (31.8%) had high-voltage injuries. Low-voltage injuries were most commonly (52.45%) secondary to direct contact with live wire, whereas high-voltage injuries in 70% were due to direct contact with broken wires lying in fields/rooftops. Fourteen children of the 41 enrolled had associated injuries. Low-voltage injuries were associated with minor burns, seizures, tibial fracture, eyelid burn, scalp hematoma, and speech and visual impairment, whereas high-voltage injuries were associated with cardiac arrest, extradural hematoma, visceral burns, pulmonary hemorrhage and hypoxic encephalopathy, and postelectrocution acute respiratory distress syndrome. Surgical interventions done included split-thickness skin grafting, fasciotomy, and amputation procedures. The mean duration of hospital stay of all the children enrolled was 9.02 days with 35 children discharged, 71.4% of them having low-voltage injuries. Four children died, 75% of them having high-voltage injury, whereas 2 children left without medical advice, both having low-voltage injuries. Children are a major group susceptible to electrical injuries in our country. Most of the mechanisms leading to them are easily preventable, but occur because of lack or awareness among the children and their guardians. Burn prevention program should be implemented incorporating these epidemiological data.
Jadidi, Amir S; Lehrmann, Heiko; Keyl, Cornelius; Sorrel, Jérémie; Markstein, Viktor; Minners, Jan; Park, Chan-Il; Denis, Arnaud; Jaïs, Pierre; Hocini, Mélèze; Potocnik, Clemens; Allgeier, Juergen; Hochholzer, Willibald; Herrera-Sidloky, Claudia; Kim, Steve; Omri, Youssef El; Neumann, Franz-Josef; Weber, Reinhold; Haïssaguerre, Michel; Arentz, Thomas
2016-03-01
Complex-fractionated atrial electrograms and atrial fibrosis are associated with maintenance of persistent atrial fibrillation (AF). We hypothesized that pulmonary vein isolation (PVI) plus ablation of selective atrial low-voltage sites may be more successful than PVI only. A total of 85 consecutive patients with persistent AF underwent high-density atrial voltage mapping, PVI, and ablation at low-voltage areas (LVA < 0.5 mV in AF) associated with electric activity lasting > 70% of AF cycle length on a single electrode (fractionated activity) or multiple electrodes around the circumferential mapping catheter (rotational activity) or discrete rapid local activity (group I). The procedural end point was AF termination. Arrhythmia freedom was compared with a control group (66 patients) undergoing PVI only (group II). PVI alone was performed in 23 of 85 (27%) patients of group I with low amount (< 10% of left atrial surface area) of atrial low voltage. Selective atrial ablation in addition to PVI was performed in 62 patients with termination of AF in 45 (73%) after 11 ± 9 minutes radiofrequency delivery. AF-termination sites colocalized within LVA in 80% and at border zones in 20%. Single-procedural arrhythmia freedom at 13 months median follow-up was achieved in 59 of 85 (69%) patients in group I, which was significantly higher than the matched control group (31/66 [47%], P < 0.001). There was no significant difference in the success rate of patients in group I with a low amount of low voltage undergoing PVI only and patients requiring PVI+selective low-voltage ablation (P = 0.42). Ablation of sites with distinct activation characteristics within/at borderzones of LVA in addition to PVI is more effective than conventional PVI-only strategy for persistent AF. PVI only seems to be sufficient to treat patients with left atrial low voltage < 10%. © 2016 American Heart Association, Inc.
Sequential circuit design for radiation hardened multiple voltage integrated circuits
Clark, Lawrence T [Phoenix, AZ; McIver, III, John K.
2009-11-24
The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.
Analysis of Electrocardiograms Associated with Pediatric Electrical Burns.
McLeod, Jennifer S; Maringo, Alison E; Doyle, Patrick J; Vitale, Lisa; Klein, Justin D; Shanti, Christina M
2017-05-26
The purpose of this study was to examine the utility of electrocardiograms (EKGs) for low-risk, low-voltage pediatric electrical burn victims. A retrospective chart review was conducted on 86 pediatric patients who presented to the children's hospital between 2000 and 2015 after sustaining electrical burns. Variables included source and estimated voltage, extent of injuries, length of stay, high risk factors, and EKG results. High risk factors included estimated voltage > 1000 V, lightning, tetany, symptoms, loss of consciousness, or seizures. Statistical analyses were conducted. Average age was 5 years. Of those who sustained burns, 84.5% (n = 71/84) had second-degree burns ≤ 1% TBSA or less. Eleven patients had high risk factors, 12.9% (n = 11/85) and most had length of stay < 3 days (91.8%; n = 78/85). Majority sustained burns from low-voltage (< 300 V) household electrical outlets, cords, or light bulb sockets (90.4%; n = 75/83). Among patients with available EKGs, 12 had arrhythmias on initial EKG (i.e., low right atrial rhythm, t-wave inversions, sinus tachycardia, bundle branch block; 20.7%; n = 12/58). All were transient and nonfatal. The data suggest that low estimated voltage (< 300 V) electrical injuries were associated with negative EKGs; however, due to the low rate of arrhythmias, a Fisher's exact test did not show significance, P = 0.09 (P > 0.05). Preliminary data suggest that most pediatric electrical burns are due to low voltage (< 300 V) household sources. Few have high risk factors or arrhythmias that were transient and nonfatal. These data suggest that low-risk, asymptomatic, low-voltage pediatric electrical burns may not require an initial screening EKG.
Performance of Li-Ion Cells Under Battery Voltage Charge Control
NASA Technical Reports Server (NTRS)
Rao, Gopalakrishna M.; Vaidyanathan, Hari; Day, John H. (Technical Monitor)
2001-01-01
A study consisting of electrochemical characterization and Low-Earth-Orbit (LEO) cycling of Li-Ion cells from three vendors was initiated in 1999 to determine the cycling performance and to infuse the new technology in the future NASA missions. The 8-cell batteries included in this evaluation are prismatic cells manufactured by Mine Safety Appliances Company (MSA), cylindrical cells manufactured by SAFT and prismatic cells manufactured by Yardney Technical Products, Inc. (YTP). The three batteries were cycle tested in the LEO regime at 40% depth of discharge, and under a charge control technique that consists of battery voltage clamp with a current taper. The initial testing was conducted at 20 C; however, the batteries were cycled also intermittently at low temperatures. YTP 20 Ah cells consisted of mixed-oxide (Co and Ni) positive, graphitic carbon negative, LIPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 32 V. The low temperature cycling tests started after 4575 cycles at 20 C. The cells were not capable of cycling. at low temperature since the charge acceptance at battery level was poor. There was a cell in the battery that showed too high an end-of-charge (EOC) voltage thereby limiting the ability to charge the rest of the cells in the battery. The battery has completed 6714 cycles. SAFT 12 Ah cells consisted of mixed-oxide (Co and NO positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was for 30.8 V. The low temperature cycling tests started after 4594 cycles at 20 C. A cell that showed low end of discharge (EOD) and EOC voltages and three other cells that showed higher EOC voltages limited the charge acceptance at the selected voltage limit during charge. The cells were capable of cycling at 10 C and 0 C but the charge voltage limit had to be increased to 34.3 V (4.3 V per cell). The low temperature cycling may have induced poor chargeability since the voltage had to be increased to achieve the required charge input. The battery has completed 6226 cycles. MSA 10 Ah cells consisted of Co oxide positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 30.8 V. The low temperature cycling tests were started after 2182 cycles at 20 C. The cells were capable of cycling at 10 C and 0 C. Like SAFT, the voltage limit on charge had to be increased to 36 V (4.5 V per cell). There was a cell (cell S/N 13) in the battery that showed poor performance features such as low EOD voltage and high EOC voltage. The battery has completed 3441 cycles. A reconditioning procedure that consisted of C15 charge to a taper current of C/100 and C/20 discharge improved the voltage behavior of SAFT and MSA cells with no significant effect on YTP cells. We have demonstrated that the charge operation with VT clamp at battery rather than at cell level is feasible for onboard Li-Ion battery operation.
Arc lamp power supply using a voltage multiplier
NASA Technical Reports Server (NTRS)
Leighty, Bradley D.
1988-01-01
A power supply is provided for an arc discharge lamp which includes a relatively low voltage high current power supply section and a high voltage starter circuit. The low voltage section includes a transformer, rectifier, variable resistor and a bank of capacitors, while the starter circuit comprises several diodes and capacitors connected as a Cockcroft-Walton multiplier. The starting circuit is effectively bypassed when the lamp arc is established and serves to automatically provide a high starting voltage to re-strike the lamp arc if the arc is extinguished by a power interruption.
The design and development of low- and high-voltage ASICs for space-borne CCD cameras
NASA Astrophysics Data System (ADS)
Waltham, N.; Morrissey, Q.; Clapp, M.; Bell, S.; Jones, L.; Torbet, M.
2017-12-01
The CCD remains the pre-eminent visible and UV wavelength image sensor in space science, Earth and planetary remote sensing. However, the design of space-qualified CCD readout electronics is a significant challenge with requirements for low-volume, low-mass, low-power, high-reliability and tolerance to space radiation. Space-qualified components are frequently unavailable and up-screened commercial components seldom meet project or international space agency requirements. In this paper, we describe an alternative approach of designing and space-qualifying a series of low- and high-voltage mixed-signal application-specific integrated circuits (ASICs), the ongoing development of two low-voltage ASICs with successful flight heritage, and two new high-voltage designs. A challenging sub-system of any CCD camera is the video processing and digitisation electronics. We describe recent developments to improve performance and tolerance to radiation-induced single event latchup of a CCD video processing ASIC originally developed for NASA's Solar Terrestrial Relations Observatory and Solar Dynamics Observatory. We also describe a programme to develop two high-voltage ASICs to address the challenges presented with generating a CCD's bias voltages and drive clocks. A 0.35 μm, 50 V tolerant, CMOS process has been used to combine standard low-voltage 3.3 V transistors with high-voltage 50 V diffused MOSFET transistors that enable output buffers to drive CCD bias drains, gates and clock electrodes directly. We describe a CCD bias voltage generator ASIC that provides 24 independent and programmable 0-32 V outputs. Each channel incorporates a 10-bit digital-to-analogue converter, provides current drive of up to 20 mA into loads of 10 μF, and includes current-limiting and short-circuit protection. An on-chip telemetry system with a 12-bit analogue-to-digital converter enables the outputs and multiple off-chip camera voltages to be monitored. The ASIC can drive one or more CCDs and replaces the many discrete components required in current cameras. We also describe a CCD clock driver ASIC that provides six independent and programmable drivers with high-current capacity. The device enables various CCD clock parameters to be programmed independently, for example the clock-low and clock-high voltage levels, and the clock-rise and clock-fall times, allowing configuration for serial clock frequencies in the range 0.1-2 MHz and image clock frequencies in the range 10-100 kHz. Finally, we demonstrate the impact and importance of this technology for the development of compact, high-performance and low-power integrated focal plane electronics.
Batteryless magneto-driven portable radiac
Waechter, D.A.; Bjarke, G.O.; Trujillo, F.; Wolf, M.A.; Umbarger, C.J.
1984-10-19
A hand-powerd alternator for generating an alternating voltage provides same through a rectifier to a high capacity capacitor which stores the resultant dc voltage and drives a voltage regulator to provide a constant low voltage output for a portable radiation detection instrument. The instrument includes a Geiger-Mueller detector tube whose output is fed to a pulse detector and then through an event counter and LCD driver circuit to an LCD bar graph for visual display. An audio driver and an audio output is also provided. All circuitry used is low power so that the capacitor can be readily charged to a sufficient level to provide power for at least 30 minutes. A low voltage indicator is provided on the LCD display to indicate the need for manual recharging.
Research and Construction of DC Energy Measurement Traceability Technology
NASA Astrophysics Data System (ADS)
Zhi, Wang; Maotao, Yang; Jing, Yang
2018-02-01
With the implementation of energy saving and emission reduction policies, DC energy metering has been widely used in many fields. In view of the lack of a DC energy measurementtraceability system, in combination with the process of downward measurement transfer in relation to the DC charger-based field calibration technology and DC energy meter and shunt calibration technologies, the paper proposed DC fast charging, high DC, small DC voltage output and measuring technologies, and built a time-based plan by converting high DC voltage into low voltage and high current into low current and then into low voltage, leaving DC energy traceable to national standards in terms of voltage, current and time and thus filling in the gap in DC energy measurement traceability.
Batteryless magneto-driven portable radiac
Waechter, David A.; Bjarke, George O.; Trujillo, Faustin; Wolf, Michael A.; Umbarger, C. John
1986-01-01
A hand-powered alternator for generating an alternating voltage provides same through a rectifier to a high capacity capacitor which stores the resultant dc voltage and drives a voltage regulator to provide a constant low voltage output for a portable radiation detection instrument. The instrument includes a Geiger-Muller detector tube whose output is fed to a pulse detector and then through an event counter and LCD driver circuit to an LCD bar graph for visual display. An audio driver and an audio output is also provided. All circuitry used is low power so that the capacitor can be readily charged to a sufficient level to provide power for at least 30 minutes. A low voltage indicator is provided on the LCD display to indicate the need for manual recharging.
High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration
NASA Technical Reports Server (NTRS)
Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.
2015-01-01
A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.
High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration
NASA Technical Reports Server (NTRS)
Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.
2015-01-01
A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.
A voltage-division-type low-jitter self-triggered repetition-rate switch.
Su, Jian-Cang; Zeng, Bo; Gao, Peng-Cheng; Li, Rui; Wu, Xiao-Long; Zhao, Liang
2016-10-01
A voltage-division-type (V/N) low-jitter self-triggered multi-stage switch is put forward. It comprises of a triggered corona gap, several quasi-uniform-field gaps, and an inversion inductor. When the corona gap is in the stage of self-breakdown, the multi-stage gaps are triggered and the switch is closed via an over-voltage. This type of V/N switch has the advantage of compact structure since the auxiliary components like the gas-blowing system and the triggered system are eliminated from the whole system. It also has advantages such as low breakdown jitter and high energy efficiency. The dependence of the self-triggered voltage on the over-voltage factor and the switch operating voltage is deduced. A switch of this type is designed and fabricated and experiments to research its characteristics are conducted. The results show that this switch can operate on a voltage of 1 MV at 50 Hz and can generate 1000 successive pulses with a jitter as low as 3% and an energy efficiency as high as 90%. This V/N switch can work under a high repetition rate with a long lifetime.
Pediatric electrical burns: management strategies.
Zubair, M; Besner, G E
1997-08-01
The purpose of the present study was to analyse the course of patients hospitalised with electrical burn wounds in the past 25 years at a major children's hospital in the United States in order to devise safe and cost effective management strategies for these patients. The study was a retrospective chart review of patients with electrical injuries admitted to the hospital between 1971 and 1995. We identified 127 children who were included in the study. Injuries resulted from biting an electrical cord (oral injury) (n = 48), placing an object into an electrical socket (outlet injury) (n = 33), contacting a low voltage wire or appliance indoors (low voltage household injury) (n = 25), contacting a high voltage wire outdoors (high voltage wire injury) (n = 18), or being struck by lightning (n = 3). A retrospective review revealed that the great majority of patients with low voltage electrical injuries did not need admission to the hospital and could have been cared for on an outpatient basis. Almost every patient with high voltage injury had a justified admission due to the severity of the injury. On the basis of these results we conclude that we can safely reduce the number of admissions to the hospital for children with low voltage minor electrical injuries.
NASA Astrophysics Data System (ADS)
Tezuka, N.; Oikawa, S.; Matsuura, M.; Sugimoto, S.; Nishimura, K.; Irisawa, T.; Nagamine, Y.; Tsunekawa, K.
2018-05-01
The authors investigated the voltage control of a magnetic anisotropy field for perpendicular-magnetic tunnel junctions (p-MTJs) with low and high resistance-area (RA) products and for synthetic antiferromagnetic free and pinned layers. It was found that the sample with low RA products was more sensitive to the applied bias voltage than the sample with high RA products. The bias voltage effect was less pronounced for our sample with the synthetic antiferromagnetic layer for high RA products compared to the MTJs with single free and pinned layers.
Ma, R M; Peng, R M; Wen, X N; Dai, L; Liu, C; Sun, T; Xu, W J; Qin, G G
2010-10-01
We show that the threshold voltages of both n- and p-channel metal-oxide-semiconductor field-effect-transistors (MOSFETs) can be lowered to close to zero by adding extra Schottky contacts on top of nanowires (NWs). Novel complementary metal-oxide-semiconductor (CMOS) inverters are constructed on these Schottky barrier modified n- and p-channel NW MOSFETs. Based on the high performances of the modified n- and p-channel MOSFETs, especially the low threshold voltages, the as-fabricated CMOS inverters have low operating voltage, high voltage gain, and ultra-low static power dissipation.
A low voltage programmable unipolar inverter with a gold nanoparticle monolayer on plastic.
Zhou, Ye; Han, Su-Ting; Huang, Long-Biao; Huang, Jing; Yan, Yan; Zhou, Li; Roy, V A L
2013-05-24
A programmable low voltage unipolar inverter with saturated-load configuration has been demonstrated on a plastic substrate. A self-assembled monolayer of gold (Au) nanoparticles was inserted into the dielectric layer acting as a charge trapping layer. The inverter operated well with supply voltages of < - 5 V and the switching voltage was tuned in a wide range under low program/erase bias. The retention and endurance test at ambient conditions confirmed the reliability of the inverter. Furthermore, the programmable behavior was maintained well at various bending states, demonstrating the adequate flexibility of our devices.
Low power, scalable multichannel high voltage controller
Stamps, James Frederick [Livermore, CA; Crocker, Robert Ward [Fremont, CA; Yee, Daniel Dadwa [Dublin, CA; Dils, David Wright [Fort Worth, TX
2006-03-14
A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.
Low power, scalable multichannel high voltage controller
Stamps, James Frederick [Livermore, CA; Crocker, Robert Ward [Fremont, CA; Yee, Daniel Dadwa [Dublin, CA; Dils, David Wright [Fort Worth, TX
2008-03-25
A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.
Simple programmable voltage reference for low frequency noise measurements
NASA Astrophysics Data System (ADS)
Ivanov, V. E.; Chye, En Un
2018-05-01
The paper presents a circuit design of a low-noise voltage reference based on an electric double-layer capacitor, a microcontroller and a general purpose DAC. A large capacitance value (1F and more) makes it possible to create low-pass filter with a large time constant, effectively reducing low-frequency noise beyond its bandwidth. Choosing the optimum value of the resistor in the RC filter, one can achieve the best ratio between the transient time, the deviation of the output voltage from the set point and the minimum noise cut-off frequency. As experiments have shown, the spectral density of the voltage at a frequency of 1 kHz does not exceed 1.2 nV/√Hz the maximum deviation of the output voltage from the predetermined does not exceed 1.4 % and depends on the holding time of the previous value. Subsequently, this error is reduced to a constant value and can be compensated.
Utilizing zero-sequence switchings for reversible converters
Hsu, John S.; Su, Gui-Jia; Adams, Donald J.; Nagashima, James M.; Stancu, Constantin; Carlson, Douglas S.; Smith, Gregory S.
2004-12-14
A method for providing additional dc inputs or outputs (49, 59) from a dc-to-ac inverter (10) for controlling motor loads (60) comprises deriving zero-sequence components (V.sub.ao, V.sub.bo, and V.sub.co) from the inverter (10) through additional circuit branches with power switching devices (23, 44, 46), transforming the voltage between a high voltage and a low voltage using a transformer or motor (42, 50), converting the low voltage between ac and dc using a rectifier (41, 51) or an H-bridge (61), and providing at least one low voltage dc input or output (49, 59). The transformation of the ac voltage may be either single phase or three phase. Where less than a 100% duty cycle is acceptable, a two-phase modulation of the switching signals controlling the inverter (10) reduces switching losses in the inverter (10). A plurality of circuits for carrying out the invention are also disclosed.
Two-electrode low supply voltage electrocardiogram signal amplifier.
Dobrev, D
2004-03-01
Portable biomedical instrumentation has become an important part of diagnostic and treatment instrumentation, including telemedicine applications. Low-voltage and low-power design tendencies prevail. Modern battery cell voltages in the range of 3-3.6 V require appropriate circuit solutions. A two-electrode biopotential amplifier design is presented, with a high common-mode rejection ratio (CMRR), high input voltage tolerance and standard first-order high-pass characteristic. Most of these features are due to a high-gain first stage design. The circuit makes use of passive components of popular values and tolerances. Powered by a single 3 V source, the amplifier tolerates +/- 1 V common mode voltage, +/- 50 microA common mode current and 2 V input DC voltage, and its worst-case CMRR is 60 dB. The amplifier is intended for use in various applications, such as Holter-type monitors, defibrillators, ECG monitors, biotelemetry devices etc.
Zero-voltage DC/DC converter with asymmetric pulse-width modulation for DC micro-grid system
NASA Astrophysics Data System (ADS)
Lin, Bor-Ren
2018-04-01
This paper presents a zero-voltage switching DC/DC converter for DC micro-grid system applications. The proposed circuit includes three half-bridge circuit cells connected in primary-series and secondary-parallel in order to lessen the voltage rating of power switches and current rating of rectifier diodes. Thus, low voltage stress of power MOSFETs can be adopted for high-voltage input applications with high switching frequency operation. In order to achieve low switching losses and high circuit efficiency, asymmetric pulse-width modulation is used to turn on power switches at zero voltage. Flying capacitors are used between each circuit cell to automatically balance input split voltages. Therefore, the voltage stress of each power switch is limited at Vin/3. Finally, a prototype is constructed and experiments are provided to demonstrate the circuit performance.
Improved High/Low Junction Silicon Solar Cell
NASA Technical Reports Server (NTRS)
Neugroschel, A.; Pao, S. C.; Lindholm, F. A.; Fossum, J. G.
1986-01-01
Method developed to raise value of open-circuit voltage in silicon solar cells by incorporating high/low junction in cell emitter. Power-conversion efficiency of low-resistivity silicon solar cell considerably less than maximum theoretical value mainly because open-circuit voltage is smaller than simple p/n junction theory predicts. With this method, air-mass-zero opencircuit voltage increased from 600 mV level to approximately 650 mV.
NASA Astrophysics Data System (ADS)
Khound, Sagarika; Sarma, Ranjit
2018-01-01
We have reported here on the design, processing and dielectric properties of pentacene-based organic thin film transitors (OTFTs) with a bilayer gate dilectrics of crosslinked PVA/Nd2O3 which enables low-voltage organic thin film operations. The dielectric characteristics of PVA/Nd2O3 bilayer films are studied by capacitance-voltage ( C- V) and current-voltage ( I- V) curves in the metal-insulator-metal (MIM) structure. We have analysed the output electrical responses and transfer characteristics of the OTFT devices to determine their performance of OTFT parameters. The mobility of 0.94 cm2/Vs, the threshold voltage of - 2.8 V, the current on-off ratio of 6.2 × 105, the subthreshold slope of 0.61 V/decade are evaluated. Low leakage current of the device is observed from current density-electric field ( J- E) curve. The structure and the morphology of the device are studied using X-ray diffraction (XRD) and atomic force microscope (AFM), respectively. The study demonstrates an effective way to realize low-voltage, high-performance OTFTs at low cost.
Improved Control of Charging Voltage for Li-Ion Battery
NASA Technical Reports Server (NTRS)
Timmerman, Paul; Bugga, Ratnakumar
2006-01-01
The protocol for charging a lithium-ion battery would be modified, according to a proposal, to compensate for the internal voltage drop (charging current internal resistance of the battery). The essence of the modification is to provide for measurement of the internal voltage drop and to increase the terminal-voltage setting by the amount of the internal voltage drop. Ordinarily, a lithium-ion battery is charged at constant current until its terminal voltage attains a set value equal to the nominal full-charge potential. The set value is chosen carefully so as not to exceed the lithium-plating potential, because plated lithium in metallic form constitutes a hazard. When the battery is charged at low temperature, the internal voltage drop is considerable because the electrical conductivity of the battery electrolyte is low at low temperature. Charging the battery at high current at any temperature also gives rise to a high internal voltage drop. In some cases, the internal voltage drop can be as high as 1 volt per cell. Because the voltage available for charging is less than the terminal voltage by the amount of the internal voltage drop, the battery is not fully charged (see figure), even when the terminal voltage reaches the set value. In the modified protocol, the charging current would be periodically interrupted so that the zero-current battery-terminal voltage indicative of the state of charge could be measured. The terminal voltage would also be measured at full charging current. The difference between the full-current and zero-current voltages would equal the internal voltage drop. The set value of terminal voltage would then be increased beyond the nominal full-charge potential by the amount of the internal voltage drop. This adjustment would be performed repeatedly, in real time, so that the voltage setting would track variations in the internal voltage drop to afford full charge without risk of lithium plating. If the charging current and voltage settings were controlled by a computer, then this method of charge control could readily be implemented in software.
Low voltage operation of GaN vertical nanowire MOSFET
NASA Astrophysics Data System (ADS)
Son, Dong-Hyeok; Jo, Young-Woo; Seo, Jae Hwa; Won, Chul-Ho; Im, Ki-Sik; Lee, Yong Soo; Jang, Hwan Soo; Kim, Dae-Hyun; Kang, In Man; Lee, Jung-Hee
2018-07-01
GaN gate-all-around (GAA) vertical nanowire MOSFET (VNWMOSFET) with channel length of 300 nm and diameter of 120 nm, the narrowest GaN-based vertical nanowire transistor ever achieved from the top-down approach, was fabricated by utilizing anisotropic side-wall wet etching in TMAH solution and photoresist etch-back process. The VNWMOSFET exhibited output characteristics with very low saturation drain voltage of less than 0.5 V, which is hardly observed from the wide bandgap-based devices. Simulation results indicated that the narrow diameter of the VNWMOSFET with relatively short channel length is responsible for the low voltage operation. The VNWMOSFET also demonstrated normally-off mode with threshold voltage (VTH) of 0.7 V, extremely low leakage current of ∼10-14 A, low drain-induced barrier lowering (DIBL) of 125 mV/V, and subthreshold swing (SS) of 66-122 mV/decade. The GaN GAA VNWMOSFET with narrow channel diameter investigated in this work would be promising for new low voltage logic application. He has been a Professor with the School of Electrical Engineering and Computer Science, Kyungpook National University, Daegu, Korea, since 1993
Extension algorithm for generic low-voltage networks
NASA Astrophysics Data System (ADS)
Marwitz, S.; Olk, C.
2018-02-01
Distributed energy resources (DERs) are increasingly penetrating the energy system which is driven by climate and sustainability goals. These technologies are mostly connected to low- voltage electrical networks and change the demand and supply situation in these networks. This can cause critical network states. Network topologies vary significantly and depend on several conditions including geography, historical development, network design or number of network connections. In the past, only some of these aspects were taken into account when estimating the network investment needs for Germany on the low-voltage level. Typically, fixed network topologies are examined or a Monte Carlo approach is used to quantify the investment needs at this voltage level. Recent research has revealed that DERs differ substantially between rural, suburban and urban regions. The low-voltage network topologies have different design concepts in these regions, so that different network topologies have to be considered when assessing the need for network extensions and investments due to DERs. An extension algorithm is needed to calculate network extensions and investment needs for the different typologies of generic low-voltage networks. We therefore present a new algorithm, which is capable of calculating the extension for generic low-voltage networks of any given topology based on voltage range deviations and thermal overloads. The algorithm requires information about line and cable lengths, their topology and the network state only. We test the algorithm on a radial, a loop, and a heavily meshed network. Here we show that the algorithm functions for electrical networks with these topologies. We found that the algorithm is able to extend different networks efficiently by placing cables between network nodes. The main value of the algorithm is that it does not require any information about routes for additional cables or positions for additional substations when it comes to estimating network extension needs.
Serial Charging Test on High Capacity Li-Ion Cells for the Orbiter Advanced Hydraulic Power System
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.; Irlbeck, Brad
2006-01-01
Although it looks like module level voltage drives the cutoff for charge, the actual cutoff is due to unbalanced cell voltages that drive the module voltage up. Individual cell voltage drives the cutoff for discharge Low resistance cells are the first to reach the low-voltage cutoff Cell-to-Cell voltage differences are generally small and show similar trends for each cycle Increase for a distinct window during charge and at the end of discharge Increase in max to min cell voltage difference with time/cycles Decrease in max to min cell voltage difference during high current pulses with time/cycles Individual cell voltage trends (with respect to other cells) are very repeatable from cycle to cycle, although voltage slowly degrades with time/cycles (resistance growth) Much more difference observed near end of discharge Little change in order of cell voltage (cell with highest voltage to cell with lowest voltage) Temp sensor on the side of cell (between 2 cells) shows much greater rise during discharge than for single cell tests (18 C vs 5 C) Conclusion: Serial Charging of this string of cells is feasible as it has only a minor impact on useful capacity
An ultra-stable voltage source for precision Penning-trap experiments
NASA Astrophysics Data System (ADS)
Böhm, Ch.; Sturm, S.; Rischka, A.; Dörr, A.; Eliseev, S.; Goncharov, M.; Höcker, M.; Ketter, J.; Köhler, F.; Marschall, D.; Martin, J.; Obieglo, D.; Repp, J.; Roux, C.; Schüssler, R. X.; Steigleder, M.; Streubel, S.; Wagner, Th.; Westermann, J.; Wieder, V.; Zirpel, R.; Melcher, J.; Blaum, K.
2016-08-01
An ultra-stable and low-noise 25-channel voltage source providing 0 to -100 V has been developed. It will supply stable bias potentials for Penning-trap electrodes used in high-precision experiments. The voltage source generates all its supply voltages via a specially designed transformer. Each channel can be operated either in a precision mode or can be dynamically ramped. A reference module provides reference voltages for all the channels, each of which includes a low-noise amplifier to gain a factor of 10 in the output stage. A relative voltage stability of δV / V ≈ 2 ×10-8 has been demonstrated at -89 V within about 10 min.
Low-Voltage Complementary Electronics from Ion-Gel-Gated Vertical Van der Waals Heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yongsuk; Kang, Junmo; Jariwala, Deep
2016-03-22
Low-voltage complementary circuits comprising n-type and p-type van der Waals heterojunction vertical field-effect transistors (VFETs) are demonstrated. The resulting VFETs possess high on-state current densities (>3000 A cm-2) and on/off current ratios (>104) in a narrow voltage window (<3 V).
Effective calculation of power system low-voltage solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overbye, T.J.; Klump, R.P.
1996-02-01
This paper develops a method for reliably determining the set of low-voltage solutions which are closest to the operable power flow solution. These solutions are often used in conjunction with techniques such as energy methods and the voltage instability proximity index (VIPI) for assessing system voltage stability. This paper presents an algorithm which provides good initial guesses for these solutions. The results are demonstrated on a small system and on larger systems with up to 2,000 buses.
Surge Protection in Low-Voltage AC Power Circuits: An Anthology
NASA Astrophysics Data System (ADS)
Martzloff, F. D.
2002-10-01
The papers included in this part of the Anthology provide basic information on the propagation of surges in low-voltage AC power circuits. The subject was approached by a combination of experiments and theoretical considerations. One important distinction is made between voltage surges and current surges. Historically, voltage surges were the initial concern. After the introduction and widespread use of current-diverting surge-protective devices at the point-of-use, the propagation of current surges became a significant factor. The papers included in this part reflect this dual dichotomy of voltage versus current and impedance mismatch effects versus simple circuit theory.
AC to DC Bridgeless Boost Converter for Ultra Low Input Energy Harvesting
NASA Astrophysics Data System (ADS)
Dawam, A. H. A.; Muhamad, M.
2018-03-01
This paper presents design of circuit which converts low input AC voltage to a higher output DC voltage. A buck-boost topology and boost topology are combined to condition cycle of an AC input voltage. the unique integration of a combining circuit of buck-boost and boost circuit have been proposed in order to introduce a new direct ac-dc power converter topology without conventional diode bridge rectifier. The converter achieved to convert a milli-volt scale of input AC voltage into a volt scale of output DC voltages which is from 400mV to 3.3V.
NASA Astrophysics Data System (ADS)
Sun, Jia; Wan, Qing; Lu, Aixia; Jiang, Jie
2009-11-01
Battery drivable low-voltage SnO2-based paper thin-film transistors with a near-zero threshold voltage (Vth=0.06 V) gated by microporous SiO2 dielectric with electric-double-layer (EDL) effect are fabricated at room temperature. The operating voltage is found to be as low as 1.5 V due to the huge gate specific capacitance (1.34 μF/cm2 at 40 Hz) related to EDL formation. The subthreshold gate voltage swing and current on/off ratio is found to be 82 mV/decade and 2.0×105, respectively. The electron field-effect mobility is estimated to be 47.3 cm2/V s based on the measured gate specific capacitance at 40 Hz.
Low voltage arc formation in railguns
Hawke, R.S.
1985-08-05
A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.
Low voltage arc formation in railguns
Hawke, Ronald S.
1987-01-01
A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.
Low voltage arc formation in railguns
Hawke, R.S.
1987-11-17
A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile. 2 figs.
NASA Astrophysics Data System (ADS)
Wang, Qian; Li, Yu-Tao; Zhang, Tian-Yu; Wang, Dan-Yang; Tian, Ye; Yan, Jun-Chao; Tian, He; Yang, Yi; Yang, Fan; Ren, Tian-Ling
2018-03-01
In this paper, low-voltage, large-strain flexible electrothermal actuators (ETAs) based on laser-reduced graphene oxide (LRGO)/Ag particle composites were fabricated in a simple and cost-efficient process. By adding Ag particles to the LRGO, the sheet resistance decreased effectively. Under a driving voltage of 28 V, the actuator obtained a bending angle of 192° within 6 s. Besides, the bending deformation could be precisely controlled by the driving voltage ranging from 10° to 192°. Finally, a gripper composed of two actuators was demonstrated to manipulate a piece of polydimethylsiloxane block. With the advantages of low-voltage, fast-response, and easy-to-manufacture, the graphene based ETAs have a promising application in soft robotics and soft machines.
Low-Voltage Continuous Electrospinning Patterning.
Li, Xia; Li, Zhaoying; Wang, Liyun; Ma, Guokun; Meng, Fanlong; Pritchard, Robyn H; Gill, Elisabeth L; Liu, Ye; Huang, Yan Yan Shery
2016-11-30
Electrospinning is a versatile technique for the construction of microfibrous and nanofibrous structures with considerable potential in applications ranging from textile manufacturing to tissue engineering scaffolds. In the simplest form, electrospinning uses a high voltage of tens of thousands volts to draw out ultrafine polymer fibers over a large distance. However, the high voltage limits the flexible combination of material selection, deposition substrate, and control of patterns. Prior studies show that by performing electrospinning with a well-defined "near-field" condition, the operation voltage can be decreased to the kilovolt range, and further enable more precise patterning of fibril structures on a planar surface. In this work, by using solution dependent "initiators", we demonstrate a further lowering of voltage with an ultralow voltage continuous electrospinning patterning (LEP) technique, which reduces the applied voltage threshold to as low as 50 V, simultaneously permitting direct fiber patterning. The versatility of LEP is shown using a wide range of combination of polymer and solvent systems for thermoplastics and biopolymers. Novel functionalities are also incorporated when a low voltage mode is used in place of a high voltage mode, such as direct printing of living bacteria; the construction of suspended single fibers and membrane networks. The LEP technique reported here should open up new avenues in the patterning of bioelements and free-form nano- to microscale fibrous structures.
Operation of a sub-terahertz CW gyrotron with an extremely low voltage
NASA Astrophysics Data System (ADS)
Bratman, V. L.; Fedotov, A. E.; Fokin, A. P.; Glyavin, M. Yu.; Manuilov, V. N.; Osharin, I. V.
2017-11-01
Decreasing the operating voltage for medium-power sub-terahertz gyrotrons aimed at industrial and scientific applications is highly attractive, since it allows size and cost reduction of the tubes and power supply units. In this paper, we examine such an opportunity both numerically and experimentally for the fundamental cyclotron resonance operation of an existing gyrotron initially designed for operation at the second cyclotron harmonic with a relatively high voltage. Simulations predict that output power higher than 10 W can be produced at the fundamental harmonic at voltages less than 2 kV. To form a low-voltage helical electron beam with a sufficiently large pitch-factor, a positive voltage was applied to the first anode of the gyrotron three-electrode magnetron-injection gun with a negative voltage at the cathode. CW gyrotron operation at voltages down to 1.5 kV has been demonstrated at a frequency about of 256 GHz.
Low-power low-voltage superior-order curvature corrected voltage reference
NASA Astrophysics Data System (ADS)
Popa, Cosmin
2010-06-01
A complementary metal oxide semiconductor (CMOS) voltage reference with a logarithmic curvature-correction will be presented. The first-order compensation is realised using an original offset voltage follower (OVF) block as a proportional to absolute temperature (PTAT) voltage generator, with the advantages of reducing the silicon area and of increasing accuracy by replacing matched resistors with matched transistors. The new logarithmic curvature-correction technique will be implemented using an asymmetric differential amplifier (ADA) block for compensating the logarithmic temperature dependent term from the first-order compensated voltage reference. In order to increase the circuit accuracy, an original temperature-dependent current generator will be designed for computing the exact type of the implemented curvature-correction. The relatively small complexity of the current squarer allows an important increasing of the circuit accuracy that could be achieved by increasing the current generator complexity. As a result of operating most of the MOS transistors in weak inversion, the original proposed voltage reference could be valuable for low-power applications. The circuit is implemented in 0.35 μm CMOS technology and consumes only 60μA for t = 25°C, being supplied at the minimal supply voltage V DD = 1.75V. The temperature coefficient of the reference voltage is 8.7 ppm/°C, while the line sensitivity is 0.75 mV/V for a supply voltage between 1.75 V and 7 V.
Low Voltage Electrowetting-on-Dielectric Platform using Multi-Layer Insulators
Lin, Yan-You; Evans, Randall D.; Welch, Erin; Hsu, Bang-Ning; Madison, Andrew C.; Fair, Richard B.
2010-01-01
A low voltage, two-level-metal, and multi-layer insulator electrowetting-on-dielectric (EWD) platform is presented. Dispensing 300pl droplets from 140nl closed on-chip reservoirs was accomplished with as little as 11.4V solely through EWD forces, and the actuation threshold voltage was 7.2V with a 1Hz voltage switching rate between electrodes. EWD devices were fabricated with a multilayer insulator consisting of 135nm sputtered tantalum pentoxide (Ta2O5) and 180nm parylene C coated with 70nm of CYTOP. Furthermore, the minimum actuation threshold voltage followed a previously published scaling model for the threshold voltage, VT, which is proportional to (t/εr)1/2, where t and εr are the insulator thickness and dielectric constant respectively. Device threshold voltages are compared for several insulator thicknesses (200nm, 500nm, and 1µm), different dielectric materials (parylene C and tantalum pentoxide), and homogeneous versus heterogeneous compositions. Additionally, we used a two-level-metal fabrication process, which enables the fabrication of smaller and denser electrodes with high interconnect routing flexibility. We also have achieved low dispensing and actuation voltages for scaled devices with 30pl droplets. PMID:20953362
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Michael J.; Go, David B., E-mail: dgo@nd.edu; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indianapolis 46556
To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ∼30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like dischargesmore » on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.« less
NASA Astrophysics Data System (ADS)
Doumoto, Takafumi; Akagi, Hirofumi
This paper proposes a small-sized passive EMI filter for the purpose of eliminating high-frequency shaft voltage and ground leakage current from an ac motor. The motor is driven by a general-purpose PWM inverter connected to a three-phase grounded voltage source. The passive EMI filter requires access to the ungrounded neutral point of the motor. This unique circuit configuration makes the common-mode inductor effective in reducing the high-frequency common-mode voltage generated by the PWM inverter with a carrier frequency of 15kHz. As a result, both high-frequency shaft voltage and ground leakage current can be eliminated very efficiently. However, the common-mode inductor may not play any role in reducing the low-frequency common-mode voltage generated by the diode rectifier, so that a low-frequency component still remains in the shaft voltage. Such a low-frequency shaft voltage may not produce any bad effect on motor bearings. The validity and effectiveness of the EMI filter is verified by experimental results obtained from a 200-V 5-kVA laboratory system.
High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge
NASA Astrophysics Data System (ADS)
Ponomarev, A. V.; Pedos, M. S.; Scherbinin, S. V.; Mamontov, Y. I.; Ponomarev, S. V.
2015-11-01
In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface.
Coronary sinus signal amplitude predicts left atrial scarring.
Attanasio, Philipp; Qaiyumi, Daniel; Röhle, Robert; Wutzler, Alexander; Safak, Erdal; Muntean, Bogdan; Boldt, Leif-Hendrik; Pieske, Burkert; Haverkamp, Wilhelm; Huemer, Martin
2017-12-22
Left atrial scarring is recognised as a critical component in the maintenance of atrial fibrillation and is associated with the failure of interventional treatment. Diminished bipolar voltage (LV) has been proposed as a useful tool for left atrial scar quantification. We hypothesised that, due to its anatomic location, signals on the coronary sinus catheter might be used to predict the amount of left atrial low voltage. A total of 124 patients (42% women, average age 66 ± 9 years) were included. Forty-one with paroxysmal and 83 with persistent atrial fibrillation. Left atrial low-voltage (<0.5 mV, measured during sinus rhythm) area size and distribution varied considerably among the included patients (mean: 34.9%; maximum: 94.6%; minimum: 0.4%). Spearman correlation revealed a strong negative correlation between bipolar voltage of the signals on the coronary sinus catheter and the amount of left atrial scarring (R = -0.778, p < .0001). The optimal CS voltage cut off for prediction of left atrial low-voltage size of ≥50% was 1.9 mV with an area-under-the receiver-operating-characteristic (ROC) curve of 0.982, a sensitivity of 97% and a specificity of 98%. There is a strong negative correlation between the size of left atrial low-voltage areas (LVA) and coronary sinus signal amplitude. With increasing left atrial LVA size, CS signal amplitudes decrease, and vice versa. On the basis of these findings, average CS signal amplitudes of ≤1.9 mV can be used as a predictor for a left atrial low-voltage size of ≥50%.
Low-voltage differentially-signaled modulators.
Zortman, William A; Lentine, Anthony L; Trotter, Douglas C; Watts, Michael R
2011-12-19
For exascale computing applications, viable optical solutions will need to operate using low voltage signaling and with low power consumption. In this work, the first differentially signaled silicon resonator is demonstrated which can provide a 5dB extinction ratio using 3fJ/bit and 500mV signal amplitude at 10Gbps. Modulation with asymmetric voltage amplitudes as low as 150mV with 3dB extinction are demonstrated at 10Gbps as well. Differentially signaled resonators simplify and expand the design space for modulator implementation and require no special drivers.
A low-drift, low-noise, multichannel dc voltage source for segmented-electrode Paul traps
NASA Astrophysics Data System (ADS)
Beev, Nikolai; Fenske, Julia-Aileen; Hannig, Stephan; Schmidt, Piet O.
2017-05-01
We present the design, construction, and characterization of a multichannel, low-drift, low-noise dc voltage source specially designed for biasing the electrodes of segmented linear Paul traps. The system produces 20 output voltage pairs having a common-mode range of 0 to +120 V with 3.7 mV/LSB (least significant bit) resolution and differential ranges of ±5 V with 150 μV/LSB or ±16 V with 610 μV/LSB resolution. All common-mode and differential voltages are independently controllable, and all pairs share the same ground reference. The measured drift of the voltages after warm-up is lower than 1 LSB peak-to-peak on the time scale of 2 h. The noise of an output voltage measured with respect to ground is <10 μVRMS within 10 Hz-100 kHz, with spectral density lower than 3 nV Hz-1/2 above 50 kHz. The performance of the system is limited by the external commercial multichannel DAC unit NI 9264, and in principle, it is possible to achieve higher stability and lower noise with the same voltage ranges. The system has a compact, modular, and scalable architecture, having all parts except for the DAC chassis housed within a single 19″ 3HE rack.
2014 NEPP Tasks Update for Ceramic and Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2014-01-01
Presentation describes recent development in research on MnO2, wet, and polymer tantalum capacitors. Low-voltage failures in multilayer ceramic capacitors and techniques to reveal precious metal electrode (PME) and base metal electrode (BME) capacitors with cracks are discussed. A voltage breakdown technique is suggested to select high quality low-voltage BME ceramic capacitors.
2012-02-01
code) 01/02/2012 FINAL 15/11/2008 - 15/11/2011 High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer... optic modulator, silicon photonics, integrated optics, electro - optic polymer, avionics, optical communications, sol-gel, nanotechnology U U U UU 25...2011 Program Manager: Dr. Charles Y-C Lee High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shou-Yi; Wang, Jian, E-mail: wangjian@nwnu.edu.cn; Wang, Gang
2015-08-15
Highlights: • The alumina multilayer structure with alternating high and low refractive index is fabricated. • This multilayer shows a strong photonic band gap (PBG) and vivid film colors. • The first PBG could be modulated easily by varying the duration time of constant high or low voltages. • Fabrication of the photonic crystal is obtained by directly electrochemical anodization. • The formation mechanism of multilayer is also discussed. - Abstract: The alumina nanolayer structure with alternating high and low porosities is conveniently fabricated by applying a modified pulse voltage waveform with constant high and low voltage. This structure showsmore » the well-defined layer in a long-range structural periodicity leads to a strong photonic band gap (PBG) from visible to near infrared and brilliant film colors. Compared with the previous reported tuning method, this method is more simple and flexible in tuning the PBG of photonic crystals (PCs). The effect of duration time of high, low and 0 V voltages on PBG is discussed. The first PBG could be modulated easily from the visible to near infrared region by varying the duration time of constant high or low voltages. It is also found that the 0 V lasting for appropriate time is helpful to improve the quality of the PCs. The formation mechanism of multilayer is also discussed.« less
The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.
2007-01-01
High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.
Low voltage operation of IGZO thin film transistors enabled by ultrathin Al2O3 gate dielectric
NASA Astrophysics Data System (ADS)
Ma, Pengfei; Du, Lulu; Wang, Yiming; Jiang, Ran; Xin, Qian; Li, Yuxiang; Song, Aimin
2018-01-01
An ultrathin, 5 nm, Al2O3 film grown by atomic-layer deposition was used as a gate dielectric for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). The Al2O3 layer showed a low surface roughness of 0.15 nm, a low leakage current, and a high breakdown voltage of 6 V. In particular, a very high gate capacitance of 720 nF/cm2 was achieved, making it possible for the a-IGZO TFTs to not only operate at a low voltage of 1 V but also exhibit desirable properties including a low threshold voltage of 0.3 V, a small subthreshold swing of 100 mV/decade, and a high on/off current ratio of 1.2 × 107. Furthermore, even under an ultralow operation voltage of 0.6 V, well-behaved transistor characteristics were still observed with an on/off ratio as high as 3 × 106. The electron transport through the Al2O3 layer has also been analyzed, indicating the Fowler-Nordheim tunneling mechanism.
Low voltage electrophoresis chip with multi-segments synchronized scanning
NASA Astrophysics Data System (ADS)
Gu, Wenwen; Wen, Zhiyu; Xu, Yi
2017-03-01
For low voltage electrophoresis chip, there is always a problem that the samples are truncated and peaks are broadened, as well as longer time for separation. In this paper, a low voltage electrophoresis separation model was established, and the separation conditions were discussed. A new driving mode was proposed for applying low voltage, which was called multi-segments synchronized scanning. By using this driving mode, the reversed electric field that existed between the multi-segments can enrich samples and shorten the sample zone. The low voltage electrophoresis experiments using multi-segments synchronized scanning were carried out by home-made silicon-PDMS-based chip. The fluorescein isothiocyanate (FITC) labeled lysine and phenylalanine mixed samples with the concentration of 10-4 mol/L were successfully separated under the optimal conditions of 10 mmol/L borax buffer (pH = 10.0), 200 V/cm separation electric field and electrode switch time of 2.5 s. The separation was completed with a resolution of 2.0, and the peak time for lysine and phenylalanine was 4 min and 6 min, respectively.
Farahmand, Sina; Maghami, Mohammad Hossein; Sodagar, Amir M
2012-01-01
This paper reports on the design of a programmable, high output impedance, large voltage compliance microstimulator for low-voltage biomedical applications. A 6-bit binary-weighted digital to analog converter (DAC) is used to generate biphasic stimulus current pulses. A compact current mirror with large output voltage compliance and high output resistance conveys the current pulses to the target tissue. Designed and simulated in a standard 0.18µm CMOS process, the microstimulator circuit is capable of delivering a maximum stimulation current of 160µA to a 10-kΩ resistive load. Operated at a 1.8-V supply voltage, the output stage exhibits a voltage compliance of 1.69V and output resistance of 160MΩ at full scale stimulus current. Layout of the core microelectrode circuit measures 25.5µm×31.5µm.
NASA Astrophysics Data System (ADS)
Petti, Luisa; Pattanasattayavong, Pichaya; Lin, Yen-Hung; Münzenrieder, Niko; Cantarella, Giuseppe; Yaacobi-Gross, Nir; Yan, Feng; Tröster, Gerhard; Anthopoulos, Thomas D.
2017-03-01
We report on low operating voltage thin-film transistors (TFTs) and integrated inverters based on copper(I) thiocyanate (CuSCN) layers processed from solution at low temperature on free-standing plastic foils. As-fabricated coplanar bottom-gate and staggered top-gate TFTs exhibit hole-transporting characteristics with average mobility values of 0.0016 cm2 V-1 s-1 and 0.013 cm2 V-1 s-1, respectively, current on/off ratio in the range 102-104, and maximum operating voltages between -3.5 and -10 V, depending on the gate dielectric employed. The promising TFT characteristics enable fabrication of unipolar NOT gates on flexible free-standing plastic substrates with voltage gain of 3.4 at voltages as low as -3.5 V. Importantly, discrete CuSCN transistors and integrated logic inverters remain fully functional even when mechanically bent to a tensile radius of 4 mm, demonstrating the potential of the technology for flexible electronics.
Ultra-compact Marx-type high-voltage generator
Goerz, David A.; Wilson, Michael J.
2000-01-01
An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.
Hoseinzadeh, Edris; Rezaee, Abbas; Farzadkia, Mahdi
2018-04-01
In this study, a microbial electrochemical system (MES) was designed to evaluate the effects of a low frequency-low voltage alternating electrical current on denitrification efficacy in the presence of ibuprofen as a low biodegradable organic carbon source. Cylindrical carbon cloth and stainless steel mesh electrodes containing a consortium of heterotrophic and autotrophic bacteria were mounted in the wall of the designed laboratory-scale bioreactor. The effects of inlet nitrate concentration (50-800mgL -1 ), retention time (2.5-24h), waveform magnitude (0.1-9.6V p-p ), adjustable direct current voltage added to offset voltage (0.1-4.9V), alternating current frequency (10-60Hz), and waveforms (sinusoidal, square, and ramp) were studied in this work. The results showed that the proposed system removes 800mgL -1 nitrate up to 95% during 6.5h. Optimum conditions were obtained in the 8V p-p using a frequency of 10Hz of a sinusoidal waveform. The morphology studies confirmed bacterial morphology change when applying the alternating current. Dehydrogenase activity of biofilms formed on surface of stainless steel electrodes increased to 15.24μgTFmg biomass cm -2 d. The maximum bacterial activity was obtained at a voltage of 8V p-p . The experimental results revealed that the MES using a low frequency-low voltage alternating electrical current is a promising technique for nitrate removal from pharmaceutical wastewaters in the presence of low biodegradability of carbon sources such as ibuprofen. Copyright © 2017 Elsevier B.V. All rights reserved.
Reconfigurable, Bi-Directional Flexfet Level Shifter for Low-Power, Rad-Hard Integration
NASA Technical Reports Server (NTRS)
DeGregorio, Kelly; Wilson, Dale G.
2009-01-01
Two prototype Reconfigurable, Bi-directional Flexfet Level Shifters (ReBiLS) have been developed, where one version is a stand-alone component designed to interface between external low voltage and high voltage, and the other version is an embedded integrated circuit (IC) for interface between internal low-voltage logic and external high-voltage components. Targeting stand-alone and embedded circuits separately allows optimization for these distinct applications. Both ReBiLS designs use the commercially available 180-nm Flex fet Independently Double-Gated (IDG) SOI CMOS (silicon on insulator, complementary metal oxide semiconductor) technology. Embedded ReBiLS circuits were integrated with a Reed-Solomon (RS) encoder using CMOS Ultra-Low-Power Radiation Tolerant (CULPRiT) double-gated digital logic circuits. The scope of the project includes: creation of a new high-voltage process, development of ReBiLS circuit designs, and adjustment of the designs to maximize performance through simulation, layout, and manufacture of prototypes. The primary technical objectives were to develop a high-voltage, thick oxide option for the 180-nm Flexfet process, and to develop a stand-alone ReBiLS IC with two 8-channel I/O busses, 1.8 2.5 I/O on the low-voltage pins, 5.0-V-tolerant input and 3.3-V output I/O on the high-voltage pins, and 100-MHz minimum operation with 10-pF external loads. Another objective was to develop an embedded, rad-hard ReBiLS I/O cell with 0.5-V low-voltage operation for interface with core logic, 5.0-V-tolerant input and 3.3-V output I/O pins, and 100-MHz minimum operation with 10- pF external loads. A third objective was to develop a 0.5- V Reed-Solomon Encoder with embedded ReBilS I/O: Transfer the existing CULPRiT RS encoder from a 0.35-micron bulk-CMOS process to the ASI 180-nm Flexfet, rad-hard SOI Process. 0.5-V low-voltage core logic. 5.0-V-tolerant input and 3.3-V output I/O pins. 100-MHz minimum operation with 10- pF external loads. The stand-alone ReBiLS chip will allow system designers to provide efficient bi-directional communication between components operating at different voltages. Embedding the ReBiLS cells into the proven Reed-Solomon encoder will demonstrate the ability to support new product development in a commercially viable, rad-hard, scalable 180-nm SOI CMOS process.
Low-power embedded read-only memory using atom switch and silicon-on-thin-buried-oxide transistor
NASA Astrophysics Data System (ADS)
Sakamoto, Toshitsugu; Tada, Munehiro; Tsuji, Yukihide; Makiyama, Hideki; Hasegawa, Takumi; Yamamoto, Yoshiki; Okanishi, Shinobu; Banno, Naoki; Miyamura, Makoto; Okamoto, Koichiro; Iguchi, Noriyuki; Ogasahara, Yasuhiro; Oda, Hidekazu; Kamohara, Shiro; Yamagata, Yasushi; Sugii, Nobuyuki; Hada, Hiromitsu
2015-04-01
We developed an atom-switch read-only memory (ROM) fabricated on silicon-on-thin-buried-oxide (SOTB) for use in a low-power microcontroller for the first time. An atom switch with a low programming voltage and large ON/OFF conductance ratio is suitable for low-power nonvolatile memory. The atom-switch ROM using an SOTB transistor uses a 0.34-1.2 V operating voltage and 12 µA/MHz active current (or 4.5 µW/MHz active power). Furthermore, the sleep current is as low as 0.4 µA when a body bias voltage is applied to the SOTB.
Multivariate statistical analysis of low-voltage EDS spectrum images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, I.M.
1998-03-01
Whereas energy-dispersive X-ray spectrometry (EDS) has been used for compositional analysis in the scanning electron microscope for 30 years, the benefits of using low operating voltages for such analyses have been explored only during the last few years. This paper couples low-voltage EDS with two other emerging areas of characterization: spectrum imaging and multivariate statistical analysis. The specimen analyzed for this study was a finished Intel Pentium processor, with the polyimide protective coating stripped off to expose the final active layers.
A high voltage power supply for the AE-C and D low energy electron experiment
NASA Technical Reports Server (NTRS)
Gillis, J. A.
1974-01-01
A description is given of the electrical and mechanical design and operation of high voltage power supplies for space flight use. The supply was used to generate the spiraltron high voltage for low energy electron experiment on AE-C and D. Two versions of the supply were designed and built; one design is referred to as the low power version (AE-C) and the other as the high power version (AE-D). Performance is discussed under all operating conditions.
Nickel-Hydrogen Battery Fault Clearing at Low State of Charge
NASA Technical Reports Server (NTRS)
Lurie, C.
1997-01-01
Fault clearing currents were achieved and maintained at discharge rates from C/2 to C/3 at high and low states of charge. The fault clearing plateau voltage is strong function of: discharge current, and voltage-prior-to-the-fault-clearing-event and a weak function of state of charge. Voltage performance, for the range of conditions reported, is summarized.
NASA Technical Reports Server (NTRS)
Linley, Larry
1994-01-01
The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.
Song, Shuang; Rooijakkers, Michael; Harpe, Pieter; Rabotti, Chiara; Mischi, Massimo; van Roermund, Arthur H M; Cantatore, Eugenio
2015-04-01
This paper presents a low-voltage current-reuse chopper-stabilized frontend amplifier for fetal ECG monitoring. The proposed amplifier allows for individual tuning of the noise in each measurement channel, minimizing the total power consumption while satisfying all application requirements. The low-voltage current reuse topology exploits power optimization in both the current and the voltage domain, exploiting multiple supply voltages (0.3, 0.6 and 1.2 V). The power management circuitry providing the different supplies is optimized for high efficiency (peak charge-pump efficiency = 90%).The low-voltage amplifier together with its power management circuitry is implemented in a standard 0.18 μm CMOS process and characterized experimentally. The amplifier core achieves both good noise efficiency factor (NEF=1.74) and power efficiency factor (PEF=1.05). Experiments show that the amplifier core can provide a noise level of 0.34 μVrms in a 0.7 to 182 Hz band, consuming 1.17 μW power. The amplifier together with its power management circuitry consumes 1.56 μW, achieving a PEF of 1.41. The amplifier is also validated with adult ECG and pre-recorded fetal ECG measurements.
Campiotti, Richard H.; Hopwood, James E.
1990-01-01
A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.
Evaluation of biasing and protection circuitry components for cryogenic MMIC low-noise amplifiers
NASA Astrophysics Data System (ADS)
Lamb, James W.
2014-05-01
Millimeter-wave integrated circuits with gate lengths as short as 35 nm are demonstrating extremely low-noise performance, especially when cooled to cryogenic temperatures. These operate at low voltages and are susceptible to damage from electrostatic discharge and improper biasing, as well as being sensitive to low-level interference. Designing a protection circuit for low voltages and temperatures is challenging because there is very little data available on components that may be suitable. Extensive testing at low temperatures yielded a set of components and a circuit topology that demonstrates the required level of protection for critical MMICs and similar devices. We present a circuit that provides robust protection for low voltage devices from room temperature down to 4 K.
A Generalised Fault Protection Structure Proposed for Uni-grounded Low-Voltage AC Microgrids
NASA Astrophysics Data System (ADS)
Bui, Duong Minh; Chen, Shi-Lin; Lien, Keng-Yu; Jiang, Jheng-Lun
2016-04-01
This paper presents three main configurations of uni-grounded low-voltage AC microgrids. Transient situations of a uni-grounded low-voltage (LV) AC microgrid (MG) are simulated through various fault tests and operation transition tests between grid-connected and islanded modes. Based on transient simulation results, available fault protection methods are proposed for main and back-up protection of a uni-grounded AC microgrid. In addition, concept of a generalised fault protection structure of uni-grounded LVAC MGs is mentioned in the paper. As a result, main contributions of the paper are: (i) definition of different uni-grounded LVAC MG configurations; (ii) analysing transient responses of a uni-grounded LVAC microgrid through line-to-line faults, line-to-ground faults, three-phase faults and a microgrid operation transition test, (iii) proposing available fault protection methods for uni-grounded microgrids, such as: non-directional or directional overcurrent protection, under/over voltage protection, differential current protection, voltage-restrained overcurrent protection, and other fault protection principles not based on phase currents and voltages (e.g. total harmonic distortion detection of currents and voltages, using sequence components of current and voltage, 3I0 or 3V0 components), and (iv) developing a generalised fault protection structure with six individual protection zones to be suitable for different uni-grounded AC MG configurations.
Kouno, Takuya; Kuga, Noriyuki; Enzaki, Masahiro; Yamashita, Yuuki; Kitazato, Yumiko; Shimotabira, Haruhiko; Jinnouchi, Takashi; Kusuhara, Kazuo; Kawamura, Shinji
2015-04-01
The aim of this study was to reduce the exposed dose of radiotherapy treatment planning computed tomography (CT) by using low tube voltage technique. We used tube voltages of 80 kV, 100 kV, and 120 kV, respectively. First, we evaluated exposure dose with CT dose index (CTDI) for each voltage. Second, we compared image quality indexes such as modulation transfer function (MTF), noise power spectrum (NPS), and contrast to noise ratio (CNR) of phantom images with each voltage. Third, CT to electron density tables were measured in three voltages and monitor unit value was calculated along with clinical cases. Finally, CT surface exposed dose of chest skin was measured by thermoluminescent dosimeter (TLD). In image evaluation MTF and NPS were approximately equal; CNR slightly decreased, 2.0% for 100 kV. We performed check radiation dose accuracy for each tube voltage with each model phantom. As a result, the difference of MU value was not accepted. Finally, compared with 120 kV, CTDIvol and TLD value showed markedly decreased radiation dose, 60% for 80 kV and 30% for 100 kV. Using a technique with low tube voltages, especially 100 kV, is useful in radiotherapy treatment planning to obtain 20% dose reduction without compromising 120 kV image quality.
Electrocution fatalities in military personnel in Ankara, Turkey
Tugcu, Harun; Ozsoy, Sait; Balandiz, Huseyin
2015-01-01
Objectives: To investigate various cases of death caused by electrical injuries among Turkish military personnel. Methods: We retrospectively reviewed fatality cases of military personnel between 1994 and 2013 at the Department of Forensic Medicine, Gulhane Military Medical Academy, School of Medicine, Ankara, Turkey, the only forensic medicine center for the Turkish Armed Forces. Medical records and autopsy reports of cases of electrical fatalities were reviewed and analyzed in terms of age and gender-specific incidence, voltage, contact details, body region distribution, location, and season of incident, site, and severity of injuries sustained, and histopathological and toxicological findings. Results: Sixteen (3.5%) out of the 450 autopsy cases involved electrocution. All deaths were accidental and most frequently occurred outdoors (75%). Eight (50%) died due to high voltage while 6 (37.5%) died due to low voltage. The entry and exit lesions were determined most frequently in cases with high voltage injury. The low voltage deaths commonly occurred at the scene of the event (66.6%), while almost all high voltage deaths occurred in the hospital (87.5%, p=0.03). Electrical burns were most commonly detected in the upper extremities (32.6%, n=14). Conclusion: The present study shows that deaths due to high voltage electrocution are more frequent than low voltage electrocution among military personnel. PMID:25630009
Planar LTCC transformers for high voltage flyback converters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schofield, Daryl; Schare, Joshua M.; Glass, Sarah Jill
This paper discusses the design and use of low-temperature (850 C to 950 C) co-fired ceramic (LTCC) planar magnetic flyback transformers for applications that require conversion of a low voltage to high voltage (> 100V) with significant volumetric constraints. Measured performance and modeling results for multiple designs showed that the LTCC flyback transformer design and construction imposes serious limitations on the achievable coupling and significantly impacts the transformer performance and output voltage. This paper discusses the impact of various design factors that can provide improved performance by increasing transformer coupling and output voltage. The experiments performed on prototype units demonstratedmore » LTCC transformer designs capable of greater than 2 kV output. Finally, the work investigated the effect of the LTCC microstructure on transformer insulation. Although this paper focuses on generating voltages in the kV range, the experimental characterization and discussion presented in this work applies to designs requiring lower voltage.« less
NASA Astrophysics Data System (ADS)
Yuanxiang, ZHOU; Zhongliu, ZHOU; Ling, ZHANG; Yunxiao, ZHANG; Yajun, MO; Jiantao, SUN
2018-05-01
For the partial discharge test of electrical equipment with large capacitance, the use of low-frequency voltage instead of power frequency voltage can effectively reduce the capacity requirements of test power supply. However, the validity of PD test under low frequency voltage needs to be evaluated. In order to investigate the influence of voltage frequency on corona discharge in the air, the discharge test of the tip-plate electrode under the frequency from 50 to 0.1 Hz is carried out based on the impulse current method. The results show that some of the main features of corona under low frequency do not change. The magnitude of discharge in a positive half cycle is obviously larger than that in a negative cycle. The magnitude of discharge and interval in positive cycle are random, while that in negative cycle are regular. With the decrease of frequency, the inception voltage increases. The variation trend of maximum and average magnitude and repetition rate of the discharge in positive and negative half cycle with the variation of voltage frequency and magnitude is demonstrated, with discussion and interpretation from the aspects of space charge transportation, effective discharge time and transition of discharge modes. There is an obvious difference in the phase resolved pattern of partial discharge and characteristic parameters of discharge patterns between power and low frequency. The experimental results can be the reference for mode identification of partial discharge under low frequency tests. The trend of the measured parameters with the variation of frequency provides more information about the insulation defect than traditional measurements under a single frequency (usually 50 Hz). Also it helps to understand the mechanism of corona discharge with an explanation of the characteristics under different frequencies.
Tunable negative differential resistance in planar graphene superlattice resonant tunneling diode
NASA Astrophysics Data System (ADS)
Sattari-Esfahlan, S. M.; Fouladi-Oskuei, J.; Shojaei, S.
2017-04-01
Here, we study the negative differential resistance (NDR) of Dirac electrons in biased planar graphene superlattice (PGSL) and investigate the transport characteristics by adopted transfer matrix method within Landauer-Buttiker formalism. Our model device is based on one-dimensional Kronig-Penney type electrostatic potential in monolayer graphene deposited on a substrate, where the bias voltage is applied by two electrodes in the left and right. At Low bias voltages, we found that NDR appears due to breaking of minibands to Wannier-Stark ladders (WSLs). At the critical bias voltage, delocalization appeared by WS states leads to tunneling peak current in current-voltage (I-V) characteristics. With increasing bias voltage, crossing of rungs from various WSL results in multi-peak NDR. The results demonstrate that the structure parameters like barrier/well thickness and barrier height have remarkable effect on I-V characteristics of PGSL. In addition, Dirac gap enhances peak to valley (PVR) value due to suppressing Klein tunneling. Our results show that the tunable PVR in PGSL resonant tunneling diode can be achievable by structure parameters engineering. NDR at ultra-low bias voltages, such as 100 mV, with giant PVR of 20 is obtained. In our device, the multiple same NDR peaks with ultra-low bias voltage provide promising prospect for multi-valued memories and the low power nanoelectronic tunneling devices.
Low voltage FCC for home and business
NASA Technical Reports Server (NTRS)
Wolf, L.
1972-01-01
A thin pressure-sensitive FCC for low voltage usage is described. It is recommended for installing in speakers, intercoms, doorbells, burglar alarms, and clocks, without running wires between walls. The specifications are given.
Zhang, Zhensong; Yue, Shouzhen; Wu, Yukun; Yan, Pingrui; Wu, Qingyang; Qu, Dalong; Liu, Shiyong; Zhao, Yi
2014-01-27
Low driving voltage blue, green, yellow, red and white phosphorescent organic light-emitting diodes (OLEDs) with a common simply double emitting layer (D-EML) structure are investigated. Our OLEDs without any out-coupling schemes as well as n-doping strategies show low driving voltage, e.g. < 2.4 V for onset and < 3 V for 1000 cd/m2, and high efficiency of 32.5 lm/W (13.3%), 58.8 lm/W (14.3%), 55.1 lm/W (14.6%), 24.9 lm/W (13.7%) and 45.1 lm/W (13.5%) for blue, green, yellow, red and white OLED, respectively. This work demonstrates that the low driving voltages and high efficiencies can be simultaneously realized with a common simply D-EML structure.
Generation of electrical power
Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.
1976-01-01
A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.
A new low voltage level-shifted FVF current mirror with enhanced bandwidth and output resistance
NASA Astrophysics Data System (ADS)
Aggarwal, Bhawna; Gupta, Maneesha; Gupta, Anil Kumar; Sangal, Ankur
2016-10-01
This paper proposes a new high-performance level-shifted flipped voltage follower (LSFVF) based low-voltage current mirror (CM). The proposed CM utilises the low-supply voltage and low-input resistance characteristics of a flipped voltage follower (FVF) CM. In the proposed CM, level-shifting configuration is used to obtain a wide operating current range and resistive compensation technique is employed to increase the operating bandwidth. The peaking in frequency response is reduced by using an additional large MOSFET. Moreover, a very high output resistance (in GΩ range) along with low-current transfer error is achieved through super-cascode configuration for a wide current range (0-440 µA). Small signal analysis is carried out to show the improvements achieved at each step. The proposed CM is simulated by Mentor Graphics Eldospice in TSMC 0.18 µm CMOS, BSIM3 and Level 53 technology. In the proposed CM, a bandwidth of 6.1799 GHz, 1% settling time of 0.719 ns, input and output resistances of 21.43 Ω and 1.14 GΩ, respectively, are obtained with a single supply voltage of 1 V. The layout of the proposed CM has been designed and post-layout simulation results have been shown. The post-layout simulation results for Monte Carlo and temperature analysis have also been included to show the reliability of the CM against the variations in process parameters and temperature changes.
Ferroelectric Emission Cathodes for Low-Power Electric Propulsion
NASA Technical Reports Server (NTRS)
Kovaleski, Scott D.; Burke, Tom (Technical Monitor)
2002-01-01
Low- or no-flow electron emitters are required for low-power electric thrusters, spacecraft plasma contactors, and electrodynamic tether systems to reduce or eliminate the need for propellant/expellant. Expellant-less neutralizers can improve the viability of very low-power colloid thrusters, field emission electric propulsion devices, ion engines, Hall thrusters, and gridded vacuum arc thrusters. The NASA Glenn Research Center (GRC) is evaluating ferroelectric emission (FEE) cathodes as zero expellant flow rate cathode sources for the applications listed above. At GRC, low voltage (100s to approx. 1500 V) operation of FEE cathodes is examined. Initial experiments, with unipolar, bipolar, and RF burst applied voltage, have produced current pulses 250 to 1000 ns in duration with peak currents of up to 2 A at voltages at or below 1500 V. In particular, FEE cathodes driven by RF burst voltages from 1400 to 2000 V peak to peak, at burst frequencies from 70 to 400 kHz, emitted average current densities from 0.1 to 0.7 A/sq cm. Pulse repeatability as a function of input voltage has been initially established. Reliable emission has been achieved in air background at pressures as high as 10(exp -6) Torr.
NASA Astrophysics Data System (ADS)
Held, Martin; Schießl, Stefan P.; Miehler, Dominik; Gannott, Florentina; Zaumseil, Jana
2015-08-01
Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfOx) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states at the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100-300 nF/cm2) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfOx dielectrics.
NASA Astrophysics Data System (ADS)
Xu, Meili; Xiang, Lanyi; Xu, Ting; Wang, Wei; Xie, Wenfa; Zhou, Dayu
2017-10-01
Future flexible electronic systems require memory devices combining low-power operation and mechanical bendability. However, high programming/erasing voltages, which are universally needed to switch the storage states in previously reported ferroelectric organic field-effect transistor (Fe-OFET) nonvolatile memories (NVMs), severely prevent their practical applications. In this work, we develop a route to achieve a low-voltage operating flexible Fe-OFET NVM. Utilizing vertical phase separation, an ultrathin self-organized poly(styrene) (PS) buffering layer covers the surface of the ferroelectric polymer layer by one-step spin-coating from their blending solution. The ferroelectric polymer with a low coercive field contributes to low-voltage operation in the Fe-OFET NVM. The polymer PS contributes to the improvement of mobility, attributing to screening the charge scattering and decreasing the surface roughness. As a result, a high performance flexible Fe-OFET NVM is achieved at the low P/E voltages of ±10 V, with a mobility larger than 0.2 cm2 V-1 s-1, a reliable P/E endurance over 150 cycles, stable data storage retention capability over 104 s, and excellent mechanical bending durability with a slight performance degradation after 1000 repetitive tensile bending cycles at a curvature radius of 5.5 mm.
Design techniques for low-voltage analog integrated circuits
NASA Astrophysics Data System (ADS)
Rakús, Matej; Stopjaková, Viera; Arbet, Daniel
2017-08-01
In this paper, a review and analysis of different design techniques for (ultra) low-voltage integrated circuits (IC) are performed. This analysis shows that the most suitable design methods for low-voltage analog IC design in a standard CMOS process include techniques using bulk-driven MOS transistors, dynamic threshold MOS transistors and MOS transistors operating in weak or moderate inversion regions. The main advantage of such techniques is that there is no need for any modification of standard CMOS structure or process. Basic circuit building blocks like differential amplifiers or current mirrors designed using these approaches are able to operate with the power supply voltage of 600 mV (or even lower), which is the key feature towards integrated systems for modern portable applications.
30 CFR 77.900-2 - Testing, examination, and maintenance of circuit breakers; record.
Code of Federal Regulations, 2011 CFR
2011-07-01
... protecting low- and medium-voltage circuits serving three-phase alternating current equipment and such record... AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits...
30 CFR 77.900-1 - Testing, examination, and maintenance of circuit breakers; procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... protecting low- and medium-voltage circuits serving portable or mobile three-phase alternating current... AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits...
30 CFR 77.900-2 - Testing, examination, and maintenance of circuit breakers; record.
Code of Federal Regulations, 2010 CFR
2010-07-01
... protecting low- and medium-voltage circuits serving three-phase alternating current equipment and such record... AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits...
30 CFR 77.900-1 - Testing, examination, and maintenance of circuit breakers; procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... protecting low- and medium-voltage circuits serving portable or mobile three-phase alternating current... AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits...
Yakymyshyn, Christopher Paul; Hamilton, Pamela Jane; Brubaker, Michael Allen
2007-12-04
A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.
Code of Federal Regulations, 2010 CFR
2010-01-01
... horizontal. No spillage of molten material or hot liquids from containers shall occur while the toy is... breakdown for 1 minute a sinusoidal test potential applied between the high-voltage and low-voltage windings... volts plus twice the rated voltage of the high-voltage winding. The test potential shall be supplied...
Reliable low-cost battery voltage indicator for light aircraft and automobiles
NASA Technical Reports Server (NTRS)
Miller, R. L.
1973-01-01
Voltage indicator fits into cigarette lighter socket and utilizes light emitting and Zener diodes to display three levels of battery voltage. Indicator is superior to typical conventional electrical system indicators in that it gives a positive discrete indication of battery voltage. It is simple, inexpensive, and rugged.
Cascaded resonant bridge converters
NASA Technical Reports Server (NTRS)
Stuart, Thomas A. (Inventor)
1989-01-01
A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.
Magnetic lens apparatus for a low-voltage high-resolution electron microscope
Crewe, Albert V.
1996-01-01
A lens apparatus in which a beam of charged particles of low accelerating voltage is brought to a focus by a magnetic field, the lens being situated behind the target position. The lens comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. The lens apparatus comprises the sole focusing lens for high-resolution imaging in a low-voltage scanning electron microscope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Jin Yu; Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201; Zhu, Li Qiang, E-mail: lqzhu@nimte.ac.cn
Modulation of charge carrier density in condensed materials based on ionic/electronic interaction has attracted much attention. Here, protonic/electronic hybrid indium-zinc-oxide (IZO) transistors gated by chitosan based electrolyte were obtained. The chitosan-based electrolyte illustrates a high proton conductivity and an extremely strong proton gating behavior. The transistor illustrates good electrical performances at a low operating voltage of ∼1.0 V such as on/off ratio of ∼3 × 10{sup 7}, subthreshold swing of ∼65 mV/dec, threshold voltage of ∼0.3 V, and mobility of ∼7 cm{sup 2}/V s. Good positive gate bias stress stabilities are obtained. Furthermore, a low voltage driven resistor-loaded inverter was built by using an IZO transistor inmore » series with a load resistor, exhibiting a linear relationship between the voltage gain and the supplied voltage. The inverter is also used for decreasing noises of input signals. The protonic/electronic hybrid IZO transistors have potential applications in biochemical sensors and portable electronics.« less
Voltage control in Z-source inverter using low cost microcontroller for undergraduate approach
NASA Astrophysics Data System (ADS)
Zulkifli, Shamsul Aizam; Sewang, Mohd Rizal; Salimin, Suriana; Shah, Noor Mazliza Badrul
2017-09-01
This paper is focussing on controlling the output voltage of Z-Source Inverter (ZSI) using a low cost microcontroller with MATLAB-Simulink that has been used for interfacing the voltage control at the output of ZSI. The key advantage of this system is the ability of a low cost microcontroller to process the voltage control blocks based on the mathematical equations created in MATLAB-Simulink. The Proportional Integral (PI) control equations are been applied and then, been downloaded to the microcontroller for observing the changes on the voltage output regarding to the changes on the reference on the PI. The system has been simulated in MATLAB and been verified with the hardware setup. As the results, the Raspberry Pi and Arduino that have been used in this work are able to respond well when there is a change of ZSI output. It proofed that, by applying/introducing this method to student in undergraduate level, it will help the student to understand more on the process of the power converter combine with a control feedback function that can be applied at low cost microcontroller.
A robust low quiescent current power receiver for inductive power transmission in bio implants
NASA Astrophysics Data System (ADS)
Helalian, Hamid; Pasandi, Ghasem; Jafarabadi Ashtiani, Shahin
2017-05-01
In this paper, a robust low quiescent current complementary metal-oxide semiconductor (CMOS) power receiver for wireless power transmission is presented. This power receiver consists of three main parts including rectifier, switch capacitor DC-DC converter and low-dropout regulator (LDO) without output capacitor. The switch capacitor DC-DC converter has variable conversion ratios and synchronous controller that lets the DC-DC converter to switch among five different conversion ratios to prevent output voltage drop and LDO regulator efficiency reduction. For all ranges of output current (0-10 mA), the voltage regulator is compensated and is stable. Voltage regulator stabilisation does not need the off-chip capacitor. In addition, a novel adaptive biasing frequency compensation method for low dropout voltage regulator is proposed in this paper. This method provides essential minimum current for compensation and reduces the quiescent current more effectively. The power receiver was designed in a 180-nm industrial CMOS technology, and the voltage range of the input is from 0.8 to 2 V, while the voltage range of the output is from 1.2 to 1.75 V, with a maximum load current of 10 mA, the unregulated efficiency of 79.2%, and the regulated efficiency of 64.4%.
Calibration of Voltage Transformers and High- Voltage Capacitors at NIST
Anderson, William E.
1989-01-01
The National Institute of Standards and Technology (NIST) calibration service for voltage transformers and high-voltage capacitors is described. The service for voltage transformers provides measurements of ratio correction factors and phase angles at primary voltages up to 170 kV and secondary voltages as low as 10 V at 60 Hz. Calibrations at frequencies from 50–400 Hz are available over a more limited voltage range. The service for high-voltage capacitors provides measurements of capacitance and dissipation factor at applied voltages ranging from 100 V to 170 kV at 60 Hz depending on the nominal capacitance. Calibrations over a reduced voltage range at other frequencies are also available. As in the case with voltage transformers, these voltage constraints are determined by the facilities at NIST. PMID:28053409
High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes
Snyder, Jessica L.; Getpreecharsawas, Jirachai; Fang, David Z.; Gaborski, Thomas R.; Striemer, Christopher C.; Fauchet, Philippe M.; Borkholder, David A.; McGrath, James L.
2013-01-01
We have developed electroosmotic pumps (EOPs) fabricated from 15-nm-thick porous nanocrystalline silicon (pnc-Si) membranes. Ultrathin pnc-Si membranes enable high electroosmotic flow per unit voltage. We demonstrate that electroosmosis theory compares well with the observed pnc-Si flow rates. We attribute the high flow rates to high electrical fields present across the 15-nm span of the membrane. Surface modifications, such as plasma oxidation or silanization, can influence the electroosmotic flow rates through pnc-Si membranes by alteration of the zeta potential of the material. A prototype EOP that uses pnc-Si membranes and Ag/AgCl electrodes was shown to pump microliter per minute-range flow through a 0.5-mm-diameter capillary tubing with as low as 250 mV of applied voltage. This silicon-based platform enables straightforward integration of low-voltage, on-chip EOPs into portable microfluidic devices with low back pressures. PMID:24167263
Research of Characteristics of the Low Voltage Power Line in Underground Coal Mine
NASA Astrophysics Data System (ADS)
Wei, Shaoliang; Qin, Shiqun; Gao, Wenchang; Cheng, Fengyu; Cao, Zhongyue
The power line communications (PLCs) can count on existing electrical connections reaching each corner in the locations where such applications are required, so signal transmission over power lines is nowadays gaining more and more interest for applications like internet. The research of characteristics of the low voltage power line is the fundamental and importance task. This work presents a device to test the characteristics of the low voltage power line. The low voltage power line channel characteristics overground and the channel characteristics underground were tested in using this device. Experiments show that, the characteristics are different between the PLCs channel underground coal mine and the PLC channel overground. Different technology should be adopted to structure the PLCs channel model underground coal mine and transmit high speed digital signal. But how to use the technology better to the high-speed digital communication under coal mine is worth of further studying.
Ultralow drive voltage silicon traveling-wave modulator.
Baehr-Jones, Tom; Ding, Ran; Liu, Yang; Ayazi, Ali; Pinguet, Thierry; Harris, Nicholas C; Streshinsky, Matt; Lee, Poshen; Zhang, Yi; Lim, Andy Eu-Jin; Liow, Tsung-Yang; Teo, Selin Hwee-Gee; Lo, Guo-Qiang; Hochberg, Michael
2012-05-21
There has been great interest in the silicon platform as a material system for integrated photonics. A key challenge is the development of a low-power, low drive voltage, broadband modulator. Drive voltages at or below 1 Vpp are desirable for compatibility with CMOS processes. Here we demonstrate a CMOS-compatible broadband traveling-wave modulator based on a reverse-biased pn junction. We demonstrate operation with a drive voltage of 0.63 Vpp at 20 Gb/s, a significant improvement in the state of the art, with an RF energy consumption of only 200 fJ/bit.
NASA Astrophysics Data System (ADS)
Datta, Abhishek; Zhou, Xiang; Su, Yuzhou; Parra, Lucas C.; Bikson, Marom
2013-06-01
Objective. During transcranial electrical stimulation, current passage across the scalp generates voltage across the scalp surface. The goal was to characterize these scalp voltages for the purpose of validating subject-specific finite element method (FEM) models of current flow. Approach. Using a recording electrode array, we mapped skin voltages resulting from low-intensity transcranial electrical stimulation. These voltage recordings were used to compare the predictions obtained from the high-resolution model based on the subject undergoing transcranial stimulation. Main results. Each of the four stimulation electrode configurations tested resulted in a distinct distribution of scalp voltages; these spatial maps were linear with applied current amplitude (0.1 to 1 mA) over low frequencies (1 to 10 Hz). The FEM model accurately predicted the distinct voltage distributions and correlated the induced scalp voltages with current flow through cortex. Significance. Our results provide the first direct model validation for these subject-specific modeling approaches. In addition, the monitoring of scalp voltages may be used to verify electrode placement to increase transcranial electrical stimulation safety and reproducibility.
[Optimal beam quality for chest digital radiography].
Oda, Nobuhiro; Tabata, Yoshito; Nakano, Tsutomu
2014-11-01
To investigate the optimal beam quality for chest computed radiography (CR), we measured the radiographic contrast and evaluated the image quality of chest CR using various X-ray tube voltages. The contrast between lung and rib or heart increased on CR images obtained by lowering the tube voltage from 140 to 60 kV, but the degree of increase was less. Scattered radiation was reduced on CR images with a lower tube voltage. The Wiener spectrum of CR images with a low tube voltage showed a low value under identical conditions of amount of light stimulated emission. The quality of chest CR images obtained using a lower tube voltage (80 kV and 100 kV) was evaluated as being superior to those obtained with a higher tube voltage (120 kV and 140 kV). Considering the problem of tube loading and exposure in clinical applications, a tube voltage of 90 to 100 kV (0.1 mm copper filter backed by 0.5 mm aluminum) is recommended for chest CR.
NASA Astrophysics Data System (ADS)
Dinzi, R.; Hamonangan, TS; Fahmi, F.
2018-02-01
In the current distribution system, a large-capacity distribution transformer supplies loads to remote locations. The use of 220/380 V network is nowadays less common compared to 20 kV network. This results in losses due to the non-optimal distribution transformer, which neglected the load location, poor consumer profile, and large power losses along the carrier. This paper discusses how high voltage distribution systems (HVDS) can be a better system used in distribution networks than the currently used distribution system (Low Voltage Distribution System, LVDS). The proposed change of the system into the new configuration is done by replacing a large-capacity distribution transformer with some smaller-capacity distribution transformers and installed them in positions that closest to the load. The use of high voltage distribution systems will result in better voltage profiles and fewer power losses. From the non-technical side, the annual savings and payback periods on high voltage distribution systems will also be the advantage.
Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.
Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan
2017-08-13
Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Pandey, Shivendra Kumar; Manivannan, Anbarasu
2017-07-01
Prefixing a weak electric field (incubation) might enhance the crystallization speed via pre-structural ordering and thereby achieving faster programming of phase change memory (PCM) devices. We employed a weak electric field, equivalent to a constant small voltage (that is incubation voltage, Vi of 0.3 V) to the applied voltage pulse, VA (main pulse) for a systematic understanding of voltage-dependent rapid threshold switching characteristics and crystallization (set) process of In3SbTe2 (IST) PCM devices. Our experimental results on incubation-assisted switching elucidate strikingly one order faster threshold switching, with an extremely small delay time, td of 300 ps, as compared with no incubation voltage (Vi = 0 V) for the same VA. Also, the voltage dependent characteristics of incubation-assisted switching dynamics confirm that the initiation of threshold switching occurs at a lower voltage of 0.82 times of VA. Furthermore, we demonstrate an incubation assisted ultrafast set process of IST device for a low VA of 1.7 V (˜18 % lesser compared to without incubation) within a short pulse-width of 1.5 ns (full width half maximum, FWHM). These findings of ultrafast switching, yet low power set process would immensely be helpful towards designing high speed PCM devices with low power operation.
Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media
McLellan, Edward J.
1983-01-01
Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode (1) and cathode (2) to below breakdown voltage using a dc voltage source (3). An array of resistors (4) or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit (5) producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO.sub.2 laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.
A low-power wide range transimpedance amplifier for biochemical sensing.
Rodriguez-Villegas, Esther
2007-01-01
This paper presents a novel low voltage and low power transimpedance amplifier for amperometric potentiostats. The power is optimized by having three different gain settings for different current ranges, which can be programmed with a biasing current. The voltage ranges have been optimized by using FGMOS transistors in a second voltage amplification stage that simultaneously allow for offset calibration as well as independent biasing of the gates. The circuit operates with input currents from 1 pA to 1 microA, with a maximum power supply voltage of 1.5 V and consumes 82.5 nW, 9.825 microW, 47.325 microW for currents varying from (1 pA, 0.25 nA), (0.25 nA, 62.5 nA) and (62.5 nA, 1 microA) respectively.
Low-voltage high-reliability MEMS switch for millimeter wave 5G applications
NASA Astrophysics Data System (ADS)
Shekhar, Sudhanshu; Vinoy, K. J.; Ananthasuresh, G. K.
2018-07-01
Lack of reliability of radio-frequency microelectromechanical systems (RF MEMS) switches has inhibited their commercial success. Dielectric stiction/breakdown and mechanical shock due to high actuation voltage are common impediments in capacitive MEMS switches. In this work, we report low-actuation voltage RF MEMS switch and its reliability test. Experimental characterization of fabricated devices demonstrate that proposed MEMS switch topology needs very low voltage (4.8 V) for actuation. The mechanical resonant frequency, f 0, quality factor, Q, and switching time are measured to be 8.35 kHz, 1.2, and 33 microsecond, respectively. These MEMS switches have high reliability in terms of switching cycles. Measurements are performed using pulse waveform of magnitude of 6 V under hot-switching condition. Temperature measurement results confirm that the reported switch topology has good thermal stability. The robustness in terms of the measured pull-in voltage shows a variation of 0.08 V °C‑1. Lifetime measurement results after 10 million switching cycles demonstrate insignificant change in the RF performance without any failure. Experimental results show that low voltage improves the lifetime. Low insertion loss (less than 0.6 dB) and improved isolation (above 40 dB) in the frequency range up to 60 GHz have been reported. Measured RF characteristics in the frequency range from 10 MHz to 60 GHz support that these MEMS switches are favorable choice for mm-wave 5G applications.
Influence of ultrasound on the electrical breakdown of transformer oil
NASA Astrophysics Data System (ADS)
Isakaev, E. Kh; Tyuftyaev, A. S.; Gadzhiev, M. Kh; Demirov, N. A.; Akimov, P. L.
2018-01-01
When the transformer oil is exposed to low power ultrasonic waves (< 2 W/cm2) at initial moment the breakdown voltage of transformer oil is reduced relative to the breakdown voltage of pure oil due to degassing and the occurrence of cavitation bubbles. With the increase of sonication time the breakdown voltage also increases, nonlinearly. The experimental data indicate the possibility of using ultrasonic waves of low power for degassing of transformer oil.
A high voltage electrical power system for low Earth orbit applications
NASA Technical Reports Server (NTRS)
Lanier, J. R., Jr.; Bush, J. R., Jr.
1984-01-01
The results of testing a high voltage electrical power system (EPS) breadboard using high voltage power processing equipment developed at Marshall Space Flight Center and Ni-Cd batteries are discussed. These test results are used to extrapolate to an efficient, reliable, high capacity EPS for near term low Earth orbit, high power applications. EPS efficiencies, figures of merit, and battery reliability with a battery protection and reconditioning circuit are presented.
Electrostatic shielding of transformers
De Leon, Francisco
2017-11-28
Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.
Electrical tree initiation in polyethylene absorbing Penning gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, N.; Tohyama, N.; Sato, H.
1996-12-31
Ac tree initiation voltage was examined in untreated LDPE, vacuum degassed LDPE and LDPE absorbing He gas (He gas was absorbed after vacuum degassing). The authors have already reported that vacuum degassed LDPE shows much higher tree initiation voltage than untreated one because of absence of oxygen. Therefore they expected that LDPE absorbing He shows the same property with vacuum degassed LDPE. However tree initiation voltage of LDPE absorbing He is as low as that of untreated LDPE. LDPE absorbing Ar gas shows the same tendency. He or Ar gas does not change so much impulse tree initiation voltage. LDPEmore » absorbing He was not well dyed with methylene blue after ac voltage application, which indicates that active oxidation does not occur. Low ac tree initiation voltage in LDPE absorbing He or Ar may be caused by Penning ionization in free volume.« less
Universal single point liquid level sensor
Kronberg, J.W.
1992-10-27
A liquid level detector comprises a thermistor and circuitry for determining electrically if the thermistor is wet or dry and additionally, and continuously, if the thermistor is open or shorted. The voltage across the thermistor is filtered to remove low frequency electrical noise, then compared with a reference low voltage to determine if shorted and to a transition voltage chosen to be between the thermistor's normal wet and dry voltages to determine if the thermistor is wet or dry. The voltage is also compared to the supply voltage using a CMOS gate circuit element to determine if the thermistor is open. The gate passes both faults on to an LED to signal that a fault condition exists or indicates by another LED the wet or dry condition of the thermistor. A pump may be activated through a relay if the thermistor tests wet or dry, as desired. 1 figure.
Universal single point liquid level sensor
Kronberg, James W.
1992-01-01
A liquid level detector comprises a thermistor and circuitry for determining electrically if the thermistor is wet or dry and additionally, and continuously, if the thermistor is open or shorted. The voltage across the thermistor is filtered to remove low frequency electrical noise, then compared with a reference low voltage to determine if shorted and to a transition voltage chosen to be between the thermistor's normal wet and dry voltages to determine if the thermistor is wet or dry. The voltage is also compared to the supply voltage using a CMOS gate circuit element to determine if the thermistor is open. The gate passes both faults on to an LED to signal that a fault condition exists or indicates by another LED the wet or dry condition of the thermistor. A pump may be activated through a relay if the thermistor tests wet or dry, as desired.
NASA Astrophysics Data System (ADS)
Fan, Ching-Lin; Lin, Yu-Sheng; Liu, Yan-Wei
A new pixel design and driving method for active matrix organic light emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage programming method are proposed and verified using the SPICE simulator. We had employed an appropriate TFT model in SPICE simulation to demonstrate the performance of the pixel circuit. The OLED anode voltage variation error rates are below 0.35% under driving TFT threshold voltage deviation (Δ Vth =± 0.33V). The OLED current non-uniformity caused by the OLED threshold voltage degradation (Δ VTO =+0.33V) is significantly reduced (below 6%). The simulation results show that the pixel design can improve the display image non-uniformity by compensating for the threshold voltage deviation in the driving TFT and the OLED threshold voltage degradation at the same time.
NASA Astrophysics Data System (ADS)
Mao, Kun; Qiao, Ming; Zhang, WenTong; Zhang, Bo; Li, Zhaoji
2014-11-01
This paper proposes a 700 V narrow channel region triple-RESURF (reduced surface field) n-type junction field-effect transistor (NCT-nJFET). Compared to traditional structures, low pinch-off voltage (VP) with unobvious drain-induced barrier lowering (DIBL) effect and large saturated current (IDsat) are achieved. This is because p-type buried layer (Pbury) and PWELL are introduced to shape narrow n-type channel in JFET channel region. DIBL sensitivity (SDIBL) is firstly introduced in this paper to analyze the DIBL effect of high-voltage long-channel JFET. Ultra-high breakdown voltage is obtained by triple RESURF technology. Experimental results show that proposed NCT-nJFET achieves 24-V VP, 3.5% SDIBL, 2.3-mA IDsat, 800-V OFF-state breakdown voltage (OFF-BV) and 650-V ON-state breakdown voltage when VGS equals 0 V (ON-BV).
Shih, Jessica G; Shahrokhi, Shahriar; Jeschke, Marc G
The aims of this article are to review low-voltage vs high-voltage electrical burn complications in adults and to identify novel areas that are not recognized to improve outcomes. An extensive literature search on electrical burn injuries was performed using OVID MEDLINE, PubMed, and EMBASE databases from 1946 to 2015. Studies relating to outcomes of electrical injury in the adult population (≥18 years of age) were included in the study. Forty-one single-institution publications with a total of 5485 electrical injury patients were identified and included in the present study. Fourty-four percent of these patients were low-voltage injuries (LVIs), 38.3% high-voltage injuries (HVIs), and 43.7% with voltage not otherwise specified. Forty-four percentage of studies did not characterize outcomes according to LHIs vs HVIs. Reported outcomes include surgical, medical, posttraumatic, and others (long-term/psychological/rehabilitative), all of which report greater incidence rates in HVI than in LVI. Only two studies report on psychological outcomes such as posttraumatic stress disorder. Mortality rates from electrical injuries are 2.6% in LVI, 5.2% in HVI, and 3.7% in not otherwise specified. Coroner's reports revealed a ratio of 2.4:1 for deaths caused by LVI compared with HVI. HVIs lead to greater morbidity and mortality than LVIs. However, the results of the coroner's reports suggest that immediate mortality from LVI may be underestimated. Furthermore, on the basis of this analysis, we conclude that the majority of studies report electrical injury outcomes; however, the majority of them do not analyze complications by low vs high voltage and often lack long-term psychological and rehabilitation outcomes after electrical injury indicating that a variety of central aspects are not being evaluated or assessed.
Memristor-integrated voltage-stabilizing supercapacitor system.
Liu, Bin; Liu, Boyang; Wang, Xianfu; Wu, Xinghui; Zhao, Wenning; Xu, Zhimou; Chen, Di; Shen, Guozhen
2014-08-06
Voltage-stabilized supercapacitors: A single supercapacitor formed with PCBM/Pt/IPS nanorod-array electrodes is designed and delivers enhanced areal capacitance, capacitance retention, and excellent electrical stability under bending, while a significant voltage-decrease is observed during the discharging process. Once integrated with the memristor, the memristor-integrated supercapacitor systems deliver an extremely low voltage-drop, indicating greatly enhanced voltage-stabilizing features. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High Voltage, Low Inductance Hydrogen Thyratron Study Program.
1981-01-01
E-E Electrode Spacing Ef Cathode Heater Voltage egy Peak Forward Grid Voltage epy Peak Forward Anode Voltage epx Peak Inverse Anode Voltage Eres... electrodes . ........... 68 30 Marx generator used for sample testing. ........... 68 31 Waveforms showing sample holdoff and sample breakdown 73 32...capability (a function of gas pressure and electrode spacing) could be related to its current rise time capability (a function of gas pressure and inductance
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Fazi, Christian
1999-01-01
This paper outlines the dynamic reverse-breakdown characteristics of low-voltage (<250 V) small-area <5 x 10(exp -4) sq cm 4H-SiC p(sup +)n diodes subjected to nonadiabatic breakdown-bias pulsewidths ranging from 0.1 to 20 microseconds. 4H-SiC diodes with and without elementary screw dislocations exhibited positive temperature coefficient of breakdown voltage and high junction failure power densities approximately five times larger than the average failure power density of reliable silicon pn rectifiers. This result indicates that highly reliable low-voltage SiC rectifiers may be attainable despite the presence of elementary screw dislocations. However, the impact of elementary screw dislocations on other more useful 4H-SiC power device structures, such as high-voltage (>1 kV) pn junction and Schottky rectifiers, and bipolar gain devices (thyristors, IGBT's, etc.) remains to be investigated.
A 2.87 ppm/°C 65 nm CMOS bandgap reference with nonlinearity compensation
NASA Astrophysics Data System (ADS)
Xingyuan, Tong; Zhangming, Zhu; Yintang, Yang
2011-09-01
Based on the review and analysis of two recently reported low temperature coefficient (TC) bandgap voltage references (BGRs), a new temperature compensation technique is presented. With the double-end piecewise nonlinearity correction method, the logarithm cancellation technique and the mixed-mode output topology, a BGR with high-temperature stability is realised based on 65 nm CMOS low-leakage process. The post-simulation results using Spectre show that this BGR produces an output voltage of about 953 mV with 2.5 V supply voltage, and the output voltage varies by only 0.16 mV from -40°C to 125°C. This low TC BGR has been used in a 65 nm CMOS touch screen controller, and the measurement shows that the output voltage of this BGR is about 949 mV varying by 0.44 mV from -40°C to 125°C. The TC of this BGR is about 2.87 ppm/°C, meeting the requirement of high-precision SoC application.
The Significance of Breakdown Voltages for Quality Assurance of Low-Voltage BME Ceramic Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2014-01-01
Application of thin dielectric, base metal electrode (BME) ceramic capacitors for high-reliability applications requires development of testing procedures that can assure high quality and reliability of the parts. In this work, distributions of breakdown voltages (VBR) in variety of low-voltage BME multilayer ceramic capacitors (MLCCs) have been measured and analyzed. It has been shown that analysis of the distributions can indicate the proportion of defective parts in the lot and significance of the defects. Variations of the distributions after solder dip testing allow for an assessment of the robustness of capacitors to soldering-related stresses. The drawbacks of the existing screening and qualification methods to reveal defects in high-value, low-voltage MLCCs and the importance of VBR measurements are discussed. Analysis has shown that due to a larger concentration of oxygen vacancies, defect-related degradation of the insulation resistance (IR) and failures are more likely in BME compared to the precious metal electrode (PME) capacitors.
NASA Astrophysics Data System (ADS)
Jin, Xiangliang; Zheng, Yifei; Wang, Yang; Guan, Jian; Hao, Shanwan; Li, Kan; Luo, Jun
2018-01-01
The low-voltage triggering silicon-controlled rectifier (LVTSCR) device is widely used in on-chip electrostatic discharge (ESD) protection owing to its low trigger voltage and strong current-tolerating capability per area. In this paper, an improved LVTSCR by adding a narrow NWell (NW2) under the source region of NMOS is discussed, which is realized in a 0.5-μm CMOS process. A 2-dimension (2D) device simulation platform and a transmission line pulse (TLP) testing system are used to predict and characterize the proposed ESD protection devices. According to the measurement results, compared with the preliminary LVTSCR, the improved LVTSCR elevates the second breakdown current (It2) from 2.39 A to 5.54 A and increases the holding voltage (Vh) from 3.04 V to 4.09 V without expanding device area or sacrificing any ESD performances. Furthermore, the influence of the size of the narrow NWell under the source region of NMOS on holding voltage is also discussed.
Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon
2016-06-09
We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (<3 V) while maintaining a high voltage gain (∼6) and ultralow static power dissipation (≤0.3 pW) at an input voltage of ±3 V. This result offers a viable way for the fabrication of a high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics.
Sliding-mode control of single input multiple output DC-DC converter
NASA Astrophysics Data System (ADS)
Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang
2016-10-01
Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.
Sliding-mode control of single input multiple output DC-DC converter.
Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang
2016-10-01
Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.
Benndorf, Klaus; Koopmann, Rolf; Eismann, Elisabeth; Kaupp, U. Benjamin
1999-01-01
Gating by cGMP and voltage of the α subunit of the cGMP-gated channel from rod photoreceptor was examined with a patch-clamp technique. The channels were expressed in Xenopus oocytes. At low [cGMP] (<20 μM), the current displayed strong outward rectification. At low and high (700 μM) [cGMP], the channel activity was dominated by only one conductance level. Therefore, the outward rectification at low [cGMP] results solely from an increase in the open probability, P o. Kinetic analysis of single-channel openings revealed two exponential distributions. At low [cGMP], the larger P o at positive voltages with respect to negative voltages is caused by an increased frequency of openings in both components of the open-time distribution. In macroscopic currents, depolarizing voltage steps, starting from −100 mV, generated a time-dependent current that increased with the step size (activation). At low [cGMP] (20 μM), the degree of activation was large and the time course was slow, whereas at saturating [cGMP] (7 mM) the respective changes were small and fast. The dose–response relation at −100 mV was shifted to the right and saturated at significantly lower P o values with respect to that at +100 mV (0.77 vs. 0.96). P o was determined as function of the [cGMP] (at +100 and −100 mV) and voltage (at 20, 70, and 700 μM, and 7 mM cGMP). Both relations could be fitted with an allosteric state model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric opening reaction. At saturating [cGMP] (7 mM), the activation time course was monoexponential, which allowed us to determine the individual rate constants for the allosteric reaction. For the rapid rate constants of cGMP binding and unbinding, lower limits are determined. It is concluded that an allosteric model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric reaction, describes the cGMP- and voltage-dependent gating of cGMP-gated channels adequately. PMID:10498668
DOE Office of Scientific and Technical Information (OSTI.GOV)
Held, Martin; Schießl, Stefan P.; Gannott, Florentina
Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfO{sub x}) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states atmore » the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100–300 nF/cm{sup 2}) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfO{sub x} dielectrics.« less
NASA Astrophysics Data System (ADS)
Pei, Zingway; Tsai, Hsing-Wang; Lai, Hsin-Cheng
2016-02-01
The organic material based thin film transistors (TFTs) are attractive for flexible optoelectronics applications due to the ability of lager area fabrication by solution and low temperature process on plastic substrate. Recently, the research of organic TFT focus on low operation voltage and high output current to achieve a low power organic logic circuit for optoelectronic device,such as e-paper or OLED displayer. To obtain low voltage and high output current, high gate capacitance and high channel mobility are key factors. The well-arranged polymer chain by a high temperature postannealing, leading enhancement conductivity of polymer film was a general method. However, the thermal annealing applying heat for all device on the substrate and may not applicable to plastic substrate. Therefore, in this work, the low operation voltage and high output current of polymer TFTs was demonstrated by locally electrical bias annealing. The poly(styrene-comethyl methacrylate) (PS-r-PMMA) with ultra-thin thickness is used as gate dielectric that the thickness is controlled by thermal treatment after spin coated on organic electrode. In electrical bias-annealing process, the PS-r- PMMA is acted a heating layer. After electrical bias-annealing, the polymer TFTs obtain high channel mobility at low voltage that lead high output current by a locally annealing of P3HT film. In the future, the locally electrical biasannealing method could be applied on plastic substrate for flexible optoelectronic application.
Neutron-induced single event burnout in high voltage electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Normand, E.; Wert, J.L.; Oberg, D.L.
Energetic neutrons with an atmospheric neutron spectrum, which were demonstrated to induce single event burnout in power MOSFETs, have been shown to induce burnout in high voltage (>3,000V) electronics when operated at voltages as low as 50% of rated voltage. The laboratory failure rates correlate well with field failure rates measured in Europe.
The value of the 12-lead electrocardiogram in localizing the scar in non-ischaemic cardiomyopathy.
Oloriz, Teresa; Wellens, Hein J J; Santagostino, Giulia; Trevisi, Nicola; Silberbauer, John; Peretto, Giovanni; Maccabelli, Giuseppe; Della Bella, Paolo
2016-12-01
Patients with non-ischaemic cardiomyopathy (NICM) and ventricular tachycardia can be categorized as anteroseptal (AS) or inferolateral (IL) scar sub-types based on imaging and voltage mapping studies. The aim of this study was to correlate the baseline electrocardiogram (ECG) with endo-epicardial voltage maps created during ablation procedures and identify the ECG characteristics that may help to distinguish the scar as AS or IL. We assessed 108 baseline ECGs; 72 patients fulfilled criteria for dilated cardiomyopathy whereas 36 showed minimal structural abnormalities. Based on the unipolar low-voltage distribution, the scar pattern was classified as predominantly AS (n = 59) or IL (n = 49). Three ECG criteria (PR interval < 170 ms or QRS voltage in inferior leads <0.6 mV or a lateral q wave) resulted in 92% sensitivity and 90% specificity for predicting an IL pattern in patients with preserved ejection fraction (EF). The four-step algorithm for dilated cardiomyopathy included a paced ventricular rhythm or PR > 230 ms or QRS > 170 ms or an r ≤ 0.3 mV in V3 having 92 and 81% of sensitivity and specificity, respectively, in predicting AS scar pattern. A significant negative correlation was found between the extension of the endocardial unipolar low voltage area and left ventricular EF (r s = -0.719, P < 0.001). The extent of endocardial AS unipolar low voltage was correlated with PR interval and QRS duration (r s = 0.583 and r s = 0.680, P < 0.001, respectively) and the IL epicardial unipolar low voltage with the mean voltage of the limb leads (r s = -0.639, P < 0.001). Baseline ECG features are well correlated with the distribution of unipolar voltage abnormalities in NICM and may help to predict the location of scar in this population. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Voltage Dependence of a Neuromodulator-Activated Ionic Current.
Gray, Michael; Golowasch, Jorge
2016-01-01
The neuromodulatory inward current (IMI) generated by crab Cancer borealis stomatogastric ganglion neurons is an inward current whose voltage dependence has been shown to be crucial in the activation of oscillatory activity of the pyloric network of this system. It has been previously shown that IMI loses its voltage dependence in conditions of low extracellular calcium, but that this effect appears to be regulated by intracellular calmodulin. Voltage dependence is only rarely regulated by intracellular signaling mechanisms. Here we address the hypothesis that the voltage dependence of IMI is mediated by intracellular signaling pathways activated by extracellular calcium. We demonstrate that calmodulin inhibitors and a ryanodine antagonist can reduce IMI voltage dependence in normal Ca(2+), but that, in conditions of low Ca(2+), calmodulin activators do not restore IMI voltage dependence. Further, we show evidence that CaMKII alters IMI voltage dependence. These results suggest that calmodulin is necessary but not sufficient for IMI voltage dependence. We therefore hypothesize that the Ca(2+)/calmodulin requirement for IMI voltage dependence is due to an active sensing of extracellular calcium by a GPCR family calcium-sensing receptor (CaSR) and that the reduction in IMI voltage dependence by a calmodulin inhibitor is due to CaSR endocytosis. Supporting this, preincubation with an endocytosis inhibitor prevented W7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride)-induced loss of IMI voltage dependence, and a CaSR antagonist reduced IMI voltage dependence. Additionally, myosin light chain kinase, which is known to act downstream of the CaSR, seems to play a role in regulating IMI voltage dependence. Finally, a Gβγ-subunit inhibitor also affects IMI voltage dependence, in support of the hypothesis that this process is regulated by a G-protein-coupled CaSR.
Voltage Dependence of a Neuromodulator-Activated Ionic Current123
2016-01-01
Abstract The neuromodulatory inward current (IMI) generated by crab Cancer borealis stomatogastric ganglion neurons is an inward current whose voltage dependence has been shown to be crucial in the activation of oscillatory activity of the pyloric network of this system. It has been previously shown that IMI loses its voltage dependence in conditions of low extracellular calcium, but that this effect appears to be regulated by intracellular calmodulin. Voltage dependence is only rarely regulated by intracellular signaling mechanisms. Here we address the hypothesis that the voltage dependence of IMI is mediated by intracellular signaling pathways activated by extracellular calcium. We demonstrate that calmodulin inhibitors and a ryanodine antagonist can reduce IMI voltage dependence in normal Ca2+, but that, in conditions of low Ca2+, calmodulin activators do not restore IMI voltage dependence. Further, we show evidence that CaMKII alters IMI voltage dependence. These results suggest that calmodulin is necessary but not sufficient for IMI voltage dependence. We therefore hypothesize that the Ca2+/calmodulin requirement for IMI voltage dependence is due to an active sensing of extracellular calcium by a GPCR family calcium-sensing receptor (CaSR) and that the reduction in IMI voltage dependence by a calmodulin inhibitor is due to CaSR endocytosis. Supporting this, preincubation with an endocytosis inhibitor prevented W7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride)-induced loss of IMI voltage dependence, and a CaSR antagonist reduced IMI voltage dependence. Additionally, myosin light chain kinase, which is known to act downstream of the CaSR, seems to play a role in regulating IMI voltage dependence. Finally, a Gβγ-subunit inhibitor also affects IMI voltage dependence, in support of the hypothesis that this process is regulated by a G-protein-coupled CaSR. PMID:27257619
Study on Control Scheme for the Inverters in Low Voltage Microgrid with Nonlinear Loads
NASA Astrophysics Data System (ADS)
Xu, Jiqiang; Lu, Wenzhou; Wu, Lei
2017-05-01
There are a lot of nonlinear loads in real low voltage microgrid system. It will cause serious output voltage and grid current harmonic distortions problems in island and grid-connected modes, respectively. To solve this problem, this paper proposes a droop control scheme with quasi-proportion and resonant (quasi-PR) controller based on αβ stationary reference frame to make microgrid smoothly switch between grid-connected and island modes without changing control method. Moreover, in island mode, not only stable output voltage and frequency, but also reduced output voltage harmonics with added nonlinear loads can be achieved; In grid-connected mode, not only constant power, but also reduced grid current harmonics can be achieved. Simulation results verify the effectiveness of the proposed control scheme.
Nanowire NMOS Logic Inverter Characterization.
Hashim, Yasir
2016-06-01
This study is the first to demonstrate characteristics optimization of nanowire N-Channel Metal Oxide Semiconductor (NW-MOS) logic inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. A computer-based model used to produce static characteristics of NW-NMOS logic inverter. In this research two circuit configuration of NW-NMOS inverter was studied, in first NW-NMOS circuit, the noise margin for (low input-high output) condition was very low. For second NMOS circuit gives excellent noise margins, and results indicate that optimization depends on applied voltage to the inverter. Increasing gate to source voltage with (2/1) nanowires ratio results better noise margins. Increasing of applied DC load transistor voltage tends to increasing in decreasing noise margins; decreasing this voltage will improve noise margins significantly.
A low voltage submillisecond-response polymer network liquid crystal spatial light modulator
NASA Astrophysics Data System (ADS)
Sun, Jie; Wu, Shin-Tson; Haseba, Yasuhiro
2014-01-01
We report a low voltage and highly transparent polymer network liquid crystal (PNLC) with submillisecond response time. By employing a large dielectric anisotropy LC host JC-BP07N, we have lowered the V2π voltage to 23 V at λ = 514 nm. This will enable PNLC to be integrated with a high resolution liquid-crystal-on-silicon spatial light modulator, in which the maximum voltage is 24 V. A simple model correlating PNLC performance with its host LC is proposed and validated experimentally. By optimizing the domain size, we can achieve V2π < 15 V with some compromises in scattering and response time.
Bias voltage induced resistance switching effect in single-molecule magnets' tunneling junction.
Zhang, Zhengzhong; Jiang, Liang
2014-09-12
An electric-pulse-induced reversible resistance change effect in a molecular magnetic tunneling junction, consisting of a single-molecule magnet (SMM) sandwiched in one nonmagnetic and one ferromagnetic electrode, is theoretically investigated. By applying a time-varying bias voltage, the SMM's spin orientation can be manipulated with large bias voltage pulses. Moreover, the different magnetic configuration at high-resistance/low-resistance states can be 'read out' by utilizing relative low bias voltage. This device scheme can be implemented with current technologies (Khajetoorians et al 2013 Science 339 55) and has potential application in molecular spintronics and high-density nonvolatile memory devices.
Redondo, L M; Fernando Silva, J; Margato, E
2007-03-01
This article discusses the operation of a modular generator topology, which has been developed for high-frequency (kHz), high-voltage (kV) pulsed applications. The proposed generator uses individual modules, each one consisting of a pulse circuit based on a modified forward converter, which takes advantage of the required low duty cycle to operate with a low voltage clamp reset circuit for the step-up transformer. This reduces the maximum voltage on the semiconductor devices of both primary and secondary transformer sides. The secondary winding of each step-up transformer is series connected, delivering a fraction of the total voltage. Each individual pulsed module is supplied via an isolation transformer. The assembled modular laboratorial prototype, with three 5 kV modules, 800 V semiconductor switches, and 1:10 step-up transformers, has 80% efficiency, and is capable of delivering, into resistive loads, -15 kV1 A pulses with 5 micros width, 10 kHz repetition rate, with less than 1 micros pulse rise time. Experimental results for resistive loads are presented and discussed.
Application of the gas-discharge surge arresters in X-ray devices and low voltage instrumentation
NASA Astrophysics Data System (ADS)
Simon, V. A.; Gerasimov, V. A.; Kostrin, D. K.; Lisenkov, A. A.; Selivanov, L. M.; Uhov, A. A.
2018-02-01
Usage of the gas discharge in science and engineering is discussed. Application examples of the compact gas-discharge tubes in the X-ray devices and low voltage instrumentation appliances for the surge protection are presented.
NASA Technical Reports Server (NTRS)
Wrigley, Christopher James (Inventor); Hancock, Bruce R. (Inventor); Cunningham, Thomas J. (Inventor); Newton, Kenneth W. (Inventor)
2014-01-01
An analog-to-digital converter (ADC) converts pixel voltages from a CMOS image into a digital output. A voltage ramp generator generates a voltage ramp that has a linear first portion and a non-linear second portion. A digital output generator generates a digital output based on the voltage ramp, the pixel voltages, and comparator output from an array of comparators that compare the voltage ramp to the pixel voltages. A return lookup table linearizes the digital output values.
Research on laser detonation pulse circuit with low-power based on super capacitor
NASA Astrophysics Data System (ADS)
Wang, Hao-yu; Hong, Jin; He, Aifeng; Jing, Bo; Cao, Chun-qiang; Ma, Yue; Chu, En-yi; Hu, Ya-dong
2018-03-01
According to the demand of laser initiating device miniaturization and low power consumption of weapon system, research on the low power pulse laser detonation circuit with super capacitor. Established a dynamic model of laser output based on super capacitance storage capacity, discharge voltage and programmable output pulse width. The output performance of the super capacitor under different energy storage capacity and discharge voltage is obtained by simulation. The experimental test system was set up, and the laser diode of low power pulsed laser detonation circuit was tested and the laser output waveform of laser diode in different energy storage capacity and discharge voltage was collected. Experiments show that low power pulse laser detonation based on super capacitor energy storage circuit discharge with high efficiency, good transient performance, for a low power consumption requirement, for laser detonation system and low power consumption and provide reference light miniaturization of engineering practice.
Low voltage electrowetting lenticular lens by using multilayer dielectric structure
NASA Astrophysics Data System (ADS)
Lee, Junsik; Kim, Junoh; Kim, Cheoljoong; Shin, Dooseub; Koo, Gyohyun; Sim, Jee Hoon; Won, Yong Hyub
2017-02-01
Lenticular type multi-view display is one of the most popular ways for implementing three dimensional display. This method has a simple structure and exhibits a high luminance. However, fabricating the lenticular lens is difficult because it requires optically complex calculations. 2D-3D conversion is also impossible due to the fixed shape of the lenticular lens. Electrowetting based liquid lenticular lens has a simple fabrication process compared to the solid lenticular lens and the focal length of the liquid lenticular lens can be changed by applying the voltage. 3D and 2D images can be observed with a convex and a flat lens state respectively. Despite these advantages, the electrowetting based liquid lenticular lens demands high driving voltage and low breakdown voltage with a single dielectric layer structure. A certain degree of thickness of the dielectric layer is essential for a uniform operation and a low degradation over time. This paper presents multilayer dielectric structure which results in low driving voltage and the enhanced dielectric breakdown. Aluminum oxide (Al2O3), silicon oxide (SiO2) and parylene C were selected as the multilayer insulators. The total thickness of the dielectric layer of all samples was the same. This method using the multilayer dielectric structure can achieve the lower operating voltage than when using the single dielectric layer. We compared the liquid lenticular lens with three kinds of the multilayer dielectric structure to one with the parylene C single dielectric layer in regard to operational characteristics such as the driving voltage and the dielectric breakdown.
A 32 kb 9T near-threshold SRAM with enhanced read ability at ultra-low voltage operation
NASA Astrophysics Data System (ADS)
Kim, Tony Tae-Hyoung; Lee, Zhao Chuan; Do, Anh Tuan
2018-01-01
Ultra-low voltage SRAMs are highly sought-after in energy-limited systems such as battery-powered and self-harvested SoCs. However, ultra-low voltage operation diminishes SRAM read bitline (RBL) sensing margin significantly. This paper tackles this issue by presenting a novel 9T cell with data-independent RBL leakage in combination with an RBL boosting technique for enhancing the sensing margin. The proposed technique automatically tracks process, temperature and voltage (PVT) variations for robust sensing margin enhancement. A test chip fabricated in 65 nm CMOS technology shows that the proposed scheme significantly enlarges the sensing margin compared to the conventional bitline sensing scheme. It also achieves the minimum operating voltage of 0.18 V and the minimum energy consumption of 0.92 J/access at 0.4 V. He received 2016 International Low Power Design Contest Award from ISLPED, a best paper award at 2014 and 2011 ISOCC, 2008 AMD/CICC Student Scholarship Award, 2008 Departmental Research Fellowship from Univ. of Minnesota, 2008 DAC/ISSCC Student Design Contest Award, 2008, 2001, and 1999 Samsung Humantec Thesis Award and, 2005 ETRI Journal Paper of the Year Award. He is an author/co-author of +100 journal and conference papers and has 17 US and Korean patents registered. His current research interests include low power and high performance digital, mixed- mode, and memory circuit design, ultra-low voltage circuits and systems design, variation and aging tolerant circuits and systems, and circuit techniques for 3D ICs. He serves as an associate editor of IEEE Transactions on VLSI Systems. He is an IEEE senior member and the Chair of IEEE Solid-State Circuits Society Singapore Chapter. He has served numerous conferences as a committee member.
McLellan, E.J.
1980-10-17
Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode and cathode to below breakdown voltage using a dc voltage source. An array of resistors or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO/sub 2/ laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.
Low-voltage all-inorganic perovskite quantum dot transistor memory
NASA Astrophysics Data System (ADS)
Chen, Zhiliang; Zhang, Yating; Zhang, Heng; Yu, Yu; Song, Xiaoxian; Zhang, Haiting; Cao, Mingxuan; Che, Yongli; Jin, Lufan; Li, Yifan; Li, Qingyan; Dai, Haitao; Yang, Junbo; Yao, Jianquan
2018-05-01
An all-inorganic cesium lead halide quantum dot (QD) based Au nanoparticle (NP) floating-gate memory with a solution processed layer-by-layer method is demonstrated. Easy synthesis at room temperature and excellent stability make all-inorganic CsPbBr3 perovskite QDs suitable as a semiconductor layer in low voltage nonvolatile transistor memory. The bipolarity of QDs has both electrons and holes stored in the Au NP floating gate, resulting in bidirectional shifts of initial threshold voltage according to the applied programing and erasing pulses. Under low operation voltage (±5 V), the memory achieved a great memory window (˜2.4 V), long retention time (>105 s), and stable endurance properties after 200 cycles. So the proposed memory device based on CsPbBr3 perovskite QDs has a great potential in the flash memory market.
Chen, I-Wen Peter; Yang, Ming-Chia; Yang, Chia-Hui; Zhong, Dai-Xuan; Hsu, Ming-Chun; Chen, YiWen
2017-02-15
This is a study on the development of carbon nanotube-based composite actuators using a new ionic liquid-doped electroactive ionic polymer. For scalable production purposes, a simple hot-pressing method was used. Carbon nanotube/ionic liquid-Nafion/carbon nanotube composite films were fabricated that exhibited a large output blocking force and a stable cycling life with low alternating voltage stimuli in air. Of particular interest and importance, a blocking force of 1.5 N was achieved at an applied voltage of 6 V. Operational durability was confirmed by testing in air for over 30 000 cycles (or 43 h). The superior actuation performance of the carbon nanotube/ionic liquid-Nafion/carbon nanotube composite, coupled with easy manufacturability, low driving voltage, and reliable operation, promises great potential for artificial muscle and biomimetic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, S.; Dhar, A., E-mail: adhar@phy.iitkgp.ernet.in
Highlights: • Alternative to chemically crosslinking of PMMA to achieve low leakage in provided. • Effect of LiF in reducing gate leakage through the OFET device is studied. • Effect of gate leakage on transistor performance has been investigated. • Low voltage operable and low temperature processed n-channel OFETs were fabricated. - Abstract: We report low temperature processed, low voltage operable n-channel organic field effect transistors (OFETs) using N,N′-Dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C{sub 8}) organic semiconductor and poly(methylmethacrylate) (PMMA)/lithium fluoride (LiF) bilayer gate dielectric. We have studied the role of LiF buffer dielectric in effectively reducing the gate leakage through the device andmore » thus obtaining superior performance in contrast to the single layer PMMA dielectric devices. The bilayer OFET devices had a low threshold voltage (V{sub t}) of the order of 5.3 V. The typical values of saturation electron mobility (μ{sub s}), on/off ratio and inverse sub-threshold slope (S) for the range of devices made were estimated to be 2.8 × 10{sup −3} cm{sup 2}/V s, 385, and 3.8 V/decade respectively. Our work thus provides a potential substitution for much complicated process of chemically crosslinking PMMA to achieve low leakage, high capacitance, and thus low operating voltage OFETs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulaeman, M. Y.; Widita, R.
2014-09-30
Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulsemore » than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.« less
A High Efficiency Boost Converter with MPPT Scheme for Low Voltage Thermoelectric Energy Harvesting
NASA Astrophysics Data System (ADS)
Guan, Mingjie; Wang, Kunpeng; Zhu, Qingyuan; Liao, Wei-Hsin
2016-11-01
Using thermoelectric elements to harvest energy from heat has been of great interest during the last decade. This paper presents a direct current-direct current (DC-DC) boost converter with a maximum power point tracking (MPPT) scheme for low input voltage thermoelectric energy harvesting applications. Zero current switch technique is applied in the proposed MPPT scheme. Theoretical analysis on the converter circuits is explored to derive the equations for parameters needed in the design of the boost converter. Simulations and experiments are carried out to verify the theoretical analysis and equations. A prototype of the designed converter is built using discrete components and a low-power microcontroller. The results show that the designed converter can achieve a high efficiency at low input voltage. The experimental efficiency of the designed converter is compared with a commercial converter solution. It is shown that the designed converter has a higher efficiency than the commercial solution in the considered voltage range.
Manyari, D. E.; Milliken, J. A.; Colwell, B. T.; Burggraf, G. W.
1978-01-01
To determine the sensitivity and specificity of chest roentgenography and electrocardiography in the detection of pericardial effusion, echocardiography was used as the diagnostic standard. Chest roentgenograms and electrocardiograms of 124 patients, 57 of whom had pericardial effusion, were read without knowledge of the echocardiographic interpretation. The sensitivity of roentgenographic diagnosis was low (20%), as was that of diagnosis from decreased voltage on the electrocardiogram (26%). The specificity of the chest roentgenogram was 89% and that of the low-voltage electrocardiogram 97%. The high specificity of the low-voltage electrocardiogram may have been due in part to the exclusion of obese and emphysematous subjects from the study. When cardiomegaly detected roentgenographically or a low-voltage electrocardiogram or both were considered as evidence of pericardial effusion, sensitivity improved to 82% but specificity declined to 29%. It is concluded the chest roentgenography and electrocardiography are unsatisfactory as screening investigations for the detection of pericardial effusion. Images FIG. 1 FIG. 2 FIG. 3 PMID:688146
Dual patch voltage clamp study of low membrane resistance astrocytes in situ.
Ma, Baofeng; Xu, Guangjin; Wang, Wei; Enyeart, John J; Zhou, Min
2014-03-17
Whole-cell patch clamp recording has been successfully used in identifying the voltage-dependent gating and conductance properties of ion channels in a variety of cells. However, this powerful technique is of limited value in studying low membrane resistance cells, such as astrocytes in situ, because of the inability to control or accurately measure the real amplitude of command voltages. To facilitate the study of ionic conductances of astrocytes, we have developed a dual patch recording method which permits membrane current and membrane potential to be simultaneously recorded from astrocytes in spite of their extraordinarily low membrane resistance. The utility of this technique is demonstrated by measuring the voltage-dependent activation of the inwardly rectifying K+ current abundantly expressed in astrocytes and multiple ionic events associated with astrocytic GABAA receptor activation. This protocol can be performed routinely in the study of astrocytes. This method will be valuable for identifying and characterizing the individual ion channels that orchestrate the electrical activity of low membrane resistance cells.
Electron Injection by E-Field Drift and its Application in Starting-up Tokamaks at Low Loop Voltage
NASA Astrophysics Data System (ADS)
Pan, Yuan; Yan, Xiao-Lin; Liu, Bao-Hua
2003-05-01
We propose an innovative method of electron injection by E-field drift into a plasma device and discuss its application in starting-up tokamak plasmas at low loop voltage. The experimental results obtained from HT-6M Tokamak are also presented. The breakdown loop voltage is obviously reduced and the discharge performance is improved by using the electron injection method. It could be applied to some other types of plasma device.
NASA Astrophysics Data System (ADS)
Akishev, Yu. S.; Balakirev, A. A.; Karal'nik, V. B.; Medvedev, M. A.; Petryakov, A. V.; Trushkin, N. I.; Shafikov, A. G.
2017-12-01
Results of experiments on the study of dynamics of an overvoltage discharge at the low pressure p = 0.5-2.5 Torr up to its transition to the high-current low-voltage regime are presented, and the instability mechanism leading to a sharp voltage drop across the discharge is suggested.
Low Threshold Voltage Continuous Wave Vertical-Cavity Surface-Emitting Lasers
1993-04-26
Data are presented demonstrating a design and fabrication process for the realization of low- threshold , high-output vertical-cavity surface-emitting...layers), the low series resistance of the design results in a bias voltage on o 1.8 V at a threshold current of 1.9 mA for 10-micrometer-diam devices.... Vertical-cavity surface-emitting lasers.
NASA Astrophysics Data System (ADS)
Miyata, Yusuke; Yoshimura, Takeshi; Ashida, Atsushi; Fujimura, Norifumi
2016-04-01
Si-based metal-ferroelectric-semiconductor (MFS) capacitors have been fabricated using poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as a ferroelectric gate. The pinhole-free P(VDF-TrFE) thin films with high resistivity were able to be prepared by spin-coating directly onto hydrogen-terminated Si. The capacitance-voltage (C-V) characteristics of the ferroelectric gate field effect transistor (FeFET) using this MFS structure clearly show butterfly-shaped hysteresis originating from the ferroelectricity, indicating carrier modulation on the Si surface at gate voltages below 2 V. The drain current-gate voltage (I D-V G) characteristics also show counterclockwise hysteresis at gate voltages below 5 V. This is the first report on the low-voltage operation of a Si-based FeFET using P(VDF-TrFE) as a gate dielectric. This organic gate FeFET without any insulator layer at the ferroelectric/Si interface should be one of the promising devices for overcoming the critical issues of the FeFET, such as depolarization field and a decrease in the gate voltage.
Exploring the Use of the LT3480 (RH3480) Circuit as Low-Power, Low-Voltage Solar Array Regulator
NASA Astrophysics Data System (ADS)
Garrigos, A.; Lizan, J. L.; Blanes, J. M.; Gutierrez, R.
2014-08-01
With the advent of PoL technology, several commercial integrated switching regulators already have their space- qualified versions. Apart of PoL and secondary supply applications, other functions can be explored using those integrated circuits. In this work, the Solar Array Regulator function is analyzed using the commercial LT3480 circuit, which has the space counterpart (RH3480) commercialized by MSK and named MSK5058RH and later MSK5031 (but not rad-hard). Input voltage regulation, taper charge, protection functions and module parallelization are studied and verified experimentally in a low-voltage, low-power MPPT battery bus configuration. Potential users of this approach are micro and nano-satellites power systems.
Excimer laser annealing for low-voltage power MOSFET
NASA Astrophysics Data System (ADS)
Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Mazzamuto, Fulvio; Huet, Karim
2016-08-01
Excimer laser annealing of lumped beam was performed to form the P-base junction for high-performance low-voltage-power MOSFET. An equivalent shallow-junction structure for the P-base junction with a uniform impurity distribution is realized by adopting excimer laser annealing (ELA). The impurity distribution in the P-base junction can be controlled precisely by the irradiated pulse energy density and the number of shots of excimer laser. High impurity activation for the shallow junction has been confirmed in the melted phase. The application of the laser annealing technology in the fabrication process of a practical low-voltage trench gate MOSFET was also examined.
NASA Astrophysics Data System (ADS)
Wong, Jianhui; Lim, Yun Seng; Morris, Stella; Morris, Ezra; Chua, Kein Huat
2017-04-01
The amount of small-scaled renewable energy sources is anticipated to increase on the low-voltage distribution networks for the improvement of energy efficiency and reduction of greenhouse gas emission. The growth of the PV systems on the low-voltage distribution networks can create voltage unbalance, voltage rise, and reverse-power flow. Usually these issues happen with little fluctuation. However, it tends to fluctuate severely as Malaysia is a region with low clear sky index. A large amount of clouds often passes over the country, hence making the solar irradiance to be highly scattered. Therefore, the PV power output fluctuates substantially. These issues can lead to the malfunction of the electronic based equipment, reduction in the network efficiency and improper operation of the power protection system. At the current practice, the amount of PV system installed on the distribution network is constraint by the utility company. As a result, this can limit the reduction of carbon footprint. Therefore, energy storage system is proposed as a solution for these power quality issues. To ensure an effective operation of the distribution network with PV system, a fuzzy control system is developed and implemented to govern the operation of an energy storage system. The fuzzy driven energy storage system is able to mitigate the fluctuating voltage rise and voltage unbalance on the electrical grid by actively manipulates the flow of real power between the grid and the batteries. To verify the effectiveness of the proposed fuzzy driven energy storage system, an experimental network integrated with 7.2kWp PV system was setup. Several case studies are performed to evaluate the response of the proposed solution to mitigate voltage rises, voltage unbalance and reduce the amount of reverse power flow under highly intermittent PV power output.
NASA Technical Reports Server (NTRS)
Wintucky, E. G.; Gruber, R. P.
1978-01-01
An investigation of the high voltage pulse ignition characteristics of the 8 cm mercury ion thruster neutralizer cathode identified a low rate of voltage rise and long pulse duration as desirable factors for reliable cathode starting. Cathode starting breakdown voltages were measured over a range of mercury flow rates and tip heater powers for pulses with five different rates of voltage rise. Breakdown voltage requirements for the fastest rising pulse (2.5 to 3.0 kV/micro sec) were substantially higher (2 kV or more) than for the slowest rising pulse (0.3 to 0.5 kV/micro sec) for the same starting conditions. Also described is an improved, low impedance pulse ignitor circuit which reduces power losses and eliminates problems with control and packaging associated with earlier designs.
Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures.
Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe
2015-08-28
We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young's modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system.
Commutating Permanent-Magnet Motors At Low Speed
NASA Technical Reports Server (NTRS)
Dolland, C.
1985-01-01
Circuit provides forced commutation during starting. Forced commutation circuit diverts current from inverter SCR's and turns SCR's off during commutation intervals. Silicon controlled rectifier in circuit unnecessary when switch S10 replaced by high-current, high-voltage transistor. At present, high-current, low-voltage device must suffice.
46 CFR 111.30-5 - Construction.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Construction. 111.30-5 Section 111.30-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-5 Construction. (a) All low voltage and medium voltage switchboards (as low...
46 CFR 111.30-5 - Construction.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Construction. 111.30-5 Section 111.30-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-5 Construction. (a) All low voltage and medium voltage switchboards (as low...
46 CFR 111.30-5 - Construction.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Construction. 111.30-5 Section 111.30-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-5 Construction. (a) All low voltage and medium voltage switchboards (as low...
46 CFR 111.30-5 - Construction.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Construction. 111.30-5 Section 111.30-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-5 Construction. (a) All low voltage and medium voltage switchboards (as low...
46 CFR 111.30-5 - Construction.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Construction. 111.30-5 Section 111.30-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-5 Construction. (a) All low voltage and medium voltage switchboards (as low...
Low-voltage 96 dB snapshot CMOS image sensor with 4.5 nW power dissipation per pixel.
Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander
2012-01-01
Modern "smart" CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage "smart" image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel.
Low-Voltage 96 dB Snapshot CMOS Image Sensor with 4.5 nW Power Dissipation per Pixel
Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander
2012-01-01
Modern “smart” CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage “smart” image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel. PMID:23112588
Programmable differential capacitance-to-voltage converter for MEMS accelerometers
NASA Astrophysics Data System (ADS)
Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.
2017-05-01
Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.
Low Temperature Performance of High Power Density DC/DC Converter Modules
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Hammond, Ahmad; Gerber, Scott; Patterson, Richard L.; Overton, Eric
2001-01-01
In this paper, two second-generation high power density DC/DC converter modules have been evaluated at low operating temperatures. The power rating of one converter (Module 1) was specified at 150 W with an input voltage range of 36 to 75 V and output voltage of 12 V. The other converter (Module 2) was specified at 100 W with the same input voltage range and an output voltage of 3.3 V. The converter modules were evaluated in terms of their performance as a function of operating temperature in the range of 25 to -140 C. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.
Polymer solar cells with enhanced open-circuit voltage and efficiency
NASA Astrophysics Data System (ADS)
Chen, Hsiang-Yu; Hou, Jianhui; Zhang, Shaoqing; Liang, Yongye; Yang, Guanwen; Yang, Yang; Yu, Luping; Wu, Yue; Li, Gang
2009-11-01
Following the development of the bulk heterojunction structure, recent years have seen a dramatic improvement in the efficiency of polymer solar cells. Maximizing the open-circuit voltage in a low-bandgap polymer is one of the critical factors towards enabling high-efficiency solar cells. Study of the relation between open-circuit voltage and the energy levels of the donor/acceptor in bulk heterojunction polymer solar cells has stimulated interest in modifying the open-circuit voltage by tuning the energy levels of polymers. Here, we show that the open-circuit voltage of polymer solar cells constructed based on the structure of a low-bandgap polymer, PBDTTT, can be tuned, step by step, using different functional groups, to achieve values as high as 0.76 V. This increased open-circuit voltage combined with a high short-circuit current density results in a polymer solar cell with a power conversion efficiency as high as 6.77%, as certified by the National Renewable Energy Laboratory.
Series resonant converter with auxiliary winding turns: analysis, design and implementation
NASA Astrophysics Data System (ADS)
Lin, Bor-Ren
2018-05-01
Conventional series resonant converters have researched and applied for high-efficiency power units due to the benefit of its low switching losses. The main problems of series resonant converters are wide frequency variation and high circulating current. Thus, resonant converter is limited at narrow input voltage range and large input capacitor is normally adopted in commercial power units to provide the minimum hold-up time requirement when AC power is off. To overcome these problems, the resonant converter with auxiliary secondary windings are presented in this paper to achieve high voltage gain at low input voltage case such as hold-up time duration when utility power is off. Since the high voltage gain is used at low input voltage cased, the frequency variation of the proposed converter compared to the conventional resonant converter is reduced. Compared to conventional resonant converter, the hold-up time in the proposed converter is more than 40ms. The larger magnetising inductance of transformer is used to reduce the circulating current losses. Finally, a laboratory prototype is constructed and experiments are provided to verify the converter performance.
Transdermal transport pathway creation: Electroporation pulse order.
Becker, Sid; Zorec, Barbara; Miklavčič, Damijan; Pavšelj, Nataša
2014-11-01
In this study we consider the physics underlying electroporation which is administered to skin in order to radically increase transdermal drug delivery. The method involves the application of intense electric fields to alter the structure of the impermeable outer layer, the stratum corneum. A generally held view in the field of skin electroporation is that the skin's drop in resistance (to transport) is proportional to the total power of the pulses (which may be inferred by the number of pulses administered). Contrary to this belief, experiments conducted in this study show that the application of high voltage pulses prior to the application of low voltage pulses result in lower transport than when low voltage pulses alone are applied (when less total pulse power is administered). In order to reconcile these unexpected experimental results, a computational model is used to conduct an analysis which shows that the high density distribution of very small aqueous pathways through the stratum corneum associated with high voltage pulses is detrimental to the evolution of larger pathways that are associated with low voltage pulses. Copyright © 2014 Elsevier Inc. All rights reserved.
Voltage control on a train system
Gordon, Susanna P.; Evans, John A.
2004-01-20
The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.
NASA Astrophysics Data System (ADS)
Feng, Linrun; Tang, Wei; Zhao, Jiaqing; Yang, Ruozhang; Hu, Wei; Li, Qiaofeng; Wang, Ruolin; Guo, Xiaojun
2016-02-01
With its excellent mechanical flexibility, low-cost and low-temperature processing, the solution processed organic field-effect transistor (OFET) is a promising platform technology for developing ubiquitous sensor applications in digital health, environment monitoring and Internet of Things. However, a contradiction between achieving low voltage operation and having stable performance severely hinder the technology to become commercially viable. This work shows that, by reducing the sub-gap density of states (DOS) at the channel for low operation voltage and using a proper low-k non-polar polymer dielectric layer, such an issue can be addressed. Stable electrical properties after either being placed for weeks or continuously prolonged bias stressing for hours in ambient air are achieved for all solution processed unencapsulated OFETs with the channel being exposed to the ambient air for analyte detection. The fabricated device presents a steep subthreshold swing less than 100 mV/decade, and an ON/OFF ratio of 106 at a voltage swing of 3 V. The low voltage and stable operation allows the sensor made of the OFET to be incorporated into a battery-powered electronic system for continuously reliable sensing of ammonia vapor in ambient air with very small power consumption of about 50 nW.
Feng, Linrun; Tang, Wei; Zhao, Jiaqing; Yang, Ruozhang; Hu, Wei; Li, Qiaofeng; Wang, Ruolin; Guo, Xiaojun
2016-01-01
With its excellent mechanical flexibility, low-cost and low-temperature processing, the solution processed organic field-effect transistor (OFET) is a promising platform technology for developing ubiquitous sensor applications in digital health, environment monitoring and Internet of Things. However, a contradiction between achieving low voltage operation and having stable performance severely hinder the technology to become commercially viable. This work shows that, by reducing the sub-gap density of states (DOS) at the channel for low operation voltage and using a proper low-k non-polar polymer dielectric layer, such an issue can be addressed. Stable electrical properties after either being placed for weeks or continuously prolonged bias stressing for hours in ambient air are achieved for all solution processed unencapsulated OFETs with the channel being exposed to the ambient air for analyte detection. The fabricated device presents a steep subthreshold swing less than 100 mV/decade, and an ON/OFF ratio of 106 at a voltage swing of 3 V. The low voltage and stable operation allows the sensor made of the OFET to be incorporated into a battery-powered electronic system for continuously reliable sensing of ammonia vapor in ambient air with very small power consumption of about 50 nW. PMID:26861412
Voltage controlling mechanisms in low resistivity silicon solar cells: A unified approach
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Swartz, C. K.; Hart, R. E.; Godlewski, M. P.
1984-01-01
An experimental technique capable of resolving the dark saturation current into its base and emitter components is used as the basis of an analysis in which the voltage limiting mechanisms were determined for a variety of high voltage, low resistivity silicon solar cells. The cells studied include the University of Florida hi-low emitter cell, the NASA and the COMSAT multi-step diffused cells, the Spire Corporation ion-implanted emitter cell, and the University of New South Wales MINMIS and MINP cells. The results proved to be, in general, at variance with prior expectations. Most surprising was the finding that the MINP and the MINMIS voltage improvements are due, to a considerable extent, to a previously unrecognized optimization of the base component of the saturation current. This result is substantiated by an independent analysis of the material used to fabricate these devices.
Voltage controlling mechanisms in low resistivity silicon solar cells - A unified approach
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Swartz, C. K.; Hart, R. E.; Godlewski, M. P.
1984-01-01
An experimental technique capable of resolving the dark saturation current into its base and emitter components is used as the basis of an analysis in which the voltage limiting mechanisms were determined for a variety of high voltage, low resistivity silicon solar cells. The cells studied include the University of Florida hi-low emitter cell, the NASA and the COMSAT multi-step diffused cells, the Spire Corporation ion-implanted emitter cell, and the University of New South Wales MINMIS and MINP cells. The results proved to be, in general, at variance with prior expectations. Most surprising was the finding that the MINP and the MINMIS voltage improvements are due, to a considerable extent, to a previously unrecognized optimization of the base component of the saturation current. This result is substantiated by an independent analysis of the material used to fabricate these devices.
Samad, Mst Fateha; Kouzani, Abbas Z
2014-01-01
This paper presents a low actuation voltage microvalve with optimized insulating layers that manipulates a conducting ferro-fluid droplet by the principle of electrowetting-on-dielectric (EWOD). The proposed EWOD microvalve contains an array of chromium (Cr) electrodes on the soda-lime glass substrate, covered by both dielectric and hydrophobic layers. Various dielectric layers including Su-8 2002, Polyvinylidenefluoride (PVDF) and Cyanoethyl pullulan (CEP), and thin (50 nm) hydrophobic Teflon and Cytonix are used to analyze the EWOD microvalves at different voltages. The Finite Element Method (FEM) based software, Coventorware is used to carry out the simulation analysis. It is observed that the EWOD microvalve having a CEP dielectric layer with dielectric constant of about 20 and thickness of 1 μm, and a Cytonix hydrophobic layer with thickness of 50 nm operated the conducting ferro-fluid droplet at the actuation voltage as low as 7.8 V.
Forming-free resistive switching characteristics of Ag/CeO2/Pt devices with a large memory window
NASA Astrophysics Data System (ADS)
Zheng, Hong; Kim, Hyung Jun; Yang, Paul; Park, Jong-Sung; Kim, Dong Wook; Lee, Hyun Ho; Kang, Chi Jung; Yoon, Tae-Sik
2017-05-01
Ag/CeO2(∼45 nm)/Pt devices exhibited forming-free bipolar resistive switching with a large memory window (low-resistance-state (LRS)/high-resistance-state (HRS) ratio >106) at a low switching voltage (<±1 ∼ 2 V) in voltage sweep condition. Also, they retained a large memory window (>104) at a pulse operation (±5 V, 50 μs). The high oxygen ionic conductivity of the CeO2 layer as well as the migration of silver facilitated the formation of filament for the transition to LRS at a low voltage without a high voltage forming operation. Also, a certain amount of defects in the CeO2 layer was required for stable HRS with space-charge-limited-conduction, which was confirmed comparing the devices with non-annealed and annealed CeO2 layers.
Ahmadi Daryakenari, Ahmad; Hosseini, Davood; Ho, Ya-Lun; Saito, Takumi; Apostoluk, Aleksandra; Müller, Christoph R; Delaunay, Jean-Jacques
2016-06-29
A single-step electrophoretic deposition (EPD) process is used to fabricate catalyst layers which consist of nickel oxide nanoparticles attached on the surface of nanographitic flakes. Magnesium ions present in the colloid charge positively the flake's surface as they attach on it and are also used to bind nanographitic flakes together. The fabricated catalyst layers showed a very low onset voltage (-0.2 V vs Ag/AgCl) in the electro-oxidation of ethanol. To clarify the occurring catalytic mechanism, we performed annealing treatment to produce samples having a different electrochemical behavior with a large onset voltage. Temperature dependence measurements of the layer conductivity pointed toward a charge transport mechanism based on hopping for the nonannealed layers, while the drift transport is observed in the annealed layers. The hopping charge transport is responsible for the appearance of the low onset voltage in ethanol electro-oxidation.
Generation of a pulsed low-energy electron beam using the channel spark device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgarhy, M. A. I., E-mail: elgarhy@azhar.edu.eg; Hassaballa, S. E.; Rashed, U. M.
2015-12-15
For the generation of low-energy electron beam, the design and characteristics of channel spark discharge (CSD) operating at a low voltage are presented in this paper. The discharge voltage, discharge current, X-ray emissions, and electron beam current were experimentally determined. The effects of the applied voltage, working gas pressure, and external capacitance on the CSD and beam parameters were measured. At an applied voltage of 11 kV, an oxygen gas pressure of 25 mTorr, and an external capacitance of 16.45 nF, the maximum measured current was 900 A. The discharge current increased with the increase in the pressure and capacitance,more » while its periodic time decreased with the increase in the pressure. Two types of the discharge were identified and recorded: the hollow cathode discharge and the conduction discharge. A Faraday cup was used to measure the beam current. The maximum measured beam current was 120 A, and the beam signal exhibited two peaks. The increase in both the external capacitance and the applied discharge voltage increased the maximum electron beam current. The electron-beam pulse time decreased with the increase in the gas pressure at a constant voltage and increased with the decrease in the applied discharge voltage. At an applied voltage of 11 kV and an oxygen gas pressure of 15 mTorr, the maximum beam energy was 2.8 keV. The X-ray signal intensity decreased with the increase in the gas pressure and increased with the increase in the capacitance.« less
NASA Astrophysics Data System (ADS)
Amrani, Aumeur El; Es-saghiri, Abdeljabbar; Boufounas, El-Mahjoub; Lucas, Bruno
2018-06-01
The performance of a pentacene based organic thin film transistor (OTFT) with polymethylmethacrylate as a dielectric insulator and indium tin oxide based electrical gate is investigated. On the one hand, we showed that the threshold voltage increases with gate voltage, and on the other hand that it decreases with drain voltage. Thus, we noticed that the onset voltage shifts toward positive voltage values with the drain voltage increase. In addition, threshold-onset differential voltage (TODV) is proposed as an original approach to estimate an averaged carrier density in pentacene. Indeed, a value of about 4.5 × 1016 cm-3 is reached at relatively high gate voltage of -50 V; this value is in good agreement with that reported in literature with other technique measurements. However, at a low applied gate voltage, the averaged pentacene carrier density remains two orders of magnitude lower; it is of about 2.8 × 1014 cm-3 and remains similar to that obtained from space charge limited current approach for low applied bias voltage of about 2.2 × 1014 cm-3. Furthermore, high IOn/IOff and IOn/IOnset current ratios of 5 × 106 and 7.5 × 107 are reported for lower drain voltage, respectively. The investigated OTFTs also showed good electrical performance including carrier mobility increasing with gate voltage; mobility values of 4.5 × 10-2 cm2 V-1 s-1 and of 4.25 × 10-2 cm2 V-1 s-1 are reached for linear and saturation regimes, respectively. These results remain enough interesting since current modulation ratio exceeds a value of 107 that is a quite important requirement than high mobility for some particular logic gate applications.
NASA Astrophysics Data System (ADS)
Citarsa, I. B. F.; Satiawan, I. N. W.; Wiryajati, I. K.; Supriono
2016-01-01
Multilevel inverters have been widely used in many applications since the technology is advantageous to increase the converter capability as well as to improve the output voltage quality. According to the applied switching frequency, multilevel modulations can be subdivided into three classes, i.e: fundamental switching frequency, high switching frequency and mixed switching frequency. This paper investigates the performance of cascaded H-bridge (CHB) multilevel inverter that is modulated using mixed switching frequency (MSF) PWM with various dc-link voltage ratios. The simulation results show the nearly sinusoidal load output voltages are successfully achieved. It is revealed that there is improvement in output voltages quality in terms of THD and low-order harmonics content. The CHB inverter that is modulated using MSF PWM with equal dc-link voltage ratio (½ Vdc: ½ Vdc) produces output voltage with the lowest low-order harmonics (less than 1% of fundamental) while the CHB inverter that is modulated using MSF PWM with un-equal dc-link voltage ratio (2/3 Vdc: 1/3 Vdc) produces a 7-level output voltage with the lowest THD (16.31%) compared to the other PWM methods. Improvement of the output voltage quality here is also in line with improvement of the number of available levels provided in the output voltage. Here only 2 cells H-bridge inverter (contain 8 switches) are needed to produce a 7- level output voltage, while in the conventional CHB inverter at least 3 cells of H-bridge inverter (contain 12 switches) are needed to produce a 7-level output voltage. Hence it is valuable in term of saving number of component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdman, W.; Behnke, M.
2005-11-01
Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reductionmore » in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.« less
Park, JungEun; Oh, HyunJu; Hong, SoGun; Kim, MinJung; Kim, GeonA; Koo, OkJae; Kang, SungKeun; Jang, Goo; Lee, ByeongChun
2011-03-01
As shown by the birth of the first cloned dog 'Snuppy', a protocol to produce viable cloned dogs has been reported. In order to evaluate optimum fusion conditions for improving dog cloning efficiency, in vivo matured oocytes were reconstructed with adult somatic cells from a female Pekingese using different fusion conditions. Fusion with needle vs chamber methods, and with low vs high pulse strength was compared by evaluating fusion rate and in vivo development of canine cloned embryos. The fusion rates in the high voltage groups were significantly higher than in the low voltage groups regardless of fusion method (83.5 vs 66.1% for the needle fusion method, 67.4 vs 37.9% for the fusion chamber method). After embryo transfer, one each pregnancy was detected after using the needle fusion method with high and low voltage and in the chamber fusion method with high voltage, whereas no pregnancy was detected using the chamber method with low voltage. However, only the pregnancy from the needle fusion method with high voltage was maintained to term and one healthy puppy was delivered. The results of the present study demonstrated that two DC pulses of 3.8 to 4.0 kV/cm for 15 μsec using the needle fusion method were the most effective method for the production of cloned dogs under the conditions of this experiment. Copyright © 2011 Elsevier Inc. All rights reserved.
Pan, Yu-Ning; Li, Ai-Jing; Chen, Xiao-Min; Wang, Jian; Ren, Da-Wei; Huang, Qiu-Li
2016-04-01
Using lower tube voltage can reduce the exposure to radiation and the dose of contrast agent. However, lower tube voltage is often linked to more noise and poor image quality, which create a need for more effective technology to resolve this problem. To explore the feasibility of coronary computed tomographic angiography (CCTA) in patients with obesity at low tube voltage (100 kV) and low contrast agent concentration (270 mg/mL) using iterative reconstruction. A total of 48 patients with body mass index greater than 30 kg/m(2) were included and randomly divided into two groups. Group A received a traditional protocol (iopromide 370 mg/mL + 120 kV); group B received a protocol with low tube voltage (100 kV), low contrast agent concentration (270 mg/mL), and iterative reconstruction. The effective dose (ED), average attenuation values, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), the figure of merit (FOM), image quality scores, and the total iodine intake were compared. No significant differences in average CT attenuations, SNR, CNR, and subjective scores were noticed between the two groups (P > 0.05), whereas the FOM of group B was significantly higher than that of group A. Effective radiation dose, total iodine, and iodine injection rate in group B were lower than those of group A (P <0.01). In patients with obesity, isotonic contrast agent with low iodine concentration and low-dose CCTA were feasible. Substantial reduction in radiation dose and the iodine intake could be achieved without compromising the image quality. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Recovery of consciousness in broilers following combined dc and ac stunning
USDA-ARS?s Scientific Manuscript database
Broilers in the United States are typically electrically stunned using low voltage-high frequency pulsed DC water bath stunners and in the European Union broilers are electrocuted using high voltage-low frequency AC. DC stunned broilers regain consciousness in the absence of exsanguination and AC st...
Hybrid circuit achieves pulse regeneration with low power drain
NASA Technical Reports Server (NTRS)
Cancro, C. A.
1965-01-01
Hybrid tunnel diode-transistor circuit provides a solid-state, low power drain pulse regenerator, frequency limiter, or gated oscillator. When the feedback voltage exceeds the input voltage, the circuit functions as a pulse normalizer or a frequency limiter. If the circuit is direct coupled, it functions as a gated oscillator.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-13
... Medium- and Low-Voltage Dry-Type Distribution Transformers AGENCY: Department of Energy, Office of Energy... Dry-Type and the second addressing Low-Voltage Dry-Type Distribution Transformers. The Liquid Immersed... proposed rule for regulating the energy efficiency of distribution transformers, as authorized by the...
10 CFR 431.196 - Energy conservation standards and their effective dates.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Energy Conservation Standards § 431... Transformers. (1) The efficiency of a low-voltage, dry-type distribution transformer manufactured on or after... rating in the table below. Low-voltage dry-type distribution transformers with kVA ratings not appearing...
Phillips, Nathan; Bond, Barbara J.
1999-07-01
To record photosynthetically active radiation (PAR) simultaneously at a number of points throughout a forest canopy, we developed a simple, inexpensive (< $10 US) current-to-voltage converter that processes the current generated by a photodiode radiation sensor to a voltage range that is recordable with a miniature data logger. The converter, which weighs less than 75 g and has a volume of only 100 cm(3), is built around an ultra-low power OP-90 precision operational amplifier, which consumes less than 0.5 mA at 9 V when converting the output of a Li-Cor LI-190SA quantum sensor exposed to photosynthetically active radiation (PAR) of 2500 &mgr;mol m(-2) s(-1) or only 5 &mgr;A in low light. A small 9-V battery thus powers the amplifier for more than 1000 h of continuous operation. Correlations between photometer readings and voltage output from the current-to-voltage converter were high and linear at both high and low PAR. Sixteen Li-Cor LI-190SA quantum sensors each equipped with current-to-voltage converters and connected to a miniature data logger were deployed in the upper branches of a Panamanian tropical rainforest canopy. Each unit performed reliably during a one- or two-week evaluation.
30 CFR 75.1002 - Installation of electric equipment and conductors; permissibility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... faces must be— (1) Shielded high-voltage cables supplying power to permissible longwall equipment; (2... intrinsically safe circuits; and (4) Cables and conductors supplying power to low- and medium-voltage permissible equipment. (5) Shielded high-voltage cables supplying power to permissible continuous mining...
30 CFR 75.1002 - Installation of electric equipment and conductors; permissibility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... faces must be— (1) Shielded high-voltage cables supplying power to permissible longwall equipment; (2... intrinsically safe circuits; and (4) Cables and conductors supplying power to low- and medium-voltage permissible equipment. (5) Shielded high-voltage cables supplying power to permissible continuous mining...
30 CFR 75.1002 - Installation of electric equipment and conductors; permissibility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... faces must be— (1) Shielded high-voltage cables supplying power to permissible longwall equipment; (2... intrinsically safe circuits; and (4) Cables and conductors supplying power to low- and medium-voltage permissible equipment. (5) Shielded high-voltage cables supplying power to permissible continuous mining...
Optimal Dynamic Sub-Threshold Technique for Extreme Low Power Consumption for VLSI
NASA Technical Reports Server (NTRS)
Duong, Tuan A.
2012-01-01
For miniaturization of electronics systems, power consumption plays a key role in the realm of constraints. Considering the very large scale integration (VLSI) design aspect, as transistor feature size is decreased to 50 nm and below, there is sizable increase in the number of transistors as more functional building blocks are embedded in the same chip. However, the consequent increase in power consumption (dynamic and leakage) will serve as a key constraint to inhibit the advantages of transistor feature size reduction. Power consumption can be reduced by minimizing the voltage supply (for dynamic power consumption) and/or increasing threshold voltage (V(sub th), for reducing leakage power). When the feature size of the transistor is reduced, supply voltage (V(sub dd)) and threshold voltage (V(sub th)) are also reduced accordingly; then, the leakage current becomes a bigger factor of the total power consumption. To maintain low power consumption, operation of electronics at sub-threshold levels can be a potentially strong contender; however, there are two obstacles to be faced: more leakage current per transistor will cause more leakage power consumption, and slow response time when the transistor is operated in weak inversion region. To enable low power consumption and yet obtain high performance, the CMOS (complementary metal oxide semiconductor) transistor as a basic element is viewed and controlled as a four-terminal device: source, drain, gate, and body, as differentiated from the traditional approach with three terminals: i.e., source and body, drain, and gate. This technique features multiple voltage sources to supply the dynamic control, and uses dynamic control to enable low-threshold voltage when the channel (N or P) is active, for speed response enhancement and high threshold voltage, and when the transistor channel (N or P) is inactive, to reduce the leakage current for low-leakage power consumption.
Shen, Yaqi; Hu, Xuemei; Zou, Xianlun; Zhu, Di; Li, Zhen; Hu, Daoyu
2016-09-01
Imaging communities have already reached a consensus that the radiation dose of computed tomography (CT) should be reduced as much as reasonably achievable to lower population risks. Increasing attention is being paid to iodinated contrast media (CM) induced nephrotoxicity (CIN); a decrease in the intake of iodinated CM is required by increasingly more radiologists. Theoretically, the radiation dose varies with the tube current time and square of the tube voltage, with higher iodine contrast at low photon energies (Huda et al. [2000] Radiology, 21 7, 430-435).The use of low tube voltage is a promising strategy to reduce both the radiation dose and CM burden. The term 'double low' has been coined to describe scanning protocols that reduce radiation dose and iodine intake synchronously. These protocols are becoming increasingly popular in the clinical setting. The aim of this review was to describe all original studies using the 'double low' strategy in the last 5 years. We searched an online electronic database (PubMed) from January 2011 to December 2015 for original studies published on the relationship of low tube voltage with low radiation dose and low iodine contrast media burden in patients undergoing CT scans. Studies that failed to reduce radiation dose or iodine CM burden were excluded in this study. Thirty-seven studies aimed at reducing radiation dose using low tube voltage combined with iodine CM reduced protocols were included in this study. Most studies evaluated conditions associated with arteries. Four were cerebral and neck computed tomography angiography (CTA) studies, 15 were pulmonary CTA (pCTA) and coronary CTA (cCTA) studies, one concerned myocardial perfusion, five studies focused on the thoracic and abdominal aorta, and one investigated renal arteries. Three studies consisted of CT venography (CTV) of the pelvis and lower extremities. Six publications examined the liver, and two focused on the kidney. Overall, this review demonstrates that the low tube voltage CT protocol is a powerful tool to reduce the radiation dose in CTA, especially with pCTA and cCTA. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Dion, Lukas; Kiss, László I.; Poncsák, Sándor; Lagacé, Charles-Luc
2018-04-01
Perfluorocarbons are important contributors to aluminum production greenhouse gas inventories. Tetrafluoromethane and hexafluoroethane are produced in the electrolysis process when a harmful event called anode effect occurs in the cell. This incident is strongly related to the lack of alumina and the current distribution in the cell and can be classified into two categories: high-voltage and low-voltage anode effects. The latter is hard to detect during the normal electrolysis process and, therefore, new tools are necessary to predict this event and minimize its occurrence. This paper discusses a new approach to model the alumina distribution behavior in an electrolysis cell by dividing the electrolytic bath into non-homogenous concentration zones using discrete elements. The different mechanisms related to the alumina distribution are discussed in detail. Moreover, with a detailed electrical model, it is possible to calculate the current distribution among the different anodic assemblies. With this information, the model can evaluate if low-voltage emissions are likely to be present under the simulated conditions. Using the simulator will help the understanding of the role of the alumina distribution which, in turn, will improve the cell energy consumption and stability while reducing the occurrence of high- and low-voltage anode effects.
Jung, Soon-Won; Na, Bock Soon; Park, Chan Woo; Koo, Jae Bon
2014-11-01
We demonstrate an organic one-time programmable memory cell formed entirely at plastic-compatible temperatures. All the processes are performed at below 130 degrees C. Our memory cell consists of a printed organic transistor and an organic capacitor. Inkjet-printed organic transistors are fabricated by using high-k polymer dielectric blends comprising poly(vinylidenefluoride-trifluoroethylene) [P(VDF-TrFE)] and poly(methyl methacrylate) (PMMA) for low-voltage operation. P(NDI2OD-T2) transistors have a high field-effect mobility of 0.2 cm2/Vs and a low operation gate voltage of less than 10 V. The operation voltage effectively decreases owing to the high permittivity of the P(VDF-TrFE):PMMA blended film. The data in the memory cell are programmed by electrically breaking the organic capacitor. The organic capacitor acts like an antifuse capacitor, because it is initially open, and it becomes permanently short-circuited by applying a high voltage. The organic memory cells are programmed with 4 V, and they are read out with 2 V. The memory data are read out by sensing the current in the memory cell. The printed organic one-time programmable memory is suitable for applications storing small amount of data, such as low-cost radio-frequency identification (RFID) tag.
Shimonobo, Toshiaki; Funama, Yoshinori; Utsunomiya, Daisuke; Nakaura, Takeshi; Oda, Seitaro; Kiguchi, Masao; Masuda, Takanori; Sakabe, Daisuke; Yamashita, Yasuyuki; Awai, Kazuo
2016-01-01
We used pediatric and adult anthropomorphic phantoms to compare the radiation dose of low- and standard tube voltage chest and abdominal non-contrast-enhanced computed tomography (CT) scans. We also discuss the optimal low tube voltage for non-contrast-enhanced CT. Using a female adult- and three differently-sized pediatric anthropomorphic phantoms we acquired chest and abdominal non-contrast-enhanced scans on a 320-multidetector CT volume scanner. The tube voltage was set at 80-, 100-, and 120 kVp. The tube current was automatically assigned on the CT scanner in response to the set image noise level. On each phantom and at each tube voltage we measured the surface and center dose using high-sensitivity metal-oxide-semiconductor field-effect transistor detectors. The mean surface dose of chest and abdominal CT scans in 5-year olds was 4.4 and 5.3 mGy at 80 kVp, 4.5 and 5.4 mGy at 100 kV, and 4.0 and 5.0 mGy at 120 kVp, respectively. These values were similar in our 3-pediatric phantoms (p > 0.05). The mean surface dose in the adult phantom increased from 14.7 to 19.4 mGy for chest- and from 18.7 to 24.8 mGy for abdominal CT as the tube voltage decreased from 120 to 80 kVp (p < 0.01). Compared to adults, the surface and center dose for pediatric patients is almost the same despite a decrease in the tube voltage and the low tube voltage technique can be used for non-contrast-enhanced chest- and abdominal scanning. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Power supply system for negative ion source at IPR
NASA Astrophysics Data System (ADS)
Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K. G.; Soni, Jignesh; Bandyopadhyay, M.; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun
2010-02-01
The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ~5 × 1012 cm-3, from which ~ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (~15 to 35kV), and high current (~ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (~50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (~ 50kV) isolated from the system. The paper shall present the design basis, topology selection, manufacturing, testing, commissioning, integration and control strategy of these HVPS. A complete power interconnection scheme, which includes all protective devices and measuring devices, low & high voltage power supplies, monitoring and control signals etc. shall also be discussed. The paper also discusses the protocols involved in grounding and shielding, particularly in operating the system in RF environment.
Low Voltage, Low Power Organic Light Emitting Transistors for AMOLED Displays
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, M. A.; Liu, B.; Donoghue, E. P.
2011-01-01
Low voltage, low power dissipation, high aperture ratio organic light emitting transistors are demonstrated. The high level of performance is enabled by a carbon nanotube source electrode that permits integration of the drive transistor and the organic light emitting diode into an efficient single stacked device. Given the demonstrated performance, this technology could break the technical logjam holding back widespread deployment of active matrix organic light emitting displays at flat panel screen sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jing; Peter Grünberg Institute; Zhang, Yi
2014-05-15
We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mAmore » to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.« less
NASA Astrophysics Data System (ADS)
Zhao, Jing; Zhang, Yi; Lee, Yong-Ho; Krause, Hans-Joachim
2014-05-01
We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.
Frequency pulling in a low-voltage medium-power gyrotron
NASA Astrophysics Data System (ADS)
Luo, Li; Du, Chao-Hai; Huang, Ming-Guang; Liu, Pu-Kun
2018-04-01
Many recent biomedical applications use medium-power frequency-tunable terahertz (THz) sources, such as sensitivity-enhanced nuclear magnetic resonance, THz imaging, and biomedical treatment. As a promising candidate, a low-voltage gyrotron can generate watt-level, continuous THz-wave radiation. In particular, the frequency-pulling effect in a gyrotron, namely, the effect of the electron beam parameters on the oscillation frequency, can be used to tune the operating frequency. Most previous investigations used complicated and time-consuming gyrotron nonlinear theory to study the influence of many beam parameters on the interaction performance. While gyrotron linear theory investigation demonstrates the advantages of rapidly and clearly revealing the physical influence of individual key beam parameters on the overall system performance, this paper demonstrates systematically the use of gyrotron linear theory to study the frequency-pulling effect in a low-voltage gyrotron with either a Gaussian or a sinusoidal axial-field profile. Furthermore, simulations of a gyrotron operating in the first axial mode are carried out in the framework of nonlinear theory as a contrast. Close agreement is achieved between the two theories. Besides, some interesting results are obtained. In a low-current sinusoidal-profile cavity, the ranges of frequency variation for different axial modes are isolated from each other, and the frequency tuning bandwidth for each axial mode increases by increasing either the beam voltage or pitch factor. Lowering the voltage, the total tuning ranges are squeezed and become concentrated. However, the isolated frequency regions of each axial mode cannot be linked up unless the beam current is increased, meaning that higher current operation is the key to achieving a wider and continuous tuning frequency range. The results presented in this paper can provide a reference for designing a broadband low-voltage gyrotron.
Review of mixer design for low voltage - low power applications
NASA Astrophysics Data System (ADS)
Nurulain, D.; Musa, F. A. S.; Isa, M. Mohamad; Ahmad, N.; Kasjoo, S. R.
2017-09-01
A mixer is used in almost all radio frequency (RF) or microwave systems for frequency translation. Nowadays, the increase market demand encouraged the industry to deliver circuit designs to create proficient and convenient equipment with very low power (LP) consumption and low voltage (LV) supply in both digital and analogue circuits. This paper focused on different Complementary Metal Oxide Semiconductor (CMOS) design topologies for LV and LP mixer design. Floating Gate Metal Oxide Semiconductor (FGMOS) is an alternative technology to replace CMOS due to their high ability for LV and LP applications. FGMOS only required a few transistors per gate and can have a shift in threshold voltage (VTH) to increase the LP and LV performances as compared to CMOS, which makes an attractive option to replace CMOS.
Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures
Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe
2015-01-01
We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young’s modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system. PMID:26343682
Low voltage driven RF MEMS capacitive switch using reinforcement for reduced buckling
NASA Astrophysics Data System (ADS)
Bansal, Deepak; Bajpai, Anuroop; Kumar, Prem; Kaur, Maninder; Kumar, Amit; Chandran, Achu; Rangra, Kamaljit
2017-02-01
Variation in actuation voltage for RF MEMS switches is observed as a result of stress-generated buckling of MEMS structures. Large voltage driven RF-MEMS switches are a major concern in space bound communication applications. In this paper, we propose a low voltage driven RF MEMS capacitive switch with the introduction of perforations and reinforcement. The performance of the fabricated switch is compared with conventional capacitive RF MEMS switches. The pull-in voltage of the switch is reduced from 70 V to 16.2 V and the magnitude of deformation is reduced from 8 µm to 1 µm. The design of the reinforcement frame enhances the structural stiffness by 46 % without affecting the high frequency response of the switch. The measured isolation and insertion loss of the reinforced switch is more than 20 dB and 0.4 dB over the X band range.
NASA Astrophysics Data System (ADS)
Ching-Lin Fan,; Hui-Lung Lai,; Jyu-Yu Chang,
2010-05-01
In this paper, we propose a novel pixel design and driving method for active-matrix organic light-emitting diode (AM-OLED) displays using low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs). The proposed threshold voltage compensation circuit, which comprised five transistors and two capacitors, has been verified to supply uniform output current by simulation work using the automatic integrated circuit modeling simulation program with integrated circuit emphasis (AIM-SPICE) simulator. The driving scheme of this voltage programming method includes four periods: precharging, compensation, data input, and emission. The simulated results demonstrate excellent properties such as low error rate of OLED anode voltage variation (<1%) and high output current. The proposed pixel circuit shows high immunity to the threshold voltage deviation characteristics of both the driving poly-Si TFT and the OLED.
NASA Astrophysics Data System (ADS)
Ching-Lin Fan,; Yi-Yan Lin,; Jyu-Yu Chang,; Bo-Jhang Sun,; Yan-Wei Liu,
2010-06-01
This study presents one novel compensation pixel design and driving method for active matrix organic light-emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage feed-back method and the simulation results are proposed and verified by SPICE simulator. The measurement and simulation of LTPS TFT characteristics demonstrate the good fitting result. The proposed circuit consists of four TFTs and two capacitors with an additional signal line. The error rates of OLED anode voltage variation are below 0.3% under the threshold voltage deviation of driving TFT (Δ VTH = ± 0.33 V). The simulation results show that the pixel design can improve the display image non-uniformity by compensating the threshold voltage deviation of driving TFT and the degradation of OLED threshold voltage at the same time.
NASA Astrophysics Data System (ADS)
Fan, Ching-Lin; Lin, Yi-Yan; Chang, Jyu-Yu; Sun, Bo-Jhang; Liu, Yan-Wei
2010-06-01
This study presents one novel compensation pixel design and driving method for active matrix organic light-emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage feed-back method and the simulation results are proposed and verified by SPICE simulator. The measurement and simulation of LTPS TFT characteristics demonstrate the good fitting result. The proposed circuit consists of four TFTs and two capacitors with an additional signal line. The error rates of OLED anode voltage variation are below 0.3% under the threshold voltage deviation of driving TFT (ΔVTH = ±0.33 V). The simulation results show that the pixel design can improve the display image non-uniformity by compensating the threshold voltage deviation of driving TFT and the degradation of OLED threshold voltage at the same time.
Low-cost electron-gun pulser for table-top maser experiments
NASA Astrophysics Data System (ADS)
Grinberg, V.; Jerby, E.; Shahadi, A.
1995-04-01
A simple 10 kV electron-gun pulser for small-scale maser experiments is presented. This low-cost pulser has operated successfully in various table-top cyclotron-resonance maser (CRM) and free-electron maser (FEM) experiments. It consists of a low-voltage capacitor bank, an SCR control circuit and a transformer bank (car ignition coils) connected directly to the e-gun. The pulser produces a current of 3 A at 10 kV voltage in a Gaussian like shape of 1 ms pulse width. The voltage sweep during the pulse provides a useful tool to locate resonances of CRM and FEM interactions. Analytical expressions for the pulser design and experimental measurements are presented.
Simulation study on AlGaN/GaN diode with Γ-shaped anode for ultra-low turn-on voltage
NASA Astrophysics Data System (ADS)
Wang, Zeheng; Chen, Wanjun; Wang, Fangzhou; Cao, Jun; Sun, Ruize; Ren, Kailin; Luo, Yi; Guo, Songnan; Wang, Zirui; Jin, Xiaosheng; Yang, Lei; Zhang, Bo
2018-05-01
An ultra-low turn-on voltage (VT) Γ-shaped anode AlGaN/GaN Schottky barrier diode (GA-SBD) is proposed via modeling and simulation for the first time, in which a Γ-shaped anode consists of a metal-2DEG junction together with a metal-AlGaN junction beside a shallowly recessed MIS field plate (MFP). An analytic forward current-voltage model matching the simulation results well is presented where an ultra-low VT of 0.08 V is obtained. The turn-on and blocking mechanisms are investigated to reveal the GA-SBD's great potential for applications of highly efficient power ICs.
Kumagai, Kazuhiro; Sekiguchi, Takashi
2009-03-01
To understand secondary electron (SE) image formation with in-lens and out-lens detector in low-voltage scanning electron microscopy (LV-SEM), we have evaluated SE signals of an in-lens and an out-lens detector in LV-SEM. From the energy distribution spectra of SEs with various boosting voltages of the immersion lens system, we revealed that the electrostatic field of the immersion lens mainly collects electrons with energy lower than 40eV, acting as a low-pass filter. This effect is also observed as a contrast change in LV-SEM images taken by in-lens and out-lens detectors.
Power Supply For 25-Watt Arc Lamp
NASA Technical Reports Server (NTRS)
Leighty, B. D.
1985-01-01
Dual-voltage circuitry both strikes and maintains arc. New power supply designed (and several units already in use) that replaces relay/choke combination with solid-state starter. New power supply consists of two main sections. First section (low voltage power supply section) is 84-volt directcurrent supply. Second section (high-voltage starter circuit) is CockroftWalton voltage multiplier. Used as light sources for schlieren, shadowgraph, and other flow-visualization techniques.
Technical Trend of Environment-friendly High Voltage Vacuum Circuit Breaker (VCB)
NASA Astrophysics Data System (ADS)
Okubo, Hitoshi
Vacuum Circuit Breakers (VCBs) have widely been used for low and medium voltage level, because of their high current interruption performance, maintenance free operations and environment-friendly characteristics. The VCB is now going to be applied to higher voltage systems for transmission and substation use. In this paper, the recent technical trend and future perspectives of high voltage VCBs are described, as well as their technical background.
Guo, Shaoyin; Hihath, Joshua; Díez-Pérez, Ismael; Tao, Nongjian
2011-11-30
We report on the measurement and statistical study of thousands of current-voltage characteristics and transition voltage spectra (TVS) of single-molecule junctions with different contact geometries that are rapidly acquired using a new break junction method at room temperature. This capability allows one to obtain current-voltage, conductance voltage, and transition voltage histograms, thus adding a new dimension to the previous conductance histogram analysis at a fixed low-bias voltage for single molecules. This method confirms the low-bias conductance values of alkanedithiols and biphenyldithiol reported in literature. However, at high biases the current shows large nonlinearity and asymmetry, and TVS allows for the determination of a critically important parameter, the tunneling barrier height or energy level alignment between the molecule and the electrodes of single-molecule junctions. The energy level alignment is found to depend on the molecule and also on the contact geometry, revealing the role of contact geometry in both the contact resistance and energy level alignment of a molecular junction. Detailed statistical analysis further reveals that, despite the dependence of the energy level alignment on contact geometry, the variation in single-molecule conductance is primarily due to contact resistance rather than variations in the energy level alignment.
Macro Fiber Piezocomposite Actuator Poling Study
NASA Technical Reports Server (NTRS)
Werlink, Rudy J.; Bryant, Robert G.; Manos, Dennis
2002-01-01
The performance and advantages of Piezocomposite Actuators are to provide a low cost, in-situ actuator/sensor that is flexible, low profile and high strain per volt performance in the same plane of poled voltage. This paper extends reported data for the performance of these Macrofiber Composite (MFC) Actuators to include 4 progressively narrower Intedigitized electrode configurations with several line widths and spacing ratios. Data is reported for max free strain, average strain per applied volt, poling (alignment of the electric dipoles of the PZT ceramic) voltage vs. strain and capacitance, time to poling voltage 95% saturation. The output strain per volt progressively increases as electrode spacing decreases, with saturation occurring at lower poling voltages. The narrowest spacing ratio becomes prone to voltage breakdown or short circuits limiting the spacing width with current fabrication methods. The capacitance generally increases with increasing poling voltage level but has high sensitivity to factors such as temperature, moisture and time from poling which limit its usefulness as a simple indicator. The total time of applied poling voltage to saturate or fully line up the dipoles in the piezoceramic was generally on the order of 5-20 seconds. Less sensitivity to poling due to the applied rate of voltage increase over a 25 to 500 volt/second rate range was observed.
High voltage switch triggered by a laser-photocathode subsystem
Chen, Ping; Lundquist, Martin L.; Yu, David U. L.
2013-01-08
A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.
Gas Composition Sensing Using Carbon Nanotube Arrays
NASA Technical Reports Server (NTRS)
Li, Jing; Meyyappan, Meyya
2012-01-01
This innovation is a lightweight, small sensor for inert gases that consumes a relatively small amount of power and provides measurements that are as accurate as conventional approaches. The sensing approach is based on generating an electrical discharge and measuring the specific gas breakdown voltage associated with each gas present in a sample. An array of carbon nanotubes (CNTs) in a substrate is connected to a variable-pulse voltage source. The CNT tips are spaced appropriately from the second electrode maintained at a constant voltage. A sequence of voltage pulses is applied and a pulse discharge breakdown threshold voltage is estimated for one or more gas components, from an analysis of the current-voltage characteristics. Each estimated pulse discharge breakdown threshold voltage is compared with known threshold voltages for candidate gas components to estimate whether at least one candidate gas component is present in the gas. The procedure can be repeated at higher pulse voltages to estimate a pulse discharge breakdown threshold voltage for a second component present in the gas. The CNTs in the gas sensor have a sharp (low radius of curvature) tip; they are preferably multi-wall carbon nanotubes (MWCNTs) or carbon nanofibers (CNFs), to generate high-strength electrical fields adjacent to the tips for breakdown of the gas components with lower voltage application and generation of high current. The sensor system can provide a high-sensitivity, low-power-consumption tool that is very specific for identification of one or more gas components. The sensor can be multiplexed to measure current from multiple CNT arrays for simultaneous detection of several gas components.
Subthreshold voltage noise of rat neocortical pyramidal neurones
Jacobson, Gilad A; Diba, Kamran; Yaron-Jakoubovitch, Anat; Oz, Yasmin; Koch, Christof; Segev, Idan; Yarom, Yosef
2005-01-01
Neurones are noisy elements. Noise arises from both intrinsic and extrinsic sources, and manifests itself as fluctuations in the membrane potential. These fluctuations limit the accuracy of a neurone's output but have also been suggested to play a computational role. We present a detailed study of the amplitude and spectrum of voltage noise recorded at the soma of layer IV–V pyramidal neurones in slices taken from rat neocortex. The dependence of the noise on holding potential, synaptic activity and Na+ conductance is systematically analysed. We demonstrate that voltage noise increases non-linearly as the cell depolarizes (from a standard deviation (s.d.) of 0.19 mV at −75 mV to an s.d. of 0.54 mV at −55 mV). The increase in voltage noise is accompanied by an increase in the cell impedance, due to voltage dependence of Na+ conductance. The impedance increase accounts for the majority (70%) of the voltage noise increase. The increase in voltage noise and impedance is restricted to the low-frequency range (0.2–2 Hz). At the high frequency range (5–100 Hz) the voltage noise is dominated by synaptic activity. In our slice preparation, synaptic noise has little effect on the cell impedance. A minimal model reproduces qualitatively these data. Our results imply that ion channel noise contributes significantly to membrane voltage fluctuations at the subthreshold voltage range, and that Na+ conductance plays a key role in determining the amplitude of this noise by acting as a voltage-dependent amplifier of low-frequency transients. PMID:15695244
Resonance of magnetization excited by voltage in magnetoelectric heterostructures
NASA Astrophysics Data System (ADS)
Yu, Guoliang; Zhang, Huaiwu; Li, Yuanxun; Li, Jie; Zhang, Dainan; Sun, Nian
2018-04-01
Manipulation of magnetization dynamics is critical for spin-based devices. Voltage driven magnetization resonance is promising for realizing low-power information processing systems. Here, we show through Finite Element Method (FEM) simulations that magnetization resonance in nanoscale magnetic elements can be generated by a radio frequency (rf) voltage via the converse magnetoelectric (ME) effect. The magnetization dynamics induced by voltage in a ME heterostructures is simulated by taking into account the magnetoelastic and piezoelectric coupling mechanisms among magnetization, strain and voltage. The frequency of the excited magnetization resonance is equal to the driving rf voltage frequency. The proposed voltage driven magnetization resonance excitation mechanism opens a way toward energy-efficient spin based device applications.
Voltage sweep ion mobility spectrometry.
Davis, Eric J; Williams, Michael D; Siems, William F; Hill, Herbert H
2011-02-15
Ion mobility spectrometry (IMS) is a rapid, gas-phase separation technique that exhibits excellent separation of ions as a standalone instrument. However, IMS cannot achieve optimal separation power with both small and large ions simultaneously. Similar to the general elution problem in chromatography, fast ions are well resolved using a low electric field (50-150 V/cm), whereas slow drifting molecules are best separated using a higher electric field (250-500 V/cm). While using a low electric field, IMS systems tend to suffer from low ion transmission and low signal-to-noise ratios. Through the use a novel voltage algorithm, some of these effects can be alleviated. The electric field was swept from low to high while monitoring a specific drift time, and the resulting data were processed to create a 'voltage-sweep' spectrum. If an optimal drift time is calculated for each voltage and scanned simultaneously, a spectrum may be obtained with optimal separation throughout the mobility range. This increased the resolving power up to the theoretical maximum for every peak in the spectrum and extended the peak capacity of the IMS system, while maintaining accurate drift time measurements. These advantages may be extended to any IMS, requiring only a change in software.
NASA Astrophysics Data System (ADS)
Reichl, Karl O., Jr.
1987-06-01
The relationship between the Interactions Measurement Payload for Shuttle (IMPS) flight experiment and the low Earth orbit plasma environment is discussed. Two interactions (parasitic current loss and electrostatic discharge on the array) may be detrimental to mission effectiveness. They result from the spacecraft's electrical potentials floating relative to plasma ground to achieve a charge flow equilibrium into the spacecraft. The floating potentials were driven by external biases applied to a solar array module of the Photovoltaic Array Space Power (PASP) experiment aboard the IMPS test pallet. The modeling was performed using the NASA Charging Analyzer Program/Low Earth Orbit (NASCAP/LEO) computer code which calculates the potentials and current collection of high-voltage objects in low Earth orbit. Models are developed by specifying the spacecraft, environment, and orbital parameters. Eight IMPS models were developed by varying the array's bias voltage and altering its orientation relative to its motion. The code modeled a typical low Earth equatorial orbit. NASCAP/LEO calculated a wide variety of possible floating potential and current collection scenarios. These varied directly with both the array bias voltage and with the vehicle's orbital orientation.
Microbial fuel cells as power supply of a low-power temperature sensor
NASA Astrophysics Data System (ADS)
Khaled, Firas; Ondel, Olivier; Allard, Bruno
2016-02-01
Microbial fuel cells (MFCs) show great promise as a concomitant process for water treatment and as renewable energy sources for environmental sensors. The small energy produced by MFCs and the low output voltage limit the applications of MFCs. Specific converter topologies are required to step-up the output voltage of a MFC. A Power Management Unit (PMU) is proposed for operation at low input voltage and at very low power in a completely autonomous way to capture energy from MFCs with the highest possible efficiency. The application of sensors for monitoring systems in remote locations is an important approach. MFCs could be an alternative energy source in this case. Powering a sensor with MFCs may prove the fact that wastewater may be partly turned into renewable energy for realistic applications. The Power Management Unit is demonstrated for 3.6 V output voltage at 1 mW continuous power, based on a low-cost 0.7-L MFC. A temperature sensor may operate continuously on 2-MFCs in continuous flow mode. A flyback converter under discontinuous conduction mode is also tested to power the sensor. One continuously fed MFC was able to efficiently and continuously power the sensor.
Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel; Gomora, Juan Carlos
2018-01-01
Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30-40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers.
Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel
2018-01-01
Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30–40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers. PMID:29474447
Rezazadeh, Maryam; Yamini, Yadollah; Seidi, Shahram; Arjomandi-Behzad, Leila
2014-01-10
In the present work, the effect of application of voltage steps on extraction efficiency of pulsed electromembrane extraction (PEME) was investigated for the first time. The effects of voltage variations including initial and final voltages, number of steps between the initial and final voltages as well as their time durations were studied on the extraction efficiencies of three different classes of analytes. These classes include amitriptyline (AMI) and nortriptyline (NOR) as more hydrophobic analytes, diclofenac (DIC) and mefenamic acid (MEF) as acidic drugs and salbutamol (SB) and terbutaline (TB) as hydrophilic compounds. It was anticipated that the application of high voltages is not necessary at the beginning of the extraction, since large amounts of target analytes exist around the supported liquid membrane (SLM)/sample solution interface. So, they could be easily transferred into the acceptor phase utilizing lower voltages. Results showed that the benefits of voltage-step PEME (VS-PEME) are more obvious in systems with low electrical resistance (regarding the SLM composition). Efficiencies of VS-PEME for extraction of AMI and NOR (96% and 89% for AMI and NOR, respectively) were comparable with those achieved from applying a constant voltage (95% for AMI and 83% for NOR). However, recoveries from the VS-PEME of DIC and MEF (53% and 44% for DIC and MEF, respectively) were significantly higher than those from the application of a constant voltage (33% for DIC and 31% for MEF). Also, recoveries obtained from the VS-PEME for SB and TB were approximately 3 orders of magnitude greater than those from a constant voltage. Moreover, it was demonstrated that in all cases analytes could effectively be extracted at the beginning of extraction by applying low voltages. Copyright © 2013 Elsevier B.V. All rights reserved.
Method and Apparatus for In-Situ Health Monitoring of Solar Cells in Space
NASA Technical Reports Server (NTRS)
Prokop, Norman F. (Inventor); Krasowski, Michael J. (Inventor)
2016-01-01
Embodiments of the present invention describe an apparatus including an oscillator, a ramp generator, and an inverter. The oscillator is configured to generate a waveform comprising a low time and a high time. The inverter is configured to receive the waveform generated by the oscillator, and invert the waveform. The ramp generator is configured to increase a gate control voltage of a transistor connected to a solar cell, and rapidly decrease the gate control voltage of the transistor. During the low time, a measurement of a current and a voltage of the solar cell is performed. During the high time, a measurement of a current of a shorted cell and a voltage reference is performed.
Compact high voltage solid state switch
Glidden, Steven C.
2003-09-23
A compact, solid state, high voltage switch capable of high conduction current with a high rate of current risetime (high di/dt) that can be used to replace thyratrons in existing and new applications. The switch has multiple thyristors packaged in a single enclosure. Each thyristor has its own gate drive circuit that circuit obtains its energy from the energy that is being switched in the main circuit. The gate drives are triggered with a low voltage, low current pulse isolated by a small inexpensive transformer. The gate circuits can also be triggered with an optical signal, eliminating the trigger transformer altogether. This approach makes it easier to connect many thyristors in series to obtain the hold off voltages of greater than 80 kV.
NASA Technical Reports Server (NTRS)
Parker, C. D.
1975-01-01
The Pioneer 10/11 meteoroid detection equipment (MDE) pressure cells were tested at liquid nitrogen (LN2) and liquid helium (LHe) temperatures with the excitation voltage controlled as a parameter. The cells failed by firing because of pressurizing gas condensation as the temperature was lowered from LN2 to LHe temperature and when raised from LHe temperature. A study was conducted to determine cell pressure as a function of temperature, and cell failure was estimated as a function of temperature and excitation voltage. The electronic system was also studied, and a profile of primary spacecraft voltage (nominally 28 Vdc) and temperature corresponding to electronic system failure was determined experimentally.
Ding, Jianfeng; Chen, Hongtao; Yang, Lin; Zhang, Lei; Ji, Ruiqiang; Tian, Yonghui; Zhu, Weiwei; Lu, Yangyang; Zhou, Ping; Min, Rui
2012-01-30
We demonstrate a carrier-depletion Mach-Zehnder silicon optical modulator, which is compatible with CMOS fabrication process and works well at a low driving voltage. This is achieved by the optimization of the coplanar waveguide electrode to reduce the electrical signal transmission loss. At the same time, the velocity and impedance matching are both considered. The 12.5 Gbit/s data transmission experiment of the fabricated device with a 2-mm-long phase shifter is performed. The driving voltages with the swing amplitudes of 1 V and 2 V and the reverse bias voltages of 0.5 V and 0.8 V are applied to the device, respectively. The corresponding extinction ratios are 7.67 and 12.79 dB.
Centralized vs decentralized lunar power system study
NASA Astrophysics Data System (ADS)
Metcalf, Kenneth; Harty, Richard B.; Perronne, Gerald E.
1991-09-01
Three power-system options are considered with respect to utilization on a lunar base: the fully centralized option, the fully decentralized option, and a hybrid comprising features of the first two options. Power source, power conditioning, and power transmission are considered separately, and each architecture option is examined with ac and dc distribution, high and low voltage transmission, and buried and suspended cables. Assessments are made on the basis of mass, technological complexity, cost, reliability, and installation complexity, however, a preferred power-system architecture is not proposed. Preferred options include transmission based on ac, transmission voltages of 2000-7000 V with buried high-voltage lines and suspended low-voltage lines. Assessments of the total cost associated with the installations are required to determine the most suitable power system.
Low-to-Medium Power Single Chip Digital Controlled DC-DC Regulator for Point-of-Load Applications
NASA Technical Reports Server (NTRS)
Adell, Philippe C. (Inventor); Bakkaloglu, Bertan (Inventor); Vermeire, Bert (Inventor); Liu, Tao (Inventor)
2015-01-01
A DC-DC converter for generating a DC output voltage includes: a digitally controlled pulse width modulator (DPWM) for controlling a switching power stage to supply a varying voltage to an inductor; and a digital voltage feedback circuit for controlling the DPWM in accordance with a feedback voltage corresponding to the DC output voltage, the digital voltage feedback circuit including: a first voltage controlled oscillator for converting the feedback voltage into a first frequency signal and to supply the first frequency signal to a first frequency discriminator; a second voltage controlled oscillator for converting a reference voltage into a second frequency signal and to supply the second frequency signal to a second frequency discriminator; a digital comparator for comparing digital outputs of the first and second frequency discriminators and for outputting a digital feedback signal; and a controller for controlling the DPWM in accordance with the digital feedback signal.
Yang, Jingsong; Xiao, Lifen; He, Wei; Fan, Jiangwei; Chen, Zhongxue; Ai, Xinping; Yang, Hanxi; Cao, Yuliang
2016-07-27
The effect of the cutoff voltages on the working voltage decay and cyclability of the lithium-rich manganese-based layered cathode (LRMO) was investigated by electrochemical measurements, electrochemical impedance spectroscopy, ex situ X-ray diffraction, transmission electron microscopy, and energy dispersive spectroscopy line scan technologies. It was found that both lower (2.0 V) and upper (4.8 V) cutoff voltages cause severe voltage decay with cycling due to formation of the spinel phase and migration of the transition metals inside the particles. Appropriate cutoff voltage between 2.8 and 4.4 V can effectively inhibit structural variation as the electrode demonstrates 92% capacity retention and indiscernible working voltage decay over 430 cycles. The results also show that phase transformation not only on high charge voltage but also on low discharge voltage should be addressed to obtain highly stable LRMO materials.
Code of Federal Regulations, 2011 CFR
2011-07-01
... portable or mobile three-phase alternating current equipment; circuit breakers. 77.900 Section 77.900... mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage circuits supplying power to portable or mobile three-phase alternating current equipment shall be protected by...
The Design of Operational Amplifier for Low Voltage and Low Current Sound Energy Harvesting System
NASA Astrophysics Data System (ADS)
Fang, Liew Hui; Rahim, Rosemizi Bin Abd; Isa, Muzamir; Idris Syed Hassan, Syed; Ismail, Baharuddin Bin
2018-03-01
The objective of this paper is to design a combination of an operational amplifier (op-amp) with a rectifier used in an alternate current (ac) to direct current (dc) power conversion. The op-amp was designed to specifically work at low voltage and low current for a sound energy harvesting system. The goal of the op-amp design with adjustable gain was to control output voltage based on the objectives of the experiment conducted. The op-amp was designed for minimum power dissipation performance, with the means of increasing the output current when receiving a large amount of load. The harvesting circuits which designed further improved the power output efficiency by shortening the fully charged time needed by a supercapacitor bank. It can fulfil the long-time power demands for low power device. Typically, a small amount of energy sources were converted to electricity and stored in the supercapacitor bank, which was built by 10 pieces of capacitors with 0.22 F each, arranged in parallel connection. The highest capacitance was chosen based on the characteristic that have the longest discharging time to support the applications of a supercapacitor bank. Testing results show that the op-amp can boost the low input ac voltage (∼3.89 V) to high output dc voltage (5.0 V) with output current of 30 mA and stored the electrical energy in a big supercapacitor bank having a total of 2.2 F, effectively. The measured results agree well with the calculated results.
NASA Astrophysics Data System (ADS)
Sukhomlinov, V.; Mustafaev, A.; Timofeev, N.
2018-04-01
Previously developed methods based on the single-sided probe technique are altered and applied to measure the anisotropic angular spread and narrow energy distribution functions of charged particle (electron and ion) beams. The conventional method is not suitable for some configurations, such as low-voltage beam discharges, electron beams accelerated in near-wall and near-electrode layers, and vacuum electron beam sources. To determine the range of applicability of the proposed method, simple algebraic relationships between the charged particle energies and their angular distribution are obtained. The method is verified for the case of the collisionless mode of a low-voltage He beam discharge, where the traditional method for finding the electron distribution function with the help of a Legendre polynomial expansion is not applicable. This leads to the development of a physical model of the formation of the electron distribution function in a collisionless low-voltage He beam discharge. The results of a numerical calculation based on Monte Carlo simulations are in good agreement with the experimental data obtained using the new method.
Characteristics of long-gap AC streamer discharges under low pressure conditions
NASA Astrophysics Data System (ADS)
Yang, Yaqi; Li, Weiguo; Xia, Yu; Yuan, Chuangye
2017-10-01
The generation and propagation of a streamer is a significant physical process of air gap discharge. Research on the mechanism of streamers under low-pressure conditions is helpful for understanding the process of long-gap discharge in a high-altitude area. This paper describes laboratory investigations of streamer discharge under alternating current (AC) voltage in a low pressure test platform for a 60 cm rod-plane gap at 30 kPa, and analyzes the characteristics of streamer generation and propagation. The results show that the partial streamer and breakdown streamer all occur in the positive half-cycle of AC voltage near the peak voltage at 30 kPa. The partial streamer could cause the distortion of current and voltage waveform, and it appears as the branching characteristic at the initial stage. With the extension of the streamer, the branching and tortuosity phenomena become gradually obvious, but the branching is suppressed when the streamer crosses the gap. The low-pressure condition has little influence on the tortuosity length and the tortuosity number of the streamer, but affect the diameter of streamer obviously.
A CMOS Humidity Sensor for Passive RFID Sensing Applications
Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei
2014-01-01
This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 μW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250
A CMOS humidity sensor for passive RFID sensing applications.
Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei
2014-05-16
This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.
Tests of a low-pressure switch protected by a saturating inductor
NASA Astrophysics Data System (ADS)
Lauer, E. J.; Birx, D. L.
Low pressure switches and magnetic switches were tested as possible replacements for the high pressure switches currently used on Experimental Test Accelerator and Advanced Test Accelerator. When the low pressure switch is used with a low impedance transmission line, runaway electrons form a pinched electron beam which damages the anode. The use of the low pressure switch as the first switch in the pulsed power chain was tested; i.e., the switch would be used to connect a charged capacitor across the primary winding of a step up transformer. An inductor with a saturating core is connected in series so that, initially, there is a large inductive voltage drop. As a result, there is small voltage across the switch. By the time the inductor core saturates, the switch has developed sufficient ionization so that the switch voltage remains small, even with peak current, and an electron beam is not produced.
NASA Astrophysics Data System (ADS)
Xia, D. X.; Xu, J. B.
2010-11-01
Spin-coated alumina serving as a gate dielectric in thin film transistors shows interesting dielectric properties for low-voltage applications, despite a moderate capacitance. With Ga singly doped and Ga, Li co-doped ZnO as the active channel layers, typical mobilities of 4.7 cm2 V-1 s-1 and 2.1 cm2 V-1 s-1 are achieved, respectively. At a given gate bias, the operation current is much smaller than the previously reported values in low-voltage thin film transistors, primarily relying on the giant-capacitive dielectric. The reported devices combine advantages of high mobility, low power consumption, low cost and ease of fabrication. In addition to the transparent nature of both the dielectric and semiconducting active channels, the superior electrical properties of the devices may provide a new avenue for future transparent electronics.
Kanbur, Yasin; Irimia-Vladu, Mihai; Głowacki, Eric D.; Voss, Gundula; Baumgartner, Melanie; Schwabegger, Günther; Leonat, Lucia; Ullah, Mujeeb; Sarica, Hizir; Erten-Ela, Sule; Schwödiauer, Reinhard; Sitter, Helmut; Küçükyavuz, Zuhal; Bauer, Siegfried; Sariciftci, Niyazi Serdar
2012-01-01
We report on the fabrication and performance of vacuum-processed organic field effect transistors utilizing evaporated low-density polyethylene (LD-PE) as a dielectric layer. With C60 as the organic semiconductor, we demonstrate low operating voltage transistors with field effect mobilities in excess of 4 cm2/Vs. Devices with pentacene showed a mobility of 0.16 cm2/Vs. Devices using tyrian Purple as semiconductor show low-voltage ambipolar operation with equal electron and hole mobilities of ∼0.3 cm2/Vs. These devices demonstrate low hysteresis and operational stability over at least several months. Grazing-angle infrared spectroscopy of evaporated thin films shows that the structure of the polyethylene is similar to solution-cast films. We report also on the morphological and dielectric properties of these films. Our experiments demonstrate that polyethylene is a stable dielectric supporting both hole and electron channels. PMID:23483783
High-wafer-yield, high-performance vertical cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Li, Gabriel S.; Yuen, Wupen; Lim, Sui F.; Chang-Hasnain, Constance J.
1996-04-01
Vertical cavity surface emitting lasers (VCSELs) with very low threshold current and voltage of 340 (mu) A and 1.5 V is achieved. The molecular beam epitaxially grown wafers are grown with a highly accurate, low cost and versatile pre-growth calibration technique. One- hundred percent VCSEL wafer yield is obtained. Low threshold current is achieved with a native oxide confined structure with excellent current confinement. Single transverse mode with stable, predetermined polarization direction up to 18 times threshold is also achieved, due to stable index guiding provided by the structure. This is the highest value reported to data for VCSELs. We have established that p-contact annealing in these devices is crucial for low voltage operation, contrary to the general belief. Uniform doping in the mirrors also appears not to be inferior to complicated doping engineering. With these design rules, very low threshold voltage VCSELs are achieved with very simple growth and fabrication steps.
NASA Astrophysics Data System (ADS)
Pedersen, F.
2008-09-01
The presented bidirectional DC/DC converter design concept is a further development of an already existing converter used for low battery voltage operation.For low battery voltage operation a high efficient low parts count DC/DC converter was developed, and used in a satellite for the battery charge and battery discharge function.The converter consists in a bidirectional, non regulating DC/DC converter connected to a discharge regulating Buck converter and a charge regulating Buck converter.The Bidirectional non regulating DC/DC converter performs with relatively high efficiency even at relatively high currents, which here means up to 35Amps.This performance was obtained through the use of power MOSFET's with on- resistances of only a few mille Ohms connected to a special transformer allowing paralleling several transistor stages on the low voltage side of the transformer. The design is patent protected. Synchronous rectification leads to high efficiency at the low battery voltages considered, which was in the range 2,7- 4,3 Volt DC.The converter performs with low switching losses as zero voltage zero current switching is implemented in all switching positions of the converter.Now, the drive power needed, to switch a relatively large number of low Ohm , hence high drive capacitance, power MOSFET's using conventional drive techniques would limit the overall conversion efficiency.Therefore a resonant drive consuming considerable less power than a conventional drive circuit was implemented in the converter.To the originally built and patent protected bidirectional non regulating DC/DC converter, is added the functionality of regulation.Hereby the need for additional converter stages in form of a Charge Buck regulator and a Discharge Buck regulator is eliminated.The bidirectional DC/DC converter can be used in connection with batteries, motors, etc, where the bidirectional feature, simple design and high performance may be useful.
Ye, Liangchen; Zhang, Gaofei; You, Zheng
2017-03-05
The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively.
Ye, Liangchen; Zhang, Gaofei; You, Zheng
2017-01-01
The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively. PMID:28273880
NASA Astrophysics Data System (ADS)
Horiguchi, Genki; Chikaoka, Yu; Shiroishi, Hidenobu; Kosaka, Shinpei; Saito, Morihiro; Kameta, Naohiro; Matsuda, Naoki
2018-04-01
In the preparation of metallic nanoparticles by conventional solution plasma (SP) techniques, unstable plasma emission becomes an issue when the voltage and frequency of the waves applied between two electrodes placed in solution are lowered to avoid the boiling of the solution. In this study, we confirm that, in the presence of microbubbles, plasma is generated stably at low voltage (440 V) and low frequency (50-100 Hz) and small-size (≤10 nm) Pt nanoparticles (PtNPs) are synthesized in succession using a flow cell. The smallest PtNPs, ∼3.3 nm in diameter, are obtained using half-wave rectification, a tungsten wire anode, and a platinum wire cathode. The PtNPs are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and thermogravimeter-differential thermal analysis. The oxygen reduction reaction (ORR) is investigated in 0.1 M HClO4 solution on carbon-supported PtNPs using a rotating ring-disk electrode. The catalytic activities per initial electrochemical active surface area of the carbon-supported PtNPs synthesized employing the low-voltage, low-frequency (LVLF)-SP technique is higher than that of the commercially available 20 wt% Pt on Vulcan XC-72R. These results indicate that the LVLF-SP technique is a promising approach to producing carbon-supported PtNPs that catalyze ORR with low energy consumption.
30 CFR 77.902-1 - Fail safe ground check circuits; maximum voltage.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fail safe ground check circuits; maximum voltage. 77.902-1 Section 77.902-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902-1 Fail safe...
30 CFR 77.902-1 - Fail safe ground check circuits; maximum voltage.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fail safe ground check circuits; maximum voltage. 77.902-1 Section 77.902-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902-1 Fail safe...
30 CFR 77.902-1 - Fail safe ground check circuits; maximum voltage.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fail safe ground check circuits; maximum voltage. 77.902-1 Section 77.902-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902-1 Fail safe...
High reliability low jitter pulse generator
Savage, Mark E.; Stoltzfus, Brian S.
2013-01-01
A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.
A new very high voltage semiconductor switch
NASA Technical Reports Server (NTRS)
Sundberg, G. R.
1985-01-01
A new family of semiconductor switches using double injection techniques and compensated deep impurities is described. They have the potential to raise switching voltages a factor of 10 higher (up to 100 kV) than p-n junction devices while exhibiting extremely low (or zero) forward voltage. Several potential power switching applications are indicated.
A soft-switching coupled inductor bidirectional DC-DC converter with high-conversion ratio
NASA Astrophysics Data System (ADS)
Chao, Kuei-Hsiang; Jheng, Yi-Cing
2018-01-01
A soft-switching bidirectional DC-DC converter is presented herein as a way to improve the conversion efficiency of a photovoltaic (PV) system. Adoption of coupled inductors enables the presented converter not only to provide a high-conversion ratio but also to suppress the transient surge voltage via the release of the energy stored in leakage flux of the coupled inductors, and the cost can kept down consequently. A combined use of a switching mechanism and an auxiliary resonant branch enables the converter to successfully perform zero-voltage switching operations on the main switches and improves the efficiency accordingly. It was testified by experiments that our proposed converter works relatively efficiently in full-load working range. Additionally, the framework of the converter intended for testifying has high-conversion ratio. The results of a test, where a generating system using PV module array coupled with batteries as energy storage device was used as the low-voltage input side, and DC link was used as high-voltage side, demonstrated our proposed converter framework with high-conversion ratio on both high-voltage and low-voltage sides.
Method and Apparatus for In-Situ Health Monitoring of Solar Cells in Space
NASA Technical Reports Server (NTRS)
Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)
2012-01-01
Some embodiments of the present invention describe an apparatus that includes an oscillator, a ramp generator, and an inverter. The apparatus includes an oscillator, an inverter, and a ramp generator. The oscillator is configured to generate a waveform comprising a low time and a high time. The inverter is configured to receive the waveform generated by the oscillator, and invert the waveform. The ramp generator configured to increase a gate control voltage of a transistor connected to a solar cell, and rapidly decrease the gate control voltage of the transistor. During the low time of the waveform, a measurement of a current and a voltage of the solar cell is performed as the current and voltage of the solar cell are transmitted through a first channel and to a second channel. During the high time of the waveform, a measurement of a current of a shorted cell and a voltage reference is performed as the current of the shorted cell and the voltage reference are transmitted through the first channel and the second channel.
NASA Astrophysics Data System (ADS)
Jung, S.; Lee, J. H.; Yoon, M.; Lee, H.; Jang, G.
The study of the application process of the relatively small size 'Superconducting Flywheel Energy Storage (SFES)' system is conducted to regulate voltage fluctuation of the DC On-Line Electric Vehicle (OLEV) system, which is designed by using DC power system network. It is recommended to construct the power conversion system nearby the substation because the charging system is under the low voltage. But as the system is usually built around urban area and it makes hard to construct the subsystems at every station, voltage drop can occur in power supply inverter that is some distance from the substation. As the alternative of this issue, DC distribution system is recently introduced and has possibility to solve the above issue. In this paper, SFES is introduced to solve the voltage drop under the low voltage distribution system by using the concept of the proposed DC OLEV which results in building the longer distance power supply system. The simulation to design the SFES by using DC power flow analysis is carried out and it is verified in this paper.
Soft switching resonant converter with duty-cycle control in DC micro-grid system
NASA Astrophysics Data System (ADS)
Lin, Bor-Ren
2018-01-01
Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.
Low Beam Voltage, 10 MW, L-Band Cluster Klystron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teryaev, V.; /Novosibirsk, IYF; Yakovlev, V.P.
2009-05-01
Conceptual design of a multi-beam klystron (MBK) for possible ILC and Project X applications is presented. The chief distinction between this MBK design and existing 10-MW MBK's is the low operating voltage of 60 kV. There are at least four compelling reasons that justify development at this time of a low-voltage MBK, namely (1) no pulse transformer; (2) no oil tank for high-voltage components and for the tube socket; (3) no high-voltage cables; and (4) modulator would be a compact 60-kV IGBT switching circuit. The proposed klystron consists of four clusters containing six beams each. The tube has common inputmore » and output cavities for all 24 beams, and individual gain cavities for each cluster. A closely related optional configuration, also for a 10 MW tube, would involve four totally independent cavity clusters with four independent input cavities and four 2.5 MW output ports, all within a common magnetic circuit. This option has appeal because the output waveguides would not require a controlled atmosphere, and because it would be easier to achieve phase and amplitude stability as required in individual SC accelerator cavities.« less
Singh, Kunwar Pal; Guo, Chunlei
2017-06-21
The nanochannel diameter and surface charge density have a significant impact on current-voltage characteristics in a nanofluidic transistor. We have simulated the effect of the channel diameter and surface charge density on current-voltage characteristics of a fluidic nanochannel with positive surface charge on its walls and a gate electrode on its surface. Anion depletion/enrichment leads to a decrease/increase in ion current with gate potential. The ion current tends to increase linearly with gate potential for narrow channels at high surface charge densities and narrow channels are more effective to control the ion current at high surface charge densities. The current-voltage characteristics are highly nonlinear for wide channels at low surface charge densities and they show different regions of current change with gate potential. The ion current decreases with gate potential after attaining a peak value for wide channels at low values of surface charge densities. At low surface charge densities, the ion current can be controlled by a narrow range of gate potentials for wide channels. The current change with source drain voltage shows ohmic, limiting and overlimiting regions.
Design and fabrication of low power GaAs/AlAs resonant tunneling diodes
NASA Astrophysics Data System (ADS)
Md Zawawi, Mohamad Adzhar; Missous, Mohamed
2017-12-01
A very low peak voltage GaAs/AlAs resonant tunneling diode (RTD) grown by molecular beam epitaxy (MBE) has been studied in detail. Excellent growth control with atomic-layer precision resulted in a peak voltage of merely 0.28 V (0.53 V) in forward (reverse) direction. The peak current density in forward bias is around 15.4 kA/cm2 with variation of within 7%. As for reverse bias, the peak current density is around 22.8 kA/cm2 with 4% variation which implies excellent scalability. In this work, we have successfully demonstrated the fabrication of a GaAs/AlAs RTD by using a conventional optical lithography and chemical wet-etching with very low peak voltage suitable for application in low dc input power RTD-based sub-millimetre wave oscillators.
NASA Astrophysics Data System (ADS)
Wang, Ying; Acton, Orb; Ting, Guy; Weidner, Tobias; Ma, Hong; Castner, David G.; Jen, Alex K.-Y.
2009-12-01
Low-voltage pentacene-based organic thin film transistors (OTFTs) are demonstrated with polystyrene (PS)/hafnium oxide (HfOx) hybrid dielectrics. Thermal annealing of PS films on HfOx at 120 °C (PS-120) induces a flatter orientation of the phenyl groups (tilt angle 65°) at the surface compared to PS films without annealing (PS-RT) (tilt angle 31°). The flatter phenyl group orientation leads to better matching of surface energy between pentacene and PS. Pentacene deposited on PS-120 display higher quality thin films with larger grain sizes and higher crystallinity. Pentacene OTFTs with PS-120/HfOx hybrid dielectrics can operate at low-voltage (<3 V) with high field-effect mobilities (1 cm2/V s), high on/off current ratios (106), and low subthreshold slopes (100 mV/dec).
Wang, Xue-Feng; Tian, He; Zhao, Hai-Ming; Zhang, Tian-Yu; Mao, Wei-Quan; Qiao, Yan-Cong; Pang, Yu; Li, Yu-Xing; Yang, Yi; Ren, Tian-Ling
2018-01-01
Metal oxide-based resistive random access memory (RRAM) has attracted a lot of attention for its scalability, temperature robustness, and potential to achieve machine learning. However, a thick oxide layer results in relatively high program voltage while a thin one causes large leakage current and a small window. Owing to these fundamental limitations, by optimizing the oxide layer itself a novel interface engineering idea is proposed to reduce the programming voltage, increase the uniformity and on/off ratio. According to this idea, a molybdenum disulfide (MoS 2 )-palladium nanoparticles hybrid structure is used to engineer the oxide/electrode interface of hafnium oxide (HfO x )-based RRAM. Through its interface engineering, the set voltage can be greatly lowered (from -3.5 to -0.8 V) with better uniformity under a relatively thick HfO x layer (≈15 nm), and a 30 times improvement of the memory window can be obtained. Moreover, due to the atomic thickness of MoS 2 film and high transmittance of ITO, the proposed RRAM exhibits high transparency in visible light. As the proposed interface-engineering RRAM exhibits good transparency, low SET voltage, and a large resistive switching window, it has huge potential in data storage in transparent circuits and wearable electronics with relatively low supply voltage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Piezoelectric MEMS switch to activate event-driven wireless sensor nodes
NASA Astrophysics Data System (ADS)
Nogami, H.; Kobayashi, T.; Okada, H.; Makimoto, N.; Maeda, R.; Itoh, T.
2013-09-01
We have developed piezoelectric microelectromechanical systems (MEMS) switches and applied them to ultra-low power wireless sensor nodes, to monitor the health condition of chickens. The piezoelectric switches have ‘S’-shaped piezoelectric cantilevers with a proof mass. Since the resonant frequency of the piezoelectric switches is around 24 Hz, we have utilized their superharmonic resonance to detect chicken movements as low as 5-15 Hz. When the vibration frequency is 4, 6 and 12 Hz, the piezoelectric switches vibrate at 0.5 m s-2 and generate 3-5 mV output voltages with superharmonic resonance. In order to detect such small piezoelectric output voltages, we employ comparator circuits that can be driven at low voltages, which can set the threshold voltage (Vth) from 1 to 31 mV with a 1 mV increment. When we set Vth at 4 mV, the output voltages of the piezoelectric MEMS switches vibrate below 15 Hz with amplitudes above 0.3 m s-2 and turn on the comparator circuits. Similarly, by setting Vth at 5 mV, the output voltages turn on the comparator circuits with vibrations above 0.4 m s-2. Furthermore, setting Vth at 10 mV causes vibrations above 0.5 m s-2 that turn on the comparator circuits. These results suggest that we can select small or fast chicken movements to utilize piezoelectric MEMS switches with comparator circuits.
Foundry Technologies Focused on Environmental and Ecological Applications
NASA Astrophysics Data System (ADS)
Roizin, Ya.; Lisiansky, M.; Pikhay, E.
Solutions allowing fabrication of remote control systems with integrated sensors (motes) were introduced as a part of CMOS foundry production platform and verified on silicon. The integrated features include sensors employing principles previously verified in the development of ultra-low power consuming non-volatile memories (C-Flash, MRAM) and components allowing low-power energy harvesting (low voltage rectifiers, high -voltage solar cells). The developed systems are discussed with emphasis on their environmental and security applications.
Low-voltage Driven Graphene Foam Thermoacoustic Speaker.
Fei, Wenwen; Zhou, Jianxin; Guo, Wanlin
2015-05-20
A low-voltage driven thermoacoustic speaker is fabricated based on three-dimensional graphene foams synthesized by a nickel-template assisted chemical vapor deposition method. The corresponding thermoacoustic performances are found to be related to its microstructure. Graphene foams exhibit low heat-leakage to substrates and feasible tunability in structures and thermoacoustic performances, having great promise for applications in flexible or ultrasonic acoustic devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Naderi, Ali; Mohammadi, Hamed
2018-06-01
In this paper a novel silicon-on-insulator metal oxide field effect transistor (SOI-MESFET) with high- and low-resistance boxes (HLRB) is proposed. This structure increases the current and breakdown voltage, simultaneously. The semiconductor at the source side of the channel is doped with higher impurity than the other parts to reduce its resistance and increase the driving current as low-resistance box. An oxide box is implemented at the upper part of the channel from the drain region toward the middle of the channel as the high-resistance box. Inserting a high-resistance box increases the breakdown voltage and improves the RF performance of the device because of its higher tolerable electric field and modification in gate-drain capacitance, respectively. The high-resistance region reduces the current density of the device which is completely compensated by low-resistance box. A 92% increase in breakdown voltage and an 11% improvement in the device current have been obtained. Also, maximum oscillation frequency, unilateral power gain, maximum available gain, maximum stable gain, and maximum output power density are improved by 7%, 35%, 23%, 26%, and 150%, respectively. These results show that the HLRB-SOI-MESFET can be considered as a candidate to replace Conventional SOI-MESFET (C-SOI-MESFET) for high-voltage and high-frequency applications.
NASA Astrophysics Data System (ADS)
Fleming, Jerry W.
2010-04-01
Thermoelectric energy harvesting has increasingly gained acceptance as a potential power source that can be used for numerous commercial and military applications. However, power electronic designers have struggled to incorporate energy harvesting methods into their designs due to the relatively small voltage levels available from many harvesting device technologies. In order to bridge this gap, an ultra-low input voltage power conversion method is needed to convert small amounts of scavenged energy into a usable form of electricity. Such a method would be an enabler for new and improved medical devices, sensor systems, and other portable electronic products. This paper addresses the technical challenges involved in ultra-low-voltage power conversion by providing a solution utilizing novel power conversion techniques and applied technologies. Our solution utilizes intelligent power management techniques to control unknown startup conditions. The load and supply management functionality is also controlled in a deterministic manner. The DC to DC converter input operating voltage is 20mV with a conversion efficiency of 90% or more. The output voltage is stored into a storage device such as an ultra-capacitor or lithium-ion battery for use during brown-out or unfavorable harvesting conditions. Applications requiring modular, low power, extended maintenance cycles, such as wireless instrumentation would significantly benefit from the novel power conversion and harvesting techniques outlined in this paper.
Development of longitudinally excited CO2 laser
NASA Astrophysics Data System (ADS)
Masroon, N. S.; Tanaka, M.; Tei, M.; Uno, K.; Tsuyama, M.; Nakano, H.
2018-05-01
Simple, compact, and affordable discharged-pumped CO2 laser controlled by a fast high voltage solid state switch has been developed. In this study, longitudinal excitation scheme has been adapted for simple configuration. In the longitudinal excitation scheme, the discharge is produced along the direction of the laser axis, and the electrodes are well separated with a small discharge cross-section. Triggered spark gap switch is usually used to switch out the high voltage because of simple and low cost. However, the triggered spark gap operates in the arc mode and suffer from recovery problem causing a short life time and low efficiency for high repetition rate operation. As a result, there is now considerable interest in replacing triggered spark gap switch with solid state switches. Solid state switches have significant advantages compared to triggered spark gap switch which include longer service lifetime, low cost and stable high trigger pulse. We have developed simple and low cost fast high voltage solid state switch that consists of series connected-MOSFETs. It has been installed to the longitudinally excited CO2 laser to realize the gap switch less operation. Characteristics of laser oscillation by varying the discharge length, charging voltage, capacitance and gas pressure have been evaluated. Longer discharge length produce high power of laser oscillation. Optimum charging voltage and gas pressure were existed for longitudinally excited CO2 laser.
Low-voltage organic strain sensor on plastic using polymer/high- K inorganic hybrid gate dielectrics
NASA Astrophysics Data System (ADS)
Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.
2007-12-01
In this paper, gate-induced pentacene semiconductor strain sensors based on hybrid-gate dielectrics using poly-vinylphenol (PVP) and high-K inorganic, Ta IIO 5 are fabricated on flexible substrates, polyethylene naphthalate (PEN). The Ta IIO 5 gate dielectric layer is combined with a thin PVP layer to obtain very smooth and hydrophobic surfaces which improve the molecular structures of pentacene films. The PVP-Ta IIO 5 hybrid-gate dielectric films exhibit a high dielectric capacitance and low leakage current. The sensors adopting thin film transistor (TFT)-like structures show a significantly reduced operating voltage (~6V), and good device characteristics with a field-effect mobility of 1.89 cm2/V•s, a threshold voltage of -0.5 V, and an on/off ratio of 10 3. The strain sensor, one of the practical applications in large-area organic electronics, was characterized with different bending radii of 50, 40, 30, and 20 mm. The sensor output signals were significantly improved with low-operating voltages.
Wang, Yang; Wang, Shumeng; Ding, Junqiao; Wang, Lixiang; Jing, Xiabin; Wang, Fosong
2016-12-20
Dendron engineering in self-host blue Ir dendrimers is reported to develop power-efficient nondoped electrophosphorescent devices for the first time, which can be operated at low voltage close to the theoretical limit (E g /e: corresponding to the optical bandgap divided by the electron charge). With increasing dendron's HOMO energy levels from B-POCz to B-CzCz and B-CzTA, effective hole injection is favored to promote exciton formation, resulting in a significant reduction of driving voltage and improvement of power efficiency. Consequently, the nondoped device of B-CzTA achieves extremely low driving voltages of 2.7/3.4/4.4 V and record high power efficiencies of 30.3/24.4/16.3 lm W -1 at 1, 100 and 1000 cd m -2 , respectively. We believe that this work will pave the way to the design of novel power-efficient self-host blue phosphorescent dendrimers used for energy-saving displays and solid-state lightings.
A nickel-cadmium battery reconditioning circuit
NASA Technical Reports Server (NTRS)
Lanier, R.
1977-01-01
The circuit presented is simple and small enough to be included in a typical battery charge/power control assembly, yet provides the advantage of a complete ground-type battery reconditioning discharge. Test results on the circuit when used to recondition two 24 cell, 20 A-h nickel-cadmium batteries are given. These results show that a battery reconditioned with this circuit returns to greater than 90 percent of its original capacity (greater than nameplate capacity) and follows a typical new battery degradation curve even after over 20,000 simulated orbital cycles for a 4 year period. Applications of the circuit are considered along with recommendations relative to its use. Its application in low voltage (22 to 36 Vdc) power systems and in high voltage (100 to 150 Vdc) power systems is discussed. The implications are that the high voltage systems have a greater need for battery reconditioning than their low voltage counterparts, and that using these circuit techniques, the expected life of a battery in low Earth orbit can be up to 5 years.
NASA Technical Reports Server (NTRS)
Binkley, David M.; Verma, Nikhil; Crawford, Robert L.; Brandon, Erik; Jackson, Thomas N.
2004-01-01
Organic strain gauge and other sensors require high-gain, precision dc amplification to process their low-level output signals. Ideally, amplifiers would be fabricated using organic thin-film field-effect transistors (OTFT's) adjacent to the sensors. However, OTFT amplifiers exhibit low gain and high input-referred dc offsets that must be effectively managed. This paper presents a four-stage, cascaded differential OTFT amplifier utilizing switched capacitor auto-zeroing. Each stage provides a nominal voltage gain of four through a differential pair driving low-impedance active loads, which provide common-mode output voltage control. p-type pentacence OTFT's are used for the amplifier devices and auto-zero switches. Simulations indicate the amplifier provides a nominal voltage gain of 280 V/V and effectively amplifies a 1-mV dc signal in the presence of 500-mV amplifier input-referred dc offset voltages. Future work could include the addition of digital gain calibration and offset correction of residual offsets associated with charge injection imbalance in the differential circuits.
Low Voltage Alarm Apprenticeship. Related Training Modules. 29.1-29.5 Drawing.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This packet of five learning modules on drawing is one of eight such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide (a check…
Performance and Safety of Lithium Ion Cells
NASA Technical Reports Server (NTRS)
Ratnakumar, B. V.; Smart, M. C.; Whitcanack, L.; Surampudi, S.; Marsh, R.
2001-01-01
This report evaluates the performance and safety of Lithium Ion (Li-Ion) cells when used in batteries. Issues discussed include the cycle life, energy efficiency, tolerance to higher charge voltage, tolerance to extended tapered charge voltage, charge on cycling, specific energy, low temperature discharge, low temperature charge, various charge characteristics, storage characteristics, and more of Li-Ion cells.
Low Voltage Alarm Apprenticeship. Related Training Modules. 28.1-28.12 Human Relations.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This packet of 12 learning modules on human relations is 1 of 8 such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide (a check…
Low Voltage Alarm Apprenticeship. Related Training Modules. 6.1-6.6 Safety.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This packet of six learning modules on safety is one of eight such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide (a check…
Low Voltage Alarm Apprenticeship. Related Training Modules. 27.1-27.4 Computer Usage.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This packet of four learning modules on computer usage is one of eight such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide…
Low Voltage Alarm Apprenticeship. Related Training Modules. 0.1 History of Alarms.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This packet of one learning module on the history of alarms is one of eight such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study…
Low Voltage Alarm Apprenticeship. Related Training Modules. 7.1-26.10 Alarm Basics.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This packet of 70 learning modules on alarm basics is 1 of 8 such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide (a check…
Low Voltage Alarm Apprenticeship. Related Training Modules. 2.1-5.3 Electricity/Electronics.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This packet of 29 learning modules on electricity/electronics is 1 of 8 such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide…
NASA Astrophysics Data System (ADS)
Bokhari, Abdullah
Demarcations between traditional distribution power systems and distributed generation (DG) architectures are increasingly evolving as higher DG penetration is introduced in the system. The concerns in existing electric power systems (EPSs) to accommodate less restrictive interconnection policies while maintaining reliability and performance of power delivery have been the major challenge for DG growth. In this dissertation, the work is aimed to study power quality, energy saving and losses in a low voltage distributed network under various DG penetration cases. Simulation platform suite that includes electric power system, distributed generation and ZIP load models is implemented to determine the impact of DGs on power system steady state performance and the voltage profile of the customers/loads in the network under the voltage reduction events. The investigation designed to test the DG impact on power system starting with one type of DG, then moves on multiple DG types distributed in a random case and realistic/balanced case. The functionality of the proposed DG interconnection is designed to meet the basic requirements imposed by the various interconnection standards, most notably IEEE 1547, public service commission, and local utility regulation. It is found that implementation of DGs on the low voltage secondary network would improve customer's voltage profile, system losses and significantly provide energy savings and economics for utilities. In a network populated with DGs, utility would have a uniform voltage profile at the customers end as the voltage profile becomes more concentrated around targeted voltage level. The study further reinforced the concept that the behavior of DG in distributed network would improve voltage regulation as certain percentage reduction on utility side would ensure uniform percentage reduction seen by all customers and reduce number of voltage violations.
NASA Astrophysics Data System (ADS)
Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.
2014-06-01
The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.
Röhr, Jason A; Moia, Davide; Haque, Saif A; Kirchartz, Thomas; Nelson, Jenny
2018-03-14
Using drift-diffusion simulations, we investigate the voltage dependence of the dark current in single carrier devices typically used to determine charge-carrier mobilities. For both low and high voltages, the current increases linearly with the applied voltage. Whereas the linear current at low voltages is mainly due to space charge in the middle of the device, the linear current at high voltage is caused by charge-carrier saturation due to a high degree of injection. As a consequence, the current density at these voltages does not follow the classical square law derived by Mott and Gurney, and we show that for trap-free devices, only for intermediate voltages, a space-charge-limited drift current can be observed with a slope that approaches a value of two. We show that, depending on the thickness of the semiconductor layer and the size of the injection barriers, the two linear current-voltage regimes can dominate the whole voltage range, and the intermediate Mott-Gurney regime can shrink or disappear. In this case, which will especially occur for thicknesses and injection barriers typical of single-carrier devices used to probe organic semiconductors, a meaningful analysis using the Mott-Gurney law will become unachievable, because a square-law fit can no longer be achieved, resulting in the mobility being substantially underestimated. General criteria for when to expect deviations from the Mott-Gurney law when used for analysis of intrinsic semiconductors are discussed.
NASA Astrophysics Data System (ADS)
Röhr, Jason A.; Moia, Davide; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny
2018-03-01
Using drift-diffusion simulations, we investigate the voltage dependence of the dark current in single carrier devices typically used to determine charge-carrier mobilities. For both low and high voltages, the current increases linearly with the applied voltage. Whereas the linear current at low voltages is mainly due to space charge in the middle of the device, the linear current at high voltage is caused by charge-carrier saturation due to a high degree of injection. As a consequence, the current density at these voltages does not follow the classical square law derived by Mott and Gurney, and we show that for trap-free devices, only for intermediate voltages, a space-charge-limited drift current can be observed with a slope that approaches a value of two. We show that, depending on the thickness of the semiconductor layer and the size of the injection barriers, the two linear current-voltage regimes can dominate the whole voltage range, and the intermediate Mott-Gurney regime can shrink or disappear. In this case, which will especially occur for thicknesses and injection barriers typical of single-carrier devices used to probe organic semiconductors, a meaningful analysis using the Mott-Gurney law will become unachievable, because a square-law fit can no longer be achieved, resulting in the mobility being substantially underestimated. General criteria for when to expect deviations from the Mott-Gurney law when used for analysis of intrinsic semiconductors are discussed.
A low-voltage fully balanced CMFF transconductor with improved linearity
NASA Astrophysics Data System (ADS)
Calvo, B.; Celma, S.; Alegre, J. P.; Sanz, M. T.
2007-05-01
This paper presents a new low-voltage pseudo-differential continuous-time CMOS transconductor for wideband applications. The proposed cell is based on a feedforward cancellation of the input common-mode signal and keeps the input common mode voltage constant, while the transconductance is easily tunable through a continuous bias voltage. Linearity is preserved during the tuning process for a moderate range of transconductance values. Simulation results for a 0.35 μm CMOS design show a 1:2 G m tuning range with an almost constant bandwidth over 600 MHz. Total harmonic distortion figures are below -60 dB over the whole range at 10 MHz up to a 200 μA p-p differential output. The proposed cell consumes less than 1.2 mW from a single 2.0 V supply.
Design and construction of portable survey meter
NASA Astrophysics Data System (ADS)
Singseeta, W.; Thong-aram, D.; Pencharee, S.
2017-09-01
This work was aimed to design and construction of portable survey meter for radiation dose measuring. The designed system consists of 4 main parts consisting of low voltage power supply, radiation detection, radiation measurement and data display part on android phone. The test results show that the ripple voltage of low voltage power supply is less than 1%, the maximum integral counts are found to be 104 counts per second and the maximum distance of wireless commination between the server and the client is about 10 meter. It was found that the developed system had small size and light weight for portable instrument.
NASA Technical Reports Server (NTRS)
Martinelli, R. M.
1977-01-01
A 1-kW capacitor-diode voltage multiplier (CDVM) was designed, fabricated and tested to demonstrate the power of feasibility of high power CDVM's and to verify the analytical techniques that had been used to predict the performance characteristics of a 6-kw CDVM. High efficiency (96.2%), a low ratio of component weight to power (0.55 kg/kW), and low output ripple voltage (less than 1%, peak to peak) were obtained during the operation of a 1-kW CDVM various input line, load current, and load fault conditions.
Modeling of Sonos Memory Cell Erase Cycle
NASA Technical Reports Server (NTRS)
Phillips, Thomas A.; MacLeond, Todd C.; Ho, Fat D.
2010-01-01
Silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile semiconductor memories (NVSMS) have many advantages. These memories are electrically erasable programmable read-only memories (EEPROMs). They utilize low programming voltages, endure extended erase/write cycles, are inherently resistant to radiation, and are compatible with high-density scaled CMOS for low power, portable electronics. The SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. The SONOS floating gate charge and voltage, tunneling current, threshold voltage, and drain current were characterized during an erase cycle. Comparisons were made between the model predictions and experimental device data.
Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion
NASA Astrophysics Data System (ADS)
Kelly, Nelson A.; Gibson, Thomas L.
There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.
An Ultra-Low Voltage Analog Front End for Strain Gauge Sensory System Application in 0.18µm CMOS
NASA Astrophysics Data System (ADS)
Edward, Alexander; Chan, Pak Kwong
This paper presents analysis and design of a new ultra-low voltage analog front end (AFE) dedicated to strain sensor applications. The AFE, designed in 0.18µm CMOS process, features a chopper-stabilized instrumentation amplifier (IA), a balanced active MOSFET-C 2nd order low pass filter (LPF), a clock generator and a voltage booster which operate at supply voltage (Vdd) of 0.6V. The designed IA achieves 30dB of closed-loop gain, 101dB of common-mode rejection ratio (CMRR) at 50Hz, 80dB of power-supply rejection ratio (PSRR) at 50Hz, thermal noise floor of 53.4 nV/√Hz, current consumption of 14µA, and noise efficiency factor (NEF) of 9.7. The high CMRR and rail-to-rail output swing capability is attributed to a new low voltage realization of the active-bootstrapped technique using a pseudo-differential gain-boosting operational transconductance amplifier (OTA) and proposed current-driven bulk (CDB) biasing technique. An output capacitor-less low-dropout regulator (LDO), with a new fast start-up LPF technique, is used to regulate this 0.6V supply from a 0.8-1.0V energy harvesting power source. It achieves power supply rejection (PSR) of 42dB at frequency of 1MHz. A cascode compensated pseudo differential amplifier is used as the filter's building block for low power design. The filter's single-ended-to-balanced converter is implemented using a new low voltage amplifier with two-stage common-mode cancellation. The overall AFE was simulated to have 65.6dB of signal-to-noise ratio (SNR), total harmonic distortion (THD) of less than 0.9% for a 100Hz sinusoidal maximum input signal, bandwidth of 2kHz, and power consumption of 51.2µW. Spectre RF simulations were performed to validate the design using BSIM3V3 transistor models provided by GLOBALFOUNDRIES 0.18µm CMOS process.
Cadmium telluride solar cells: Record-breaking voltages
Poplawsky, Jonathan D.
2016-01-01
Here, the performance of CdTe solar cells — cheaper alternatives to silicon photovoltaics — is hampered by their low output voltages, which are normally well below the theoretical limit. Now, record voltages of over 1 V have been reported in single-crystal CdTe heterostructure solar cells, which are close to those of benchmark GaAs cells.
Ceramic capacitor insulation resistance failures accelerated by low voltage
NASA Technical Reports Server (NTRS)
Brennan, T. F.
1978-01-01
Ceramic capacitors failed insulation resistance testing at less than one-tenth their rated voltage. Many failures recovered as the voltage was increased. Comprehensive failure analysis techniques, some of which are unprecedented, were used to examine these failures. It was determined that there was more than one failure mechanism, and the results indicate a need for special additional screening.
A low power, low noise Programmable Analog Front End (PAFE) for biopotential measurements.
Adimulam, Mahesh Kumar; Divya, A; Tejaswi, K; Srinivas, M B
2017-07-01
A low power Programmable Analog Front End (PAFE) for biopotential measurements is presented in this paper. The PAFE circuit processes electrocardiogram (ECG), electromyography (EMG) and electroencephalogram (EEG) signals with higher accuracy. It consists mainly of improved transconductance programmable gain instrumentational amplifier (PGIA), programmable high pass filter (PHPF), and second order low pass filter (SLPF). A 15-bit programmable 5-stage successive approximation analog-to-digital converter (SAR-ADC) is implemented for improving the performance, whose power consumption is reduced due to multiple stages and by OTA/Comparator sharing technique between the stages. The power consumption is further reduced by operating the analog portion of PAFE on 0.5V supply voltage and digital portion on 0.3V supply voltage generated internally through a voltage regulator. The proposed low power PAFE has been fabricated in 180nm standard CMOS process. The performance parameters of PAFE in 15-bit mode are found to be, gain of 31-70 dB, input referred noise of 1.15 μVrms, CMRR of 110 dB, PSRR of 104 dB, and signal-to-noise distortion ratio (SNDR) of 83.5dB. The power consumption of the design is 1.1 μW @ 0.5 V supply voltage and it occupies a core silicon area of 1.2 mm 2 .
Xiang, Lanyi; Wang, Wei; Xie, Wenfa
2016-01-01
Poly(vinylidene fluoride–trifluoroethylene) has been widely used as a dielectric of the ferroelectric organic field-effect transistor (FE-OFET) nonvolatile memory (NVM). Some critical issues, including low mobility and high operation voltage, existed in these FE-OFET NVMs, should be resolved before considering to their commercial application. In this paper, we demonstrated low-voltage operating FE-OFET NVMs based on a ferroelectric terpolymer poly(vinylidene-fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] owed to its low coercive field. By applying an ultraviolet-ozone (UVO) treatment to modify the surface of P(VDF-TrFE-CTFE) films, the growth model of the pentacene film was changed, which improved the pentacene grain size and the interface morphology of the pentacene/P(VDF-TrFE-CTFE). Thus, the mobility of the FE-OFET was significantly improved. As a result, a high performance FE-OFET NVM, with a high mobility of 0.8 cm2 V−1 s−1, large memory window of 15.4~19.2, good memory on/off ratio of 103, the reliable memory endurance over 100 cycles and stable memory retention ability, was achieved at a low operation voltage of ±15 V. PMID:27824101
Hargrove, Douglas L.
2004-09-14
A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.
NASA Astrophysics Data System (ADS)
Chen, R. M.; Diggins, Z. J.; Mahatme, N. N.; Wang, L.; Zhang, E. X.; Chen, Y. P.; Zhang, H.; Liu, Y. N.; Narasimham, B.; Witulski, A. F.; Bhuva, B. L.; Fleetwood, D. M.
2017-08-01
The single-event sensitivity of bulk 40-nm sequential circuits is investigated as a function of temperature and supply voltage. An overall increase in SEU cross section versus temperature is observed at relatively high supply voltages. However, at low supply voltages, there is a threshold temperature beyond which the SEU cross section decreases with further increases in temperature. Single-event transient induced errors in flip-flops also increase versus temperature at relatively high supply voltages and are more sensitive to temperature variation than those caused by single-event upsets.
NASA Astrophysics Data System (ADS)
Dinetta, L. C.; Hannon, M. H.
1995-10-01
Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Hannon, M. H.
1995-01-01
Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.
NASA Astrophysics Data System (ADS)
Lobanov, Nikolai R.; Tunningley, Thomas; Linardakis, Peter
2018-04-01
Tandem electrostatic accelerators often require the flexibility to operate at a variety of terminal voltages to accommodate various user requirements. However, the ion beam transmission will only be optimal for a limited range of terminal voltages. This paper describes the operational performance of a novel focusing system that expands the range of terminal voltages for optimal transmission. This is accomplished by controlling the gradient of the entrance of the low-energy tube, providing an additional focusing element. In this specific case it is achieved by applying up to 150 kV to the fifth electrode of the first unit of the accelerator tube. Numerical simulations and beam transmission tests have been performed to confirm the effectiveness of the lens. An analytical expression has been derived describing its focal properties. These tests demonstrate that the entrance lens control eliminates the need to short out sections of the tube for operation at low terminal voltage.
NASA Astrophysics Data System (ADS)
Honma, Hiroaki; Takahashi, Kazuhiro; Ishida, Makoto; Sawada, Kazuaki
2012-11-01
This paper reports on the construction of a nano-electro-mechanical system (NEMS) tunable color filter based on a subwavelength grating with high color uniformity and a low drive voltage. We recently proposed a ground-voltage-ground (GVG)-type tunable color filter with a parallel-plate actuator with three pairs of electrodes to decrease the crosstalk due to the electrostatic attractive force between each pair of actuators. Our finite element method (FEM) simulation results indicate that the drive voltage is decreased by 10 V, as compared to that of the previously reported GV type. The proposed structure was fabricated using a silicon-on-insulator (SOI) wafer. The color tuning capability of the device was demonstrated by applying a drive voltage of 6.7 V. The reflected light intensity was decreased by 34% at a wavelength of 680 nm. Color uniformity was also obtained in the filter area by reducing the variation of the displacement on the one-dimensional actuator arrays.
NASA Astrophysics Data System (ADS)
Brand, U.
1985-04-01
Gas-insulated failsafe high voltage instrument transformers with system voltages in the range of 123 to 420 kV for outdoor service were developed. The basic physics and high power tests performed on gas-filled instrument transformer housings are discussed. Construction and design of gas-insulated voltage transformers are explained. The insulation of the 123 kV model consists of low pressurized SF6 gas and plastic foils. The 245 kV unit has the same principal design; however, a higher SF6 pressure is used and the apparatus is fitted with a hollow composite insulator made of a fiber reinforced plastics tube and silicone casing. For the 420 kV model the same insulator type is used and a design for the voltage grading along the insulator is developed. The transformers show good performance in service; they are a safe and environment-protecting alternative to oil insulated equipment.
Quantitative Determination on Ionic-Liquid-Gating Control of Interfacial Magnetism
Zhao, Shishun; Zhou, Ziyao; Peng, Bin; ...
2017-03-03
Ionic-liquid gating on a functional thin film with a low voltage has drawn a lot of attention due to rich chemical, electronic, and magnetic phenomena at the interface. A key challenge in quantitative determination of voltage-controlled magnetic anisotropy (VCMA) in Au/[DEME] +[TFSI] -/Co field-effect transistor heterostructures is addressed. The magnetic anisotropy change as response to the gating voltage is precisely detected by in situ electron spin resonance measurements. Furthermore, a reversible change of magnetic anisotropy up to 219 Oe is achieved with a low gating voltage of 1.5 V at room temperature, corresponding to a record high VCMA coefficient ofmore » ≈146 Oe V -1. Two gating effects, the electrostatic doping and electrochemical reaction, are distinguished at various gating voltage regions, as confirmed by X-ray photoelectron spectroscopy and atomic force microscopy experiments. Our work shows a unique ionic-liquid-gating system for strong interfacial magnetoelectric coupling with many practical advantages, paving the way toward ion-liquid-gating spintronic/electronic devices.« less
Sawane, Yogesh B; Ogale, Satishchandra B; Banpurkar, Arun G
2016-09-14
We demonstrate a consistent electrowetting response on ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) insulator covered with a thin Teflon AF layer. This bilayer exhibits a factor of 3 enhancement in the contact angle modulation compared to that of conventional single-layered Teflon AF dielectric. On the basis of the proposed model the enhancement is attributed to the high value of effective dielectric constant (εeff ≈ 6) of the bilayer. Furthermore, the bilayer dielectric exhibits a hysteresis-free contact angle modulation over many AC voltage cycles. But the contact angle modulation for DC voltage shows a hysteresis because of the field-induced residual polarization in the ferroelectric layer. Finally, we show that a thin bilayer exhibits contact angle modulation of Δθ (U) ≈ 60° at merely 15 V amplitude of AC voltage indicating a potential dielectric for practical low voltage electrowetting applications. A proof of concept confirms electrowetting based rapid mixing of a fluorescent dye in aqueous glycerol solution for 15 V AC signal.
Specific features of a single-pulse sliding discharge in neon near the threshold for spark breakdown
NASA Astrophysics Data System (ADS)
Trusov, K. K.
2017-08-01
Experimental data on the spatial structure of a single-pulse sliding discharge in neon at voltages below, equal to, and above the threshold for spark breakdown are discussed. The experiments were carried at gas pressures of 30 and 100 kPa and different polarities of the discharge voltage. Photographs of the plasma structure in two discharge chambers with different dimensions of the discharge zone and different thicknesses of an alumina dielectric plate on the surface of which the discharge develops are inspected. Common features of the prebreakdown discharge and its specific features depending on the voltage polarity and gas pressure are analyzed. It is shown that, at voltages below the threshold for spark breakdown, a low-current glow discharge with cathode and anode spots develops in the electrode gap. Above the breakdown threshold, regardless of the voltage polarity, spark channels directed from the cathode to the anode develop against the background of a low-current discharge.
Quantitative Determination on Ionic-Liquid-Gating Control of Interfacial Magnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shishun; Zhou, Ziyao; Peng, Bin
Ionic-liquid gating on a functional thin film with a low voltage has drawn a lot of attention due to rich chemical, electronic, and magnetic phenomena at the interface. A key challenge in quantitative determination of voltage-controlled magnetic anisotropy (VCMA) in Au/[DEME] +[TFSI] -/Co field-effect transistor heterostructures is addressed. The magnetic anisotropy change as response to the gating voltage is precisely detected by in situ electron spin resonance measurements. Furthermore, a reversible change of magnetic anisotropy up to 219 Oe is achieved with a low gating voltage of 1.5 V at room temperature, corresponding to a record high VCMA coefficient ofmore » ≈146 Oe V -1. Two gating effects, the electrostatic doping and electrochemical reaction, are distinguished at various gating voltage regions, as confirmed by X-ray photoelectron spectroscopy and atomic force microscopy experiments. Our work shows a unique ionic-liquid-gating system for strong interfacial magnetoelectric coupling with many practical advantages, paving the way toward ion-liquid-gating spintronic/electronic devices.« less
Chen, Qiusong; Jia, Weiyao; Chen, Lixiang; Yuan, De; Zou, Yue; Xiong, Zuhong
2016-01-01
Lowering the driving voltage of organic light-emitting diodes (OLEDs) is an important approach to reduce their energy consumption. We have fabricated a series of bifunctional devices (OLEDs and photovoltaics) using rubrene and fullerene (C60) as the active layer, in which the electroluminescence threshold voltage(~1.1 V) was half the value of the bandgap of rubrene. Magneto-electroluminescence (MEL) response of planner heterojunction diodes exhibited a small increase in response to a low magnetic field strength (<20 mT); however, a very large decay was observed at a high magnetic field strength (>20 mT). When a hole-transport layer with a low mobility was included in these devices, the MEL response reversed in shape, and simultaneously, the EL threshold voltage became larger than the bandgap voltage. When bulk heterojunction device was examined, the amplitude of MEL curves presented an anomalous voltage-dependence. Following an analysis of the MEL responses of these devices, we proposed that the EL of half-bandgap-voltage device originated from bimolecular triplet-triplet annihilation in the rubrene film, rather than from singlet excitons that formed via an interface auger recombination. This work provides critical insight into the mechanisms of OLED emission and will help advance the applications of bifunctional devices. PMID:27142285
Single Event Transients in Voltage Regulators for FPGA Power Supply Applications
NASA Technical Reports Server (NTRS)
Poivey, Christian; Sanders, Anthony; Kim, Hak; Phan, Anthony; Forney, Jim; LaBel, Kenneth A.; Karsh, Jeremy; Pursley, Scott; Kleyner, Igor; Katz, Richard
2006-01-01
As with other bipolar analog devices, voltage regulators are known to be sensitive to single event transients (SET). In typical applications, large output capacitors are used to provide noise immunity. Therefore, since SET amplitude and duration are generally small, they are often of secondary importance due to this capacitance filtering. In low voltage applications, however, even small SET are a concern. Over-voltages may cause destructive conditions. Under-voltages may cause functional interrupts and may also trigger electrical latchup conditions. In addition, internal protection circuits which are affected by load as well as internal thermal effects can also be triggered from heavy ions, causing dropouts or shutdown ranging from milliseconds to seconds. In the case of FPGA power supplies applications, SETS are critical. For example, in the case of Actel FPGA RTAX family, core power supply voltage is 1.5V. Manufacturer specifies an absolute maximum rating of 1.6V and recommended operating conditions between 1.425V and 1.575V. Therefore, according to the manufacturer, any transient of amplitude greater than 75 mV can disrupt normal circuit functions, and overvoltages greater than 100 mV may damage the FPGA. We tested five low dropout voltage regulators for SET sensitivity under a large range of circuit application conditions.
High-voltage pulsed generator for dynamic fragmentation of rocks
NASA Astrophysics Data System (ADS)
Kovalchuk, B. M.; Kharlov, A. V.; Vizir, V. A.; Kumpyak, V. V.; Zorin, V. B.; Kiselev, V. N.
2010-10-01
A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ˜50 ns, current amplitude of ˜6 kA with the 40 Ω active load, and ˜20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.
High-voltage pulsed generator for dynamic fragmentation of rocks.
Kovalchuk, B M; Kharlov, A V; Vizir, V A; Kumpyak, V V; Zorin, V B; Kiselev, V N
2010-10-01
A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ∼50 ns, current amplitude of ∼6 kA with the 40 Ω active load, and ∼20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.
Buried Oxide Densification for Low Power, Low Voltage CMOS Applications
NASA Technical Reports Server (NTRS)
Allen, L. P.; Anc, M. J.; Dolan, B.; Jiao, J.; Guss, B.; Seraphin, S.; Liu, S. T.; Jenkins, W.
1998-01-01
Special technology and circuit architecture are of growing interest for implementation of circuits which operate at low supply voltages and consume low power levels without sacrificing performance[1]. Use of thin buried oxide SOI substrates is a primary approach to simultaneously achieve these goals. A significant aspect regarding SIMOX SOI for low voltage, low power applications is the reliability and performance of the thin buried oxide. In addition, when subjected to high total dose irradiation, the silicon islands within the BOX layer of SIMOX can store charges and significantly effect the back channel threshold voltages of devices. Thus, elimination of the islands within the buried oxide (BOX) layer is preferred in order to prevent leakage through these conductive islands and charge build-up within the buried oxide layer. A differential (2-step) ramp rate as applied to full and 100 nm BOX SIMOX was previously reported to play a significant role in the stoichiometry and island formation within the buried layer[2]. This paper focus is on the properties of a thin (120nm) buried oxide as a function of the anneal ramp rate and the temperature of anneal. In this research, we have found an improvement in the buried oxide stoichiometry with the use of a slower, singular ramp rate for specified thin buried oxides, with slower ramp rates and higher temperatures of anneal suggested for reducing the presence of Si islands within the BOX layer.
A low-voltage low-power front-end for wearable EEG systems.
Yates, D; López-Morillo, E; Carvajal, R G; Ramirez-Angulo, J; Rodriguez-Villegas, E
2007-01-01
A low-voltage and low-power front-end for miniaturized, wearable EEG systems is presented. The instrumentation amplifier, which removes the electrode drift and conditions the signal for a 10-bit A/D converter, combines a chopping strategy with quasi-FGMOS (QFG) transistors to minimize low frequency noise whilst enabling operation at 1 V supply. QFG devices are also key to the A/D converter operating at 1.2 V with 70dB of SNR and an oversampling ratio of 64. The whole system consumes less than 2uW at 1.2V.
Low-threshold field emission in planar cathodes with nanocarbon materials
NASA Astrophysics Data System (ADS)
Zhigalov, V.; Petukhov, V.; Emelianov, A.; Timoshenkov, V.; Chaplygin, Yu.; Pavlov, A.; Shamanaev, A.
2016-12-01
Nanocarbon materials are of great interest as field emission cathodes due to their low threshold voltage. In this work current-voltage characteristics of nanocarbon electrodes were studied. Low-threshold emission was found in planar samples where field enhancement is negligible (<10). Electron work function values, calculated by Fowler-Nordheim theory, are anomalous low (<1 eV) and come into collision with directly measured work function values in fabricated planar samples (4.1-4.4 eV). Non-applicability of Fowler-Nordheim theory for the nanocarbon materials was confirmed. The reasons of low-threshold emission in nanocarbon materials are discussed.
Shen, Yanguang; Sun, Zhonghua; Xu, Lei; Li, Yu; Zhang, Nan; Yan, Zixu; Fan, Zhanming
2015-01-01
Objective To assess the image quality of aorta obtained by dual-source computed tomography angiography (DSCTA), performed with high pitch, low tube voltage, and low iodine concentration contrast medium (CM) with images reconstructed using iterative reconstruction (IR). Methods One hundred patients randomly allocated to receive one of two types of CM underwent DSCTA with the electrocardiogram-triggered Flash protocol. In the low-iodine group, 50 patients received CM containing 270 mg I/mL and were scanned at low tube voltage (100 kVp). In the high-iodine CM group, 50 patients received CM containing 370 mg I/mL and were scanned at the tube voltage (120 kVp). The filtered back projection (FBP) algorithm was used for reconstruction in both groups. In addition, the IR algorithm was used in the low-iodine group. Image quality of the aorta was analyzed subjectively by a 3-point grading scale and objectively by measuring the CT attenuation in terms of the signal- and contrast-to-noise ratios (SNR and CNR, respectively). Radiation and CM doses were compared. Results The CT attenuation, subjective image quality assessment, SNR, and CNR of various aortic regions of interest did not differ significantly between two groups. In the low-iodine group, images reconstructed by FBP and IR demonstrated significant differences in image noise, SNR, and CNR (p<0.05). The low-iodine group resulted in 34.3% less radiation (4.4 ± 0.5 mSv) than the high-iodine group (6.7 ± 0.6 mSv), and 27.3% less iodine weight (20.36 ± 2.65 g) than the high-iodine group (28 ± 1.98 g). Observers exhibited excellent agreement on the aortic image quality scores (κ = 0.904). Conclusions CT images of aorta could be obtained within 2 s by using a DSCT Flash protocol with low tube voltage, IR, and low-iodine-concentration CM. Appropriate contrast enhancement was achieved while maintaining good image quality and decreasing the radiation and iodine doses. PMID:25643353
Successful application of Low Voltage Electron Microscopy to practical materials problems.
Bell, David C; Mankin, Max; Day, Robert W; Erdman, Natasha
2014-10-01
Low-voltage High-Resolution Electron Microscopy (LVHREM) has several advantages, including increased cross-sections for inelastic and elastic scattering, increased contrast per electron, decreased delocalization effects and reduced knock-on damage. Imaging at differing voltages has shown advantages for imaging materials that are knock-on damage sensitive. We show experimentally that different materials systems benefit from low voltage high-resolution microscopy. There are advantages for imaging single layer materials such as graphene at below the knock-on threshold; we present an example of imaging a graphene sheet at 40kV. We have also examined mesoporous silica decorated with Pd nanoparticles and carbon black functionalized with Pd/Pt nanoparticles. In these cases we show that the lower voltage imaging maintains the structure of the surrounding matrix during imaging, whereas aberration correction provides the higher resolution for imaging the nanoparticle lattice. Perhaps surprisingly we show that zeolites damage preferentially by ionization effects (radiolysis). The current literature suggests that below incident energies of 40kV the damage is mainly radiolitic, whereas at incident energies above 200kV the knock-on damage and material sputtering will be the dominant effect. Our experimental observations support this conclusion and the effects we have observed at 40kV are not indicative of knock-on damage. Other nanoscale materials such as thin silicon nanowires also benefit from lower voltage imaging. LVHREM imaging provides an excellent option to avoid beam damage to nanowires; our results suggest that LVHREM is suitable for nanowire-biological composites. Our experimental observations serve as a clear demonstration that even at 40keV accelerating voltage, LVHREM can be used without inducing beam damage to locate dislocations and other crystalline defects, which may have adverse effects on nanowire device performance. Low voltage operation will likely become the new mode of imaging for many electron microscopes, with the instrument being, in essence, tuned to extract all the information possible from each electron that transits the sample. Copyright © 2014 Elsevier B.V. All rights reserved.
Ultrafast Power Processor for Smart Grid Power Module Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
MAITRA, ARINDAM; LITWIN, RAY; lai, Jason
This project’s goal was to increase the switching speed and decrease the losses of the power semiconductor devices and power switch modules necessary to enable Smart Grid energy flow and control equipment such as the Ultra-Fast Power Processor. The primary focus of this project involves exploiting the new silicon-based Super-GTO (SGTO) technology and build on prototype modules already being developed. The prototype super gate-turn-off thyristor (SGTO) has been tested fully under continuously conducting and double-pulse hard-switching conditions for conduction and switching characteristics evaluation. The conduction voltage drop measurement results indicate that SGTO has excellent conduction characteristics despite inconsistency among somemore » prototype devices. Tests were conducted with two conditions: (1) fixed gate voltage and varying anode current condition, and (2) fixed anode current and varying gate voltage condition. The conduction voltage drop is relatively a constant under different gate voltage condition. In terms of voltage drop as a function of the load current, there is a fixed voltage drop about 0.5V under zero current condition, and then the voltage drop is linearly increased with the current. For a 5-kV voltage blocking device that may operate under 2.5-kV condition, the projected voltage drop is less than 2.5 V under 50-A condition, or 0.1%. If the device is adopted in a converter operating under soft-switching condition, then the converter can achieve an ultrahigh efficiency, typically above 99%. The two-pulse switching test results indicate that SGTO switching speed is very fast. The switching loss is relatively low as compared to that of the insulated-gate-bipolar-transistors (IGBTs). A special phenomenon needs to be noted is such a fast switching speed for the high-voltage switching tends to create an unexpected Cdv/dt current, which reduces the turn-on loss because the dv/dt is negative and increases the turn-off loss because the dv/dt is positive. As a result, the turn-on loss at low current is quite low, and the turn-off loss at low current is relatively high. The phenomenon was verified with junction capacitance measurement along with the dv/dt calculation. Under 2-kV test condition, the turn-on and turn-off losses at 25-A is about 3 and 9 mJ, respectively. As compared to a 4.5-kV, 60-A rated IGBT, which has turn-on and turn-off losses about 25 and 20 mJ under similar test condition, the SGTO shows significant switching loss reduction. The switching loss depends on the switching frequency, but under hard-switching condition, the SGTO is favored to the IGBT device. The only concern is during low current turn-on condition, there is a voltage bump that can translate to significant power loss and associated heat. The reason for such a current bump is not known from this study. It is necessary that the device manufacturer perform though test and provide the answer so the user can properly apply SGTO in pulse-width-modulated (PWM) converter and inverter applications.« less
Electro-optical properties of low viscosity driven holographic polymer dispersed liquid crystals
NASA Astrophysics Data System (ADS)
Moon, K. R.; Bae, S. Y.; Kim, B. K.
2015-04-01
Relative diffraction efficiency (RDE), operating voltage, and response times are most important performance characteristics of holographic polymer dispersed liquid crystals (HPDLC). Two types of triallyl isocyanurate (TI) having different structures were incorporated into the conventional transmission grating of HPDLC. Premix viscosity decreased by 13-18% with up to 3% TI, beyond which it increased. TI eliminated induction period and augmented initial grating formation rate at all contents. Saturation RDE increased over 200% while threshold voltage and rise time decreased to about half and 2/3, respectively up to 3% TI, beyond which the tendencies were reversed. Among the two TIs, low viscosity monomer (TA) showed high RDE, while high miscibility monomer (TE) low characteristic voltages and short response times. It is concluded that grating formation is largely favored by low viscosity, while interface tensions and electro-optical performances by miscibility at similar viscosities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check wires. 77.906 Section 77.906 Mineral Resources MINE... wires and ground check wires. On and after September 30, 1971, all trailing cables supplying power to...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check wires. 77.906 Section 77.906 Mineral Resources MINE... wires and ground check wires. On and after September 30, 1971, all trailing cables supplying power to...
Low Voltage Alarm Apprenticeship. Related Training Modules. 1.1-1.14 Trade Math.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This packet of 14 learning modules on trade math is 1 of 8 such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide (a check list…
Reproducible and controllable induction voltage adder for scaled beam experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, Yasuo; Nakajima, Mitsuo; Horioka, Kazuhiko
2016-08-15
A reproducible and controllable induction adder was developed using solid-state switching devices and Finemet cores for scaled beam compression experiments. A gate controlled MOSFET circuit was developed for the controllable voltage driver. The MOSFET circuit drove the induction adder at low magnetization levels of the cores which enabled us to form reproducible modulation voltages with jitter less than 0.3 ns. Preliminary beam compression experiments indicated that the induction adder can improve the reproducibility of modulation voltages and advance the beam physics experiments.
Novel zero voltage transition pulse width modulation flyback converter
NASA Astrophysics Data System (ADS)
Adib, Ehsan; Farzanehfard, Hosein
2010-09-01
In this article, a new zero voltage (ZV) transition flyback converter is introduced which uses a simple auxiliary circuit. In this converter, ZV switching condition is achieved for the converter switch while zero current switching condition is attained for the auxiliary switch. There is no additional voltage and current stress on the main switch. Main diode, auxiliary circuit voltage and current ratings are low. The proposed converter is analysed and design procedure is discussed. The presented experimental results of a prototype converter justify the theoretical analysis.
Sidelman, Noam; Cohen, Moshik; Kolbe, Anke; Zalevsky, Zeev; Herrman, Andreas; Richter, Shachar
2015-01-01
Electrokinetic phenomena are a powerful tool used in various scientific and technological applications for the manipulation of aqueous solutions and the chemical entities within them. However, the use of DC-induced electrokinetics in miniaturized devices is highly limited. This is mainly due to unavoidable electrochemical reactions at the electrodes, which hinder successful manipulation. Here we present experimental evidence that on-chip DC manipulation of particles between closely positioned electrodes inside micro-droplets can be successfully achieved, and at low voltages. We show that such manipulation, which is considered practically impossible, can be used to rapidly concentrate and pattern particles in 2D shapes in inter-electrode locations. We show that this is made possible in low ion content dispersions, which enable low-voltage electrokinetics and an anomalous bubble-free water electrolysis. This phenomenon can serve as a powerful tool in both microflow devices and digital microfluidics for rapid pre-concentration and particle patterning. PMID:26293477
Forward voltage short-pulse technique for measuring high power laser array junction temperature
NASA Technical Reports Server (NTRS)
Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)
2012-01-01
The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.
Evaluation of Low-Voltage Distribution Network Index Based on Improved Principal Component Analysis
NASA Astrophysics Data System (ADS)
Fan, Hanlu; Gao, Suzhou; Fan, Wenjie; Zhong, Yinfeng; Zhu, Lei
2018-01-01
In order to evaluate the development level of the low-voltage distribution network objectively and scientifically, chromatography analysis method is utilized to construct evaluation index model of low-voltage distribution network. Based on the analysis of principal component and the characteristic of logarithmic distribution of the index data, a logarithmic centralization method is adopted to improve the principal component analysis algorithm. The algorithm can decorrelate and reduce the dimensions of the evaluation model and the comprehensive score has a better dispersion degree. The clustering method is adopted to analyse the comprehensive score because the comprehensive score of the courts is concentrated. Then the stratification evaluation of the courts is realized. An example is given to verify the objectivity and scientificity of the evaluation method.
Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators
Dimitrakopoulos; Purushothaman; Kymissis; Callegari; Shaw
1999-02-05
The gate bias dependence of the field-effect mobility in pentacene-based insulated gate field-effect transistors (IGFETs) was interpreted on the basis of the interaction of charge carriers with localized trap levels in the band gap. This understanding was used to design and fabricate IGFETs with mobility of more than 0.3 square centimeter per volt per second and current modulation of 10(5), with the use of amorphous metal oxide gate insulators. These values were obtained at operating voltage ranges as low as 5 volts, which are much smaller than previously reported results. An all-room-temperature fabrication process sequence was used, which enabled the demonstration of high-performance organic IGFETs on transparent plastic substrates, at low operating voltages for organic devices.
NASA Astrophysics Data System (ADS)
Tewari, Amit; Gandla, Srinivas; Pininti, Anil Reddy; Karuppasamy, K.; Böhm, Siva; Bhattacharyya, Arup R.; McNeill, Christopher R.; Gupta, Dipti
2015-09-01
This paper reports the fabrication of pentacene-based organic thin-film transistors using a dielectric material, Dynasylan ®SIVO110. The devices exhibit excellent performance characterized by a low threshold voltage of -1.4 V (operating voltage: 0 to -4 V) together with a mobility of 1.9 cm2 V-1s-1. These results are promising because it uses only a single layer of dielectric without performing any intermediate treatment. The reason is attributed to the high charge storage capacity of the dielectric (κ ˜ 20.02), a low interfacial trap density (2.56 × 1011cm-2), and favorable pentacene film morphology consisting of large and interconnected grains having an average size of 234 nm.
30 CFR 77.807 - Installation of high-voltage transmission cables.
Code of Federal Regulations, 2010 CFR
2010-07-01
... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS... against damage. They shall be placed to prevent contact with low-voltage or communication circuits. ...
Low driving voltage simplified tandem organic light-emitting devices by using exciplex-forming hosts
NASA Astrophysics Data System (ADS)
Zhou, Dong-Ying; Cui, Lin-Song; Zhang, Ying-Jie; Liao, Liang-Sheng; Aziz, Hany
2014-10-01
Tandem organic light-emitting devices (OLEDs), i.e., OLEDs containing multiple electroluminescence (EL) units that are vertically stacked, are attracting significant interest because of their ability to realize high current efficiency and long operational lifetime. However, stacking multiple EL units in tandem OLEDs increases driving voltage and complicates fabrication process relative to their standard single unit counterparts. In this paper, we demonstrate low driving voltage tandem OLEDs via utilizing exciplex-forming hosts in the EL units instead of conventional host materials. The use of exciplex-forming hosts reduces the charge injection barriers and the trapping of charges on guest molecules, resulting in the lower driving voltage. The use of exciplex-forming hosts also allows using fewer layers, hence simpler EL configuration which is beneficial for reducing the fabrication complexity of tandem OLEDs.
Annealing effects on hydrogenated diamond NOR logic circuits
NASA Astrophysics Data System (ADS)
Liu, J. W.; Oosato, H.; Liao, M. Y.; Imura, M.; Watanabe, E.; Koide, Y.
2018-04-01
Here, hydrogenated diamond (H-diamond) NOR logic circuits composed of two p-type enhancement-mode (E-mode) metal-oxide-semiconductor field-effect-transistors (MOSFETs) and a load resistor are fabricated and characterized. The fabrication process and the annealing effect on the electrical properties of the NOR logic circuit are demonstrated. There are distinct logical characteristics for the as-received and 300 °C annealed NOR logic circuits. When one or both input voltages for the E-mode MOSFETs are -10.0 V and "high" signals, output voltages respond 0 V and "low" signals. Instead, when both input voltages are 0 V and "low" signals, output voltage responds -10.0 V and a "high" signal. After annealing at 400 °C, the NOR logical characteristics are damaged, which is possibly attributed to the degradation of the H-diamond MOSFETs.
Adhesive curing through low-voltage activation
Ping, Jianfeng; Gao, Feng; Chen, Jian Lin; Webster, Richard D.; Steele, Terry W. J.
2015-01-01
Instant curing adhesives typically fall within three categories, being activated by either light (photocuring), heat (thermocuring) or chemical means. These curing strategies limit applications to specific substrates and can only be activated under certain conditions. Here we present the development of an instant curing adhesive through low-voltage activation. The electrocuring adhesive is synthesized by grafting carbene precursors on polyamidoamine dendrimers and dissolving in aqueous solvents to form viscous gels. The electrocuring adhesives are activated at −2 V versus Ag/AgCl, allowing tunable crosslinking within the dendrimer matrix and on both electrode surfaces. As the applied voltage discontinued, crosslinking immediately terminated. Thus, crosslinking initiation and propagation are observed to be voltage and time dependent, enabling tuning of both material properties and adhesive strength. The electrocuring adhesive has immediate implications in manufacturing and development of implantable bioadhesives. PMID:26282730
Design of the high voltage isolation transmission module with low delay for ECRH system on J-TEXT
NASA Astrophysics Data System (ADS)
Haiyan, MA; Donghui, XIA; Zhijiang, WANG; Fangtai, CUI; Zhenxiong, YU; Yikun, JIN; Changhai, LIU
2018-02-01
As a flexible auxiliary heating method, the electron cyclotron resonance heating (ECRH) has been widely used in many tokamaks and also will be applied for the J-TEXT tokamak. To meet requirements of protection and fault analysis for the ECRH system on J-TEXT, signals of gyrotrons such as the cathode voltage and current, the anode voltage and current, etc should be transmitted to the control and data acquisition system. Considering the high voltage environment of gyrotrons, isolation transmission module based on FPGA and optical fiber communication has been designed and tested. The test results indicate that the designed module has strong anti-noise ability, low error rate and high transmission speed. The delay of the module is no more than 5 μs which can fulfill the requirements.
Direct current ballast circuit for metal halide lamp
NASA Technical Reports Server (NTRS)
Lutus, P. (Inventor)
1981-01-01
A direct current ballast circuit for a two electrode metal halide lamp is described. Said direct current ballast circuit includes a low voltage DC input and a high frequency power amplifier and power transformer for developing a high voltage output. The output voltage is rectified by diodes and filtered by inductor and capacitor to provide a regulated DC output through commutating diodes to one terminal of the lamp at the output terminal. A feedback path from the output of the filter capacitor through the bias resistor to power the high frequency circuit which includes the power amplifier and the power transformer for sustaining circuit operations during low voltage transients on the input DC supply is described. A current sensor connected to the output of the lamp through terminal for stabilizing lamp current following breakdown of the lamp is described.
Energy reduction through voltage scaling and lightweight checking
NASA Astrophysics Data System (ADS)
Kadric, Edin
As the semiconductor roadmap reaches smaller feature sizes and the end of Dennard Scaling, design goals change, and managing the power envelope often dominates delay minimization. Voltage scaling remains a powerful tool to reduce energy. We find that it results in about 60% geomean energy reduction on top of other common low-energy optimizations with 22nm CMOS technology. However, when voltage is reduced, it becomes easier for noise and particle strikes to upset a node, potentially causing Silent Data Corruption (SDC). The 60% energy reduction, therefore, comes with a significant drop in reliability. Duplication with checking and triple-modular redundancy are traditional approaches used to combat transient errors, but spending 2--3x the energy for redundant computation can diminish or reverse the benefits of voltage scaling. As an alternative, we explore the opportunity to use checking operations that are cheaper than the base computation they are guarding. We devise a classification system for applications and their lightweight checking characteristics. In particular, we identify and evaluate the effectiveness of lightweight checks in a broad set of common tasks in scientific computing and signal processing. We find that the lightweight checks cost only a fraction of the base computation (0-25%) and allow us to recover the reliability losses from voltage scaling. Overall, we show about 50% net energy reduction without compromising reliability compared to operation at the nominal voltage. We use FPGAs (Field-Programmable Gate Arrays) in our work, although the same ideas can be applied to different systems. On top of voltage scaling, we explore other common low-energy techniques for FPGAs: transmission gates, gate boosting, power gating, low-leakage (high-Vth) processes, and dual-V dd architectures. We do not scale voltage for memories, so lower voltages help us reduce logic and interconnect energy, but not memory energy. At lower voltages, memories become dominant, and we get diminishing returns from continuing to scale voltage. To ensure that memories do not become a bottleneck, we also design an energy-robust FPGA memory architecture, which attempts to minimize communication energy due to mismatches between application and architecture. We do this alongside application parallelism tuning. We show our techniques on a wide range of applications, including a large real-time system used for Wide-Area Motion Imaging (WAMI).
Detection of High-impedance Arcing Faults in Radial Distribution DC Systems
NASA Technical Reports Server (NTRS)
Gonzalez, Marcelo C.; Button, Robert M.
2003-01-01
High voltage, low current arcing faults in DC power systems have been researched at the NASA Glenn Research Center in order to develop a method for detecting these 'hidden faults', in-situ, before damage to cables and components from localized heating can occur. A simple arc generator was built and high-speed and low-speed monitoring of the voltage and current waveforms, respectively, has shown that these high impedance faults produce a significant increase in high frequency content in the DC bus voltage and low frequency content in the DC system current. Based on these observations, an algorithm was developed using a high-speed data acquisition system that was able to accurately detect high impedance arcing events induced in a single-line system based on the frequency content of the DC bus voltage or the system current. Next, a multi-line, radial distribution system was researched to see if the arc location could be determined through the voltage information when multiple 'detectors' are present in the system. It was shown that a small, passive LC filter was sufficient to reliably isolate the fault to a single line in a multi-line distribution system. Of course, no modification is necessary if only the current information is used to locate the arc. However, data shows that it might be necessary to monitor both the system current and bus voltage to improve the chances of detecting and locating high impedance arcing faults
Open-circuit voltage improvements in low-resistivity solar cells
NASA Technical Reports Server (NTRS)
Godlewski, M. P.; Klucher, T. M.; Mazaris, G. A.; Weizer, V. G.
1979-01-01
Mechanisms limiting the open-circuit voltage in 0.1 ohm-cm solar cells were investigated. It was found that a rather complicated multistep diffusion process could produce cells with significantly improved voltages. The voltage capabilities of various laboratory cells were compared independent of their absorption and collection efficiencies. This was accomplished by comparing the cells on the basis of their saturation currents or, equivalently, comparing their voltage outputs at a constant current-density level. The results show that for both the Lewis diffused emitter cell and the Spire ion-implanted emitter cell the base component of the saturation current is voltage controlling. The evidence for the University of Florida cells, although not very conclusive, suggests emitter control of the voltage in this device. The data suggest further that the critical voltage-limiting parameter for the Lewis cell is the electron mobility in the cell base.
Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells.
Garrett, Joseph L; Tennyson, Elizabeth M; Hu, Miao; Huang, Jinsong; Munday, Jeremy N; Leite, Marina S
2017-04-12
Hybrid organic-inorganic perovskites based on methylammonium lead (MAPbI 3 ) are an emerging material with great potential for high-performance and low-cost photovoltaics. However, for perovskites to become a competitive and reliable solar cell technology their instability and spatial variation must be understood and controlled. While the macroscopic characterization of the devices as a function of time is very informative, a nanoscale identification of their real-time local optoelectronic response is still missing. Here, we implement a four-dimensional imaging method through illuminated heterodyne Kelvin probe force microscopy to spatially (<50 nm) and temporally (16 s/scan) resolve the voltage of perovskite solar cells in a low relative humidity environment. Local open-circuit voltage (V oc ) images show nanoscale sites with voltage variation >300 mV under 1-sun illumination. Surprisingly, regions of voltage that relax in seconds and after several minutes consistently coexist. Time-dependent changes of the local V oc are likely due to intragrain ion migration and are reversible at low injection level. These results show for the first time the real-time transient behavior of the V oc in perovskite solar cells at the nanoscale. Understanding and controlling the light-induced electrical changes that affect device performance are critical to the further development of stable perovskite-based solar technologies.
Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, Y. S.; Guo, Y. W.; Kao, B. H.
Harmonic multiplying operation in a gyrotron traveling-wave amplifier (gyro-TWA) permits for magnetic field reduction and frequency multiplication. Lowering a beam voltage is an important step toward miniaturization of a harmonic multiplying gyro-TWA. However, the additional degree of freedom that is provided by the multitude cyclotron harmonics in a low-voltage harmonic multiplying gyro-TWA still easily generates various competing modes. An improved mode-selective circuit, using circular waveguides with various radii, can provide the rejection points within the frequency range to suppress competing modes. Simulated results reveal that the mode-selective circuit can provide an attenuation of more than 14 dB to suppress the competingmore » modes. Furthermore, the performance of the gyro-TWA is analyzed for studying the sensitivity of the saturated output power and full width at half maximum bandwidth of the gyro-TWA to the beam voltage and the magnetic field. A stable low-voltage harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 24 kW at 200.4 GHz, corresponding to a saturated gain of 56 dB at an interaction efficiency of 20%. The full width at half maximum bandwidth is 3.0 GHz.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, Claus, E-mail: danielc@ornl.gov; Mohanty, Debasish, E-mail: danielc@ornl.gov; Li, Jianlin, E-mail: danielc@ornl.gov
2014-06-16
The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V andmore » later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.« less
NASA Astrophysics Data System (ADS)
Liu, Gang-Hu; Liu, Yong-Xin; Bai, Li-Shui; Zhao, Kai; Wang, You-Nian
2018-02-01
The dependence of the electron density and the emission intensity on external parameters during the transitions of the electron power absorption mode is experimentally studied in asymmetric electropositive (neon) and electronegative (CF4) capacitively coupled radio-frequency plasmas. The spatio-temporal distribution of the emission intensity is measured with phase resolved optical emission spectroscopy and the electron density at the discharge center is measured by utilizing a floating hairpin probe. In neon discharge, the emission intensity increases almost linearly with the rf voltage at all driving frequencies covered here, while the variation of the electron density with the rf voltage behaves differently at different driving frequencies. In particular, the electron density increases linearly with the rf voltage at high driving frequencies, while at low driving frequencies the electron density increases slowly at the low-voltage side and, however, grows rapidly, when the rf voltage is higher than a certain value, indicating a transition from α to γ mode. The rf voltage, at which the mode transition occurs, increases with the decrease of the driving frequency/the working pressure. By contrast, in CF4 discharge, three different electron power absorption modes can be observed and the electron density and emission intensity do not exhibit a simple dependence on the rf voltage. In particular, the electron density exhibits a minimum at a certain rf voltage when the electron power absorption mode is switching from drift-ambipolar to the α/γ mode. A minimum can also be found in the emission intensity at a higher rf voltage when a discharge is switching into the γ mode.
2013 Estorm - Invited Paper - Cathode Materials Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, Claus; Mohanty, Debasish; Li, Jianlin
2014-01-01
The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403 431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead acid with a lead oxide cathode and a terminal voltage of 2.1more » V and later the NiCd with a nickel(III) oxide hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783 789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.« less
NASA Astrophysics Data System (ADS)
Lee, Hochul; Ebrahimi, Farbod; Amiri, Pedram Khalili; Wang, Kang L.
2017-05-01
A true random number generator based on perpendicularly magnetized voltage-controlled magnetic tunnel junction devices (MRNG) is presented. Unlike MTJs used in memory applications where a stable bit is needed to store information, in this work, the MTJ is intentionally designed with small perpendicular magnetic anisotropy (PMA). This allows one to take advantage of the thermally activated fluctuations of its free layer as a stochastic noise source. Furthermore, we take advantage of the voltage dependence of anisotropy to temporarily change the MTJ state into an unstable state when a voltage is applied. Since the MTJ has two energetically stable states, the final state is randomly chosen by thermal fluctuation. The voltage controlled magnetic anisotropy (VCMA) effect is used to generate the metastable state of the MTJ by lowering its energy barrier. The proposed MRNG achieves a high throughput (32 Gbps) by implementing a 64 ×64 MTJ array into CMOS circuits and executing operations in a parallel manner. Furthermore, the circuit consumes very low energy to generate a random bit (31.5 fJ/bit) due to the high energy efficiency of the voltage-controlled MTJ switching.
NASA Astrophysics Data System (ADS)
Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar
2018-01-01
Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.
A new curvature compensation technique for CMOS voltage reference using |VGS| and ΔVBE
NASA Astrophysics Data System (ADS)
Xuemin, Li; Mao, Ye; Gongyuan, Zhao; Yun, Zhang; Yiqiang, Zhao
2016-05-01
A new mixed curvature compensation technique for CMOS voltage reference is presented, which resorts to two sub-references with complementary temperature characteristics. The first sub-reference is the source-gate voltage |VGS|p of a PMOS transistor working in the saturated region. The second sub-reference is the weighted sum of gate-source voltages |VGS|n of NMOS transistors in the subthreshold region and the difference between two base-emitter voltages ΔVBE of bipolar junction transistors (BJTs). The voltage reference implemented utilizing the proposed curvature compensation technique exhibits a low temperature coefficient and occupies a small silicon area. The proposed technique was verified in 0.18 μm standard CMOS process technology. The performance of the circuit has been measured. The measured results show a temperature coefficient as low as 12.7 ppm/°C without trimming, over a temperature range from -40 to 120 °C, and the current consumption is 50 μA at room temperature. The measured power-supply rejection ratio (PSRR) is -31.2 dB @ 100 kHz. The circuit occupies an area of 0.045 mm2. Project supported by the National Natural Science Foundation of China (No. 61376032).
NASA Astrophysics Data System (ADS)
Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar
2018-06-01
Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.
Scott, R. H.; Sweeney, M. I.; Kobrinsky, E. M.; Pearson, H. A.; Timms, G. H.; Pullar, I. A.; Wedley, S.; Dolphin, A. C.
1992-01-01
1. Toxins from invertebrates have proved useful tools for investigation of the properties of ion channels. In this study we describe the actions of arginine polyamine which is believed to be a close analogue of FTX, a polyamine isolated from the American funnel web spider, Agelenopsis aperta. 2. Voltage-activated Ca2+ currents and Ca(2+)-dependent Cl- currents recorded from rat cultured dorsal root ganglion neurones were reversibly inhibited by arginine polyamine (AP; 0.001 to 100 microM). Low voltage-activated T-type Ca2+ currents were significantly more sensitive to AP than high voltage-activated Ca2+ currents. The IC50 values for the actions of AP on low and high voltage-activated Ca2+ currents were 10 nM and 3 microM respectively. AP was equally effective in inhibiting high voltage-activated currents carried by Ba2+, Sr2+ or Ca2+. However, AP-induced inhibition of Ca2+ currents was attenuated by increasing the extracellular Ca2+ concentration from 2 mM to 10 mM. 3. The actions of AP on a Ca(2+)-independent K+ current were more complex, 1 microM AP enhanced this current but 10 microM AP had a dual action, initially enhancing but then inhibiting the K+ current. 4. gamma-Aminobutyric acid-activated Cl- currents were also reversibly inhibited by 1 to 10 microM AP. In contrast N-methyl-D-aspartate currents recorded from rat cultured cerebellar neurones were greatly enhanced by 10 microM AP. 5. We conclude that at a concentration of 10 nM, AP is a selective inhibitor of low threshold T-type voltage-activated Ca2+ currents.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1380382
Imaging responses of on-site CsI and Gd2O2S flat-panel detectors: Dependence on the tube voltage
NASA Astrophysics Data System (ADS)
Jeon, Hosang; Chung, Myung Jin; Youn, Seungman; Nam, Jiho; Lee, Jayoung; Park, Dahl; Kim, Wontaek; Ki, Yongkan; Kim, Ho Kyung
2015-07-01
One of the emerging issues in radiography is low-dose imaging to minimize patient's exposure. The scintillating materials employed in most indirect flat-panel detectors show a drastic change of X-ray photon absorption efficiency around their K-edge energies that consequently affects image quality. Using various tube voltages, we investigated the imaging performance of most popular scintillators: cesium iodide (CsI) and gadolinium oxysulfide (Gd2O2S). The integrated detective quantum efficiencies (iDQE) of four detectors installed in the same hospital were evaluated according to the standardized procedure IEC 62220-1 at tube voltages of 40 - 120 kVp. The iDQE values of the Gd2O2S detectors were normalized by those of CsI detectors to exclude the effects of image postprocessing. The contrast-to-noise ratios (CNR) were also evaluated by using an anthropomorphic chest phantom. The iDQE of the CsI detector outperformed that of the Gd2O2S detector over all tube voltages. Moreover, we noted that the iDQE of the Gd2O2S detectors quickly rolled off with decreasing tube voltage under 70 kVp. The CNRs of the two scintillators were similar at 120 kVp. At 60 kVp, however, the CNR of Gd2O2S was about half that of CsI. Compared to the Gd2O2S detectors, variations in the DQE performance of the CsI detectors were relatively immune to variations in the applied tube voltages. Therefore, we claim that Gd2O2S detectors are inappropriate for use in low-tube-voltage imaging (e.g., extremities and pediatrics) with low patient exposure.
Fast, Low-Power, Hysteretic Level-Detector Circuit
NASA Technical Reports Server (NTRS)
Arditti, Mordechai
1993-01-01
Circuit for detection of preset levels of voltage or current intended to replace standard fast voltage comparator. Hysteretic analog/digital level detector operates at unusually low power with little sacrifice of speed. Comprises low-power analog circuit and complementary metal oxide/semiconductor (CMOS) digital circuit connected in overall closed feedback loop to decrease rise and fall times, provide hysteresis, and trip-level control. Contains multiple subloops combining linear and digital feedback. Levels of sensed signals and hysteresis level easily adjusted by selection of components to suit specific application.
Low voltage polymer network liquid crystal for infrared spatial light modulators.
Peng, Fenglin; Xu, Daming; Chen, Haiwei; Wu, Shin-Tson
2015-02-09
We report a low-voltage and fast-response polymer network liquid crystal (PNLC) infrared phase modulator. To optimize device performance, we propose a physical model to understand the curing temperature effect on average domain size. Good agreement between model and experiment is obtained. By optimizing the UV curing temperature and employing a large dielectric anisotropy LC host, we have lowered the 2π phase change voltage to 22.8V at 1.55μm wavelength while keeping response time at about 1 ms. Widespread application of such a PNLC integrated into a high resolution liquid-crystal-on-silicon (LCoS) for infrared spatial light modulator is foreseeable.
NASA Astrophysics Data System (ADS)
Cao, Y.; Chu, R.; Li, R.; Chen, M.; Chang, R.; Hughes, B.
2016-02-01
Vertical GaN Schottky barrier diode (SBD) structures were grown by metal-organic chemical vapor deposition on free-standing GaN substrates. The carbon doping effect on SBD performance was studied by adjusting the growth conditions and spanning the carbon doping concentration between ≤3 × 1015 cm-3 and 3 × 1019 cm-3. Using the optimized growth conditions that resulted in the lowest carbon incorporation, a vertical GaN SBD with a 6-μm drift layer was fabricated. A low turn-on voltage of 0.77 V with a breakdown voltage over 800 V was obtained from the device.
SABRE modification to a higher voltage high impedance inductive voltage adder (IVA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, M.G.; Smith, D.L.; Poukey, J.W.
The SABRE accelerator was originally designed to operate as low impedance voltage adder with 40-ohm maximum output impedance in negative polarity operation and approximately 20 ohm in positive polarity. Because of the low impedance and higher than expected energy losses in the pulse forming network, the operating input cavity voltage is of the order of 800 kV which limits the total output voltage to {approximately} 8 MV for negative polarity and 5 to 6 MV for positive polarity. The modifications presented here aim to increase the output voltage in both polarities. A new high impedance central electrode was designed capablemore » of operating both in negative and positive polarities, and the number of pulse forming lines feeding the inductively isolated cavities was reduced to half. These modifications were recently tested in positive polarity. An increase in the total accelerating voltage from 5.5 MV to 9 MV was observed while stressing all components to the level required to achieve 12 MV in negative polarity. In these experiments only 65% of the usual operating intermediate store capacitor voltage was necessary (1.7 MV instead of 2.6 MV). Currently, the device is reconfigured for negative polarity tests. The cavities are rotated by 180{degree} and a 17-inch spool is added at the base of the cantilevered center electrode (cathode electrode). Positive and negative polarity results are presented and compared with simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sermage, B.; Essa, Z.; Taleb, N.
2016-04-21
The electrochemical capacitance voltage technique has been used on highly boron doped SiGe and Si layers. Although the boron concentration is constant over the space charge depth, the 1/C{sup 2} versus voltage curves are not linear. They indeed present a negative curvature. This can be explained by the existence of deep acceptors which ionise under a high electric field (large inverse voltage) and not at a low inverse voltage. The measured doping concentration in the electrochemical capacitance voltage increases strongly as the inverse voltage increases. Thanks to a comparison with the boron concentration measured by secondary ions mass spectrometry, wemore » show that the relevant doping concentrations in device layers are obtained for small inverse voltage in agreement with the existence of deep acceptors. At the large inverse voltage, the measured doping can be more than twice larger than the boron concentration measured with a secondary ion mass spectroscopy.« less
NASA Astrophysics Data System (ADS)
Lan, B.-R.; Chang, C.-A.; Huang, P.-Y.; Kuo, C.-H.; Ye, Z.-J.; Shen, B.-C.; Chen, B.-K.
2017-11-01
Conservation voltage reduction (CVR) includes peak demand reduction, energy conservation, carbon emission reduction, and electricity bill reduction. This paper analyzes the energy-reduction of Siwei Feeders with applying CVR, which are situated in Penghu region and equipped with smart meters. Furthermore, the applicable voltage reduction range for the feeders will be explored. This study will also investigate how the CVR effect and energy conservation are improved with the voltage control devices integrated. The results of this study can serve as a reference for the Taiwan Power Company to promote and implement voltage reduction and energy conservation techniques. This study is expected to enhance the energy-reduction performance of the Penghu Low Carbon Island Project.
Su, Gui-Jia
2003-06-10
A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.
0.5 V and 0.43 pJ/bit Capacitive Sensor Interface for Passive Wireless Sensor Systems
Beriain, Andoni; Gutierrez, Iñigo; Solar, Hector; Berenguer, Roc
2015-01-01
This paper presents an ultra low-power and low-voltage pulse-width modulation based ratiometric capacitive sensor interface. The interface was designed and fabricated in a standard 90 nm CMOS 1P9M technology. The measurements show an effective resolution of 10 bits using 0.5 V of supply voltage. The active occupied area is only 0.0045 mm2 and the Figure of Merit (FOM), which takes into account the energy required per conversion bit, is 0.43 pJ/bit. Furthermore, the results show low sensitivity to PVT variations due to the proposed ratiometric architecture. In addition, the sensor interface was connected to a commercial pressure transducer and the measurements of the resulting complete pressure sensor show a FOM of 0.226 pJ/bit with an effective linear resolution of 7.64 bits. The results validate the use of the proposed interface as part of a pressure sensor, and its low-power and low-voltage characteristics make it suitable for wireless sensor networks and low power consumer electronics. PMID:26343681
0.5 V and 0.43 pJ/bit Capacitive Sensor Interface for Passive Wireless Sensor Systems.
Beriain, Andoni; Gutierrez, Iñigo; Solar, Hector; Berenguer, Roc
2015-08-28
This paper presents an ultra low-power and low-voltage pulse-width modulation based ratiometric capacitive sensor interface. The interface was designed and fabricated in a standard 90 nm CMOS 1P9M technology. The measurements show an effective resolution of 10 bits using 0.5 V of supply voltage. The active occupied area is only 0.0045 mm2 and the Figure of Merit (FOM), which takes into account the energy required per conversion bit, is 0.43 pJ/bit. Furthermore, the results show low sensitivity to PVT variations due to the proposed ratiometric architecture. In addition, the sensor interface was connected to a commercial pressure transducer and the measurements of the resulting complete pressure sensor show a FOM of 0.226 pJ/bit with an effective linear resolution of 7.64 bits. The results validate the use of the proposed interface as part of a pressure sensor, and its low-power and low-voltage characteristics make it suitable for wireless sensor networks and low power consumer electronics.
Humidity Steady State Low Voltage Testing of MLCCs (Based on NESC Technical Assessment Report)
NASA Technical Reports Server (NTRS)
Sampson, Mike; Brusse, Jay; Teverovsky, Alexander
2011-01-01
Review of the low voltage reduced Insulation Resistance (IR) failure phenomenon in Multilayer ceramic capacitors (MLCCs)and NASA approaches to contend with this risk. 1. Analyze published materials on root cause mechanisms. 2. Investigate suitability of current test methods to assess MLCC lots for susceptibility. 3. Review current NASA parts selection and application guidelines in consideration of benefits vs. disadvantages.
Scott, R H; Sweeney, M I; Kobrinsky, E M; Pearson, H A; Timms, G H; Pullar, I A; Wedley, S; Dolphin, A C
1992-05-01
1. Toxins from invertebrates have proved useful tools for investigation of the properties of ion channels. In this study we describe the actions of arginine polyamine which is believed to be a close analogue of FTX, a polyamine isolated from the American funnel web spider, Agelenopsis aperta. 2. Voltage-activated Ca2+ currents and Ca(2+)-dependent Cl- currents recorded from rat cultured dorsal root ganglion neurones were reversibly inhibited by arginine polyamine (AP; 0.001 to 100 microM). Low voltage-activated T-type Ca2+ currents were significantly more sensitive to AP than high voltage-activated Ca2+ currents. The IC50 values for the actions of AP on low and high voltage-activated Ca2+ currents were 10 nM and 3 microM respectively. AP was equally effective in inhibiting high voltage-activated currents carried by Ba2+, Sr2+ or Ca2+. However, AP-induced inhibition of Ca2+ currents was attenuated by increasing the extracellular Ca2+ concentration from 2 mM to 10 mM. 3. The actions of AP on a Ca(2+)-independent K+ current were more complex, 1 microM AP enhanced this current but 10 microM AP had a dual action, initially enhancing but then inhibiting the K+ current. 4. gamma-Aminobutyric acid-activated Cl- currents were also reversibly inhibited by 1 to 10 microM AP. In contrast N-methyl-D-aspartate currents recorded from rat cultured cerebellar neurones were greatly enhanced by 10 microM AP. 5. We conclude that at a concentration of 10 nM, AP is a selective inhibitor of low threshold T-type voltage-activated Ca2+ currents. However, at higher concentrations 1-10 microM AP interacts with ion channels or other membrane constituents to produce a variety of actions on both voltage and ligand gated ion channels.
High-Voltage, Low-Power BNC Feedthrough Terminator
NASA Technical Reports Server (NTRS)
Bearden, Douglas
2012-01-01
This innovation is a high-voltage, lowpower BNC (Bayonet Neill-Concelman) feedthrough that enables the user to terminate an instrumentation cable properly while connected to a high voltage, without the use of a voltage divider. This feedthrough is low power, which will not load the source, and will properly terminate the instrumentation cable to the instrumentation, even if the cable impedance is not constant. The Space Shuttle Program had a requirement to measure voltage transients on the orbiter bus through the Ground Lightning Measurement System (GLMS). This measurement has a bandwidth requirement of 1 MHz. The GLMS voltage measurement is connected to the orbiter through a DC panel. The DC panel is connected to the bus through a nonuniform cable that is approximately 75 ft (approximately equal to 23 m) long. A 15-ft (approximately equal to 5-m), 50-ohm triaxial cable is connected between the DC panel and the digitizer. Based on calculations and simulations, cable resonances and reflections due to mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. A voltage divider at the DC panel, and terminating the 50-ohm cable properly, would eliminate this issue. Due to implementation issues, an alternative design was needed to terminate the cable properly without the use of a voltage divider. Analysis shows how the cable resonances and reflections due to the mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. After simulating a dampening circuit located at the digitizer, simulations were performed to show how the cable resonances were dampened and the accuracy was improved significantly. Test cables built to verify simulations were accurate. Since the dampening circuit is low power, it can be packaged in a BNC feedthrough.
Voltage controlled Bi-mode resistive switching effects in MnO2 based devices
NASA Astrophysics Data System (ADS)
Hu, P.; Wu, S. X.; Wang, G. L.; Li, H. W.; Li, D.; Li, S. W.
2018-01-01
In this paper, the voltage induced bi-mode resistive switching behavior of an MnO2 thin film based device was studied. The device showed prominent bipolar resistive switching behavior with good reproducibility and high endurance. In addition, complementary resistive switching characteristics can be observed by extending the voltage bias during voltage sweep operations. The electrical measurement data and fitting results indicate that the oxygen vacancies act as defects to form a conductive path, which is connective or disrupted to realize a low resistive state or a high resistive state. Changing the sweep voltage can tune the oxygen vacancies distribution, which will achieve complementary resistive switching.
Screening Fluorescent Voltage Indicators with Spontaneously Spiking HEK Cells
Venkatachalam, Veena; Kralj, Joel M.; Dib-Hajj, Sulayman D.; Waxman, Stephen G.; Cohen, Adam E.
2013-01-01
Development of improved fluorescent voltage indicators is a key challenge in neuroscience, but progress has been hampered by the low throughput of patch-clamp characterization. We introduce a line of non-fluorescent HEK cells that stably express NaV 1.3 and KIR 2.1 and generate spontaneous electrical action potentials. These cells enable rapid, electrode-free screening of speed and sensitivity of voltage sensitive dyes or fluorescent proteins on a standard fluorescence microscope. We screened a small library of mutants of archaerhodopsin 3 (Arch) in spiking HEK cells and identified two mutants with greater voltage-sensitivity than found in previously published Arch voltage indicators. PMID:24391999
NASA Technical Reports Server (NTRS)
Nussberger, A. A.; Woodcock, G. R.
1980-01-01
SPS satellite power distribution systems are described. The reference Satellite Power System (SPS) concept utilizes high-voltage klystrons to convert the onboard satellite power from dc to RF for transmission to the ground receiving station. The solar array generates this required high voltage and the power is delivered to the klystrons through a power distribution subsystem. An array switching of solar cell submodules is used to maintain bus voltage regulation. Individual klystron dc voltage conversion is performed by centralized converters. The on-board data processing system performs the necessary switching of submodules to maintain voltage regulation. Electrical power output from the solar panels is fed via switch gears into feeder buses and then into main distribution buses to the antenna. Power also is distributed to batteries so that critical functions can be provided through solar eclipses.
NASA Technical Reports Server (NTRS)
Reid, M. A.; Gahn, R. F.
1977-01-01
Performance of the iron-titanium redox flow cell was studied as a function of acid concentration. Anion permeable membranes separated the compartments. Electrodes were graphite cloth. Current densities ranged up to 25 mA/square centimeter. Open-circuit and load voltages decreased as the acidity was increased on the iron side as predicted. On the titanium side, open-circuit voltages decreased as the acidity was increased in agreement with theory, but load voltages increased due to decreased polarization with increasing acidity. High acidity on the titanium side coupled with low acidity on the iron side gives the best load voltage, but such cells show voltage losses as they are repeatedly cycled. Analyses show that the bulk of the voltage losses are due to diffusion of acid through the membrane.
Evaluation of the shock-wave pattern for endoscopic electrohydraulic lithotripsy.
Vorreuther, R; Engelmann, Y
1995-01-01
We evaluated the electrical events and the resulting shock waves of the spark discharge for electrohydraulic lithotripsy at the tip of a 3.3F probe. Spark generation was achieved by variable combinations of voltage and capacity. The effective electrical output was determined by means of a high-voltage probe, a current coil, and a digital oscilloscope. Peak pressures, rise times, and pulse width of the pressure profiles were recorded using a polyvinylidene difluoride needle hydrophone in 0.9% NaCl solution at a distance of 10 mm. The peak pressure and the slope of the shock front depend solely on the voltage, while the pulse width was correlated with the capacity. Pulses of less than 1-microsecond duration can be obtained when low capacity is applied and the inductivity of the cables and plugs is kept at a low level. Using chalk as a stone model it was proven that short pulses of high peak pressure provided by a low capacity and a high voltage have a greater impact on fragmentation than the corresponding broader shock waves of lower peak pressure carrying the same energy.
Low-voltage analog front-end processor design for ISFET-based sensor and H+ sensing applications
NASA Astrophysics Data System (ADS)
Chung, Wen-Yaw; Yang, Chung-Huang; Peng, Kang-Chu; Yeh, M. H.
2003-04-01
This paper presents a modular-based low-voltage analog-front-end processor design in a 0.5mm double-poly double-metal CMOS technology for Ion Sensitive Field Effect Transistor (ISFET)-based sensor and H+ sensing applications. To meet the potentiometric response of the ISFET that is proportional to various H+ concentrations, the constant-voltage and constant current (CVCS) testing configuration has been used. Low-voltage design skills such as bulk-driven input pair, folded-cascode amplifier, bootstrap switch control circuits have been designed and integrated for 1.5V supply and nearly rail-to-rail analog to digital signal processing. Core modules consist of an 8-bit two-step analog-digital converter and bulk-driven pre-amplifiers have been developed in this research. The experimental results show that the proposed circuitry has an acceptable linearity to 0.1 pH-H+ sensing conversions with the buffer solution in the range of pH2 to pH12. The processor has a potential usage in battery-operated and portable healthcare devices and environmental monitoring applications.
NASA Astrophysics Data System (ADS)
Wang, Bin; Wu, Jie; Jin, Xiaoyue; Wu, Xiaoling; Wu, Zhenglong; Xue, Wenbin
The influence of applied voltage on the plasma electrolytic borocarburizing (PEB/C) layer of Q235 low-carbon steel in high-concentration borax solution was investigated. XRD and XPS spectra of PEB/C layer confirmed that the modified boride layer mainly consisted of Fe2B phase, and the FeB phase only exists in the loose top layer. The applied voltage on Q235 steel played a key role in determining the properties of hardened layers. The thickness and microhardness of boride layers increased with the increase of the applied voltage, which led to superior corrosion and wear resistances of Q235 low-carbon steel. The diffusion coefficient (D) of boride layer at 280, 300 and 330V increased with borocarburizing temperature and ranged from 0.062×10-12m2/s to 0.462×10-12m2/s. The activation energy (Q) of boride layer growth during PEB/C treatment was only 52.83kJṡmol-1, which was much lower than that of the conventional boriding process.
NASA Astrophysics Data System (ADS)
Lee, Kimoon; Kim, Yong-Hoon; Kim, Jiwan; Oh, Min Suk
2018-05-01
We report on the transparent and flexible enhancement-load inverters which consist of zinc tin oxide (ZTO) thin film transistors (TFTs) fabricated at low process temperature. To control the electrical characteristics of oxide TFTs by oxygen vacancies, we applied low-pressure oxygen rapid thermal annealing (RTA) process to our devices. When we annealed the ZTO TFTs in oxygen ambient of 2 Torr, they showed better electrical characteristics than those of the devices annealed in the air ambient of 760 Torr. To realize oxide thin film transistor and simple inverter circuits on flexible substrate, we annealed the devices in O2 of 2 Torr at 150° C and could achieve the decent electrical properties. When we used transparent conductive oxide electrodes such as indium zinc oxide (IZO) and indium tin oxide (ITO), our transparent and flexible inverter showed the total transmittance of 68% in the visible range and the voltage gain of 5. And the transition voltage in voltage transfer curve was located well within the range of operation voltage.
NASA Astrophysics Data System (ADS)
Wang, Meng; Jiang, Chunlei; Zhang, Songquan; Song, Xiaohe; Tang, Yongbing; Cheng, Hui-Ming
2018-06-01
Calcium-ion batteries (CIBs) are attractive candidates for energy storage because Ca2+ has low polarization and a reduction potential (-2.87 V versus standard hydrogen electrode, SHE) close to that of Li+ (-3.04 V versus SHE), promising a wide voltage window for a full battery. However, their development is limited by difficulties such as the lack of proper cathode/anode materials for reversible Ca2+ intercalation/de-intercalation, low working voltages (<2 V), low cycling stability, and especially poor room-temperature performance. Here, we report a CIB that can work stably at room temperature in a new cell configuration using graphite as the cathode and tin foils as the anode as well as the current collector. This CIB operates on a highly reversible electrochemical reaction that combines hexafluorophosphate intercalation/de-intercalation at the cathode and a Ca-involved alloying/de-alloying reaction at the anode. An optimized CIB exhibits a working voltage of up to 4.45 V with capacity retention of 95% after 350 cycles.
Method of managing interference during delay recovery on a train system
Gordon, Susanna P.; Evans, John A.
2005-12-27
The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.
Efficient high density train operations
Gordon, Susanna P.; Evans, John A.
2001-01-01
The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.
Low-resistance strip sensors for beam-loss event protection
NASA Astrophysics Data System (ADS)
Ullán, M.; Benítez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.; Lacasta, C.; Soldevila, U.; García, C.; Fadeyev, V.; Wortman, J.; DeFilippis, J.; Shumko, M.; Grillo, A. A.; Sadrozinski, H. F.-W.
2014-11-01
AC-coupled silicon strip sensors can be damaged in case of a beam loss due to the possibility of a large charge accumulation in the bulk, developing very high voltages across the coupling capacitors which can destroy them. Punch-through structures are currently used to avoid this problem helping to evacuate the accumulated charge as large voltages are developing. Nevertheless, previous experiments, performed with laser pulses, have shown that these structures can become ineffective in relatively long strips. The large value of the implant resistance can effectively isolate the "far" end of the strip from the punch-through structure leading to large voltages. We present here our developments to fabricate low-resistance strip sensors to avoid this problem. The deposition of a conducting material in contact with the implants drastically reduces the strip resistance, assuring the effectiveness of the punch-through structures. First devices have been fabricated with this new technology. Initial results with laser tests show the expected reduction in peak voltages on the low resistivity implants. Other aspects of the sensor performance, including the signal formation, are not affected by the new technology.
Small Cold Temperature Instrument Packages
NASA Astrophysics Data System (ADS)
Clark, P. E.; Millar, P. S.; Yeh, P. S.; Feng, S.; Brigham, D.; Beaman, B.
We are developing a small cold temperature instrument package concept that integrates a cold temperature power system with ultra low temperature ultra low power electronics components and power supplies now under development into a 'cold temperature surface operational' version of a planetary surface instrument package. We are already in the process of developing a lower power lower temperature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package. We build on our previous work to develop strategies for incorporating Ultra Low Temperature/Ultra Low Power (ULT/ULP) electronics, lower voltage power supplies, as well as innovative thermal design concepts for instrument packages. Cryotesting has indicated that our small Si RHBD CMOS chips can deliver >80% of room temperature performance at 40K (nominal minimum lunar surface temperature). We leverage collaborations, past and current, with the JPL battery development program to increase power system efficiency in extreme environments. We harness advances in MOSFET technology that provide lower voltage thresholds for power switching circuits incorporated into our low voltage power supply concept. Conventional power conversion has a lower efficiency. Our low power circuit concept based on 'synchronous rectification' could produce stable voltages as low as 0.6 V with 85% efficiency. Our distributed micro-battery-based power supply concept incorporates cold temperature power supplies operating with a 4 V or 8 V battery. This work will allow us to provide guidelines for applying the low temperature, low power system approaches generically to the widest range of surface instruments.
Kulkarni, Rishikesh U; Yin, Hang; Pourmandi, Narges; James, Feroz; Adil, Maroof M; Schaffer, David V; Wang, Yi; Miller, Evan W
2017-02-17
Voltage imaging with fluorescent dyes offers promise for interrogating the complex roles of membrane potential in coordinating the activity of neurons in the brain. Yet, low sensitivity often limits the broad applicability of optical voltage indicators. In this paper, we use molecular dynamics (MD) simulations to guide the design of new, ultrasensitive fluorescent voltage indicators that use photoinduced electron transfer (PeT) as a voltage-sensing switch. MD simulations predict an approximately 16% increase in voltage sensitivity resulting purely from improved alignment of dye with the membrane. We confirm this theoretical finding by synthesizing 9 new voltage-sensitive (VoltageFluor, or VF) dyes and establishing that all of them display the expected improvement of approximately 19%. This synergistic outworking of theory and experiment enabled computational and theoretical estimation of VF dye orientation in lipid bilayers and has yielded the most sensitive PeT-based VF dye to date. We use this new voltage indicator to monitor voltage spikes in neurons from rat hippocampus and human pluripotent-stem-cell-derived dopaminergic neurons.
High-voltage, low-inductance gas switch
Gruner, Frederick R.; Stygar, William A.
2016-03-22
A low-inductance, air-insulated gas switch uses a de-enhanced annular trigger ring disposed between two opposing high voltage electrodes. The switch is DC chargeable to 200 kilovolts or more, triggerable, has low jitter (5 ns or less), has pre-fire and no-fire rates of no more than one in 10,000 shots, and has a lifetime of greater than 100,000 shots. Importantly, the switch also has a low inductance (less than 60 nH) and the ability to conduct currents with less than 100 ns rise times. The switch can be used with linear transformer drives or other pulsed-power systems.
Bootstrapped two-electrode biosignal amplifier.
Dobrev, Dobromir Petkov; Neycheva, Tatyana; Mudrov, Nikolay
2008-06-01
Portable biomedical instrumentation has become an important part of diagnostic and treatment instrumentation. Low-voltage and low-power tendencies prevail. A two-electrode biopotential amplifier, designed for low-supply voltage (2.7-5.5 V), is presented. This biomedical amplifier design has high differential and sufficiently low common mode input impedances achieved by means of positive feedback, implemented with an original interface stage. The presented circuit makes use of passive components of popular values and tolerances. The amplifier is intended for use in various two-electrode applications, such as Holter monitors, external defibrillators, ECG monitors and other heart beat sensing biomedical devices.
NASA Astrophysics Data System (ADS)
Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan
2016-03-01
Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.
Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan
2016-03-01
Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.
QT Interval Prolongation and QRS Voltage Reduction in Patients with Liver Cirrhosis.
Cichoż-Lach, Halina; Tomaszewski, Michał; Kowalik, Agnieszka; Lis, Emilia; Tomaszewski, Andrzej; Lach, Tomasz; Boczkowska, Sylwia; Celiński, Krzysztof
2015-01-01
Liver cirrhosis is associated with functional abnormalities of the cardiovascular system with co-existing electrocardiographic (ECG) abnormalities. The aim was to analyze ECG changes in patients with cirrhosis, to evaluate whether alcoholic etiology of cirrhosis and ascites has an impact on ECG changes. The study involved 81 patients with previously untreated alcoholic cirrhosis (64 patients with ascites, classes B and C according to the Child-Pugh classification; and 17 without ascites, categorized as class A); 41 patients with previously untreated cirrhosis due to chronic hepatitis C (HCV--30 patients with ascites, classes B and C; and 11 without ascites, class A); 42 with alcoholic steatohepatitis and 46 with alcoholic steatosis. The control group consisted of 32 healthy volunteers. Twelve-lead ECG recordings were performed and selected parameters were measured. Significantly longer QT and QTc intervals and lower QRS voltage were found in patients with alcoholic and HCV cirrhosis compared to the controls. Significantly lower QRS voltage was found in subjects with ascites than in those without ascites. Removal of ascites significantly increased QRS voltage. In cirrhosis, irrespective of etiology, ECG changes involved prolonged QT and QTc intervals and reduced QRS voltage. Prolonged QT and QTc intervals were not related to the severity of cirrhosis or to the presence of ascites. However, low QRS voltage was associated with the presence of ascites. Removal of ascites reverses low QRS voltage.
Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels
Salari, Autoosa; Vega, Benjamin S.; Milescu, Lorin S.; Milescu, Mirela
2016-01-01
Few gating-modifier toxins have been reported to target low-voltage-activated (LVA) calcium channels, and the structural basis of toxin sensitivity remains incompletely understood. Studies of voltage-gated potassium (Kv) channels have identified the S3b–S4 “paddle motif,” which moves at the protein-lipid interface to drive channel opening, as the target for these amphipathic neurotoxins. Voltage-gated calcium (Cav) channels contain four homologous voltage sensor domains, suggesting multiple toxin binding sites. We show here that the S3–S4 segments within Cav3.1 can be transplanted into Kv2.1 to examine their individual contributions to voltage sensing and pharmacology. With these results, we now have a more complete picture of the conserved nature of the paddle motif in all three major voltage-gated ion channel types (Kv, Nav, and Cav). When screened with tarantula toxins, the four paddle sequences display distinct toxin binding properties, demonstrating that gating-modifier toxins can bind to Cav channels in a domain specific fashion. Domain III was the most commonly and strongly targeted, and mutagenesis revealed an acidic residue that is important for toxin binding. We also measured the lipid partitioning strength of all toxins tested and observed a positive correlation with their inhibition of Cav3.1, suggesting a key role for membrane partitioning. PMID:27045173
Spark gap with low breakdown voltage jitter
Rohwein, G.J.; Roose, L.D.
1996-04-23
Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed. 13 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bora, B., E-mail: bbora@cchen.cl
2015-10-15
On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found tomore » work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage.« less
Moderately nonlinear diffuse-charge dynamics under an ac voltage.
Stout, Robert F; Khair, Aditya S
2015-09-01
The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of V_{o}/(k_{B}T/e), where V_{o} is the amplitude of the driving voltage and k_{B}T/e is the thermal voltage with k_{B} as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D/λ_{D}L, where D is the ion diffusivity, λ_{D} is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O(V_{o}^{3}) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in V_{o}. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing V_{o}. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.
NASA Astrophysics Data System (ADS)
Winands, G. J. J.; Liu, Z.; Pemen, A. J. M.; van Heesch, E. J. M.; Yan, K.; van Veldhuizen, E. M.
2006-07-01
In this paper a large-scale pulsed corona system is described in which pulse parameters such as pulse rise-time, peak voltage, pulse width and energy per pulse can be varied. The chemical efficiency of the system is determined by measuring ozone production. The temporal and spatial development of the discharge streamers is recorded using an ICCD camera with a shortest exposure time of 5 ns. The camera can be triggered at any moment starting from the time the voltage pulse arrives on the reactor, with an accuracy of less than 1 ns. Measurements were performed on an industrial size wire-plate reactor. The influence of pulse parameters like pulse voltage, DC bias voltage, rise-time and pulse repetition rate on plasma generation was monitored. It was observed that for higher peak voltages, an increase could be seen in the primary streamer velocity, the growth of the primary streamer diameter, the light intensity and the number of streamers per unit length of corona wire. No significant separate influence of DC bias voltage level was observed as long as the total reactor voltage (pulse + DC bias) remained constant and the DC bias voltage remained below the DC corona onset. For those situations in which the plasma appearance changed (e.g. different streamer velocity, diameter, intensity), a change in ozone production was also observed. The best chemical yields were obtained for low voltage (55 kV), low energetic pulses (0.4 J/pulse): 60 g (kWh)-1. For high voltage (86 kV), high energetic pulses (2.3 J/pulse) the yield decreased to approximately 45 g (kWh)-1, still a high value for ozone production in ambient air (RH 42%). The pulse repetition rate has no influence on plasma generation and on chemical efficiency up to 400 pulses per second.
Neurological complication after low-voltage electric injury: a case report.
Kim, Ha Min; Ko, Yeong-A; Kim, Joon Sung; Lim, Seong Hoon; Hong, Bo Young
2014-04-01
Electrical shock can result in neurological complications, involving both peripheral and central nervous systems, which may present immediately or later on. However, delayed neurological complications caused by low-voltage electric shock are rarely reported. Here, a case of a man suffering from weakness and aphasia due to the delayed-onset of the peripheral nerve injury and ischemic stroke following an electrical shock is presented. Possible mechanisms underlying the neurological complications include thermal injury to perineural tissue, overactivity of the sympathetic nervous system, vascular injury, and histological or electrophysiological changes. Moreover, vasospasms caused by low-voltage alternating current may predispose individuals to ischemic stroke. Therefore, clinicians should consider the possibility of neurological complications, even if the onset of the symptoms is delayed, and should perform diagnostic tests, such as electrophysiology or imaging, when patients present with weakness following an electric injury.
NASA Technical Reports Server (NTRS)
Simons, Rainee N (Inventor); Wintucky, Edwin G (Inventor)
2013-01-01
One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.
NASA Technical Reports Server (NTRS)
Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)
2015-01-01
One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.
MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics
Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; ...
2016-10-10
Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. But, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. We designed devices with unique ring-type structures andmore » use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass.« less
Non-perturbing voltage measurement in a coaxial cable with slab-coupled optical sensors.
Stan, Nikola; Seng, Frederick; Shumway, LeGrand; King, Rex; Schultz, Stephen
2017-08-20
Voltage in a coaxial cable is measured by an electric-field optical fiber sensor exploiting the proportionality of voltage and electric field in a fixed structure. The sensor is inserted in a hole drilled through the dielectric of the RG-218 coaxial cable and sealed with epoxy to displace all air and prevent the adverse effects of charge buildup during high-voltage measurements. It is shown that the presence of the sensor in the coaxial cable does not significantly increase electrical reflections in the cable. A slab-coupled optical fiber sensor (SCOS) is used for its compact size and dielectric make. The dynamic range of 50 dB is shown experimentally with detection of signals as low as 1 V and up to 157 kV. A low corner of 0.3 Hz is demonstrated and the SCOS is shown to be able to measure 90 ns rise time.
Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; Abbaslou, Siamak; Reyes, Pavel; Wang, Szu-Ying; Li, Guangyuan; Lu, Ming; Sheng, Kuang; Lu, Yicheng
2016-10-10
Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. However, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. The devices are designed with unique ring-type structures and use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass.
Sheng, Duo; Lai, Hsiu-Fan; Chan, Sheng-Min; Hong, Min-Rong
2015-02-13
An all-digital on-chip delay sensor (OCDS) circuit with high delay-measurement resolution and low supply-voltage sensitivity for efficient detection and diagnosis in high-performance electronic system applications is presented. Based on the proposed delay measurement scheme, the quantization resolution of the proposed OCDS can be reduced to several picoseconds. Additionally, the proposed cascade-stage delay measurement circuit can enhance immunity to supply-voltage variations of the delay measurement resolution without extra self-biasing or calibration circuits. Simulation results show that the delay measurement resolution can be improved to 1.2 ps; the average delay resolution variation is 0.55% with supply-voltage variations of ±10%. Moreover, the proposed delay sensor can be implemented in an all-digital manner, making it very suitable for high-performance electronic system applications as well as system-level integration.
Memristive behavior of the SnO2/TiO2 interface deposited by sol-gel
NASA Astrophysics Data System (ADS)
Boratto, Miguel H.; Ramos, Roberto A.; Congiu, Mirko; Graeff, Carlos F. O.; Scalvi, Luis V. A.
2017-07-01
A novel and cheap Resistive Random Access Memory (RRAM) device is proposed within this work, based on the interface between antimony doped Tin Oxide (4%at Sb:SnO2) and Titanium Oxide (TiO2) thin films, entirely prepared through a low-temperature sol-gel process. The device was fabricated on glass slides using evaporated aluminum electrodes. Typical bipolar memristive behavior under cyclic voltage sweeping and square wave voltages, with well-defined high and low resistance states (HRS and LRS), and set and reset voltages are shown in our samples. The switching mechanism, explained by charges trapping/de-trapping by defects in the SnO2/TiO2 interface, is mainly driven by the external electric field. The calculated on/off ratio was about 8 × 102 in best conditions with good reproducibility over repeated measurement cycles under cyclic voltammetry and about 102 under applied square wave voltage.
NASA Astrophysics Data System (ADS)
Ueda, Daiki; Takeuchi, Kiyoshi; Kobayashi, Masaharu; Hiramoto, Toshiro
2018-04-01
A new circuit model that provides a clear guide on designing a MOS-gated thyristor (MGT) is reported. MGT plays a significant role in achieving a steep subthreshold slope of a PN-body tied silicon-on-insulator (SOI) FET (PNBTFET), which is an SOI MOSFET merged with an MGT. The effects of design parameters on MGT and the proposed equivalent circuit model are examined to determine how to regulate the voltage response of MGT and how to suppress power dissipation. It is demonstrated that MGT with low threshold voltages, small hysteresis widths, and small power dissipation can be designed by tuning design parameters. The temperature dependence of MGT is also examined, and it is confirmed that hysteresis width decreases with the average threshold voltage kept nearly constant as temperature rises. The equivalent circuit model can be conveniently used to design low-power PNBTFET.
Gayen, P K; Chatterjee, D; Goswami, S K
2016-05-01
In this paper, an enhanced low-voltage ride-through (LVRT) performance of a grid connected doubly fed induction generator (DFIG) has been presented with the usage of stator dynamic composite fault current limiter (SDCFCL). This protection circuit comprises of a suitable series resistor-inductor combination and parallel bidirectional semiconductor switch. The SDCFCL facilitates double benefits such as reduction of rotor induced open circuit voltage due to increased value of stator total inductance and concurrent increase of rotor impedance. Both effects will limit rotor circuit over current and over voltage situation more secured way in comparison to the conventional scheme like the dynamic rotor current limiter (RCL) during any type of fault situation. The proposed concept is validated through the simulation study of the grid integrated 2.0MW DFIG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics
Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; Abbaslou, Siamak; Reyes, Pavel; Wang, Szu-Ying; Li, Guangyuan; Lu, Ming; Sheng, Kuang; Lu, Yicheng
2016-01-01
Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. However, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. The devices are designed with unique ring-type structures and use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass. PMID:27721484
Silicon Photomultiplier charaterization
NASA Astrophysics Data System (ADS)
Munoz, Leonel; Osornio, Leo; Para, Adam
2014-03-01
Silicon Photo Multiples (SiPM's) are relatively new photon detectors. They offer many advantages compared to photo multiplier tubes (PMT's) such as insensitivity to magnetic field, robustness at varying lighting levels, and low cost. The SiPM output wave forms are poorly understood. The experiment conducted collected waveforms of responses of Hamamatsu SiPM to incident laser pulse at varying temperatures and bias voltages. Ambient noise was characterized at all temperatures and bias voltages by averaging the waveforms. Pulse shape of the SiPM response was determined under different operating conditions: the pulse shape is nearly independent of the bias voltage but exhibits strong variation with temperature, consistent with the temperature variation of the quenching resistor. Amplitude of responses of the SiPM to low intensity laser light shows many peaks corresponding to the detection of 1,2,3 etc. photons. Amplitude of these pulses depends linearly on the bias voltage, enabling determination of the breakdown voltage at each temperature. Poisson statistics has been used to determine the average number of detected photons at each operating conditions. Department of Education Grant No. P0315090007 and the Department of Energy/ Fermi National Accelerator Laboratory.
2 kV slanted tri-gate GaN-on-Si Schottky barrier diodes with ultra-low leakage current
NASA Astrophysics Data System (ADS)
Ma, Jun; Matioli, Elison
2018-01-01
This letter reports lateral GaN-on-Si power Schottky barrier diodes (SBDs) with unprecedented voltage-blocking performance by integrating 3-dimensionally a hybrid of tri-anode and slanted tri-gate architectures in their anode. The hybrid tri-anode pins the voltage drop at the Schottky junction (VSCH), despite a large applied reverse bias, fixing the reverse leakage current (IR) of the SBD. Such architecture led to an ultra-low IR of 51 ± 5.9 nA/mm at -1000 V, in addition to a small turn-on voltage (VON) of 0.61 ± 0.03 V. The slanted tri-gate effectively distributes the electric field in OFF state, leading to a remarkably high breakdown voltage (VBR) of -2000 V at 1 μA/mm, constituting a significant breakthrough from existing technologies. The approach pursued in this work reduces the IR and increases the VBR without sacrificing the VON, which provides a technology for high-voltage SBDs, and unveils the unique advantage of tri-gates for advanced power applications.
Masuda, Shumpei; Tan, Kuan Y; Partanen, Matti; Lake, Russell E; Govenius, Joonas; Silveri, Matti; Grabert, Hermann; Möttönen, Mikko
2018-03-02
We experimentally study nanoscale normal-metal-insulator-superconductor junctions coupled to a superconducting microwave resonator. We observe that bias-voltage-controllable single-electron tunneling through the junctions gives rise to a direct conversion between the electrostatic energy and that of microwave photons. The measured power spectral density of the microwave radiation emitted by the resonator exceeds at high bias voltages that of an equivalent single-mode radiation source at 2.5 K although the phonon and electron reservoirs are at subkelvin temperatures. Measurements of the generated power quantitatively agree with a theoretical model in a wide range of bias voltages. Thus, we have developed a microwave source which is compatible with low-temperature electronics and offers convenient in-situ electrical control of the incoherent photon emission rate with a predetermined frequency, without relying on intrinsic voltage fluctuations of heated normal-metal components or suffering from unwanted losses in room temperature cables. Importantly, our observation of negative generated power at relatively low bias voltages provides a novel type of verification of the working principles of the recently discovered quantum-circuit refrigerator.
Frequency Dependence of Low-Voltage Electrowetting Investigated by Impedance Spectroscopy.
Li, Ying-Jia; Cahill, Brian P
2017-11-14
An electrowetting-on-dielectric (EWOD) electrode was developed that facilitates the use of low alternating voltages (≤5 V AC ). This allows online investigation of the frequency dependence of electrowetting by means of impedance spectroscopy. The EWOD electrode is based on a dielectric bilayer consisting of an anodic tantalum pentoxide (Ta 2 O 5 ) thin film (d = 59.35 nm) with a high relative permittivity (ε d = 26.3) and a self-assembled hydrophobic silane monolayer. The frequency dependence of electrowetting was studied using an aqueous μL-sized sessile droplet on the planar EWOD electrode in oil. Experiments using electrochemical impedance spectroscopy and optical imaging indicate the frequency dependence of all three variables in the Young-Lippmann equation: the voltage drop across the dielectric layers, capacitance per unit area, and contact angle under voltage. The electrowetting behavior induced by AC voltages is shown to be well described by the Young-Lippmann equation for AC applications below a frequency threshold. Moreover, the dielectric layers act as a capacitor and the stored electrostatic potential energy is revealed to only partially contribute to the electrowetting.
Carbon nanotube vacuum gauges with wide-dynamic range and processes thereof
NASA Technical Reports Server (NTRS)
Manohara, Harish (Inventor); Kaul, Anupama B. (Inventor)
2013-01-01
A miniature thermal conductivity gauge employs a carbon single-walled-nanotube. The gauge operates on the principle of thermal exchange between the voltage-biased nanotube and the surrounding gas at low levels of power and low temperatures to measure vacuum across a wide dynamic range. The gauge includes two terminals, a source of constant voltage to the terminals, a single-walled carbon nanotube between the terminals, a calibration of measured conductance of the nanotube to magnitudes of surrounding vacuum and a current meter in electrical communication with the source of constant voltage. Employment of the nanotube for measuring vacuum includes calibrating the electrical conductance of the nanotube to magnitudes of vacuum, exposing the nanotube to a vacuum, applying a constant voltage across the nanotube, measuring the electrical conductance of the nanotube in the vacuum with the constant voltage applied and converting the measured electrical conductance to the corresponding calibrated magnitude of vacuum using the calibration. The nanotube may be suspended to minimize heat dissipation through the substrate, increasing sensitivity at even tower pressures.
Scintillator for low accelerating voltage scanning electron microscopy imaging
NASA Astrophysics Data System (ADS)
Bowser, Christopher; Tzolov, Marian; Barbi, Nicholas
Scintillators are essential in detecting electrons in SEM. The conventional scintillators such as YAP and YAG have poor response at low accelerating voltages due to a top conductive layer of ITO or Al. We have developed a thin film ZnWO4 scintillator with high photoluminescence quantum efficiency of 60% with enough electrical conductivity to prevent charging. We are showing that the ZnWO4 films are effective in detecting electrons at low accelerating voltages. This makes it a good option for a top layer on crystalline scintillators and we have integrated ZnWO4 with YAP to explore the high response of YAP at high electron energies and the effective response of ZnWO4 at low electron energies. We will compare the spectral intensities over a range of accelerating voltages between 1 and 30kV between the conventional and coupled thin film scintillator. The results are interpreted using a simulation of the depth profile of the electron penetration in the scintillator using CASINO. We have verified the absence of charging by measuring the sum of the secondary and backscattered electron coefficients. We have built detectors with the combined scintillators and we will compare SEM images recorded simultaneously by conventional and ZnWO4-based scintillators.
Effect of Copper and Silicon on Al-5%Zn Alloy as a Candidate Low Voltage Sacrificial Anode
NASA Astrophysics Data System (ADS)
Pratesa, Yudha; Ferdian, Deni; Togina, Inez
2017-05-01
One common method used for corrosion protection is a sacrificial anode. Sacrificial anodes that usually employed in the marine environment are an aluminum alloy sacrificial anode, especially Al-Zn-In. However, the electronegativity of these alloys can cause corrosion overprotection and stress cracking (SCC) on a high-strength steel. Therefore, there is a development of the sacrificial anode aluminum low voltage to reduce the risk of overprotection. The addition of alloying elements such as Cu, Si, and Ge will minimize the possibility of overprotection. This study was conducted to analyze the effect of silicon and copper addition in Al-5Zn. The experiment started from casting the sacrificial anode aluminum uses electrical resistance furnace in a graphite crucible in 800°C. The results alloy was analyzed using Optical emission spectroscopy (OES), Differential scanning calorimetry, electrochemical impedance spectroscopy, and metallography. Aluminum alloy with the addition of a copper alloy is the most suitable and efficient to serve as a low-voltage sacrificial anode aluminum. Charge transfer resistivity of copper is smaller than silicon which indicates that the charge transfer between the metal and the electrolyte is easier t to occur. Also, the current potential values in coupling with steel are also in the criteria range of low-voltage aluminum sacrificial anodes.
Substrate effects in high gain, low operating voltage SnSe2 photoconductor
NASA Astrophysics Data System (ADS)
Krishna, Murali; Kallatt, Sangeeth; Majumdar, Kausik
2018-01-01
High gain photoconductive devices find wide spread applications in low intensity light detection. Ultra-thin layered materials have recently drawn a lot of attention from researchers in this regard. However, in general, a large operating voltage is required to obtain large responsivity in these devices. In addition, the characteristics are often confounded by substrate induced trap effects. Here we report multi-layer SnSe2 based photoconductive devices using two different structures: (1) SiO2 substrate supported inter-digitated electrode (IDE), and (2) suspended channel. The IDE device exhibits a responsivity of ≈ {10}3 A W-1 and ≈ 8.66× {10}4 A W-1 at operating voltages of 1 mV and 100 mV, respectively—a superior low voltage performance over existing literature on planar 2D structures. However, the responsivity reduces by more than two orders of magnitude, while the transient response improves for the suspended device—providing insights into the critical role played by the channel-substrate interface in the gain mechanism. The results, on one hand, are promising for highly sensitive photoconductive applications consuming ultra-low power, and on the other hand, show a generic methodology that could be applied to other layered material based photoconductive devices as well for extracting the intrinsic behavior.
Krishnamurthy, K S
2014-05-01
The Bobylev-Pikin striped-pattern state induced by a homogeneous electric field is a volume flexoelectric instability, originating in the midregion of a planarly aligned nematic liquid crystal layer. We find that the instability acquires a spatiotemporal character upon excitation by a low frequency (0.5 Hz) square wave field. This is demonstrated using a bent-core liquid crystal, initially in the 90°-twisted planar configuration. The flexoelectric modulation appears close to the cathode at each polarity reversal and, at low voltage amplitudes, decays completely as the field becomes steady. Correspondingly, at successive polarity changes, the stripe direction switches between the alignment directions at the two substrates. For large voltages, the stripes formed nearly along the alignment direction at the cathode gradually reorient toward the midplane director. These observations are generally attributed to inhomogeneous and time-dependent field conditions that come to exist after each polarity reversal. Polarity dependence of the instability is attributed to the formation of intrinsic double layers that bring about an asymmetry in surface fields. Momentary field elevation near the cathode following a voltage sign reversal and concomitant gradient flexoelectric polarization are considered the key factors in accounting for the surfacelike modulation observed at low voltages.
Two new families of high-gain dc-dc power electronic converters for dc-microgrids
NASA Astrophysics Data System (ADS)
Prabhala, Venkata Anand Kishore
Distributing the electric power in dc form is an appealing solution in many applications such as telecommunications, data centers, commercial buildings, and microgrids. A high gain dc-dc power electronic converter can be used to individually link low-voltage elements such as solar panels, fuel cells, and batteries to the dc voltage bus which is usually 400 volts. This way, it is not required to put such elements in a series string to build up their voltages. Consequently, each element can function at it optimal operating point regardless of the other elements in the system. In this dissertation, first a comparative study of dc microgrid architectures and their advantages over their ac counterparts is presented. Voltage level selection of dc distribution systems is discussed from the cost, reliability, efficiency, and safety standpoints. Next, a new family of non-isolated high-voltage-gain dc-dc power electronic converters with unidirectional power flow is introduced. This family of converters benefits from a low voltage stress across its switches. The proposed topologies are versatile as they can be utilized as single-input or double-input power converters. In either case, they draw continuous currents from their sources. Lastly, a bidirectional high-voltage-gain dc-dc power electronic converter is proposed. This converter is comprised of a bidirectional boost converter which feeds a switched-capacitor architecture. The switched-capacitor stage suggested here has several advantages over the existing approaches. For example, it benefits from a higher voltage gain while it uses less number of capacitors. The proposed converters are highly efficient and modular. The operating modes, dc voltage gain, and design procedure for each converter are discussed in details. Hardware prototypes have been developed in the lab. The results obtained from the hardware agree with those of the simulation models.
Recent advances of high voltage AlGaN/GaN power HFETs
NASA Astrophysics Data System (ADS)
Uemoto, Yasuhiro; Ueda, Tetsuzo; Tanaka, Tsuyoshi; Ueda, Daisuke
2009-02-01
We review our recent advances of GaN-based high voltage power transistors. These are promising owing to low on-state resistance and high breakdown voltage taking advantages of superior material properties. However, there still remain a couple of technical issues to be solved for the GaN devices to replace the existing Si-based power devices. The most critical issue is to achieve normally-off operation which is strongly desired for the safety operation, however, it has been very difficult because of the built-in polarization electric field. Our new device called GIT (Gate Injection Transistor) utilizing conductivity modulation successfully achieves the normally-off operation keeping low on-state resistance. The fabricated GIT on a Si substrate exhibits threshold voltage of +1.0V. The obtained on-state resistance and off-state breakdown voltage were 2.6mΩ•cm2 and 800V, respectively. Remaining technical issue is to further increase the breakdown voltage. So far, the reported highest off-state breakdown voltage of AlGaN/GaN HFETs has been 1900V. Overcoming these issues by a novel device structure, we have demonstrated the world highest breakdown voltages of 10400V using thick poly-crystalline AlN as a passivation film and Via-holes through sapphire which enable very efficient layout of the lateral HFET array avoiding any undesired breakdown of passivation films. Since conventional wet or dry etching cannot be used for chemically stable sapphire, high power pulsed laser is used to form the via-holes. The presented GaN power devices demonstrate that GaN is advantageous for high voltage power switching applications replacing currently used Si-based power MOSFETs and IGBTs.
NASA Astrophysics Data System (ADS)
Banerjee, Amit; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu
2017-06-01
Cold field emission characteristics of a fracture fabricated Si nanogap (˜100 nm) were investigated with an ascending electric field (voltage) sweep. The nanogap was formed by controlled fracture of a free-standing silicon micro-beam along <111> direction by a microelectromechanical device, which results in flat, smooth, and conformal electrode pairs. This facilitates simultaneous large area emission, which gives rise to a significant current at low bias voltage, which usually remains indiscernible in nanogaps of this size. The measured emission current-voltage (I-V) characteristics clearly depict two distinct regimes: a linear (I ∝ V) regime at low bias voltage and a nonlinear [ln(I/V 2) ∝ V -1] regime at high bias voltage, separated by a transition point. We propose that the linear regime is owed to direct tunneling of electrons, whereas the nonlinear regime is due to Fowler-Nordheim type emission. This proposition essentially implies that the tunneling potential barrier gradually evolved from a rectangular shape to a triangular shape with increasing field (V). This type of evolution is usually observed in molecular size gaps. We have attempted to correlate the I-V curves acquired through the experiments with the electric field induced barrier shape evolution by numerical calculations involving standard quantum mechanics. The observed linear regime at low bias voltage (<5 V) in a relatively large size gap (˜100 nm) is attributed to the fabrication method adopted in this study. The reported study and the fabricated device are significant for developing a futuristic thermotunneling refrigerator that will find a wide range of application in nanoelectronic devices.
Operation of a voltage source converter at increased utility voltage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaura, V.; Blasko, V.
1997-01-01
The operation of a voltage source converter (VSC) with regeneration capability, controllable power factor, and low distortion of utility currents is analyzed at increased utility voltage. Increase in the utility voltage causes a VSC to saturate and enter a nonlinear mode of operation. To operate under elevated utility, two steps are taken: (1) a pulse width modulation (PWM) algorithm is implemented which extends the linear region of operation by 15% and (2) a PWM saturation regulator is used to control the reactive current at higher utility voltages. The PWM algorithm reduces the switching losses by at least 33% and themore » effect of blanking time by one-third. All analytical results are experimentally verified on a 100 kW three-phase VSC.« less
Mobile patient monitoring based on impedance-loaded SAW-sensors.
Karilainen, Anna; Finnberg, Thomas; Uelzen, Thorsten; Dembowski, Klaus; Müller, Jörg
2004-11-01
A remotely requestable, passive, short-range sensor network for measuring small voltages is presented. The sensor system is able to simultaneously monitor six small voltages in millivolt-range, and it can be used for Holter-electrocardiogram (ECG) and other biopotential monitoring, or in industrial applications. The sensors are based on a surface acoustic wave (SAW) delay line with voltage-dependent, impedance loading on a reflector interdigital transducer (IDT). The load circuit impedance is varied by the capacitance of the voltage-controlled varactor. High resolution is achieved by developing a MOS-capacitor with a thin oxide, low flat-band voltage, and zero-voltage capacitance in the space-charge region, as well as a high-Q-microcoil by thick metal electroplating. Simultaneous monitoring of multiple potentials is realized by time-division-multiplexing of different sensor signals.
Voltage switching of a VO{sub 2} memory metasurface using ionic gel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldflam, M. D.; Liu, M. K.; Chapler, B. C.
2014-07-28
We demonstrate an electrolyte-based voltage tunable vanadium dioxide (VO{sub 2}) memory metasurface. Large spatial scale, low voltage, non-volatile switching of terahertz (THz) metasurface resonances is achieved through voltage application using an ionic gel to drive the insulator-to-metal transition in an underlying VO{sub 2} layer. Positive and negative voltage application can selectively tune the metasurface resonance into the “off” or “on” state by pushing the VO{sub 2} into a more conductive or insulating regime respectively. Compared to graphene based control devices, the relatively long saturation time of resonance modification in VO{sub 2} based devices suggests that this voltage-induced switching originates primarilymore » from electrochemical effects related to oxygen migration across the electrolyte–VO{sub 2} interface.« less
Pentacene-based low voltage organic field-effect transistors with anodized Ta2O5 gate dielectric
NASA Astrophysics Data System (ADS)
Jeong, Yeon Taek; Dodabalapur, Ananth
2007-11-01
Pentacene-based low voltage organic field-effect transistors were realized using an anodized Ta2O5 gate dielectric. The Ta2O5 gate dielectric layer with a surface roughness of 1.3Å was obtained by anodizing an e-beam evaporated Ta film. The device exhibited values of saturation mobility, threshold voltage, and Ion/Ioff ratio of 0.45cm2/Vs, 0.56V, and 7.5×101, respectively. The gate leakage current was reduced by more than 70% with a hexamethyldisilazane (HMDS) treatment on the Ta2O5 layer. The HMDS treatment also resulted in enhanced mobility values and a larger pentacene grain size.
NASA Astrophysics Data System (ADS)
Na, Jong H.; Kitamura, M.; Arakawa, Y.
2007-11-01
We fabricated high mobility, low voltage n-channel transistors on plastic substrates by combining an amorphous phase C60 film and a high dielectric constant gate insulator titanium silicon oxide (TiSiO2). The transistors exhibited high performance with a threshold voltage of 1.13V, an inverse subthreshold swing of 252mV/decade, and a field-effect mobility up to 1cm2/Vs at an operating voltage as low as 5V. The amorphous phase C60 films can be formed at room temperature, implying that this transistor is suitable for corresponding n-channel transistors in flexible organic logic devices.